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Abstract. This paper focuses on the important problem of semantic-
aware search in textual (structured, semi-structured, NoSQL) databases.
This problem has emerged as a required extension of the standard con-
tainment keyword based query to meet user needs in textual databases
and IR applications. We provide here a new approach, called SemIndex,
that extends the standard inverted index by constructing a tight cou-
pling inverted index graph that combines two main resources: a general
purpose semantic network, and a standard inverted index on a collec-
tion of textual data. We also provide an extended query model and
related processing algorithms with the help of SemIndex. To investi-
gate its effectiveness, we set up experiments to test the performance
of SemIndex. Preliminary results have demonstrated the effectiveness,
scalability and optimality of our approach.

Keywords: Semantic Queries, Inverted lndex, NoSQL indexing, Se-
mantic Network, Ontologies.

1 Introduction

Processing keyword-based queries is a fundamental problem in the domain of
Information Retrieval (IR). Several studies have been done in the literature
to provide effective IR techniques [10, 9, 6]. A standard containment keyword-
based query, which retrieves textual identities that contain a set of keywords, is
generally supported by a full-text index. Inverted index is considered as one of
the most useful full-text indexing techniques for very large textual collections
[10], supported by many relational DBMSs, and recently extended toward semi-
structured [9] and unstructured data [6] to support keyword-based queries.

Besides the standard containment keyword-based query, semantic-aware or
knowledge-aware (keyword) query has emerged as a natural extension encour-
aged by real user demand. In semantic-aware queries, some knowledge6 needs
to be taken into consideration while processing. Let’s assume having a movie
database, as shown in Table 1. Each movie, identified with an id, is described
with some (semi-structured) text, including movie title , year and plot. For
queries ”sound of music”, ”Maria nun” and ”sound Maria”, the query result
is movie O3. However, if the user wants to search for a movie but cannot re-
call the exact movie title, it is natural to assume that (s)he may modify the
query terms to some semantically similar terms, for example, ”voice of music”.
Also, it is common that the terms provided by users are not exactly the same,
but are semantically relevant to terms that the plot providers use. Clearly,
the standard inverted index which only supports exact matching cannot deal
with these cases. Various approaches combining different types of data and se-

? Corresponding author: rchbeir@acm.org/richard.chbeir@univ-pau.fr
6 Also called domain, collaborative, collective knowledge or semantic network



2 R. Chbeir et al.

Table 1. A Sample Movie Data Collection

ID Textual Contents

O1 When a Stranger Calls (2006): A young high school student babysits for a very rich family. She
begins to receive strange phone calls threatening the children...

O2 Code R (1977): This CBS adventure series managed to combine elements of ”Adam-12”, ”Emer-
gency” and ”Baywatch” at the same time...

O3 Sound of Music, The (1965): Maria had longed to be a nun since she was a young girl, yet when
she became old enough discovered that it wasn’t at all what she thought...

· · · · · ·

mantic knowledge have been propose to enhance query processing (cf. Related
Works). In this paper, we present a new approach integrating knowledge into
a semantic-aware inverted index called SemIndex to support semantic-aware
querying. Major differences between our work and existing methods include:

– Pre-processing the index: Existing works use semantic knowledge to
pre-process queries, such as query rewriting/relaxation and query sugges-
tion [2, 5], or to post-process the query results, such as semantic result
clustering [16, 17, 25]. Our work can be seen as another alternative to con-
sider the semantic gap by enclosing semantic knowledge directly into an
inverted index, so that main tasks can be done before query processing,

– User involvement: Most existing works introduce some predefined pa-
rameters (heuristics) to rewrite queries such that users are only involved in
the query refinement (expansion, filtering, etc.) process after providing the
first round of results [3, 4, 14, 20]. In our work, we aim at allowing end-users
to write, using the same framework, classical queries but also semantically
enriched queries according to their needs. They are involved in the whole
process (during initial query writing and then query rewriting).

– Providing more results: Most existing works focus on understanding the
meaning of dat/queries through semantic disambiguation [2, 13, 16], which:
i) is usually a complex process requiring substantial processing time [15],
and ii) depends on the query/data context which is not always sufficiently
available, and thus does not guarantee correct results [7, 23]. The goal of
our work is, with the help of semantic knowledge, to find more semantically
relevant results than what a traditional inverted index could provide, while
doing it more efficiently than existing disambiguation techniques.

In order to build SemIndex , we create connections between two data resources,a
textual data collection and a semantic knowledge base, and map them into a
single data structure. An extended query model with different levels of semantic
awareness is defined, so that both semantic-aware queries and standard con-
tainment queries are processed within the same framework. Figure 1 depicts
the overall framework of our approach and its main components. The Indexer
manages SemIndex , while the Query Processor accepts semantic-aware queries
from the user and processes the queries with SemIndex .

The rest of this paper is organized as follows. Designing and building Se-
mIndex will be presented in Section 2. Section 3 will introduce our query model
for semantic-aware queries. We will also present the algorithms for processing
semantic-aware queries using SemIndex . We provide preliminary experimental
results of executing different queries on a set of textual data collections in Sec-
tion 4. Related works are discussed in Section 5 before concluding the paper
and providing some future works.
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Fig. 1. SemIndex Framework

2 Index Design

In the following, we analyze the (textual and semantic) input resources required
to build our index structure, titled SemIndex . We also show how to create
connections between the input resources and how to design the logical structure
of SemIndex . The physical structure will be detailed in a dedicated paper.

2.1 Representation and Definitions

Textual Data Collection: In our study, a textual data collection could be a
set of documents, XML fragments, or tuples in a relational or NoSQL database.

Definition 1 A Textual Data Collection ∆ is represented as a table defined
over a set of attributes A = {A1, . . . , Ap} where each Ai is associated with a set
of values (such as strings, numbers, BLOB, etc.) called the domain of Ai and
denoted by dom(Ai). A semantic knowledge base (KB) can be associated to one
or several attribute domains dom(Ai). Thus, given a table ∆ defined over A,
objects t in ∆ are denoted as 〈a1, . . . , ap〉, where ai ∈ dom(Ai). Each ai from
t is denoted as t.ai.

Semantic Knowledge-Base: We adopt graph structures for modeling se-
mantic knowledge. Thus, entities are represented as vertices, and semantic rela-
tionship between entities are modeled as directed edges 7. In this work, we will
illustrate the design process of SemIndex using WordNet version 3.0 [8] as the
semantic knowledge resource. Part of the WordNet ontology is shown in Figure
2. Each synset represents a distinct concept, and is linked to other synsets with
semantic relations (including hypernymy, hyponymy, holonymy, etc.). Note that
multiple edges may exist between each ordered pair of vertices, and thus the
knowledge graph is a multi-graph.

Definition 2 A Semantic Knowledge Base KB, such as WordNet, is a graph
Gkb(Vkb, Skb, Ekb, Lkb) such that:

– Vkb is a set of vertices/nodes, denoting entities in the given knowledge base.
For WordNet, Vkb includes synsets and words

– Skb is a function defined on Vkb, representing the string value of each entity

– Ekb is a set of directed edges; each has a label in Lkb and is between a pair
of vertices in Vkb

– Lkb is a set of edge labels. For WordNet, Lkb includes hyponymy, meronymy,
hypernymy, holonymy, has-sense and has-sense-inverse, etc.

7 We use the terms “edge” and “directed edge” interchangeably in this paper
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In Figure 2, W4, W6, W7, W8 and W9 represent words, and their string
values (lemma of the words) are shown aside of the nodes. S1, S3 and S4 are
synsets, and their string values are their definitions. If one sense of a word
belongs to a synset, it is represented with two edges between the synset node
and word node with opposite directions, labeled has-sense and has-word, that
we represent here with only one left-right arrow.

S1

W4

W6

"window pane"

"zen"

street name
for lysergic acid
diethylamide

W7

"pane"

S3

a powerful hallucinogenic
drug manufactured from
lysergic acid

hypernymy

W8

"lsd"

S4

a Buddhist doctrine that
enlightenment can be attained
through direct intuitive insight

W9derivation "zen buddhist"

hyponymy

Fig. 2. Part of the Semantic Knowledge Graph of WordNet

SemIndex graph: To combine our resources, we define a SemIndex graph.

Definition 3 A SemIndex graph G̃ is a directed graph (Vi, Vd, L,E, Sv, Se,W ):

– Vi is a set of index nodes (denoting entities in a knowledge-base, index or
searchable terms in a textual collection) represented visually as circles #

– Vd is the set of data nodes (belonging to the textual collection) represented
visually as squares �

– L is a set of labels

– E is a set of ordered pairs of vertices in Vi
⋃
Vd called edges. Edges be-

tween index nodes are called index edges (represented visually as →), while
edges between index nodes and data nodes are called data edges (represented
visually as 99K)

– Sv is a function defined on Vi
⋃
Vd, representing the value of each node

– Se is a function defined on E, assigning a label ∈ L to an edge

– W is a weighting function defined on nodes in Vi
⋃
Vd and edges in E.

2.2 Logical Design

In this part, we introduce the logical design techniques in building SemIndex .

Building SemIndex : SemIndex adapts tight coupling techniques to index
a textual data collection and a semantic knowledge base in the same framework,
and directly create a posting list for all searchable contents. In the following,
we describe how to construct SemIndex .

1- Indexing Input Resources: Given a textual data collection ∆, a multi-
attributed inverted index (associated to one or several attributes A) is a map-
ping ii : V s

A → V t, where V s
A is a set of values for attributes A, which we

also call a searchable terms, and V t is the set of textual data objects. A multi-
attributed inverted index of a set of textual data objects ∆ is represented as a
SemIndex graph G̃A such that:
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– Vi is a set of index nodes, representing all searchable terms which appear
in the attribute set A of the collection

– Vd is the set of textual data objects in ∆

– L includes contained label indicating the containment relationship from a
searchable term in Vi to a data object in Vd

– E is a set of ordered pairs of vertices in Vi
⋃
Vd

– Sv assigns a term to an index node, and its text contents to a data node

– Se assigns the contained label to each edge

– W assigns a weight (according to the importance/frequency of the term
within the text content) to an edge E.

An example of an SemIndex graph inverted index G̃A based on the textual
collection provided in Table 1 is shown in Figure 3 (upper part).
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   light	
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(plot omitted) 

When a stranger calls, 2006 
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Fig. 3. Part of the SemIndex Graph of the textual collection

Similarly, indexing the semantic knowledge base Gkb is also represented as
a SemIndex graph G̃kb that inherits the properties of Gkb where:

– Vd is an empty set
– Vi is a set of vertices/nodes, denoting entities in the given knowledge base

and all other searchable terms. For WordNet, Vi includes synsets and words
as well as other terms that appear in the string value in Gkb. Thus, Vi is a
superset of vertices in the knowledge graph Gkb

– L is a set of edge labels, including those inherited from Gkb (e.g., hyponymy,
meronymy, etc.), and a special label meronymy* indicating the containment
relation from a searchable term to an entity in Vi

– Se assigns, in addition to previous edges of Gkb, the meronymy* label from
a searchable term to an entity in Vi

– W is the weighting function assigning a weight (default weight is 1) to all
nodes and edges.

We assume that connections between searchable terms and entities in Vi
can be found by the same Natural Language Processing techniques used when
indexing the textual collection. For example, in Figure 3 (lower part), we find
that word “window” (W2) is contained in the word “window pane” (W6). Thus,
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an extra edge labeled meronymy* from W2 to W6 is inserted into the graph
as shown in Figure 3. Note that the NLP algorithms run only on synsets and
multi-term words, in order to prevent duplicated nodes to be produced.

2- Coupling Resources: When coupling both indexes, we get one SemIndex
graph called G̃SemIndex. In G̃SemIndex, only searchable terms have (mainly
string) values (which will be defined in Step 3 in the construction procedure).
Weights are assigned to all edges and data nodes in the graph. To summarize,
G̃SemIndex contains:

– Vi is a set of index nodes of G̃A ∪ G̃kb

– Vd is the set of data nodes of G̃A

– L is a set of labels in the G̃kb and a special label contained, indicating the
containment relationship from a searchable term in Vi to an entity in Vd

– E is a set of ordered pairs of nodes in Vi (index edges) and in Vd (data
edges)

– Sv is the function of string values defined only on searchable terms, which
is a subset of Vi

– Se assigns G̃kb relationship labels to index edges and contained label to
index/data edges

– W is the weighting function defined on all nodes in Vi
⋃
Vd and edges in E.

The pseudo-code of constructing G̃SemIndex is composed of 7 steps as shown
in Algorithm 1. Each step is detailed as follows.

Algorithm 1 G̃SemIndex Construction

Input:
KB: a semantic knowledge base;
∆: a textual data collection;
ω: a weighting schema;
c1: a constant (used in Step 4) to delimit the co-occurrence window
c2: a constant (used in Step 4) to select top terms
Output:
G̃SemIndex: a SemIndex graph instance

1: Build inverted index for ∆ to construct G̃A

2: Build inverted index for Gkb to construct G̃kb

3: Merge G̃A and G̃kb into G̃SemIndex and find searchable terms
4: For each missing term, find the most relevant terms in G̃kb

5: Assign weights to all edges in G̃SemIndex and all data nodes according to ω
6: Aggregate edges between each ordered pair of nodes
7: Remove from G̃SemIndex all edge labels, and string values of all nodes except

searchable terms

– Step 1: It builds the multi-attributed inverted index on the contents of the
textual data collection as a graph G̃A as defined and illustrated previously.

– Step 2: Given a semantic knowledge graph Gkb representing the semantic
knowledge base KB given as input, it builds an inverted index for string
values of each knowledge base entity, and construct the graph G̃kb.

– Step 3: it combines the two SemIndex graphs. Data nodes in the result
graph G̃SemIndex are the set Vd in G̃A (denoted as V A

d ), while all other

nodes are index nodes. This step denotes the searchable terms of G̃kb as
V kb
i (which are vertices with one or more outgoing edges labeled contained)

and then merges the two sets of searchable terms V kb
i and V A

i (representing
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the index nodes of G̃A) as follows: if string values of two vertices are equal,
remove one of them and merge all the connected edges. We use V +

i to denote
the conjunctive set V kb

i

⋃
V A
i , which is the set of all searchable terms in

SemIndex . Figure 4 shows the result of combining the two SemIndex graphs
of the sample textual collection and par of the semantic knowledge base of
WordNet provided here.

– Step 4: For the missing term problem, we create links from each missing
term to one or more closely related terms, with a new edge label refers-to,
using a distributional thesaurus8 based on the textual collection to mine
relativeness between missing terms and used index. We cover the missing
term problem in more detail in a dedicated paper.

– Step 5: It assigns weights to edges and textual objects, according to ω. The
weight will be used to rank query results. Different weighting schemes can
be adopted in our approach, with or without user profiles. We propose below
the principles of a simple weighting schema for computing (containment and
structural) edge and node weights:

• Containment edges: For a (data) edge from a term to a textual object,
its weight is an IR score, such as term frequency. If the textual col-
lection is formatted, this IR score could also be assigned to reflect the
importance of a term, e.g., in large font size, in capitalized form, etc.
When the textual collection is structured, higher weights are given to
terms which appear in important places, e.g., title, author’s name, etc.

• Structural edges: The weight of a structural (index) edge is determined
by edge label and by the number of edges with the same label from its
starting node [21]. Please note that if the knowledge base is hierarchi-
cal (which is not the case for WordNet), the level of the edge in the
hierarchy can also be taken into consideration [19].

• Nodes: Assign “object rank” to all object nodes, based on metadata of
objects, including text length, importance or reliability of data source,
its publishing date, query logs, and so on. A PageRank-style weighting
schema could also be adapted for Web documents or inter-connected
textual objects.

– Step 6: If an ordered pair of vertices is connected with two or more edges,
it merges the edges and aggregates the weights. This means that G̃SemIndex

becomes a graph rather than a multi-graph, which simplifies processing.
– Step 7: It removes edge labels and string values of all nodes except V +

i

(searchable terms), since they are not required for processing semantic
queries, which helps improve SemIdex ’s scalability.

Figure 4 illustrates an instance of G̃SemIndex (without edge and node weights)
which is based on the knowledge graph depicted in Figure 2.

3 Executing queries with SemIndex

In this section, we define our query model and present a processing algorithm
to perform semantic-aware search with the help of SemIndex .

3.1 Queries

The semantic-aware queries considered in our approach are conjunctive projection-
selection queries over ∆ of the form πXσP `(∆) where X is a non empty subset

8 A distributional thesaurus is a thesaurus generated automatically from a corpus
by finding words that occur in similar contexts to each other [11, 24].
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Fig. 4. SemIndex Graph after combining the textual collection and semantic knowl-
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of A, ` ∈ N is a query-type threshold, and P is a conjunctive selection predicate
defined as follows.

Definition 4 A selection projection predicate P is an expression, defined on
a string-based attribute A in A, of the following forms: (Aθ a), where a is a
user-given value (e.g., keyword), and θ ∈ {=, like} whose evaluation against
values in dom(A) is defined. A conjunctive selection projection query is made

of a conjunction of selection projection predicates.

According to the value of `, we consider the four following semantic-aware
query types:

– Standard Query: When ` = 1, the query is a standard containment query
and no semantic information is involved.

– Lexical Query: When ` = 2, besides from the previous case, lexical con-
nections, i.e., links between terms, may be involved in the result.

– Synonym-based Query: When ` = 3, synsets are also involved in the
query processing. Note that there is no direct edge between textual object
and synset node.

– Extended Semantic Query: When ` > 4, the data graph of SemIndex
can be explored in all possible ways. When ` grows larger, the data graph
is explored further to reach even more results.

3.2 Query Answer

The answer to q in ∆, denoted as q(∆), is defined as follows.

Definition 5 Given a SemIndex graph G̃, the query answer q(∆) is the set of
distinct root nodes of all answer trees. We define an answer tree as a connected
graph T satisfying the following conditions:

– (tree structure) T is a subgraph of G̃. For each node in T , there exists
exactly one directed path from the node to the root object.



SemIndex: Semantic-Aware Inverted Index 9

– (root object) The tree root is a data node, and it is the only data node in
T , which corresponds to the textual object returned to the user.

– (conjunctive selection) For each query term in S, its corresponding index
node is in the answer tree.

– (height boundary) Height of the tree, i.e., the maximal number of edges
between root and each leaf, is no greater than the threshold `.

– (minimal tree) No node can be removed from T without violating some of
the above conditions.

It can be proven that all leaves in the answer tree are query terms, and the
number of leaves in T is smaller or equal to k, where k is the number of query
terms. Also, the maximal in-degree of all nodes in T is at most k.

O1

W1 W5"car" "light"

When a Stranger Calls,
2006  (plot omitted)

index nodesdata nodes

A: Answer Tree of a Standard Query (l=1) B: Answer Tree of a Lexical Query (l=2) 

C: Answer Tree of a Synonym-base Query (l=3) D: Answer Tree of an Extended Semantic Query (l=4) 

Fig. 5. Answer Trees

According to the value of ` which serves as an interval radius in theSemIndex
graph, various answer trees can be generated for a number of query types, as
follows:

– Standard Query: When ` = 1, the root of the answer tree is linked directly
to all leaves, representing the fact that the result data object contains all
query selection terms directly. An example answer tree is shown in Figure
5-A for the query q: πAσA∈(“car”,“light”)`=1(∆).

– Lexical Query: When ` = 2, the answer tree contains also lexical connec-
tions between selection terms. Figure 5-B is an example answer tree of q:
πAσA∈(“car”,“dark”)`=2(∆).

– Synonym-based Query: When ` = 3, the answer tree contains, in addi-
tion to the two previous cases, the synsets. Note that due to the “minimal
tree” restriction, a synset cannot be a leaf node of an answer tree. Thus, if an
answer tree contains a synset, the height of the tree is no less than 3. An ex-
ample answer tree is shown in Figure 5-C for q: πAσA∈(“pane”,“clean”)`=3(∆).
Synonyms of the two query terms, “zen” and “light”, are also contained in
the result object O1.
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– Extended Semantic Query: When ` > 4, the answer tree contained
additional nodes according to the provided value. An example answer tree
is shown in Figure 5-D for q: πAσA∈(“lsd”,“clean”)`=4(∆).

3.3 Query Processing

Algorithm 2 is the procedure to process semantic-aware queries, given a set of
query terms, terms, and a query-type threshold `. Function expandNode(n,`)
performs the expansion of a node n. Basically, it explores the SemIndex graph
with Dijkstra’s algorithm from multiple starting points (multiple query terms).
For each visited node n, we store its shortest distances from all starting points
(query terms). The path score of a node n to a query term t is the sum of
all weights on index edges along the path between t and n, thus the shortest
distances of n are also the minimal path scores of n to all query terms.

Algorithm 2 SemSearch(terms[], `)

Input:
terms: a set of selection terms
` : a query-type threshold
Output:
out: a set of data nodes

1: for each i ∈ terms do
2: rs = Selecting nodeid from SemIndex with value = i); //selecting index nodes

from the knowledge base as well as missing terms from the textual collection
3: for each nodeid ∈ rs do
4: n = nodes.cget(nodeid); //retrieve or create a node with given id
5: n.initPathScores(); //initialize the path scores of n
6: todo.insert(n); //insert n into todo list
7: end for
8: end for
9: while todo.isNotEmpty() do

10: n = todo.pop(); //retrieve node with minimal structural score
11: expandNode(n,`);
12: end while
13: return out;

For example in Figure 5-C, the query terms are “pane” and “clean”, and
the algorithm starts to expand from two nodes W7 and W3. Path scores of W7

are initialized to be a vector < 0,∞ >, since the shortest distance from W7

to “pane” is 0, but the node is not reachable from “clean”. Similarly, the path
scores of W3 are initially <∞, 0 >. The minimal path scores must be updated
when an edge is explored in the graph. For example, before finding the tree in
Figure 5-B, the path scores of node O1 is < 2,∞ > (assume all edge weights
are equal to 1), and the path scores of W5 are < ∞, 2 >. After exploring the
edge from W5 to O1, the path scores value of O1 becomes < 1, 2 >, and O1

is reachable from all query terms. The algorithm also keeps a todo list, which
contains all nodes to be further expanded. The todo list is ordered on structural
scores of the nodes. We define the structural score of a node n to be the maximal
path score in the tree rooted on n, as shown in the following formula.

sscoren = max
t∈rterms

pathscoren(t) (1)

where rterms is the set of reachable query terms of n. It can be proven that if n
is reachable from every term and all path scores of n are minimal, the structural



SemIndex: Semantic-Aware Inverted Index 11

score of n must be minimal among all trees rooted on n. For each result textual
object, the algorithm always returns the answer tree with minimal structural
score, thus it is not necessary to prune duplicated query results.

4 Experiments

We conducted a set of preliminary experiments to observe the behavior of Se-
mIndex in weighting, scoring, and retrieving results. In this paper, we only
present results related to processing time. We are currently working on exper-
imentally comparing our approach with existing methods.

4.1 Experimental Setup

We ran our experiments on a PC with Intel 2GHz Dual CPU and 2GB memory.
SemIndex was physically implemented in a MySQL 5.1 database with the query
processor written in Java. We downloaded 90,091 movie plots from the IMDB
database9, and used WordNet 3.0 as our semantic knowledge base. We build
SemIndex on plot contents and movie titles, which means that each textual
object is a movie title combined with its plot (cf. Table 2).

Table 2. SemIndex Database Size

Database Name Table Name Table Size Table Cardinality (#Row)

IMDB Data IMDB 56 M 90K

WordNet

Data Adjective 3,2M 18K
Data Verb 2,8M 13K
Data Noun 15,3M 82K

Data Adverb 0,5K 3K
Index Verb 0,5M 11k

Index Adverb 0,2M 3,6K
Index Noun 4,8M 117K

Index Adjective 0,8M 21k
Index Sense 7,3M 207K

SemIndex
Lexicon 5.8M 146K

Neighbors 116M 230K
PostingList 340M 740K

4.2 Query Processing

In order to test the performance of SemIndex , we manually picked two groups
of queries, shown in Table 3. In the first query group Q1, from Q1−1 to Q1−8,
the height of the answer trees is bounded, the number of returned results is
limited to 10, and each query contains from 2 to 5 selection terms. In the second
group Q2 group, from Q2 − 1 to Q2 − 4, queries share the same query terms
with different levels of tree height boundary and with an unlimited number of
query results. All queries were processed 5 times, retaining average processing
time. Detailed statistics are shown in Table 4.

Figure 6 shows query processing time to retrieve the 10000 results of Q2−4.
Initial response time is the processing time to output the first result. We break
the latter into CPU and I/O time in order to better evaluate the processing
costs of the algorithm. Minimal height is the height of the first returned answer
tree while the maximal one is the height of the last answer tree allowing to reach
the number of expected results. k, NE and NO are respectively the number of
query terms, visited entity nodes, and object nodes during query processing.

9 http://imdb.com
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Table 3. Sample Queries

Query Height Max. N# Selection
Id Boundary of Results Terms

Q1-1 4 10 car window
Q1-2 4 10 reason father
Q1-3 4 10 car window clean
Q1-4 4 10 apple pure creative
Q1-5 4 10 car window clean music
Q1-6 4 10 death piano radio war
Q1-7 4 10 car window clean music Tom
Q1-8 4 10 sound singer stop wait water
Q2-1 1 unlimited car window clean
Q2-2 2 unlimited car window clean
Q2-3 3 unlimited car window clean
Q2-4 4 unlimited car window clean
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Figure 14: Processing Time (Q2-4)

4.3 Query Processing

Query processing time for retrieving the 100 results of Q2 − 4 is shown in
Figure 14. We also show query processing time as well as other statistics
of the sample queries in Table 6. Note that initial response time is the
processing time to output the first result, minimal and maximal height are
the height of the first and last returned answer tree. From the table, we
see that all queries are processed within 2 seconds except for Q2-4, which
retrieves 16830 results in about half minute. Initial response time of Q1-5
and Q1-6 are quite different. Both of them contain 4 terms and all statistics
of the two queries are similar except the minimal tree height.

To examine CPU and I/O cost of the processing algorithm, we plot time
spent on processing SQL queries as well as other time in Table 7. k, NE

and NO are the number of query terms, visited entity nodes and object
nodes during query processing. Recall that CPU cost of our algorithm is
O((NE +NO)×k2), which can be examined from the first query group. Also
note that the total number of textual objects in our plot dataset is 90K,

30

Fig. 6. Processing Time (Q2-4)

From Table 4, we see that most queries are processed within 2 seconds,
which is positively encouraging, except for Q2-4, since it is of an extended
semantic type, which retrieves 16830 results in about a half minute. In fact,
while the total number of textual objects in our plot dataset is around 90K,
Q2-4 visits about 80K of object nodes which explains the significant increase in
time. Also, we realize that the initial response times of Q1-5 and Q1-6 are quite
different. Both of them contain 4 terms and all statistics of the two queries are
similar except the minimal tree height. We also observe that for the second
query group, the CPU time is dominated by the SQL time, while for the first
query group, CPU cost is dominant. We analyzed the difference and found that,
for the second query group, the algorithm cannot stop until all visited entity
nodes are queried and the whole search space is examined. However for the
first query group, since the number of query results is limited, the algorithm
stops whenever it has found enough answer trees. Thus, for the first group of
queries, although large NE and NO suggest large CPU time to create those
nodes in memory, yet most of the nodes are not revisited for expansion before
the algorithm stops, which significantly reduces overall query processing time.

Table 4. Processing Statistics

Initial Total Min. Max. # of SQL CPU k NE NO
Queryid Response Process Height Height Results Time (ms) Time (ms)

Time (ms) Time (ms) Returned

Q1-1 26 27 1 1 10 15 12 2 399 3346
Q1-2 39 40 1 1 10 21 19 2 252 9386
Q1-3 25 148 1 3 10 87 60 3 2528 7646
Q1-4 90 315 4 4 10 236 79 3 2812 11543
Q1-5 694 700 4 4 10 224 475 4 7849 32776
Q1-6 175 511 3 4 10 193 318 4 5071 38988
Q1-7 1223 1371 4 4 10 643 728 5 9505 50747
Q1-8 1469 1555 4 4 10 467 1076 5 12449 45715
Q2-1 18 18 1 1 2 11 7 3 3 3803
Q2-2 25 208 1 2 6 191 16 3 533 4394
Q2-3 21 842 1 3 515 678 164 3 1564 34564
Q2-4 200 31991 1 4 16830 27793 4198 3 19007 79997
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5 Related Work

Including semantic processing in inverted indexes to enhance data search ca-
pabilities has been investigated in different approaches: i) including semantic
knowledge into an inverted index, ii) including full-text information into the
semantic knowledge base, and iii) building an integrated hybrid structure.

The first approach consists in adding additional entries in the index struc-
ture to designate semantic information. Here, the authors in [12] suggest ex-
tending the traditional (term, docIDs) inverted index toward a (term, context,
docIDs) structure where contexts designate synsets extracted from WordNet,
associated to each term in the index taking into account the statistical oc-
currences of concepts in Web document [1]. An approach in [26] extends the
inverted index structure by adding additional pointers linking each entry of
the index to semantically related terms, (term, docIDs, relatedTerms). Yet, the
authors in [12, 26] do not provide the details on how concepts are selected from
WordNet and how they are associated to each term in the index.

Another approach to semantic indexing is to add words as entities in the
ontology [1, 18, 22]. For instance, adding triples of the form word occurs-in-
context concept, such that each word can be related to a certain ontological
concept, when used in a certain context. Following such an approach: i) the
number of triples would naturally explode, given that ii) query processing would
require reaching over the entire left and the right hand sides of this occurs-in-
context index, which would be more time consuming [1] than reading on indexed
entry such as with the inverted index.

A third approach to semantic indexing consists in building an integrated
hybrid structure: combining the powerful functionalities of inverted indexing
with semantic processing capabilities. To our knowledge, one existing method
in [1] has investigated this approach, introducing a joint index over ontologies
and text. The authors consider two input lists: containing text postings (for
words or occurrences), and lists containing data from ontological relations (for
concept relations). The authors tailor their method toward incremental query
construction with context-sensitive suggestions. They introduce the notion of
context lists instead of usual inverted lists, where a prefix contains one index
item per occurrence of a word starting with that prefix, adding an entry item
for each occurrence of an ontological concept in the same context as one of
these words, producing an integrated 4-tuples index structure (prefix, terms)
↔ (term, context, concepts). The method in [1] is arguably the most related
to our study, with one major difference: the authors in [1] target semantic full-
text search and indexing with special emphasis on IR-style incremental query
construction, whereas we target semantic search in textual databases: building
a hybrid semantic inverted index to process DB-style queries in a textual DB.

6 Conclusions and Future Work

In this paper, we introduce a new semantic indexing approach called SemIndex ,
creating a hybrid structure using a tight coupling between two resources: a
general purpose semantic network, and a standard inverted index defined on
a collection of textual data, represented as (multi)graphs. We also provide an
extended query model and related processing algorithms, using SemIndex to al-
low semantic-aware querying. Preliminary experimental results are promising,
demonstrating the scalability of the approach in querying a large textual data
collection (IMBD) coined with a full-fledge semantic knowledge base (Word-
Net). We are currently completing an extensive experimental study to evaluate
SemIndex ’s properties in terms of: i) genericity: to support different types of
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textual (structured, semi-structured, NoSQL) databases, ranking schema, and
knowledge-bases, ii) effectiveness: evaluating the interestingness of semantic-
aware answers from the user’s perspective, and iii) efficiency: to reduce index’s
building and updating costs as well as query processing cost. The systems phys-
ical structure (in addition to the logical designs provided in this paper) will also
be detailed in an upcoming study.
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