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Abstract—Spatiotemporal satellite image fusion (STIF) has 

been widely applied in land surface monitoring to generate high 

spatial and high temporal reflectance images from satellite sensors. 

This paper proposed a new unmixing-based spatiotemporal fusion 

method that is composed of a self-trained random forest machine 

learning regression (R), low resolution (LR) endmember 

estimation (E), high resolution (HR) surface reflectance image 

reconstruction (R), and residual compensation (C), that is, RERC. 

RERC uses a self-trained random forest to train and predict the 

relationship between spectra and the corresponding class 

fractions. This process is flexible without any ancillary training 

dataset, and does not possess the limitations of linear spectral 

unmixing, which requires the number of endmembers to be no 

more than the number of spectral bands. The running time of the 

random forest regression is about ~1% of the running time of the 

linear mixture model. In addition, RERC adopts a spectral 

reflectance residual compensation approach to refine the fused 

image to make full use of the information from the LR image. 

RERC was assessed in the fusion of a prediction time MODIS with 

a Landsat image using two benchmark datasets, and was assessed 

in fusing images with different numbers of spectral bands by 

fusing a known time Landsat image (seven bands used) with a 

known time very-high-resolution PlanetScope image (four 

spectral bands). RERC was assessed in the fusion of 

MODIS-Landsat imagery in large areas at the national scale for 

the Republic of Ireland and France. The code is available at 

https://www.researchgate.net/profile/Xiao_Li52. 

  

Index Terms—Spatiotemporal image fusion, Landsat, unmixing, 

self-trained regression, sub-pixel analysis. 

I. INTRODUCTION 

ccurate monitoring of the Earth’s land surface is 

crucial for understanding the environment and its 

dynamics [4, 5]. Monitoring of large-area Earth 

surface dynamics has been greatly facilitated by the 

development of satellite remote sensing techniques. For 

instance, the Advanced Very High Resolution Radiometer 

(AVHRR) enabled monitoring of the Earth at a spatial 

resolution of approximately 1 km and on a potentially daily 

basis. Moderate Resolution Imaging Spectroradiometer 

(MODIS) can also monitor the Earth’s surface on a daily basis 

with a spatial resolution of 250–500 m. High Resolution (HR) 

imagery provides monitoring capabilities at resolutions 

typically finer than 100 m, but less frequently than Low 

Resolution (LR) imagery. The Landsat series data has been 

monitoring the Earth every 16-18 days at a 15-80 m resolution 

for approximately 50 years [7]. Sentinel-2 multispectral 

imagery has provided a revisit frequency of approximately 5 

days since 2016 [10]. Although multiple optical satellite 

remote sensing systems allow the monitoring of the Earth, 

satellite remote sensing is often limited by the trade-off 

between spatial and temporal resolutions [11-14]. 

Spatiotemporal satellite image fusion (STIF) is a technique 

that fuses low-spatial but high-temporal resolution imagery 

with high-spatial but low-temporal resolution imagery to 

generate imagery with not only high-spatial resolution but also 

high-temporal resolution, utilizing the advantages of each data 

source [1, 12, 15-19]. Many STIFs have been proposed 

recently including weighted-function-based STIF [1, 8, 20, 21], 

Bayesian-based STIF [24, 25], learning-based fusion [26-35], 

and hybrid methods that combine two or more fusion models 

[20, 36-45]. These STIFs have been applied not only in the 

fusion of reflectance images but also in vegetation indices 

[46-50], surface temperature [51-53], evapotranspiration [54], 

impervious surfaces [56], land cover [11], snow cover [57], 

and surface water [58-61]. 

Different from the aforementioned STIFs, the other group of 

STIF models is the unmixing-based STIF which reconstructs 

an image at the spatial resolution of the HR image at a known 

time while preserving spectral reflectance information from 

the LR image at the prediction time [6, 62, 63]. The classic 
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unmixing-based STIF is composed of four steps: (1) classifying 

the HR image into a multi-class land cover map, (2) calculating 

the LR class fraction images based on the HR multiclass land 

cover map, (3) estimating the LR image endmember spectra 

based on the LR image and the corresponding class fraction 

images at the prediction time, and (4) assigning the estimated 

endmember spectra to the HR land cover map according to the 

corresponding pixel labels. Unlike the aforementioned STIF 

models such as STARFM [1] and FSDAF [38] that require the 

HR and LR images to have the same or similar spectral bands, 

the unmixing-based STIF can fuse HR and LR images with 

different spectral bands and is more flexible than other fusion 

methods. For instance, the unmixing-based STIF has been used 

in the fusion of Landsat TM and MERIS to generate a 30 m 

resolution multispectral image that preserves MERIS’s spectral 

information of 15 spectral bands [63, 68]. The unmixing-based 

STIF can fuse HR and LR are acquired at different dates, and is 

different from the spatial-spectral fusion or pan-sharpening 

which requires the HR and LR to be acquired from the same 

sensor or acquired at the same or similar dates. In addition, the 

unmixing-based STIF requires a minimum number of inputs 

than other STIF models: a prediction time LR image and a 

known time (either predates or postdates the prediction time) 

HR image (Fig. 1), and is thus more flexible than the 

STARFM-like and FSDAF-like STIFs which require both the 

HR and LR imagery at the known time to be available.  

The first unmixing-based STIF was a multisensor 

multiresolution image fusion [62], and has been greatly 

improved in recent years. Zurita-Milla et al. [63] fused Landsat 

TM with MERIS imagery to generate a 30 m resolution 

multispectral image that preserves MERIS’s spectral 

information. Amorós-López et al. [68] proposed a model 

suitable for complex heterogeneous regions by fusing Landsat 

with MERIS imagery for crop monitoring. Liu et al. [66] 

applied the linear spectral unmixing model to generate a HR 

class fraction image, which was used as a substitute for the 

pixel-based hard classification map to enhance fusion accuracy 

in regions of heterogeneous land cover. Wang et al. [55] 

proposed a block-removed unmixing that effectively reduced 

the blocky effect in the STIF. Unmixing-based STIF has also 

been applied to generate multispectral or hyperspectral 

reflectance imagery and the corresponding vegetation indices at 

high spatiotemporal resolutions. For instance, Busetto et al. [69] 

estimated the time series sub-pixel NDVI images by the fusion 

of MODIS and Landsat imagery, and Zurita-Milla et al. [6] 

estimated vegetation indices to monitor the seasonal changes in 

vegetation by the fusion of MERIS full-resolution and Landsat 

imagery. Unmixing-based STIF has also been combined with 

weighted-function-based fusion to further utilize the 

advantages of each fusion method. For instance, Gevaert and 

García-Haro [65] combined the strengths of unmixing-based 

STIF and STARFM to make the fusion result less sensitive to 

reflectance changes. Xu et al. [70] modified the 

unmixing-based STIF by adding a regularization term of the 

endmember spectra to ensure that the extracted endmember 

spectra did not differ greatly from the predefined endmember 

spectra. Jiang and Huang [71] used two spectral unmixing 

approaches and STARFM to reduce blurring problems.  

Although the unmixing-based STIF has several advantages 

over other STIFs, several limitations exist.  

First, most unmixing-based fusion methods assume that the 

HR image pixels are pure and assign each HR pixel to a single 

class based on clustering or classification algorithms applied to 

the HR image. If the neighboring HR pixels within the same LR 

pixel are labeled with the same classes, they are assigned the 

same spectra in the fused image. As a result, the fusion 

homogenizes the spectra for the neighboring HR pixels with 

the same class, that is, the homogenization effect. This 

phenomenon results in an inability to represent intra-class 

spectral variability for the neighboring same-class HR pixels 

for these unmixing-based STIFs [55, 63, 66]. To address the 

mixed pixel problem that is also common with HR imagery 

and to reduce the homogenization effect in the unmixing-based 

STIF, multitemporal fusion (MTF) uses a soft clustering 

algorithm to map HR class fraction images [68]. However, the 

MTF unmixing result may be sensitive to the fuzzy parameters 

used in the soft clustering algorithm. The unmixing would 

resemble the result of hard classification if the fuzzy parameter 

is small, and result in similar class fractions for all classes in the 

HR pixel if the fuzzy parameter is very large [72]. The linear 

spectral unmixing-based spatiotemporal data fusion model 

(LSUSDFM) has used the fully constrained least squares linear 

spectral mixture analysis (FCLS) algorithm to spectrally unmix 

the HR reflectance image [66]. Anyway, the FCLS is an 

inversion problem and is ill-posed when the number of clusters 

is larger than the number of spectral bands in the HR image, 

 
 

Fig. 1. A flowchart showing the main differences between the STARFM-like and FSDAF-like STIF methods and the unmixing-based STIF methods. The 

STARFM-like and FSDAF-like methods require the LR image at the known time as input and require the LR and HR images to have similar spectral bands, 

whereas the unmixing-based STIF does not use the LR image at the known time as input and can fuse LR and HR images with different spectral bands. ‘HR’ 

represents high spatial resolution, and ‘LR’ represents low spatial resolution. 
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and fails to consider the intra-class spectral variabilities in 

endmembers in the unmixing and cannot deal with the multiple 

scattering effects using a linear mixture model. Moreover, the 

FCLS inversion is an optimization approach that is usually 

time-consuming. 

The second limitation of the current unmixing-based STIF 

model is that it only uses the LR image at the prediction time in 

endmember extraction and fails to fully use the LR image. In 

particular, the unmixing-based STIFs estimate LR image 

endmember spectra based on a set of LR pixels in a local 

window, with the target LR pixel as the window center, and 

assign the endmember spectra to the HR scale according to the 

pixel labels generated from the HR image to generate the fused 

image. The estimated endmembers do not reflect the 

information of solely the target LR pixel, but represent the 

averaged spectral information within the local window. As a 

result, the estimated LR endmembers may not represent a 

drastic reflectance change that occurred mainly in the target LR 

pixel. The using of residual compensation by comparing the 

fused with the observed LR image at the prediction time could 

enhance the accuracy of the FSDAF-like STIFs [38] and their 

derivations [36, 37, 42]. However, the FSDAF-like STIFs 

require an additional LR image at the known time in the 

residual compensation, based on the assumption that the HR 

and LR images have similar spectral bands. This approach is 

thus not suitable for the unmixing-based STIFs which do not 

input the LR image at the known time and which may deal with 

HR and LR images with different spectral bands. To the best of 

our knowledge, the use of the LR image for residual 

compensation for the unmixing-based STIF has not yet been 

reported.  

Finally, although the application of STIF in large areas has 

been studied, these STIFs are mainly applied for single band 

data such as vegetation index [3, 47] and land surface 

temperature band [51, 56], and the STIF study for multispectral 

reflectance imagery remains challenging because it involves 

more input bands and the solution is more complicated. For 

instance, the benchmark datasets [15, 23] and most test imagery 

used in STIF studies are limited in a spatial span, typically no 

larger than the range of one Landsat scene of 185 km ×185 km 

(34,225 km2), as shown in Table Ⅰ. In STIF for a very large area, 

it is necessary to mosaic a series of HR images acquired at 

different times as the LR image at the known time. Although 

the composition of large-area cloud-free images has been 

greatly facilitated by the online cloud computing platform of 

Google Earth Engine  [73], it is very difficult to generate the 

corresponding LR images in which each pixel should have the 

same acquisition time as the corresponding HR pixels. This 

greatly limits the use of the popular STIFs such as STARFM 

and FSDAF which require the HR and LR imagery before the 

prediction time to be acquired at the same or similar time in 

large area image fusion. In contrast, the unmixing-based STIF 

only inputs the HR image without the corresponding LR image 

at the known time, and is thus not limited by the same/similar 

time requirement in the known time HR-LR image pair and is 

more flexible and has considerable potential for fusion over a 

very large area unlike the other STIFs. However, to the best of 

our knowledge, the use of large-area Google Earth 

Engine-composited imagery in unmixing-based STIF has not 

been reported.  

In this paper, a novel Sub-pixel Unmixing-Based Data 

Fusion that is composed of a self-trained random forest 

machine learning regression (R), LR endmember estimation 

(E), and HR surface reflectance image reconstruction (R), and 

residual compensation (C), i.e., RERC, is proposed to address 

the limitations of the current STIFs. The RERC uses the HR 

class fraction information to reduce the homogenization effect 

in pixel-based classification. RERC uses a self-trained 

machine-learning regression model, which is automatic and 

computationally efficient, to map HR class fractions to 

overcome the limitations of current linear and soft clustering 

algorithms. In addition, RERC compares the fused image with 

the LR image at the prediction time and composites the 

residuals to refine the prediction image. This residual 

composition step is different from the FSDAF-like methods 

because RERC neither requires a LR image at the known time 

nor requires the HR and LR images to have similar spectral 

bands. The method has the minimum input in STIF, including a 

HR reflectance image at a known time and a LR reflectance 

image at the prediction time, and does not require the LR 

reflectance image at the known time and is thus more flexible 

than STARFM and FSDAF. RERC was assessed in three 

experiments. The first experiment compared the RERC with 

state-of-the-art unmixing-based STIFs in the fusion of 

prediction time MODIS images with a known time Landsat 

using two open-source benchmark datasets. The second 

experiment assessed the proposed method in fusing a prediction 

time Landsat with a known time very-high-resolution 

TABLE I 
THE LOCATION AND AREA OF STUDY REGIONS USED IN THE 

RECENT AND STATE-OF-THE-ART STIFS FOR MULTI- AND 

HYPER-SPECTRAL REFLECTANCE IMAGE FUSION. THE FUSIONS 

OF SINGLE-BAND DATA SUCH AS NDVI, TEMPERATURE, AND 

EVAPOTRANSPIRATION ARE NOT INCLUDED. 

Location Area 

(km2) 

Reference 

Boreal 

Ecosystem–Atmosphere 

Study, Canada 

1296 Gao et al. [1] 

West-central Alberta, Canada 34,225 Hilker et al. [2]   

Central British Columbia, 

Canada 
34,225 Hilker et al. [3] 

The central part of the 

Netherlands 
2400 Zurita-Milla et al. [6] 

Central Virginia, USA ~180 Zhu et al. [8] 

Near Jiangsu Province, China 34,225 Wu et al. [9] 

Flagstaff, Arizona, USA 13,949 Walker et al. [22] 

Southern New South Wales, 

Australia 

2193 

and 

5540 

Emelyanova et al. [23], 

Zhu et al. [38], Wang et 

al. [55], Guo et al. [36], 

Shi et al. [41], Xu et al. 

[40] 

North Central Montana, USA 14,685 Watts et al. [64] 

Barrax region near Albacete, 

Spain 
576 

Gevaert and 

García-Haro [65] 

In the Henan province and the 

Longyangxia Reservoir, 

China 

700 

and 

1300 

Liu et al. [66] 

Taiyuan, China 3600 Liu et al. [29] 

Central Iowa, USA 18,225 Jia et al. [67] 

Daxing, Tianjin, and Ar 

Horqin Banner, China 

2421, 

3723 

and 

6250 

Li et al. [15] 

Nanjing, China 3600 Chen et al. [35] 
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PlanetScope image (four spectral bands) to assess RERC in the 

fusion imagery with different spectra bands. The third 

experiment assessed the proposed method in the fusion of 

MODIS-Landsat imagery in very large areas at the national 

scale for the Republic of Ireland (~70,273 km2) and France 

(~551,500 km2) to assess RERC at the national scale.   

II. METHODOLOGY 

The proposed RERC (Fig. 2) has four main steps: (1) 

generating the HR class fraction images at the known time (t0) 

using a self-trained regression; (2) estimating the endmember 

spectra at the prediction time (tp) and reconstructing a HR 

image at tp according to the linear mixture model; and (3) 

refining the HR image to generate the final image at tp based on 

residual compensation.  

A. Unmixing the HR Images at t0 Based on the Self-trained 

Regression  

The RERC extracts HR class fraction images from the HR 

image at t0. First, RERC applies unsupervised algorithms of the 

k-means clustering [74] to the HR image at t0 to automatically 

generate a pixel-based HR land cover map with n classes. Then, 

RERC uses a self-trained regression of random forest to train 

the relationship between the spectral image and the 

corresponding class fractions at a coarse resolution scale with a 

pre-defined scale factor z. In particular, the inputted HR 

reflectance image is spatially degraded by averaging the spectra 

of all the HR pixels within the z×z window, and the HR land 

cover map at t0 is spatially degraded to class fraction images by 

dividing the total number of HR pixels of a class by z2. In 

RERC, the scale factor z was set to 10 so that the value of the 

minimal interval between the two class fraction was 1%. If z is 

too small, the corresponding class fractions may belong to only 

a limited number of values. For instance, if z is set to 2, then the 

spatially degraded image contains four HR pixels, and the 

corresponding class fraction for a class is one of the values of 

0% (none of the pixels belong to this class), 25% (one pixel 

belongs to this class), 50% (two pixels belong to this class), 

75% (three pixels belong to this class), and 100% (four pixels 

belong to this class). In contrast, if z is too large, the training 

data would be too complex [75, 76].  

With the spatially degraded reflectance image and class 

fraction image as the training dataset, RERC uses random 

forest machine learning, which is a supervised 

ensemble-learning non-linear regression algorithm based on 

regression trees [77], to construct the regression relationship 

between the image pixel spectra and the corresponding class 

fractions. A random forest regression model was constructed 

for each class separately according to the degraded reflectance 

and class fraction images. For each class, RERC uses the BHR×1 

size (BHR is the number of HR image bands) spectral vectors 

from all the degraded pixels as the input of the random forest 

regression model and uses the corresponding class fraction 

values for that class from all the corresponding degraded pixels 

as the output of the regression model. The trained random forest 

regression model for each class according to the degraded 

reflectance and class fraction images was then applied to the 

HR image at t0 to predict class fractions at the HR scale. The 

class fraction regression model trained at a LR resolution scale 

 
Fig. 2. RERC flowchart. The LR and HR imagery are not required to have 

the same/similar spectral bands. 
 

 
Fig. 3. Flowchart of the self-trained regression model that is used to 

estimate HR class fraction images at t0. Scale factor z is set to 10 (the 

minimal interval between two class fraction values is, therefore, 1%). The 

different colors in the HR land cover map represent different land cover 

classes, and different gray images in the spatially degraded and HR class 

fraction images at t0 represent different class fractions.    
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has been proven to be effective for predicting class fractions at 

a finer scale [75, 76]. For each HR pixel, the fraction for each 

class is divided by the sum of all class fractions in that HR pixel, 

such that all class fractions sum to one. A flowchart of the 

self-trained regression is shown in Fig. 3.  

B. Estimating the LR Endmember Spectra and Reconstructing 

the HR Image at tp 

This step (step (2) in Fig. 2) is the same as the 

unmixing-based STIFs that explore the sub-pixel land cover 

information such as MTF and LSUSDFM. The endmember 

spectra at tp were estimated based on the LR reflectance image 

at tp and the corresponding class fractions at t0. First, the HR 

class fraction image predicted from a random forest was 

spatially degraded to the LR scale by averaging the HR class 

fraction within each LR pixel according to s which is the scale 

factor between the input LR and HR imagery. With the LR 

image at tp and the degraded class fractions at t0, the 

endmember spectra for each LR pixel at prediction time tp are 

estimated based on the inversion of a linear mixture model. To 

avoid collinearity in the estimation of endmembers, 

regularization-based linear unmixing is used to estimate the 

endmember for each LR pixel (i.e., local endmember) [66, 68, 

70]. The endmembers used for regularization (i.e., global 

endmembers) are directly selected from the LR image at tp to 

avoid the impact of atmospheric conditions and spectral bias 

[68]. For a target class, the spectral values from a set of LR 

pixels at tp with the highest class abundance value of the target 

class are averaged as the global endmember of the target class 

[66]. Finally, for each LR pixel, the local endmember spectra 

within the LR pixel are estimated according to an inversion of a 

linear spectral mixture model using a group of LR pixels within 

a w×w sliding window, with the target LR pixel as the window 

center. For the ith LR pixel, the local endmember spectra of 

different classes in the bth band (b∈1, ···, BLR, where BLR is the 

number of LR image bands.) are estimated based on k2 

neighboring LR pixels by minimizing the least square error: 

 
2 2

2

, , , , , , , ,

1 1 1

ˆ ˆmin
w n n

b i b k c k c b k c b i c b

k c c

w
y a e e e

n


  

   
        

   
  e

   (1) 

where n is the number of classes, k is the number of LR pixels, 

w is the size of the local window, ,
ˆ

b ie  is the local endmember 

spectra in the bth band for the ith LR pixel, ,b ky  is the spectrum 

in the bth band in the kth LR pixel, ,c ka  is the class fraction of 

the cth class (c=1, 2,···, n) in the kth LR pixel, , ,
ˆ

c b ie is the cth 

class spectrum in the bth band in the ith target LR pixel, ,c be is 

the global endmember spectrum for the cth class in the bth 

spectral band, and  is the regularization parameter.  

RERC predicts the reflectance image by linearly combining 

the estimated LR endmember spectra with the HR class 

fractions based on a linear mixture model: 

j j jy e a                        (2) 

where je  is a BLR×n sized local endmember spectra matrix for 

the jth HR pixel, ja  is an n×1 sized class fraction vector of 

different classes in the jth HR pixel, and jy  is the predicted 

BLR×1 sized spectra in the jth HR pixel. 

C. Residual Compensation for Generating the Final HR Image 

at tp   

RERC refines the fused HR image using information from 

the LR reflectance image based on residual compensation. 

RERC spatially degrades the fused HR image at tp to the LR 

scale by averaging the reflectance values within the LR pixels 

according to the scale factor s, and compares it with the 

observed LR image at tp to generate a spectral difference image. 

Assume ,b iy  is the observed spectrum in the bth LR band (b∈

1, ···, BLR) in the ith LR pixel at tp, and , ,
ˆ

b j iy  is the estimated 

spectrum in the bth band in the jth HR pixel of the ith LR pixel. 

,b i  is the spectral difference between the observed spectrum 

,
ˆ

b iy  and the synthetic spectrum in the bth band in the ith LR 

pixel. The spectral residual value for the ith LR pixel in the bth 

LR image spectral band (b∈1, ···, BLR), 
,b i , is calculated as: 

2

, , , ,2
1

1
ˆ

s

b i b i b j i

j

=y y
s




                    (3)   

,b i  was calculated at the LR scale, whereas the fused image 

spectrum in Eq. (2) is at the HR scale. To match this spatial 

resolution gap, 
,b i  is spatially interpolated to a HR scale of 

,

interpolation

b i using bicubic spatial interpolation with the scale 

factor s. Direct summation of 
,

interpolation

b i  with the estimated 

HR spectrum may cause a blurring effect [38, 55], and the 

residual image is refined using a weighted sum of spectrally 

similar pixels within an m×m sized local square window from 

the HR image at t0, assuming that spectrally similar pixels at t0 

would have similar spectral change [1, 38]. The spatial 

prediction value ,b jSP  for the jth HR pixel in the bth LR image 

spectral band is calculated as:  

, ,

1

L
interpolation

b j l b l

l

SP w 


                  (4) 

where L is the number of spectrally similar pixels in the 

inputted HR image. The spectrally similar pixels are selected 

based on a set of L HR pixels that have the smallest spectral 

differences in the reflectance image at t0 [1, 36-38]. The weight 

of the lth (l∈L) HR pixel, lw , in Eq. (4), is determined 

according to the geometric distance between the jth target HR 

pixel and the lth  neighborhood pixel, dl,j , as  

 , ,

1

1 (1 )
L

l l j l j

l

w d d


                      (5) 

The final spectrum in the jth HR pixel in the bth LR image 

band (b∈1, ···, BLR) for the unmixing-based STIF in the fusing 

of HR and LR imagery with the same spectral bands is 

calculated by a weighted sum of the fused image and the spatial 

prediction image as: 

, , , ,
ˆ final

b j b j b j b jy y HI SP                   (6) 

where ,b jHI  denotes the heterogeneous index for the jth HR 

pixel in the bth band (BLR = BHR). The spatial prediction image is 

generated from a spatial interpolation image at the LR scale, 

and the fusion may be blurred if the HR pixel is located at the 
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boundary between two land cover classes. The weight ,b jHI  in 

Eq. (6) is used to give a low value if the jth target pixel is located 

in the boundary region to preserve the edge and a high value if 

the jth target pixel is located in the homogeneous region for 

smoothing the region. The heterogeneous index ,b jHI  is 

calculated as 

   2

, ,exp / 0.05b j b jHI = Std               (7) 

where ,b jStd  is the standard deviation of the spectral 

reflectance ranging from 0 to 1 in the bth band in a 7×7 HR local 

window (the optimal window size is set through many trials) in 

the inputted HR image at t0, with the jth HR pixel as its window 

center. Note that if the input HR image at t0 represents the 

digital number (DN) value instead of the spectral reflectance 

ranging from 0 to 1, the DN values can be divided by the 

maximum DN value in the corresponding bands so that the 

calculated ,b iStd  ranges from 0 to 1. ,b jHI  is relatively small 

if ,b jStd  is high, which means that the target pixel is located 

in a heterogeneous region. ,b jHI  is relatively large if ,b jStd  

is small, which means that the target pixel is located in a 

homogeneous region.  

In the fusion of HR and LR imagery with dissimilar spectral 

bands, the averaged heterogeneous index in Eq. (8) is used as a 

substitute for the per-band heterogeneous index in Eq. (7), 

calculated using all spectral bands in the HR image as follows:  

  

, , ,

2

, , ,

ˆ

exp / 0.05

HR

final
jb j b j b j

B
HR

b j b j b j

b

y y HI SP

        =y Std B SP

  

  
   (8) 

III. EXPERIMENTS  

A. Experimental Data and Study Site 

The proposed RERC was assessed in three experiments. The 

first experiment compared the RERC with other 

unmixing-based STIF (the STARFM-like and FSDAF-like 

methods which require more input data were not compared) in 

the fusion of a prediction time MODIS images with a known 

time Landsat in the Coleambally Irrigation Area (CIA) and in 

the Lower Gwydir Catchment (LGC), Australia, provided by 

Emelyanova et al. [23]. The second experiment assessed the 

proposed method in fusing images with different numbers of 

spectral bands by fusing a prediction time Landsat (30 m 

resolution, seven bands used) with a known time 

very-high-resolution PlanetScope image (3 m resolution, four 

spectral bands). The third experiment assessed the proposed 

method in the fusion of MODIS and Landsat imagery in very 

large areas at the national scale for the Republic of Ireland 

(~70,273 km2) and France (~551,500 km2). 

1) Simulated and real Image Experiment on CIA and LGC sites 

The CIA site is located in a heterogeneous farmland region in 

Australia. Two subsets of cloud-free Landsat images on 

November 24, 2001 and February 12, 2002, were used. The 

study site contained 2000×1280 Landsat pixels with an area of 

2,304 km2. The Landsat image on November 24, 2001 (Fig. 

4(a)) was used as the t0 time HR image. The Landsat image on 

February 12, 2002 was used as the tp time reference image (Fig. 

4(b)). In the simulated image experiment, the Landsat image on 

February 12, 2002, shown in Fig. 4(b), was degraded spatially 

to the tp time MODIS-like image by averaging the spectral 

reflectance values within each LR pixel with a scale factor s=16 

(Fig. 4(c)). In the real image experiment, the MODIS image 

representing February 13, 2002 was geometrically transformed 

and co-registered with the corresponding Landsat image with 

sub-pixel accuracy and was used as the LR at tp (Fig. 4(d)).  

At the LGC site, two subsets of cloud-free Landsat images on 

November 26, 2004, and December 12, 2004, were used. The 

study site contains 2400×2400 Landsat pixels with an area of 

5,184 km2. The Landsat image on November 26, 2004 (Fig. 

5(a)) was used as the t0 time image. The Landsat image on 

December 12, 200 was used as the tp time reference image (Fig. 

5(b)). In the simulated image experiment, the Landsat image on 

December 12, 2004, in Fig. 5(b), was spatially degraded to the 

tp time MODIS-like image in Fig. 5(c) with a scale factor s=16. 

In the real image experiment, the MODIS image representing 

December 12, 2004, was geometrically transformed and 

co-registered with the corresponding Landsat image with 

sub-pixel accuracy, and was used as the LR at tp (Fig. 5(c)). It is 

clear that a flood was present on December 12, 2004, and this 

dataset was used to assess the unmixing-based STIF when 

dealing with abrupt land cover change associated with a flood 

event.  

2) PlanetScope and Landsat Imagery Experiment 

In this experiment, the very-high-resolution PlanetScope 

image and Landsat 8 image were adopted. The PlanetScope has 

a 3 m spatial resolution and four spectral bands of blue, green, 

red, and near-infrared (NIR). The multispectral Landsat 8 

image, with seven bands including the coastal aerosol, blue, 

green, red, NIR, and two shortwave infrared (SWIR) bands, 

 
Fig. 5. Experiment imagery used on LGC. (a) Landsat image at t0 

(November 26, 2004), (b) Landsat image at tp (December 12, 2004), (c) 

Degraded MODIS-like image at tp (December 12, 2004), and (d) Real 

MODI image at tp (December 12, 2004). The Landsat images contain 

2400×2400 pixels. The false color imagery are composited 

with NIR-red-green as RGB. 

 

 

 
Fig. 4. Experiment imagery used on CIA. (a) Landsat image at t0 

(November 24, 2001), (b) Landsat image at tp (February 12, 2002), (c) 

Degraded MODIS-like image at tp (February 12, 2002), and (d) Real 

MODIS image representing at tp (February 13, 2002). The Landsat images 

contain 2000×1280 pixels. The false color imagery are composited 

with NIR-red-green as RGB. 
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were selected, and the panchromatic, cirrus and two thermal 

infrared bands were excluded in the experiment. RERC was 

used to fuse a 3 m resolution image with Landsat spectral bands 

(seven spectral bands).  

The study area (114.45° E, 31.23° N) is located near Wuhan, 

China with an area of 144 km2 in Fig. 6. The Landsat subset 

image acquired on October 20, 2019, was used as the LR image 

at the prediction time tp (Fig. 6(b)). The PlanetScope subset 

image acquired on October 21, 2019, was used as the HR image 

for validation. The PlanetScope subset image acquired on 

September 19, 2019, was used as the HR image at the known 

time t0. There is no cloud-free Landsat image acquired near the 

known time t0; only the unmixing-based STIF can be used in 

the STIF, whereas the STARFM-like and FSDAF-like methods 

which require the LR image at the known time as input can not 

be used. The Landsat image contains 400×400 pixels, and the 

PlanetScope image contains 4000× 4000 pixels. The scale 

factor is set to 10. The PlanetScope images on September 19, 

2019 (Fig. 6(a)) and the Landsat image on October 20, 2019 

(Fig. 6(b)) were used as the HR image at t0 and LR image at tp, 

respectively. RERC was used to generate a 3 m resolution seven 

bands image on October 20, 2019. 

3) Experiment in Very Large Areas for the Republic of Ireland 

and France 

In this experiment, Landsat and real MODIS imagery for the 

entire Republic of Ireland were adopted to assess the RERC for 

national-scale image fusion. The Republic of Ireland is located 

in the North Atlantic Ocean (Fig. 7(a)). Ireland has a temperate 

oceanic climate with cloudy and wet weather, and 

is cloudy and rainy. Cloud- and shadow-free Landsat imagery 

is rare for this region. STIF was used to generate imagery at the 

spatial resolution of Landsat with MODIS spectral reflectance.  

In this study, the 463 m MODIS MCD43A4 daily surface 

reflectance image acquired on August 12, 2022, was adopted as 

the LR image at tp. The MODIS image was cloud-free, and was 

re-projected to the WGS 1984 projection and resized to a 

resolution of 480 m (Fig. 7(d)), and the scale factor s was 16 

between the MODIS and Landsat imagery. The Landsat 8 OLI 

products were used as known and validation time data. The 

mosaiced Landsat 8 OLI images that were mostly cloud- and 

shadow-free, acquired on August 12, 2022, were used for 

validation (Fig. 7(e)). The prevailing climatic conditions often 

result in variable cloud cover which makes it difficult to form a 

Landsat image for the entire nation at the same or similar time, 

the known time HR image used in the unmixing-based STIF is 

a synthetic composited and mosaic Landsat 8 OLI image 

acquired at different times from the Google Earth Engine in Fig. 

7(b). The composite and mosaic image was generated from all 

Landsat 8 surface reflectance images that were atmospherically 

corrected. The cloud and cloud-shadow pixels in all Landsat 8 

images were masked using the quality assessment band in the 

Landsat 8 level 2 product. The composited Landsat imagery 

was generated using the median values from all cloud- and 

shadow-free values for each pixel between January 1, 2021, and 

August 1, 2022, from a total of 341 Landsat imagery. Using the 

median value has the benefit of removing clouds (which have a 

high value) and shadows (which have a low value) that are not 

masked by the quality assessment band for the Landsat imagery 

[78]. Almost all Landsat pixels in the composited image are 

cloud- and shadow-free. All the composited images were then 

mosaicked in Fig. 7(b). The number of valid cloud- and 

shadow-free pixels during this period in the corresponding 

composite Landsat 8 OLI image is shown in Fig. 7(c). Although 

most areas with yellow and red colors in Fig. 7(c) have more 

than ten valid cloud- and shadow-free observations from 

 
Fig. 7. Test data used for the Republic of Ireland experiment. (a) Location 

of the study site, (b) Composited and mosaic Landsat 8 OLI image 

representing the time of t0 (14912×17344 Landsat pixels). (c) Valid cloud- 

and shadow-free pixel number in generating the composited and mosaic 

Landsat-8 image. (d) MODIS MCD43A4 image representing the time of 

tp, (e) Composited and mosaic Landsat 8 OLI images representing the time 

of tp for validation. Black indicates pixels that do not fall into the area of 

the Ireland region or no Landsat image that was covered at tp, or cloud 

pixels in the Landsat image. The false color images are composited 

with SWIR2-red-green as RGB. 

 

 

 
Fig. 6. PlanetScope and Landsat experiment imagery. (a) PlanetScope 

image used as the HR image at t0 (September 19, 2019), (b) Landsat image 

used as the LR image at tp (October 20, 2019), and (c) PlanetScope image 

used as the HR image at tp (October 21, 2019). The PlanetScope images 

contain 4000×4000 pixels. The false color imagery are composited 

with NIR-red-green as RGB. 
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Landsat-8 during this period, about 13.52% of the regions have 

less than ten cloud- and shadow-free Landsat-8 observations 

with green color in Fig. 7(c), including 0.25% regions with no 

more than three cloud- and shadow-free Landsat-8 

observations.  

Landsat and real MODIS imagery for France were also used 

to assess the RERC. France is a country that has historically 

been one of the world's major agricultural centers (Fig. 8(a)). 

France has various natural land cover types, including forests, 

croplands, moorlands, and grasses, which may present 

different reflectance features throughout the year. The STIF, 

which generates imagery at the spatial resolution of Landsat 

with MODIS spectral reflectance, is helpful in the 

understanding of phenology and variations of the land covers, 

especially agricultural land.  

The 463 m MODIS MCD43A4 image acquired on August 13, 

2022 (Fig. 8(d)) was reprojected onto the WGS 1984 

projection and resized to a resolution of 480 m, and was used 

as the LR image at the prediction time. The composited and 

mosaic Landsat 8 OLI images that were mostly cloud- and 

shadow-free, acquired on August 13, 2022, were used for 

validation (Fig. 8(e)). Considering the large area of France and 

the impact of clouds, it is difficult to form a mosaic of Landsat 

images covering the entire country in one time period. The 

known time HR image used in the unmixing-based STIF is a 

synthetic composited and mosaic Landsat 8 OLI image 

acquired during the period between April 1, 2022, and August 1, 

2022, generated from Google Earth Engine using the median 

values from all cloud- and shadow-free values during this 

period for each pixel based on a total of 653 Landsat imagery. 

The number of valid cloud- and shadow-free pixels between 

April 1, 2022, and August 1, 2022, in the corresponding 

composited and mosaic Landsat 8 OLI image is shown in Fig. 

8(c). Approximately 70.21% of regions have less than ten 

cloud- and shadow-free Landsat-8 observations during the 

period with green color in Fig. 8(c), including 9.64% of 

regions with no more than three cloud- and shadow-free 

Landsat-8 observations.  

B. Model Comparison and Parameter Settings 

The proposed RERC was compared to three established 

unmixing-based STIF methods in the CIA and LGC 

experiments. Since only the HR at t0 and LR image at tp are 

available, the STARFM-like and FSDAF-like methods which 

require a LR image at t0 as input were not compared. 

The first comparator method was the unmixing-based data 

fusion (UBDF) proposed by Zurita-Milla et al. [63]. The UBDF 

assumes that the HR pixels at t0 are pure and directly assigns 

the estimated endmember spectra from the LR image to the 

corresponding HR image pixel. The second comparator method 

was the MTF proposed by Amorós-López et al. [68]. The MTF 

uses a soft clustering algorithm to generate the HR class 

fractions using the Mahalanobis distance between a HR pixel 

spectra and the cluster centroid. The third comparator method 

is the LSUSDFM proposed by Liu et al. [66]. The LSUSDFM 

uses FCLS to generate HR class fraction images.   

The performance of the proposed RERC depends on several 

parameters. For all methods, the LR sliding window size used 

for endmember estimation was set to k=11 [68]. The 

regularization parameter was set to 0.1=  according to the 

previous studies [66, 68]. In the RERC, the fusion accuracy and 

computational efficiency are related to the number of clusters n. 

A larger cluster number is more suitable for dealing with 

heterogeneous landscapes, but it increases the computation 

time. The cluster number is usually set to a relatively large 

value (usually 30) for unmixing-based STIF to reduce the 

impact of the homogenization effect, which indicates the 

predicted reflectances are the same for neighboring HR pixels 

that contain the same class located within the same LR pixel, in 

the fused image. The optimal number of clusters was set to 

n=16 for MTF [68]. The optical cluster number in the 

LSUSDFM is dependent on the landscape complexity of the 

study site. The cluster number was set to n=10 for both the 

LSUSDFM and RERC, considering landscape heterogeneity 

and computational efficiency. In the RERC, the size of the 

window used for selecting spectral-similar pixels was set to 

m=16, which equals the scale factor s, and the spectrally similar 

pixel number was set to L=20 [37, 38]. In the experiment in 

very large areas for the Republic of Ireland and France, the 

mosaiced Landsat image was divided into 2400×2400 pixel 

patches considering the computational efficiency and computer 

memory, and all the pixels were used for training the regression 

model.  

C. Accuracy Assessment 

Many quantitative metrics have been used to assess the 

 
Fig. 8. Test data used in the France experiment. (a) Location of the study 

site, (b) Composited and mosaic Landsat 8 OLI image representing the 

time of t0 (36192×54560 Landsat pixels). (c) Valid cloud- and shadow-free 

pixel number in generating the composited and mosaic Landsat-8 image. 

(d) MODIS MCD43A4 image representing the time of tp, (e) Composited 

and mosaic Landsat 8 OLI images representing the time of tp for 

validation. Black indicates pixels that do not fall into the area of the Ireland 

region or no Landsat image that was covered at tp, or cloud pixels in the 

Landsat image. The false color images are composited 

with SWIR2-red-green as RGB. 
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different unmixing-based STIFs. The metrics included the root 

mean square error (RMSE), average absolute deviation (AAD), 

correlation coefficient (CC), and structure similarity (SSIM) [8, 

37, 38]. A smaller RMSE and AAD and larger CC and SSIM 

indicate a better match between the fused and reference images. 

IV. RESULTS  

A. Experiment on the CIA and LGC sites 

1) Simulated MODIS-like Image Experiment on the CIA site 

The study site, which is located in a region of heterogeneous 

cropland cover, experienced a drastic change in the spectral 

reflectance values from time t0 in Fig. 9(a) to time tp in Fig. 

9(b)–(c). The UBDF, which assigns each HR pixel to a unique 

endmember spectrum, usually homogenizes the spectral 

reflectance values for spatially adjacent pixels, such as in 

regions I and II in the zoomed areas (Fig. 9). In contrast, the 

MTF, LSUSDFM, and RERC generated more variable spectral 

reflectance values in these regions. The sub-pixel MTF, 

LSUSDFM, and RERC significantly reduced the 

homogenization effect to a great extent. In the regions 

highlighted with circles in the zoomed areas A and B, the 

RERC in Fig. 9(g) is more similar to the reference images in 

Fig. 9(c) than UBDF, MTF, and LSUSDFM. For instance, in 

region V in zoomed area B, the patch has a darker yellow color 

in the Landsat image at t0 which is similar to its adjacent 

patches in Fig. 9(a), which have a relatively darker color than 

the surrounding patches in the reference image in Fig. 9(c). 

UBDF, MTF, and LSUSDFM predicted this patch with a light 

cyan color in region V, which is similar to the surrounding 

patches. In contrast, the RERC in Fig. 9(g) predicted a darker 

color for this patch in region V, which is similar to that in the 

reference image in Fig. 9(c).  

The quantitative accuracy metrics obtained for the outputs 

from the different STIFs at the CIA site are listed in Table Ⅱ. 

The pixel-based UBDF method typically generated the highest 

RMSE and AAD and the lowest CC and SSIM in different 

spectral bands, whereas the sub-pixel-based methods improved 

the accuracy of these metrics. The proposed RERC 

outperformed the comparator STIFs with a decrease in the 

RMSE and AAD and an increase in the CC and SSIM in all 

spectral bands.   

2) Real MODIS Image Experiment on the CIA site  

In zoomed area A in Fig. 10, the region highlighted with the 

circle I experienced a drastic spectral reflectance change due to 

land cover changes such as crop rotation and is represented as a 

white color in the reference Landsat image at tp. The 

unmixing-based STIF of UBDF, MTF, and LSUSDFM 

predicted the region with cyan color highlighted with the circle 

I, and RERC predicted this region with white color, which is 

TABLE Ⅱ 
ACCURACY METRICS IN THE CIA SIMULATED IMAGE EXPERIMENT. 

band 

 RMSE     AAD     CC      SSIM    

 UBDF MTF 

LSUS 

DFM RERC  UBDF MTF 

LSUS 

DFM RERC  UBDF MTF 

LSUS 

DFM RERC   UBDF MTF 

LSUS 

DFM RERC 

Blue  0.0162  0.0140  0.0136  0.0104   0.0116  0.0100  0.0098  0.0074   0.7655  0.8154  0.8259  0.9004    0.7655  0.8134  0.8225  0.8995  

Green  0.0219  0.0191  0.0183  0.0140   0.0154  0.0133  0.0128  0.0097   0.7601  0.8105  0.8235  0.8999    0.7600  0.8086  0.8198  0.8989  

Red  0.0333  0.0292  0.0278  0.0214   0.0228  0.0200  0.0192  0.0145   0.7911  0.8334  0.8459  0.9116    0.7911  0.8327  0.8436  0.9109  

NIR  0.0609  0.0534  0.0528  0.0390   0.0400  0.0353  0.0356  0.0256   0.6067  0.6635  0.6654  0.8298    0.6065  0.6537  0.6508  0.8239  

SWIR1  0.0527  0.0471  0.0454  0.0378   0.0362  0.0327  0.0317  0.0254   0.8454  0.8729  0.8805  0.9185    0.8454  0.8725  0.8797  0.9182  

SWIR2  0.0492  0.0439  0.0424  0.0348   0.0337  0.0304  0.0295  0.0237   0.8429  0.8710  0.8782  0.9193    0.8428  0.8706  0.8770  0.9189  

 

 

 
Fig. 9. The input and result images in the CIA simulated image experiment. (a) Landsat image on November 24, 2001, used as the input HR image at t0, (b) 

Degraded MODIS-like image on February 12, 2002, used as the LR image at tp, (c) Landsat image on February 12, 2002, used as the reference, (d) output from 

UBDF, (e) output from MTF, (f) output from LSUSDFM, and (g) output from RERC.  
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most similar to the reference. In zoomed area B, the subregion 

highlighted in circle II is represented by a dark red color, and 

the subregion highlighted in circle III is represented as a dark 

green color reference Landsat image at tp. The UBDF and 

LSUSDFM predicted dissimilar reflectance to the reference 

image in circles II and III, and the MTF predicted dissimilar 

reflectance to the reference image in circle III. In contrast, the 

proposed RERC predicted an image that is the most similar to 

the reference in circles II and III.  

The quantitative accuracy metrics obtained for the outputs 

from the different STIFs at the CIA site are listed in Table Ⅲ. 

The pixel-based UBDF method typically generated the highest 

RMSE and AAD and the lowest CC and SSIM in different 

spectral bands, whereas the sub-pixel-based methods improved 

the accuracy of these metrics. RERC outperformed the 

comparator STIFs with a decrease in the RMSE and AAD and 

an increase in the CC and SSIM in all spectral bands. 

3) Simulated MODIS-like Image Experiment on the LGC site 

The study site experienced a flood event which is observable 

in the MODIS and reference Landsat images at tp in Fig. 11. 

MTF, UBDF, and LSUSDFM predicted only parts of the flood, 

as shown in zoomed areas A and B, whereas RERC mapped 

almost all the regions covered by the flood. In particular, in 

region Ⅰ in zoomed area A, UBDF, MTF, and LSUSDFM 

predicted a flood with a discontinuous color, whereas RERC 

mapped the flood with a more continuous color. In region Ⅱ in 

zoomed area A, UBDF, MTF, and LSUSDFM predicted a flood 

with a disconnected shape, whereas RERC predicted a flood 

that was spatially connected and continuous. In the zoomed 

area, B, UBDF, MTF, and LSUSDFM failed to map the flood 

or only partly mapped the flood in regions III and IV, whereas 

RERC successfully mapped the flood in both regions. In 

general, compared with the UBDF and LSUSDFM images, the 

RERC images in the entire and zoomed areas in Fig. 11(g) are 

more similar to the reference. Similar to the results for the CIA 

site, the sub-pixel scale MTF, LSUSDFM, and RERC 

decreased the RMSE and increased the CC and SSIM in 

comparison with UBDF. RERC generated the lowest RMSE 

and AAD and the highest CC and SSIM in Table Ⅳ.   

4) Real MODIS Image Experiment on the LGC site 

The study site experienced a flood event which is observable 

in the MODIS and reference Landsat images at tp in Fig. 12. 

Both zoomed areas A and B experienced floods according to 

the known (Fig. 12(a)) and prediction time (Fig. 12(c)) Landsat 

images. In zoomed area A, only the proposed RERC predicted a 

flood, as highlighted by circle I. In zoomed area B, UBDF 

failed to predict the flood, as highlighted in circle II, and MTF 

and LSUSDFM predicted part of the flood, as highlighted in 

 
Fig. 10. The input and result images in the CIA real MODIS image experiment. (a) Landsat image on November 24, 2001, used as the HR image at t0, (b) Real 

MODIS image on February 13, 2002, used as the LR image at tp, (c) Landsat image on February 12, 2002, used as the reference, (d) output from UBDF, (e) output 

from MTF, (f) output from LSUSDFM, and (g) output from RERC.  

TABLE Ⅲ 
ACCURACY METRICS IN THE CIA REAL MODIS IMAGE EXPERIMENT. 

band 

 RMSE     AAD     CC     SSIM    

 UBDF MTF 

LSUS 

DFM RERC  UBDF MTF 

LSUS 

DFM RERC  UBDF MTF 

LSUS 

DFM RERC  UBDF MTF 

LSUS 

DFM RERC 

Blue  
0.0175  0.0163  0.0158  0.0154   0.0134  0.0126  0.0122  0.0116   0.6894  0.7396  0.7624  0.7745   0.6557  0.6914  0.7014  0.7303  

Green  
0.0238  0.0220  0.0215  0.0207   0.0180  0.0166  0.0163  0.0155   0.6801  0.7449  0.7615  0.7773   0.6388  0.6835  0.6869  0.7222  

Red  
0.0366  0.0336  0.0328  0.0317   0.0276  0.0254  0.0248  0.0237   0.7058  0.7615  0.7810  0.7943   0.6736  0.7148  0.7204  0.7487  

NIR  
0.0629  0.0594  0.0575  0.0524   0.0440  0.0415  0.0404  0.0372   0.4593  0.5203  0.5667  0.6648   0.4152  0.4315  0.4516  0.5679  

SWIR1  
0.0662  0.0614  0.0598  0.0587   0.0510  0.0473  0.0462  0.0451   0.7604  0.8036  0.8164  0.8245   0.7466  0.7820  0.7890  0.8019  

SWIR2  
0.0590  0.0540  0.0524  0.0515   0.0453  0.0415  0.0405  0.0395   0.7569  0.8002  0.8125  0.8198   0.7475  0.7853  0.7907  0.8034  
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circles II and III. In contrast, the RERC predicted a flood that 

was more similar to that in the reference Landsat image. The 

region highlighted in Circle IV did not experience floods. The 

UBDF, MTF, and LSUSDFM incorrectly predicted this region 

with some floods with light blue color, as shown in Fig. 12, 

whereas the RERC prediction is more similar to the Landsat 

image at tp. This experiment shows that RERC outperformed 

the comparison method in the prediction of reflectance changes 

due to both gradual phenological changes and land-cover 

changes. Similar to the results for the CIA site, the sub-pixel 

scale MTF, LSUSDFM, and RERC decreased the RMSE and 

increased the CC and SSIM in comparison with UBDF. RERC 

 
Fig. 11. The input and result images in the LGC simulated image experiment. (a) Landsat image on November 26, 2004, used as the HR image at t0, (b) Degraded 

MODIS-like image on December 12, 2004, used as the LR image at tp, (c) Landsat image on December 12, 2004, used as the reference, (d) output from UBDF, (e) 

output from MTF, (f) output from LSUSDFM, and (g) output from RERC. 
 
 

 

TABLE Ⅳ 
ACCURACY METRICS IN THE LGC SIMULATED MODIS IMAGE EXPERIMENT. 

band 

 RMSE     AAD     CC     SSIM    

 UBDF MTF 

LSUS 

DFM RERC  UBDF MTF 

LSUS 

DFM RERC  UBDF MTF 

LSUS 

DFM RERC  UBDF MTF 

LSUS 

DFM RERC 

Blue  
0.0189  0.0149  0.0142  0.0107   0.0133  0.0105  0.0100  0.0074   0.5541  0.6864  0.7197  0.8504   0.5540  0.6761  0.7114  0.8470  

Green  
0.0277  0.0217  0.0209  0.0156   0.0193  0.0151  0.0145  0.0107   0.5394  0.6797  0.7082  0.8467   0.5393  0.6671  0.6989  0.8429  

Red  
0.0343  0.0270  0.0258  0.0194   0.0236  0.0186  0.0178  0.0131   0.5465  0.6816  0.7126  0.8461   0.5464  0.6690  0.7027  0.8419  

NIR  
0.0545  0.0464  0.0397  0.0316   0.0398  0.0338  0.0289  0.0224   0.6475  0.7253  0.7946  0.8735   0.6473  0.7240  0.7910  0.8720  

SWIR1  
0.0766  0.0615  0.0593  0.0454   0.0571  0.0458  0.0441  0.0326   0.5706  0.7014  0.7252  0.8465   0.5694  0.6877  0.7125  0.8383  

SWIR2  
0.0545  0.0437  0.0426  0.0330   0.0401  0.0322  0.0314  0.0233   0.5825  0.7116  0.7286  0.8456   0.5809  0.6950  0.7143  0.8363  

 

 
Fig. 12. The input and result images in the LGC real MODIS image experiment. (a) Landsat image on November 26, 2004, used as the HR image at t0, (b) 

MODIS image on December 12, 2004, used as the LR image at tp, (c) Landsat image on December 12, 2004, used as the reference, (d) output from UBDF, (e) 

output from MTF, (f) output from LSUSDFM, and (g) output from RERC. 
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generated the lowest RMSE and AAD and the highest CC and 

SSIM in Table Ⅴ.  

B. PlanetScope and Landsat Image Experiment  

The input and RERC result images are shown in Fig. 13. The 

UBDF, MTF, and LSUSDFM were not compared because they 

are computationally inefficient. In particular, the running time 

of the random forest regression used in RERC is only ~1% of 

the running time of the FCLS linear mixture model (the running 

time is 506 seconds for random forest regression, longer than 

7,000 seconds for the non-linear model, and longer than 50,000 

seconds for FCLS on the CIA site). In Fig. 13 (c), the Landsat 

images were relatively coarse to represent the detailed spatial 

distribution of land covers. The boundaries are jagged and the 

settlements were blurred in the Landsat image at tp such as 

highlighted in circle Ⅰ in zoom area A, and are clear in the 

RERC prediction image in Fig. 13(d). In zoom area B, the bare 

land region highlighted with circle Ⅱ had a surface reflectance 

change from t0 to tp, and RERC had predicted this reflectance 

change in Fig. 13(d). In zoom area B, the region highlighted 

with circle Ⅲ had experienced a drastic surface reflectance 

change from t0 to tp, and the RERC prediction in Fig. 13(d) is 

similar to the reference PlanetScope image at tp in Fig. 13(b).  

The Landsat image contains more spectral bands, such as the 

coastal aerosol band and the SWIR bands, than the four bands 

PlanetScpoe image (NIR, red, green, and blue bands). In this 

study, RERC predicted the image with Landsat spectral 

information including the coastal aerosol and the SWIR bands 

and at the PlanetScpoe spatial resolution in Fig. 13(e). Since 

RERC can fuse imagery with different spectral bands in Fig. 

13(f), it is more flexible than the STARFM-like and 

FSDAF-like STIFs which fuse imagery with the same spectral 

bands.  

Table Ⅵ shows the quantitative metrics for RERC. RERC 

generated RMSE and AD of approximately lower than 0.040 

and 0.032, respectively, in all four spectral bands. The 

quantitative metrics were not assessed in the coastal aerosol and 

SWIR bands which the PlanetScope does not contain. The 

RMSE and AAD values for RERC usually increase with an 

increase in the standard deviation in the spectral band of the 

reference Landsat image at tp. In other words, if the standard 

deviation in the reflectance in a spectral band is high, the 

reflectance is more variable in this band, and it is more difficult 

for the RERC to accurately predict the reflectance. In 

particular, RERC generated the highest RMSE and AAD 

values in the NIR band, which had the highest standard 

deviation in reflectance in the reference Landsat image at tp, 

and generated the lowest RMSE and AAD in the blue band, 

which has the lowest standard deviation in reflectance in the 

reference Landsat image at tp. It is also evident that there is a 

 
Fig. 13. The input, reference, and result images in the PlanetScpoe and Landsat image experiment. (a) PlanetScope image on September 19, 2019, used as the HR 

image at t0, (b) Landsat image on October 20, 2019, used as the LR image at tp, (c) PlanetScope image on October 21, 2019, used as the reference, (d) output from 

RERC, (e) PlanetScope image on October 21, 2019, used as the reference, (f) output from RERC. The NIR-red-green bands are composited as RGB in (a)-(d), and 

the SWIR2-SWIR1-coastal aerosol bands are composited as RGB in (e) and (f). 

 

 
 

 

TABLE Ⅴ 
ACCURACY METRICS IN THE LGC REAL MODIS IMAGE EXPERIMENT. 

band 

 RMSE     AAD     CC     SSIM    

 UBDF MTF 

LSUS 

DFM RERC  UBDF MTF 

LSUS 

DFM RERC  UBDF MTF 

LSUS 

DFM RERC  UBDF MTF 

LSUS 

DFM RERC 

Blue  
0.0209  0.0180  0.0177  0.0169   0.0154  0.0132  0.0130  0.0125   0.4794  0.5938  0.6185  0.6729   0.4727  0.5728  0.5976  0.6600  

Green  
0.0290  0.0244  0.0239  0.0225   0.0207  0.0176  0.0171  0.0160   0.4709  0.5883  0.6093  0.6714   0.4698  0.5754  0.5980  0.6669  

Red  
0.0358  0.0302  0.0296  0.0279   0.0253  0.0216  0.0210  0.0195   0.4798  0.5929  0.6130  0.6744   0.4785  0.5796  0.6014  0.6695  

NIR  
0.0536  0.0481  0.0444  0.0420   0.0402  0.0363  0.0334  0.0313   0.6047  0.6791  0.7389  0.7726   0.5893  0.6458  0.6974  0.7407  

SWIR1  
0.0736  0.0658  0.0638  0.0586   0.0578  0.0518  0.0503  0.0451   0.5393  0.6386  0.6652  0.7296   0.5113  0.5861  0.6105  0.6811  

SWIR2  
0.0536  0.0485  0.0475  0.0443   0.0407  0.0367  0.0359  0.0328   0.5424  0.6433  0.6635  0.7229   0.4975  0.5674  0.5847  0.6493  
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band difference (including the central wavelength and 

bandwidth) between the reference Planetscpoe image and the 

input Landsat image at tp, and the spectral band difference 

would also impact the quantitative analysis of the fusion result. 

The RERC generates similar mean values in each spectral band 

with the Landsat image at tp, showing that the RERC can fuse 

HR image at the spatial resolution of PlanetScope while 

maintaining the spectral information from the Landsat image. 

The RERC prediction image enlarged the standard deviation 

values in each spectral band compared with the Landsat image 

at tp, showing that RERC can enhance the detail and variation 

in the pixel spectral reflectance values compared with the 

Landsat image.  

C. Experiment in Very Large Areas for the Republic of Ireland 

and France 

1) Experiment in the Republic of Ireland 

The MODIS and RERC prediction images for the Republic 

of Ireland site are shown in Fig. 14. The UBDF, MTF, and 

LSUSDFM which are computationally inefficient were not 

compared. The RERC prediction image and the corresponding 

zoomed-area image are shown in Fig. 14. The zoomed area 

highlighted with the ellipse in the known Landsat image is 

represented in pink in Fig. 14(c), and this region is represented 

in green in the reference Landsat image in Fig. 14(e) because 

the vegetation is in the growing season, showing a reflectance 

change due to phenological factors. This region, highlighted 

with the ellipse, is represented as green in the zoomed area in 

the MODIS image in Fig. 14(d); however, the spatial details 

are blurred in the MODIS image. In the RERC prediction image, 

the zoomed area highlighted with the ellipse is represented in 

green in Fig. 14(b), which is similar to that in the reference 

Landsat image in Fig. 14(e), showing the ability to map surface 

reflectance changes due to phenological changes. Compared 

with the MODIS image, the fused RERC represents more of the 

spatial details of land cover, such as the vegetation highlighted 

with the ellipse and the lakes highlighted with the circle in Fig. 

14(b), showing the necessity of the fusion of MODIS and 

Landsat in monitoring land cover.  

The quantitative metrics for RERC are listed in Table Ⅶ. In 

the blue, green, red, and SWIR bands, the RMSE and AAD 

values range from 0.0090 to 0.0273 and from 0.0062 to 0.0195, 

respectively. The RMSE and AAD values are relatively larger 

in the NIR band than those in other bands. The main reason is 

that the reflectance values have the largest variance in the NIR 

band with a standard deviation of 0.0977. RERC predicts a CC 

value of 0.8243 and SSIM value of 0.8024 in the NIR band, 

showing that the RERC prediction image has a high correlation 

with the reference Landsat image for validation.  

2) Experiment in France 

The results of the RERC and zoomed areas in the input, 

result, and reference imagery are shown in Fig. 15. It is evident 

that the zoomed area has experienced drastic surface 

reflectance changes by comparing the known time image (Fig. 

15(c)) with the reference image (Fig. 15(e)), as highlighted by 

the circles. The drastic surface reflectance changes are obvious 

in the MODIS image, as highlighted by the circles in Fig. 15 (d). 

TABLE Ⅵ 
ACCURACY METRICS OF THE PROPOSED RERC FOR THE 

PLANETSCOPE AND LANDSAT EXPERIMENT.  

band 

Accuracy metrics for RERC 
Mean (±Standard deviation) in the 

reflectance 

RMSE AAD  CC SSIM 

Reference 

PlanetScope 
at tp 

Landsat 

at tp 

RERC 

prediction 
at tp 

Coastal 

aerosol 
No PlanetScope band available 

0.0415 

(±0.0127) 

0.0416 

(±0.0136) 

Blue 0.0239  0.0200  0.6475  0.6034  
0.0651 

(±0.0174) 
0.0457 

(±0.0141) 
0.0457 

(±0.0152) 

Green 0.0307  0.0268  0.7296  0.6865  
0.0937 

(±0.0219) 
0.0627 

(±0.0181) 
0.0672 

(±0.0195) 

Red 0.0329  0.0277  0.7901  0.7493  
0.0973 

(±0.0293) 

0.0702 

(±0.0263) 

0.0702 

(±0.0283) 

NIR 0.0403  0.0323  0.7675  0.7598  
0.2508 

(±0.0370) 
0.2201 

(±0.0370) 
0.2201 

(±0.0392) 

SWIR1 No PlanetScope band available 
0.1963 

(±0.0580) 
0.1965 

(±0.0617) 

SWIR2 No PlanetScope band available 
0.1227 

(±0.0496) 
0.1228 

(±0.0526) 

 

 
Fig. 14. The RERC prediction image (14912×17344 Landsat pixels) and the 

zoomed areas (448×448 Landsat pixels) in the Republic of Ireland experiment. 

(a) The entire RERC fused image, (b) the zoomed RERC fused image, (c) the 

zoomed Landsat image at t0, (d) the zoomed MODIS image at tp, and (e) the 

zoomed Landsat image at tp used for validation. 
 
 

 TABLE Ⅶ 
ACCURACY METRICS OF THE PROPOSED RERC FOR THE 

REPUBLIC OF IRELAND. UBDF, MTF, AND LSUSDFM WERE NOT 

COMPARED BECAUSE THEY ARE RELATIVELY 

COMPUTATIONALLY INEFFICIENT WHEN THE STUDY SITE IS 

VERY LARGE. 

band 

Accuracy metrics for RERC 
Mean (±Standard deviation) in the 

reflectance 

RMSE AAD CC SSIM 
Reference 
Landsat at 

tp 

MODIS  
at tp 

RERC 
prediction 

at tp 

Blue 0.0090 0.0062 0.5666 0.5307 
0.0257  

(±0.0104) 

0.0233 

(±0.0066) 

0.0233 

(±0.0073) 

Green 0.0135 0.0106 0.7138 0.7021 
0.0538  

(±0.0157) 

0.0612 

(±0.0124) 

0.0611 

(±0.0138) 

Red 0.0161 0.0115 0.5814 0.5235 
0.0421  

(±0.0193) 
0.0454 

(±0.0104) 
0.0454 

(±0.0122) 

NIR 0.0583 0.0444 0.8243 0.8024 
0.3594  

(±0.0977) 

0.3777 

(±0.0719) 

0.3776 

(±0.0778) 

SWIR2 0.0273 0.0195 0.6129 0.5499 
0.0891 

 (±0.0345) 
0.0876 

(±0.0197) 
0.0876 

(±0.0215) 

  

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3308902

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14 

 

 

However, the MODIS image is blurred and the relatively coarse 

resolution fails to represent the spatial detail of the reflectance 

changes. In comparison with the MODIS image, the RERC 

image is generated at 30 m resolution and better demonstrates 

the spatial detail of the reflectance at the prediction time such as 

highlighted in the circles in Fig. 15 (b). The quantitative metrics 

of the RERC for the experiment focused on France are listed in 

Table Ⅷ. Similar to the Republic of Ireland experiment, 

RERC predicted the highest RMSE and AAD values in the 

SWIR2 band, which had the largest standard deviation value in 

reflectance, and predicted the lowest RMSE and AAD values in 

the blue band, which had the smallest standard deviation value 

in reflectance. The mean values generated from the RERC were 

very similar to those in the MODIS image at tp in each spectral 

band. The standard deviations in the MODIS image at tp are 

smaller than those in the reference Landsat image at tp, which 

are enlarged by the RERC, showing the ability of the RERC to 

enhance pixel spectral reflectance variance via fusion.  

Ⅴ. DISCUSSION 

The comparison of different unmixing-based algorithms in 

generating the HR class fraction images, the performance of 

different unmixing-based STIFs in dealing with blocky effects 

in the output, and the limitations and future work for RERC 

are discussed here.  

A. Comparison of Different Unmixing Algorithms used in 

Generating the HR Class Fraction Images 

RERC and the two comparator methods of MTF and 

LSUSDFM used different unmixing algorithms to generate 

HR class fraction images. The random forest regression used 

in RERC has several advantages compared with the 

soft-clustering algorithm used in MTF and the FCLS 

unmixing used in LSUSDFM. 

First, in MTF, the soft-clustering algorithm used is 

dependent on the softness parameter [68]. A very small 

softness parameter results in class fractions from different 

classes close to 0 or 1, and the result is similar to a hard 

classification map. A very large softness parameter would 

result in class fractions from different classes similar to 1/n 

which is rare in real scenarios [72]. Therefore, the optimal 

softness parameter value is dependent on the heterogeneity of 

land cover and the corresponding existence of mixed pixels in 

the HR image. In comparison with the soft-clustering 

algorithm, the random forest regression used in RERC is more 

flexible and robust in use.  

Second, in the LSUSDFM, the FCLS spectral unmixing is 

ill-posed if the number of endmembers is larger than the 

number of HR image bands, and the ill-posed problem is more 

severe if the HR image (such as Landsat, PlanetScope, and 

Chinese GF) used in the unmixing has very few spectral bands. 

In contrast, the random forest regression can generate accurate 

fractions of multiple classes when the image has a limited 

number of spectral bands [79, 80], and has been used to 

generate class fraction images for the PlanetScope image 

which has only four spectral bands. In addition, the FCLS is an 

inversion problem and is especially time-consuming when the 

spectral bands and the number of endmembers are large, 

which greatly limits its application to large areas. In contrast, 

the self-trained regression is not based on the inversion 

approach and the regression model is more computationally 

efficient; its unmixing running time is only ~1% of the running 

time of the FCLS linear mixture model. Third, the FCLS linear 

mixture model is dependent on the endmembers, and may fail 

to consider the intra-class spectral variability information in the 

unmixing, whereas self-trained regression does not require 

information from endmembers. Lastly, the FCLS linear mixture 

model is not suitable for non-linear mixture models, whereas 

the self-trained regression is more flexible.  

B. Performance of Different STIFs in Dealing with Blocky 

Effects 

The blocky effect indicates the discontinuity in reflectance 

between HR pixels of the same class crossing the boundaries of 

two neighboring LR pixels. The blocky effect results from the 

fact that the endmembers in the two neighboring LR pixels are 

estimated using different sets of LR pixels, and the same class 

in the two neighboring LR pixels may be assigned different 

 
Fig. 15. The RERC prediction image (36192×54560 Landsat pixels) and the 

zoomed areas (448×448 Landsat pixels) for the France experiment. (a) The 

entire RERC fused image, (b) the zoomed RERC fused image, (c) the zoomed 

Landsat image at t0, (d) the zoomed MODIS image at tp, and (e) the zoomed 

Landsat image at tp used for validation. 

 

 
TABLE Ⅷ 

ACCURACY METRICS OF THE PROPOSED RERC FOR FRANCE. UBDF, 

MTF, AND LSUSDFM WERE NOT COMPARED BECAUSE THEY ARE 

COMPUTATIONALLY INEFFICIENCY WHEN THE STUDY SITE IS VERY 

LARGE. 

band 

Accuracy metrics for RERC 
Mean (±Standard deviation) in the 

reflectance 

RMSE AAD CC SSIM 

Reference 

Landsat 
at tp 

MODIS  
at tp 

RERC 

prediction 
at tp 

Blue 0.0213 0.0156 0.7439 0.7035 
0.0559 

 

(±0.0309) 

0.0506 
(±0.0199) 

0.0506 
(±0.0224) 

Green 0.0280 0.0207 0.7587 0.7385 
0.0928 

 

(±0.0429) 

0.0915 
(±0.0302) 

0.0915 
(±0.0340) 

Red 0.0438 0.0324 0.7543 0.7294 
0.1092  

(±0.0665) 
0.1053 

(±0.0466) 
0.1053 

(±0.0514) 

NIR 0.0459 0.0338 0.6346 0.5911 
0.3220 

 

(±0.0592) 

0.3233 

(±0.0345) 

0.3234 

(±0.0404) 

SWIR2 0.0579 0.0435 0.7279 0.7069 
0.1646  

(±0.0839) 
0.1683 

(±0.0594) 
0.1683 

(±0.0659) 
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reflectance. The blocky effect arises because each LR pixel is 

unmixed independently in the estimation of the local 

endmember. Fig. 16 compares the impact of the blocky effect 

highlighted with circles in the figures for different 

unmixing-based fusion methods on the CIA and LGC sites 

using real MODIS imagery. The blocky effect is the most 

obvious in the pixel-scale UBDF result and the MTF result 

because MTF with a relatively small softness parameter of 1.1 

would generate class fractions close to 0 or 1. RERC generated 

the minimal blocks. The advantage of reducing the blocky 

effect accounts for two reasons for RERC. First, for the 

pixel-based STIF, which directly assigns the estimated 

endmember spectra to the corresponding HR pixel, the resultant 

reflectances for the same class pixels located in the same LR 

pixel are homogenized, and the same class pixels located at 

neighboring LR pixels would result in a blocky effect in 

reflectance if the estimated endmembers for neighboring LR 

pixels are different. In contrast, the sub-pixel-based STIFs 

linearly combine the local endmembers with the HR class 

fractions to generate the fused image, and the resultant 

reflectance is dependent on both the endmembers and HR class 

fractions. The effectiveness of this strategy, that is, the 

sub-pixel strategy, is also demonstrated in the MTF and 

LSUSDFM results in comparison with the UBDF results in Fig. 

16. Second, RERC selects similar pixels to post-process and 

averages the pixel spectral values in the predicted image. Since 

similar pixels may be selected for HR pixels located in different 

LR pixels, the blocky effect that occurs for similar pixels 

located at neighboring LR pixels could be reduced. 

C. Limitations and Future Works 

RERC spatially interpolates the LR image at tp to a HR scale 

based on bicubic interpolation, and then downscales the LR 

image at tp to a HR scale based on the spectrally similar pixels 

in the HR image at t0. However, if a land-cover change occurs, 

the HR land-cover spatial pattern changes accordingly, and the 

HR image at t0 may not represent the real land-cover spatial 

pattern at tp. Results show that, like other STIFs, the proposed 

RERC better mapped the reflectance change in homogeneous 

regions but may fail to predict the texture in land cover changed 

areas. This is because RERC uses bilinear interpolation in the 

residual compensation approach in which the spatial details are 

not reconstructed. Future studies can focus on the use of deep 

learning to map regions where land cover has changed [81].  

Although RERC could reduce the blocky effect to some 

extent, it does not involve incorporating new constraints in 

unmixing. The blocky effect is mainly because different LR 

pixels are involved in unmixing spatially adjacent pixels, 

resulting in dissimilar spectral values even for the same class 

located in the spatially adjacent LR pixels. Thus, an effective 

and direct way to reduce the blocky effect for the 

unmixing-based STIF is by minimizing the reflectance 

difference of the same class in spatially adjacent LR pixels. 

Wang et al. [55] proposed a novel block-removal method that 

minimizes the residual error to ensure the spatial continuity of 

the endmember reflectance in unmixing, which is an effective 

and general solution for UBDF and other STIFs. This 

constrained-function strategy is applied directly to the same 

class pixels at the pixel scale, and its application in sub-pixel 

scale block removal should be explored in future studies. 

Thirdly, this paper fused images using only one HR image at a 

known time. If both HR images that pre-date and post-date the 

prediction time are available, it is suggested to fuse the 

prediction time image separately using different HR images, 

and then combine the fused image to generate the final 

predicted image to further improve the fusion accuracy.  

In addition, although many machine learning models such as 

the artificial neural network and support vector machine 

regression can be used in the training and predicting of the 

sub-pixel class fractions, the random forest has been adopted in 

RERC for its simplicity and high precision [82, 83]. Future 

works can explore various simple machine-learning regressions 

and deep learning regression in exploring sub-pixel class 

fraction information from the remote sensing imagery in the 

unmixing-based STIF.    

Lastly, the unmixing-based STIF requires less input than the 

state-of-the-art STARFM-like and FSDAF-like fusions and is 

thus more flexible in use, especially in image fusion in very 

large areas. For instance, the unmixing-based STIF can be used 

to generate high spatiotemporal imagery based on the LR 

imagery such as MODIS and Sentinel-3 which have a large 

span and the mosaicked medium resolution image such as 

Landsat and Sentinel-2 acquired at different dates to generate 

Landsat-like or Sentinel-2-like imagery with very high 

temporal repetition rates. Future studies could focus on this 

while continuously increasing the efficiency of the 

 
Fig. 16. Comparison of the impact of the blocky effect on different unmixing based fusion methods in the CIA and LGC experiments using real MODIS imagery. 

(a) reference image on the CIA site. (b) UBDF on the CIA site, (c) MTF on the CIA site, (d) LSUSDFM on the CIA site, (e) RERC on the CIA site, (f) reference 

image on the LGC site. (g) UBDF on the LGC site, (h) MTF on the LGC site, (i) LSUSDFM on the LGC site, and (j) RERC on the LGC site. 
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unmixing-based STIF.  

Ⅵ. CONCLUSION  

This study proposes a new unmixing-based STIF of RERC 

based on a self-trained machine-learning regression, LR 

endmember estimation, HR image reconstruction, and residual 

compensation. The self-trained regression trains the 

relationship between the reflectance image and the 

corresponding class fractions at a coarse resolution scale, and 

then uses this relationship in unmixing the HR class fraction 

images. In comparison with the FCLS linear spectral unmixing 

and the soft-clustering, the self-trained regression does not 

require any information about endmembers, and is flexible in 

use. In addition, the self-trained regression does not have 

physical constraints like the  FCLS linear spectral unmixing 

which requires the number of the number endmembers to be no 

more than the number of spectral bands to generate reliable 

results, and does not require the information about endmember 

distribution that is used in the soft-clustering. Lastly, 

self-trained regression is computationally efficient, and its 

computation time is approximately 1% and 10% of that for the 

FCLS linear spectral unmixing and the soft-clustering, 

respectively. The proposed RERC incorporates the LR image at 

the prediction time and better predicts the reflectance in regions 

that experienced drastic reflectance changes than the 

comparator of unmixing-based STIFs, owing to the residual 

compensation term to make the full use of the LR image at the 

prediction time. The experimental results also show that RERC 

not only reduced the homogenization effect compared with 

UBDF, but also reduced the blocky effect to a great extent. 

RERC has been applied to fuse a 3 m PlanetScope image of 

four bands image at the known time with a Landsat image of 

seven bands at the prediction time to generate a 3 m seven 

bands multispectral image and is more flexible than the 

STARFM-like and FSDAF-like STIFs which require additional 

LR image at the known time and requires the LR and HR to 

have similar spectral bands. RERC has been applied to fuse 30 

m imagery with MODIS spectral reflectance at the national 

scale for the Republic of Ireland (~70,273 km2) and France 

(~551,500 km2), showing its potential for mapping daily 

multispectral imagery at Landsat spatial resolution for 

large-area land surface monitoring.  
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