

UNIVERSIDAD PERUANA DE CIENCIAS APLICADAS

FACULTAD DE INGENIERÍA

PROGRAMA ACADÉMICO DE INGENIERÍA CIVIL

Control de irregularidad por torsión en una edificación de 12 pisos mediante el reforzamiento con disipadores de energía fluido viscosos

TESIS

Para optar el título profesional de Ingeniero Civil

AUTOR(ES)

Ticse Negron, Carlos Javier (0000-0003-0896-8924)

Zevillanos Arze, Paula Lorena (0000-0003-4760-6803)

ASESOR

Moreno Sanchez, Javier Daniel (0000-0003-2132-8171)

Lima, [09 de diciembre de 2019]

DEDICATORIA

A nuestros queridos padres quienes nos brindaron su apoyo, motivación y amor. A nuestros profesores que nos formaron en la carrera de Ingeniería Civil.

AGRADECIMIENTOS

Realizar la tesis Pre-grado ha sido un gran paso en nuestras vidas académicas en la Universidad Peruana de Ciencias Aplicadas. Agradecemos al Ing. Daniel Huamán, por habernos guiado en la elaboración de tesis.

Al Ing. Javier Moreno por apoyarnos en todo el esquema de la tesis y brindarnos información.

RESUMEN

La sismología que presenta el territorio peruano ha llegado a generar registros sísmicos

severos a lo largo del tiempo, ocasionando pérdidas sociales y económicas; lo cual ha llevado

a tomar en cuenta soluciones alternativas para mitigar los problemas de inseguridad

estructural. Mayormente las edificaciones cuentan con simetría, continuidad de pisos,

resistencia y ductilidad mediante placas; sin embargo, aún hay presencia de daños

significativos en la estructura y el contenido del edificio después de un sismo severo. Una

respuesta a estos efectos sísmicos en edificaciones son el uso de sistemas de control pasivo,

principalmente el disipador fluido-viscoso, mediante el cual se puede reducir la magnitud de

las vibraciones.

La presente investigación muestra la evaluación sísmica de un edificio asimétrico de doce

niveles con irregularidad torsional y el control de respuesta al incluir disipadores de energía

Fluido Viscoso No lineal, observando la eficiencia de los amortiguadores en la reducción de

los efectos torsionales y distorsiones.

Las evaluaciones al proyecto fueron realizadas bajo los parámetros indicados por la Norma

E.030 2016, los requerimientos del dispositivo bajo los códigos FEMA 273, 274 y ASCE 7-

10.

La edificación con disipadores fue evaluada con los datos históricos ocurridos en el Perú

mediante un análisis Tiempo Historia. Finalmente se muestra la disminución de irregularidad

torsional y la reducción de desplazamientos y derivas en cada planta, demostrando un buen

desempeño sísmico en la edificación planteada.

Palabras clave: amortiguamiento, derivas, curva histerética, disipador fluido viscoso

Ш

ABSTRACT

The seismology that presents the Peruvian territory has generate severe seismic records over

time, causing social and economic; which has led to search for alternative solutions to

mitigate the problems of structural insecurity. Most of buildings have symmetry, continuity

of floors, resistance and ductility through plates; however, there is still a possibility of

damage to the structure and content of the building after a severe earthquake. One response

to these seismic effects in buildings is the use of passive control systems, mainly the fluid-

viscous dissipater, by means of which the magnitude of the vibrations can be reduced.

The present investigation shows the seismic evaluation of an asymmetric building of twelve

levels with torsional irregularity and the response of including non-linear Viscous Fluid

energy dampers, observing the efficiency of the reduction of the torsional effects.

The evaluations have been performed under the parameters indicated by the E.030 2016

Standard, the device requirements under the FEMA 273, 274 and ASCE 7-10.

The building with dampers was evaluated with the historical data that occurred in Peru

through a Time History analysis. Finally, it shows the reduction of the torsional irregularity,

displacements and drifts in each plant, demonstrating an efficient seismic performance in

asymmetric buildings.

Keywords: damping, drifts, hysteretic curve, fluid viscous dampers

IV

TABLA DE CONTENIDOS

ÍN	DICE	DE TABLAS	VIII
ÍΝ	DICE	DE FIGURAS	XI
1.	INT	RODUCCION	1
2.	CAF	PITULO 1: GENERALIDADES	3
	2.1	Antecedentes	3
	2.2	Fundamentación	6
	2.3	Objetivos	8
	2.3.2	1 Generales	8
	2.3.2	2 Específicos	8
3.	CAF	PITULO 2: MARCO TEÓRICO	9
	3.1	Diseño sismorresistente tradicional	9
	3.1.2	1 Pre-dimensionamiento	9
	3.1.2	2 Estructuración en edificaciones	11
	3.2	Sistemas de protección sísmica	12
	3.3	Tipos de disipadores de energía	16
	3.3.2	1 Disipadores metálicos	16
	3.3.2	2 Disipadores por fricción	17
	3.3.3	3 Disipadores visco elásticos	18
	3.3.4	4 Disipadores fluido-viscosos	18
	3.4	Dinámica estructural	19
	3.4.2	1 Vibración Libre	19
	3.4.2	2 Consideraciones para determinar las acciones sísmicas	21
	3.4.3	Análisis Dinámico	24
	3.4.4	4 Sistema de amortiguamiento	24
	3.5	Distribución de energía en un sistema estructural	26
	3.6	Requerimientos del código ASCE	27
	3.7	Selección del disipador de energía fluido viscoso	28
	3.7.2	1 Características del disipador fluido viscoso	30
	3.7.2	2 Componentes del dispositivo	30
	3.7.3	Funcionamiento	32
	3.7.4	4 Respuesta y parámetros del disipador	32
	3.7.5	5 Configuración del dispositivo	37
	3.7.6	6 Estructuras equipadas con disipadores fluido-viscosos	39
	3.7.7	7 Fabricantes:	40

		3.7.8	Experiencia en el Perú	42
4.		CAPIT	ULO 3: EVALUACIÓN DEL PROYECTO ESTRUCTURAL	44
	4.1	1 D	escripción del modelo	44
		4.1.1	Proyecto de Salud Privada	44
		4.1.2	Estudio de mecánica de suelos	45
		4.1.3	Características de la Arquitectura	45
		4.1.4	Características estructurales	48
	4.2	2 Co	onsideraciones para el análisis estructural	51
	4.3	3 M	odelamiento del sistema	52
	4.4	4 A	nálisis estructural	54
		4.4.1	Coeficiente Sísmico	54
		4.4.2	Análisis Dinámico Modal Espectral	55
		4.5.1	Resultados obtenidos del Análisis Dinámico	57
5.		CAPIT	ULO 4: ANÁLISIS SÍSMICO CON DISIPADORES DE ENERGÍA	61
	5.1	1 A	nálisis Dinámico Tiempo - Historia sin disipadores	61
		5.1.1	Análisis Dinámico Espectral R=1	61
		5.1.2	Acelerogramas Escalados	62
		5.1.3	Resultados del Análisis Tiempo Historia	67
	5.2	2 A	mortiguamiento objetivo	72
		5.2.1	Objetivo de desempeño	72
		5.2.2	Cálculo de Amortiguamiento	74
	5.3	3 D	eterminación de las propiedades del disipador	75
		5.3.1	Cálculo de la rigidez	75
		5.3.2	Cálculo del coeficiente de amortiguamiento	77
	5.4	4 Co	omparativo de disipadores incorporados	79
	5.5	5 In	corporación del disipador a la edificación	100
	5.6	5 E\	/aluación de resultados	103
		5.6.1	Comportamiento Histerético	103
		5.6.2	Balance de energía	106
		5.6.3	Resultados comparativos	107
	5.7	7 Pi	opuesta final de la edificación	123
		5.7.1	Dimensiones de los dispositivos	123
		5.7.2	Propiedades del brazo metálico	128
		5.7.3	Conexión del disipador a la estructura	129
	5.8	3 Es	timación de costos del proyecto con disipadores fluido viscosos	133

6.	CAF	PITULO 5: CONCLUSIONES Y RECOMENDACIONES	135
	6.1	Conclusiones	135
	6.2	Recomendaciones	136
7.	REF	FERENCIAS	137
8.	ANI	EXOS	140

ÍNDICE DE TABLAS

Tabla 1. Aspectos deseables para el uso de dispositivos de control pasivo	5
Tabla 2. Clasificación de los perfiles de suelo	22
Tabla 3. Tabla para determinar el factor "S"	22
Tabla 4. Tabla de periodos Tp y TL	22
Tabla 5. Resumen de los dispositivos de energía pasivos	29
Tabla 6. Tabla de relaciones de los valores λ y α	36
Tabla 7. Cálculo del servicio total de la estructura	50
Tabla 8. Cálculo del servicio total de la estructura	50
Tabla 9. Consideraciones tomadas para los materiales	51
Tabla 10. Metrado de carga	52
Tabla 11. Irregularidad torsional en X-X	56
Tabla 12. Irregularidad torsional en Y-Y	57
Tabla 13. Derivas del análisis dinámico espectral en X e Y	57
Tabla 14. Masa participativa en X, Y, Z	59
Tabla 15. Verificación de la fuerza cortante mínima	60
Tabla 16. Derivas análisis espectral R=1	62
Tabla 17. Registros sísmicos considerados para el análisis	63
Tabla 18. Resultados de derivas por escenario del análisis tiempo historia en la direcció	
X-X.	
Tabla 19. Resultados de derivas por escenario del análisis tiempo historia en la direcció Y-Y	
Tabla 20. Irregularidad Torsional con Sismo Lima 1970 en X	72
Tabla 21. Irregularidad Torsional con Sismo Lima 1970 en Y	72
Tabla 22. Dimensiones HSS 20 X 0.375	75
Tabla 23. Rigidez de los disipadores caso 1	77

Tabla 24. Cálculos del coeficiente de amortiguamiento en X	78
Tabla 25. Cálculos del coeficiente de amortiguamiento en Y	78
Tabla 26. Caso 1 de derivas en dirección X y Y	82
Tabla 27. Caso 1 de irregularidad torsional en X	83
Tabla 28. Caso 1 de irregularidad torsional en Y	83
Tabla 29. Caso 2 de derivas en dirección X y Y	86
Tabla 30. Caso 2 de irregularidad torsional en X	87
Tabla 31. Caso 2 de irregularidad torsional en Y	87
Tabla 32. Comparación del efecto torsional en X en el caso 1 y 2	88
Tabla 33. Comparación del efecto torsional en Y en el caso 1 y 2	88
Tabla 34. Caso 3 de derivas en dirección X y Y	90
Tabla 35. Caso 3 de irregularidad torsional en X	91
Tabla 36. Caso 3 de irregularidad torsional en Y	91
Tabla 37. Comparación del efecto torsional en X en el caso 2 y 3	92
Tabla 38. Caso 4 de derivas en dirección X y Y	94
Tabla 39. Caso 4 de irregularidad torsional en X	94
Tabla 40. Caso 4 de irregularidad torsional en Y	94
Tabla 41. Caso 5 de derivas en dirección X y Y	97
Tabla 42. Caso 5 de irregularidad torsional en X	97
Tabla 43. Caso 5 de irregularidad torsional en Y	97
Tabla 44. Resumen derivas por cada caso evaluado	98
Tabla 45. Comparativo de torsión en X	99
Tabla 46. Comparativo de torsión en Y	100
Tabla 47. Derivas de la estructura con disipadores – Análisis Tiempo Historia	102
Tabla 48. Fuerza máxima de cada disipador	106

Tabla 49. Resultados de balance de energía	106
Tabla 50. Separación mínima de separación de edificios	108
Tabla 51. Porcentaje de reducción derivas de entrepiso	108
Tabla 52. Comparativo de irregularidad torsional en X	109
Tabla 53. Comparativo de irregularidad torsional en Y	110
Tabla 54. Porcentaje de reducción desplazamiento en el CM	110
Tabla 55. Porcentaje de reducción aceleraciones en CM	111
Tabla 56. Porcentaje de reducción fuerzas internas placa P1	113
Tabla 57. Cargas en la placa P1 con y sin disipadores	114
Tabla 58. Resultados de combinaciones de carga-Placa P1	115
Tabla 59. Porcentaje de reducción fuerzas internas Columna C3	118
Tabla 60. Cargas en la Columna C3 con y sin disipadores	120
Tabla 61. Combinaciones de carga de la Columna C3	120
Tabla 62. Participativa de edificio con disipadores	123
Tabla 63. Fuerza de los disipadores en dirección Y	124
Tabla 64. Fuerza de los disipadores en dirección X	125
Tabla 65. Dimensiones de disipadores seleccionados	127
Tabla 66. Dimensiones de placa de conexión	127
Tabla 67. Costo Total del Proyecto	134

ÍNDICE DE FIGURAS

Figura 1. Zonas sísmicas en el Perú	4
Figura 2. Captura de pantalla de placas tectónicas	6
Figura 3. Edificios sísmicamente aislados	7
Figura 4. Esquema de estructura con sistema de control activo	13
Figura 5. Esquema de estructura con sistema de control semi-activo	14
Figura 6. Aplicación aislador en edificio san agustín (Chile)	15
Figura 7. Edificio con disipadores de energía	15
Figura 8. Disipador AMS	16
Figura 9. Disipador metálico tipo ADAS	17
Figura 10. Disipador por fricción	17
Figura 11. Disipador visco-elástico e instalación	18
Figura 12. Disipadores fluido viscosos en edificio reducto-lima	19
Figura 13. Efectos de amortiguamiento sobre la vibración libre	20
Figura 14. Vibración libre de sistemas con cuatro niveles de amortiguamiento	26
Figura 15. Disipadores fluido viscosos	31
Figura 16. Circulación del fluido viscoso en el dispositivo	32
Figura 17. Curva fuerza- desplazamiento de un disipador fluido viscoso	33
Figura 18. Relación velocidad vs fuerza del disipador	34
Figura 19. Configuración chevron brace	37
Figura 20. Configuración diagonal	38
Figura 21. Edificio Torre Mayor con disipadores taylor	39
Figura 22. Los Ángeles city hall disipadores y aisladores	40
Figura 23. Proyectos con disipadores fluido viscosos (2000-2013)	41
Figura 24. Circulación del fluido viscoso en el dispositivo	42

Figura 25. Edificio reducto – Miraflores
Figura 26. Ubicación del proyecto
Figura 27. Delimitación del sector 1- San Isidro
Figura 28. Distribución primera planta
Figura 29. Distribución segunda a décima planta
Figura 30. Distribución onceava a doceava planta
Figura 31. Modelamiento del proyecto en planta
Figura 32. Modelamiento del proyecto 3D
Figura 33. Espectro inelástico de pseudoaceleraciones en la dirección X e Y 55
Figura 34. Vista en planta de desplazamiento en el eje Y-modelo Etabs 58
Figura 35. Espectro Objetivo de Pseudo-aceleraciones R=1
Figura 36. Registros de aceleración Lima 1966 ESTE-OESTE, SIN ESCALAR
Figura 37. Registros de aceleración Lima 1966 NORTE-SUR, SIN ESCALAR 63
Figura 38. Registros de aceleración Lima 1970 ESTE-OESTE, SIN ESCALAR 64
Figura 39. Registros de aceleración Lima 1970 NORTE-SUR, SIN ESCALAR 64
Figura 40. Registros de Aaeleración Lima 1974 ESTE-OESTE, SIN ESCALAR 64
Figura 41. Registros de aceleración Lima 1974 NORTE-SUR, SIN ESCALAR 65
Figura 42. Espectro objetivo (color rojo) y registros sísmicos de Lima 1966, 1970 y 1974 en sentido este y oeste SIN ESCALAR
Figura 43. Espectro objetivo (color rojo) y registros sísmicos de Lima 1966, 1970 y 1974 en sentido norte y sur SIN ESCALAR
Figura 44. Espectro objetivo (color rojo) y registros sísmicos de Lima 1966, 1970 y 1974 en sentido este y oeste ESCALADOS
Figura 45. Espectro objetivo (color rojo) y registros sísmicos de Lima 1966, 1970 y 1974 en sentido norte y sur ESCALADOS
Figura 46. Registros de aceleración Lima 1966 ESTE-OESTE, ESCALADO
Figura 47. Registros de aceleración Lima 1966 NORTE-SUR, ESCALADO

Figura 48. Registros de aceleración Lima 1970 ESTE-OESTE, ESCALADO	68
Figura 49. Registros de aceleración Lima 1970 NORTE-SUR, ESCALADO	69
Figura 50. Registros de aceleración Lima 1974 ESTE-OESTE, ESCALADO	69
Figura 51. Registros de aceleración Lima 1974 NORTE-SUR, ESCALADO	69
Figura 52. Primer escenario de análisis – modelo Etabs	70
Figura 53. Segundo escenario de análisis – modelo Etabs	70
Figura 54. Corte en el perfil Round HSS 20x0.375	76
Figura 55. Ubicación de los disipadores caso 1	76
Figura 56. Desplazamientos Tiempo Historia Lima 1970 en X	80
Figura 57. Desplazamientos Tiempo Historia Lima 1970 en Y	80
Figura 58. Vista en planta, primer caso de ubicación de dispositivos	81
Figura 59. Vista en elevación del primer caso, eje 1 y eje H	82
Figura 60. Vista en planta, conclusiones del primer caso	84
Figura 61. Vista en planta, segundo caso de ubicación de dispositivos	85
Figura 62. Vista en elevación del segundo caso, eje 1 y eje H	85
Figura 63. Vista en elevación del segundo caso, eje 8 y eje A	86
Figura 64. Vista en planta, tercer caso de ubicación de dispositivos	89
Figura 65. Vista en elevación del tercer caso, eje 1 y eje H	89
Figura 66. Vista en elevación del tercer caso, eje 8 y eje A	90
Figura 67. Vista en planta, cuarto caso de ubicación de dispositivos	92
Figura 68. Vista en elevación del cuarto caso, eje 1 y eje H	93
Figura 69. Vista en elevación del cuarto caso, eje 8 y eje A	93
Figura 70. Vista en planta, quinto caso de ubicación de dispositivo	95
Figura 71. Vista en elevación del quinto caso, eje 1 y eje H	96
Figura 72. Vista en elevación del quinto caso, eje 8 y eje A	96

Figura 73. Comparativo Grafico – Casos Eje X	98
Figura 74. Comparativo Grafico – Casos Eje Y	99
Figura 75. Viste general de la ubicación de los disipadores	101
Figura 76. Ubicación de disipadores en dirección X, Eje 1 (derecha) y 8 (izquierda)	101
Figura 77. Ubicación de disipadores en dirección Y, Eje A (derecha) y H (izquierda)	102
Figura 78. Vista pórtico con disipadores	103
Figura 79. Curva histerética de disipadores 1 y 2	104
Figura 80. Curva histerética de disipadores 3 y 4	104
Figura 81. Curva histerética de disipadores 5 y 6	104
Figura 82. Curva histerética de disipadores 7 y 8	105
Figura 83. Curva histerética de disipadores 9 y 10	105
Figura 84. Curva histerética de disipadores 11 y 12	105
Figura 85. Gráfico de balance de energía	107
Figura 86. Comparación derivas eje X	109
Figura 87. Comparación derivas eje Y	109
Figura 88. Comparación desplazamiento en CM eje X	110
Figura 89. Comparación desplazamiento en CM eje Y	111
Figura 90. Comparación aceleraciones en CM eje X	111
Figura 91. Comparación aceleraciones en CM eje Y	112
Figura 92. Vista en planta de los elementos seleccionados (Placa P1 y Columna C3)	112
Figura 93. Comparación fuerza axial P1	113
Figura 94. Comparación fuerza cortante P1	113
Figura 95. Comparación momento flector P1	113
Figura 96. Detalle de refuerzo de la placa P1	114
Figura 97. Diagrama de Interacción de placa P1-Eje X	116

Figura 98. Diagrama de Interacción de placa P1-Eje Y	. 116
Figura 99. Comparación fuerza axial C3	. 118
Figura 100. Comparación fuerza cortante C3	. 118
Figura 101. Comparación momento flector C3	. 119
Figura 102. Detalle de refuerzo de la columna C3	. 119
Figura 103. Diagrama de Interacción de Columna C3-Eje X	. 121
Figura 104. Diagrama de Interacción de Columna C3-Eje Y	. 121
Figura 105. Detalle disipador Taylor por taylordevices.com, 2017	. 126
Figura 106. Dimensiones de disipador F= 440 KPI por taylordevices.com, 2017	. 127
Figura 107. Dimensiones de disipador F= 675 KPI por taylordevices.com, 2017	. 128
Figura 108. Dimensiones de brazo HSS por steeltubeinstitute.org, 2017	. 129
Figura 109. Esquema de Sistema de Disipación Fluido Viscoso por Villareal Genner, 2	
Figura 110. Esquema de Cartela	. 130
Figura 111. Detalle de conexión de cartela y disipador a la estructura	. 131
Figura 112. Detalle de conexión de cartela y brazo metálico a la estructura	. 131
Figura 113. Fallas por corte del concreto y perno de anclaje, por ACI 318-19	. 131
Figura 114. Fallas por arrancamiento del concreto y perno de anclaje, por ACI 318-19.	. 132
Figura 115. Falla por corte del perno de conexión por Zapata Luis, 2019	. 132
Figura 116. Falla por tracción de la cartela por Zapata Luis, 2019	. 132
Figura 117. Ficha técnica edificio rivera navarrete	. 133

1. INTRODUCCION

Las filosofías para proyectar estructuras que sean sostenibles y seguras ante terremotos presentan una mayor mejora. Nuevos estudios y aplicaciones se vienen realizando para ver las posibilidades de incorporar sistemas de protección sísmica a los diseños estructurales. Según los alcances de la Norma Técnica E030-2016 "Diseño Sismorresistente" del Reglamento Nacional de Edificaciones, una estructura está diseñada para producir buenos resultados de resistencia y ductilidad; es decir brindar un comportamiento que asegure que la estructura no colapsará durante un sismo, más si existirá un límite de daños a elementos no estructurales¹.

Sin embargo, frente a un sismo severo, un edificio de sistema estructural tradicional en base a concreto armado puede llegar a presentar daños importantes en sus elementos estructurales y perdidas de inversión u operatividad del contenido del edificio. Por ello, para alcanzar objetivos superiores a la Normativa Peruana es necesario implementar sistemas de protección sísmica en los nuevos diseños estructurales, esta tecnología permite a la edificación tener un mejor comportamiento dinámico frente a los movimientos sísmicos.

Principales países con mayor vulnerabilidad sísmica como Japón, EEUU y Chile han venido aplicando estos sistemas antisísmicos; siendo el uso de disipadores de energía uno de los sistemas más utilizados para edificaciones flexibles y esbeltas. Estos dispositivos son utilizados como un sistema alternativo para reducir la vibración de las edificaciones producidas por acción del viento o de sismos, logrando una notoria reducción de daños en los elementos estructurales y no estructurales.

El territorio peruano al encontrarse en una zona de gran potencial sísmico se ha sumado a la aplicación de estos sistemas de protección sísmica, incursionando en la investigación, diseño e incorporación de estos mecanismos a nuestras construcciones existentes y futuras. El siguiente trabajo presenta la incorporación de disipadores de energía a una edificación asimétrica con irregularidad torsional que pretende tener una buena respuesta sísmica y una mejora considerable en el comportamiento dinámico estructural.

_

¹ Ver Norma Técnica E.030 Diseño Sismorresistente, 2016, p.4.

En el primer capítulo se presenta la historia sísmica del Perú, sismología y la respuesta de las edificaciones frente a estos eventos. También se incluye la importancia de contar con estructuras preparadas y los objetivos de nuestra investigación.

En el segundo capítulo se analiza los lineamientos de la Norma E.030 y E.060 para un correcto pre dimensionamiento y estructuración. Se revisará los sistemas de protección sísmica mostrando con más detalle el Dispositivo de Disipación de Energía Fluido Viscoso, las propiedades del amortiguador, formas de colocación y normativas de cálculo del dispositivo.

En el tercer capítulo se detalla el proyecto, su descripción, especificaciones y sistema estructural. Se realizará un análisis estructural bajo la norma E.030 para ver el comportamiento de la edificación.

En el cuarto capítulo se analiza la respuesta de la edificación incorporando los disipadores de energía, se conocerá la ubicación, evaluación de resultados y características que se emplearan para que el dispositivo trabaje de una forma eficiente.

En el quinto capítulo se analiza los resultados dando conclusiones y recomendaciones de la propuesta final del proyecto.

2. <u>CAPITULO 1: GENERALIDADES</u>

2.1 Antecedentes

Los movimientos telúricos han demostrado tener una gran fuerza destructora en todo el mundo. El Perú no es ajeno a estos sucesos, casos históricos como el terremoto de Lima 1940, Huaraz 1970 y Pisco 2007 evidenciaron que aún hay problemas constructivos y preventivos ante la ocurrencia de un sismo. Nuestro territorio tiene una interacción de las placas tectónicas Sudamericana y Nazca, ubicadas en la zona llamada el cinturón de fuego del Pacifico. Estas características hacen que la sismicidad del Perú este entre las más altas junto a países como Japón, México, Chile, Islandia, Indonesia, EEUU y Rusia.

El sector de construcción del Perú presenta una vulnerabilidad sísmica alta, principalmente por las construcciones informales "no ingenieriles", asentamientos humanos en los conos de Lima, viviendas ubicadas en terrenos inestables y construcciones antiguas; prueba de ello se evidencio recientemente en el año 2007, donde se registraron más de 1 500 heridos, 519 fallecidos, 192 492 viviendas dañadas y un valor de pérdida de 139,182 millones de soles solo en el Sector Salud².

Por otro lado, la mayor presencia de edificios se encuentra en Lima, lugar con mayor vulnerabilidad respecto a las zonas de la sierra y selva. La zonificación sísmica mostrada en la Figura 1, da a conocer que toda la costa peruana llamada zona 4 es la de mayor actividad sísmica.

3

² Ver Bambarén & Alatrista, Estimación del impacto socioeconómico del terremoto en Pisco en el sector salud peruano, 2009, p.7.

Figura 1. Zonas sísmicas en el Perú

Fuente: Norma técnica E030 "Diseño sismo resistente" del reglamento nacional de edificaciones, 2016

Lima, lugar donde se encuentra la mayor concentración de personas del Perú y los demás departamentos costeros, se encuentran con una alta vulnerabilidad sísmica y riesgo que se debe tener presente en el diseño y tipo de edificación. El desarrollo económico, principalmente en la capital, puede llegar a afectarse si las construcciones no son seguras frente a los sismos, por lo que es responsabilidad optar por nuevas seguridades estructurales y metodologías sísmicas.

En los últimos años, países como los Estados Unidos, Japón y Chile vienen incorporando el uso de técnicas de control de respuesta sísmica, donde principalmente se encuentran los sistemas pasivos de control como los disipadores de energía, masa sintonizada y aislamiento en la base.

Estos dispositivos han sido desarrollados con el propósito de reducir y controlar el daño estructural; sin embargo, la eficiencia de disipación de energía sísmica depende de las características que presentan el edificio y del tipo de dispositivo a emplear.

Como menciona, Oviedo y Duque, los aisladores sísmicos presentan un mejor control de daño en estructuras rígidas, debido a que estas alargan el periodo de vibración, reduciendo la demanda sísmica; mientras que los disipadores de energía presentan mejores controles de daño en edificios de altura, utilizando componentes más simples en cuanto a la fabricación, construcción e instalación.³

A continuación, se muestra un cuadro comparativo, donde se presentan las ventajas que tienen cada dispositivo de control pasivo.

	Control pasivo		
Aspectos deseables	Aislamiento basal	Disipadores histeréticos	Masa adicional
Bajo costo de instalación y puesta en obra de los dispositivos de control		*	
Larga vida útil de los dispositivos	*	*	
Bajo costo de mantenimiento de los dispositivos de control¹	*	*	*
Bajo costo de reemplazo de los dispositivos de control		*	
Baja probabilidad de reemplazo postsismo de los dispositivos de control	*		*
Bajo costo de fabricación de los dispositivos de control ²		*	
Instalación simple en obra de los dispositivos de control			
Reducción del daño estructural por sismo	*	*	
Simplicidad en el uso para la rehabilitación o reforzamiento de estructuras existentes			
Simplicidad en la implementación en sistemas de pórticos			
Simplicidad en la implementación en sistemas de muros de carga		*	
No requiere mano de obra altamente calificada para la instalación de los dispositivos de control		*	
Alto control de daño en contenidos³	*		
Bajo impacto en las prácticas de construcción actuales		*	
Fácil consecución de materiales necesarios para la fabricación de los dispositivos en el país		*	
Baja interrupción del continuo funcionamiento de estructuras indispensables durante la instalación o reemplazo de los dispositivos de control	*	*	

Tabla 1. Aspectos deseables para el uso de dispositivos de control pasivo

Fuente: Disipadores histeréticos metálicos como técnica de control de respuesta sísmica en edificaciones, Revista EIA, 2016

Tomando como referencia la tabla 1, esta investigación se enfocará en los disipadores de energía, ya que, a diferencia de los otros dos sistemas, este, presenta un menor costo de fabricación y una mayor facilidad de instalación en edificios ya construidos o en futuros proyectos.

_

³ Ver Oviedo y Duque, Disipadores Histereticos Metalicos como Técnica de Control de Respuesta Sísmica en Edificaciones Colombianas, Revista EIA, 2009, p. 56.

Hoy en día, se evidencia un nuevo cambio para el Perú, en donde la construcción no solo se limita a proteger la vida humana sino también a la de preservar la edificación y su contenido sin que estas demanden costos altos de reparación por causa de un sismo de gran magnitud. Aplicar estos dispositivos resultará útil en la formación de una cultura de prevención sísmica y el desarrollo económico en el sector construcción.

2.2 Fundamentación

Nuestro país se encuentra ubicado en la región llamada "cinturón de fuego", la cual comprende todo el perímetro del Océano Pacífico, esta cadena de fallas va desde los países sudamericanos (Chile, Perú, Colombia y Ecuador), centroamericanos (México, Estados Unidos y Panamá) hasta las costas de Japón. Específicamente Perú, se encuentra entre la Placa de Nazca y la placa Sudamericana, como se muestra en la Figura 2.

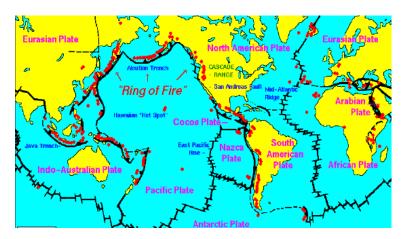


Figura 2. Captura de pantalla de placas tectónicas

Fuente: www.google.com.pe, 2016

La placa de Nazca se mueve aproximadamente de 6 a 8 centímetros al año, generando un proceso de liberación de energía en la llamada zona de subducción, paralela a las costas de Perú y Chile. La franja costera del Perú presenta un silencio sísmico de 270 años, por lo que se debe estar preparado y alerta ante la posible ocurrencia de un sismo severo.

La importancia de tener un sistema adecuado de prevención de sismos debe ser una prioridad, ya que la liberación de energía sísmica puede darse en cualquier momento poniendo en riesgo las edificaciones y a quienes las habitan. A pesar de que las edificaciones con muros de corte o placas presentan un desempeño sísmico aceptable, estos sistemas están

diseñados para absorber los movimientos originados por un sismo mediante el daño de elementos estructurales. Sin embargo, dependiendo de la intensidad del sismo, estos daños pueden llegar a ser mayores.

Hoy en día, el mercado ingenieril presenta nuevas tecnologías antisísmicas que permitan tener a salvo la estructura y su contenido, en vista de que las reparaciones de los daños son costosas y toman un periodo de tiempo para ser subsanadas. Un claro ejemplo, se muestra en la Figura 3, donde las estructuras japonesas empezaron a tener un mayor uso de tecnologías antisísmicas luego del gran terremoto de Kobe- Japón en 1995.

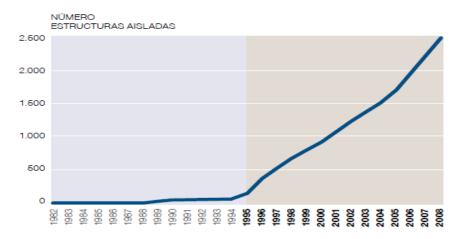


Figura 3. Edificios sísmicamente aislados

Fuente: Cámara chilena de la construcción - CDT N°29, 2016

El buen desempeño que han mostrado los diferentes sistemas de protección sísmica y el creciente uso de esta tecnología en los países altamente sísmicos como Japón, son pruebas de soluciones que debería considerar la construcción en el Perú. Principalmente, los sistemas pasivos como aisladores sísmicos y disipadores de energía sísmica ya se encuentran disponibles en el mercado peruano, estos sistemas comienzan a emplearse como solución de reforzamiento en edificaciones existentes y nuevos proyectos. Tener un buen conocimiento y aplicación sobre estos sistemas, evitará catástrofes mayores como el colapso de edificaciones, exceso de daños estructurales, disminución de pérdidas materiales y sobre todo pérdida de vidas.

Finalmente, el rubro de la construcción en Lima ha vuelto a presentar un leve crecimiento en la ejecución de edificaciones donde debe ser necesario considerar nuevas soluciones antisísmicas dando prioridad en su incorporación a los edificios esenciales cuya función no debe interrumpirse y a los edificios que presenten características especiales en su forma y diseño. Estas tecnologías permitirán proporcionar una mayor protección, funcionamiento y un mínimo costo de reparaciones post-sismo.

Realizar esta investigación permitirá comprender los conceptos, aplicación y beneficios que nos puede ofrecer el disipador de energía fluido viscoso incorporado a una edificación. Conocer estos sistemas, hará que para futuros proyectos se tome la decisión de construir edificaciones con criterios geométricos especiales y con mejores beneficios de sismoresistencia y mayor seguridad en el contenido del edificio.

2.3 Objetivos

2.3.1 Generales

Realizar un estudio numérico de las respuestas sísmicas de una edificación con irregularidad torsional utilizando dispositivos de disipación de energía fluido viscosos que permitan eliminar la torsión y disminuir los desplazamientos de la estructura.

2.3.2 Específicos

- Evaluar y comparar las reducciones de distorsiones de entrepiso (deriva), desplazamientos y aceleraciones del centro de masa de la edificación con y sin disipadores de energía fluido viscosos.
- Evaluar y comparar los resultados de derivas y torsión de diferentes disposiciones de disipadores colocados en la estructura, sin alterar y/o agregar más elementos estructurales al edificio planteado.
- Evaluar que la propuesta final de ubicación de disipadores en el edificio permita resolver la irregularidad torsional en planta y presentar derivas menores a los límites de la Norma E.030-2016.
- Determinar que el porcentaje de absorción de energía sísmica que toma el disipador fluido viscoso (entre 40% y 60%).

3. CAPITULO 2: MARCO TEÓRICO

3.1 Diseño sismorresistente tradicional

Los métodos constructivos han ido evolucionando en la búsqueda de construir proyectos resistentes a todo tipo de desastre natural. El objetivo principal del diseño sismorresistente tradicional es incrementar la rigidez y ductilidad de la estructura, esto se logra aumentando las secciones de columnas, placas, vigas, etc. Esta metodología, la cual llamaremos diseño tradicional, debe tomar en cuenta los criterios recomendados de la norma E.060 mostradas a continuación.

3.1.1 Pre-dimensionamiento

Se procede a indicar criterios y recomendaciones prácticas para el dimensionamiento de los diferentes elementos estructurales.

Columnas

Es importante mencionar que las columnas van a estar sometidas a flexo-compresión para que resistan las fuerzas del sismo. Una de las consideraciones más importantes es que el ancho mínimo de una columna debe ser 25 cm y la resistencia del concreto (f'c) no debe ser menor a 210 kg/cm².

Blanco Blasco, recomienda las siguientes fórmulas para el dimensionamiento de columnas en un edificio con sistemas mixtos de pórticos y muros de corte: la primera para las columnas exteriores o esquineras que reciben una menor carga axial y la segunda para las columnas centradas que resisten mayor carga.⁴

A continuación, se presentan las fórmulas a considerar:

Area C. esquinada/excentrica =
$$\frac{P_{servicio}}{0.35f'c}$$
 (3.1-1)

⁴ Ver Blanco Blasco, Estructuración y Diseño de Edificaciones de Concreto Armado, 1994, p. 41-42.

Area C. centrada =
$$\frac{P_{servicio}}{0.45f'c}$$
 (3.1-2)

Las fórmulas operan según la posición actuante de la columna y sobre la carga de servicio del elemento (valor P_{servicio}), siendo esta última obtenida de la siguiente función.

$$P_{\text{servicio}} = P \times A_{\text{trib.}}$$
 (3.1-3)

Siendo:

- ✓ P: Carga de Servicio Total de la Edificación (Carga Muerta + Carga Viva)
 (kg/m2)
- ✓ A: Área Tributaria del elemento a Pre dimensionar (m2)

Vigas

Para que la viga sea un elemento resistente a las fuerzas del sismo, se deben tomar consideraciones como una resistencia del concreto no menor a 210 kg/cm², el peralte efectivo debe ser del orden 1/10 a 1/12 de luz libre, el ancho de viga no será menor que 25 cm ni mayor que el ancho de columna de apoyo, la calidad del acero de refuerzo no debe ser mayor a 4200 Kg/cm² y tener una relación ancho/peralte no menor a 0.3.

Losas

Para losas aligeradas sometidas a flexión con sobrecargas menores a 300 kg/cm² y luz libre menor de 7.5 m. se debe considerar la siguiente ecuación.

$$h \ge \frac{L}{25} \tag{3.1-4}$$

Para losas macizas sometidas a flexión con sobrecargas menores a 300 kg/ cm² y luz libre menor de 7.5 m. se debe considerar la siguiente ecuación.

$$h \ge \frac{L}{40} \tag{3.1-5}$$

3.1.2 Estructuración en edificaciones

En el diseño tradicional, se recomienda que las edificaciones presenten los siguientes criterios con el objetivo de obtener un adecuado comportamiento sísmico de la estructura y un menor daño de esta.

Simplicidad y Simetría

El tener una geometría simple y simétrica permite predecir el comportamiento sísmico de una edificación a diferencia de una estructuración compleja y asimétrica, que llega a ser difícil de evaluar. Debe existir una sincronía entre el centro de masa de cada piso y centro de rigidez de los elementos que absorberán las fuerzas del sismo, con el fin de evitar la producción de efectos torsionales.

Resistencia y Ductilidad

Las estructuras deben tener resistencia sísmica en todas sus direcciones y a la vez presentar una ductilidad importante que llegue a deformar a la estructura sin que esta colapse.

Uniformidad y continuidad

El edificio debe ser diseñado de forma continua en todos sus niveles con elementos de igual o semejante rigidez. Se debe de evitar bruscas concentraciones de esfuerzos y cambios bruscos en los niveles. En el caso del uso de placas (muros de corte) éstas deben ser realizadas de una forma continua en todos los niveles, no debe haber un cambio brusco sino una reducción en los niveles superiores.

Rigidez lateral

La rigidez es uno de los principales componentes en una estructura. La edificación al tener rigidez lateral en sus direcciones principales, tendrá menores deformaciones y mayor resistencia de las fuerzas horizontales. Sin embargo, mientras más rígida sea la estructura, la ductilidad no será la deseada haciendo que los análisis sean más complejos. Por ello es importante combinar en las estructuras elementos rígidos y elementos a flexión, como son el uso de muros de corte y pórticos presenciados en los edificios limeños.

Diafragma rígido

Una losa rígida permite considerar a toda la estructura como una sola unidad, donde compatibilizan los desplazamientos de los nudos de columnas y vigas. Sin embargo, esta estructura no debe ser tan alargada, ya que podría sufrir mayor daño en sus extremos, por ello es recomendable el uso de juntas sísmicas, dividiendo la edificación en bloques.

Elementos no estructurales

Los elementos no estructurales son los que no forman parte del sistema de soporte de la edificación. Para una estructura aporticada y con placas, la rigidez de la tabiquería no es tan importante, ya que esta tiene una menor proporción comparada con las placas de concreto armado.

Sub-estructura o Cimentación

Se consideran factores en el diseño de la cimentación como: La transmisión del corte basal de la estructura al suelo, posibilidad de giro de la cimentación, licuefacción del subsuelo.

Diseño de concreto armado

Se tomarán las siguientes consideraciones para un diseño sismo-resistente:

- ✓ Limitar la cuantía de acero, para que la estructura sea dúctil y falle a tracción.
- ✓ Evitar la falla por cortante en un elemento sometido a flexión y cortante.
- ✓ Realizar el confinamiento de las estructuras que presentan mayores momentos.
- ✓ Diseñar vigas con acero a compresión y tracción que permitan la redistribución de momentos.
- ✓ Diseñar columnas que puedan resistir mayores momentos al de las vigas, las rotulas plásticas deben estar solo en los extremos de a vigas.

3.2 Sistemas de protección sísmica

En los últimos años han ido apareciendo dispositivos cuya filosofía se orienta a brindar una mayor protección al edificio. Estos dispositivos llamados sistemas de protección sísmica han tenido una buena respuesta en las primeras incorporaciones a edificios de Japón y EEUU,

llegando a implementarse con éxito en países altamente sísmicos y generando un alto grado de aceptación entre la comunidad profesional de ingenieros.

A diferencia del diseño sismorresistente tradicional, estos sistemas no requieren que las estructuras se deformen y lleguen al daño para disipar energía, el funcionamiento de los sistemas de protección va de acuerdo al dispositivo, características del edificio, tipo de suelo y seguridad que se le desea dar a la estructura. A continuación, se presentan los conceptos generales de cada sistema de protección sísmica, que van de diseños simples hasta avanzados sistemas automatizados.

Sistemas Activos

Los sistemas activos son equipos de control avanzados, estos incluyen sensores de movimiento, procesamiento de datos y actuadores dinámicos. Este sistema detecta los movimientos sísmicos en tiempo real para medir las fuerzas y así poder contrarrestar los efectos sísmicos transmitiendo fuerzas de control aplicadas a la estructura, la representación de este sistema se presenta en la Figura 4.

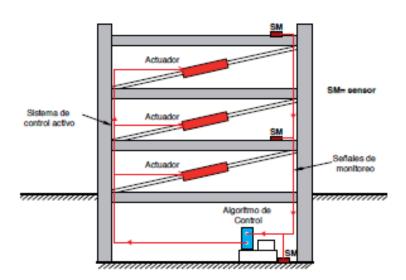


Figura 4. Esquema de estructura con sistema de control activo

Fuente: Cámara chilena de la construcción - CDT N°29, 2016

Sistemas Semi-Activos

Los sistemas semi-activos también cuenta con un mecanismo de monitoreo, pero estos no aplican ninguna fuerza de control para contrarrestar los movimientos telúricos. Este sistema actúa en tiempo real a través de la alteración de las propiedades mecánicas del dispositivo. La Figura 5 muestra una estructura con presencia del sistema semi-activo.

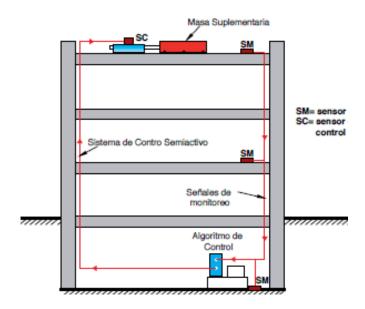


Figura 5. Esquema de estructura con sistema de control semi-activo

Fuente: Cámara chilena de la construcción - CDT N°29, 2016

Sistemas Pasivos

Los sistemas pasivos son los que mayormente se están utilizando. Estos sistemas se caracterizan por añadir amortiguamiento (en algunos casos rigidez) a la estructura y reducir los movimientos dinámicos mediante dispositivos mecánicos diseñados para disipar energía. Se dividen en dos grandes grupos: aisladores sísmicos y disipadores pasivos de energía.

✓ Los aisladores sísmicos reducen la respuesta de la estructura por un desacoplamiento entre el edificio y el suelo, es decir, desligan el movimiento de la estructura de los movimientos del suelo a través de elementos flexibles ubicados entre la estructura y subestructura⁵. La aislación sísmica es recomendable para edificaciones rígidas o de bajos niveles, la Figura 6 presenta un ejemplo de aisladores incorporados a la cimentación.

-

⁵ Ver Bozzo y Barbat, Diseño sismorresistente de estructuras ICG, 2002, p. 115.

Figura 6. Aplicación aislador en edificio san agustín (Chile)

Fuente: Cámara chilena de la construcción - CDT N°29, 2016

✓ Los disipadores de energía, a diferencia de los aisladores, no evitan el ingreso de energía sísmica del suelo a la estructura. Estos dispositivos absorben la mayor cantidad de energía sísmica que ha ingresado al edificio, generan fuerzas contrarias al movimiento del sismo para lograr un incremento de amortiguamiento y un menor movimiento de la estructura. Los disipadores se están empezando a utilizar con mayor frecuencia debido a su gran capacidad de respuesta sísmica ante movimientos telúricos severos. Principalmente edificaciones flexibles y de gran altura han logrado adquirir una mayor protección sísmica con estos dispositivos, la Figura 7 muestra la incorporación de disipadores a una edificación.

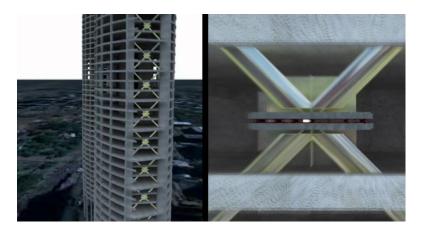


Figura 7. Edificio con disipadores de energía

Fuente: www.google.com.pe, 2016

✓ Masa Sintonizada, llamado disipador de energía tipo AMS (amortiguadores de masa sintonizada). Este dispositivo se ubica en la parte superior de la estructura y presenta una masa importante, el sistema transfiere la energía de un sistema excitado (edificio) a un sistema secundario no excitado (masa o bloque) con el fin de atenuar las vibraciones en una frecuencia determinada⁶. La Figura 8, muestra un ejemplo de Disipador AMS.

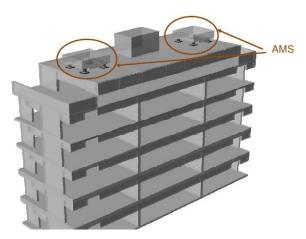


Figura 8. Disipador AMS

Fuente: www.google.com.pe, 2016

3.3 Tipos de disipadores de energía

3.3.1 Disipadores metálicos

Este tipo de disipadores disipan la energía mediante la fluencia de los metales sometidos a esfuerzos de flexión, torsión, cortante o axial, llegando a deformarse. Cuenta con la característica de añadir rigidez y amortiguamiento a la estructura, además de resistir a los factores ambientales y de temperatura; sin embargo, una vez que haya pasado el rango elástico tienden a deformarse por lo que requiere un cambio después de un sismo. La Figura 9 muestra un tipo de disipador metálico tipo ADAS.

_

⁶ Ver Ambrosini, Cuitiño y Rebeco. Eficiencia de amortiguadores de masa sintonizados en estructuras sismorresistentes, 2004, p. 449.

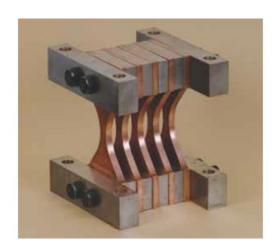


Figura 9. Disipador metálico tipo ADAS

Fuente: Cámara Chilena de la Construcción - CDT N°29, 2016

3.3.2 Disipadores por fricción

Este tipo de disipadores disipan la energía por medio de la fricción. El dispositivo funciona por el rozamiento de dos o más superficies en contacto bajo presión y deslizamiento entre ellas. Sin embargo, estos solo se llegan a activar si se ha llegado a alcanzar un nivel de carga requerido, lo cual es una desventaja importante para saber en qué momento se llegará a activar el dispositivo durante un sismo⁷. Un ejemplo de este disipador se muestra en la Figura 10.

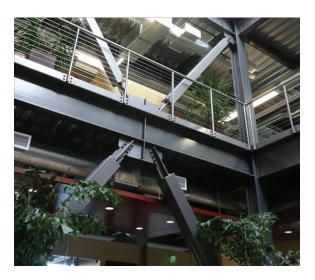


Figura 10. Disipador por fricción

Fuente: www.google.com.pe, 2016

⁷ Ver Bozzo y Barbat, Diseño sismorresistente de estructuras ICG, 2002, p. 137

17

3.3.3 Disipadores visco elásticos

El uso de disipadores visco elásticos consiste en la colocación de dos o tres placas metálicas unidas mediante polímeros, mayormente caucho; los cuales permiten el desplazamiento de las placas metálicas, como se aprecia en la Figura 11.

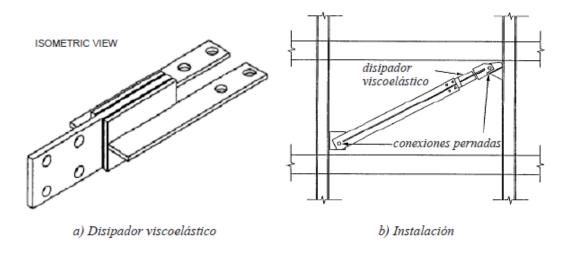


Figura 11. Disipador visco-elástico e instalación

Fuente: scielo.org.co, 2016

Algunas de las ventajas de este sistema son el bajo costo y el gran aumento de amortiguamiento a la estructura. Sin embargo, se deben tener ciertos cuidados como exposición a cambios fuertes de temperatura, deformaciones excesivas y la frecuencia de vibración a la que esté sometida.⁸

3.3.4 Disipadores fluido-viscosos

Los disipadores fluido-viscosos, como se aprecia en la Figura 12, son elementos incorporados básicamente a pórticos. Estos dispositivos presentan una alta resistencia a la corrosión y resistencia al impacto, tiene como función disipar la energía a través del paso del fluido viscoso en su interior. Estas características hacen al edificio tener condiciones favorables durante un sismo como: estar en servicio por largo tiempo sin necesidad de mantenimiento, no sufrir deformaciones y no aumentar la rigidez de la estructura.

-

⁸ Ver Oviedo y Duque, Sistema de control de respuesta sísmica en edificaciones, 2006, p.114

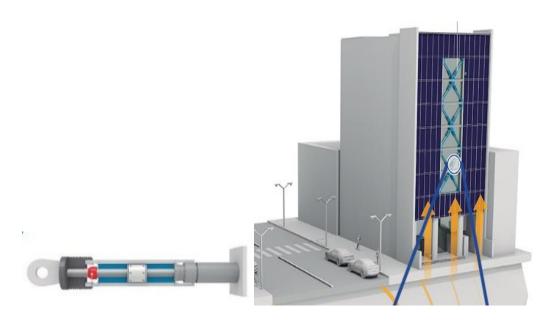


Figura 12. Disipadores fluido viscosos en edificio reducto-lima

Fuente: cdvperu.com, 2016

3.4 Dinámica estructural

Para la presente investigación, es importante conocer la dinámica estructural, es decir el comportamiento de una edificación sometida a cargas dinámicas. Ello, permitirá comprender los desplazamientos y las vibraciones de la estructura excitada sísmicamente.

3.4.1 Vibración Libre

La vibración libre es el movimiento que una estructura experimenta estando en su posición estática sin existir ninguna intervención de alguna fuerza o excitación dinámica. La teoría muestra diferentes tipos de vibraciones en un grado de libertad, sin embargo, solo describiremos la vibración libre amortiguada por presentar un comportamiento acorde a la realidad.

La vibración en un sistema sub-amortiguado va disminuyendo con el tiempo debido a una disipación de energía, llamadas fuerzas disipativas o amortiguamiento. Cada material estructural y no estructural de una edificación posee propiedades disipativas que cumplen un rol importante en la reducción de amplitud de la respuesta dinámica. El efecto de un sistema amortiguado y no amortiguado se muestra en la Figura 13.

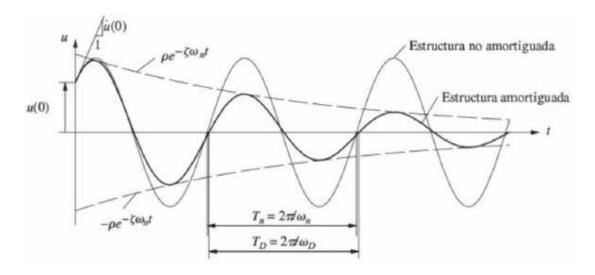


Figura 13. Efectos de amortiguamiento sobre la vibración libre

Fuente: Libro Dinámica de estructuras, Chopra Anil, 2016

Como se observa en la Figura anterior, la amplitud permanece constante en una estructura no amortiguada, mientras que, en una estructura amortiguada la amplitud va disminuyendo con el paso del tiempo. Este decaimiento se traduce con la siguiente ecuación de movimiento de vibración libre P(t)=0.

$$m\ddot{\mathbf{x}} + c\dot{\mathbf{x}} + k\mathbf{x} = 0 \tag{3.4-1}$$

$$\ddot{\mathbf{x}} + \frac{c}{m}\dot{\mathbf{x}} + \frac{k}{m}\mathbf{x} = 0 \tag{3.4-2}$$

Donde:

m: masa del elemento

c: amortiguamiento de la estructura

k: rigidez

x: aceleración estructural

• x: velocidad estructural

x: desplazamiento

La ecuación 2.4-2 divide los valores entre la masa para quedarnos con la expresión.

$$\ddot{\mathbf{x}} + 2\xi\omega\dot{\mathbf{x}} + \omega^2\mathbf{x} = 0 \tag{3.4-3}$$

Donde, se obtiene el factor de amortiguamiento (ξ) .

$$\xi = \frac{c}{c_{cr}} = \frac{c}{2m\omega} \tag{3.4-4}$$

Finalmente, despejamos el amortiguamiento critico (c_{cr}).

$$c_{cr} = 2m\omega = 2\sqrt{km} = \frac{2k}{m} \tag{3.4-5}$$

onde:

- ω: frecuencia natural de vibración del sistema
- c: coeficiente de amortiguamiento

El coeficiente de amortiguamiento es una medida de la energía disipada, sus valores dependen del tipo de movimiento que presente el sistema. Sin embargo, solo nos centraremos en el sistema sub-amortiguado producido cuando $c < c_{cr}$ o $\xi < 1$.

3.4.2 Consideraciones para determinar las acciones sísmicas

Antes de iniciar el análisis estructural, debemos de conocer los parámetros de la Norma Técnica E.030-2016 que van de acuerdo al tipo de estructura, ubicación y uso.

- Zonificación (Z), obtenido de acuerdo a la zona en que se encuentra la estructura. El territorio nacional se ha divido en 4 zonas, siendo la zona 4 la que presenta un mayor factor Z. La Figura 1 mostrada en el capítulo 2, grafica las divisiones.
- Perfil del suelo (S), obtenido del terreno exacto donde se realizará el proyecto. Se emplean los siguientes pasos para hallar el factor S. Primero determinar los valores típicos como la velocidad de onda (\tilde{V}_s), el número de golpes en ensayo de penetración estándar (SPT) (N₆₀) o la resistencia al corte en condiciones no drenadas (S_u) y relacionarlos con el perfil de suelo correspondiente.

	CLASIFICACIÓN DE LOS PERFILES DE SUELO								
Perfil	\bar{V}_{s}	\overline{N}_{60}	\bar{S}_u						
S _o	> 1500 m/s	-	-						
S,	500 m/s a 1500 m/s	> 50	>100 kPa						
S ₂	180 m/s a 500 m/s	15 a 50	50 kPa a 100 kPa						
S ₃	< 180 m/s	< 15	25 kPa a 50 kPa						
S,	Clasificación basada en el EMS								

Tabla 2. Clasificación de los perfiles de suelo

Fuente: Norma técnica E030 "Diseño sismo resistente" del reglamento nacional de edificaciones, 2016

Finalmente, se relaciona el perfil del suelo con la zona local del proyecto utilizando la Tabla 2. Asimismo, se debe determinar los periodos T_p y T_L mediante la Tabla 3.

FACTOR DE SUELO "S"								
ZONA SUELO	S _o	S ₁	S2	S ₃				
Z_4	0,80	1,00	1,05	1,10				
Z ₃	0,80	1,00	1,15	1,20				
Z ₂	0,80	1,00	1,20	1,40				
Ζ,	0,80	1,00	1,60	2,00				

Tabla 3. Tabla para determinar el factor "S"

Fuente: Norma técnica E030 "Diseño sismo resistente" del reglamento nacional de edificaciones, 2016

PERÍODOS "T _p " Y "T _L "								
	Perfil de suelo							
	S _o	S ₁	S ₂	S ₃				
$T_{\rho}(s)$	0,3	0,4	0,6	1,0				
T _L (s)	3,0	2,5	2,0	1,6				

Tabla 4. Tabla de periodos Tp y TL

Fuente: Norma técnica E030 "Diseño sismo resistente" del reglamento nacional de edificaciones, 2016

- Factor de uso (U), cada estructura tendrá una clasificación asignada de acuerdo al grado de importancia y uso que se le asigne.
- Factor de amplificación sísmica (C), definido por las siguientes expresiones.

$$T < TP \quad C=2.5$$
 (3.4-6)

$$TP < T < TL C = 2.5 x (TP/T)$$
 (3.4-7)

$$T > TL C = 2.5 x (TP * TL /T2)$$
 (3.4-8)

El periodo fundamental de vibración (T) será determinado por la siguiente expresión.

$$T = \frac{h_n}{C_T} \tag{3.4-9}$$

donde:

 C_T : valor adquirido de acuerdo al tipo de elementos resistentes que presenta la edificación en una dirección.

 h_n : altura total de la edificación.

• Coeficiente de reducción (R), determinado por la siguiente expresión.

$$R = Ro \times Ia \times Ip \tag{3.4-10}$$

donde:

Ro= coeficiente básico de reducción dependiente del sistema estructural en una dirección

Ia, Ip= factor de irregularidad en altura y en planta en las dos direcciones

Determinado los 5 parámetros, podemos formar la siguiente ecuación, a la que llamaremos coeficiente sísmico (CS).

$$CS = \frac{Z \times U \times C \times S}{R} \tag{3.4-11}$$

3.4.3 Análisis Dinámico

Análisis Dinámico Modal Espectral

Este método, conocido también como superposición modal espectral, es el método más común para realizar un análisis sísmico en una estructura. El método realiza una combinación de modos de vibración que son representados mediante una respuesta espectral en función de un periodo, bajo un mismo sismo y un mismo factor de amortiguamiento. Del espectro se obtienen resultados de pseudo-aceleraciones, pseudo-velocidades y pseudo-desplazamientos. Para cada una de las direcciones evaluadas se utilizará un espectro definido por la siguiente ecuación.

$$S_a = \frac{Z \times U \times C \times S}{R} \times g \tag{3.4-12}$$

Análisis Dinámico Tiempo-Historia

Este tipo de análisis se empleará como un procedimiento complementario para hallar el sismo de diseño. Según la Norma E030-2016, se recomienda utilizar tres pares de registros de aceleraciones en sus dos componentes horizontales. Estos registros pueden ser reales o simulados en tal caso no se llegue a completar los 3 pares. El uso de este tipo de análisis es útil para validar los resultados de análisis modal espectral.

3.4.4 Sistema de amortiguamiento

El amortiguamiento o fricción interna se define como la capacidad que presenta una estructura para mitigar los desplazamientos una vez que la excitación aparece. Este parámetro disipa la energía cinética del sismo de tal forma que permite controlar las vibraciones en el tiempo. A continuación, se describen los tipos de amortiguamiento que puede tener un sistema estructural.

Tipos de amortiguamiento:

- Amortiguamiento inherente o estructural (βo): Es el amortiguamiento propio de la estructura, el cual por medio de su sistema estructural disipa la energía sísmica. La mayoría de las normas técnicas de diseño sísmico consideran un valor de 5% de amortiguamiento en el análisis estructural.⁹
- Amortiguamiento viscoso (βh): Consta en la pérdida de energía cinética de un cuerpo debido a la resistencia de un fluido viscoso. Al incluir un nuevo elemento a la estructura, como un disipador, aparece un amortiguamiento adicional que permite crear fuerzas resistentes proporcionales a la velocidad del movimiento, pero de signo opuesto.
- Amortiguamiento de Coulomb o por fricción: Este tipo de amortiguamiento se produce a partir del contacto entre dos superficies en deslizamiento. Sistemas mecánicos se incorporan a la estructura para frenar las acciones externas, en dirección opuesta del sismo.

Asimismo, para el análisis de dinámico modal espectral y análisis tiempo historia, la Norma E.030, en sus capítulos 4.6.3 y 4.7.1, considera un valor del 5% de amortiguamiento en las estructuras.¹⁰

Al considerar un amortiguamiento lineal del 5%, se asume que la estructura permanece en el rango elástico frente a la excitación sísmica. No obstante, en un sismo severo, el amortiguamiento de la estructura llega a ser insuficiente incursionando en el rango inelástico y produciendo daños en la estructura y/o su contenido. Sin embargo, si se llegara a incrementar el amortiguamiento, la vibración de la estructura ira decreciendo rápidamente hasta entrar en reposo.

Aplicando la teoría de vibración libre mencionada en el punto 3.4.1, la Figura 14, muestra que a medida que se incrementa el amortiguamiento en un sistema, la vibración va decayendo en menor tiempo.

_

⁹ Ver Genatios, Introducción Al Uso de Aisladores y Disipadores en Estructuras, 2016, pag 114.

¹⁰ Ver Norma Técnica E.030, 2016, pag 12.

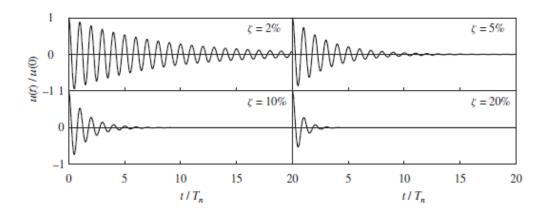


Figura 14. Vibración libre de sistemas con cuatro niveles de amortiguamiento

Fuente: Libro Dinámica de estructuras, Chopra Anil, 2016

3.5 Distribución de energía en un sistema estructural

Desde el punto de vista energético, el evento sísmico representa la entrada de energía a un sistema, cuanto esta llega a introducirse, la energía se esparce por toda la estructura formando diferentes tipos de energía, donde la mayor parte de la energía total se transforma en movimiento y deformación. La energía cinética es la que produce el movimiento a la estructura, mientras que la energía potencial es la causante de crear energía de deformación elástica e inelástica, también llamada histerética.

La energía de deformación elástica es la primera en responder al evento sísmico, la estructura en esta etapa puede restablecer su forma original sin que exista ningún daño en el sistema. Por otro lado, la energía de deformación inelástica se origina cuando ya se ha sobrepasado el límite elástico, lo cual significa que habrá daños estructurales.

Por último, se sabe que las estructuras expuestas a una excitación de movimiento no vibran indefinidamente, lo cual evidencia que hay una energía de amortiguamiento en la edificación que disipa la energía.

Aclarando estos puntos, se presenta la ecuación de energía absoluta.

$$E_I = E_K + E_D + E_S + E_H$$
 (3.5-1)

Donde:

- E_I : Energía de un agente externo introducida a la edificación
- E_K : Energía cinética de la edificación
- E_D : Energía de amortiguamiento de la edificación
- E_S : Energía de deformación elástica
- E_H : Energía de deformación inelástica

En la fórmula 2.5-1, el lado izquierdo representa la demanda de energía producida por un sismo y el lado derecho la capacidad de energía de la estructura, es decir para asegurar la seguridad de la estructura frente a un sismo, el valor de Ei debe ser siempre menor a la capacidad de disipación de energía de la estructura.

El efecto de incluir disipadores de energía hará que la capacidad de disipación de energía de la estructura aumente debido a la adicción de la variable E_D ; en consecuencia, las demás variables tendrán una reducción, dando menores probabilidades de presentar deformaciones inelásticas en la estructura.¹¹

3.6 Requerimientos del código ASCE

Si bien, la norma de diseño sismo resistente E.030, aún no cuenta con un capítulo de sistemas de protección antisísmica, la norma menciona que para incluir un sistema de disipación de energía debemos tener en cuenta las especificaciones dadas en el código ASCE 7-10. ¹² Para el análisis de estructuras provistas de disipadores de energía se plantea dos tipos de procedimientos, lineales o no lineales. Las estructuras con un sistema de amortiguamiento no pueden utilizar ambos procedimientos o una combinación de estos.

Los dispositivos absorben gran cantidad de energía producida por fuerzas externas, ya sea por movimientos telúricos, acciones del viento, vibraciones menores, etc. Para poder determinar qué tipo de dispositivo emplear, existen tres categorías de clasificación según el ASCE:

• Dependientes del desplazamiento (histéresis)

27

¹¹ Ver Shin Hwang, Seismic Design of Structures with Viscous Dampers, 2002, pag02.

¹² Ver Norma E.030 Diseño Sismorresistente, pag.10.

- Dependientes de la velocidad (dispositivos viscosos)
- Dependientes del desplazamiento y velocidad (dispositivo visco elástico)

Para el diseño, construcción e instalación de los dispositivos debemos considerar la respuesta máxima de los movimientos sísmicos según las siguientes consideraciones.

- Ciclos bajos, desplazamientos grandes debido a la degradación de cargas sísmicas.
- Ciclo alto, debido a los desplazamientos por cargas eólicas, térmicas u otras cargas cíclicas
- Fuerzas o desplazamientos por cargas de gravedad
- Adhesión de las piezas por la corrosión, abrasión, biodegradación, humedad o exposición a químicos y exposición ambiental

Adicionalmente, para el diseño de los disipadores se debe de tener en cuenta las condiciones térmicas, desgaste del dispositivo, las tolerancias de fabricación y otros efectos que puedan provocar que las propiedades del dispositivo varíen durante su vida útil.

3.7 Selección del disipador de energía fluido viscoso

Los disipadores de energía han tenido una buena respuesta sísmica en las edificaciones y un aumento de demanda en los países como Chile, EEUU o Japón. El ejemplo más reciente, se evidencia en las edificaciones chilenas que cuentan con un mayor uso de tecnologías de protección sísmica tras el terremoto de 8.8 grados el 2010.

Juan Carlos de la Llera, decano de Universidad Católica de Chile y socio-fundador de la empresa SIRVE, da a conocer que la tecnología antisísmica llego a cobrar una gran importancia luego del sismo del 2010. Ese año, solo se contaban con 13 edificaciones con tecnología antisísmica, las cuales presentaron daños nulos en su estructura y no interrumpieron su operatividad, siendo el ejemplo más resaltante la Torre Titanium de 56 niveles protegida con disipadores de energía. ¹³

Como menciona los autores Sarrazin y Almazan (2017), el terremoto del 2010, mostro a Chile que las estructuras de tipología tradicional sufrieron daños importantes, mientras que

28

¹³ Ver Medina Maria (2017), El Salto de la Ingeniería Antisísmica made in Chile. En Revista: Business Chiles

las tecnologías de protección sísmica usada en edificios emblemáticos tuvieron un excelente desempeño. Las experiencias anteriores llevaron a formar un importante conjunto de conocimientos e incremento en la demanda de protección sísmica, llegando a ejecutarse alrededor de 50 estructuras con sistemas antisísmicos después del terremoto del 2010. ¹⁴

En conclusión, esta innovación ha llegado a ser un potencial mercado internacional, especialmente en países con riesgo sísmico como el nuestro. A continuación, se describe en la Tabla 05, las ventajas y desventajas de los diferentes tipos de disipadores pasivos, como disipadores fluido-viscosos, visco-elásticos, de fricción y metálicos.

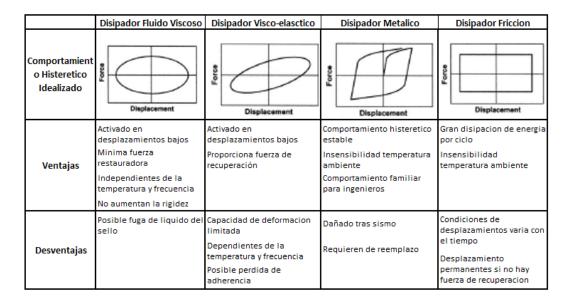


Tabla 5. Resumen de los dispositivos de energía pasivos

Fuente: Energy dissipation systems for seismic applications -Journal of Structural Engineering-January 2008, 2016

El uso de un dispositivo de disipación tiene como objetivo limitar las deformaciones estructurales, permitiendo que la estructura tenga un mejor comportamiento sísmico, permanezca dentro del rango lineal y no presente daños estructurales. Sin embargo, para alcanzar el objetivo se tienen que tomar ciertas consideraciones, como mencionan los autores del Journal Of Structural Engineering (2008).

_

¹⁴ Ver Sarrazin Mauricio, Almazan Jose (2017), Sistemas de Protección Sísmica Mediante Aislación Basal y Disipacion de Energia (2017) En Web: ResearchGate

"El grado en que un determinado dispositivo es capaz de lograr su objetivo depende de las propiedades inherentes de la estructura básica, las propiedades del dispositivo y de sus elementos de conexión, las características del movimiento del suelo, y el estado límite" (p.4)

Todo ello indica, que es necesario conocer las limitaciones que tiene el dispositivo y ver a qué proyecto se aplicará. Teniendo como objetivo una edificación con un buen comportamiento, eficiencia, mínimos daños en interiores y protección sísmica en todo momento, se eligió el disipador fluido viscoso.

Como indica la Tabla 5, el disipador fluido viscoso presenta una ventaja en cuanto a los dispositivos metálicos y friccionales, al no necesitar ser cambiados y no sufrir deformaciones permanentes luego de un evento sísmico. Por otro lado, el amortiguador fluido viscoso es resistente a los cambios fuertes de temperatura a diferencia de los viscoelásticos, logrando que la edificación no presente lapsos de desprotección en ningún momento.

3.7.1 Características del disipador fluido viscoso

Los disipadores fluido-viscosos son dispositivos activados por la velocidad de un movimiento estructural inducido por un sismo y presenta las siguientes características.

- Se adosan a los pórticos de la edificación con una variedad de colocaciones.
- Disipan energía mediante el paso de fluido en su interior.
- No varían la rigidez ni esfuerzos de la estructura.
- Aumento de amortiguamiento de la estructura en un 20 a 40%.
- Utilizada para edificios altos, flexibles o reforzamiento de edificios existentes.

3.7.2 Componentes del dispositivo

Las partes del dispositivo se representan en la Figura 15.

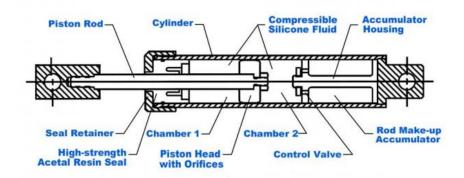


Figura 15. Disipadores fluido viscosos

Fuente: taylordevices.com, 2016

- Barra del Pistón (Piston Rod): Barra de acero inoxidable altamente resistente a la corrosión que va desde la hornilla de montaje hasta la cabeza del pistón. Esta barra entra en movimiento siendo la principal causante de provocar fuerzas de amortiguamiento.
- Cilindro (Cylinder): Cilindro inoxidable y de alta resistencia, fabricado en una sola pieza para proteger todas las partes internas y el fluido ante cualquier fuga o daño de cualquier tipo. Tiene como función tolerar la presión interna.
- Fluido de Silicona (Compressible silicone fluid): Fluido fabricado según las normas americanas con un punto de inflamación que excede los 600 F, clasificado como no inflamable, no combustible, no toxico, térmicamente estable y no degradable.
- Pistón y zona de acumulación (Accumulator housing and Rod make-up accumulator): Bloque de espuma de plástico que permite no dañar el interior cuando la barra del pistón entra o sale durante la excitación sísmica, además la zona de acumulación ayudara compensar la expansión del fluido.
- Válvula de Control (Control Valve): Mide y controla la cantidad de fluido que se ha desplazado en la zona de acumulación.
- Cámara 1 y 2 (Chamber 1 y 2): Cámaras de paso del fluido viscoso.
- Cabeza del Pistón (Piston Head): Conectada a la barra de pistón, dividiendo el cilindro en dos cámaras de presión. Contiene pequeños orificios que brindaran amortiguación.
- Sellado de resina de alta resistencia (High-strength acetal resin seal): Sellado con una vida no menor a 25 años que impide la infiltración de un fluido y adherencias a largo plazo.
- Sello Retenedor (Seal retainer): Retenedor en los extremos externos al cilindro. Separa toda la parte exterior e interior, no debe girar, doblar ni tener ningún espacio abierto.

3.7.3 Funcionamiento

Básicamente, el disipador de energía genera fuerza de amortiguamiento por medio de la barra del pistón que simplemente se mueve hacia atrás y adelante ante una excitación sísmica. Este movimiento genera el paso del fluido de una cámara a otra, en consecuencia, se produce una conversión de energía cinética en calor. Al llegar a la zona de acumulación se produce la expansión y contracción del fluido, generando una presión diferencial. Debido a esta acumulación, las válvulas de control se abren, pasando el fluido a la cámara 2, haciendo que la barra se retire y pase el fluido por medio de los orificios de la cabeza del pistón hacia la cámara 1.

La circulación del fluido dentro del dispositivo se presenta en la Figura 16, en donde este tránsito viscoso, permite transformar la energía cinética en calor y a la vez generar fuerzas de amortiguamiento que ayuden a disminuir la energía transmitida por una acción externa del sismo.

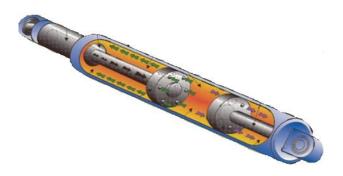


Figura 16. Circulación del fluido viscoso en el dispositivo

Fuente: taylordevices.com, 2016

3.7.4 Respuesta y parámetros del disipador

El dispositivo fluido viscoso depende exclusivamente de la velocidad, al aplicarse una fuerza externa. El comportamiento que tiene este dispositivo se expone mediante una relación fuerza- desplazamiento. La Figura 17 muestra una curva, conocida como curva histerética o de comportamiento histerético de un disipador de energía fluido viscoso. Su forma característica es elíptica, tanto para dispositivos lineales como no lineales.

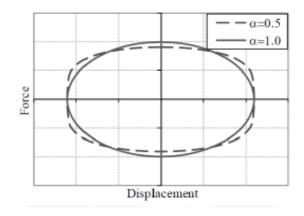


Figura 17. Curva fuerza- desplazamiento de un disipador fluido viscoso

Fuente: ASCE 7-10, 2016

La figura anterior indica cómo se va a desplazar la estructura con disipadores fluido viscoso. En el instante en que los esfuerzos de las columnas han llegado a alcanzar su desplazamiento máximo, la fuerza de amortiguamiento del Dispositivo Fluido Viscoso será cero, debido a que la velocidad es cero. Mientras que cuando las columnas regresan a tener desplazamientos iguales a cero o el edificio se encuentra en equilibrio, la fuerza de amortiguamiento es máxima, así como la velocidad.

La estructura al recibir una excitación sísmica presentará un desplazamiento relativo entre los niveles. El dispositivo Fluido viscoso instalado en la estructura, tendrá una respuesta para esta carga sísmica, produciendo una fuerza y una fuente de disipación de energía. La fuerza inducida a la estructura está representada por la siguiente ecuación.

$$F = CV^{\alpha} \tag{3.7-1}$$

Donde:

F: fuerza de amortiguamiento del disipador

C: coeficiente o constante de amortiguamiento

V: velocidad relativa en el amortiguador

 α : coeficiente o exponente de la velocidad

La agencia de Dirección de Emergencia Federal Norteamericana (FEMA) nos brinda una guía de diseño de estructuras con sistemas de protección sísmica. El código de diseño y comentarios conocida como FEMA 273 y 274 se aplica para el cálculo de los parámetros del disipador Fluido Viscoso.

Coeficiente de la velocidad

La variable ∝ es la que condiciona a definir si el amortiguador viscoso es lineal o no lineal. Cuando el exponente de la velocidad es igual a uno, se tendrá un Disipador Viscoso Lineal, caracterizado por tener una fuerza de amortiguamiento proporcional a la velocidad. Cuando el valor de ∝ es mayor o menor a uno, se tendrá un Disipador Viscoso No lineal.

La diferencia entre $\alpha > 1$ o $\alpha < 1$ radica en la cantidad de fuerza que aplica el dispositivo para una velocidad dada. La Figura 18 muestra la relación velocidad vs fuerza de amortiguamiento de los tres modelos de disipadores fluido viscosos. Se observa la gran eficiencia del Disipador No lineal (Line 1: $\alpha < 1$) al desarrollar fuerzas de amortiguamiento mayores para bajas velocidades.

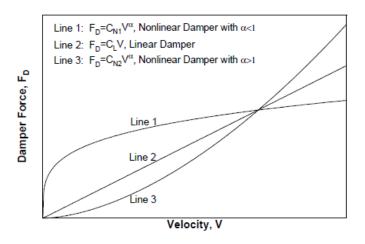


Figura 18. Relación velocidad vs fuerza del disipador

Fuente: Seismic design of structures with viscous dampers, reserchgate.net, 2016

Al presentar mayores ventajas un disipador No lineal, el proyecto a evaluar será enfocado a la incorporación de dispositivos con comportamiento no lineales, donde el valor de α varía entre 0.4 y 0.6 para edificaciones.

Coeficiente de amortiguamiento

FEMA 273 sugiere utilizar las siguientes fórmulas y tablas para definir el coeficiente de amortiguamiento en un sistema de múltiples grados de libertad (MDOF), considerando la siguiente expresión.

$$\xi_{eff} = \xi_0 + \xi_d \tag{3.7-2}$$

Dónde:

- ξ_0 : razón de amortiguamiento del sistema MDOF
- ξ_d : razón de amortiguamiento atribuido al disipador
- ξ_{eff} : razón de amortiguamiento efectivo

La ecuación que representa la razón de amortiguamiento atribuido al disipador es la siguiente.

$$\xi_d = \frac{\Sigma W_j}{2\pi W_k} \tag{3.7-3}$$

Dónde:

- W_i : energía disipada por el amortiguador viscoso j en un ciclo
- W_k : energía de deformación elástica del sistema sin amortiguador viscoso

A continuación, se presenta las fórmulas propuestas por el FEMA para hallar el coeficiente de amortiguamiento efectivo de la estructura con amortiguador fluido viscoso no lineal.

Asumiendo que los disipadores de todo el edificio presentan un mismo α , la razón de amortiguamiento atribuido al disipador se obtiene como:

$$\xi_{d} = \frac{\sum_{j} \lambda C_{j} u_{rj}^{1+\alpha} \cos^{1+\alpha} \theta_{j}}{2\pi \omega^{2-\alpha} \sum_{i} m_{i} u_{i}^{2}}$$
(3.7-4)

Además, se tiene en cuenta la respuesta de desplazamiento relativo entre los extremos del dispositivo en la dirección horizontal, considerando solo el primer modo.

$$\mathbf{u}_i = A \emptyset_i \tag{3.7-5}$$

Reemplazando los valores de la ecuación 3.7-4 y 3.7-5 en la ecuación (3.7-2), se obtiene la siguiente expresión.

$$\xi_{eff} = \xi_0 + \frac{\sum_j \lambda C_j \,\emptyset_{rj}^{1+\alpha} \cos^{1+\alpha} \,\theta_j}{2\pi A^{1-\alpha} \omega^{2-\alpha} \,\sum_i m_i \emptyset_i^2}$$
(3.7-6)

Dónde:

λ: función del exponente de velocidad α

 C_i : coeficiente de amortiguamiento del disipador Fluido Viscoso

 \emptyset_{ri} : desplazamiento horizontal relativo del amortiguador j

 θ_i : ángulo de inclinación del dispositivo j, con respecto a la horizontal

A: amplitud

ω: frecuencia de vibración del modo

 m_i : masa del piso i

 \emptyset_i : primer desplazamiento modal en el piso i

El valor de λ se determina con la Tabla 6

Exponent α	Parameter λ
0.25	3.7
0.50	3.5
0.75	3.3
1.00	3.1
1.25	3.0
1.50	2.9
1.75	2.8
2.00	2.7

Tabla 6. Tabla de relaciones de los valores λ y α

Fuente: FEMA 274, 2016

Finalmente, si se considera la razón o nivel de amortiguamiento del disipador (ξ_d) deseado y se determina los demás valores de la ecuación 3.7-6, se obtendrá el coeficiente de amortiguamiento del disipador Fluido Viscoso (C_i).

3.7.5 Configuración del dispositivo

Los disipadores fluido viscoso se ubican en puntos estratégicos para reducir la mayor demanda de energía posible. Sin embargo, también se toma en consideración el tipo de disposición que se realiza. Las diferentes disposiciones o configuraciones que presenta el Disipador Fluido Viscoso son:

Configuración Chevron Brace

Configuración donde se emplean dos disipadores y un perfil metálico en forma de V, tener en cuenta que, estos dispositivos pueden estar cerca del suelo o techo para facilidad de inspección e instalación. La Figura 19 muestra este tipo de configuración.

Figura 19. Configuración chevron brace

Fuente: www.google.com.pe, 2016

En esta disposición, los disipadores llegan a su capacidad total para resistir el movimiento lateral, ya que estos no están inclinados. Asimismo, para llegar al 100% de efectividad, el refuerzo metálico debe tener una rigidez alta que permita resistir las fuerzas axiales.¹⁵

Configuración Diagonal

La disposición diagonal presenta una rápida instalación, sin embargo, puede llegar a tener menor efectividad, debido a que solo un componente o punto resistirá los movimientos laterales. La efectividad del disipador depende del ángulo de inclinación del brazo metálico, se recomienda ubicar el disipador en la esquina inferior.¹⁶

Figura 20. Configuración diagonal

Fuente: www.google.com.pe, 2016

__

¹⁵ Ver Symans, Seismic Protective Systems: Passive Energy Dissipation, 2002, p.32

¹⁶ Ver Symans, Seismic Protective Systems: Passive Energy Dissipation, 2002, p.33

3.7.6 Estructuras equipadas con disipadores fluido-viscosos

A continuación, se presenta las edificaciones más representativas que fueron reforzadas y/o construidas implementando disipadores fluido-viscosos.

Edificio Torre Mayor (Ciudad de México)

La Torre Mayor es el edificio más alto de la ciudad de México, dedicado exclusivamente para oficinas y un área de tiendas en la planta baja. Este edificio cuenta con 57 niveles y una altura total de 225 metros, construida en suelo blando y arcilloso con una cimentación a 40 metros de profundidad.

El edificio presenta un sistema estructural aporticado donde a partir del nivel 11, el diseño de los disipadores fluido-viscosos cambia a una forma de diamante haciendo que la energía del sismo se disipe a medida que va ascendiendo la torre.

La Torre Mayor cuenta con 1260 disipadores conectados a los tirantes en diagonal de la estructura. Una imagen de esta estructura se presenta en la Figura 21.

Figura 21. Edificio Torre Mayor con disipadores taylor

Fuente: www.google.com.pe, 2016

Los Ángeles City Hall (Estados Unidos)

Es el centro de gobierno de la ciudad de Los Ángeles, California, la edificación es exclusiva para oficinas y presenta 32 niveles. La torre ha tenido constantes reforzamientos en toda su historia. Luego del terremoto de Northridge en 1994, se realizaron análisis modal espectral y análisis de tiempo historia para determinar soluciones a la vulnerabilidad sísmica que la edificación tenía.

Actualmente, Los Ángeles City Hall contiene un reforzamiento en la parte de la cimentación, como se muestra en la Figura 22 hay una combinación de 416 aisladores sísmicos y 52 disipadores fluido-viscosos. Además, cuenta con 14 disipadores distribuidos en las plantas superiores de la Torre.

Figura 22. Los Ángeles city hall disipadores y aisladores

Fuente: taylordevices.com, 2016

3.7.7 Fabricantes:

En un principio, los disipadores fluido viscosos fueron utilizados en los servicios militares para protección de misiles, sistemas electrónicos y bases navales contra el efecto de la explosión de armas enemigas. En 1987, terminada la Guerra Fría, el bloque norteamericano

desclasifico militarmente la tecnología de disipación, pasando a aplicaciones comerciales relacionadas a la protección de estructuras frente a sismos y fuertes vientos.¹⁷

Con una historia de éxito de más de 40 años, la empresa Taylor ha producido más de dos millones de disipadores fluido viscosos repartidos en más de 485 proyectos en todo el planeta.

La siguiente Figura presenta un registro de los proyectos donde se han ido incorporando los disipadores fluido viscosos Taylor hasta el 2013, en los países como Chile, Japón y EEUU.

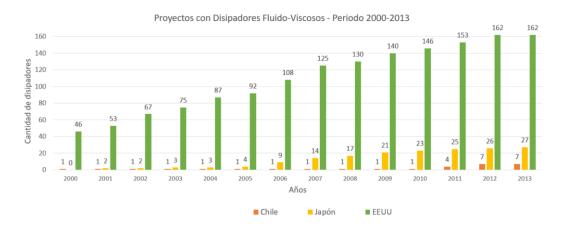


Figura 23. Proyectos con disipadores fluido viscosos (2000-2013)

Fuente: Structural applications of fluid viscous dampers, taylordevices.com, 2019

Del cuadro anterior, se concluye que países con alta vulnerabilidad sísmica están presentando un creciente interés en la incorporación de sistemas antisísmicos. Por ejemplo, como indica la Figura 23, Chile solo tenía un edificio con disipadores de energía antes del terremoto del 2010, posterior al desastre se empezó a ver una mayor demanda de uso de disipadores llegándose a ejecutar 6 proyectos más hasta el 2013. Asimismo, el cuadro indica que Japón y EEUU han continuado con un uso constante de disipadores fluido viscosos en sus proyectos. ¹⁸

_

¹⁷ Ver Taylor, Douglas (2017) History, Design, and Applications of Fluid Dampers in Structural Engineering, pag 12.

¹⁸ Ver: CDVPERU (2012) Structural Applications of Fluid Viscous Dampers, pag (1-42)

3.7.8 Experiencia en el Perú

Actualmente, hay pocas empresas que brindan el servicio de reforzamiento y diseño de disipadores de energía. CDV Ingeniería Antisísmica, es una de ellas y es empresa peruana que ha participado en el diseño y montaje de disipadores fluido viscosos de importantes proyectos como:

Reforzamiento de la Torre Central del Aeropuerto Jorge Chávez

La Torre Central fue construida hace más de 50 años con un sistema estructural aporticado. Debido a que el Perú no contaba con ninguna Norma Sísmica antes de 1970, se evidenciaron deficiencias en el diseño. Se realizó, un análisis del estado de la torre observando desplazamientos de hasta 20.56 cm. Actualmente, la Torre Central presenta un reforzamiento de ductilidad y rigidez en todos sus elementos estructurales y una inclusión de disipadores fluido-viscosos, se incorporaron 42 dispositivos distribuidos en los 10 niveles de la estructura con una configuración Chevron.

Las ubicaciones fueron estudiadas previamente para garantizar que los dispositivos disipen la mayor cantidad de energía y la estructura tenga una respuesta elástica. Se presenta en la Figura 24, la incorporación de los dispositivos Taylor a la Torre Central.

Figura 24. Circulación del fluido viscoso en el dispositivo

Fuente: www.google.com.pe, 2016

Edificio Reducto

El primer edificio con disipadores fluido-viscosos que se construyó en el Perú, fue el Edificio Reducto. Esta estructura exclusivamente para oficinas presenta 7 sótanos y 13 pisos. Los dispositivos están en el frontis del edifico, permitiendo que sean visibles desde el exterior. Cuenta con 32 disipadores colocados diagonalmente desde el 4to piso hasta el piso 11. En cada nivel se distribuyeron un par de dispositivos en forma diagonal, la ubicación de estos se repite en dos ejes del edificio. La Figura 25 muestra el Edificio de Miraflores.

Figura 25. Edificio reducto – Miraflores

Fuente: cdvperu.com, 2016

4. CAPITULO 3: EVALUACIÓN DEL PROYECTO ESTRUCTURAL

4.1 Descripción del modelo

El proyecto de edificación elegido para la investigación permitirá llegar al objetivo planteado (en capítulo 2). Se presenta el análisis estructural para determinar si la incorporación de disipadores es la solución para una edificación que presenta las siguientes características mostradas a continuación.

4.1.1 Proyecto de Salud Privada

El proyecto consiste en una edificación moderna destinada a la atención de salud especializada, cuenta con consultoría externa, centro de operaciones y hospitalización. Presenta 12 pisos con una altura de 3.5 m por nivel, caracterizado por tener amplios espacios de luz, vistas exteriores en sus 4 direcciones y por contar con un sistema de protección sísmica. El proyecto se ubicará en la Calle Roma Nro 210, Distrito de San Isidro, Provincia y Departamento de Lima., cruce con la Av. Cádiz. El terreno está disponible para la construcción de una edificación como muestra la Figura 26.

Figura 26. Ubicación del proyecto

Fuente: maps.google.com, 2016

4.1.2 Estudio de mecánica de suelos

La zona geotécnica donde se ubica la edificación corresponde al Sector 1-San Isidro de acuerdo al Plan Urbano de la Municipalidad de San Isidro, mostrada en la Figura 27. El terreno en la Zona 1, está conformado por estratos de grava y roca fracturada, presenta un comportamiento rígido con periodos de vibración de 0.1 a 0.3 segundos y un periodo natural de 0.4 segundos. La clasificación del perfil del suelo en esta zona corresponde al tipo S1 ¹⁹.

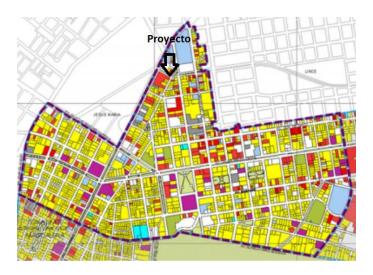


Figura 27. Delimitación del sector 1- San Isidro

Fuente: msi.gob.pe, 2016

4.1.3 Características de la Arquitectura

La edificación consta de 12 pisos con un área 618 m² por nivel. La primera planta cuenta con una sala de espera, ingreso peatonal, ingreso de emergencia, 2 ascensores hasta el último nivel, sala de recepción, salas administrativas y 2 escaleras laterales del primer piso hasta la azotea. Del segundo al décimo nivel se encuentran las salas de consultoría, hospitalización y operaciones, distribuidas de acuerdo con diferentes especializaciones médicas. Finalmente, en los dos últimos niveles se encuentran los comedores, baños públicos y área común.

Los planos de distribución de las plantas se presentan a continuación.

-

¹⁹ Ver Plan Urbano Distrital de San Isidro, pág. 54

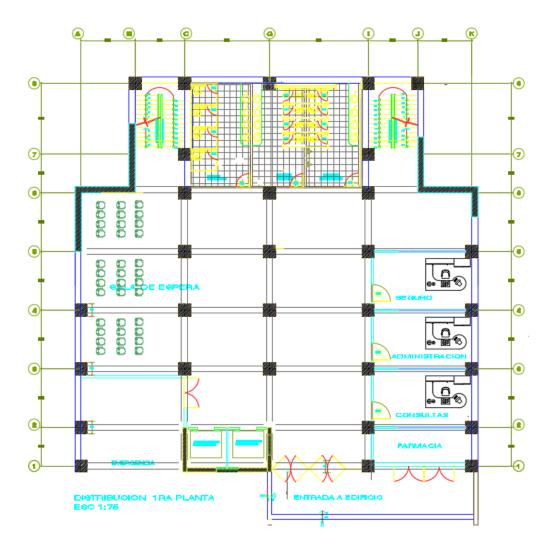


Figura 28. Distribución primera planta

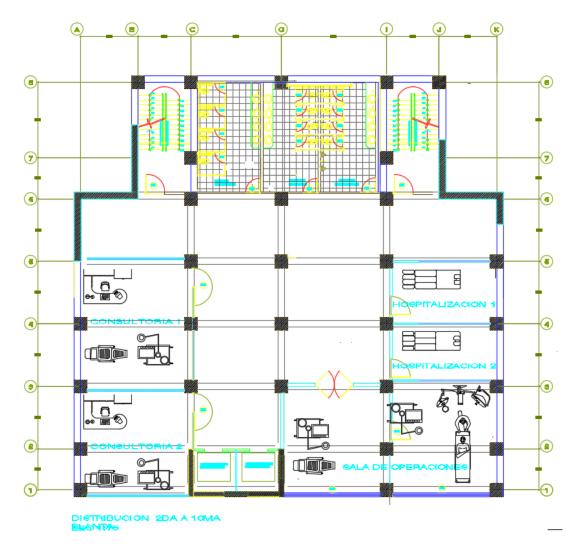


Figura 29. Distribución segunda a décima planta

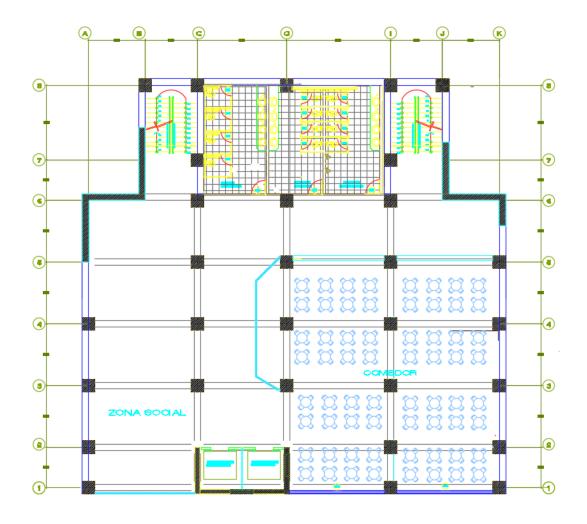


Figura 30. Distribución onceava a doceava planta

4.1.4 Características estructurales

Se emplean las consideraciones del pre-dimensionamiento mostradas en el punto 2.1.1.

Losa Aligerada: Se toma el tramo de la vigueta que tiene mayor luz libre, ubicada entre los ejes B-C y 1-2.

$$h \ge \frac{luz}{25}$$

$$h \ge \frac{6.5}{25}$$

$$h \ge 0.26 m$$

h = 0.30 m Peralte elegido (25 cm espesor de ladrillo)

Vigas:

• Cálculo de peralte efectivo (h)

En nuestro caso, tomamos el tramo de la viga de mayor luz: L1=6 m

$$\frac{L1}{12} < h < \frac{L1}{10}$$

$$\frac{6}{12} \le h \le \frac{6}{10}$$

$$0.5 \le h \le 0.6$$

Peralte elegido h =0.50 m

• Cálculo de ancho de viga (b)

$$\frac{3}{10}h \le b \le \frac{1}{2}h$$
 , h=0.6 m

$$0.18 \le b \le 0.30$$

b= 0.25 m, cumple con la norma b min= 0.25 m

Columnas: Se determina El valor P_{servicio} que es la carga total del edificio expresada en kgf/m², los resultados se muestran a continuación.

Datos:

- Peso Específico Concreto: 2400 kg/m2
- Peso Propio Losa Aligerada e:0.30: 420 kg/m2 (Anexo I de Norma E020)

	Nro Veces	Ancho	Largo	Area	Altura	Sub total	Peso Espec.	Peso (kg)
Peso de Vigas 01	1	0.25	19.1		0.5	2.3875	2400	5,730.00
Peso de Vigas 02	6	0.25	26.1		0.5	19.575	2400	46,980.00
Peso de Vigas 03	5	0.25	25.6		0.5	16	2400	38,400.00
Peso de Losa	1			440.58		440.58	420	185,043.60
Peso de Columna	30	0.8	0.8		3.5	67.2	2400	161,280.00
Peso de Placas				11.52	3.5	40.32	2400	96,768.00
						Peso Total Kg		534,201.60
						AREA PLANTA		440.58
						CM ESTRUCTUI	RA (KG/M2)	1,212.50
						CM TABIQUER	A (KG/M2)	100.00
						CM ACABADOS	(KG/M2)	100.00
						CM TOTA	L (kg/m2)	1,412.50
						CV TOTAL	L (kg/m2)	300.00
						P servici	o: 1 Piso	1 712 50

Tabla 7. Cálculo del servicio total de la estructura

Determinada la carga de servicio total, se emplean las fórmulas (2,1-1 y 2,1-2) dependiendo la ubicación de la columna. Se presentan los resultados de pre dimensionamiento en la tabla 8.

Nro de pisos P servicio del edificio

ELEMENTO	Ubicación	Ancho	Largo	Area tributaria	Pserv=P*A	Area cm2	Col Cuadrada cm
EJE 6 // C22	CENTRADA	4.75	5.95	28.26	580793.10	6145.96	78.40
EJE 3 // C10	CENTRADA	6.65	3.9	25.94	532963.08	5639.82	75.10
EJE 4 // C15	CENTRADA	6.65	3.9	25.94	532963.08	5639.82	75.10
EJE 5 // C19	CENTRADA	6.65	3.9	25.94	532963.08	5639.82	75.10
EJE 8 // C28	EXTERIOR	6.05	3.25	19.66	404063.49	5497.46	74.14
EJE 3 // C9	CENTRADA	6.05	3.9	23.60	484876.19	5130.96	71.63
EJE 4 // C14	CENTRADA	6.05	3.9	23.60	484876.19	5130.96	71.63
EJE 5 // C18	CENTRADA	6.05	3.9	23.60	484876.19	5130.96	71.63
EJE 7 // C24	CENTRADA	7.4	3.25	24.05	494226.42	5229.91	72.32
EJE 7 // C25	CENTRADA	7.3	3.25	23.73	487547.68	5159.23	71.83
EJE 3 // C8	CENTRADA	5.45	3.9	21.26	436789.29	4622.11	67.99
EJE 4 // C13	CENTRADA	5.45	3.9	21.26	436789.29	4622.11	67.99
EJE 5 // C17	CENTRADA	5.45	3.9	21.26	436789.29	4622.11	67.99
EJE 2 // C5	CENTRADA	6.75	2.74	18.50	380071.42	4021.92	63.42
EJE 3 // C11	EXTERIOR	3.425	3.8	13.02	267457.67	3638.88	60.32
EJE 4 // C16	EXTERIOR	3.425	3.8	13.02	267457.67	3638.88	60.32
EJE 3 // C7	EXTERIOR	3.05	3.8	11.59	238173.98	3240.46	56.93
EJE 4 // C12	EXTERIOR	3.05	3.8	11.59	238173.98	3240.46	56.93
EJE 6 // C23	CENTRADA	4.9	2.75	13.48	276910.64	2930.27	54.13
EJE 5 // C20	EXTERIOR	3.45	2.83	9.76	200639.49	2729.79	52.25
EJE 8 // C29	EXTERIOR	4.35	2.24	9.74	200238.76	2724.34	52.20
EJE 2 // C6	EXTERIOR	3.55	2.74	9.73	199889.41	2719.58	52.15
EJE 6 // C21	CENTRADA	4.425	2.75	12.17	250067.27	2646.21	51.44
EJE 8 // C27	EXTERIOR	3.875	2.24	8.68	178373.61	2426.85	49.26
EJE 1 // C2	EXTERIOR	3.425	2.35	8.05	165401.45	2250.36	47.44
EJE 2 // C4	EXTERIOR	3.425	2.35	8.05	165401.45	2250.36	47.44

Tabla 8. Cálculo del servicio total de la estructura

De la tabla anterior, se concluye que todas las columnas serán cuadradas y deberá tener una dimensión mayor a los resultados obtenidos. Se consideró que la dimensión mayor deberá ser de 0.80 x 0.80m del 1er al 9no piso y de 0.70 x 0.70m. del 10mo al 12vo.

4.2 Consideraciones para el análisis estructural

Los siguientes parámetros son considerados para el análisis de metrados de cargas de cada elemento estructural.

Propiedades del Concreto								
Resistencia a la comprension	f'c	280 kg/cm2						
Modulo de elasticidad	Ec	2.51E+09 kg/cm2						
Peso específico del Concreto	Υ	2400 kg/m3						
Coeficiente de Poisson	v	0.2						
Propiedades del Acero								
Esfuerzo de fluencia acero	fy	4200 kg/cm2						
Modulo de elasticidad	Es	2000000 kg/cm2						
Sobre	carga:	S .						
Corredores y escaleras	s/c	400 kg/m2						
Salas de operación y servicio	s/c	300 kg/m2						
Azotea	s/c	100 kg/m2						

Tabla 9. Consideraciones tomadas para los materiales

Tomando en cuenta las consideraciones de la tabla anterior, se realiza el metrado de cargas de gravedad (carga muerta + carga viva) para determinar el peso total del edificio. Los resultados del peso de cada nivel se presentan en la tabla 10.

	Peso Total	del Edificio		5336.115	toneladas
Sum	atoria	453.755	Suma	atoria	453.755
	Placas	158.765		Placas	158.765
Piso 02	Losa	64.68	Piso 01	Losa	64.68
Di 02	Vigas	69.03	D: 01	Vigas	69.03
	Columnas	161.28		Columnas	161.28
Sum	atoria	453.755	Suma	atoria	453.755
	Placas	158.765		Placas	158.765
Piso 04	Losa	64.68	Piso 03	Losa	64.68
	Vigas	69.03		Vigas	69.03
24111	Columnas	161.28	Julia	Columnas	161.28
Sum	atoria	453.755	Sumatoria		453.755
	Placas	158.765		Placas	158.765
Piso 06	Losa	64.68	Piso 05	Losa	64.68
	Vigas	69.03		Vigas	69.03
Sam	Columnas	161.28		Columnas	161.28
Sum	atoria	453.755	Sumatoria		453.755
	Placas	158.765		Placas	158.765
Piso 08	Losa	64.68	Piso 07	Losa	64.68
	Vigas	69.03		Vigas	69.03
Juni	Columnas	161.28	Julia	Columnas	161.28
Sum	atoria	417.44	Sum	atoria	453.755
	Losa	158.765		Losa Placas	158.765
Piso 10	Vigas	70.515 64.68	Piso 09	Vigas	69.03 64.68
	Columnas	123.48		Columnas	161.28
Sum	atoria	417.44	Suma	atoria	417.44
	Placas	158.765		Placas	158.765
	Losa	64.68		Losa	64.68
Piso 12	Vigas	70.515	Piso 11	Vigas	70.515
	Columnas	123.48		Columnas	123.48

Tabla 10. Metrado de carga

4.3 Modelamiento del sistema

Antes de comenzar a desarrollar el análisis estructural de la edificación planteada, se realiza el modelado mediante el software ETABS 2016, con todas las consideraciones de metrado de cargas y las dimensiones halladas en el pre-dimensionamiento.

El proyecto presenta una combinación de pórticos y muros estructurales en la zona de ascensores y escaleras. Cada nivel de piso funciona como diafragma rígido con tres grados de libertad asociados a dos componentes horizontales y una rotación.

A continuación, se presenta el modelo en planta y en tres dimensiones en las figuras 31 y 32 respectivamente.

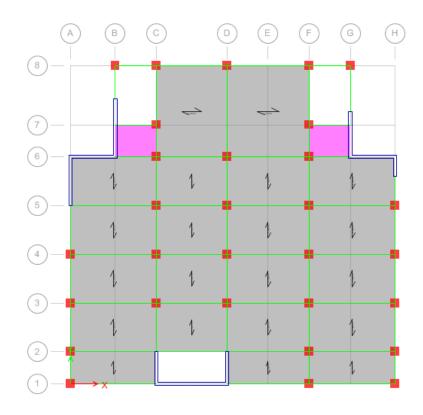


Figura 31. Modelamiento del proyecto en planta

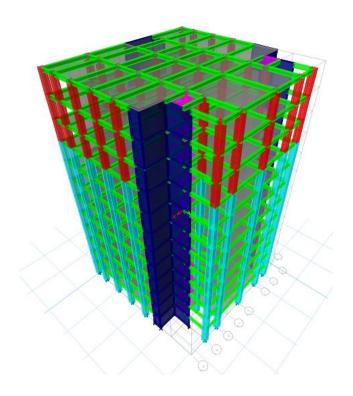


Figura 32. Modelamiento del proyecto 3D

4.4 Análisis estructural

El tipo de análisis estructural que se realiza en el proyecto fue el análisis dinámico modal espectral. A continuación, se determinó los parámetros necesarios para la realización de este análisis.

4.4.1 Coeficiente Sísmico

- Factor de zona (Z), el proyecto se encuentra ubicado en San Isidro, lugar asignado como zona 4, equivalente a un factor de 0.45 según Norma Técnica E.030-2016.
- El perfil del suelo, según la posición exacta del proyecto en el plano urbano distrital de San Isidro, la estructura será construida en un perfil tipo S1 (Suelo muy rígido). Las tablas 2 y 3 del capítulo 2 junto con los valores asignados para S1 y Z4, dan como resultado: Factor de suelo S=1, Periodo predominante Tp=0.4 s y Periodo largo TL=2.5 s.
- Categoría de la edificación y factor de uso (U), el proyecto al ser una clínica califica como zona de resguardo o refugio que debe estar operativa de un sismo. Es decir, esta edificación califica como esencial, correspondiente a un factor de U=1.5.
- Coeficiente de Reducción de las Fuerzas Sísmicas (R), el proyecto presenta un mayor porcentaje de participación de cortarte basal en sus placas, en consecuencia, el sistema estructural es de muros de corte o placas, correspondiente a un coeficiente básico de reducción *Ro* =6 en la dirección x e y. Inicialmente se consideró una estructura regular, por lo que los coeficientes irregularidad en planta y altura son iguales a 1, dando como resultado un R=6, según la ecuación (2.4-10).
- El factor de amplificación sísmica (C) en un análisis dinámico varía de acuerdo con el periodo, se siguen las ecuaciones (2.4-6,7 y 8) dependiendo de qué valor tome T, el C variará.

Finalmente, los parámetros son: Z=0.45, U=1.5, S=1 y R=6.

$$Sa = \frac{0.45 \times 1.5 \times C(T) \times 1}{6} \times g$$

4.4.2 Análisis Dinámico Modal Espectral

Para hallar la aceleración espectral en las dos direcciones, la Norma Técnica E.030, multiplica los parámetros anteriormente hallados por la aceleración de la gravedad $g=9.81 m/s^2$.

$$Sa(T) = \frac{0.45 \times 1.5 \times C(T) \times 1}{6} \times 9.81$$

Finalmente, se calcula el Sa con un periodo de 0.00001 a 5 segundos para obtener la curva de pseudoaceleraciones vs periodo de la estructura. Esta curva llamada espectro de pseudoaceleraciones de la Norma Técnica E.030-2016 se muestra en la Figura 33.

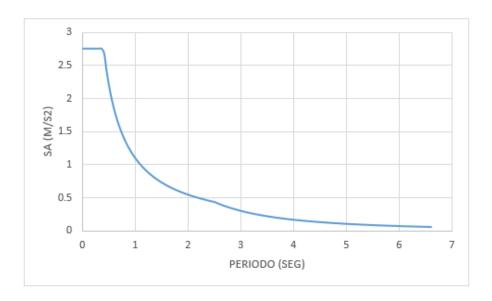


Figura 33. Espectro inelástico de pseudoaceleraciones en la dirección X e Y

Fuente: Excel Grafico Propio

Para realizar el método de la combinación modal espectral, se introduce el espectro de pseudoaceleraciones al programa ETABS, considerando un amortiguamiento de del 5% para todos los modos de vibración, valor considerado en el punto 4.6.3 de la Norma E.030-2016. ²⁰

_

²⁰ Ver Norma Técnica E.030 Diseño Sismorresistente, 2016, pag.12

Se determina las irregularidades correspondientes a la estructura según la Norma Técnica E.030. Finalmente, se evalúa los factores de irregularidad en planta y altura en las dos direcciones horizontales.

La edificación por presentar una arquitectura típica y una continuidad en todos sus pisos no presenta ningún tipo de irregularidad en altura; sin embargo, la repartición de elementos estructurales como placas y columnas presentan una distribución asimétrica que puede llevar a originar efectos torsionales en una de sus direcciones.

Se evalúa la irregularidad torsional mediante la norma E.030, donde indica que la irregularidad torsional solo se evaluara si el máximo desplazamiento relativo de entrepiso es mayor que 50% del desplazamiento permisible del material predominante, a este criterio lo llamaremos "Condición I".

Los desplazamientos de cada piso que excedan el valor permisible serán evaluados mediante la "Condición II" que establece que si el máximo desplazamiento relativo de entrepiso es mayor a 1.2 veces el desplazamiento relativo del centro masas, la estructura presenta irregularidad torsional. A continuación, se muestra en las siguientes tablas, los resultados de irregularidad torsional, donde el eje X no presenta problemas de torsión más si el eje Y.

	Irregularidad torsional en X										
Numero de piso	Altura	Desplazamiento relativo elegido	Desplazamiento del centro de masa	Desplazamiento relativo	Condicion 1	Condicion 2	Torsional C.ll>1.2				
12	42.00	0.02725	0.29826	0.02502	Irregular	1.09	No				
11	38.50	0.02885	0.27325	0.02668	Irregular	1.08	No				
10	35.00	0.03024	0.24657	0.02815	Irregular	1.07	No				
9	31.50	0.03128	0.21843	0.02925	Irregular	1.07	No				
8	28.00	0.03205	0.18917	0.03015	Irregular	1.06	No				
7	24.50	0.03215	0.15902	0.03041	Irregular	1.06	No				
6	21.00	0.03140	0.12861	0.02987	Irregular	1.05	No				
5	17.50	0.02961	0.09874	0.02832	Irregular	1.05	No				
4	14.00	0.02660	0.07042	0.02561	Irregular	1.04	No				
3	10.50	0.02217	0.04481	0.02151	Irregular	1.03	No				
2	7.00	0.01579	0.02329	0.01582	Irregular	1.00	No				
1	3.50	0.00773	0.00747	0.00747	Regular	No aplica	No				

Tabla 11. Irregularidad torsional en X-X

	Irregularidad torsional en Y								
Numero de piso	Altura	Desplazamiento relativo elegido	Desplazamiento del centro de masa	Desplazamiento relativo	Condicion 1	Condicion 2	Torsional C.ll>1.2		
12	42.00	0.01727	0.24044	0.01542	Irregular	1.12	No		
11	38.50	0.01998	0.22502	0.01737	Irregular	1.15	No		
10	35.00	0.02277	0.20766	0.01947	Irregular	1.17	No		
9	31.50	0.02506	0.18819	0.02129	Irregular	1.18	No		
8	28.00	0.02741	0.16691	0.02318	Irregular	1.18	No		
7	24.50	0.02921	0.14372	0.02453	Irregular	1.19	No		
6	21.00	0.03023	0.11919	0.02522	Irregular	1.20	Si		
5	17.50	0.03022	0.09397	0.02506	Irregular	1.21	Si		
4	14.00	0.02887	0.06891	0.02380	Irregular	1.21	Si		
3	10.50	0.02573	0.04511	0.02108	Irregular	1.22	Si		
2	7.00	0.02007	0.02403	0.01630	Irregular	1.23	Si		
1	3.50	0.00965	0.00773	0.00773	Regular	No aplica	No		

Tabla 12. Irregularidad torsional en Y-Y

4.5.1 Resultados obtenidos del Análisis Dinámico

Determinada las irregularidades en el sistema estructural, se procede a realizar el análisis dinámico con los coeficientes de reducción correctos R=6x0.75x1 en X y R=6x0.75x1 en Y. Se muestran los resultados de la combinación modal espectral mediante el uso programa Etabs, ya con el R reducido en la dirección X e Y.

Derivas de entrepiso

Las derivas de entrepiso se muestran en la tabla 13, en donde el límite máximo de deriva o distorsión de entrepiso es 0.007 según la Norma Sismorresistente E.030.

Piso	Altura (m)	Deriva X-X	Control E.030<0.007	Deriva Y-Y	Control E.030<0.007
Piso 12	42	0.0060	Cumple	0.0035	Cumple
Piso 11	38.5	0.0063	Cumple	0.0039	Cumple
Piso 10	35	0.0071	No cumple	0.0043	Cumple
Piso 9	31.5	0.0072	No cumple	0.0047	Cumple
Piso 8	28	0.0074	No cumple	0.0051	Cumple
Piso 7	24.5	0.0074	No cumple	0.0054	Cumple
Piso 6	21	0.0073	No cumple	0.0057	Cumple
Piso 5	17.5	0.0070	No cumple	0.0057	Cumple
Piso 4	14	0.0060	Cumple	0.0056	Cumple
Piso 3	10.5	0.0052	Cumple	0.0051	Cumple
Piso 2	7	0.0040	Cumple	0.0040	Cumple
Piso 1	3.5	0.0020	Cumple	0.0020	Cumple

Tabla 13. Derivas del análisis dinámico espectral en X e Y

Los resultados en la dirección X muestran que del 5to al 10mo piso las derivas exceden el valor máximo permitido por la norma sismorresistente, presentando una deriva máxima de 7.40‰ en los pisos siete y ocho. Para la dirección Y, las derivas satisfacen los requisitos de la norma, con una deriva máxima de 5.47‰ en el quinto piso y sexto piso.

Finalmente, se presenta el modelo ensayado en el programa Etabs, donde la Figura 33 muestra los problemas torsionales que presenta la edificación en la dirección Y-Y, debido a la diferente configuración de los elementos rígidos y resistentes entre los ejes A-C y 5-7 (placa 1) y los ejes F-H y 5-7 (placa 2). Esta diferencia de rigideces entre ambos elementos ocasiona que el centro de rigidez presente una distancia respecto al centro de gravedad dándose un giro o rotación conocido como torsión.

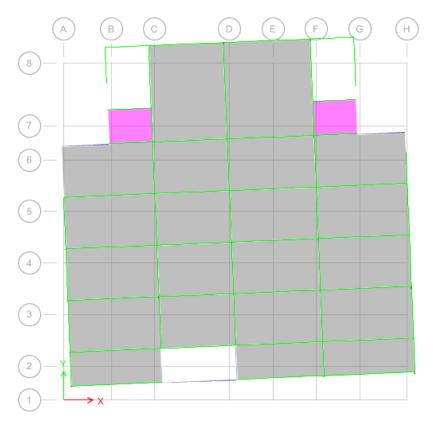


Figura 34. Vista en planta de desplazamiento en el eje Y-modelo Etabs

Nota: se anexa (anexo 02) un ejemplo de desarrollo de análisis dinámico modal espectral en Excel y Etabs, donde se comparan los resultados de derivas.

Masa participativa

Al considerar cada piso como diafragma rígido, se determina 3 modos de vibración por planta, teniendo un total de 36 modos. Los periodos, factor de participación y masa participativa de cada modo se muestra en la tabla 14.

La norma E.030 indica que en cada dirección se debe considerar los modos cuya suma de masas participativas sea por lo menos el 90% de la masa total de la edificación, además la suma de los tres primeros modos debe de dar un porcentaje predominante.

Modo	Periodo T(s)	Masa X-X (%)	Acum X-X (%)	Masa Y-Y (%)	Acum Y-Y (%)	Masa Z-Z (%)	Acum Z-Z (%)
1	1.327	67.14%	67.14%	0.58%	0.58%	1.89%	1.89%
2	1.142	0.08%	67.22%	67.44%	68.02%	5.74%	7.63%
3	0.867	2.53%	69.75%	4.88%	72.90%	63.40%	71.03%
4	0.343	11.17%	80.92%	4.16%	77.06%	0.00%	71.03%
5	0.327	5.28%	86.20%	8.28%	85.34%	1.64%	72.67%
6	0.233	0.40%	86.60%	1.49%	86.83%	14.46%	87.13%
7	0.165	0.92%	87.52%	4.28%	91.11%	0.27%	87.40%
8	0.152	5.18%	92.70%	0.63%	91.74%	0.37%	87.77%
9	0.11	0.12%	92.82%	0.44%	92.18%	5.46%	93.23%
10	0.101	0.31%	93.13%	2.52%	94.70%	0.08%	93.31%
11	0.093	2.59%	95.72%	0.21%	94.91%	0.14%	93.45%
12	0.07	0.26%	95.98%	0.53%	95.44%	1.16%	94.61%
13	0.069	0.00%	95.98%	1.13%	96.57%	1.36%	95.97%
14	0.066	1.30%	97.28%	0.14%	96.71%	0.11%	96.08%
15	0.061	0.00%	97.28%	0.00%	96.71%	0.00%	96.09%
16	0.059	0.02%	97.30%	0.00%	96.71%	0.00%	96.09%
17	0.058	0.02%	97.32%	0.02%	96.73%	0.02%	96.11%
18	0.057	0.05%	97.37%	0.00%	96.74%	0.27%	96.38%
19	0.057	0.08%	97.45%	0.00%	96.74%	0.00%	96.38%
20	0.056	0.08%	97.53%	0.03%	96.77%	0.01%	96.39%
21	0.054	0.00%	97.54%	0.01%	96.78%	0.04%	96.43%
22	0.053	0.03%	97.57%	0.04%	96.82%	0.00%	96.43%
23	0.052	0.00%	97.57%	0.83%	97.65%	0.12%	96.55%
24	0.051	0.00%	97.57%	0.00%	97.65%	0.05%	96.60%
25	0.05	0.66%	98.23%	0.01%	97.66%	0.02%	96.62%
26	0.049	0.11%	98.34%	0.01%	97.67%	0.03%	96.65%
27	0.049	0.03%	98.37%	0.07%	97.74%	0.40%	97.05%
28	0.048	0.00%	98.37%	0.03%	97.77%	0.13%	97.18%
29	0.048	0.02%	98.39%	0.13%	97.90%	0.56%	97.74%
30	0.041	0.10%	98.49%	0.49%	98.39%	0.12%	97.86%
31	0.041	0.50%	98.99%	0.10%	98.49%	0.02%	97.88%
32	0.038	0.00%	98.99%	0.18%	98.67%	0.72%	98.60%
33	0.035	0.36%	99.35%	0.05%	98.72%	0.01%	98.61%
34	0.034	0.05%	99.40%	0.36%	99.08%	0.08%	98.69%
35	0.031	0.00%	99.41%	0.13%	99.21%	0.45%	99.14%
36	0.03	0.24%	99.65%	0.01%	99.22%	0.01%	99.15%
8	Sumatoria	99.65%		99.22%		99.15%	

Tabla 14. Masa participativa en X, Y, Z

Fuerza cortante mínima

Debido a que la estructura es irregular, la norma E.030 indica en el numeral 4.6.4 que la cortante basal dinámica debe ser mayor al 90% de la cortante basal de la edificación o cortante mínima. Los resultados de las cortantes se muestran en la tabla 15, cumpliendo con lo estipulado por la norma.

	V dinamica (ton)	0.9*V estructura	V.din>0.9V.estruc
1er piso X	1171.65	762.19	CUMPLE
1er piso Y	1214.49	884.86	CUMPLE

Tabla 15. Verificación de la fuerza cortante mínima

En base a los resultados del análisis dinámico, se puede concluir lo siguiente:

- El edificio presenta distorsiones de entre piso que no cumplen con la norma técnica E.030 solo en el eje X (deriva máxima de 7.40‰), ya que se exceden el porcentaje establecido por la norma, el cual es 7‰.
- La estructura presenta una irregularidad torsional en el eje Y, obteniendo máximos desplazamientos relativos superiores a 1.2 veces el desplazamiento relativo del centro de masas de cada nivel correspondiente. Sin embargo, los resultados no llegan presentar una irregularidad torsional extrema, por no exceder el valor de 1.5.
- La estructura contiene un porcentaje de masa de participación mayor al 80%. a partir del 4to modo de vibración en el eje X y 70% a partir del 3er modo de vibración en el eje Y.
- El edificio al tener problemas de irregularidad por torsión debe de presentar soluciones que mejoren el comportamiento de la estructura, ya sea modificando la configuración de placas para minimizar la distancia entre el centro de masa y centro de rigidez o incluyendo mecanismos de disipación que permitan mitigar los problemas torsionales.

5. CAPITULO 4: ANÁLISIS SÍSMICO CON DISIPADORES DE ENERGÍA

En el presente capítulo se incluye el disipador de energía a la edificación de doce niveles para demostrar que la estructura puede llegar a tener un mejor comportamiento y desempeño sísmico, mediante el incremento de amortiguamiento. Hasta el momento, la estructura presenta distorsiones de entrepiso que no cumplen con el límite de la norma sismorresistente y además irregularidad torsional en el eje Y-Y. Estos problemas pueden llegar a resolverse mediante la búsqueda de regularidad y aumento de secciones para incrementar la rigidez y ductilidad. Sin embargo, en este capítulo, se planteará una nueva propuesta de solución en base a la incorporación de disipadores fluidos viscosos. Estos dispositivos dependiendo de la ubicación, características y propiedades de amortiguamiento podrán reducir la demanda de disipación y la irregularidad torsional de entrepiso. Se utilizaron las recomendaciones y procedimiento de las normas ASCE 7-10, FEMA 273-274, y E.030-2016.

5.1 Análisis Dinámico Tiempo - Historia sin disipadores

Para el análisis tiempo historia se empleará tres registros sísmicos en sus dos direcciones ortogonales. Estos conjuntos de registros de aceleraciones serán escalados mediante el uso del programa SEISMOMATCH y luego llevados al ETABS-2016 para evaluar el comportamiento de la estructura. Asimismo, para determinar el sismo de diseño, se compararán la similitud resultados obtenidos del análisis tiempo historia de los tres registros con los resultados de la evaluación de un análisis dinámico espectral con un coeficiente de reducción sísmica (R) igual a 1.

5.1.1 Análisis Dinámico Espectral R=1

Los parámetros para del coeficiente sísmico no cambian a excepción del coeficiente de reducción sísmica. Se muestran los parámetros Z=0.45, U=1.5, C=2.5, S=1 y R=1, obteniendo el coeficiente sísmico y el espectro de pseudo-aceleraciones mostrada en la siguiente figura.

$$Sa = \frac{Z \times U \times S \times C}{R \times T} \times g = \frac{0.45 \times 1.5 \times 1 \times 2.5}{1 \times T} \times 981 = \frac{1655.44}{T} cm/seg^2$$

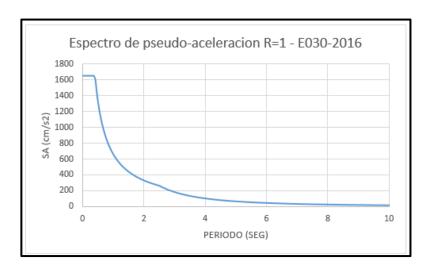


Figura 35. Espectro Objetivo de Pseudo-aceleraciones R=1

Finalmente, se ingresa el espectro objetivo de pseudo-aceleraciones R=1 al programa ETABS obteniendo los resultados de derivas mostradas en la siguiente tabla.

Piso	Altura (m)	Deriva X-X	Control E.030<0.007	Deriva Y-Y	Control E.030<0.007
Piso 12	42	0.0080	No cumple	0.0047	Cumple
Piso 11	38.5	0.0084	No cumple	0.0052	Cumple
Piso 10	35	0.0088	No cumple	0.0058	Cumple
Piso 9	31.5	0.0090	No cumple	0.0062	Cumple
Piso 8	28	0.0091	No cumple	0.0068	Cumple
Piso 7	24.5	0.0092	No cumple	0.0072	No cumple
Piso 6	21	0.0091	No cumple	0.0075	No cumple
Piso 5	17.5	0.0087	No cumple	0.0076	No cumple
Piso 4	14	0.0081	No cumple	0.0074	No cumple
Piso 3	10.5	0.0070	Cumple	0.0068	Cumple
Piso 2	7	0.0053	Cumple	0.0054	Cumple
Piso 1	3.5	0.0026	Cumple	0.0026	Cumple

Tabla 16. Derivas análisis espectral R=1

5.1.2 Acelerogramas Escalados

Para el escalamiento de registros sísmicos, se emplea el algoritmo de wavelets propuesto por Abrahamson y Hancock, mediante el programa SEISMOMATCH. Para cada componente horizontal (Este-Oeste y Norte-Sur) se genera un espectro de pseudo aceleraciones con el 5% de amortiguamiento.

A continuación, se muestra los tres registros sísmicos que se asignaron para el proyecto. Las siguientes tablas y figuras muestran los sismos elegidos aun no escalados.

Nombre de la estacion	Fecha	Componentes	Aceleracion Maxima (cm/s2)
Parque de la Reserva -	17 Octubre	E - W	-180.56
Cercado de Lima, Lima	de 1966	N - S	-268.24
Parque de la Reserva -	31 Mayo de	E - W	-105.05
Cercado de Lima, Lima	1970	N - S	-97.81
Parque de la Reserva -	03 Octubre	E - W	-194.21
Cercado de Lima, Lima	de 1974	N - S	180.09

Tabla 17. Registros sísmicos considerados para el análisis

Fuente: cismid-uni.org, 2017

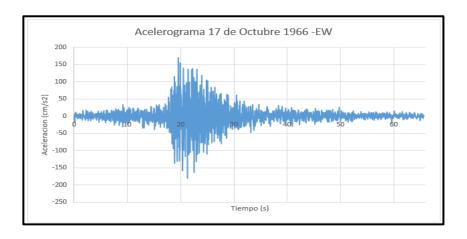


Figura 36. Registros de aceleración Lima 1966 ESTE-OESTE, SIN ESCALAR

Fuente: cismid-uni.org, 2017

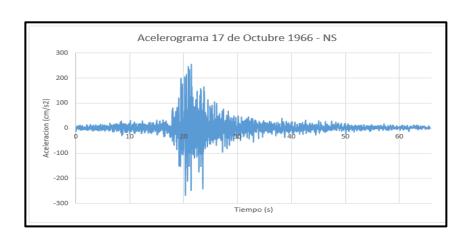


Figura 37. Registros de aceleración Lima 1966 NORTE-SUR, SIN ESCALAR

Fuente: cismid-uni.org, 2017

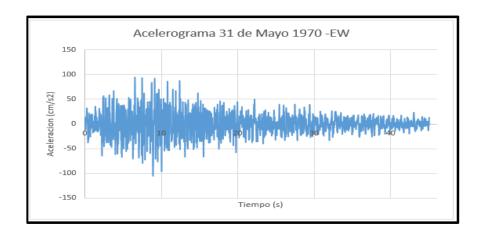


Figura 38. Registros de aceleración Lima 1970 ESTE-OESTE, SIN ESCALAR

Fuente: cismid-uni.org, 2017

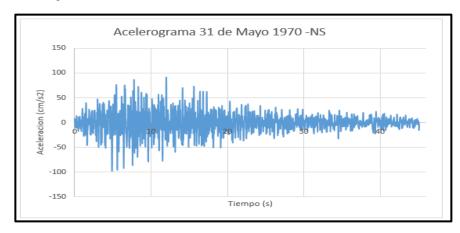


Figura 39. Registros de aceleración Lima 1970 NORTE-SUR, SIN ESCALAR

Fuente: cismid-uni.org, 2017

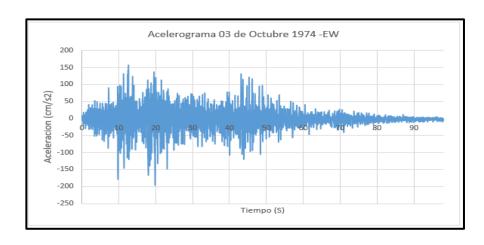


Figura 40. Registros de Aaeleración Lima 1974 ESTE-OESTE, SIN ESCALAR

Fuente: cismid-uni.org, 2017

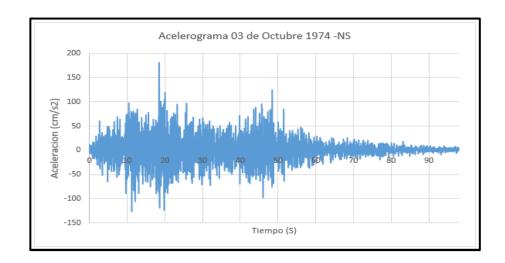


Figura 41. Registros de aceleración Lima 1974 NORTE-SUR, SIN ESCALAR

Fuente: cismid-uni.org, 2017

Mostrados los registros sísmicos, se realiza el escalamiento de acelerogramas mediante el programa SeismoMatch considerando las mismas unidades de los registros Gal (cm/s2).

La metodología empleada por Seismomatch lleva los acelerogramas a un espectro de respuesta para luego compararlos con un espectro objetivo de pseudo-aceleraciones R=1, el cual definimos en el punto 5.1.1 (Figura 35).

A continuación, se presenta los espectros de respuesta de cada acelerograma sin escalar y espectro objetivo R=1.

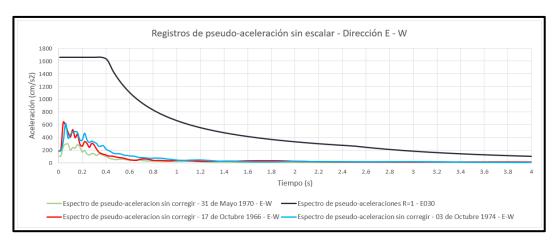


Figura 42. Espectro objetivo (color rojo) y registros sísmicos de Lima 1966, 1970 y 1974 en sentido este y oeste SIN ESCALAR

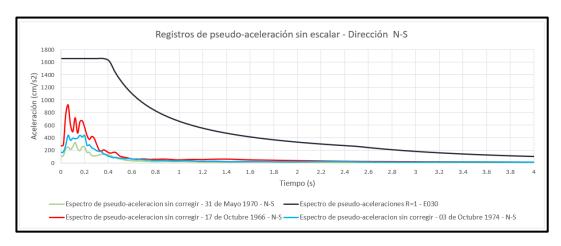


Figura 43. Espectro objetivo (color rojo) y registros sísmicos de Lima 1966, 1970 y 1974 en sentido norte y sur SIN ESCALAR

Previo al escalamiento, el programa Seismomatch pide especificar un rango de periodos en función a lo indicado en la norma E030-2016. La norma establece que los periodos deben variar entre 0.2 T y 1.5 T, donde T es el periodo fundamental de la estructura.

Como indica la tabla 14, los modos predominantes ocurren en los modos 1 y 2, siendo el modo 1 el que presenta un mayor periodo con un valor de 1.327 segundos. Se calculan los periodos límites de escalamiento los cuales son 0.2654 y 1.9905 segundos, estos valores serán ingresados al programa como periodo mínimo y periodo máximo respectivamente.

Mediante el algoritmo de waveles se maximizan los 6 espectros de respuesta generados a partir de los acelerogramas, estos nuevos valores amplificados deberán ser compatibles con el espectro de respuesta objetivo. Las siguientes figuras presentan los resultados del escalamiento.



Figura 44. Espectro objetivo (color rojo) y registros sísmicos de Lima 1966, 1970 y 1974 en sentido este y oeste ESCALADOS

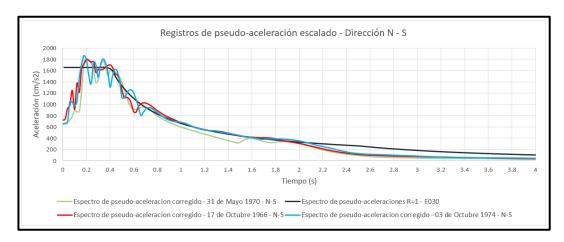


Figura 45. Espectro objetivo (color rojo) y registros sísmicos de Lima 1966, 1970 y 1974 en sentido norte y sur ESCALADOS

Como muestran los gráficos anteriores, los valores de pseudo-aceleración son similares al espectro de respuesta en los periodos mínimo y máximo ingresados al programa (0.2654 y 1.9905 segundos).

Una vez obtenidos los espectros escalados, se traducen a acelerogramas que serán empleados en el análisis tiempo historia.

5.1.3 Resultados del Análisis Tiempo Historia

A continuación, se muestran los acelerogramas escalados que serán llevados al programa Etabs para determinar las derivas que sufre la estructura por cada registro empleado en análisis tiempo historia.

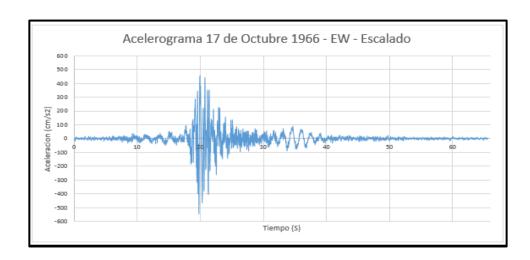


Figura 46. Registros de aceleración Lima 1966 ESTE-OESTE, ESCALADO

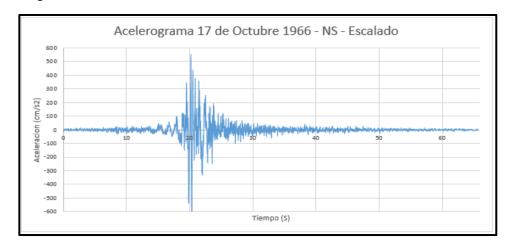


Figura 47. Registros de aceleración Lima 1966 NORTE-SUR, ESCALADO

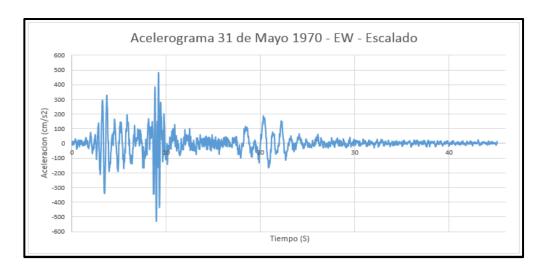


Figura 48. Registros de aceleración Lima 1970 ESTE-OESTE, ESCALADO

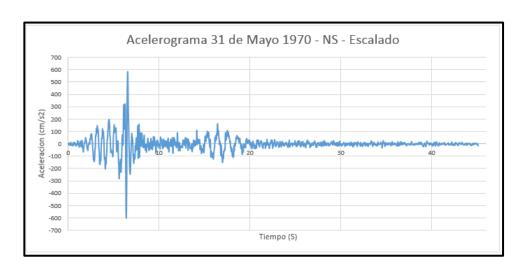


Figura 49. Registros de aceleración Lima 1970 NORTE-SUR, ESCALADO

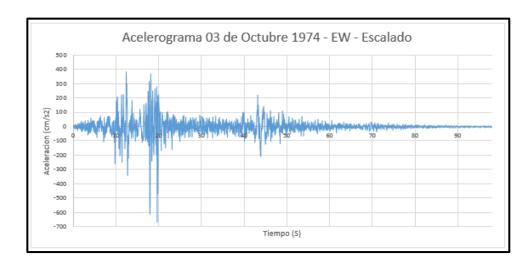


Figura 50. Registros de aceleración Lima 1974 ESTE-OESTE, ESCALADO

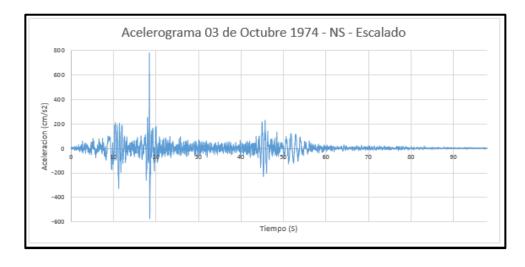


Figura 51. Registros de aceleración Lima 1974 NORTE-SUR, ESCALADO

Finalmente, se determinan las derivas de entrepiso en ambas direcciones X e Y, donde por cada dirección se evaluarán 2 escenarios. Cuando el sismo viene de la dirección X, el escenario 1 representa los desplazamientos del edificio en sentido este-oeste y el escenario 2 en sentido norte-sur. Si el sismo actúa sobre la dirección Y, el escenario 1 representa los desplazamientos en sentido norte-sur, mientras que el escenario 2 en sentido este-oeste. Se presenta un esquema de los escenarios representados en las siguientes figuras.

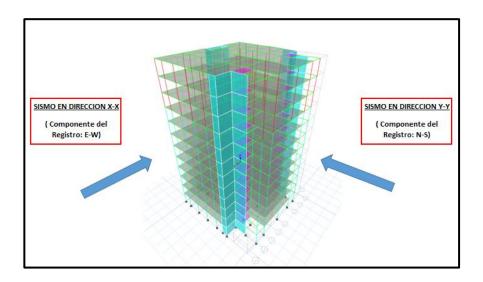


Figura 52. Primer escenario de análisis - modelo Etabs

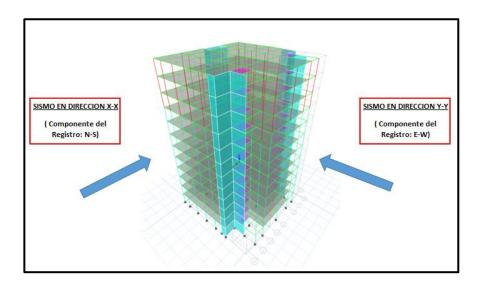


Figura 53. Segundo escenario de análisis - modelo Etabs

Finalmente, las siguientes tablas 18 y 19, muestran los resultados de las derivas del análisis tiempo historia de cada escenario junto con los resultados del análisis dinámico R=1.

		Analisis Dinamico Tiempo Historia (X-X)							
PISO	Analisis	Lima	Lima 1966		Lima 1970		Lima 1974		
	Dinamico R=1	Escenario 1	Escenario 2	Escenario 1	Escenario 2	Escenario 1	Escenario 2		
Piso 12	0.0080	0.0089	0.0072	0.0090	0.0074	0.0080	0.0079		
Piso 11	0.0084	0.0095	0.0076	0.0092	0.0079	0.0085	0.0083		
Piso 10	0.0088	0.0096	0.0080	0.0084	0.0082	0.0089	0.0088		
Piso 9	0.0090	0.0092	0.0082	0.0088	0.0084	0.0092	0.0091		
Piso 8	0.0091	0.0082	0.0083	0.0091	0.0082	0.0093	0.0092		
Piso 7	0.0092	0.0077	0.0082	0.0085	0.0069	0.0093	0.0093		
Piso 6	0.0091	0.0064	0.0079	0.0078	0.0064	0.0091	0.0091		
Piso 5	0.0087	0.0058	0.0055	0.0084	0.0064	0.0085	0.0085		
Piso 4	0.0081	0.0053	0.0057	0.0083	0.0062	0.0076	0.0076		
Piso 3	0.0070	0.0045	0.0053	0.0075	0.0056	0.0064	0.0063		
Piso 2	0.0053	0.0032	0.0044	0.0057	0.0045	0.0047	0.0046		
Piso 1	0.0026	0.0017	0.0023	0.0029	0.0023	0.0022	0.0022		

Tabla 18. Resultados de derivas por escenario del análisis tiempo historia en la dirección X-X.

			Aı	nalisis Dinamico	Tiempo Historia Y-Y			
PISO	Analisis	Lima	1966	Lima	Lima 1970		Lima 1974	
	Dinamico R=1	Escenario 1	Escenario 2	Escenario 1	Escenario 2	Escenario 1	Escenario 2	
Piso 12	0.0080	0.0039	0.0036	0.0047	0.0050	0.0046	0.0039	
Piso 11	0.0084	0.0044	0.0039	0.0052	0.0057	0.0051	0.0044	
Piso 10	0.0088	0.0050	0.0043	0.0059	0.0053	0.0058	0.0050	
Piso 9	0.0090	0.0055	0.0049	0.0065	0.0037	0.0064	0.0055	
Piso 8	0.0091	0.0060	0.0057	0.0072	0.0044	0.0071	0.0061	
Piso 7	0.0092	0.0062	0.0058	0.0076	0.0055	0.0076	0.0066	
Piso 6	0.0091	0.0064	0.0059	0.0079	0.0065	0.0080	0.0070	
Piso 5	0.0087	0.0065	0.0056	0.0078	0.0073	0.0080	0.0071	
Piso 4	0.0081	0.0064	0.0054	0.0075	0.0075	0.0077	0.0068	
Piso 3	0.0070	0.0058	0.0052	0.0067	0.0071	0.0069	0.0061	
Piso 2	0.0053	0.0046	0.0044	0.0052	0.0058	0.0054	0.0048	
Piso 1	0.0026	0.0022	0.0022	0.0025	0.0028	0.0026	0.0023	

Tabla 19. Resultados de derivas por escenario del análisis tiempo historia en la dirección Y-Y

De los siguientes resultados, se concluye que las derivas de entrepiso del análisis tiempo historia que más se asemejan a los valores obtenidos del análisis dinámico R=1, es el sismo de 1970-escenario 1.

Asimismo, se muestran los resultados de irregularidad torsional (Tablas 20 y 21) del edificio con el sismo de diseño elegido: Lima 1970 – Escenario 1, en dirección X, componente del registro Este-Oeste y en dirección Y componente de registro Norte-Sur.

		Irregulari	dad torsional en X - Tie	mpo Historia - Lima	1970		
Numero de pisos	Altura	Desplazamiento relativo elegido	Desplazamiento del centro de masa	Desplazamiento relativo	Condicion 1	Condicion 2	Torsional C.II>1.2
12	42.00	0.17208	1.47309	0.14122	irregular	1.22	Si
11	38.50	0.18255	1.33187	0.14485	irregular	1.26	Si
10	35.00	0.18995	1.18702	0.13235	irregular	1.44	Si
9	31.50	0.19058	1.05468	0.13809	irregular	1.38	Si
8	28.00	0.16931	0.91659	0.14292	irregular	1.18	No
7	24.50	0.14856	0.77366	0.13443	irregular	1.18	No
6	21.00	0.14576	0.63923	0.12349	irregular	1.18	No
5	17.50	0.15477	0.51575	0.13222	irregular	1.17	No
4	14.00	0.15233	0.38353	0.13086	irregular	1.16	No
3	10.50	0.13619	0.25267	0.11736	irregular	1.16	No
2	7.00	0.10446	0.13531	0.09039	irregular	1.16	No
1	3.50	0.05111	0.04492	0.04492	irregular	1.14	No

Tabla 20. Irregularidad Torsional con Sismo Lima 1970 en X

		Irregularida	ad torsional en Y - Tie	mpo Historia - Lima	1970		
Numero de pisos	Altura	Desplazamiento relativo elegido	Desplazamiento del centro de masa	Desplazamiento relativo	Condicion 1	Condicion 2	Torsional C.II>1.2
12	42.00	0.11044	1.17503	0.07414	irregular	1.49	Si
11	38.50	0.12584	1.10089	0.08257	irregular	1.52	Si
10	35.00	0.14185	1.01831	0.09265	irregular	1.53	Si
9	31.50	0.15516	0.92567	0.10227	irregular	1.52	Si
8	28.00	0.16856	0.82340	0.11281	irregular	1.49	Si
7	24.50	0.17838	0.71059	0.11997	irregular	1.49	Si
6	21.00	0.18324	0.59062	0.12387	irregular	1.48	Si
5	17.50	0.18179	0.46674	0.12355	irregular	1.47	Si
4	14.00	0.17245	0.34319	0.11785	irregular	1.46	Si
3	10.50	0.15264	0.22535	0.10488	irregular	1.46	Si
2	7.00	0.11849	0.12047	0.08155	irregular	1.45	Si
1	3.50	0.05717	0.03892	0.03892	irregular	1.47	Si

Tabla 21. Irregularidad Torsional con Sismo Lima 1970 en Y

De los resultados obtenidos del análisis tiempo historia (ver tablas 18 al 21), se concluye que hay un aumento de derivas e irregularidad en X e Y respecto al análisis dinámico obtenido en el capítulo 4 (ver tablas 11,12 y 13).

5.2 Amortiguamiento objetivo

5.2.1 Objetivo de desempeño

Para el cálculo de amortiguamiento del dispositivo se consideró como deriva objetivo el valor máximo límite de 0.007 establecido por la Norma E.030-2016. Sin embargo, en caso el valor de amortiguamiento viscoso (β_H) sea menor a un valor del 20%, el efecto de

disipación no será considerable, por lo que el fabricante sugiere tomar para fines de diseño un amortiguamiento entre el 20% al 40%.²¹

De las tablas 19 y 20, se obtuvieron derivas máximas de 0.00919 en X y 0.00786 en Y respectivamente. Se determina el factor de reducción de respuesta (B) en la siguiente ecuación empleando como deriva objetivo 0.007.

$$B_x = \frac{Dx_{max}}{D_{objetivo}} = \frac{0.00919}{0.007} = 1.313$$

$$B_y = \frac{Dy_{max}}{D_{objetivo}} = \frac{0.00786}{0.007} = 1.123$$

Obtenidos los resultados, se emplea la siguiente fórmula para el cálculo de amortiguamiento efectivo (β_{eff}), donde β o es el amortiguamiento inherente de la estructura fijado en 5%.

$$B = \frac{2.31 - 0.41 \ln(\beta_0)}{2.31 - 0.41 \ln(\beta_{eff})}$$

Resultado en dirección X:

$$1.313 = \frac{2.31 - 0.41 \ln(5)}{2.31 - 0.41 \ln(\beta_{eff})}$$

$$\beta_{eff} x x = 13.05\%$$

Resultado en dirección Y:

$$1.123 = \frac{2.31 - 0.41 \ln(5)}{2.31 - 0.41 \ln(\beta_{eff})}$$

$$\beta_{eff}yy = 7.77$$

Finalmente, se determina el amortiguamiento viscoso, empleando la ecuación 2.7-2

$$\beta_{eff} = \beta_0 + \beta_H$$

²¹ Ver Villareal (2016), Edificaciones con Disipadores Viscosos, pág. 88

Para X:

$$13.05 = 5 + \beta_H xx$$

$$\beta_H x x = 8.05\%$$

Para Y:

$$7.77 = 5 + \beta_H yy$$

$$\beta_{H}yy = 2.77\%$$

De los resultados de amortiguamiento viscoso, se observa que los valores son menores al 20%, como se mencionó, el fabricante recomienda tener valores en un rango de 20% a 40% con el objetivo de alcanzar el mayor desempeño del disipador.

Para mantener un margen de seguridad y asegurar un óptimo desempeño en el comportamiento de la estructura, se considera un valor de amortiguamiento viscoso (β_H) de 40% en el sentido donde ocurre la mayor distorsión, sentido X.

5.2.2 Cálculo de Amortiguamiento

Considerando un β_H de 40% en la dirección X-X, se emplea las ecuaciones anteriores para determinar la nueva deriva objetivo.

$$\beta_{eff}xx = 5 + 40 = 45\%$$

$$B_x = \frac{2.31 - 0.41 \ln(5)}{2.31 - 0.41 \ln(45)}$$

$$B_x = 2.20$$

$$2.20 = \frac{0.00919}{D_{Objetivo}}$$

$$D_{Objetivo} = 0.0042$$

Hallada la deriva objetivo para un amortiguamiento viscoso del 40% en X, asumimos la misma deriva objetivo para el cálculo de amortiguamiento viscoso en el sentido Y.

$$By = \frac{0.00786}{0.0042} = 1.87$$

$$1.87 = \frac{2.31 - 0.41 \ln(5)}{2.31 - 0.41 \ln(\beta_{eff})}$$
$$\beta_{eff} yy = 32.52\%$$

Finalmente, los amortiguamientos efectivos hallados para cada dirección, permitirán hallar las propiedades y el número de disipadores viscosos que demanda la edificación.

$$\beta_{eff}\,xx=45\,\%$$

$$\beta_{eff} yy = 33 \%$$

5.3 Determinación de las propiedades del disipador

5.3.1 Cálculo de la rigidez

Para el cálculo de la rigidez, es importante considerar la composición de un perfil tubular ya sean cuadrados, rectangulares y/o circulares permite una mejor distribución uniforme de las fuerzas a compresión gracias a su forma geométrica, a diferencia de otros perfiles comerciales.²²

Asimismo, la elección del perfil metálico debe ser menor al ancho de la sección de la columna. En base a ello, se eligió el perfil comercial Round HSS 20" X 0.375, que presenta un ancho menor a las columnas del edificio (columnas 80x80 del 1ro al 9no piso y 70x70 del 10mo al 12vo).

La siguiente tabla, muestra las propiedades del perfil.

Dimensiones HSS 20 X 0.375							
D ext. (in)	D ext. (in) D int. (in) Espesor (in) Area (in ²) Inercia (in ⁴)						
20 19.65 0.35 21.5 1040							

Tabla 22. Dimensiones HSS 20 X 0.375

Fuente: steeltubeinstitute.org, 2017

-

²² Ver Kurobane, Parcker, Wardenier & Yeomans, Guia de diseño para uniones a columna de perfiles tubulares estructurales, 2004, p. 9-13.

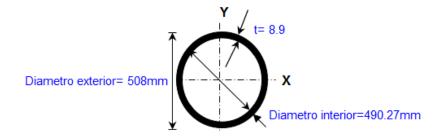


Figura 54. Corte en el perfil Round HSS 20x0.375

Un ejemplo del primer caso de las ubicaciones de los disipadores fluido viscosos se muestra en la siguiente figura, se colocaron dos disipadores fluido viscosos en forma Chevron, en la dirección X y tres en forma diagonal en la dirección Y.

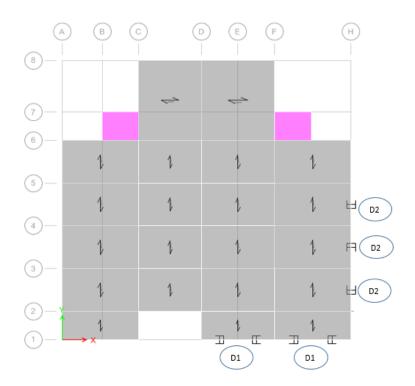


Figura 55. Ubicación de los disipadores caso 1

Conociendo las ubicaciones de cada dispositivo y los datos del perfil metálico, se procede a definir la rigidez mediante la ecuación $K = \frac{EA}{L}$. Los resultados del cálculo de rigidez para el primer caso se presentan en la siguiente tabla.

Tipo D.	Largo (m)	E (t/m²)	A (m ²)	K (t/m²)
1	3.20	20400000	0.013871	59668.238
2	3.80	20400000	0.013871	54772.637

Tabla 23. Rigidez de los disipadores caso 1

5.3.2 Cálculo del coeficiente de amortiguamiento

Se define el exponente de velocidad α , utilizando la Tabla 6. Convencionalmente, el rango de este parámetro es de 0.4 a 0.5 para el diseño de edificaciones con registros sísmicos. Para este caso, se consideró usar un α =0.5 correspondiente a un λ =3.5. Una vez elegido el exponente, se procede a utilizar la ecuación 2.7-4, descrita en el capítulo 2.

$$\beta_{H} = \frac{\sum_{j} \lambda C_{j} \emptyset_{rj}^{1+\alpha} cos^{1+\alpha} \theta_{j}}{2\pi A^{1-\alpha} \omega^{2-\alpha} \sum_{i} m_{i} \emptyset_{i}^{2}}$$

Se requieren de los siguientes datos para realizar los cálculos.

Periodo del análisis dinámico modal y frecuencia angular para ambas direcciones
 X-X e Y-Y.

En X

$$T = 1.327 \, seg$$

$$f = \frac{1}{T} = \frac{1}{1.327} = 0.754 \, 1/seg$$

$$w = 2\pi \times 0.754 = 4.735 \, rad/seg$$

En Y

$$T = 1.142 seg$$

$$f = \frac{1}{T} = \frac{1}{1.142} = 0.876 \text{ 1/seg}$$

$$w = 2\pi \times 0.876 = 5.502 \text{ rad/seg}$$

Desplazamiento máximo Øi y desplazamiento relativo Ørj

Nivel	Фі	Фгј	Masa	Cos θ	cosθ^(1+α)* Φrj^(1+α)	m*Фi²
Piso 12	0.399478	0.038239	66.48708	0.6747692	0.0041447	10.610186
Piso 11	0.361239	0.040567	92.1544	0.6747692	0.0045289	12.025561
Piso 10	0.320672	0.042212	92.1544	0.6747692	0.0048071	9.4762859
Piso 9	0.27846	0.042351	95.46134	0.6747692	0.0048309	7.4020696
Piso 8	0.236109	0.037625	99.0589	0.6747692	0.0040453	5.5222821
Piso 7	0.198484	0.033013	99.0589	0.6747692	0.0033248	3.9025143
Piso 6	0.165471	0.032391	99.0589	0.6747692	0.0032312	2.7122973
Piso 5	0.13308	0.034394	99.0589	0.6747692	0.0035355	1.7543615
Piso 4	0.098686	0.03385	99.0589	0.6747692	0.003452	0.9647274
Piso 3	0.064836	0.030265	99.0589	0.6747692	0.0029184	0.4164146
Piso 2	0.034571	0.023213	99.0589	0.6747692	0.0019603	0.1183906
Piso 1	0.011358	0.000000	99.0589	0.6747692	0.0000000	0.012779
				Sumatoria	0.0407792	54.917869

Tabla 24. Cálculos del coeficiente de amortiguamiento en X

Nivel	Фі	Фгј	Masa	Cos θ	cosθ^(1+α)* Φrj^(1+α)	m*Фi²
Piso 12	0.387999	0.024543	66.48708	0.7355451	0.0024255	10.009179
Piso 11	0.363456	0.027964	92.1544	0.7355451	0.0029499	12.173621
Piso 10	0.335492	0.031523	92.1544	0.7355451	0.0035307	10.372428
Piso 9	0.303969	0.034479	95.46134	0.7355451	0.0040387	8.820356
Piso 8	0.26949	0.037457	99.0589	0.7355451	0.0045731	7.1941388
Piso 7	0.232033	0.039639	99.0589	0.7355451	0.0049785	5.3332631
Piso 6	0.192394	0.04072	99.0589	0.7355451	0.0051835	3.6667099
Piso 5	0.151674	0.040398	99.0589	0.7355451	0.0051222	2.2788502
Piso 4	0.111276	0.038322	99.0589	0.7355451	0.0047325	1.2265818
Piso 3	0.072954	0.033919	99.0589	0.7355451	0.0039407	0.5272198
Piso 2	0.039035	0.02633	99.0589	0.7355451	0.0026952	0.1509391
Piso 1	0.012705	0.00000	99.0589	0.7355451	0.0000000	0.0159898
				Sumatoria	0.0441706	61.769276

Tabla 25. Cálculos del coeficiente de amortiguamiento en Y

Determinado el amortiguamiento efectivo en el punto 4.2.2, se calcula el amortiguamiento viscoso β_H , descontando el amortiguamiento inherente del 5%.

$$\beta_H xx = 45 - 5 = 40\%$$

$$\beta_H yy = 33 - 5 = 28\%$$

Para tener un margen de seguridad y asegurar el cumplimiento de la deriva máxima permitida por la norma sismorresistente, los cálculos se realizaron con un amortiguamiento viscoso mayor al calculado. $\beta_H xx = 40\%$ y $\beta_H yy = 28\%$.

Despejamos el valor de C_i de la ecuación 2.7-4 se tendrá:

$$C_j x = 3775.336 \frac{t*s}{m}$$
 $C_j y = 2916.949 \frac{t*s}{m}$

Obtenido el coeficiente de amortiguamiento por piso en cada dirección X e Y, las cantidades serán distribuidas proporcionalmente al número de dispositivos a colocar.

5.4 Comparativo de disipadores incorporados

Obtenidas las propiedades del disipador, procedemos a evaluar las posibles ubicaciones de los dispositivos fluido-viscosos con el objetivo de reducir los desplazamientos de entrepiso y la irregularidad torsional en planta. Para ello definimos los criterios de evaluación:

- 1. Colocar disipadores en los nudos del edificio donde se producen los mayores desplazamientos.
- 2. Evaluar la torsión generada con la distribución de disipadores planteada.
- 3. Aumentar y/o disminuir los disipadores en planta con el fin de controlar y equilibrar los desplazamientos en cada piso.
- 4. Reevaluar la torsión y derivas de la nueva distribución hasta cumplir con la eliminación de la torsión y obtener derivas menores a 0.007.

Comenzando con el primer criterio, mostramos los desplazamientos en X e Y de cada nudo del edificio obtenido en el análisis tiempo historia.

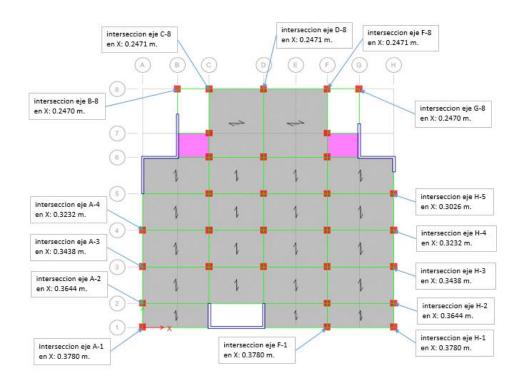


Figura 56. Desplazamientos Tiempo Historia Lima 1970 en X

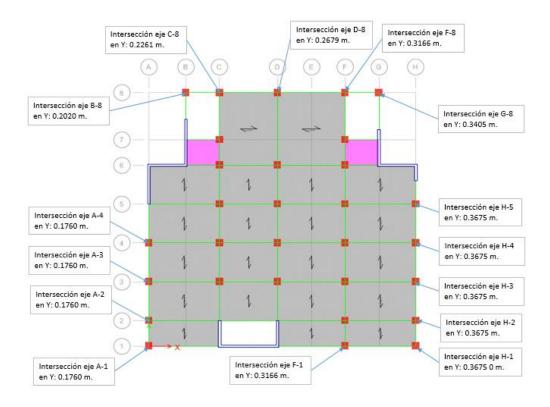


Figura 57. Desplazamientos Tiempo Historia Lima 1970 en Y

De las figuras anteriores, se concluye que la edificación en la dirección X presenta mayores desplazamientos en el eje 1 y 2 mientras que en la dirección Y, los desplazamientos mayores ocurren en el eje H.

Como primer caso se colocarán los dispositivos en las zonas donde se producen los mayores desplazamientos. Si la modulación planteada no llegase a eliminar la torsión ni las derivas menores a 0.007, se realizará otra iteración cambiando la ubicación de los disipadores de energía. A continuación, se presenta cada caso evaluado.

a) Caso Nº1:

Se incorporan los disipadores donde ocurren los mayores desplazamientos, en los ejes 1 y H (figura 56 y 57). Se colocaron 2 disipadores tipo Chevron en la dirección X (C=943.834 t*s/m) y 3 en tipo diagonal en la dirección Y (C=972.316 t*s/m) en planta.

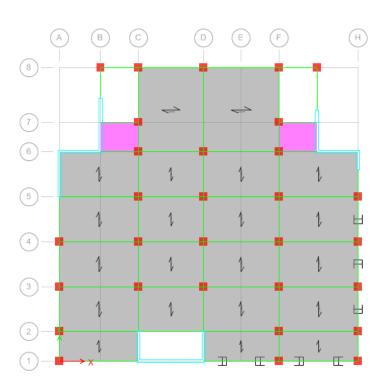


Figura 58. Vista en planta, primer caso de ubicación de dispositivos

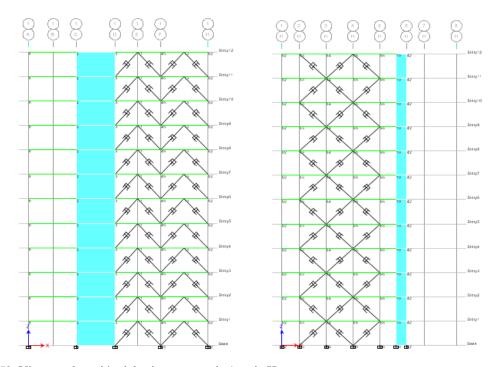


Figura 59. Vista en elevación del primer caso, eje 1 y eje H

Piso	Direccion	Deriva
Piso 12	X	0.0033683
Piso 11	X	0.0037169
Piso 10	X	0.0040926
Piso 9	X	0.0044231
Piso 8	X	0.0047386
Piso 7	X	0.0049097
Piso 6	X	0.0049646
Piso 5	X	0.0048554
Piso 4	X	0.0045189
Piso 3	X	0.0037163
Piso 2	X	0.0029783
Piso 1	X	0.0016603

Piso	Direccion	Deriva
Piso 12	Υ	0.0024806
Piso 11	Υ	0.0027009
Piso 10	Υ	0.0030569
Piso 9	Υ	0.00341
Piso 8	Y	0.0037609
Piso 7	Y	0.0040697
Piso 6	Υ	0.0042374
Piso 5	Y	0.0043374
Piso 4	Y	0.0042103
Piso 3	Υ	0.0037914
Piso 2	Υ	0.0029317
Piso 1	Υ	0.0013854

Tabla 26. Caso 1 de derivas en dirección X y Y

	Caso 1: Irregularidad torsional en X							
Numero	Altura	Desplazamiento	Desplazamiento	Desplazamiento	Condicion 1	Condicion 2	Cumple con la	
de piso	Aituia	relativo elegido	del centro de masa	relativo	Condicion 1	Condicion 2	eliminación de torsión	
12	42.00	0.01787	0.16780	0.01179	Irregular	1.52	No cumple	
11	38.50	0.01959	0.15601	0.01301	Irregular	1.51	No cumple	
10	35.00	0.02096	0.14300	0.01432	Irregular	1.46	No cumple	
9	31.50	0.02206	0.12868	0.01548	Irregular	1.42	No cumple	
8	28.00	0.02315	0.11320	0.01659	Irregular	1.40	No cumple	
7	24.50	0.02382	0.09661	0.01718	Irregular	1.39	No cumple	
6	21.00	0.02382	0.07943	0.01738	Irregular	1.37	No cumple	
5	17.50	0.02308	0.06205	0.01699	Irregular	1.36	No cumple	
4	14.00	0.02133	0.04506	0.01582	Irregular	1.35	No cumple	
3	10.50	0.01832	0.02924	0.01301	Irregular	1.41	No cumple	
2	7.00	0.01366	0.01624	0.01042	Irregular	1.31	No cumple	
1	3.50	0.00728	0.00581	0.00581	Regular	No aplica	Cumple	

Tabla 27. Caso 1 de irregularidad torsional en X

	Caso 1: Irregularidad torsional en Y							
Numero de piso	Altura	Desplazamiento relativo elegido	Desplazamiento del centro de masa	Desplazamiento relativo	Condicion 1	Condicion 2	Cumple con la eliminación de torsión	
12	42.00	0.01259	0.14130	0.00868	Irregular	1.45	No cumple	
11	38.50	0.01379	0.13262	0.00945	Irregular	1.46	No cumple	
10	35.00	0.01515	0.12317	0.01070	Irregular	1.42	No cumple	
9	31.50	0.01647	0.11247	0.01194	Irregular	1.38	No cumple	
8	28.00	0.01782	0.10054	0.01316	Irregular	1.35	No cumple	
7	24.50	0.01895	0.08737	0.01424	Irregular	1.33	No cumple	
6	21.00	0.01965	0.07313	0.01483	Irregular	1.32	No cumple	
5	17.50	0.01961	0.05830	0.01518	Irregular	1.29	No cumple	
4	14.00	0.01853	0.04312	0.01474	Irregular	1.26	No cumple	
3	10.50	0.01636	0.02838	0.01327	Irregular	1.23	No cumple	
2	7.00	0.01268	0.01511	0.01026	Irregular	1.24	No cumple	
1	3.50	0.00615	0.00485	0.00485	Regular	No aplica	Cumple	

Tabla 28. Caso 1 de irregularidad torsional en Y

Analizando los resultados obtenidos, de la tabla 26 concluimos que en ambos casos (sentido X y Y) alcanzamos el primer objetivo: derivas menores a 0.007. Sin embargo, en la tabla 27 y 28 observamos que aún no se cumple con la eliminación de la irregularidad torsional.

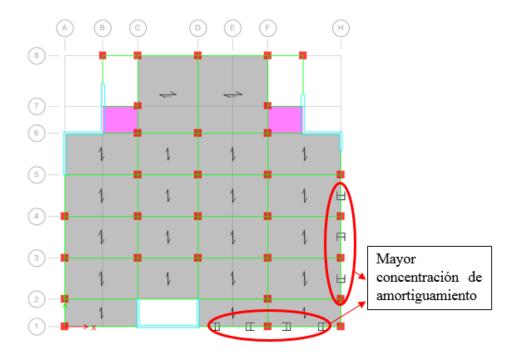


Figura 60. Vista en planta, conclusiones del primer caso

De acuerdo a los resultados del primer caso, se concluye que la distribución de los disipadores no llega a eliminar la irregularidad torsional, debido a que hay una gran concentración de amortiguamiento en solo unos nudos de la planta mas no en toda el área de la edificación.

Para el siguiente Caso N°2, en el eje X, se incorpora un disipador en el eje 8 y se mantienen los disipadores del eje 1. Respecto al eje Y, se traslada 1 disipador al eje A, quedando con 2 disipadores el Eje H. Asimismo, se decidió cambiar la disposición de los disipadores en diagonal a la disposición Chevron en el Eje Y, con el fin de comparar resultados entre ambos casos.

b) Caso N°2:

Se presentan 3 disposiciones Chevron en la dirección X (C=629.223 t*s/m) y 3 disposiciones en la dirección Y (C=486.158 t*s/m).

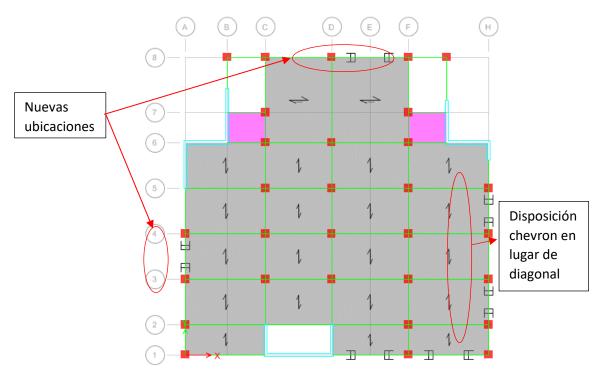


Figura 61. Vista en planta, segundo caso de ubicación de dispositivos

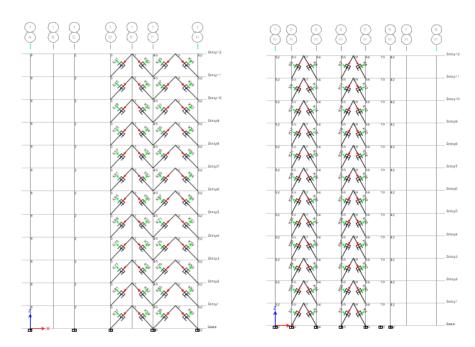


Figura 62. Vista en elevación del segundo caso, eje 1 y eje H

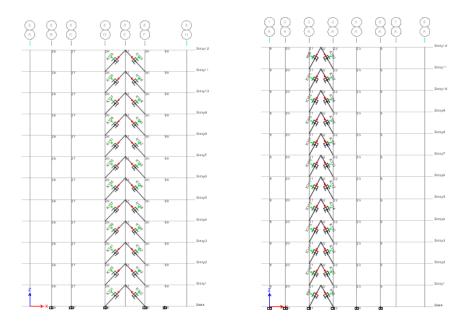


Figura 63. Vista en elevación del segundo caso, eje 8 y eje A

Piso	Direccion	Deriva
Piso 12	X	0.0025357
Piso 11	X	0.0028117
Piso 10	X	0.0031363
Piso 9	X	0.003432
Piso 8	X	0.0037174
Piso 7	Х	0.0039237
Piso 6	X	0.0039586
Piso 5	Х	0.003908
Piso 4	Х	0.0036654
Piso 3	Х	0.003106
Piso 2	Х	0.0023594
Piso 1	Х	0.001326

Piso	Direccion	Deriva
Piso 12	Y	0.0037254
Piso 11	Υ	0.0041331
Piso 10	Υ	0.004584
Piso 9	Υ	0.0050254
Piso 8	Υ	0.0054891
Piso 7	Υ	0.0058369
Piso 6	Υ	0.0060494
Piso 5	Υ	0.0060411
Piso 4	Υ	0.0057297
Piso 3	Υ	0.0050543
Piso 2	Y	0.0038909
Piso 1	Υ	0.0018366

Tabla 29. Caso 2 de derivas en dirección X y Y

	Caso 2: Irregularidad torsional en X								
Numero	Altura	Desplazamiento	Desplazamiento	Desplazamiento	Condicion 1	Condicion 2	Cumple con la		
de piso		relativo elegido	del centro de masa	relativo			eliminación de torsión		
12	42.00	0.01061	0.13258	0.00888	Regular	No aplica	Cumple		
11	38.50	0.01189	0.12371	0.00984	Regular	No aplica	Cumple		
10	35.00	0.01324	0.11387	0.01098	Irregular	1.21	No cumple		
9	31.50	0.01441	0.10289	0.01201	Irregular	1.20	No cumple		
8	28.00	0.01561	0.09088	0.01301	Irregular	1.20	No cumple		
7	24.50	0.01651	0.07787	0.01373	Irregular	1.20	No cumple		
6	21.00	0.01692	0.06413	0.01386	Irregular	1.22	No cumple		
5	17.50	0.01673	0.05028	0.01368	Irregular	1.22	No cumple		
4	14.00	0.01566	0.03660	0.01283	Irregular	1.22	No cumple		
3	10.50	0.01365	0.02377	0.01087	Irregular	1.26	No cumple		
2	7.00	0.01056	0.01290	0.00826	Regular	No aplica	Cumple		
1	3.50	0.00528	0.00464	0.00464	Regular	No aplica	Cumple		

Tabla 30. Caso 2 de irregularidad torsional en X

	Caso 2: Irregularidad torsional en Y							
Numero	Altura	Desplazamiento	Desplazamiento del centro de masa	Desplazamiento	Condicion 1	Condicion 2	Cumple con la eliminación de torsión	
de piso		relativo elegido		relativo				
12	42.00	0.01347	0.20089	0.01304	Irregular	1.03	Cumple	
11	38.50	0.01501	0.18785	0.01447	Irregular	1.04	Cumple	
10	35.00	0.01719	0.17338	0.01604	Irregular	1.07	Cumple	
9	31.50	0.01929	0.15734	0.01759	Irregular	1.10	Cumple	
8	28.00	0.02143	0.13975	0.01921	Irregular	1.12	Cumple	
7	24.50	0.02313	0.12054	0.02043	Irregular	1.13	Cumple	
6	21.00	0.02427	0.10011	0.02117	Irregular	1.15	Cumple	
5	17.50	0.02447	0.07893	0.02114	Irregular	1.16	Cumple	
4	14.00	0.02343	0.05779	0.02005	Irregular	1.17	Cumple	
3	10.50	0.02086	0.03774	0.01769	Irregular	1.18	Cumple	
2	7.00	0.01622	0.02005	0.01362	Irregular	1.19	Cumple	
1	3.50	0.00777	0.00643	0.00643	Regular	No aplica	Cumple	

Tabla 31. Caso 2 de irregularidad torsional en Y

De los resultados obtenidos en la evaluación del Caso N°2, se concluye que las derivas de cada piso son menores a 0.007 (Tabla 29) y se eliminó la irregularidad torsional en el Y (Tabla 31).

A continuación, se muestran los resultados de la irregularidad torsional Caso Nº1 y 2 (Tabla 32 y 33), para comparar resultados.

Caso 1: Irregulario	dad torsional en X	Caso 2: Irregularidad torsional en X		
Condicion 1	Condicion 2	Condicion 1	Condicion 2	
Irregular	1.52	Regular	No aplica	
Irregular	1.51	Regular	No aplica	
Irregular	1.46	Irregular	1.21	
Irregular	1.42	Irregular	1.20	
Irregular	1.40	Irregular	1.20	
Irregular	1.39	Irregular	1.20	
Irregular	1.37	Irregular	1.22	
Irregular	1.36	Irregular	1.22	
Irregular	1.35	Irregular	1.22	
Irregular	1.41	Irregular	1.26	
Irregular	1.31	Regular	No aplica	
Regular	No aplica	Regular	No aplica	

Tabla 32. Comparación del efecto torsional en X en el caso 1 y 2

Caso 1: Irregulari	dad torsional en Y	Caso 2: Irregularidad torsional en Y		
Condicion 1	Condicion 2	Condicion 1	Condicion 2	
Irregular	1.45	Irregular	1.03	
Irregular	1.46	Irregular	1.04	
Irregular	1.42	Irregular	1.07	
Irregular	1.38	Irregular	1.10	
Irregular	1.35	Irregular	1.12	
Irregular	1.33	Irregular	1.13	
Irregular	1.32	Irregular	1.15	
Irregular	1.29	Irregular	1.16	
Irregular	1.26	Irregular	1.17	
Irregular	1.23	Irregular	1.18	
Irregular	1.24	Irregular	1.19	
Regular	No aplica	Regular	No aplica	

Tabla 33. Comparación del efecto torsional en Y en el caso 1 y 2

A partir de estos resultados podemos concluir:

- Cambiar de ubicación de los disipadores no concentrándolos solo en una zona, afecta las derivas y el efecto torsional del edificio.
- Por los resultados obtenidos en el sentido Y del Caso Nº2, concluimos que es posible eliminar la torsión si se distribuye adecuadamente los dispositivos en el sistema, eliminando la concentración de dispositivos en un eje.

Para el Caso N°3, se redistribuirán los disipadores en el eje X, reubicaremos 1 disipador del eje 1 al eje 8 para comprobar si la torsión llega a ser eliminada en el sentido X. No se modificará la distribución de los disipadores en el eje Y, ya que se alcanzaron los dos objetivos.

c) Caso Nº3:

Se reubica 1 disipador del eje X (eje 1-E al eje 8-C). Se presentan 3 disposiciones Chevron en la dirección X (C=629.223 t*s/m) y 3 disposiciones en la dirección Y (C=486.158 t*s/m).

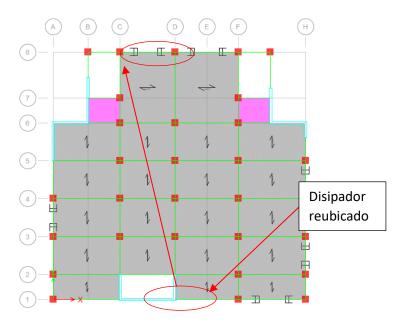


Figura 64. Vista en planta, tercer caso de ubicación de dispositivos

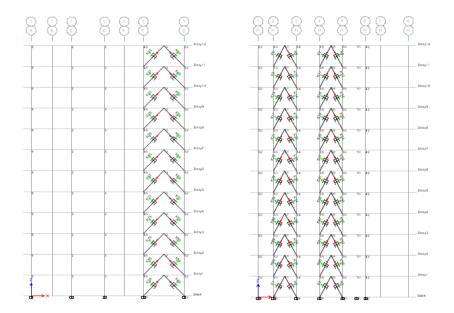


Figura 65. Vista en elevación del tercer caso, eje 1 y eje H

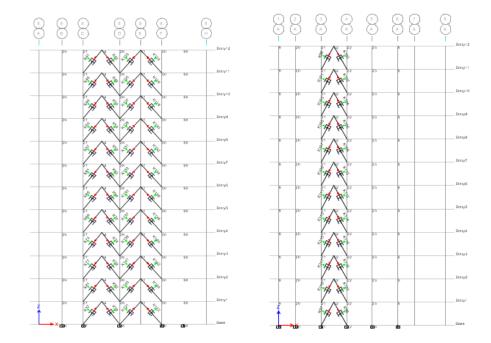


Figura 66. Vista en elevación del tercer caso, eje 8 y eje A

Piso	Direccion	Deriva
Piso 12	X	0.0032557
Piso 11	X	0.00353
Piso 10	X	0.0038546
Piso 9	X	0.0041366
Piso 8	X	0.0043926
Piso 7	X	0.0045503
Piso 6	X	0.004536
Piso 5	X	0.0043726
Piso 4	X	0.0038729
Piso 3	X	0.0032577
Piso 2	X	0.0026454
Piso 1	X	0.0014291

Piso	Direccion	Deriva
Piso 12	Υ	0.0038946
Piso 11	Υ	0.0043183
Piso 10	Υ	0.0047763
Piso 9	Υ	0.0052186
Piso 8	Υ	0.0056854
Piso 7	Υ	0.00603
Piso 6	Υ	0.0062349
Piso 5	Υ	0.0062169
Piso 4	Υ	0.0058909
Piso 3	Υ	0.0051926
Piso 2	Υ	0.0039977
Piso 1	Υ	0.0018894

Tabla 34. Caso 3 de derivas en dirección X y Y

	Caso 3: Irregularidad torsional en X						
Numero de piso	Altura	Desplazamiento relativo elegido	Desplazamiento del centro de masa	Desplazamiento relativo	Condicion 1	Condicion 2	Cumple con la eliminación de torsión
12	42.00	0.01506	0.15342	0.01140	Irregular	1.32	No cumple
11	38.50	0.01598	0.14202	0.01236	Irregular	1.29	No cumple
10	35.00	0.01706	0.12967	0.01349	Irregular	1.26	No cumple
9	31.50	0.01797	0.11618	0.01448	Irregular	1.24	No cumple
8	28.00	0.01874	0.10170	0.01537	Irregular	1.22	No cumple
7	24.50	0.01908	0.08632	0.01593	Irregular	1.20	No cumple
6	21.00	0.01883	0.07040	0.01588	Irregular	1.19	Cumple
5	17.50	0.01611	0.05452	0.01530	Irregular	1.05	Cumple
4	14.00	0.01463	0.03922	0.01356	Irregular	1.08	Cumple
3	10.50	0.01389	0.02566	0.01140	Irregular	1.22	No cumple
2	7.00	0.01118	0.01426	0.00926	Regular	No aplica	Cumple
1	3.50	0.00588	0.00500	0.00500	Regular	No aplica	Cumple

Tabla 35. Caso 3 de irregularidad torsional en X

	Caso 3: Irregularidad torsional en Y						
Numero de piso	Altura	Desplazamiento relativo elegido	Desplazamiento del centro de masa	Desplazamiento relativo	Condicion 1	Condicion 2	Cumple con la eliminación de torsión
	40.00					4.04	
12	42.00	0.01420	0.20771	0.01363	Irregular	1.04	Cumple
11	38.50	0.01607	0.19408	0.01511	Irregular	1.06	Cumple
10	35.00	0.01809	0.17896	0.01672	Irregular	1.08	Cumple
9	31.50	0.02000	0.16225	0.01827	Irregular	1.09	Cumple
8	28.00	0.02197	0.14398	0.01990	Irregular	1.10	Cumple
7	24.50	0.02356	0.12408	0.02111	Irregular	1.12	Cumple
6	21.00	0.02464	0.10298	0.02182	Irregular	1.13	Cumple
5	17.50	0.02480	0.08116	0.02176	Irregular	1.14	Cumple
4	14.00	0.02370	0.05940	0.02062	Irregular	1.15	Cumple
3	10.50	0.02106	0.03878	0.01817	Irregular	1.16	Cumple
2	7.00	0.01639	0.02061	0.01399	Irregular	1.17	Cumple
1	3.50	0.00786	0.00661	0.00661	Regular	No aplica	Cumple

Tabla 36. Caso 3 de irregularidad torsional en Y

Del Caso N°3, se concluye que el edificio presenta derivas son menores a 0.007 (tabla 34). Respecto a la irregularidad torsional en X, la tabla 35, muestra que hay eliminación de torsión, pero solo en los pisos del 1 al 6.

Comparando los resultados de irregularidad respecto al Caso N°2, se concluye que hay una disminución de torsión en los primeros niveles del edificio (Piso 1 al 6); sin embargo, un aumento de irregularidad en los niveles superiores (Piso 7 al 12), tal como se muestra en la tabla 37.

	Caso 2: Irregulari	dad torsional en X	Caso 3: Irregularidad torsional en X		
Numero de piso	Condicion 1	Condicion 2	Condicion 1	Condicion 2	
12	Regular	No aplica	Irregular	1.32	
11	Regular	No aplica	Irregular	1.29	
10	Irregular	1.21	Irregular	1.26	
9	Irregular	1.20	Irregular	1.24	
8	Irregular	1.20	Irregular	1.22	
7	Irregular	1.20	Irregular	1.20	
6	Irregular	1.22	Irregular	1.19	
5	Irregular	1.22	Irregular	1.05	
4	Irregular	1.22	Irregular	1.08	
3	Irregular	1.26	Irregular	1.22	
2	Regular	No aplica	Irregular	No aplica	
1	Regular	No aplica	Regular	No aplica	

Tabla 37. Comparación del efecto torsional en X en el caso 2 y 3

Basándonos en estos resultados, para el siguiente caso se planteará combinar el caso 2 y 3. Para el Caso Nº4, se adicionará un dispositivo en el eje 1 (figura 67).

d) Caso Nº4:

Se adiciona un disipador más en el eje X (Eje 1-D, F). Se presentan 4 disposiciones Chevron en la dirección X (C=471.917 t*s/m) y 3 disposiciones en la dirección Y (C=486.158 t*s/m).

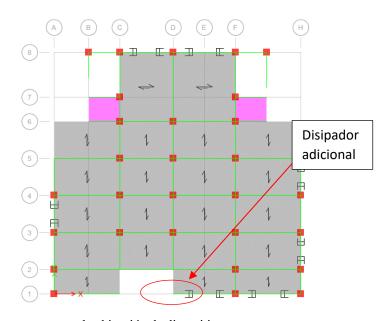


Figura 67. Vista en planta, cuarto caso de ubicación de dispositivos

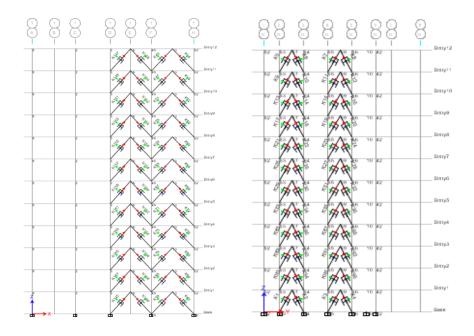


Figura 68. Vista en elevación del cuarto caso, eje 1 y eje H

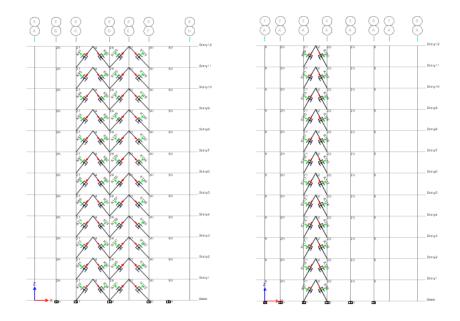


Figura 69. Vista en elevación del cuarto caso, eje 8 y eje A

Piso	Direccion	Deriva
Piso 12	X	0.0026209
Piso 11	X	0.002874
Piso 10	Х	0.0031686
Piso 9	X	0.0033911
Piso 8	Х	0.0036543
Piso 7	X	0.0038429
Piso 6	Х	0.0039109
Piso 5	X	0.003804
Piso 4	Х	0.0035309
Piso 3	X	0.0030526
Piso 2	Х	0.0022089
Piso 1	Х	0.0012374

Piso	Direccion	Deriva
Piso 12	Y	0.0038014
Piso 11	Y	0.0042137
Piso 10	Y	0.0046634
Piso 9	Y	0.005102
Piso 8	Y	0.0055626
Piso 7	Y	0.005904
Piso 6	Y	0.0061089
Piso 5	Y	0.0060914
Piso 4	Y	0.00577
Piso 3	Y	0.0050843
Piso 2	Y	0.0039103
Piso 1	Υ	0.0018437

Tabla 38. Caso 4 de derivas en dirección X y Y

	Caso 4: Irregularidad torsional en X												
Numero de piso	Altura	Desplazamiento relativo elegido			Condicion 1	Condicion 2	Cumple con la eliminación de torsión						
12	42.00	0.00991	0.13054	0.00917	Regular	No aplica	Cumple						
11	38.50	0.01056	0.12136	0.01006	Regular	No aplica	Cumple						
10	35.00	0.01151	0.11131	0.01109	Regular	No aplica	Cumple						
9	31.50	0.01236	0.10022	0.01187	Irregular	1.04	Cumple						
8	28.00	0.01310	0.08835	0.01279	Irregular	1.02	Cumple						
7	24.50	0.01355	0.07556	0.01345	Irregular	1.01	Cumple						
6	21.00	0.01393	0.06211	0.01369	Irregular	1.02	Cumple						
5	17.50	0.01387	0.04842	0.01331	Irregular	1.04	Cumple						
4	14.00	0.01312	0.03510	0.01236	Irregular	1.06	Cumple						
3	10.50	0.01148	0.02275	0.01068	Regular	No aplica	Cumple						
2	7.00	0.00883	0.01206	0.00773	Regular	No aplica	Cumple						
1	3.50	0.00449	0.00433	0.00433	Regular	No aplica	Cumple						

Tabla 39. Caso 4 de irregularidad torsional en X

	Caso 4: Irregularidad torsional en Y												
Numero de piso	Altura	Desplazamiento relativo elegido	Desplazamiento del centro de masa	Desplazamiento relativo	Condicion 1	Condicion 2	Cumple con la eliminación de torsión						
12	42.00	0.01333	0.20320	0.01331	Irregular	1.00	Cumple						
11	38.50	0.01520	0.18989	0.01475	Irregular	1.03	Cumple						
10	35.00	0.01736	0.17514	0.01632	Irregular	1.06	Cumple						
9	31.50	0.01942	0.15882	0.01786	Irregular	1.09	Cumple						
8	28.00	0.02150	0.14096	0.01947	Irregular	1.10	Cumple						
7	24.50	0.02315	0.12149	0.02066	Irregular	1.12	Cumple						
6	21.00	0.02424	0.10083	0.02138	Irregular	1.13	Cumple						
5	17.50	0.02441	0.07945	0.02132	Irregular	1.15	Cumple						
4	14.00	0.02335	0.05813	0.02020	Irregular	1.16	Cumple						
3	10.50	0.02078	0.03793	0.01780	Irregular	1.17	Cumple						
2	7.00	0.01617	0.02014	0.01369	Irregular	1.18	Cumple						
1	3.50	0.00775	0.00645	0.00645	Regular	No aplica	Cumple						

Tabla 40. Caso 4 de irregularidad torsional en Y

Del caso N°4, se concluye que la ubicación de los dispositivos en el sistema ha logrado cumplir con la reducción de derivas menores a 0.007 (tabla 38) y con la eliminación de irregularidad torsional en ambos ejes (tabla 39 y 40). La combinación del caso 2 y 3 nos permitieron alcanzar los objetivos planteados inicialmente y concluimos:

- Modificar la ubicación de los disipadores puede variar los resultados de distintas formas, puede aumentar o reducir los desplazamientos.
- Hay más de una forma de disminuir las derivas para que cumplan con las normas establecidas. En todos los casos evaluados, las derivas no superan el valor de 0.007.

Una vez evaluado y cumplido nuestros objetivos, propondremos otra alternativa con el fin de comprobar que no existe una única disposición de disipadores para eliminar la torsión y disminuir derivas.

e) Caso Nº5:

Respecto al caso anterior, se mantienen únicamente 2 disipadores en el eje X, con un incremento de coeficiente de amortiguamiento (C) en cada dispositivo. Se mantienen los disipadores en el eje Y. Se presentan 2 disposiciones Chevron en la dirección X (C=943.834 t*s/m) y 3 en la dirección Y (C=486.158 t*s/m).

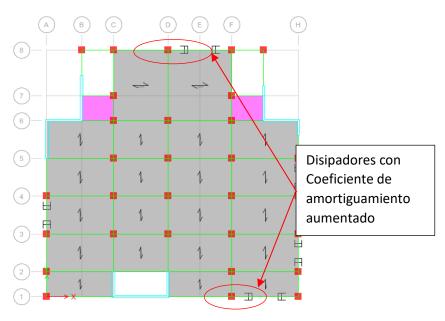


Figura 70. Vista en planta, quinto caso de ubicación de dispositivo

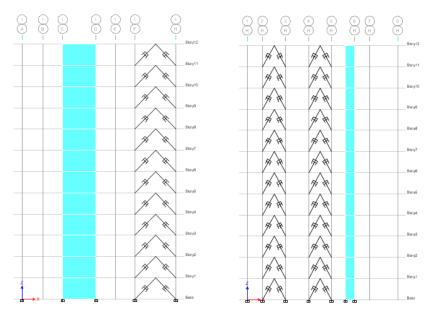


Figura 71. Vista en elevación del quinto caso, eje 1 y eje H

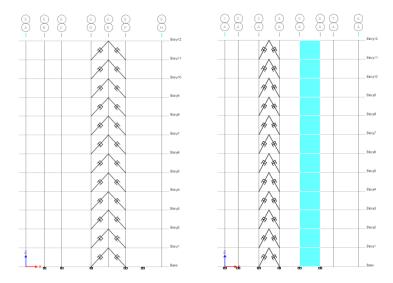


Figura 72. Vista en elevación del quinto caso, eje 8 y eje A

Piso	Direction	Deriva
Piso 12	X	0.0032043
Piso 11	X	0.0034937
Piso 10	×	0.0038337
Piso 9	×	0.0041331
Piso 8	X	0.004356
Piso 7	×	0.0045311
Piso 6	×	0.0045703
Piso 5	×	0.0044389
Piso 4	×	0.0038966
Piso 3	×	0.0032706
Piso 2	×	0.0027389
Piso 1	X	0.0014994

Piso	Direction	Deriva
Piso 12	Y	0.0038697
Piso 11	Y	0.0043026
Piso 10	Y	0.004776
Piso 9	Υ	0.0052331
Piso 8	Y	0.0057151
Piso 7	Υ	0.006076
Piso 6	Y	0.0062923
Piso 5	Υ	0.0062831
Piso 4	Y	0.0059623
Piso 3	Y	0.0052606
Piso 2	Y	0.0040537
Piso 1	Y	0.0019177

Tabla 41. Caso 5 de derivas en dirección X y Y

			Caso 5: Irregu	ılaridad torsional	l en X		
Numero	Altura	Desplazamiento relativo elegido	Desplazamiento del centro de masa	Desplazamiento	Condicion 1	Condicion 2	Cumple con la
de piso			dei centro de masa	relativo			eliminación de torsión
12	42.00	0.01324	0.15388	0.01122	Irregular	1.18	Cumple
11	38.50	0.01423	0.14267	0.01223	Irregular	1.16	Cumple
10	35.00	0.01535	0.13044	0.01342	Irregular	1.14	Cumple
9	31.50	0.01630	0.11702	0.01447	Irregular	1.13	Cumple
8	28.00	0.01712	0.10256	0.01525	Irregular	1.12	Cumple
7	24.50	0.01753	0.08731	0.01586	Irregular	1.11	Cumple
6	21.00	0.01719	0.07145	0.01600	Irregular	1.07	Cumple
5	17.50	0.01435	0.05546	0.01554	Irregular	0.92	Cumple
4	14.00	0.01372	0.03992	0.01364	Irregular	1.01	Cumple
3	10.50	0.01302	0.02628	0.01145	Irregular	1.14	Cumple
2	7.00	0.01069	0.01483	0.00959	Regular	No aplica	Cumple
1	3.50	0.00573	0.00525	0.00525	Regular	No aplica	Cumple

Tabla 42. Caso 5 de irregularidad torsional en X

			Caso 5: Irregu	ularidad torsiona	l en Y		
Numero de piso	Altura	Desplazamiento relativo elegido	Desplazamiento del centro de masa	Desplazamiento relativo	Condicion 1	Condicion 2	Cumple con la eliminación de torsión
12	42.00	0.01364	0.20910	0.01354	Irregular	1.01	Cumple
11	38.50	0.01552	0.19555	0.01506	Irregular	1.03	Cumple
10	35.00	0.01765	0.18050	0.01672	Irregular	1.06	Cumple
9	31.50	0.01968	0.16378	0.01832	Irregular	1.07	Cumple
8	28.00	0.02178	0.14546	0.02000	Irregular	1.09	Cumple
7	24.50	0.02351	0.12546	0.02127	Irregular	1.11	Cumple
6	21.00	0.02470	0.10419	0.02202	Irregular	1.12	Cumple
5	17.50	0.02496	0.08217	0.02199	Irregular	1.14	Cumple
4	14.00	0.02393	0.06018	0.02087	Irregular	1.15	Cumple
3	10.50	0.02132	0.03931	0.01841	Irregular	1.16	Cumple
2	7.00	0.01662	0.02090	0.01419	Irregular	1.17	Cumple
1	3.50	0.00799	0.00671	0.00671	Regular	No aplica	Cumple

Tabla 43. Caso 5 de irregularidad torsional en Y

Al igual que el Caso 4, el Caso Nº5 cumplen con los objetivos de disminución de derivas menores a 0.007 (tabla 41) y eliminación de irregularidad torsional en X e Y (tabla 42 y 43).

Finalmente, presentamos un cuadro comparativo de los 5 casos evaluados, los resultados de derivas se presentan en la tabla 44.

	Caso 1		Caso 2		Cas	so 3	Cas	o 4	Cas	so 5
Piso	Deriva X	Deriva Y								
Piso 12	0.00337	0.00248	0.00254	0.00373	0.00326	0.00389	0.00262	0.00380	0.00320	0.00387
Piso 11	0.00372	0.00270	0.00281	0.00413	0.00353	0.00432	0.00287	0.00421	0.00349	0.00430
Piso 10	0.00409	0.00306	0.00314	0.00458	0.00385	0.00478	0.00317	0.00466	0.00383	0.00478
Piso 9	0.00442	0.00341	0.00343	0.00503	0.00414	0.00522	0.00339	0.00510	0.00413	0.00523
Piso 8	0.00474	0.00376	0.00372	0.00549	0.00439	0.00569	0.00365	0.00556	0.00436	0.00572
Piso 7	0.00491	0.00407	0.00392	0.00584	0.00455	0.00603	0.00384	0.00590	0.00453	0.00608
Piso 6	0.00496	0.00424	0.00396	0.00605	0.00454	0.00623	0.00391	0.00611	0.00457	0.00629
Piso 5	0.00486	0.00434	0.00391	0.00604	0.00437	0.00622	0.00380	0.00609	0.00444	0.00628
Piso 4	0.00452	0.00421	0.00367	0.00573	0.00387	0.00589	0.00353	0.00577	0.00390	0.00596
Piso 3	0.00372	0.00379	0.00311	0.00505	0.00326	0.00519	0.00305	0.00508	0.00327	0.00526
Piso 2	0.00298	0.00293	0.00236	0.00389	0.00265	0.00400	0.00221	0.00391	0.00274	0.00405
Piso 1	0.00166	0.00139	0.00133	0.00184	0.00143	0.00189	0.00124	0.00184	0.00150	0.00192

Tabla 44. Resumen derivas por cada caso evaluado

Figura 73. Comparativo Grafico – Casos Eje X

Figura 74. Comparativo Grafico – Casos Eje Y

Adicionalmente, se presenta comparativo de los resultados de irregularidad torsional en planta de los 5 casos, los resultados se muestran en la tabla 45 y 46.

Para X:

		Caso 1		Caso 2				Caso 3			Caso 4		Caso 5		
Piso	Cond. 1	Cond. 2	Torsional C.II>1.2												
12	Irregular	1.516	Si	Regular	No aplica	No	Irregular	1.322	Si	Regular	No aplica	No	Irregular	1.181	No
11	Irregular	1.505	Si	Regular	No aplica	No	Irregular	1.293	Si	Regular	No aplica	No	Irregular	1.164	No
10	Irregular	1.463	Si	Irregular	1.206	Si	Irregular	1.265	Si	Regular	No aplica	No	Irregular	1.144	No
9	Irregular	1.425	Si	Irregular	1.199	Si	Irregular	1.241	Si	Irregular	1.041	No	Irregular	1.127	No
8	Irregular	1.396	Si	Irregular	1.200	Si	Irregular	1.219	Si	Irregular	1.024	No	Irregular	1.123	No
7	Irregular	1.386	Si	Irregular	1.202	Si	Irregular	1.198	Si	Irregular	1.007	No	Irregular	1.105	No
6	Irregular	1.371	Si	Irregular	1.221	Si	Irregular	1.186	No	Irregular	1.017	No	Irregular	1.074	No
5	Irregular	1.358	Si	Irregular	1.223	Si	Irregular	1.053	No	Irregular	1.042	No	Irregular	0.924	No
4	Irregular	1.349	Si	Irregular	1.220	Si	Irregular	1.079	No	Irregular	1.061	No	Irregular	1.006	No
3	Irregular	1.409	Si	Irregular	1.256	Si	Irregular	1.218	Si	Regular	No aplica	No	Irregular	1.137	No
2	Irregular	1.310	Si	Regular	No aplica	No									
1	Regular	No aplica	No												

Tabla 45. Comparativo de torsión en X

Para Y:

		Caso 1			Caso 2			Caso 3			Caso 4			Caso 5	
Piso	Cond. 1	Cond. 2	Torsional C.II>1.2												
12	Irregular	1.450	Si	Irregular	1.033	No	Irregular	1.042	No	Irregular	1.002	No	Irregular	1.007	No
11	Irregular	1.458	Si	Irregular	1.038	No	Irregular	1.063	No	Irregular	1.031	No	Irregular	1.031	No
10	Irregular	1.416	Si	Irregular	1.072	No	Irregular	1.082	No	Irregular	1.063	No	Irregular	1.056	No
9	Irregular	1.380	Si	Irregular	1.097	No	Irregular	1.095	No	Irregular	1.087	No	Irregular	1.074	No
8	Irregular	1.354	Si	Irregular	1.115	No	Irregular	1.104	No	Irregular	1.104	No	Irregular	1.089	No
7	Irregular	1.330	Si	Irregular	1.132	No	Irregular	1.117	No	Irregular	1.120	No	Irregular	1.105	No
6	Irregular	1.325	Si	Irregular	1.146	No	Irregular	1.129	No	Irregular	1.134	No	Irregular	1.121	No
5	Irregular	1.292	Si	Irregular	1.157	No	Irregular	1.140	No	Irregular	1.145	No	Irregular	1.135	No
4	Irregular	1.258	Si	Irregular	1.169	No	Irregular	1.149	No	Irregular	1.156	No	Irregular	1.147	No
3	Irregular	1.233	Si	Irregular	1.179	No	Irregular	1.159	No	Irregular	1.168	No	Irregular	1.158	No
2	Irregular	1.235	Si	Irregular	1.191	No	Irregular	1.172	No	Irregular	1.181	No	Irregular	1.172	No
1	Regular	No aplica	No												

Tabla 46. Comparativo de torsión en Y

De los dos comparativos anteriores (comparativo de derivas y comparativo de irregularidad torsional), se observó que los 5 casos presentan derivas menores a lo estipulado por la norma E.030. Sin embargo, solo los casos Nº 4 y Nº5 (tablas 45 y 46) eliminaron los problemas de irregularidad en planta en ambos ejes.

De los resultados obtenidos concluimos que la solución a la irregularidad torsional depende de la correcta ubicación de dispositivos en la planta del edificio, estos no deben estar concentrados en una determinada zona, aun cuando se presentan los mayores desplazamientos, ya que pueden llegar a incrementar la irregularidad torsional (como en el caso 1).

Por lo mencionado anteriormente, es necesario realizar varias iteraciones que permitan ver el comportamiento dinámico de la estructura con disipadores de energía fluido viscosos.

5.5 Incorporación del disipador a la edificación

De los resultados obtenidos, se eligió el Caso Nº 5, debido a que presenta menor cantidad de dispositivos respecto al Caso Nº 4 y valores menores de irregularidad torsional. Las figuras 75,76 y 77 muestran las vistas de la incorporación de dispositivos con mayor detalle. (caso elegido Nº 5).

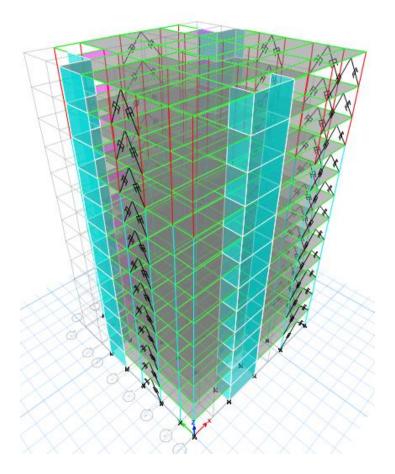


Figura 75. Viste general de la ubicación de los disipadores

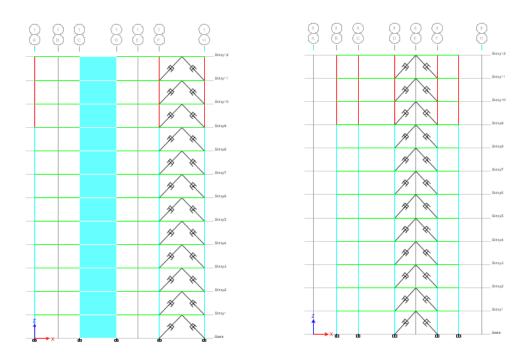


Figura 76. Ubicación de disipadores en dirección X, Eje 1 (derecha) y 8 (izquierda)

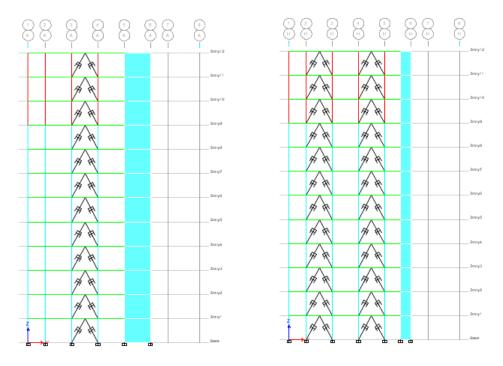


Figura 77. Ubicación de disipadores en dirección Y, Eje A (derecha) y H (izquierda)

Se incorporaron en su totalidad 60 disipadores fluido viscosos tipo Chevron, 24 dispositivos en el eje X y 36 dispositivos en el eje Y. Asimismo, la tabla 47 muestra las distorsiones obtenidas del edificio con disipadores fluido-viscosos.

Piso	Altura (m)	Deriva X-X	Control E.030<0.007	Deriva Y-Y	Control E.030<0.007
12	3.5	0.00320	Cumple	0.00387	Cumple
11	3.5	0.00349	Cumple	0.00430	Cumple
10	3.5	0.00383	Cumple	0.00478	Cumple
9	3.5	0.00413	Cumple	0.00523	Cumple
8	3.5	0.00436	Cumple	0.00572	Cumple
7	3.5	0.00453	Cumple	0.00608	Cumple
6	3.5	0.00457	Cumple	0.00629	Cumple
5	3.5	0.00444	Cumple	0.00628	Cumple
4	3.5	0.00390	Cumple	0.00596	Cumple
3	3.5	0.00327	Cumple	0.00526	Cumple
2	3.5	0.00274	Cumple	0.00405	Cumple
1	3.5	0.00150	Cumple	0.00192	Cumple

Tabla 47. Derivas de la estructura con disipadores – Análisis Tiempo Historia

De los resultados obtenidos, se concluye que del análisis tiempo historia, las derivas máximas del edificio sin disipadores son de 0.0092 en X y 0.0079 en el Y (tabla 18 y 19) y las derivas máximas del edificio con disipadores de 0.0046 en X y 0.0063 en Y (tabla 47).

5.6 Evaluación de resultados

5.6.1 Comportamiento Histerético

Se presenta las gráficas de Desplazamiento vs Fuerza de los disipadores. Por la gran cantidad de disipadores, se escoge una de las vistas donde se incorporaron los disipadores.

La figura 78 muestra la selección de la vista (Eje H, Dirección X), asimismo se presentan las curvas histeréticas de cada dispositivo.

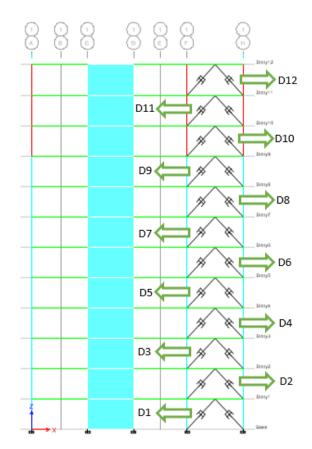


Figura 78. Vista pórtico con disipadores

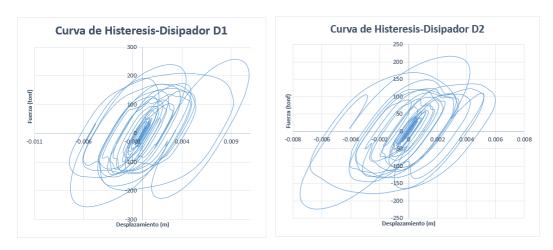


Figura 79. Curva histerética de disipadores 1 y 2

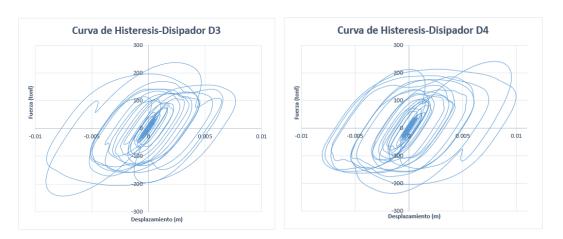


Figura 80. Curva histerética de disipadores 3 y 4

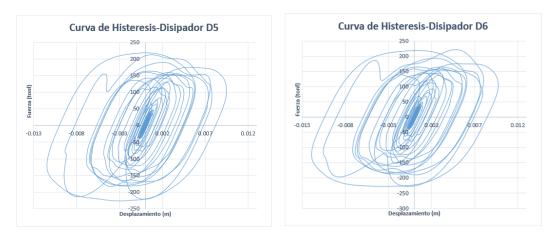


Figura 81. Curva histerética de disipadores 5 y 6

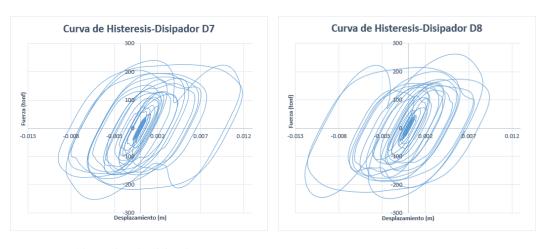


Figura 82. Curva histerética de disipadores 7 y 8

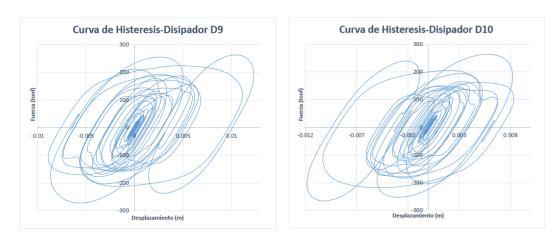


Figura 83. Curva histerética de disipadores 9 y 10

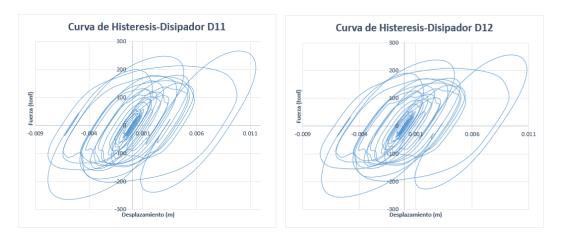


Figura 84. Curva histerética de disipadores 11 y 12

De los gráficos de histéresis presentados se concluye que los disipadores de energía están trabajando de una manera efectiva, ya que presentan una forma elíptica.

Como se indica en la figura 17 del capítulo 3, para que los disipadores trabajen de una forma correcta, las gráficas de fuerza vs desplazamientos deben tener una tendencia elíptica, con ello aseguramos que cada dispositivo aporte significativamente en el incremento de amortiguamiento a la estructura y la disipación de energía sísmica.

Asimismo, es importante que exista un balance de fuerzas en cada dispositivo incorporado al edificio, es decir los valores máximos de fuerza deben de ser similares, ello para prever que ningún disipador tenga un mayor esfuerzo que otro y así evitar los sobreesfuerzos de algún dispositivo. A continuación, se presenta en la tabla 48, las fuerzas máximas de cada disipador de la vista elegida (figura 78), los resultados presentan valores similares.

FUER	ZAS DE CADA	DISIPADOR (TON)
D1	255.19	D7	241.19
D2	216.30	D8	261.31
D3	235.74	D9	262.05
D4	240.24	D10	263.65
D5	218.13	D11	265.87
D6	221.24	D12	255.19

Tabla 48. Fuerza máxima de cada disipador

5.6.2 Balance de energía

Este balance mide el porcentaje de energía del sismo de Lima 1970 que ha llegado absorber los disipadores de energía, la tabla 49 presenta la energía de entrada (Sismo ingresado), la energía del sistema estructural (amortiguamiento global) y la energía del sistema de amortiguamiento (disipadores fluido-viscosos).

	Sismo ingresado (tonf-m)	Energía cinética(tonf-m)	Energía potencial (tonf-m)	Amortiguamiento global (tonf-m)	Disipadores fluido-viscosos (tonf-m)
Caso elegido - Tiempo historia	3225.3359	328.1859	309.4056	1353.2723	1871.3326

Tabla 49. Resultados de balance de energía

Se realiza el cálculo de porcentaje de absorción de energía de los dispositivos de la siguiente manera.

% disipación de energía =
$$\frac{Damper\ Links}{Energy\ Input}$$
 = $\frac{1871.33}{3225.36}x100$ = 58.02%

Se concluye que el edificio con disipadores de energía fluido viscosos llega a absorber la energía sísmica en un 58%. Es decir, solo el sistema estructural estaría absorbiendo solo el valor de 42% de la energía sísmica, permitiendo a que los elementos estructurales no tengan un esfuerzo mayor. Se presenta un gráfico (figura 85) donde podemos observar la participación de cada uno de los elementos.

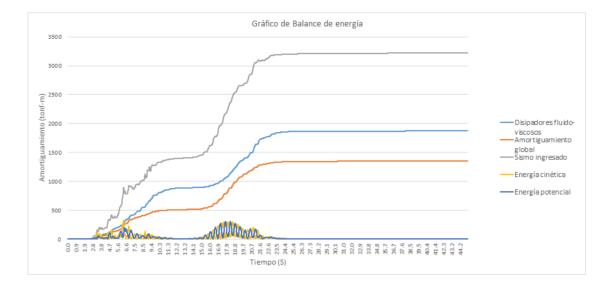


Figura 85. Gráfico de balance de energía

5.6.3 Resultados comparativos

Se presentan los resultados comparativos del edificio con y sin disipadores de energía fluido viscosos, teniendo como sismo de diseño Lima 1970.

Separación entre edificios

En la norma E030-2016, inciso 5.3, se menciona que cada edificación debe presentar una separación mínima respecto al límite de propiedad del vecino. Para ello, se toma como dato los desplazamientos máximos obtenidos en el análisis y son comparados con el límite máximo de separación permitido. Este desplazamiento máximo debe ser menor a 0.006 veces la altura total del edificio desde el nivel de terreno natural.

	Edificio sin Disipadores		Edificio con	Disipadores
Descripción	EN X	EN Y	EN X	EN Y
Desplazamiento Maximo	0.327	0.261	0.154	0.209
Limite Maximo (0.006 x hmax)	0.252	0.252	0.252	0.252
Verificación	Riesgo de contacto	Riesgo de contacto	Sin contacto	Sin contacto

Tabla 50. Separación mínima de separación de edificios

Derivas de entrepiso

La tabla 51 muestra la reducción de las distorsiones de entre piso del edificio con y sin disipadores de energía. En X, las derivas se reducen en un 52.51% en promedio, mientras que en Y en 19.97%.

	Derivas de en	trepiso eje X-X		П		Derivas de en	trepiso eje Y-Y	
Piso	Sin disipador	Con disipador	% Reduccion	П	Piso	Sin disipador	Con disipador	% Reducci
12	0.00897	0.00320	64.26%	П	12	0.00471	0.00387	17.79%
11	0.00920	0.00349	62.01%	П	11	0.00524	0.00430	17.93%
10	0.00840	0.00383	54.38%	П	10	0.00588	0.00478	18.81%
9	0.00877	0.00413	52.86%	П	9	0.00649	0.00523	19.41%
8	0.00907	0.00436	52.00%	П	8	0.00716	0.00572	20.21%
7	0.00854	0.00453	46.91%	П	7	0.00762	0.00608	20.24%
6	0.00784	0.00457	41.71%	П	6	0.00786	0.00629	19.99%
5	0.00839	0.00444	47.12%	П	5	0.00784	0.00628	19.90%
4	0.00831	0.00390	53.10%	П	4	0.00748	0.00596	20.31%
3	0.00745	0.00327	56.11%	П	3	0.00666	0.00526	21.00%
2	0.00574	0.00274	52.28%	П	2	0.00518	0.00405	21.71%
1	0.00285	0.00150	47.43%	IJ	1	0.00247	0.00192	22.39%
		Promedio	52.51%	Ι΄			Promedio	19.97%
			<u> </u>	-				

Tabla 51. Porcentaje de reducción derivas de entrepiso

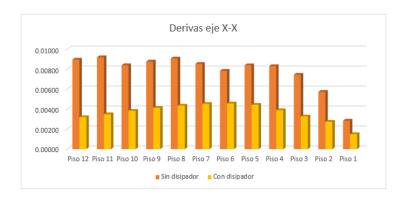


Figura 86. Comparación derivas eje X

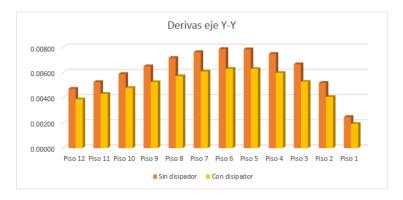


Figura 87. Comparación derivas eje Y

Irregularidad en Planta

Las siguientes tablas muestran la eliminación de irregularidad torsional en planta del edificio con y sin disipadores de energía. En X, el porcentaje de reducción fue de un valor promedio de 10.66%, mientras que en Y de 26.02%.

		Ir	regularidad t	orsional en X -	Tiempo Histo	ria - Lima 197	0	
		5	Sin disipadore	es	Con disig	oadores - Caso		
Numero de pisos	Altura	Condicion 1	Condicion 2	Torsional C.II>1.2	Condicion 1	Condicion 2	Torsional C.II>1.2	Porcentaje de reducción
12	42.00	Irregular	1.22	Si	Irregular	1.18	Cumple	3.08%
11	38.50	Irregular	1.26	Si	Irregular	1.16	Cumple	7.64%
10	35.00	Irregular	1.44	Si	Irregular	1.14	Cumple	20.32%
9	31.50	Irregular	1.38	Si	Irregular	1.13	Cumple	18.35%
8	28.00	Irregular	1.18	No	Irregular	1.12	Cumple	5.23%
7	24.50	Irregular	1.18	No	Irregular	1.11	Cumple	6.35%
6	21.00	Irregular	1.18	No	Irregular	1.07	Cumple	8.98%
5	17.50	Irregular	1.17	No	Irregular	0.92	Cumple	21.08%
4	14.00	Irregular	1.16	No	Irregular	1.01	Cumple	13.56%
3	10.50	Irregular	1.16	No	Irregular	1.14	Cumple	2.02%
2	7.00	Irregular	1.16	No	Regular	No aplica	Cumple	No aplica
1	3.50	Irregular	1.14	No	Regular	No aplica	Cumple	No aplica

Tabla 52. Comparativo de irregularidad torsional en X

		Irre	Irregularidad torsional en Y - Tiempo Historia - Lima 1970								
		Si	n disipadore	S	Con disip	adores - Cas	o elegido				
Numero de pisos	Altura	Condicion 1	Condicion 2	Torsional C.II>1.2	Condicion 1	Condicion 2	Torsional C.II>1.2	Porcentaje de reducción			
12	42.00	irregular	1.49	Si	Irregular	1.01	No	32.41%			
11	38.50	irregular	1.52	Si	Irregular	1.03	No	32.36%			
10	35.00	irregular	1.53	Si	Irregular	1.06	No	31.04%			
9	31.50	irregular	1.52	Si	Irregular	1.07	No	29.19%			
8	28.00	irregular	1.49	Si	Irregular	1.09	No	27.12%			
7	24.50	irregular	1.49	Si	Irregular	1.11	No	25.65%			
6	21.00	irregular	1.48	Si	Irregular	1.12	No	24.19%			
5	17.50	irregular	1.47	Si	Irregular	1.14	No	22.86%			
4	14.00	irregular	1.46	Si	Irregular	1.15	No	21.65%			
3	10.50	irregular	1.46	Si	Irregular	1.16	No	20.45%			
2	7.00	irregular	1.45	Si	Irregular	1.17	No	19.36%			
1	3.50	irregular	1.47	Si	Regular	No aplica	Si	No aplica			

Tabla 53. Comparativo de irregularidad torsional en Y

Desplazamientos en el centro de masa

La siguiente tabla muestra la reducción de desplazamientos del centro de masa del edificio con y sin disipadores de energía. En X, la reducción fue de 50.84% en promedio, mientras que en Y en 20.83%.

	Desplazamiento	en el CM eje X-	-X	Desplazamiento en el CM eje Y-Y				
Piso	Sin disipador	Con disipador	% Reduccion	П	Piso	Sin disipador	Con disipador	% Reduccion
12	0.327354	0.153883	52.99%	П	12	0.261117	0.209098	19.92%
11	0.295972	0.142668	51.80%	П	11	0.244642	0.195554	20.07%
10	0.263783	0.13044	50.55%	П	10	0.226292	0.180495	20.24%
9	0.234373	0.117022	50.07%	П	9	0.205704	0.163779	20.38%
8	0.203686	0.102556	49.65%	П	8	0.182977	0.145463	20.50%
7	0.171925	0.08731	49.22%	П	7	0.157909	0.12546	20.55%
6	0.142052	0.071451	49.70%	П	6	0.131248	0.104194	20.61%
5	0.11461	0.055455	51.61%	П	5	0.103721	0.082171	20.78%
4	0.085228	0.039919	53.16%	П	4	0.076265	0.06018	21.09%
3	0.056149	0.026281	53.19%	П	3	0.050077	0.039312	21.50%
2	0.030069	0.014834	50.67%	П	2	0.026771	0.0209	21.93%
1	0.009982	0.005248	47.43%	П	1	0.008648	0.006712	22.39%
		Promedio	50.84%	Ι΄			Promedio	20.83%

Tabla 54. Porcentaje de reducción desplazamiento en el CM

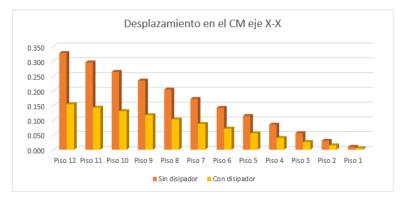


Figura 88. Comparación desplazamiento en CM eje X

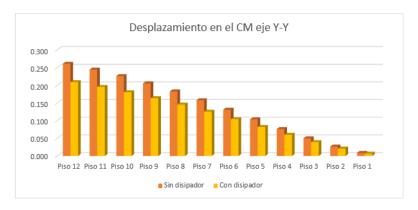


Figura 89. Comparación desplazamiento en CM eje Y

Aceleraciones máximas en los centros de masa

Las aceleraciones máximas llegaron a una reducción promedio de 49.34% en X y 15.85% en Y, como muestra la tabla 55.

Ace	leraciones max	imas en CM eje	≥ X-X
Piso	Sin disipador	Con disipador	% Reduccion
12	18.3506	9.2600	49.54%
11	13.9036	6.5832	52.65%
10	9.4420	4.5541	51.77%
9	7.9643	3.6434	54.25%
8	10.9444	2.9792	72.78%
7	12.5556	4.6230	63.18%
6	12.8346	5.6780	55.76%
5	12.1933	6.2537	48.71%
4	12.0017	6.2859	47.62%
3	10.8239	5.6878	47.45%
2	8.3427	5.5929	32.96%
1	5.9711	5.0549	15.34%
	_	Promedio	49 34%

Ace	leraciones max	cimas en CM eje	e Y-Y	
Piso	Sin disipador	Con disipador	% Reduccion	
12	16.0320	13.2760	17.19%	
11	12.1740	9.7773	19.69%	
10	10.3058	6.7251	34.74%	
9	9.3382	7.0714	24.27%	
8	8.4200	6.9879	17.01%	
7	9.9968	8.1605	18.37%	
6	11.8264	9.8925	16.35%	
5	12.3389	10.5143	14.79%	
4	11.4598	10.0072	12.68%	
3	9.3287	8.3584	10.40%	
2	6.4410	6.2776	2.54%	
1	5.9166	5.7862	2.20%	
		Promedio	15.85%	

Tabla 55. Porcentaje de reducción aceleraciones en CM

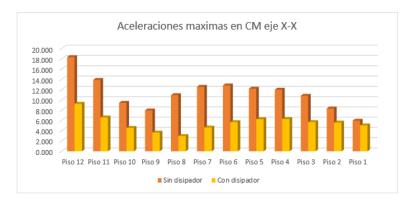


Figura 90. Comparación aceleraciones en CM eje X

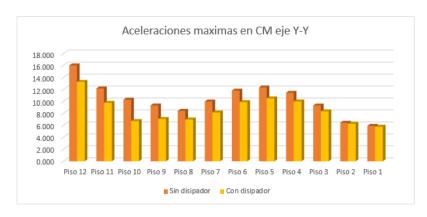


Figura 91. Comparación aceleraciones en CM eje Y

Fuerzas Internas en placas y columnas

Se evalúa la reducción de las fuerzas internas en las placas y columnas donde se han incorporado los disipadores. Se selecciona la placa P1 ubicada en la intersección de los ejes 6-F, y la columna C3 ubicada en la intersección de los ejes 1-H (ver figura 92).

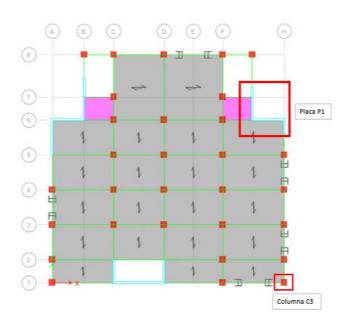


Figura 92. Vista en planta de los elementos seleccionados (Placa P1 y Columna C3)

✓ Placa P1: Las fuerzas internas de la placa P1 se redujeron en un promedio de 50.79% en fuerza axial, 39.15% en fuerza cortante y 23.77% en su momento flector.

	Fuerza Axial en la placa P1			Fuerza cortante en la placa P1			Momento en la placa P1		
Pisos	Sin disipadores	Con disipadores	Porcentaje	Sin disipadores	Con disipadores	Porcentaje	Sin disipadores	Con disipadores	Porcentaje
Piso 12	83.1077	26.4528	68.17%	242.6211	206.3189	14.96%	1165.077	875.3892	24.86%
Piso 11	191.0136	56.7784	70.28%	273.643	97.8188	64.25%	1551.9837	1216.1323	21.64%
Piso 10	305.5181	97.8275	67.98%	421.3374	203.0704	51.80%	1847.5305	1621.016	12.26%
Piso 9	430.0315	153.4909	64.31%	456.8813	246.1693	46.12%	2306.7461	2013.4828	12.71%
Piso 8	554.243	222.3931	59.87%	563.7309	265.6277	52.88%	2577.2525	2166.1968	15.95%
Piso 7	671.8394	301.8854	55.07%	576.5801	301.1841	47.76%	2401.1532	1968.3247	18.03%
Piso 6	777.7632	391.5455	49.66%	668.6024	374.2019	44.03%	2058.0873	1435.1155	30.27%
Piso 5	868.3055	487.6822	43.84%	775.6664	496.5846	35.98%	2265.173	1460.2071	35.54%
Piso 4	1034.4464	585.2694	43.42%	910.426	688.3818	24.39%	3817.8433	2451.5748	35.79%
Piso 3	1198.0224	680.1713	43.23%	1131.2284	860.1027	23.97%	5939.3577	4041.461	31.95%
Piso 2	1339.75	763.3691	43.02%	1322.7657	996.9779	24.63%	8659.6493	6128.1026	29.23%
Piso 1	1178.9991	1185.9038	0.59%	4390.3964	2676.8076	39.03%	52003.7567	43163.9275	17.00%
Total			50.79%			39.15%			23.77%

Tabla 56. Porcentaje de reducción fuerzas internas placa P1

Figura 93. Comparación fuerza axial P1

Figura 94. Comparación fuerza cortante P1

Figura 95. Comparación momento flector P1

Adicionalmente, se presenta un comparativo de la placa P1 mediante diagrama de fuerza axial y momento flector con y sin disipadores.

1. La siguiente Figura, muestra el detalle de reforzamiento de la placa P1, piso 12. Se consideran acero de 5/8" de diámetro espaciado cada 20 cm.

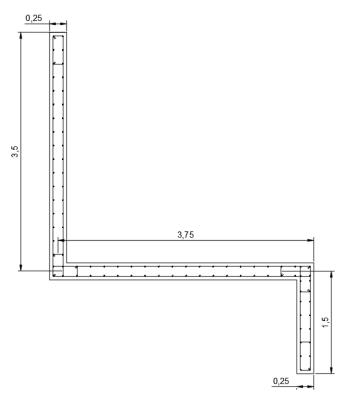


Figura 96. Detalle de refuerzo de la placa P1

2. Se presenta la carga muerta, carga viva y carga sísmica obtenidas del análisis tiempo historia con y sin disipadores.

		Fuerzas en la Placa P1							
	×	У	Z	Мx	My				
	tn	tn	tn	tn-m	tn-m				
D	2.52	2.52	-31.82	8.35	-2.20				
L	1.79	1.79	-4.53	3.34	3.82				
Sx TH -sin disipadores	242.62	0.00	83.11	1165.08	0.00				
Sy TH -sin disipadores	0.00	215.46	83.11	0.00	1181.04				
Sx TH -Con disipadores	207.04	0.00	30.87	883.46	0.00				
Sy TH -Con disipadores	0.00	204.21	-39.41	0.00	853.05				

Tabla 57. Cargas en la placa P1 con y sin disipadores

- 3. Se muestran las combinaciones de cargas de la norma E060 que serán empleadas para obtener el diagrama de interacción.
 - Combinación de carga 1: 1.4CM+1.7CV
 - Combinación de carga 2: 1.25(CM+CV)
 - Combinación de carga 3: 0.9CM+1.25CV
 - Combinación de carga 4: 1.25(CM+CV)+SX
 - Combinación de carga 5: 1.25(CM+CV)-SX
 - Combinación de carga 6: 1.25(CM+CV)+SY
 - Combinación de carga 7: 1.25(CM+CV)-SY
 - Combinación de carga 8: 0.9CM+Sx
 - Combinación de carga 9: 0.9CM-Sx
 - Combinación de carga 10: 0.9CM+Sy
 - Combinación de carga 11: 0.9CM-Sy
- 4. Se muestran los resultados de las combinaciones de carga en la siguiente tabla.

		Fx	Fy	Мx	My	Fz
		tn	tn	tn-m	tn-m	tn
	Combinacion 1	6.58	6.58	17.36	3.42	52.25
	Combinacion 2	5.39	5.39	14.61	2.03	45.44
Si	Combinacion 3	4.51	4.51	11.68	2.80	34.30
1 00	Combinacion 4	248.01	5.39	1179.68	2.03	37.67
Tiempo historia disipadores	Combinacion 5	-237.23	5.39	1150.47	2.03	-128.55
age age	Combinacion 6	5.39	220.86	14.61	1183.07	37.67
드흥	Combinacion 7	5.39	-210.07	14.61	1179.01	-128.55
출흥	Combinacion 8	244.89	2.27	1172.59	-1.98	54.47
. <u>ē</u>	Combinacion 9	-240.35	2.27	1157.56	1.98	-111.74
_	Combinacion 10	2.27	217.73	7.51	1179.06	54.47
	Combinacion 11	2.27	-213.20	7.51	1183.02	-111.74
	Combinacion 1	6.58	6.58	17.36	3.42	52.25
	Combinacion 2	5.39	5.39	14.61	2.03	45.44
8	Combinacion 3	4.51	4.51	11.68	2.80	34.30
1 (0	Combinacion 4	212.44	5.39	898.06	2.03	-14.57
g g	Combinacion 5	-201.65	5.39	868.85	2.03	-76.31
융합	Combinacion 6	5.39	209.60	14.61	855.08	-84.85
oo historia disipadore	Combinacion 7	5.39	-198.81	14.61	851.02	-6.03
Tiempo historia disipadore	Combinacion 8	209.31	2.27	890.97	-1.98	2.23
Ē.	Combinacion 9	-204.78	2.27	875.94	1.98	59.51
_	Combinacion 10	2.27	206.47	7.51	851.07	-68.04
	Combinacion 11	2.27	-201.94	7.51	855.03	10.77

Tabla 58. Resultados de combinaciones de carga-Placa P1

5. Finalmente, halladas todas las combinaciones de carga, se presentan los diagramas de interacción de la placa P1 con y sin disipadores.

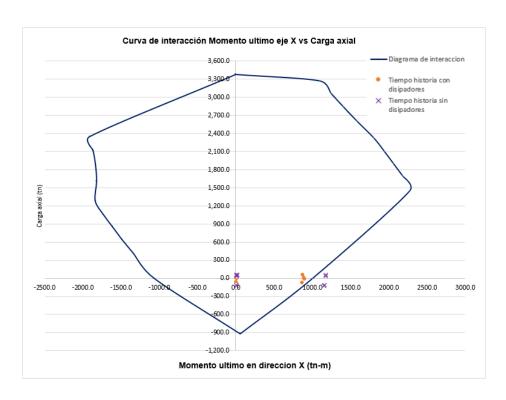


Figura 97. Diagrama de Interacción de placa P1-Eje X

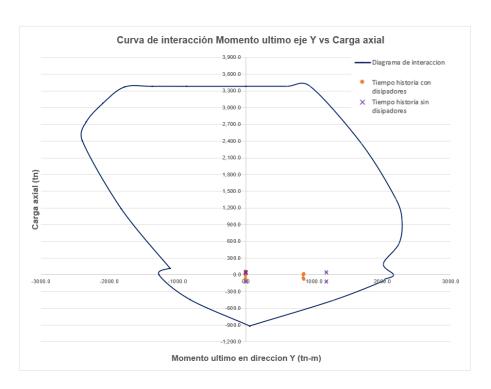


Figura 98. Diagrama de Interacción de placa P1-Eje Y

Como muestran las anteriores figuras, los puntos en el diagrama de interacción que están más alejados del eje central, corresponden a los resultados de las combinaciones

de carga de la placa P1 sin disipadores de energía y los puntos más cercanos corresponden a la placa con disipadores.

Asimismo, se puede observar, que en la figura 97, hay puntos que están fuera del límite de diagrama de interacción, por lo que, si no se planteara el reforzamiento de la estructura con disipadores, se recomendaría modificar la dimensión o la cuantía de acero planteada inicialmente para cumplir con los parámetros de la norma E.060.

 Finalmente, se verifica de la placa P1, la cortante ultima vs la cortante resistente Se emplea la siguiente formula de la norma E0.60 (fórmula 11.10.4) para muros de corte.

$$\emptyset Vn = \emptyset \times 0.83 \times \sqrt{f'c} \times Acw \tag{5.6-1}$$

Donde:

Φ= Factor de reducción 0.85

f'c=Resistencia a la compresión del concreto 280kg/cm2

Acw= área de corte de la sección transversal del muro (21250 cm2)

Se obtiene la cortante en X:

$$\emptyset Vn = 0.85 \times 0.83 \times 21250 \times \sqrt{280} = 258240.35 kg = 258.24 ton$$

$$\emptyset Vn = 258.24 ton$$

De la tabla 58, se determina la cortante ultima de la placa P1 (mayor valor de combinación de carga) con disipadores en X e Y, estos valores siempre deben ser menores a la cortante resistente de la norma E060.

Chequeo de la fuerza cortante con disipadores

$$Vux = 212.44 \text{ tn}$$
 $< \Phi Vc$ Cumple

Vuy=
$$209.60 \text{ tn}$$
 < ΦVc Cumple

De los resultados, obtenidos se concluye que los cortantes cumplen con lo establecido en la norma E060.

✓ <u>Columna C3:</u> Las fuerzas internas de la columna se redujeron en un promedio de 27.62% en fuerza axial, 36.51% en fuerza cortante y 30.43% en su momento flector.

	Fuerza /	rza Axial en la columna C3 Fuerza cortante en la columna C3 Momento en la columna C3			Fuerza cortante en la columna C3			3	
Pisos	Sin disipadores	Con disipadores	Porcentaje	Sin disipadores	Con disipadores	Porcentaje	Sin disipadores	Con disipadores	Porcentaje
Piso 12	19.4604	19.1899	1.39%	13.2743	13.113	1.22%	17.2034	16.6779	3.05%
Piso 11	44.2216	43.352	1.97%	15.4645	9.9111	35.91%	20.301	19.3471	4.70%
Piso 10	76.4147	62.1724	18.64%	21.0688	10.1308	51.92%	26.4761	21.7863	17.71%
Piso 9	132.9938	87.9395	33.88%	34.7	18.6254	46.32%	40.7891	33.0591	18.95%
Piso 8	208.3716	133.0258	36.16%	47.3817	27.4105	42.15%	51.8116	27.6336	46.67%
Piso 7	329.5694	212.3976	35.55%	56.0014	33.0106	41.05%	72.8688	39.6169	45.63%
Piso 6	472.7201	307.4679	34.96%	63.777	39.3811	38.25%	94.4016	54.7519	42.00%
Piso 5	632.6438	415.3436	34.35%	69.3112	44.2473	36.16%	114.9664	70.6136	38.58%
Piso 4	802.9153	530.7611	33.90%	72.5306	46.3854	36.05%	136.0701	85.0846	37.47%
Piso 3	973.7716	646.2454	33.63%	71.5068	45.7083	36.08%	155.1535	97.6386	37.07%
Piso 2	1130.5002	751.8316	33.50%	66.896	43.3097	35.26%	179.607	114.9983	35.97%
Piso 1	1245.8469	828.8708	33.47%	64.2158	39.9685	37.76%	250.6387	157.0251	37.35%
Total			27.62%			36.51%			30.43%

Tabla 59. Porcentaje de reducción fuerzas internas Columna C3

Figura 99. Comparación fuerza axial C3

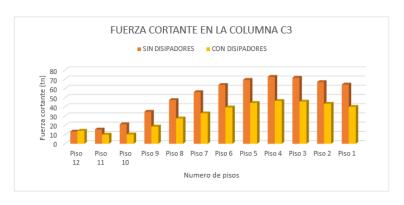


Figura 100. Comparación fuerza cortante C3

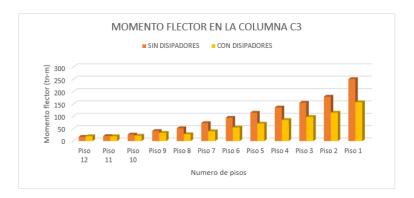


Figura 101. Comparación momento flector C3

Adicionalmente, se presenta un comparativo de la columna C3, mediante diagrama de fuerza axial y momento flector con y sin disipadores.

1. Datos de refuerzos considerados en la Columna C3, Piso 12: La dimensión de la columna es de 70 x 70 cm, se considera 12 varillas de 1".

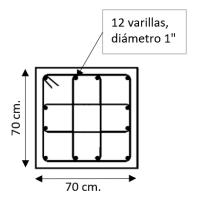


Figura 102. Detalle de refuerzo de la columna C3

2. A continuación, se presenta la carga muerta, carga viva y carga sísmica obtenidas del análisis tiempo historia con y sin disipadores.

	Fuerzas en la columna C3					
	х	у	z	Mx	Му	
	tn	tn	tn	tn-m	tn-m	
CM	1.40	-0.61	7.58	-0.81	1.75	
CV	0.53	-0.51	1.40	-0.69	0.90	
Sx Espectro	4.75	1.13	1.77	1.69	4.67	
Sy Espectro	0.36	-0.61	0.32	-2.63	0.11	
Sx TH -sin disipadores	31.92	0.00	19.46	0.00	62.37	
Sy TH -sin disipadores	0.00	13.27	19.46	22.05	0.00	
Sx TH -Con disipadores	11.78	0.00	19.89	0.00	17.32	
Sy TH -Con disipadores	0.00	14.11	19.89	15.89	0.00	

Tabla 60. Cargas en la Columna C3 con y sin disipadores

3. Se emplearon las mismas combinaciones de cargas para la placa P1. Los resultados de la columna C3 se muestran en la siguiente tabla.

		Fx	Fy	Mx	My	Fz
		tn	tn	tn-m	tn-m	tn
(0	Combinacion 1	2.85	-1.72	2.30	3.98	12.99
o e	Combinacion 2	2.41	-1.40	1.87	3.32	11.23
pad	Combinacion 3	1.92	-1.18	1.59	2.70	8.57
disipadores	Combinacion 4	34.32	-1.40	1.87	65.68	30.69
. <u>is</u>	Combinacion 5	-29.51	-1.40	1.87	59.05	-8.23
<u>0</u>	Combinacion 6	2.41	11.88	20.18	3.32	30.69
Tiempo historia -	Combinacion 7	2.41	-14.67	23.92	3.32	-8.23
ΞĚ	Combinacion 8	33.18	-0.55	0.73	63.94	26.28
ă E	Combinacion 9	-30.65	-0.55	0.73	60.79	-12.64
e e	Combinacion 10	1.26	12.72	21.33	1.58	26.28
	Combinacion 11	1.26	-13.82	22.78	1.58	-12.64
w	Combinacion 1	2.85	-1.72	2.30	3.98	12.99
o e	Combinacion 2	2.41	-1.40	1.87	3.32	11.23
pad	Combinacion 3	1.92	-1.18	1.59	2.70	8.57
<u>disi</u>	Combinacion 4	14.18	-1.40	1.87	20.64	31.12
LOS CO	Combinacion 5	-9.37	-1.40	1.87	14.01	-8.66
0	Combinacion 6	2.41	12.71	14.02	3.32	31.12
Tiempo historia - con disipadores	Combinacion 7	2.41	-15.51	17.76	3.32	-8.66
his	Combinacion 8	13.04	-0.55	0.73	18.90	26.71
D D	Combinacion 9	-10.51	-0.55	0.73	15.75	13.07
ie i	Combinacion 10	1.26	13.56	15.16	1.58	26.71
	Combinacion 11	1.26	-14.66	16.62	1.58	-13.07

Tabla 61. Combinaciones de carga de la Columna C3

4. Finalmente, halladas todas las combinaciones de carga, se presentan los diagramas de interacción de la columna C3 con y sin disipadores.

Curva de interacción Momento ultimo eje X vs Carga axial 1000.0 Diagrama de interaccion 900.0 Tiempo historia con 800.0 Tiempo historia sin 700.0 disipadores 600.0 500.0 Carga axial (tn) 400.0 300.0 200.0 100.0 -125.0 -100.0 -75.0 -50.0 75.0 100.0 125.0 100.0

Momento ultimo direccion X (tn-m)

Figura 103. Diagrama de Interacción de Columna C3-Eje X

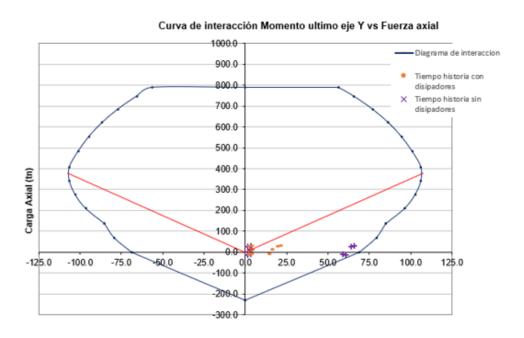


Figura 104. Diagrama de Interacción de Columna C3-Eje Y

5. Finalmente, se verifica de la columna C3 la cortante ultima vs la cortante resistente de la norma E0.60 para elementos sometidos a fuerzas cortantes y flexión. Se emplea la siguiente formula.

$$\emptyset Vc = \emptyset 0.53 \times \sqrt{f'c} \times bwxd \tag{5.6-2}$$

Donde:

Φ= Factor de reducción 0.85

f'c=Resistencia a la compresión del concreto 280kg/cm2

bw= ancho de la columna 70 cm

d= distancia desde la fibra extrema en compresión hasta el centroide del refuerzo longitudinal en tracción

$$\emptyset Vc = 0.85 \times 0.53 \times \sqrt{280} \times 70 \times 63$$
$$\emptyset Vc = 34.4 tn$$

De la tabla 62, se determina la cortante ultima de la columna C3 con disipadores en X e Y, este valor siempre debe ser menor a la cortante resistente de la norma E060.

Fuerza cortante con disipadores

Vux=
$$14.18 \text{ tn}$$
 < ΦVc Cumple

Vuy= 14.67 tn
$$< \Phi Vc$$
 Cumple

De los resultados, obtenidos se observa que los cortantes cumplen con lo establecido en la norma E060.

Masa Participativa

Como se muestra en la siguiente Figura, los periodos y la masa participativa de cada modo de vibración no han sido alterados al incluir los disipadores de energía a la estructura. Por lo tanto, se concluye que los dispositivos no aumentan rigidez a la estructura.

Modo	Periodo T(s)	Masa X-X (%)	Acum X-X	Masa Y-Y (%)	Acum Y-Y
1	1.33	67.1%	67.1%	0.6%	0.6%
2	1.14	0.1%	67.2%	67.4%	68.0%
3	0.87	2.5%	69.8%	4.9%	72.9%
4	0.34	11.2%	80.9%	4.2%	77.1%
5	0.33	5.3%	86.2%	8.3%	85.3%
- 6	0.23	0.4%	86.6%	1.5%	86.8%
7	0.17	0.9%	87.5%	4.3%	91.1%
8	0.15	5.2%	92.7%	0.6%	91.7%
9	0.11	0.1%	92.8%	0.4%	92.2%
10	0.10	0.3%	93.1%	2.5%	94.7%
11	0.09	2.6%	95.7%	0.2%	94.9%
12	0.07	0.3%	96.0%	0.5%	95.4%
13	0.07	0.0%	96.0%	1.1%	96.6%
14	0.07	1.3%	97.3%	0.1%	96.7%
15	0.06	0.0%	97.3%	0.0%	96.7%
16	0.06	0.0%	97.3%	0.0%	96.7%
17	0.06	0.0%	97.3%	0.0%	96.7%
18	0.06	0.1%	97.4%	0.0%	96.7%
19	0.06	0.1%	97.5%	0.0%	96.7%
20	0.06	0.1%	97.5%	0.0%	96.8%
21	0.05	0.0%	97.5%	0.0%	96.8%
22	0.05	0.0%	97.6%	0.0%	96.8%
23	0.05	0.0%	97.6%	0.8%	97.6%
24	0.05	0.0%	97.6%	0.0%	97.7%
25	0.05	0.7%	98.2%	0.0%	97.7%
26	0.05	0.1%	98.3%	0.0%	97.7%
27	0.05	0.0%	98.4%	0.1%	97.7%
28	0.05	0.0%	98.4%	0.0%	97.8%
29	0.05	0.0%	98.4%	0.1%	97.9%
30	0.04	0.1%	98.5%	0.5%	98.4%
31	0.04	0.5%	99.0%	0.1%	98.5%
32	0.04	0.0%	99.0%	0.2%	98.7%
33	0.04	0.4%	99.4%	0.1%	98.7%
34	0.03	0.1%	99.4%	0.4%	99.1%
35	0.03	0.0%	99.4%	0.1%	99.2%
36	0.03	0.2%	99.6%	0.0%	99.2%
	Sumatoria	99.65%		99.22%	

Tabla 62. Participativa de edificio con disipadores

5.7 Propuesta final de la edificación

5.7.1 Dimensiones de los dispositivos

Los valores de las fuerzas máximas (ya sea compresión/tracción) de cada disipador de energía se muestran en las tablas 63 y 64.

En la dirección Y:

Numero	Nombre del		Fuerza
de piso	disipador	Fuerza (tn)	(KIP)
Piso 12	K5	138.83	306.05
Piso 12	K99	125.83	277.42
Piso 12	K7	158.71	349.88
Piso 11	K9	133.48	294.28
Piso 11	K11	144.80	319.22
Piso 11	K101	109.73	241.91
Piso 10	K13	140.47	309.67
Piso 10	K15	159.62	351.91
Piso 10	K103	123.78	272.89
Piso 9	K18	153.81	339.09
Piso 9	K19	165.48	364.82
Piso 9	K105	132.17	291.39
Piso 8	K22	159.34	351.28
Piso 8	K23	165.14	364.07
Piso 8	K131	226.95	500.34
Piso 7	K26	155.83	343.54
Piso 7	K27	163.95	361.45
Piso 7	K133	226.36	499.03
Piso 6	K29	142.58	314.34
Piso 6	K31	159.83	352.36
Piso 6	K111	123.89	273.12
Piso 5	K33	133.84	295.06
Piso 5	K35	148.82	328.08
Piso 5	K113	111.06	244.84
Piso 4	K37	132.32	291.71
Piso 4	K86	123.77	272.87
Piso 4	K116	93.41	205.93
Piso 3	K41	93.12	205.28
Piso 3	K90	93.02	205.07
Piso 3	K118	65.42	144.23
Piso 2	K46	104.62	230.65
Piso 2	K93	93.64	206.45
Piso 2	K119	79.30	174.83
Piso 1	K2	198.66	437.97
Piso 1	K4	199.85	440.59
Piso 1	K121	128.30	282.85

Tabla 63. Fuerza de los disipadores en dirección Y

En la dirección X:

Numero de piso	Nombre del disipador	Fuerza (tn)	Fuerza (KIP)
Piso 12	K43	255.19	562.59
Piso 12	K124	196.80	433.87
Piso 11	K47	265.87	586.14
Piso 11	K126	218.34	481.34
Piso 10	K51	271.16	597.81
Piso 10	K128	229.16	505.21
Piso 9	K56	267.04	588.71
Piso 9	K130	223.46	492.63
Piso 8	K60	261.31	576.09
Piso 8	K131	226.95	500.34
Piso 7	K26	155.83	343.54
Piso 7	K27	163.95	361.45
Piso 6	K67	228.84	504.50
Piso 6	K135	228.34	503.39
Piso 5	K71	221.48	488.27
Piso 5	K137	228.79	504.39
Piso 4	K75	240.24	529.62
Piso 4	K139	223.42	492.54
Piso 3	K79	246.36	543.12
Piso 3	K141	209.80	462.53
Piso 2	K83	224.63	495.23
Piso 2	K143	183.61	404.78
Piso 1	K39	153.81	339.09
Piso 1	K121	282.85	623.57

Tabla 64. Fuerza de los disipadores en dirección X

Tomando en cuenta los niveles de fuerza normalizados a los valores estándares del mercado, se procede a determinar los dispositivos dependiendo de su capacidad de carga. Como se mencionó en el Capítulo 3, se emplearon los disipadores Taylor devices inc, fabricante principal de dispositivos fluido viscosos, la figura 105 muestra las dimensiones provistas para su compra e instalación.

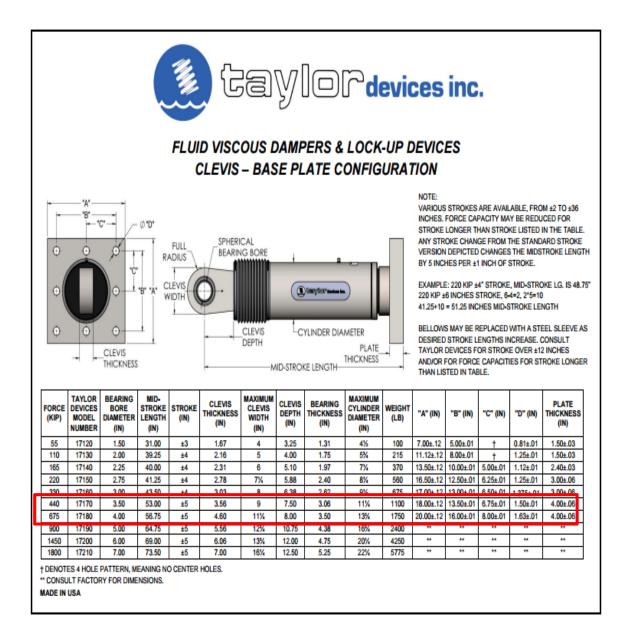


Figura 105. Detalle disipador Taylor por taylordevices.com, 2017

Determinado los valores de Fuerza absorbidas por el disipador y conociendo los dispositivos en venta del mercado, se realizará la siguiente agrupación. Los valores dentro del rango de resultados entre 0 a 440kip se clasificarán como disipadores taylor 440kip y los de 440 hasta el valor máximo (624 kip) como disipadores taylor 675kip.

Finalmente obtenemos los siguientes resultados:

- Coeficiente de amortiguamiento: Dispositivos en el eje X, con un valor de 943.8 $\frac{t*s}{m}$ y en el eje Y 930.65 $\frac{t*s}{m}$.
- Exponente de velocidad: α =0.5.

- Disposición del disipador: Todos los dispositivos se ubicaron en Chevron.
- Cantidad de dispositivos: 38 disipadores Taylor 440 kip y 22 disipadores Taylor 675 kip.

A continuación, se muestra en la tabla 65 y 66, las dimensiones de los disipadores de ambos dispositivos elegidos, los cuales deberán ser colocados dependiendo de la fuerza absorbida. Adicionalmente, se toma en consideración que cada disipador cuenta con un factor de seguridad dado por el fabricante, por lo no será necesario amplificar las fuerzas.

Fuerza (KIP)	Spherical bore	Mid-Stroke	Clevis	Clevis	Clevis	Cylinder	Peso (kg)
ruerza (KIP)	diameter (cm)	Length (cm)	Thickness	depth (cm)	width	diameter	reso (kg)
440	8.89	134.62	9.0424	19.05	22.86	28.575	498.9512
675	10.16	144.145	11.684	20.32	28.575	34.29	793.786

Tabla 65. Dimensiones de disipadores seleccionados

Fuerza (KIP)	A (cm)	B (cm)	C (cm)	D (cm)	Plate Thickness
440	45.72	34.29	17.145	3.81	10.16
675	50.8	40.64	20.32	4.1402	10.16

Tabla 66. Dimensiones de placa de conexión

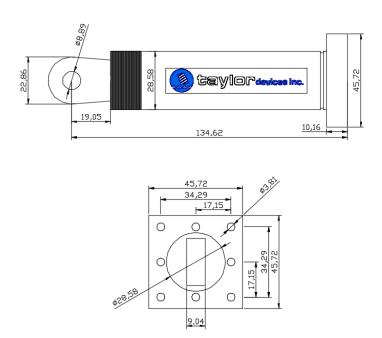


Figura 106. Dimensiones de disipador F= 440 KPI por taylordevices.com, 2017

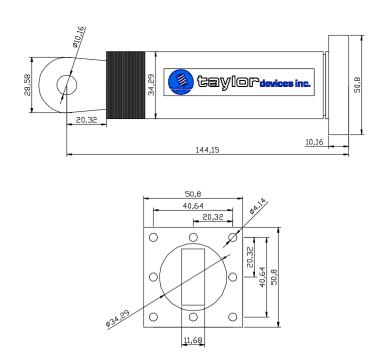


Figura 107. Dimensiones de disipador F= 675 KPI por taylordevices.com, 2017

5.7.2 Propiedades del brazo metálico

El Perfil seleccionado fue el HSS 20 x 0.375 como brazo metálico para todos los dispositivos del sistema de disipación. A continuación, mostramos el perfil seleccionado en la figura 108, se presenta las propiedades del brazo metálico.

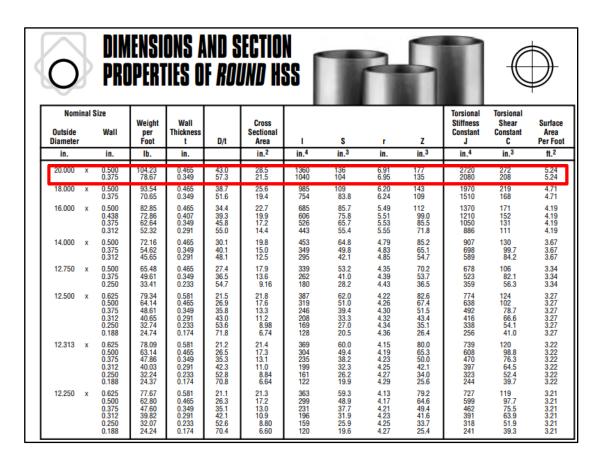


Figura 108. Dimensiones de brazo HSS por steeltubeinstitute.org, 2017

De la Figura anterior se toman los siguientes datos.

• Área del perfil metálico (A): 21.5 in²

Módulo de elasticidad del acero: 2900ksi

• Esfuerzo de fluencia (Fy): 35 ksi

Resistencia en tensión (Fu): 50ksi

El disipador que absorbió una mayor cantidad de fuerza axial fue el disipador K121 con 282.85 t y un largo de 3.98 m (1010.92 in).

5.7.3 Conexión del disipador a la estructura

La figura 109, muestra los elementos que conforman el sistema de disipación de energía en un pórtico. Estos elementos deberán ser diseñados para que resistan las fuerzas sísmicas, a excepción del disipador fluido viscoso que son diseñados y proporcionados por el proveedor.

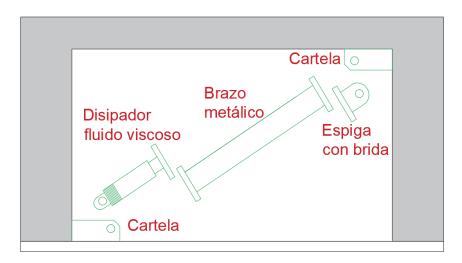


Figura 109. Esquema de Sistema de Disipación Fluido Viscoso por Villareal Genner, 2019

A continuación, se describen la conexión de las cartelas a la estructura de concreto. La plancha metálica conocida como cartela va empotrada a la estructura de concreto mediante pernos de anclaje. La figura 110 muestra el detalle del elemento.

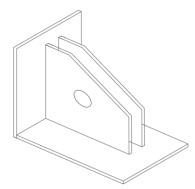


Figura 110. Esquema de Cartela

Los elementos de conexión a la estructura de concreto como la cartela y los pernos de anclaje están basados en la norma ACI 318-19, capitulo 17. Esta norma indica que el anclado de pernos puede ser antes del vaciado de concreto o después, facilitando su instalación.

El diseño de los pernos considera el diámetro, espaciamiento y cantidad de pernos que irán anclados a la estructura. Los pernos de anclaje deben de resistir las fuerzas de tracción y corte que generan los movimientos de los disipadores cuando ocurre una excitación sísmica. Las siguientes figuras muestran el detalle de anclado de la cartela a la estructura de concreto mediante pernos de anclaje.

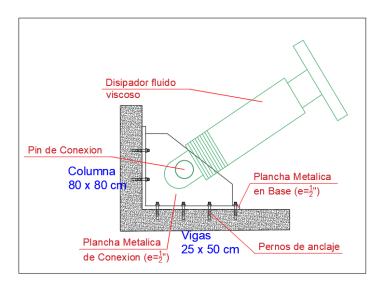


Figura 111. Detalle de conexión de cartela y disipador a la estructura

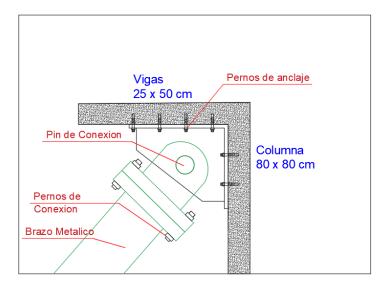


Figura 112. Detalle de conexión de cartela y brazo metálico a la estructura

Asimismo, el código ACI 318-19 recomienda verificar los pernos de anclaje por corte, por arrancamiento y deslizamiento del concreto y del perno. Se muestran las siguientes figuras sobre los tipos de falla.

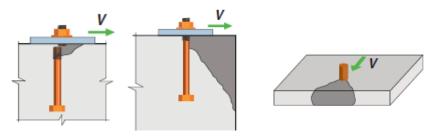


Figura 113. Fallas por corte del concreto y perno de anclaje, por ACI 318-19

Figura 114. Fallas por arrancamiento del concreto y perno de anclaje, por ACI 318-19

Por otro lado, el orificio que presenta la cartela debe presentar la resistencia adecuada, para que, al momento de ensamblar el perno de conexión, esta no falle por tracción. La conexión entre la cartela y los pernos conectores se deben verificar según los lineamientos de las especificaciones AISC-LRFD. Las siguientes Figuras presentan los tipos de fallas comunes en estos elementos, falla por corte del perno (figura 115) y falla por tracción de la cartela (figura 116).

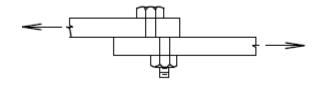


Figura 115. Falla por corte del perno de conexión por Zapata Luis, 2019

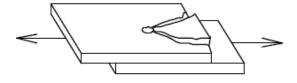


Figura 116. Falla por tracción de la cartela por Zapata Luis, 2019

Finalmente, se recomienda revisar el comportamiento de los nudos columna-viga donde se están anclando los disipadores, esto para cerciorarse que no existan fuerzas que puedan debilitar la estructura.

5.8 Estimación de costos del proyecto con disipadores fluido viscosos.

Se realiza una estimación de costos en base a ratios de construcción de proyectos similares ya ejecutados en nuestro país. Se tomaron los costos del proyecto Edificio de Oficinas Rivera Navarrete mostrados en la siguiente figura.

FICHA TECN	NICA RIVERA NAVARRETE						
NOMBRE DE LA OBRA	EDIFICIO DE OFICINAS RIVERA NAVARRETE						
UBICACIÓN	AV. RIVERA NAVARRTE ESQUINA CON CALLE AMADOR MERINA REYNA						
AREA DEL TERRENO	1,840 m²						
AREA TECHADA TOTAL	40,069.58 m ²						
AÑO DE INICIO Y FINALIZACION	2014 Y 2015 RESPECTIVAMENTE						
INVERSION APROXIMADA	S/. 67.380.086,17						
PROPIETARIO	VIVA GYM S.A. Y SEGUROS SURA						

Figura 117. Ficha técnica edificio rivera navarrete

Fuente: Revista costos construcción, arquitectura e ingeniería-Setiembre 2016, 2019

De la figura 117, se determina el ratio de costo de construcción por m2 de la siguiente manera:

Ratio = Monto Total / Área Techada Total = s/. 67,380,086.17 / 40,069.58 Ratio = 1,681.58 soles/m2

Asimismo, los ingenieros Marcos Tinman y Alejandro Muñoz, directores del Grupo Prima Ingeniería e integrantes del comité peruano de diseño sismorresistente señalan que; en el Perú, el costo de un sistema de disipación oscila entre los \$20 a \$35 por m2 dependiendo del tipo de dispositivo.²³

Hallados los ratios de construcción por m2 del edificio y costo de instalación de disipadores por m2, se emplearán dichos datos para realizar una estimación de costos del edificio planteado.

-

²³ Ver: Revista Peru Construye, 2016, pag 76 y 77

Datos:

- Área construida: Área de planta x Nro. de niveles = 618 m2 x 12 = 7416 m2
- Costo Disipador fluido viscoso Taylor CDV Ingeniería antisísmica (compra y montaje de disipador): 35 dólares por m2 = 115.5 soles por m2.

Resultados de la Estimación de Costos:

Tipo de Cambio (Dólar a Soles) 3 3

Tipo de Callibio (Dolai a 30163)	5.5					
		-				
Descripcion	UND	Cantidad	Precio Unitari	Sub Total	Total	
Edificio Clinica - Sin Disipadores					S/ 12,470,597.28	
Area Techada del Edificio	m2	7416	S/ 1,681.58	S/12,470,597.28		
Edificio Clinica - Con Disipadores					S/ 13,327,145.28	
Area Techada del Edificio	m2	7416	S/ 1,681.58	S/12,470,597.28		
Disipadores Taylor	m2	7416	S/ 115.50	s/ 856,548.00		
% DE INCREMENTO					7%	

Tabla 67. Costo Total del Proyecto

Finalmente, evaluado económicamente el proyecto de edificación propuesto se concluye lo siguiente.

- El costo del proyecto con disipadores de energía tiene un incremento del 7% respecto al costo del edificio sin disipadores de energía.
- Desde el punto de seguridad y responsabilidad social Los disipadores permitirán al edificio que este operativo y no presente daños o fallas comunes en instalaciones eléctricas, sanitarias o equipos de salud. Al ser una clínica, el edificio debe continuar prestando atención médica y refugio a los posibles pacientes afectados por el desastre sísmico.
- Desde el punto arquitectónico:

El edificio no ha sido alterado arquitectónicamente, es decir se han respetado los ambientes propuestos. Ello demuestra que hay una mayor ventaja si se decide usar los disipadores para reforzar un edificio, ya que no compromete los espacios del mismo.

6. CAPITULO 5: CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

- De los resultados finales, se concluye que la incorporación de disipadores al edificio llega a reducir las derivas, desplazamientos, y aceleraciones. El edificio con disipadores llego a reducir las derivas en un promedio de 52.51% en X y 19.97% en Y (Tabla 51, pág. 108); los desplazamientos del centro de masa se redujeron en un 50.84% en X y 20.83% en Y (Tabla 54, pág. 110) y la aceleración máxima de los centros de masa por piso, se redujeron en un promedio de 49.34% en X y 15.85% en Y (Tabla 55, pág. 111).
- El edificio con disipadores de energía llega a reducir las fuerzas internas de sus elementos, la placa P1 llego a reducirse en un promedio de 39.15% en fuerza cortante y 23.77% en momento flector (Tabla 56, pág. 113). De la misma forma, la columna C3 se redujo en un promedio de 36.51% en fuerza cortante y 30.43% en momento flector (Tabla 59, pág. 118)
- De las diferentes disposiciones de disipadores fluido viscosos en la estructura, se concluye que solo los Casos 4 y 5 eliminaron la irregularidad torsional, esto debido a que no hay una concentración de dispositivos en una zona como el Caso 1 y muestra una mejor distribución en planta a diferencia de los Casos 2 y 3 que solo solucionaron la irregularidad torsional en planta en un sentido (eje Y).
- Mediante la incorporación de disipadores se logró eliminar la irregularidad torsional en planta, el valor máximo se redujo de 1.44 a 1.14 en el sentido X (Tabla 52, pág. 109) y de 1.53 a 1.06 en el sentido Y (Tabla 53, pág. 110). Es importante resaltar que el disipador no aporta rigidez a la estructura, sin embargo, se puede disminuir los desplazamientos en determinados puntos para así minimizar la torsión.
- Del balance de energía obtenido en el análisis (Tabla 49, pág. 106), concluimos que los disipadores llegaron a absorber el 58% de la energía sísmica total, mientras que la edificación absorbe solo un 42% (Figura 85, pág. 107), lo cual evidencia que estos sistemas de protección sísmica tienden a tener una mejor respuesta frente a los movimientos telúricos comparado con una estructura convencional.

6.2 Recomendaciones

- Utilizar al menos 3 registros sísmicos en ambas direcciones, estos deben ser escalados a un espectro de pseudoaceleraciones con un coeficiente de reducción sísmica igual a 1. Se recomienda emplear registros originados del mismo país y que presenten las mismas características de suelo para obtener mejores resultados en el análisis Tiempo-Historia.
- Realizar diversas incorporaciones de dispositivos variando su ubicación y configuración, para observar que sistema de incorporación presenta los mejores resultados para la edificación.
- Tener los objetivos claros sobre la inversión, necesidad y característica que va a presentar el proyecto con disipadores de energía. Por lo general la inversión inicial suele ser mayor, dependiendo del tipo de proyecto, características del dispositivo, grado de protección. Entre otros factores a tener en cuenta, es recomendable realizar un estudio de los beneficios económicos a largo plazo.
- Se recomienda para futuras investigaciones realizar un análisis que puedan demostrar que los disipadores de energía fluido viscosos también pueden llegar a controlar y/o eliminar otro tipo de irregularidad estructural, además de la irregularidad torsional.
- Se recomienda para futuras investigaciones evaluar el comportamiento de los nudos de la estructura donde se proyecta incorporar el disipador de energía con el fin de determinar si se necesita reforzamiento.
- Como futuras líneas de investigación, se recomienda evaluar el beneficio técnicoeconómico de un edificio con disipadores considerando la cantidad de dispositivos, diseño de conexiones a la estructura y posible reforzamiento en los nudos y compararlo con un edificio reforzado mediante el reforzamiento tradicional de elementos de concreto armado, es decir mediante aumento de rigidez.

7. REFERENCIAS

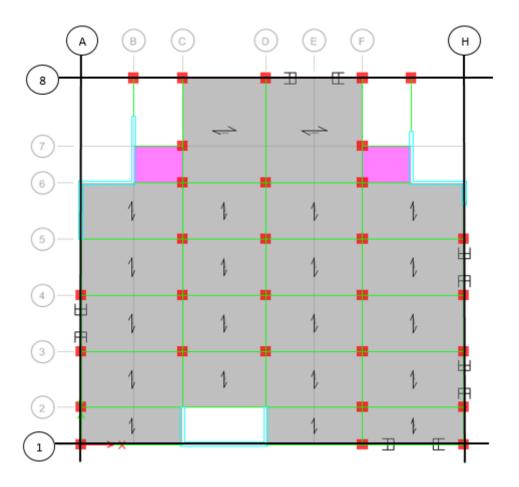
- 1. ACI 318-19 (2019) Building Code Requirements for Structural Concrete, American Concrete Institute.
- 2. ASCE (2010), Minimum Design Loads for Buildings and Others Structures (ASCE/SEI 7-10), American Society of Civil Engineers
- BLANCO BLASCO, Antonio (1994) Estructuración y Diseño de Edificaciones de Concreto Armado. Consejo Departamental de Lima, Perú.
- BOZA FARFAN, Zuen y GALAN TIRAPO, Danny (2013) Diseño de un Edificio Aporticado con Disipadores en Arreglo Chevron. (Tesis Pregrado). Lima: Pontificia Universidad Católica del Perú.
- Burgos Namuche, Maribel (2013) Presentaciones CDV Perú Ingeniería Antisísmica, Disipadores de Energía Fluido Viscoso.
 (http://mabieperu.com/publicaciones/publicacion04.pdf)
- CDVPERU (2012) Structural Applications of Fluid Viscous Dampers, En link: (https://www.cdvperu.com/wp-content/uploads/2018/11/taylor-lista-proyectos.pdf)
- 7. CHOPRA, Anil K. (2014). Dinámica de estructuras. (4°. ed.). México: Pearson
- 8. Corporación de Desarrollo Tecnológico (CDT). (2011). Protección Sísmica de Estructuras, Sistemas de Aislación Sísmica y Disipación de Energía. Documento Técnico N°29. Chile
- 9. FEMA 273, 274. (1997). Guidelines for the Seismic Rehabilitation of Building, Chapter 9, Seismic Isolation and Energy Dissipation, NEHRP.
- Genatios, Carlos; Lafuente Marianela (2016) Introducción al Uso de Aisladores y Disipadores en Estructuras.
- 11. GLOBAL INGENIEROS, Aisladores y Disipadores de Energía por Carranza Azucena. 2012.(http://globalingenieros.com/aisladores-y-disipadores-de-energia/) (Fecha de acceso: 2 de abril del 2016)
- 12. Jenn-Shin Hwang (2002). Seismic Design of Structures with Viscous Dampers. ResearchGate
- 13. M.D. Symans Et al. (2008). Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments. Journal of Structural Engineering, ASCE. Estados Unidos

- 14. MEDINA, Maria Ignacia (2017) El Salto de la Ingeniería Antisísmica made in Chile, AMCHAM CHILE, En Revista: Business Chiles (https://www.amchamchile.cl/2017/09/el-salto-de-la-ingenieria-antisismica-made-in-chile/) (Fecha de acceso: 07 de agosto del 2019)
- Ministerio de Vivienda, Construcción y Saneamiento (2006) Norma Técnica E.20
 Cargas
- Ministerio de Vivienda, Construcción y Saneamiento (2009) Norma Técnica E.60
 Concreto Armado
- 17. Ministerio de Vivienda, Construcción y Saneamiento (2016). Norma Técnica E.030 "Diseño Sismorresistente" del Reglamento Nacional de Edificaciones.
- 18. Multi-hazard Loss Estimation Methodology Earthqueake Model (2003) HAZUS-MH-MR4,.Technical Manual, FEMA
- 19. Municipalidad De San Isidro (2012) Plan Urbano Distrital de San Isidro 2012-2022
- 20. NILSON, Arthur (1999), Diseño de estructuras de concreto. Bogotá, Colombia
- 21. OVIEDO, Juan Andrés; Duque, María del Pilar (2009). Disipadores Histeréticos Metálicos Como Técnica de Control de Respuesta Sísmica En Edificaciones Colombianas, Revista EIA, ISSN 1794-1237 Numero 11, pag 51-63. Escuela de Ingeniería de Antioquia, Medellín, Colombia.
- 22. PIMIENTO, Juan; SALAS, Andres; RUIZ, Daniel (2014). Desempeño sísmico de un pórtico con disipadores de energía pasivos de placas ranuradas de acero. Revista Ingeniería de construcción, Vol. 29 Nº2 pag. 283-298. Pontificia universidad Javeriana. Colombia
- 23. SARRAZIN, Mauricio; Almazán Jose; Guendelma, Tomas (2017), Sistemas de Protección Sísmica Mediante Aislación Basal y Disipación de Energía, JOURNAL OF MATERIALS CIVIL ENGINEERING En Link:

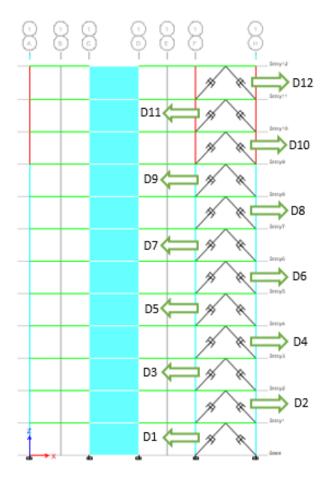
(https://www.researchgate.net/profile/Mauricio Sarrazin/publication/40882944 Mecha nical Properties and Fuzzy Modeling of High-

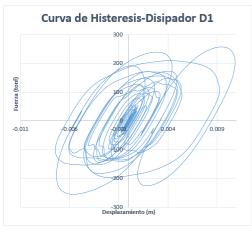
<u>Damping Rubber with Thermal Effects/links/5b71d20192851ca65057ddc0/Mechanical-Properties-and-Fuzzy-Modeling-of-High-Damping-Rubber-with-Thermal-</u>

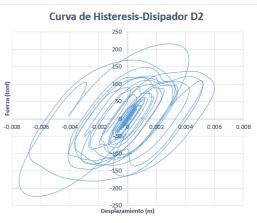
Effects?origin=publication_detail) (Fecha de acceso: 03 de noviembre del 2018)

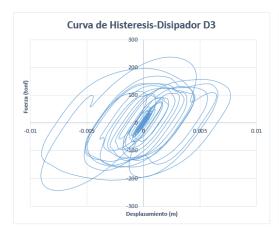

24. SYMANS, Michael (2002) Seismic Protective Systems: Passive Energy Dissipation".
Rensselaer Polytechnic Institute.

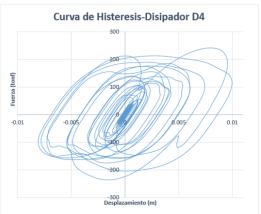
- 25. TAYLOR DEVICES INC. Earthquake Protective Systems for Buildings, Bridges, and other structures. *North Tonawanda, NY. Junio* 2007.
- 26. VILLAREAL CASTRO, Genner y Oviedo Sarmiento, Ricardo (2008). Edificaciones con Disipadores de Energía. Lima, Perú.
- 27. ZAPATA BAGLIETO LUIS (1997) Diseño Estructural en Acero, Lima, Perú

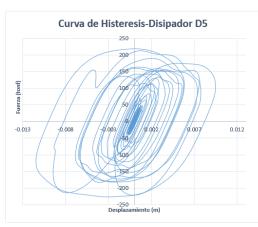

8. ANEXOS

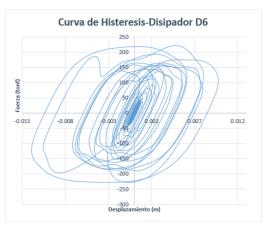

ANEXO 01: Curvas de histéresis

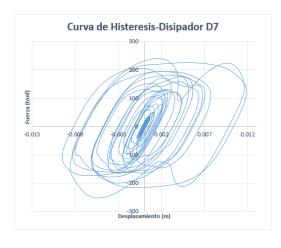

Se colocarán las curvas de histéresis de los elementos por los ejes definidos a continuación

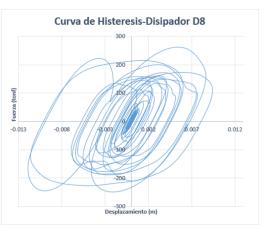



<u>Eje 1</u>

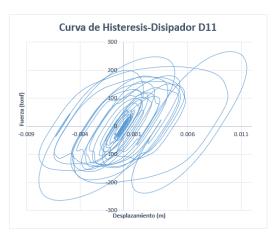


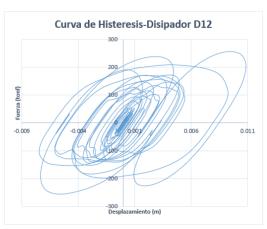


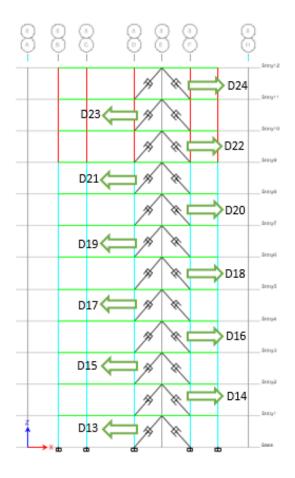


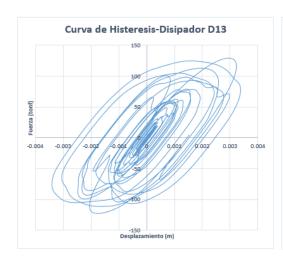


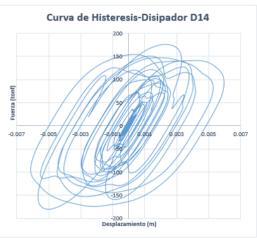


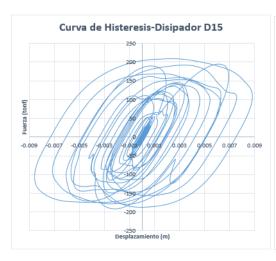


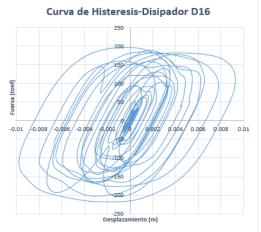


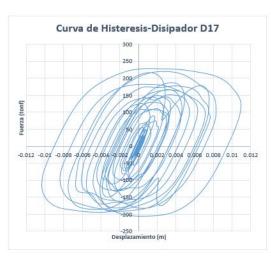


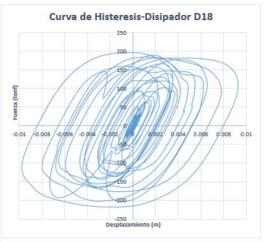


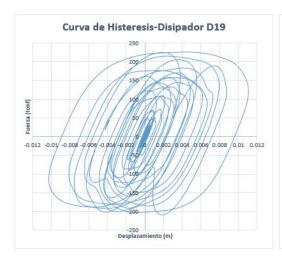


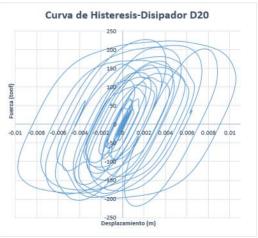


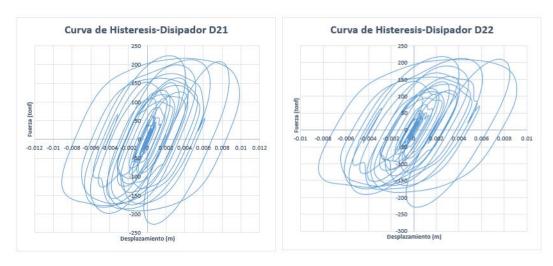

<u>Eje 8</u>

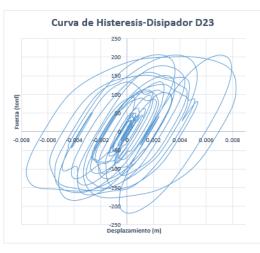


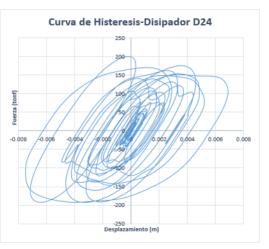


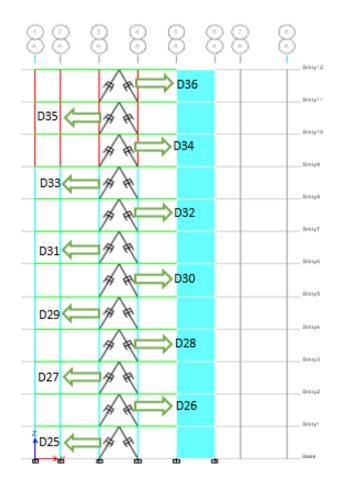


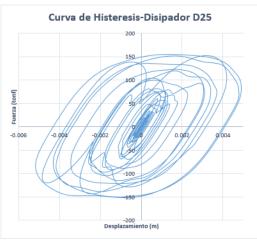


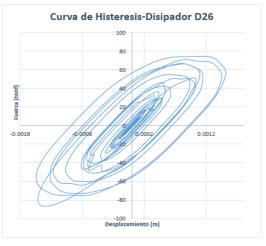


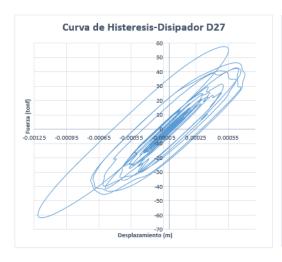


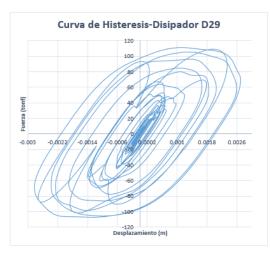


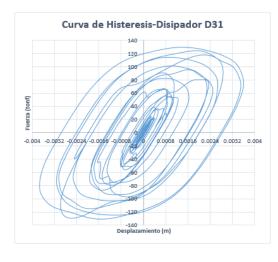


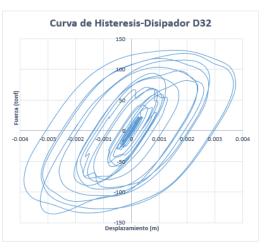


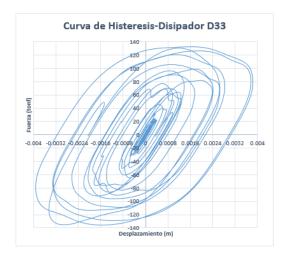


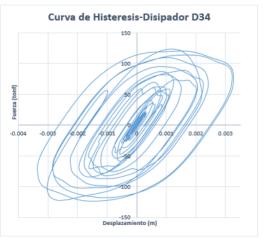


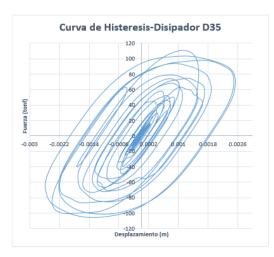


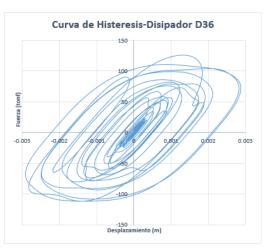


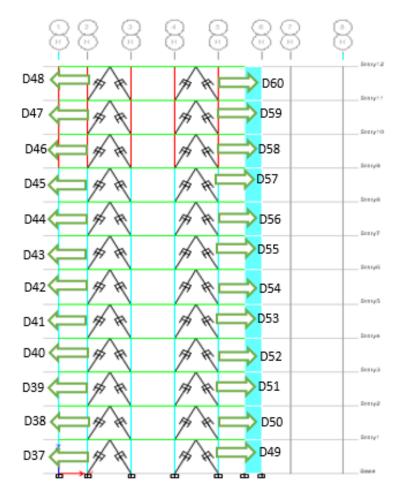


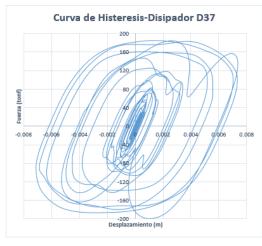


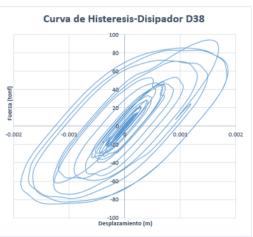


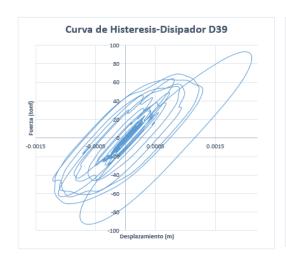


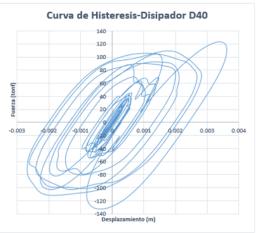


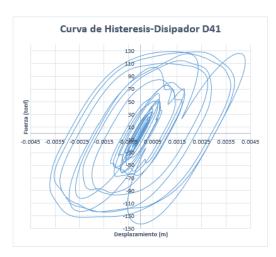




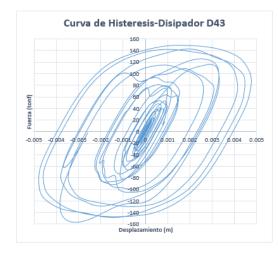


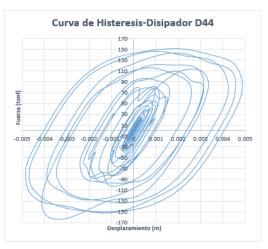


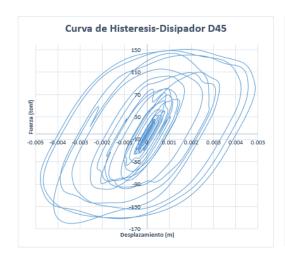

Eje H

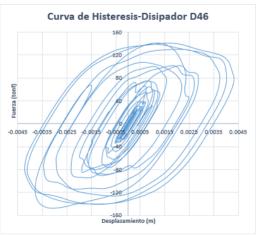


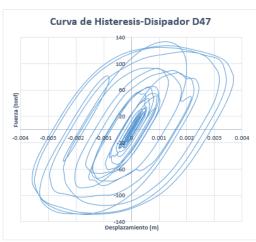


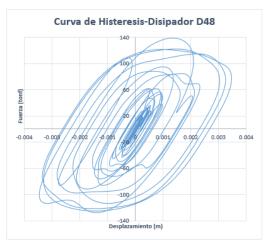


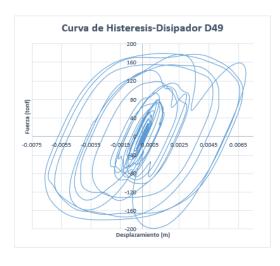


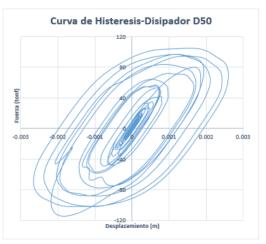


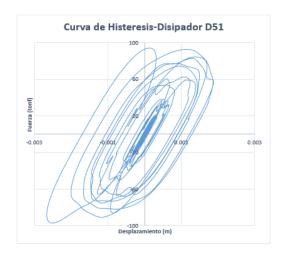


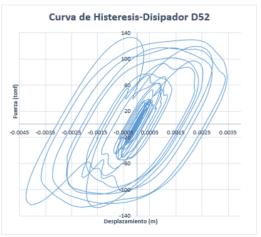


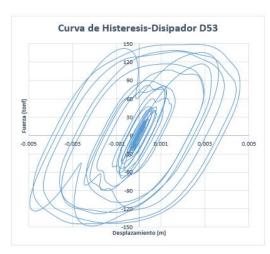


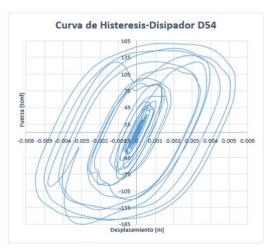


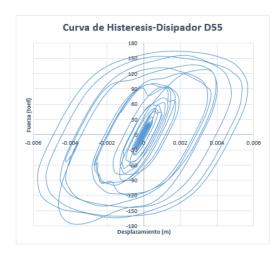


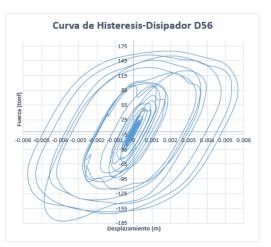


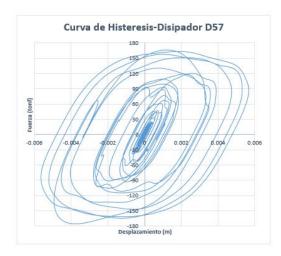


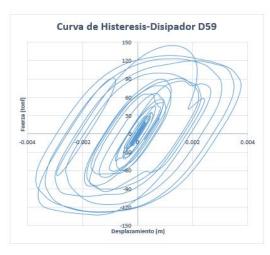


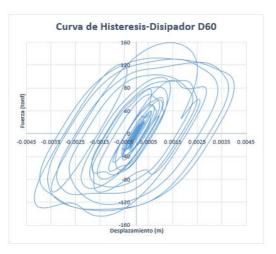


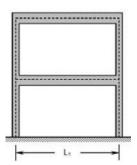












ANEXO 02: Ejemplo Ilustrativo

Como ejemplo se evaluará el análisis dinámico de un pórtico de concreto en Etabs y desarrollado en Excel.

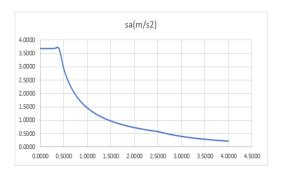
Características del pórtico

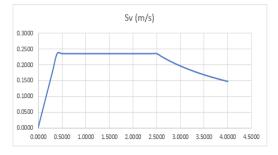
• Dimensiones

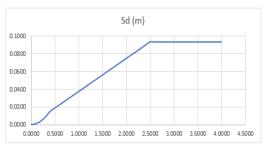
Columnas del primer piso: 30x30cm
 Columnas del segundo piso: 30x30cm
 Vigas: 25x50cm

• Tipo de concreto: 280kg/cm2

Procedimiento desarrollo en Excel


1. Hallar el ZUCS/R.


Z	0.45
U	1.5
С	2.5
S	1.00
Irreg.altura	1
Irreg. Planta	0.75
RO	6
R=R0xlaxlp	4.500
ZUCS/R	0.375


PERIODOS					
Tpredominante	0.4				
T largo	2.5				

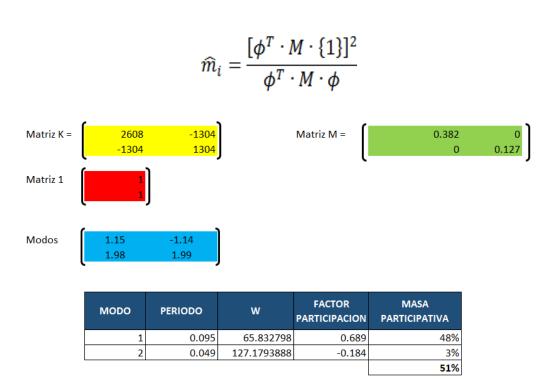
2. Hallar el espectro de aceleraciones, velocidades y desplazamientos


T	C(T)	(T) w sa(m/s2)		Sv (m/s)	Sd (m)	
0.0000	2.5000	628318.5307	3.6788	0.0000	0.0000	
0.1000	2.5000	62.8319	3.6788	0.0585	0.0009	
0.2000	2.5000	31.4159	3.6788	0.1171	0.0037	
0.3000	2.5000	20.9440	3.6788	0.1756	0.0084	
0.4000	2.5000	15.7080	3.6788	0.2342	0.0149	
0.5000	2.0000	12.5664	2.9430	0.2342	0.0186	
0.6000	1.6667	10.4720	2.4525	0.2342	0.0224	
0.7000	1.4286	8.9760	2.1021	0.2342	0.0261	
0.8000	1.2500	7.8540	1.8394	0.2342	0.0298	
0.9000	1.1111	6.9813	1.6350	0.2342	0.0335	
1.0000	1.0000	6.2832	1.4715	0.2342	0.0373	
1.1000	0.9091	5.7120	1.3377	0.2342	0.0410	
1.2000	0.8333	5.2360	1.2263	0.2342	0.0447	
1.3000	0.7692	4.8332	1.1319	0.2342	0.0485	
1.4000	0.7143	4.4880	1.0511	0.2342	0.0522	
1.5000	0.6667	4.1888	0.9810	0.2342	0.0559	
1.6000	0.6250	3.9270	0.9197	0.2342	0.0596	
1.7000	0.5882	3.6960	0.8656	0.2342	0.0634	
1.8000	0.5556	3.4907	0.8175	0.2342	0.0671	
1.9000	0.5263	3.3069	0.7745	0.2342	0.0708	
2.0000	0.5000	3.1416	0.7358	0.2342	0.0745	
2.1000	0.4762	2.9920	0.7007	0.2342	0.0783	
2.2000	0.4545	2.8560	0.6689	0.2342	0.0820	
2.3000	0.4348	2.7318	0.6398	0.2342	0.0857	
2.4000	0.4167	2.6180	0.6131	0.2342	0.0895	
2.5000	0.4000	2.5133	0.5886	0.2342	0.0932	
2.6000	0.3698	2.4166	0.5442	0.2252	0.0932	
2.7000	0.3429	2.3271	0.5046	0.2168	0.0932	
2.8000	0.3189	2.2440	0.4692	0.2091	0.0932	
2.9000	0.2973	2.1666	0.4374	0.2019	0.0932	
3.0000	0.2778	2.0944	0.4088	0.1952	0.0932	
3.1000	0.2601	2.0268	0.3828	0.1889	0.0932	
3.2000	0.2441	1.9635	0.3593	0.1830	0.0932	
3.3000	0.2296	1.9040	0.3378	0.1774	0.0932	
3.4000	0.2163	1.8480	0.3182	0.1722	0.0932	
3.5000	0.2041	1.7952	0.3003	0.1673	0.0932	
3.6000	0.1929	1.7453	0.2839	0.1626	0.0932	
3.7000	0.1826	1.6982	0.2687	0.1582	0.0932	
3.8000	0.1731	1.6535	0.2548	0.1541	0.0932	
3.9000	0.1644	1.6111	0.2419	0.1501	0.0932	
4.0000	0.1563	1.5708	0.2299	0.1464	0.0932	

3. Hallar la matriz K y M del pórtico

Concreto	2.4	ton/m3
Viga	1.2	ton
Columna	1.296	ton
Peso Total	4.992	ton
Peso Piso 1	3.744	ton
Peso Piso 2	1.248	ton

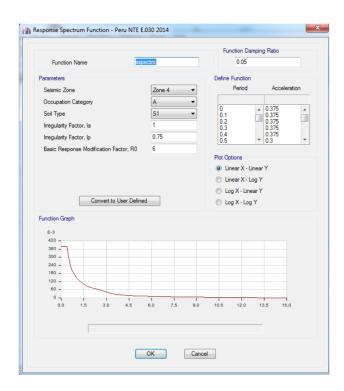
Masa = Peso / Gravedad

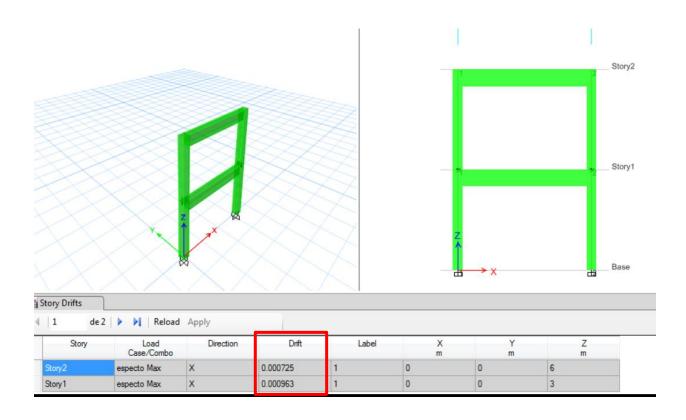

Matriz de Masa

1er Piso 0.382
2do Piso 0.127

M =

0.382 0
0.127


4. Hallar la matriz de modos de vibración y su factor de participación



5. Determinar las derivas de cada piso

Modos	Sa	Sv	Sd						
1	3.6788	0.055880201	0.00084882						
2	3.6788	0.028925678	0.00022744						
	Γ ₋		ſ	r	$= 0.25 \cdot \sum_{i=1}^{m} r_i + 0.75 \cdot \sqrt{\sum_{i=1}^{m}}$	r_i^2			
Desplazamiento de cada Modo					,				
Nivel Piso	Modo1 = Sd*Factor Partici* Modo	Modo 2 = Sd*Factor Partici* Modo	ABS	SRSS	r=0.25abs+0.75srss	desplaz inel	desplaz relativo	altura	drift o deriva
1	0.00067009	4.78917E-05	0.000717977	0.000671794	0.00068334	0.00307503	0.00307503	3	0.001025
2	1.1595E-03	-8.3248E-05	0.001242757	0.001162493	0.001182559	0.00532152	0.00224649	3	0.000749

6. Del mismo se presentan las fotopantallas del procedimiento en Etabs para comprobar que los resultados de derivas se asemejen a lo desarrollado en Excel.

