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Abstract

Genotypes are currently widely used in animal breeding programmes to enhance the 
speed of genetic progress. With sufficient data, a Genome-Wide Association Study 
(GWAS) can be performed to identify informative markers. The aim of this study was 
to investigate the genetic background of health (footrot and mastitis) and production 
(birth weight, weaning weight, scan weight, and fat and muscle depth) traits using the 
available phenotypic and Single Nucleotide Polymorphism (SNP) data collected on the 
UK Texel sheep population. Initially, 10 193 genotypes were subject to quality control, 
leaving 9 505 genotypes for further analysis. Selected genotypes, recorded on four 
different Illumina chip types from low density (15k SNPs) to high density (606 006 
SNPs), were imputed to a subset of 45 686 markers from 50k array, distributed on 27 
chromosomes. Phenotypes collected on 32 farms across the UK for footrot and 
mastitis and extracted from the UK National database (iTexel) for the production traits 
were used along with pre-estimated variance components to obtain de-regressed 
breeding values and used to perform GWAS. Results showed three SNPs being 
significant on the genome-wise level (‘OAR8_62240378.1’ on chromosome 8 for birth 
weight, ‘s14444.1’ on chromosome 19 for weaning weight and ‘s65197.1’ on 
chromosome 23 for scan weight). Fourteen subsequent SNPs were found to be 
significant at the chromosome-wise level. These SNPs are located within or close to 
previously reported QTLs impacting on animal health (such as faecal egg count or 
somatic cell count) and production (such as body or carcass weight and fat amount). 
These results indicate that the studied traits are highly polygenic with complex genetic 
architecture.

Keywords

Genome-Wide Association Study, footrot, mastitis, live weight, small ruminants

Implications

Combining health traits with conventional production traits into breeding programmes 
will lead to improvements in flock health and productivity. Production traits can be 
collected relatively easily, whilst the collection of phenotypes for health traits is more 
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difficult and may be limited by age and/or sex. Genome-Wide Association Study may 
identify informative molecular markers that explain measurable amounts of a trait 
variance. Including this information in estimation of breeding values may increase 
accuracy and enhance the rate of progress from genetic selection. This study confirms 
the polygenic architecture of investigated traits with a small number of Single 
Nucleotide Polymorphisms that explain small amount of variation.

Introduction

To select the best animals for the future generations, often, a national breeding 
programme is created where all the animals from a particular breed can be assessed 
together (if genetic connectivity is at a satisfactory level). The use of molecular 
genetics makes it possible and cheaper than ever to incorporate information coming 
from genotypes into such a programme, allowing for the production of genomic 
breeding values (gEBV). Genotyped animals not only benefit from the higher reliability 
of gEBVs compared to conventionally obtained Estimated Breeding Values (EBVs) 
(Kaseja et al., 2023), but can also benefit from parentage verification, screening for 
congenital defects and disease, and the opportunity to enhance genetic improvement 
if chromosomal regions containing loci affecting particular traits of interests are 
discovered (Andersson 2001). For this to be enabled, genotypes along with 
phenotypes are used to undertake a Genome-Wide Association Study (GWAS) to 
detect potential Quantitative Trait Loci (QTL) affecting the performance of an animal 
by indicating the DNA polymorphism and genes associated with a particular trait. The 
assumption of GWAS is to detect statistical associations between the trait of interest 
and any of the markers, which are often single nucleotide polymorphisms (Goddard 
and Hayes 2009).

Several studies using GWAS have been conducted on many different livestock 
species/breeds, revealing some QTLs associated for example with meat production in 
Merino sheep (Al-Mamun et al. 2015; Cavanagh et al. 2014), early age weight traits in 
Baluchi sheep (Gholizadeh et al., 2015), fatty acid composition (Karamichou et al., 
2006), birth weight in Lori-Bakhtiari sheep (Ghasemi et al. 2019), postweaning weight 
traits in Lori-Bakhtiari sheep (Almasi et al., 2021) and somatic cell count in Valle del 
Belìce dairy sheep (Sutera et al., 2021). Broadly speaking, body weight in sheep is 
known to be influenced by many known genes, such as GF-I, Leptin, MSTN or ADRB3 
(Forrest et al., 2007; Gholibeikifard et al., 2013). Comprehensive studies performed 
on many different sheep breeds focused especially on genome regions known to be 
advantageous for meat production, such as the OAR2 region containing myostatin 
gene responsible for double muscling (Broad et al., 2000; Johnson et al., 2009; 
Marshall et al., 1999; Hadjipavlou et al., 2008; Telebi et al., 2022).

SNPs detected as a result of GWAS studies that are within or close to the genes of 
interest can affect the trait, hence these SNPs are important for animal breeding 
because including them in the genetic model for prediction of breeding values 
increases the accuracy of prediction. 

The aim of the present study was to investigate the genetic background of health 
(footrot and mastitis) and production (birth weight, weaning weight, scan weight, and 
fat and muscle depth) traits in UK Texel meat sheep utilising detailed phenotypic and 
Single Nucleotide Polymorphism data collected over five years on 32 farms across the 
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UK. We estimated genomic breeding values and identified genomic regions that can 
potentially impact on the traits of interest. To the authors’ knowledge, this was the first 
such study incorporating nationwide commercially collected production and health 
phenotypes for meat sheep. 

Material and methods

Genotypic data

Initially, 10 193 genotypes of Texel sheep reared in 1 578 farms in the UK, collected 
between January 2015 and March 2019 were available for this research. Animals had 
been genotyped with four different DNA arrays, including 1 180 genotypes on the 
Illumina OvineHD BeadChip based on 606 006 SNPs (HD), 2 894 genotypes on 
Illumina OvineSNP50 based on 54 241 SNPs (50k), 2 463 genotypes on Illumina 
OvineLD BeadChip based on 15 000 SNPs (LDv1) and 3 656 genotypes on Illumina 
OvineLD BeadChip based on 16 560 SNPs (LDv2). Selection of animals for 
genotyping was random and included both adult and young stock. Genotypes were 
subject to standard quality control as described in (Kaseja et al. 2022), leaving 9 505 
genotypes for further analysis.

Since the genotypes were collected on four arrays with different SNPs, all genotypes 
were imputed to a sub-set of SNPs from the 50k array, resulting in 45 686 markers 
distributed on 27 chromosome pairs (26 autosomes and one sex chromosome X), after 
removing SNPs that were not in Hardy-Weinberg equilibrium, had minor allele 
frequency of <0.05, or had a call rate below 0.98. For the purpose of GWAS, the 
position of markers was determined using a map provided for Illumina OvineSNP50, 
reduced to the subset of SNPs selected for analysis. FindHap V3 software was used 
for imputation (VanRaden et al. 2011).

Phenotypic data

Two datasets were analysed in this study: health traits scores (footrot, FRT and 
California Mastitis Test, CMT) and production traits (birth weight, BWT, weaning 
weight, WW, scan weight, SWT, muscle depth, MD and fat depth, FD). Health trait 
data were collected between 2015 and 2019 on 32 farms across the UK on 3 434 
genotyped milking females (CMT) and 4 506 genotyped animals (FRT) by the Texel 
Sheep Society. Production phenotypes were extracted from the UK national database 
iTexel (https://www.itexel.uk). Live weights were collected at birth (BWT), around eight 
week of age (WW) and during ultrasound scanning (around 21 weeks of age; SWT, 
MD and FD). Health traits were scored on a five-point scale, ranging from zero 
indicating no infection to four for the most severe level of infection, as described in 
Kaseja et al. (2023). CMT was used as the proxy trait to mastitis, because of its high 
correlation with milk somatic cells count (McLaren et al. 2018), which is a widely 
accepted mastitis indicator. All records underwent quality control to eliminate potential 
errors, by looking at the range (minimum and maximum values) of recorded traits as 
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well as the variance and standard deviation within the flock to identify potential errors 
from data entry or flocks with no variance for particular traits.

Although the production traits were recorded as a single measurement per trait per 
animal, health traits were recorded multiple times, specifically between one and four 
times for CMT (4 787 measurements) and one and six times for FRT (9 123 
measurements). Thus, health traits were analysed using all the available records with 
a repeatability model. As the health traits were not normally distributed, they were 
subject to transformation using the natural logarithm transformation of the sum of 
scores (+1) for either all hooves (FRT) or both sides of udder halves (CMT), collected 
during one measuring event, as described by McLaren et al. (2018) and Kaseja et al. 
(2023). 

Pedigree

Pedigree records were extracted from the iTexel database. For the production traits, 
all animals having records on at least one of the traits were extracted together with an 
eight-generation pedigree, totalling 821 693 animal records. For the health traits, all 
the animals recorded for at least one health trait were extracted with eight-generation 
pedigree, totalling 208 505 animals. Where possible, the pedigree was checked for 
correctness using the opposing homozygote method (Hayes, 2011) and in case of an 
error – the parent was corrected or changed to being unknown, as described in detail 
by Kaseja et al. (2022).

Calculation of estimated breeding values and de-regressed estimated breeding 
values 

Estimated breeding values (EBVs) of all animals for the traits described above were 
de-regressed to develop phenotypes for the ensuing GWAS. This was to remove the 
potential bias associated with animals having different number and type of relatives 
influencing the breeding value estimate. 

The following mixed model was used:

y = Xb + Za + Wp + e

where y is vector of observations; b is the vector of fixed effects; a is a vector of 
random additive genetic effects, solutions of which constituted animal EBV for each 
trait; p is vector for random permanent environment effect; and e is a vector of random 
residual effects. Matrices X, Z and W are incidence matrices relating records to their 
respective effects. Random effects were assumed to be normally distributed with the 
mean of zero. Exact fixed and random effects for each separate trait analysis and 
respective variance components used for the estimation of EBVs were reported in 
Kaseja et. al (2023).

Subsequently, de-regressed proofs based on Jairath et al. (1998) and Schaeffer 
(2001) were derived for each individual and trait, with an EBV reliability of at least 0.30. 
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De-regressed EBVs were then used as input variables to the ensuing GWAS to (a) 
maximise information from more than one source (i.e. multiple measurements on the 
health traits and/or information from relatives) and (b) to include as many phenotypes 
of genotyped animals as possible. Both EBV calculation and de-regression were 
performed in the software package MiX99 (MiX99 Development Team, 2022).

Genome-Wide Association Analysis

The GWAS was performed using multi-locus mixed model algorithm (Segura et al. 
2012) implemented in the R (R Development Core Team, 2022) package 
‘statgenGWAS’ (Bart-Jan van Rossum et al., 2022). An additive genetic model was 
used, where the major homozygous genotype was coded as zero, heterozygous as 
one, and minor homozygous as two. The input (de-regressed EBVs) was calculated 
based on the model described above, by adjusting for fixed effects using BLUP (Best 
Linear Unbiased Predictor) which already accounted for fixed and random effects 
(hence no covariate matrix in GWAS was used).

Bonferroni correction was applied to obtain significance thresholds for each analysed 
trait. Markers were considered as being significant at the genome-wise level if the –
log10(p-value)>–log10(0.05/n), where n=45 686 (number of markers), giving the 
threshold of 5.96. Chromosome-wise significance of the marker was assessed by 
having –log10(p-value)> –log10(0.05/n), where n is the number of markers on each 
chromosome. The proportion of the variance explained by the SNP was computed as 
β2SNP∗var(SNP)/var(pheno), where β  is solution vector of coefficients of the SNP fixed 
effect (van Rossum, 2022). Presence of inflation was examined by calculating the 
Inflation factor, lambda, as the observed median value of the chi square test for the 
null markers divided by the expected median value (Hinrichs, Larkin, and Suarez 
2009).

Significant SNPs were checked for the reported QTLs in 
https://www.animalgenome.org/. Candidate genes located near the genome-wise 
significant SNPs were identified using the Ensembl database and gene annotation 
information on the sheep genome version Oar_v3.1 (www.ensembl.org/biomart/). 
Candidate regions for gene detection were defined within 400Kb windows, 200Kb 
downstream and 200Kb upstream of the genome-wise significant SNPs position.

Classification of genes in accordance with biological function was performed using the 
Database for Annotation, Visualisation and Integrated Discovery (DAVID) v6.8 tool 
(Huang et al., 2009). Candidate genes were further analysed using the GeneCards 
(Stelzer et al., 2016), the Ensembl Genome Browser (Yates et al., 2019) and the NCBI 
database resources (Sayers et al., 2020).

Results

Descriptive statistics for the collected phenotypes of health and production traits, as 
well as the de-regressed EBVs, are summarized in Table 1 and Table 2, respectively. 
In total, between 5 855 (for CMT) and 9 173 (for SWT) ‘pseudo’ phenotypes (de-
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regressed EBVs) for genotyped animals were used to perform GWAS. This is 
significantly more than the available number of raw individual phenotypic records. For 
example, for health traits there were only 4 506 and 3 434 genotyped animals with 
phenotype, compared to 7 113 and 5 855 with pseudo-phenotypes for FRT and CMT, 
respectively. The increase in the number of genotyped-phenotyped animals is also 
seen for the production traits, where the number increased from 2 194 to 8 620 for 
BWT, from 5 164 to 8 987 for WW, from 5 685 to 9 173 for SWT, from 5 990 to 9 145 
for MD and from 5 990 to 9 153 for FD. This is especially important for the health traits 
where phenotypes are available only for adult females, and after using pseudo-
phenotypes, some sires were also included in the dataset. Estimated Breeding Values 
were calculated and were normally distributed. Figure 1 shows the distribution of de-
regressed EBVs used as the input for GWAS and only for animals with reliability of 
>0.30.

Stratification of this particular population that could affect the results of the GWAS 
have already been reported using principal component analyses (Kaseja et. al 2023). 
The results from that analysis of the population stratification did not reveal any outliers 
included in this particular dataset, hence all genotyped animals with available 
phenotypes were used in the current GWAS.

The Quantile-Quantile (Q-Q) plots of expected vs observed −log10(p-values) obtained 
as part of the GWAS analysis are shown in Figure 2. The Q-Q plots indicate that there 
are significant marker effects only for BWT, WW and SWT. Inflation factor lambda for 
analysed traits were 1.01 for CMT and FD, 1.02 for FRT, BWT, WW and MD, and 1.03 
for SWT thus implying the absence of any significant inflation (Hinrichs et al., 2009).

Manhattan plots for the traits are shown in Figure 3. Only three genome-wise 
significant (Bonferroni-adjusted p-values < 0.05) markers were identified and are 
detailed in Table 3. SNP ‘OAR8_62240378.1’ on chromosome eight explains 0.21% 
of variance for BWT, SNP ‘s14444.1’ on chromosome 19 was significant for WW, 
explaining 0.11% of variance and SNP ‘s65197.1’ was found significant on the 
genome-wise level on chromosome 23 for SWT, explaining 0.12% of variance.

Fourteen more SNP markers found to be significant at the chromosome level are 
summarised in Table 4. Interestingly, some of these SNPs were remarkably close to 
reaching the genome-wise threshold (5.96); for example, SNP (‘OAR3_192372203.1’) 
located on chromosome three was significant for FD and had a –log10(p-value) equal 
to 5.67; similarly SNPs on chromosomes 21 (‘OAR21_28724590.1’) and 23 
(‘s36409.1’) that were significant for SWT and FRT respectively, had –log10(p-value) 
equal to 5.50. the number of chromosome-wise significant SNPs discovered for all the 
examined traits varied between one (for BWT, FD and MD) and three (for FRT, WW 
and SWT). Many of the identified SNPs are located in regions already reported for 
health and production traits, as summarized in Table 4.

Results confirmed four genes neighbouring genome-wise significant SNPs. Three 
genes: interferon gamma receptor 1 (IFNGR1, Ensembl gene ID: 
ENSOARG00000000510), interleukin 22 receptor subunit alpha 2 (IL22RA2, Ensembl 
gene ID: ENSOARG00000000475) and oligodendrocyte transcription factor 3 
(W5NX34_SHEEP) were located 119Kb downstream, 145Kb downstream and 174Kb 
upstream of the significant SNP for BWT on chromosome eight, respectively. One 
gene, MAM domain-containing protein (W5PCX1_SHEEP), was located 65Kb 
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upstream of the significant SNP for WW on chromosome 19. No previously reported 
annotated genes were found close to the significant SNP for SWT on chromosome 23.

Discussion

The aim of the present study was to investigate molecular markers (SNPs) that were 
significantly associated with health and welfare (FRT and CMT) and production (BWT, 
WW, SWT, MD and FD) traits in the UK Texel sheep population. De-regressed EBVs 
of individual animals for each trait, which were used in this study, are widely 
considered in GWAS as they may constitute informative aggregate animal phenotypes 
of multiple records per animal, adjusted for fixed effects and may also be available for 
genotyped animals without their own phenotypic records (Mucha et al. 2018; Ekine et 
al. 2014). The increase seen in the number of records used to perform GWAS for traits 
such as BWT (+6 426) or CMT (+2 421) is undoubtedly desirable, thereby making the 
breeding programme more cost-effective. At the same time, caution needs to be 
exercised in the de-regression process of using EBVs with low accuracy, as this may 
inflate the resulting de-regressed EBVs, and increase the probability of false positives 
in the ensuing GWAS (Ekine et al. 2014). In the present study, a minimum EBV 
reliability of 0.30 was used to address the issue above, therefore we are confident that 
our approach has led to genuine results. For production traits, population data 
including 821 693 animals collected within the UK national sheep evaluation 
programme were used, resulting in generally high EBV reliability values. However, the 
number of records for footrot and mastitis was limited to females included in the 
present study. The low estimated heritability of health traits (0.07 and 0.12 for CRT 
and CMT, respectively, Kaseja et al., 2023) has likely limited the number of highly 
reliable EBVs. The consequence of this has led to a reduction in the number of 
genotyped animals that could potentially have been used for the GWAS studies. 
Regardless, there are still many more animals following the steps taken here, 
compared to the actual number of animals having both genotype and phenotype 
available on either of these two traits. Furthermore, by using the de-regressed EBVs 
the health trait data are not only limited to adult females thereby enabling males to be 
included. 

Our results indicate that the traits in this analysis were highly polygenic and mainly 
controlled by multiple genes, each having a modest effect. Nevertheless, three 
genome-wise and 14 chromosome-wise significant SNPs were detected; with some of 
the latter very close to the genome-wise threshold. Some of the detected genome-
wise significant SNPs are situated within or close to previously reported QTLs. SNP 
‘OAR8_62240378.1’ on chromosome eight, significant for BWT, is within the QTL for 
‘Internal fat amount’ reported for (Awassi×Merino)×Merino sheep (Cavanagh et al. 
2014); SNP ‘s14444.1’ on chromosome 19, significant for WW, is situated around 
30Mbp away from any previously identified region. The closest reported QTLs are for 
‘leg length’, associated with Myostatin gene, reported for Soay sheep by (Hernández-
Sánchez et al. 2010) and a QTL for ‘internal fat amount’ reported by (Cavanagh et al. 
2014). Unfortunately, SNP ‘s65197.1’ on chromosome 23, that is significantly 
associated with SWT, is not within or near any known QTL for health or production 
traits in sheep. Regrettably none of the significant SNPs identified in the current study 
were within, or close to, a significant region or previously reported genes (Golden Helix 
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GenomeBrowse® visualization tool (Version 2.x) [Software]. Bozeman, MT: Golden 
Helix, Inc. Available from http://www.goldenhelix.com).

Interestingly, previous research for footrot on part of the dataset used in the present 
study, including 3 573 records obtained from 2 229 animals that were genotyped with 
the 50k array, also did not reveal any genome-wise significant SNPs (Mucha et al., 
2015). Other research conducted on lameness (caused by bovine footrot) in different 
species, such as Holstein–Friesian dairy cattle, acknowledge that the genomic 
architecture of this particular trait is very complex with the impact of several genes all 
having a role in disease presentation (Sánchez-Molano et al. 2019).

Similarly, several studies of mastitis involving both dairy and meat sheep breeds, as 
well as cattle indicate different QTL regions associated with somatic cell count, 
confirming that the genetic architecture of this trait is indeed complex (Oget, et al. 
2019; Banos et al. 2017; Conington et al. 2008; Mucha et al. 2022). A study by Sutera 
et al. (2021) used de-regressed breeding values to identify genomic regions 
associated with somatic cells count in Valle del Belice dairy sheep and reported eight 
significant SNPs, of which one at the genome-wise significance level. None of these 
SNPs were located within known QTLs related to mastitis, however several candidate 
genes associated with immunity or udder conformation were found close to the SNPs.

Similar results can be seen in multiple studies in sheep investigating body weight or 
meat quality traits (Matika et al. 2016; Ghasemi et al. 2019; Duijvesteijn et al., 2018), 
however traits such as body weight tend to be influenced by fewer QTLs that explain 
a substantial part of the additive genetic variance, which can be seen across many 
mammal species (Al-Mamun et al. 2015). A study by Garza Hernandez et al. (2018) 
performed on 384 UK Texel rams revealed no genome-wise significant SNPs 
associated with growth, carcass composition nor examined health and welfare traits. 
However, Hernandez’s research disclosed some significant chromosome-wise SNPs, 
that explained a small proportion of the variance, thus confirming the complexity of 
these traits (Hayes and Goddard, 2010).

Of the three genes neighbouring genome-wise significant SNPs located on 
chromosome eight, two (IFNGR1 and IL22RA2) are reported as novel genes for 
protein coding in Ensembl database (Jiang et al., 2014), not having previously been 
connected to animal body weight. Future genomic association analyses based on 
denser DNA arrays may allow new variants to be discovered.

This research used a subset of the SNPs available on the 50k matrix after the quality 
analysis (n = 45 686 SNPs), however, according to the research conducted on the 
Lacaune dairy sheep population by (Oget et al. 2019), using the 50k SNP array can 
increase the accuracy of EBVs by 18.02% when comparing conventional BLUP and 
weighted single-step method, when the emphasis of SNPs in regions with strong effect 
on traits is included in the model. This is in line with research performed on dairy cattle 
by (Mouresan et al. 2019), which has led to an increase in accuracy especially for 
traits related with fat content in milk.

The current study suggests that health and welfare as well as production traits in Texel 
sheep have a polygenic background. This supports the choice of single-step method 
for genomic evaluation of this breed which is currently under consideration for 
exploitation commercially. Further research including more genotyped and 
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phenotyped animals and, perhaps denser DNA arrays or whole-genome sequence 
data may lead to discovery of new potentially important SNPs in linkage disequilibrium 
with QTLs of interest (Calus, 2010). These important SNPs could then receive 
increased emphasis (weight) in the genomic evaluation process to improve the 
accuracy of genomic selection in Texel sheep (Liu et al. 2020; Kabanov et al. 2022; 
Zhang et al. 2016). The present research focussed on the association between 
individual SNPs and meat sheep production and health. Future work may build on this 
research to investigate genomic regions (SNPs windows) of varying lengths that may 
explain measurable proportions of the genetic variance (Fragomeni et al., 2014).
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Table 1: Number of records (N) and descriptive statistics for genotyped Texel animals’ 
phenotypes 

Trait N Mean SD Minimum Maximum

*Footrot (FRT) 9 123 0.35 0.63 0.00 2.83

*California Mastitis Test (CMT) 4 787 0.70 0.74 0.00 2.20

Birth weight (BWT, kg) 2 194 5.16 1.23 1.64 8.70

Weaning weight (WW, kg) 5 164 26.57 5.06 9.60 44.40

Scan weight (SWT, kg) 5 685 51.28 10.12 19.80 84.20

Muscle depth (MD, mm) 5 590 29.49 3.69 14.20 43.00

Fat depth (FD, mm) 5 590 2.82 1.36 0.25 9.97

*Log transformed

Table 2: Heritability (h2), repeatability (Rep), number of Texel sheep with records (N) 
and descriptive statistics for de-regressed Estimated Breeding Values

Trait h2* Rep N Mean SD Minimum Maximum

Footrot (FRT) 0.12 0.34 7 113 0.02 0.02 -0.16 0.18

California Mastitis Test (CMT) 0.07 0.22 5 855 0.01 0.03 -0.13 0.18

Birth weight (BWT, kg) 0.10 8 620 0.22 0.06 -0.15 0.62
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Weaning weight (WW, kg) 0.09 8 987 1.51 0.43 -1.06 3.97

Scan weight (SWT, kg) 0.33 9 173 6.14 2.26 -3.49 14.19

Muscle depth (MD, mm) 0.30 9 145 1.48 1.07 -1.54 6.64

Fat depth (FD, mm) 0.31 9 153 -0.11 0.32 -1.45 1.14

*Heritability reported in Kaseja et al. (2023)
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Table 3: Summary of genome-wise significant Single Nucleotide Polymorphisms (SNPs) 

Trait SNP name Chromosome –log10(p-
value)

Variance 
explained (%) Nearest QTL/gene

BWT OAR8_62240378.1 8 6.59 0.21 Within the internal fat amount QTL (Cavanagh et al. 2014)

WW s14444.1 19 6.82 0.11 Leg length and internal fat amount QTLs on the same chromosome, but 
distanced (>30Mbp) (Hernández-Sánchez et al. 2010)

SWT s65197.1 23 7.43 0.12 N/A

BWT = birth weight; WW = weaning weight; SWT = scan weight; N/A = no QTLs/genes reported; QTL = Quantitative Trait Loci

Table 4: Summary of chromosome-wise significant Single Nucleotide Polymorphisms (SNPs)

Chromosome Chromosome-wise 
significance threshold Trait SNP name –log10(p-

value) Nearest QTL for health/meat production trait

3 4.92 FD OAR3_192372203.1 5.67 ‘Body weight (56 weeks)’ (Raadsma et al. 2009)

10 4.50 SWT OAR10_9706403.1 4.65
Distanced (+5Mbp): Meat traits QTLs: ‘carcass bone percentage’, 
‘carcass fat percentage’, ‘fat weight in carcass’, ‘lean meat yield 
percentage’ (Cavanagh et al. 2010)
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MD OAR11_32227171.1 4.89 ‘Internal fat amount’, ‘hot carcass weight’, ‘slaughter body weight’ 
(Cavanagh et al. 2010)

11 4.30

BW OAR11_5688066.1 4.53 ‘Internal fat amount’, ‘hot carcass weight’ (Cavanagh et al. 2010)

SWT s22731.1 4.87 Within QTL ‘bone weight in carcass’ and ‘total bone’ (Cavanagh et al. 
2010)

14 4.29

CMT s08817.1 5.16 Within meat traits QTL as above, and health traits: ‘Nematodirus 
FEC1’ (Davies et al. 2006) and ‘Fecal egg count’ (Silva et al. 2012)

15 4.45 WW s60057.1 4.65 Within QTL for ‘Fecal egg count’ (Silva et al. 2012)

16 4.43 WW OAR16_52790463.1 4.48
Within meat traits QTL: ‘lean meat yield percentage’, ‘dressing 
percentage’, ‘subcutaneous fat area and fat thickness’ and ‘body 
weight at slaughter’ (Cavanagh et al. 2010)

17 4.39 CMT OAR17_32936496.1 4.51
Within QTLs for ‘Fecal egg count’ (Silva et al. 2012) and ‘aseasonal 
reproduction’ (Mateescu and Thonney 2010), 14Mbp from ‘somatic 
cell score’ QTL (Gutiérrez-Gil et al. 2018)

19 4.31 FRT OAR19_22759405.1 4.43 No meat production or health traits QTLs reported on this 
chromosome

21 4.19 SWT OAR21_28724590.1 5.50 Within QTLs for ‘average daily gain (birth-43, 43-56, 56-83 weeks)’ 
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OAR21_31718415.1 4.21
and ‘body weight (at 43, 56 and 83 weeks)’ (Raadsma et al. 2009)

22 4.26 WW OAR22_13469217.1 4.38 Within the QTL for ‘somatic cell score’ (Raadsma et al. 2009)

23 4.28 FRT s36409.1 5.50 No QTLs are reported on chromosome 23 for sheep

26 4.21 FRT s37597.1 5.23 QTLs for health traits ‘eggs per worm’, ‘worm count’ or ‘Haemonchus 
Contortus FEC2’ (Marshall et al. 2009) reported within +7Mbp

FRT = footrot, CMT - california mastitis test; BWT = birth weight; WW = weaning weight; SWT = scan weight; MD = muscle depth; FD = fat depth; QTL = 
Quantitative Trait Loci
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Figure 1: Distribution of de-regressed Estimated Breeding Values used as input to 
Genome-Wide Association Study for UK Texel sheep

FRT = footrot; CMT = California Mastitis Test; BWT = birth weight; WW = weaning 
weight; SWT = scan weight; MD = muscle depth; FD = fat depth
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Figure 2: Quantile-quantile (Q-Q) plots of genome-wise association results for health 
and production traits for UK Texel sheep
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FRT = footrot; CMT = California Mastitis Test; BWT = birth weight; WW = weaning 
weight; SWT = scan weight; MD = muscle depth; FD = fat depth
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Figure 3: Manhattan plots of genome wide association study for health and production 
traits in Texel sheep. −log10(P-values) for each marker are shown on the vertical axis, 
chromosome numbers are indicated on the horizontal axis. The dashed black line 
indicates the genome-wise significance threshold (5.96). Red dots indicate significant 
SNP (above the threshold).
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FRT = footrot; CMT = California Mastitis Test; BWT = birth weight; WW = weaning 
weight; SWT = scan weight; MD = muscle depth; FD = fat depth
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Highlights

 This study analysed the genetic basis of footrot, mastitis and production traits. 
 Results showed these traits to be highly polygenic with complex genetic 

architecture.
 A total of 12 significant Single Nucleotide Polymorphisms  were associated with 

production traits.
 A subsequent five significant Single Nucleotide Polymorphisms were 

associated with health traits.
 The use of such whole genomic information enhances selection decision-

making.


