
Automatic coronary artery
segmentation of CCTA images
using UNet with a local contextual
transformer

QianjinWang1, Lisheng Xu2, LuWang1*, Xiaofan Yang1, Yu Sun2,3,4,
Benqiang Yang3,4 and Stephen E. Greenwald5*
1School of Computer Science and Engineering, Northeastern University, Shenyang, China, 2College of
Medicine and Biological and Information Engineering, Northeastern University, Shenyang, China,
3Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China, 4Key
Laboratory of Cardiovascular Imaging and Research of Liaoning Province, Shenyang, China, 5Blizard
Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London,
London, United Kingdom

Coronary artery segmentation is an essential procedure in the computer-aided
diagnosis of coronary artery disease. It aims to identify and segment the regions of
interest in the coronary circulation for further processing and diagnosis. Currently,
automatic segmentation of coronary arteries is often unreliable because of their
small size and poor distribution of contrast medium, as well as the problems that
lead to over-segmentation or omission. To improve the performance of
convolutional-neural-network (CNN) based coronary artery segmentation, we
propose a novel automatic method, DR-LCT-UNet, with two innovative
components: the Dense Residual (DR) module and the Local Contextual
Transformer (LCT) module. The DR module aims to preserve unobtrusive
features through dense residual connections, while the LCT module is an
improved Transformer that focuses on local contextual information, so that
coronary artery-related information can be better exploited. The LCT and DR
modules are effectively integrated into the skip connections and encoder-
decoder of the 3D segmentation network, respectively. Experiments on our
CorArtTS2020 dataset show that the dice similarity coefficient (DSC), Recall,
and Precision of the proposed method reached 85.8%, 86.3% and 85.8%,
respectively, outperforming 3D-UNet (taken as the reference among the
6 other chosen comparison methods), by 2.1%, 1.9%, and 2.1%.
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1 Introduction

Cardiovascular disease is a major cause of death worldwide and its most common
manifestation is coronary artery disease (CAD) (Jayaraj et al., 2019). Early diagnosis of CAD,
especially coronary artery stenosis and atherosclerosis, is essential for subsequent treatment.
As a non-invasive screening method, Computed Tomography Angiography (CTA) has been
widely used for this purpose (Raff, 2007). However, coronary CTA (CCTA) images have the
typical shortcomings of medical images, such as unbalanced foreground-background
distribution, small targets, and unstable image quality (Kroft et al., 2007). This instability
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results from differences in scanning equipment and variations in
patient motion during scanning, which affect the consistency of
image quality. Radiologists can manually assess the site of stenosis
and plaque in coronary arteries, but this is not only time-consuming
but also prone to misdiagnosis and omission (Ghekiere et al., 2017).
Furthermore, clinical workforce resources are limited, so there is a
drive to employ computers to help physicians analyze coronary
artery images. Segmentation of coronary arteries in these images is a
prerequisite for automating the diagnosis and analysis these tissues.
(Mihalef et al., 2011; Tesche et al., 2018). Given the current
difficulties in automated diagnosis of CCTA images, there is a
need to develop more effective methods for segmenting the
coronary arteries contained therein.

In previous research, traditional methods have achieved some
notable success in the field of vessel segmentation. These methods
include techniques based on image processing, morphological
operations, and traditional machine learning algorithms. More
than 10 years ago, Lesage et al. (2009) provided further insights
into vessel segmentation approaches, which do not involve deep
learning. These include the use of region-based methods, edge
detection, and active contour models, among others. Orujov et al.
(2020) proposed a contour detection algorithm for retinal blood
vessels using Mamdani (Type-2) fuzzy rules; the method enhanced
contrast with contrast-limited adaptive histogram equalization,
removed noise using a median filter, calculated image gradients,
and classified pixels as edges based on fuzzy rules considering
gradient magnitude and direction, ultimately obtaining
segmentation of the blood vessels. Yang et al. (2020) proposed an
improved multi-scale enhancement method based on Frangi
filtering to enhance the contrast between vessels and other
objects in the image, and used an improved level set model to
segment vessels from both the enhanced and original grayscale
images. Cheng et al. (2015) applied thresholding and
morphological operations to preprocessed images, obtaining an
initial outline of blood vessels, which were then segmented using
an active contour framework based on a B-snake model with a
constraint force to prevent leakage into adjacent structures. Kerkeni
et al. (2016) proposed a multiscale region growing (MSRG)
technique for segmenting coronary arteries in 2D X-ray
angiography images, beginning with image enhancement using a
multi-scale vascularity filter and a contrast enhancement technique,
followed by identifying initial seed points by thresholding and
manually selecting points with a high density of vascularity, and
finally employing an iterative region growing approach to obtain the
segmentation. Although these methods have to some extent helped
address vessel segmentation tasks, they still have shortcomings, such
as sensitivity to noise, dependency on manual intervention, and
difficulty in handling complex vessel structures or poor contrast
images.

Recently, deep learning methods have performed extremely well
in the segmentation of medical images and have been shown to
significantly outperform traditional methods in accuracy. Artificial
intelligence has also found extensive applications in cardiothoracic
fields, particularly in diagnostic imaging (Sharma et al., 2020). UNet
(Ronneberger et al., 2015) is a classical network in the field of
biomedical image segmentation and has become a benchmark in this
domain (Liu et al., 2020). The network has a U-shaped structure
consisting of an encoder, a decoder, and skip connections, which

allow it to acquire both spatial and semantic information
simultaneously. 3D-UNet (Çiçek et al., 2016), as an extension of
UNet, is used for 3D image segmentation. The input is a volume
instead of a slice so that interslice information can be exploited, and
the convolution operation is changed from 2D to 3D accordingly. A
typical 3D-UNet consists of four stages for both the encoder and the
decoder. VNet (Milletari et al., 2016), which has also been proposed
for processing 3D medical images, is similar to 3D-UNet in terms of
network structure. The differences are that it uses convolution
operations instead of pooling operations for upsampling and
downsampling, and it also introduces residual connections in
both the encoder and decoder.

Due to its excellent performance, many studies have employed
3D-UNet as a baseline network and improved upon it. As to the
encoding and decoding path, some variants of 3D-UNet add residual
connections to the convolution and deconvolution operations in the
encoding and decoding stages (Lee et al., 2017; Qamar et al., 2020).
Furthermore, some variants of 3D-UNet introduce dense
connections between the fine and coarse feature maps to improve
the transfer of feature information (Li et al., 2018; Bui et al., 2019;
Zhang Y et al., 2020; Pan et al., 2021). Song et al. (2022) incorporated
dense blocks into the encoder for effective feature extraction and
applied residual blocks to the decoder for feature rectification.
Several works have introduced attention mechanisms into UNet
(Islam et al., 2020; Jin et al., 2020; Li et al., 2021). For example,
channel attention (Li et al., 2021) and spatial attention (Islam et al.,
2020) have been added to the decoder. Spatial attention focuses
more on the target region, while channel attention estimates the
importance of individual features. However, accurate segmentation
of medical images requires rich contextual information to resolve
ambiguities, and these methods do not make effective use of such
information.

The Transformer model (Vaswani et al., 2017) proposed in the
Natural Language Processing field has fundamentally changed the
way that machines work with text data. Inspired by this, many recent
studies have adapted the Transformer model for computer vision
applications. For instance, Vision Transformer (Dosovitskiy et al.,
2021) divides images into fixed-size patches, and these patches are
regarded as words and fed into the Transformer for image
recognition. Related works that utilize the Transformer for
medical image segmentation have also performed well. VT-UNet
(Peiris et al., 2022) uses window-based Transformers as encoders
and decoders to construct a U-shaped network for 3D Tumor
Segmentation. UNETR (Hatamizadeh et al., 2022) applies the
original Transformers as encoders in a U-shaped network to
learn the input representation and capture global multi-scale
information, while the decoders remain as traditional
convolutional modules. UCTransNet (Wang et al., 2022a)
introduces the channel Transformer to replace the skip
connection of U-Net for more effective encoder-decoder feature
connection and hence more accurate segmentation of medical
images. AFTer-UNet (Yan et al., 2022) replaces the convolution
with a Transformer in the last layer of the UNet. MT-UNet (Wang
et al., 2022b) proposes a mixed Transformer and embeds it into the
deeper layers of UNet. The mixed Transformer first calculates self-
affinities using an efficient local-global self-attention mechanism
and then exploits the relations between data samples with an
external attention.
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Besides the improvements in UNet and the introduction of the
attention mechanism, several other network architectures have been
employed for coronary artery segmentation. Lei Y et al. (2020)
introduced an improved 3D attention into a fully convolution
network (FCN) to automatically segment the coronary arteries in
CCTA images. Tian et al. (2021) used VNet for initial segmentation
and then used region growing to further segment the image, thus
obtaining complete and smooth-edged coronary arteries. Gao et al.
(2021) conducted coronary centerline extraction and lumen
segmentation jointly on CCTA images to address the breakage
issue, employing a Graph Convolutional Network (GCN) for the
segmentation of the coronary lumen. Some studies use specific
features of coronary vessels for segmentation. For instance, Kong
et al. (2020) focused more on the anatomical structure of coronary
arteries and proposed incorporating a tree-structured convolutional
gated recurrent unit into the fully convolutional neural network. Ma
et al. (2020) are more concerned with the continuity of the vessels
and used a novel region growing method to segment coronary
arteries, which considers a variable sector search area within each
region. Wolterink et al. (2019) focused more on tubular surfaces and
employed graph convolutional networks to forecast the spatial
coordinates of vertices within a tubular surface mesh, thus
segmenting the lumen of the coronary artery. Other studies have
adopted a two-stage framework to achieve coronary artery
segmentation in CCTA images. For instance, in the first stage,
cardiac segmentation is performed, followed by slicing the
cardiac region and segmenting the coronary arteries within the
local sliced region. This procedure can alleviate the foreground-
background imbalance problem (Dong et al., 2022). Wang et al.
(2022c) adopted a similar approach in which the first stage involves a
rough segmentation of the 3D image and in the second, the
segmentation network is fed with the original 2D images and the
2D images resulting from slicing the 3D segmentation.

However, these existing methods still have shortcomings and we
aim at tackling some of them in this work. First, as a proportion of
the coronary arteries are of small diameter and thus appear as very
thin lines in images, simply increasing the number of convolutional
layers in the encoding or decoding blocks of UNet would not
improve the segmentation accuracy, because the information in
the shallow-layer features, which is necessary for segmenting details,
may be lost when the convolution operation goes deeper. Although
the traditional residual module (He et al., 2016) can complement the
shallow-layer information, it is not sufficient for coronary artery
segmentation (as demonstrated in Table 4 in the results and
discussion section). Existing research has explored the idea of
combining residual learning and dense connections to enhance
feature extraction and fusion capabilities in 2D image recognition
tasks (Zhang Z et al., 2020; Zhang et al., 2021). However, these
approaches are tailored for specific tasks and datasets, and directly
applying them to 3D-UNet could result in a large network due to its
dense concatenation. Therefore, there is a need to adapt this concept
and we have consequently proposed a module specifically designed
for 3D coronary artery image segmentation. Second, with similar
Hounsfield Unit (HU) values, the feature representations of
coronary arteries in the inner layers of a CNN network are likely
to be similar to those of other blood vessels such as veins and the
ascending aorta. To deal with this, the attention mechanism can be
used to enhance the weighting of the coronary regions. However,

traditional self-attention computes an attention matrix based on
isolated query-key pairs, which may focus more on segmenting the
main part of coronary artery and ignore the ends and regions with
low concentrations of contrast medium. There has been research on
transformers that focus on local context information (Li et al., 2022),
and this has been used for 2D image recognition. However, this
approach does not simultaneously extract local context information
for Q and V, which may limit its feature representation ability. There
is a need for a module suitable for 3D-UNet networks for
segmentation tasks and to improve the attention mechanism to
better capture the local context information of Q and V. This will
enhance the feature representation ability of the network.

Therefore, we aim to extract and fuse a greater number of deep
and shallow features than the residual module. To this end, we
propose the Dense Residual (DR) module, which is continuously
supplemented with preceding convolution features during the
convolution process, thus improving the encoding and decoding
block of UNet. Then, aiming to concentrate more on the local
characteristics of the coronary arteries and reduce the noise
information from other organs, we propose the Local Contextual
Transformer (LCT) module, which focuses more on the local
contextual information by obtaining an attention matrix based
on query and contextual-information-enhanced key pairs. In
particular, we apply the LCT module after each encoding block
to provide more informative features to the decoding block, instead
of simply using the skip connection, so that the decoding procedure
can focus more on the region’s neighboring the coronary arteries.
Using these modules, we have conducted extensive experiments on
our CorArtTS2020 dataset and compared the results to the most
widely used image segmentation method 3D-UNet and six other
segmentation networks commonly used in coronary artery
segmentation studies. The code of the proposed method is
available at https://github.com/qianjinmingliang/Coronary-Artery-
segmentation-with-LCTUnet.

2 Materials and methods

2.1 Dataset

The dataset used for the experiment (CorArtTS 2020) was
provided by the General Hospital of the Northern Theater
Command in China. It is a modified version of the one used in
our previous work (Song A. et al.) and was acquired using a Philips
iCT 256 Scanner, running a 120 kVp protocol. Each slice had a width
and height of 512 pixels, and the interval between adjacent slices was
0.45 mm. Each case consisted of between 310 and 390 slices. As
shown in Table 1, the CorArtTS2020 dataset consists of 81 cases, of
which the numbers of normal subjects and patients were 40 and 41,
respectively. The data were randomly divided into training,
validation, and test sets in the ratio of 6:1:3, respectively.

TABLE 1 The CorArtTS2020 dataset.

Training set Validation set Testing set

Normal subjects 24 cases 4 cases 12 cases

Patients 25 cases 4 cases 12 cases
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The annotation process, summarized in Figure 1, was performed
by three experienced radiologists from the same hospital. Initially,
data were acquired from the radiology department of the hospital,
and the radiologists underwent training to familiarize themselves
with the anatomical features and distribution of coronary arteries in
CCTA images (Data Acquisition and Preparation). Utilizing
specialized medical image processing software, Mimics
(Materialise), they carefully annotated the visible contours and
branches of the right coronary artery, the left coronary artery,
and their branches using the coronal, sagittal, and axial planes
(Data Annotation). Upon completion of the annotation process,
another experienced cardiovascular imaging radiologist from the
same hospital reviewed the annotations (Review). If inaccuracies
were found, they were corrected under the guidance of the reviewing
radiologist (Correction of Annotations). This iterative and
collaborative review process helped to ensure the accuracy of the
final labels. Finally, a last check was made to confirm the correctness
of all annotations (Final Verification).

Figure 2A provides an example of the annotation process
conducted on the Mimics medical image processing software
interface, with the annotated regions of the coronary arteries
highlighted in yellow. Correspondingly, Figure 2B displays the
original CCTA images prior to the annotation process.

The CCTA data require pre-processing before being fed into the
segmentation network, because different tissues have different
radio-densities, giving rise to a wide range of HU values.
Highlighting the coronary arteries can improve the segmentation
result. However, there is no clear definition of the exact range of HU
values for coronary arteries (Marquering et al., 2005; Liu et al., 2013).
For our dataset, we therefore conservatively limit the range of HU
values in the CCTA data to be within the interval [−260,760] HU,
under the guidance of the physicians, and we note that it may not be
generalizable to other medical imaging modalities. The result of the

data pre-processing is shown in Figure 3. It is notable that the pre-
processing effectively removes irrelevant tissues and some noise, as
shown in the green box, while making the coronary arteries (red
arrows) more distinct. To ensure fair comparison we also used the
pre-processed data for all the other comparison methods (Milletari
et al., 2016; Çiçek et al., 2016; Lee et al., 2017; Li et al., 2018; Islam
et al., 2020; Wang et al., 2022a; Hatamizadeh et al., 2022).

2.2 Structure of the DR-lct-unet

The proposed network structure for coronary artery segmentation
is based on the 3D-UNet, to which we have made three modifications.
Firstly, the LCT module, which is a novel Transformer-style attention
module, is developed to bridge the gap between the features of the
encoding and decoding stages before combining them. Secondly, the
DR module, which is a mix of residual and dense connections of
convolutions, is developed to extract multi-level features for both the
encoding and decoding stages. Thirdly, deep supervision is exploited to
facilitate the training process of the network. The architecture of the
proposed DR-LCT-UNet is shown schematically in Figure 4.

Specifically, in the encoding process, the pre-processed image is
fed into the network, and its size is 1 × 16 × 512 × 512, where 1 is the
channel size, 16 is the thickness (i.e., the number of slices) of the
input volume, and the height and width are 512. There are four
layers in the encoding stage, in each of the first three layers, the
features are first extracted and then downsampled, while the fourth
layer only performs feature extraction. In order to extract rich
feature representations for the coronary arteries, the DR module
is used in the encoding path, as it is able to extract deeper features
while retaining more detailed ones than traditional convolution.

For the decoding process, as the decoding features are quite
different from the encoding features after several sampling and

FIGURE 1
Outline of the annotation process.

FIGURE 2
Illustration of the annotation process (A) and original CCTA images (B).

Frontiers in Physiology frontiersin.org04

Wang et al. 10.3389/fphys.2023.1138257

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1138257


convolution operations, the LCT module is used before performing
decoding to fill the semantic gap between the features from the
encoding and decoding stages of the same resolution level.
Consequently, the input to each decoding layer consists of three
parts, i.e., the features from the LCT module of the same level, the
features from the encoding layers and the features from the previous
decoding layers. These features are first concatenated and then
decoded by the proposed DR module in each decoding layer.

Finally, we use a deep supervision strategy (Lee et al., 2015) in
the training process to prevent the gradient from disappearing in the
early stage of training. To be specific, the SoftMax function is applied
at the end of each decoding layer to obtain the feature map used for
deep supervision. To compute the segmentation loss for deep
supervision, each feature map is upsampled to the same size as
the input and then the Dice loss is calculated based on the similarity
between the feature map and the ground truth.

FIGURE 3
Comparison of a CCTA image before (A) and after pre-processing (B).

FIGURE 4
Schematic of the architecture of the proposed DR-LCT-UNet network.
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2.3 Structure of the LCT module

In CCTA images, as coronary arteries are smaller compared with
nearby structures, and the appearance of coronary arteries and
coronary veins is similar, it is necessary to exploit more local
contextual information for accurate coronary artery segmentation.

Self-attention (Vaswani et al., 2017) computes an attention
matrix based on isolated query-key pairs, as is shown in
Figure 5A. Q, K, and V are obtained by 1 × 1 convolution, which
only uses the information of each individual location without
considering any neighbourhood information. Such operation limits
the visual feature representation ability of the resulting embeddings.
To deal with this, we propose a local contextual Transformer (LCT)
module, the structure of which is shown in Figure 5B).

Specifically, for an input X of sizeH ×W ×D × C (H,W,D and C
are respectively the height, width, thickness and the number of
channels), it is first transformed into queries (Q), keys (K), and
values (V) using embedding matricesWq,Wk, andWv, respectively.
This transformation is represented by Q = XWq, K = XWk, and
V = XWv. Instead of using 1 × 1 × 1 convolution to encode each key
and value as in traditional self-attention, the LCT module uses
k × k × k group convolution over all the neighbouring keys and
values within a k × k × k grid to take advantage of local contextual
information. That is, the matrices Wk andWv are set to k × k × k in
size, while the matrix Wq is maintained at 1 × 1 × 1 to retain the
information of each location in Q.

Then, the contextualized keys K are concatenated with the
queries Q. This combined information is then fed into a 1 × 1 ×
1 convolution with the ReLU activation function to obtain the
attention matrix Rg1∈RH✕W✕D✕C, thereby learning a feature that
integrates local context information with global information.

After that, in a manner similar to traditional self-attention, the
values of V, which contains the local context information, are
multiplied element-by-element with the attention matrix Rg1 to
obtain Rg2∈RH✕W✕D✕C:

Rg2 � Rg1 ⊗ V (1)
Finally, a softmax function is applied to Rg2 to yield the output of

the LCT module.
In general, the proposed LCT makes use of the local contextual

information to enhance the effectiveness of the self-attention
calculation, and it can thus adaptively put emphasis on the more
relevant regions of the coronary arteries for segmentation. In our
implementation, k is set to 3 and the optimality of this setting was
experimentally validated (see Table 7).

2.4 Structure of the DR module

Traditional residual connection is proposed to solve the
degradation problem of deep neural networks. Its structure is
shown in Figure 6A, and consists of two consecutive convolution
operations and a residual connection. The residual connection is
implemented by adding up the features before and after the
convolutions. The mathematical description of the original
residual connection is

Y � X +Η2 X( ) (2)
where X is the input feature, H(X) denotes the convolution
operation on X followed by a ReLU operation, and accordingly,
Hk(X) denotes k successive convolution operations on X, each
followed by the ReLU operation. Although the residual

FIGURE 5
(A) Schematic of the architecture of the traditional self-attention model; (B) Schematic of the proposed LCT module.

FIGURE 6
(A) Schematic of the architecture of the traditional Residual Module; (B) Description of the architecture of the proposed Dense Residual Module.
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connection has the effect of preserving the original features, some
coronary artery regions in the images are not clear and the
corresponding features are not obvious due to the prevalence of
narrow areas, such as their distal ends, stenotic regions, and areas
with uneven distribution of contrast. Such information may easily
get lost during the convolution operation. Therefore, we need to
preserve more of the information which might subsequently be lost
during the convolution process. To this end, we propose a dense
residual (DR) module, as shown in Figure 6B).

Specifically, the DR module has two residual connections which
work synergistically to fuse the multi-level features from successive
convolution operations. The first residual connection adds the input
features to the features obtained after the second convolution
operation. After that, one more convolution operation is used to
extract additional deeper features. The second residual connection
then sums all the previous feature maps, i.e., the input features and
the feature maps generated by each of the convolution operations.
Thus, the DR module is able to retain features at different
convolution levels and extract rich features without information
loss. In this way, the features extracted by the DR module can more
completely represent the characteristics of coronary arteries. The DR
module is defined by the equation:

Y � H X +H2 X( )[ ] +X +H X( ) +H2 X( ) (3)
With the DR module, features in regions with narrow vessels

and along low contrast boundaries are enhanced, making more
accurate coronary artery segmentation possible.

2.5 Loss function

As coronary arteries are of small diameter in comparison with
nearby tissues such as the heart, ascending aorta, and the pulmonary
artery, the coronary artery segmentation task suffers greatly from the
foreground-background imbalance problem. Dice Loss was
proposed in 2017 to deal with the imbalance problem in
segmentation (Ghekiere et al., 2017). It is well suited to the
demands of this study, and has therefore been employed to train
our network. The computation of Dice loss is based on the Dice
similarity coefficient (DSC), which measures the overlap between
two samples, producing results in the range [0,1], i.e., a higher DSC
value indicates a higher degree of overlap. The DSC is defined by Eq.
8, and Dice Loss is computed as.

Dice Loss � 1 − DSC (4)

2.6 Deep supervision

For deep supervision, a separate loss is calculated for each
decoding layer, which also plays the role of regularization. This
strategy, known as deep supervision, leverages the intermediate
outputs of the decoding process to guide the training, helping to
mitigate the vanishing gradient problem and leading to more
discriminative features being learned at all levels. These
intermediate losses provide additional guidance to the learning
process, which often results in faster convergence.

The loss function used for deep supervision is defined in Eq. 5,
where Lk denotes the loss at the decoding layer of depth k, and the
Dice Loss is defined by Eq. 4. As the output of the first decoding layer
has the greatest effect on the performance of the network, we set
smaller weights for the losses of the other decoding layers, i.e., α < 1.
The weight α for deep supervision is also gradually decreased during
the training process so that at the end of the training the loss reflects
the segmentation quality of the last decoding layer.

L � L1 + α L2 + L3 + L4( ) (5)

3 Experiments and results

3.1 Experimental settings

All the experiments were carried out on a GeForce RTX
3090 GPU. The experimental environment was Pytorch 1.7 and
the same training process was used for the proposed network and the
other compared methods. The input was a volume of size 16 × 512 ×
512. The Adam optimizer which uses adaptive moment estimation
to speed up convergence was employed to update the network
parameters. Due to GPU memory limitations, we chose a batch
size of 3 to avoid out-of-memory errors. The parameter settings for
the training process are shown in Table 2.

3.2 Evaluation metrics

We applied five commonly used evaluation metrics, i.e., the Dice
similarity coefficient (DSC), Recall, Precision, Average Symmetric
Surface Distance (ASSD), and Hausdorff Distance (HD), to evaluate
the effectiveness of the different methods (Kirişli et al., 2013). DSC
describes the similarity between two samples. Recall is the ratio of
the number of correctly predicted positive voxels to the actual
number of positive voxels. Precision is the proportion of
correctly predicted positive voxels to all the voxels predicted to

TABLE 2 Parameter settings for the training process.

Parameters Values

Batch size 3

Epochs 180

Learning rate (0< epochs< 100) 10–5

Learning rate (100≤ epochs< 160) 10–6

Learning rate (160≤ epochs≤ 180) 10–7

weight decay factor 5 × 10−4

α (0< epochs< 40) 1

α (40≤ epochs< 80) 0.8

α (80≤ epochs< 120) 0.82

α (120≤ epochs< 160) 0.83

α (160≤ epochs≤ 180) 0.84
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be positive. ASSD describes the average surface distance between
two samples. HD describes the maximum distance from a point in
the label to a nearest point in the predicted image. The five
evaluation metrics were computed according to the following
expressions:

Recall � TP

TP + FN
(6)

Precision � TP

TP + FP
(7)

DSC � 2TP
2TP + FN + FP

(8)

ASSD �
∑

S TP+FP( )
d S TP + FP( ), S TP + FN( )[ ] + ∑

S TP+FN( )
d S TP + FN( ), S TP + FP( )[ ]

S TP + FP( )| | + S TP + FN( )| |
(9)

HD � max max
a∈S TP+FP( )

min
b∈S TP+FN( )

a − b‖ ‖{ }, max
b∈S TP+FN( )

min
a∈S TP+FP( )

b − a‖ ‖{ }( )
(10)

where TP (True Positives) represents samples correctly identified as
coronary arteries; FN (False Negatives) denotes samples predicted to
be background, but which actually belong to coronary arteries; FP
(False Positives) indicates samples predicted to be coronary arteries,
but which actually belong to the background. S (TP + FN) is the set
of actual surface voxels of the coronary arteries, and S (TP + FP) is
the set of predicted surface voxels of the coronary arteries. d

[sample1, sample2] refers to the shortest distance from sample1 to
sample2. The values of DSC, Recall, and Precision are all in the range
of [0,1], and larger values indicate better performance; while for
ASSD and HD, smaller values are better.

3.3 Experimental results and discussion

3.3.1 Comparison of the different segmentation
networks

To assess the quality of the proposed network structure, we have
reproduced and retrained some classical and state-of-art methods
commonly used for medical image segmentation from scratch. It is
noteworthy that our model’s final scores on the test set are not
dependent on a single run. Instead, they are computed as the average
results from multiple runs, thus enhancing the robustness and
stability of our model and preventing the results from being
influenced by a specific initialization of the model.

A comparison of the proposed DR-LCT-UNet with the other
networks is shown in Tables 3, 4. The proposed network achieves
better results than the baseline 3D-UNet in terms of all five
evaluation metrics. Specifically, compared with the 3D-UNet,
DR-LCT-UNet improves DSC by 2.1%, Recall by 1.9%, Precision
by 2.1%, reduces ASSD by 0.188, and reduces HD by 1.861. DR-
LCT-UNet also outperforms other networks in terms of DSC, Recall,

TABLE 3 Comparison of segmentation results between various methods (Optimal value for each evaluation metric is shown in bold. In the top row of this and
subsequent tables, up arrows indicate that an increase in the evaluation metric implies better performance, the reverse being the case for the down arrows).

Method DSC↑ Recall↑ Precision↑ ASSD↓ HD↓

3D-UNet (Çiçek et al., 2016) 0.837 0.844 0.837 0.613 30.076

VNet (Milletari et al., 2016) 0.837 0.810 0.872 0.538 33.519

ResUNet (Lee et al., 2017) 0.841 0.832 0.882 0.533 29.054

DenseUNet (Li et al., 2018) 0.839 0.826 0.859 0.514 37.413

AttUNet (Islam et al., 2020) 0.843 0.835 0.857 0.506 32.642

UNETR (Hatamizadeh et al., 2022) 0.827 0.784 0.884 0.551 44.071

UCTransNet (Wang et al., 2022a) 0.818 0.821 0.813 1.205 59.128

DR-LCT-UNet (Ours) 0.858 0.863 0.858 0.425 28.215

TABLE 4 Comparison of the number of parameters and inference time for the different methods.

Method Parameters (M) Inference Time (s/case)

3D-UNet (Çiçek et al., 2016) 8.61 17.21

VNet (Milletari et al., 2016) 16.80 18.65

ResUNet (Lee et al., 2017) 9.50 18.50

DenseUNet (Li et al., 2018) 18.10 16.35

AttUNet (Islam et al., 2020) 8.65 17.23

UNETR (Hatamizadeh et al., 2022) 92.58 20.65

UCTransNet (Wang et al., 2022a) 65.60 19.55

DR-LCT-UNet (Ours) 10.70 18.60
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ASSD, and HD. These results can be seen in Figure 8 which shows
the final 3D reconstruction of the segmented coronary arterial tree.

The improvements in the various evaluation metrics achieved by
the proposed DR-LCT-UNet indicate its superiority in the task of
coronary artery segmentation. The improvement of Recall indicates
that more coronary arteries are correctly segmented, the
improvement of ASSD indicates that the segmentation result
differs less from the ground truth, and the improvement of DSC
indicates that the overall segmentation is better and closer to the
ground truth label. Although the Precision of the networks ResNet,
VNet and UNETR, is higher than that achieved by the network
proposed here, indicating that they have fewer background voxels
mistakenly segmented as coronary arteries, their Recall and DSC
scores are much lower than the proposed network, meaning that
their segmentation results miss more coronary artery voxels.

3.3.2 Ablation experiments
First, to demonstrate the performance improvement associated

with each proposed module of our DR-LCT-UNet, we carried out an
ablation study, the results of which are shown in Table 5. It can be seen
that, compared with UNet, both the proposed LCT and DR modules
consistently improve the five evaluation metrics. Specifically, the LCT
module markedly improves the Precision (3.2%), while the DR
module substantially improves the Recall (1.9%).

The ablation study results demonstrate the effectiveness of the
individual LCT and DR modules in enhancing the segmentation
performance. The LCT module contributes to a marked
improvement in Precision, while the DR module has a
considerable impact on Recall. By combining the advantages of

both the LCT and DR modules, the DR-LCT-UNet achieves
superior performance in terms of DSC, Recall, ASSD, and HD,
highlighting the complementary benefits of the two modules.

Second, we have compared the number of parameters and the
average inference time for the different modules. As shown in
Table 6, the LCT and DR modules only slightly increase the
number of parameters and the inference time compared with the
SA and Residual modules.

This result demonstrates that, despite the minor increase in the
number of parameters and inference time, the LCT and DR
modules achieve much better segmentation accuracy compared
to the SA and Residual modules. This demonstrates the
effectiveness of the proposed LCT and DR modules in
improving segmentation performance without significantly
impacting computational complexity.

Third, to support our claim that setting the convolutional kernel
Wk and Wv to the same size, i.e., k × k × k, in the LCT module is
optimal, we investigated three different strategies for setting the
kernel size, the results of which are shown in Table 7. We see that
although every kernel size setting strategy improves the
segmentation performance compared to that of using the self-
attention module (i.e., SA-UNet in Table 5), the first option led
to the best performance, i.e., using convolution kernels of the same
size forK andV. In addition, Table 7 shows that using k = 3 produces
the best segmentation accuracy.

This result demonstrates that the sizes of local regions for spatial
context extraction of K and V should be matched. This shows that,
contrary to our intuition, obtaining the contextual information from
a larger neighbourhood, which will accordingly increase the number
of parameters of the LCT module, does not necessarily result in a
better segmentation accuracy. It is likely that this is because a larger
neighbourhood may introduce more irrelevant information into the
segmentation process and thus degrade the segmentation accuracy.

3.3.3 Deep supervision
We used deep supervision to prevent gradient disappearance

and explosion. As can be seen from Figure 7, with an increase in the
number of training epochs, the training is clearly accelerated at the
beginning of the process and the DSC value of the validation set also
improves. Table 8 confirms this and also shows that deep
supervision leads to a slight improvement of the other
segmentation metrics.

The results obtained from incorporating deep supervision
demonstrate its benefits in both the network training and the

TABLE 5 Results of the ablation experiments (Optimal value for each evaluation metric is in bold). Legend: SA: self-attention module; LCT: local contextual
Transformer; DR: Dense Residual module; R: Residual block. The ticks indicate which modules are included in each model.

Method SA LCT DR R DSC↑ Recall↑ Precision↑ ASSD↓ HD↓

3D-UNet 0.837 0.844 0.837 0.613 30.076

SA-UNet ✓ 0.843 0.835 0.857 0.506 32.642

LCT-UNet ✓ 0.852 0.846 0.869 0.480 29.057

R-UNet ✓ 0.841 0.832 0.882 0.533 29.054

DR-UNet ✓ 0.852 0.863 0.847 0.494 29.821

DR-LCT-UNet ✓ ✓ 0.858 0.863 0.858 0.425 28.215

TABLE 6 Comparison of the number of parameters and inference time for the
different modules.

Baseline Module Parameters (M) Inference Time (s/
case)

3D-UNet — 8.61 17.21

SA 8.65 17.23

LCT 8.80 17.23

R 9.50 18.50

DR 10.28 18.55

LCT + DR 10.70 18.60
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prediction accuracy of the coronary artery segmentation task. By
accelerating the training process and enhancing the DSC value of the
validation, deep supervision proves to be a valuable technique in
optimizing the proposed segmentation network.

3.3.4 Effect of data pre-processing
To show the effectiveness of data pre-processing on the

segmentation results, we used the data with and without pre-
processing, to train and test the UNet and our DR-LCT-UNet.
As shown in Table 9, the segmentation metrics DSC, Recall,
Precision ASSD and HD are all clearly improved.

The improvements in the segmentation metrics can be
attributed to the fact that truncating the range of HU values can
increase the contrast along the boundaries of the coronary arteries,

remove some irrelevant tissues from the images and eliminate some
noise as well, thus making the network learning and inference more
effective.

4 Visual illustration of the segmentation
results

Figure 8 shows 3D reconstructions of the segmentation results
using UNet, UNETR, and the proposed DR-LCT-UNet. Four cases
were randomly chosen from the test set, with the first two from
normal subjects and the latter two belonging to patients with
cardiovascular disease. The segmentation results of our proposed
method are better than those of the other two methods, resulting in

TABLE 7 Different structural designs of LCT modules (Optimal values shown in bold).

Q K V DSC↑ Recall↑ Precision↑ ASSD↓ HD↓

1 × 1 × 1 1 × 1 × 1 1 × 1 ×1 0.847 0.842 0.850 0.511 30.015

3 × 3 ×3 1 × 1 × 1 0.851 0.846 0.867 0.491 29.381

3 × 3 × 3 3 × 3 × 3 0.852 0.846 0.869 0.480 29.057

1 × 1 × 1 3 × 3 × 3 0.849 0.844 0.853 0.509 29.108

5 × 5 × 5 1 × 1 × 1 0.845 0.840 0.855 0.513 29.277

5 × 5 × 5 5 × 5 × 5 0.845 0.841 0.854 0.515 29.351

1 × 1 × 1 5 × 5 × 5 0.844 0.842 0.852 0.520 29.330

7 × 7 × 7 1 × 1 × 1 0.844 0.843 0.851 0.522 30.164

7 × 7 × 7 7 × 7 × 7 0.844 0.842 0.849 0.522 30.097

1 × 1 × 1 7 × 7 × 7 0.843 0.841 0.847 0.525 30.172

FIGURE 7
Comparison of the training process of the proposed network with and without Deep Supervision. Legend: w/o: without.

TABLE 8 Results comparison of the proposed method without and with Deep Supervision.

Method DSC↑ Recall↑ Precision↑ ASSD↓ HD↓

DR-LCT-UNet_w/o_ Deep_Supervision 0.856 0.861 0.855 0.438 28.220

DR-LCT-UNet_ Deep_Supervision 0.858 0.863 0.858 0.425 28.215

Frontiers in Physiology frontiersin.org10

Wang et al. 10.3389/fphys.2023.1138257

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1138257


fewer discontinuities andmore complete segmentation at the ends of
the coronary arteries.

This performance improvement can be attributed to the Dense
Residual (DR) and Local Contextual Transformer (LCT) modules in
our model. Specifically, the DR module, through its feature
preservation capability at various convolution levels, is key to this
enhancement. This module supplements shallow information layers,
such as spatial structures and gray-scale features, thereby improving
the network’s sensitivity. This enhanced sensitivity facilitates the
segmentation of a greater number of coronary arteries. Furthermore,
the DR module excels in extracting deeper-level features without
compromising the retention of these shallow features, contributing
to a more comprehensive feature map for segmentation tasks. On
the other hand, the LCTmodule, serving as an attentionmechanism,
focuses predominantly on the vicinity of the coronary arteries. It

effectively distinguishes these arteries from other vessels with similar
CT intensities. When implemented post the encoding block, the
LCT module enhances the skip connections, thereby improving the
model’s feature representation ability. This enhancement leads to
the provision of richer, more diversified features for the decoder,
optimizing the feature extraction and representation in our deep
learning model. Consequently, the combined operation of the DR
and LCT modules results in fewer discontinuities and a more
complete and precise segmentation at the ends of the coronary
arteries.

While our method does produce fewer false positives compared
to the UNet, it has shown a tendency for occasional over-
segmentation compared to the UNETR, as demonstrated in case
1 (specifically, the area within the green box). In-depth analysis
reveals that this is due to the sensitivity of the Dense Residual (DR)

TABLE 9 The impact of data pre-processing on the network.

Method DSC↑ Recall↑ Precision↑ ASSD↓ HD↓

UNet_w/o_Data_preprocess 0.820 0.826 0.820 1.195 60.412

UNet_Data_preprocess 0.837 0.844 0.837 0.613 30.076

DR-LCT-UNet_w/o_Data_preprocess 0.841 0.848 0.840 0.597 29.024

DR-LCT-UNet_Data_preprocess 0.858 0.863 0.858 0.425 28.215

FIGURE 8
Visualization of the segmentation results from the different methods. Legend: Green boxes: locations where over-segmentation occurs for at least
one of the compared methods; blue boxes: locations with under-segmentation.
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module to shallow information, which occasionally results in the
misidentification of structures similar to the coronary arteries, such
as veins. This over-sensitivity and the resulting over-segmentation
suggest areas of improvement. We acknowledge this limitation and
plan to refine our model in follow-up studies, to better distinguish
between similar structures.

5 Conclusion

The proposed method for coronary artery segmentation, DR-LCT-
UNet, alleviates the omission and over-segmentation problems of
previous methods for several reasons. Firstly, the data preprocessing
enhances the contrast at the boundaries of the coronary arteries and
reduces some of the noise in the image, hence improving the
segmentation to some extent. Secondly, the proposed Transformer-
style LCT module can pay more attention to local contextual
information, reducing the semantic gap between the encoding and
decoding features, significantly improving the segmentation Precision.
Furthermore, the proposed DR module for the encoding stage can
preserve multi-level features, reducing the loss of shallow-layer
information due to the convolution process. As a result, this
improves the Recall of the segmentation. Finally, introducing Deep
Supervision to the network improves the efficiency of the training
process and also has the effect of regularizing feature extraction for the
different decoding layers. The final DSC, Recall, and Precision of the
proposed method are 85.8%, 86.3%, and 85.8%, respectively, which are
2.1%, 1.9%, and 2.1% better than the corresponding values for 3D-
UNet, the most widely used image segmentation method and the
baseline based on which our approach has been developed.
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