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Abstract

Models with degrees of freedom that naturally arrange themselves into matrices have a long
history in science. Statistical models of large Hermitian matrices are believed to capture
universal features of chaotic quantum systems. The various connections between matrix theory
and string theory have been so prolific that one might argue that matrix models capture generic
features of string theories. The first sign of this connection (gauge-string duality) was discovered
by ’t Hooft, where string worldsheets emerge from the combinatorics of Feynman diagrams in
𝑈 (𝑁 →∞) Yang-Mills theory.

Many aspects of this emergence can be understood from the mathematical duality known as
Schur-Weyl duality. It relates two algebraic structures: the representation theory of𝑈 (𝑁) and the
representation theory of symmetric groups 𝑆𝑘 . This has implications for 𝑈 (𝑁) matrix models
where observables find an eloquent description in terms of the group algebras C(𝑆𝑘). The
duality underlies the geometric construction of gauge-string duality, where string worldsheets
emerge from a connection between symmetric group elements, ribbon graphs and Riemann
surfaces.

In this thesis we will study matrix models with discrete gauge group 𝑆𝑁 . We will put these
matrix models into a generalized Schur-Weyl duality framework where dual algebras, known
as partition algebras, emerge. These form generalizations of the symmetric group algebras –
they are semi-simple finite-dimensional associative algebras with a basis labelled by diagrams.
We review the structure and representation theory of partition algebras. These algebras are
then used to compute expectation values of 𝑆𝑁 invariant observables. This is a step towards
studying the emergence of new geometric structures in their Feynman diagram expansion.
Matrix models also appear in the form of quantum mechanical models of matrix oscillators.
We explore the implications of the Schur-Weyl duality framework to matrix quantum mechanics
with permutation symmetry.
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Chapter 1

Introduction

Models with degrees of freedom that naturally arrange themselves into matrices are ubiquitous
in science [5–9]. In physics, statistical models of large Hermitian matrices are believed to –
since the work of Wigner and Dyson – capture universal features of chaotic quantum systems.
Our understanding of the strong force as a Yang-Mills theory is another instance where matrix
degrees of freedom appear. Despite a lot of effort and progress, a full non-perturbative under-
standing of the strong force remains elusive to this day. A beautiful framework for studying the
strong force emerges by taking the gauge group 𝑈 (𝑁) to be very large. In the 𝑁 → ∞ limit
a new picture of the strong force emerges in terms of strings and their worldsheet geometry,
as discovered by ’t Hooft [57]. This can be viewed as the first sign of a gauge-string duality.
Since then, many connections between matrix models and strings have been discovered, giving
evidence to the perspective that large 𝑁 matrix models capture generic features of string theo-
ries. Matrix models, and more generally tensor models, are also known to be closely related to
integrable structures, hidden algebras [10–13], geometry and topological quantum field theories
[14–16].

Recently, random matrix theory has been applied to tasks in computational linguistics. The use
of frequency vectors to study the meaning of words and phrases is an old idea [17, 18]. New
frameworks extend this idea by modelling grammatical composition using tensor contractions
[19, 20]. These constructions give rise to matrix data from language. In [21], matrix models
were constructed to study the statistics of these matrices. A salient feature of these models
is the lack of continuous symmetry. The remaining symmetry group is a discrete group
𝑆𝑁 ⊂ 𝐺𝐿 (𝑁) of permutation matrices. It was further proposed that the most important
features of the matrix data can be captured by permutation invariant polynomial functions,
referred to as observables. The general permutation invariant Gaussian matrix model was
developed and solved in [22]. A selection of analytic formulas were provided for expectation
values of low degree invariant polynomials. These models have successfully predicted features
of real-world data [23, 24]. Permutation invariant 2-matrix models were developed in [1] and
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2 CHAPTER 1. INTRODUCTION

theoretical features of permutation invariant observables were investigated in [2].

Many aspects of large 𝑁 simplifications in matrix systems with continuous group symmetry
are consequences of Schur-Weyl duality. The standard instance of Schur-Weyl duality [25]
concerns tensor products 𝑉⊗𝑘

𝑁
of the fundamental representation of𝑈 (𝑁). Well-known special

cases include: 𝑘 = 2 which corresponds to the decomposition of matrices into symmetric and
anti-symmetric parts

𝑉𝑁 ⊗ 𝑉𝑁 � Sym2(𝑉𝑁 ) ⊕ Λ2(𝑉𝑁 ) (1.1)

and 𝑁 = 2 which corresponds to the decomposition of 𝑘-body wave functions of spin- 1
2 particles

giving
𝑉⊗𝑘2 = 𝑊⊗𝑘1 � 𝑊𝑘 ⊕ (𝑘 − 1)𝑊𝑘−1, (1.2)

where 𝑊𝑠 is a spin- 𝑠2 representation. Generally, the symmetric group 𝑆𝑘 acts on 𝑉⊗𝑘
𝑁

by
permuting tensor factors. This action commutes with the diagonal action of 𝑈 (𝑁) and Schur-
Weyl duality amounts to the statement that the corresponding action of the group algebra
C(𝑆𝑘) contains the full algebra End𝑈 (𝑁 ) (𝑉⊗𝑘𝑁 ) of operators commuting with the action of
𝑈 (𝑁) on 𝑉⊗𝑘

𝑁
. For large 𝑁 , they are isomorphic C(𝑆𝑘) � End𝑈 (𝑁 ) (𝑉⊗𝑘𝑁 ) and all irreducible

representation of 𝑆𝑘 appear in 𝑉⊗𝑘
𝑁

. Together with the double centralizer theorem, this implies
that dimensions of irreducible representations of 𝑆𝑘 control the multiplicity of irreducible
representations of𝑈 (𝑁) in the decomposition of𝑉⊗𝑘

𝑁
. Standard results in representation theory

of symmetric groups then imply that multiplicities are computed by enumerating standard
Young tableaux. From the perspective of Schur-Weyl duality, the r.h.s. of (1.1) should be
understood as the trivial and sign representation of 𝑆2, respectively. The decomposition (1.2)
is understood in terms of irreducible representations of 𝑆𝑘 . Namely the trivial and (𝑘 − 1)-
dimensional representation (known as the standard or hook representation), respectively. The
fact that (1.2) only contains two irreducible representations of 𝑆𝑘 is a so-called finite 𝑁 effect
– anti-symmetrising over more than two indices gives a vanishing result.

The generalization to arbitrary 𝑁 and 𝑘 has important implications for the classification and
construction of matrix polynomial functions 𝑓 (𝑋) invariant under conjugation by 𝑈 (𝑁):
𝑓 (𝑋) = 𝑓 (𝑔𝑋𝑔†) for 𝑔 ∈ 𝑈 (𝑁). Well-known examples of such functions are the multi-
trace observables in supersymmetric𝑈 (𝑁) gauge theories. At large 𝑁 , multi-trace observables
of degree 𝑘 are in one-to-one correspondence with conjugacy classes of 𝑆𝑘 . Let 𝜏 be an element
of 𝑆𝑘 with 𝑐𝑖 cycles of length 𝑖 = 1, . . . , 𝑘 , then

𝑂𝜏 =

𝑁∑︁
𝑖1,...,𝑖𝑘=1

𝑋𝑖1𝑖(1)𝜏 . . . 𝑋𝑖𝑘 𝑖(𝑘)𝜏 = (Tr 𝑋1)𝑐1 (Tr 𝑋2)𝑐2 . . . (Tr 𝑋 𝑘)𝑐𝑘 . (1.3)

Fourier transforming C(𝑆𝑘), using irreducible characters 𝜒_(𝜏) of 𝑆𝑘 , gives an alternative basis
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for invariant observables, labelled by irreducible representations 𝑉_ of 𝑆𝑘

𝑂_ =
1
𝑘!

∑︁
𝜏∈𝑆𝑘

𝜒_(𝜏)𝑂𝜏 . (1.4)

While the multi-trace basis is orthogonal (with respect to the free two-point function) up to
𝑂 (1/𝑁) corrections, the representation basis is orthogonal for all 𝑁 . These techniques, based
on Schur-Weyl duality have lead to many important results for gauge invariant observables in
matrix theories relevant to AdS/CFT. Some highlights include the identification of CFT duals
[26–28] of giant gravitons [29–31] and computation of correlators [27, 32–44].

The defining representation𝑉𝑁 of the symmetric group 𝑆𝑁 corresponds to the set of permutation
matrices. Schur-Weyl duality for 𝑆𝑁 acting on 𝑉⊗𝑘

𝑁
was first discovered by Jones and Martin

[45–47] while studying statistical mechanics and Potts models. The dual algebras End𝑆𝑁 (𝑉⊗𝑘𝑁 ),
controlling the multiplicities in the decomposition of 𝑉⊗𝑘

𝑁
, were identified with the so-called

partition algebras 𝑃𝑘 (𝑁). In Potts models, partition algebras appear as the algebra generated by
transfer matrices. Partition algebras are so-called diagram algebras. Namely, finite-dimensional
associative algebras with distinguished bases labelled by diagrams, where the product is defined
through diagram concatenation. The decomposition (1.1) is not irreducible with respect to the
diagonal action of 𝑆𝑁 . This is captured by Schur-Weyl duality and instead one finds

𝑉𝑁 ⊗ 𝑉𝑁 � 2𝑉[𝑁 ] ⊕ 3𝑉[𝑁−1,1] ⊕ 𝑉[𝑁−2,2] ⊕ 𝑉[𝑁−2,1,1] , (1.5)

where the irreducible representations on the r.h.s. are labelled by integer partitions of 𝑁 ≥ 4.
In analogy to the 𝑈 (𝑁) case, the multiplicities on the r.h.s. are determined by dimensions of
irreducible representations of 𝑃2(𝑁). This is a refinement of the matrix decomposition in (1.1),
into components of the matrix that are invariant under conjugation by a permutation matrix. The
combinatorial analogue of standard Young tableaux, in this case, are called vacillating tableaux
and their enumeration corresponds to computing the multiplicities in the above decomposition.
Recently, many mathematical results about partition algebras and their representation theory
have been developed. Some highlights include expressions for characters [48], combinatorial
formulas for the dimensions of irreducible representations [49], combinatorial (Young diagram)
realisations of the irreducible representations [50] and many more (see [51–54] and references
therein).

In this thesis we will leverage these new results to put the zero-dimensional permutation
invariant matrix models into the Schur-Weyl duality framework, previously only developed for
continuous symmetries. The decomposition (1.5) plays a crucial role in the construction [22]
of the general permutation invariant Gaussian matrix model. As we will review, the quadratic
part of the action is constructed by coupling parts of the matrices that transform in isomorphic
irreducible representations of 𝑆𝑁 . The resulting coupling matrices are invariant tensors that
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can be understood in terms of elements of End𝑆𝑁 (𝑉⊗2
𝑁
), or equivalently 𝑃2(𝑁). Therefore, the

explicit construction of these coupling matrices is equivalent to the construction of a basis for
𝑃2(𝑁). In particular, we will explain how the construction of, and solution to, the most general
quadratic permutation invariant model in [22] can be understood from the construction of a
basis of matrix units for 𝑃1(𝑁) and 𝑃2(𝑁), also known as an Artin-Wedderburn decomposition
[55, 56]. As we will see, general observables are closely related to partition algebras, and this
connection gives rise to an algebraic/combinatorial algorithm for computing their expectation
values as rational functions of 𝑁 .

Since the discovery of simplifications of large 𝑁 matrix quantum field theories by ’t Hooft
[57], systems with matrix degrees of freedom have played a major role in the development
of gauge-string dualities. Examples of gauge-string duality based on large 𝑁 include: the
duality between non-critical strings and matrix models [58–60], Gaussian matrix models and
Belyi maps [61–64], two-dimensional Yang-Mills and Hurwitz spaces [65–73] and AdS/CFT
[74–76]. Gauge-string dualities are difficult to study in full generality. Therefore, it has been
useful to study them in restricted corners of parameter space, or manageable sectors. Clever
choices of such restrictions have led to a rich interplay between gauge-string dualities and
quantum many-body systems. This includes the connections between free fermions and large
𝑁 two-dimensional Yang-Mills [77], half-BPS sectors of N = 4 SYM [27, 28], supersymmetric
indices [78]; 3D bosons and eight-BPS states in N = 4 SYM [79]; and spin matrix theories as
quantum mechanical models of AdS/CFT [80, 81].

Motivated by this, we also study the implications of permutation symmetry on quantum me-
chanical matrix models. The mathematical techniques used in zero dimensions can be leveraged
to construct exactly solvable models of matrix oscillators in a permutation invariant potential.
We also describe the subspace of states invariant under the adjoint action of permutations. We
give a geometric basis for this subspace that generalizes the multi-trace basis for singlet states in
gauged matrix quantum mechanics. This basis exhibits a form of large 𝑁 factorization – or large
𝑁 orthogonality – generalizing the large 𝑁 factorization of multi-trace states that underlies their
interpretation in terms of multi-particle states [26]. Large 𝑁 factorization is also used in the
construction of gauge-string duals in collective field theory [82–85], a useful tool for studying
the emergence of classical limits at large 𝑁 . Similarly, it enters the Master field approach to
large 𝑁 [86].

The outline of the thesis is as follows.

• In Chapter 2 we give a brief review of the basic objects used in the theory of symmetric
groups 𝑆𝑁 . Namely, Young diagrams, tableaux, group algebras and centres of group al-
gebras. This is supplemented by Appendix A where we give a procedure for constructing
matrix units for the symmetric group algebras, and consequently irreducible representa-
tions of 𝑆𝑁 . This appendix is meant to serve as a warm-up, in a more familiar setting, to
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the construction of matrix units for partition algebras given in chapter 3. The main results
of this chapter concerns the most concrete representation of 𝑆𝑁 , as permutation matrices,
also known as the defining representation 𝑉𝑁 . We discuss explicit decompositions of
the defining representation into irreducible representations. Lastly, we consider tensor
powers𝑉⊗𝑘

𝑁
and give two ways of counting the multiplicity of irreducible representations

in the decomposition. We review how multiplicities can be understood through the com-
binatorial objects known as vacillating tableaux. These play a major role in the following
chapter.

• Chapter 3 elaborates on many of these results. They are put into the context of Schur-Weyl
duality where the multiplicities are understood as dimensions of irreducible representa-
tions of the partition algebras 𝑃𝑘 (𝑁). We give an explicit description of the partition
algebras in terms of diagrams, which multiply through diagram concatenation. The rest
of the chapter sets up the necessary mathematical background for constructing matrix
units for 𝑃𝑘 (𝑁). This is very similar in spirit to the previously mentioned construction
in Appendix A. Explicit tables of matrix units for 𝑃2(𝑁) are found in Appendix B, these
are used in the subsequent chapter to construct permutation invariant Gaussian matrix
models.

• Chapter 4 is all about zero-dimensional matrix models with permutation symmetry. In
particular, permutation symmetry with respect to the adjoint (conjugation) action of
permutation matrices. We describe the most general permutation invariant Gaussian
matrix models and derive expression for the first and second moment of matrix elements.
These moments can be expressed as linear combinations of the matrix units constructed
in Appendix B. Observables in this matrix model are defined to be permutation invariant
matrix polynomials. We give two descriptions of the space of observables, in terms of
equivalence classes of set partitions, and directed graphs. The former description is most
useful for computing expectation values of observables, while the latter is more useful
for combinatorial counting and construction. The penultimate section in this chapter
describes a combinatorial algorithm for computing expectation values of observables. In
the last section we give a description of directed graphs in terms of double cosets. This
is supplemented with Appendix D where we describe generating functions for sizes of
these double cosets. We also provide code implementing the double coset counting.

• In Chapter 5 we apply the mathematical framework developed in previous chapters to
matrix quantum mechanics. We start the Chapter with a review of quantum matrix
harmonic oscillators, that is, 𝑁2 uncoupled harmonic oscillators. The next section
defines a model of harmonic oscillators in a permutation invariant quadratic potential.
We explain that this Hamiltonian can be exactly diagonalized for arbitrarily large 𝑁 by
taking advantage of the permutation symmetry of the system. In the following section
we consider a subspace of the total Hilbert space, made out of permutation invariant
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states. The invariant states have an algebraic description in terms of partition algebras
and therefore inherit three natural bases: the diagram basis, orbit basis and representation
basis. The diagram basis satisfies a generalization of the large 𝑁 factorisation well-
known for multi-trace observables. In the next section we describe some algebraic
Hamiltonians based on diagram algebras. We give Hamiltonians that are diagonalized in
the representation basis previously mentioned. We discuss extensions of this construction
and possibilities of constructing Hamiltonians for which the representation basis forms a
complete set of non-degenerate eigenvectors.



Chapter 2

Symmetric groups

The symmetric groups 𝑆𝑁 of permutations of 𝑁 objects play a prominent role in the theory
of finite groups and their representation theory. Their representation theory, including com-
putations of characters and construction of irreducible representations, is well understood in
terms of combinatorial objects such as Young diagrams and tableaux (see [87] for a dedicated
mathematical treatment or [88] for a standard reference aimed at physicists).

In this Chapter, we will start by reviewing a subset of these objects that will be relevant for
future chapters. We will focus most of our attention on the most concrete realisation of the
symmetric group, as a set of permutation matrices, known as the defining representation. The
main result of this chapter concerns the decomposition (2.63) of tensor products of defining
representations and its combinatorial interpretation in Theorem 7. This result is absolutely
central to the construction of matrix units in Chapter 3 which leads to the construction of matrix
models in Chapter 4 and 5.

2.1 Review, notation and conventions

In this thesis we use the following definition of symmetric groups.

Definition 1 (Symmetric group). The symmetric group 𝑆𝑁 is the set of bijective maps 𝜎 :
{1, . . . , 𝑁} → {1, . . . , 𝑁} with multiplication given by composition of maps.

The number of elements in the set 𝑆𝑁 is |𝑆𝑁 | = 𝑁!.

We read products of group elements from left to right. That is, for 𝑖 ∈ {1, . . . , 𝑁} and
𝜎1, 𝜎2 ∈ 𝑆𝑁 the product 𝜎1𝜎2 corresponds to the map 𝑖 ↦→ 𝜎2(𝜎1(𝑖)) which we write (𝑖)𝜎1𝜎2.

Example 1. Consider 𝑁 = 3 and the two maps 𝜎1, 𝜎2 ∈ 𝑆𝑁 given by

(1)𝜎1 = 2, (2)𝜎1 = 3, (3)𝜎1 = 1, (1)𝜎2 = 2, (2)𝜎2 = 1, (3)𝜎2 = 3, (2.1)

7
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or in cycle notation 𝜎1 = (123), 𝜎2 = (12) (3). Then 𝜎1𝜎2 corresponds to the map

(1)𝜎1𝜎2 = (2)𝜎2 = 1,

(2)𝜎1𝜎2 = (3)𝜎2 = 3,

(3)𝜎1𝜎2 = (1)𝜎2 = 2.

(2.2)

and in cycle notation 𝜎1𝜎2 = (1) (23).

Definition 2 (Cycle structure). The conjugacy classes of 𝑆𝑁 correspond to cycle structures of
elements in cycle notation. For 𝜎 = 𝑐1𝑐2 . . . 𝑐𝑙 decomposed into disjoint cycles 𝑐𝑖 of length |𝑐𝑖 |
we say that it has cycle structure 𝑐(𝜎) = [|𝑐1 |, |𝑐2 |, . . . , |𝑐𝑙 |] and it lies in the conjugacy class
𝐶[ |𝑐1 | , |𝑐2 | ,..., |𝑐𝑙 | ] . Note that

𝑙∑︁
𝑖=1
|𝑐𝑖 | = 𝑁, (2.3)

and because all the cycles are disjoint they commute. Therefore, we can choose to order the
elements in the decomposition 𝜎 = 𝑐1𝑐2 . . . 𝑐𝑙 such that |𝑐1 | ≥ |𝑐2 | ≥ · · · ≥ |𝑐𝑙 |. This defines
an integer partition of 𝑁 .

Example 2. The following permutations 𝜎1 = (123) (45), 𝜎2 = (12345), 𝜎3 = (12) (3) (4) (5)
in 𝑆5 have cycle structure [3, 2], [5], [2, 1, 1] respectively.

Definition 3 (Integer partition). A list _ = [_1, _2, . . . , _𝑙] of integers with _1 ≥ _2 ≥ · · · ≥ _𝑙
satisfying

∑
𝑖 _𝑖 = 𝑁 is called an integer partition of 𝑁 . We use the shorthand _ ⊢ 𝑁 to say

that _ is an integer partition of 𝑁 and shorthand |_ | = 𝑁 . An entry in _ is called a part and the
number of parts is denoted 𝑙 (_) = 𝑙.

2.1.1 Young diagrams and representations of 𝑆𝑁 . Integer partitions are in bijection with
the combinatorial objects known as Young diagrams.

Definition 4 (Young diagram). A Young diagram 𝑌_ of shape _ ⊢ 𝑁 is diagram with 𝑙 (_) rows
where each row 𝑖 has _𝑖 boxes.

Example 3. The following are Young diagrams with 𝑁 = 4 boxes,

𝑌[4] = 𝑌[3,1] = 𝑌[2,2] = . (2.4)

The purpose of describing integer partitions in terms of boxes is to fill the boxes with numbers,
or more generally elements of an ordered set.

Definition 5 (Young tableau). A filling of the boxes of a Young diagram with integers taken
from a subset of the positive integers is called a Young tableau.
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Example 4. All of the below fillings are examples of Young tableaux

1 2 3
4 5

1 3 3
4 5 5

5 2 3
1
1
1

(2.5)

The most useful Young tableaux have restrictions on their fillings. For example, standard
tableaux are used to compute dimensions of irreducible representations of 𝑆𝑁 .

Definition 6 (Standard tableau). Let _ ⊢ 𝑁 and 𝑌_ be the corresponding Young diagram.
Consider a filling of 𝑌_ using integers from the set {1, . . . 𝑁}. The filling is called standard if
it is increasing along every row (read left to right) and every column (read top to bottom). A
Young tableau with standard filling is called standard tableau. The set of standard tableaux with
shape _ is denoted SYT_.

Example 5. First we give some examples of standard tableaux

1 2 3
4 5

1 2
3 4

1 3
2 4

1
2
3

(2.6)

The following tableaux are not standard

1 3 2
4 5

1 2
4 3

1 3
4 2

2
1
3

(2.7)

The number of standard tableaux can be computed using the famous hook formula.

Theorem 1. (Hook formula) Let _ ⊢ 𝑁 , then

|SYT_ | =
𝑁!∏

(𝑖, 𝑗 ) ∈𝑌_ |ℎ(𝑖, 𝑗) |
, (2.8)

where the product is over the cells 𝑐 in the Young diagram 𝑌_, ℎ(𝑖, 𝑗) is the hook of cell (𝑖, 𝑗)
and |ℎ(𝑖, 𝑗) | is the number of cells in the hook.

Proof. See [87, Section 3.10] which also includes the history surrounding the hook formula.
One method for proving this formula is to re-write the hook formula as

𝑁! = |SYT_ |
∏
(𝑖, 𝑗 ) ∈𝑌_

|ℎ(𝑖, 𝑗) |, (2.9)
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and realising that 𝑁! is the number of tableaux (a filling using 1, . . . , 𝑁 without repeti-
tion but no further restrictions) of shape _. One then constructs a set 𝑆 of order |𝑆 | =
|SYT_ |

∏
(𝑖, 𝑗 ) ∈𝑌_ |ℎ(𝑖, 𝑗) | and bijective maps between 𝑆 and the set of tableaux of shape _. □

Having introduced some of the important notions used in the combinatorial representation
theory of symmetric groups we will quote the following beautiful result without proof.

Theorem 2 (Irreducible representations of 𝑆𝑁 ). There exists a set of vector spaces {𝑉_ | _ ⊢ 𝑁}
with dim𝑉_ = |SYT_ | that forms a complete set of non-isomorphic irreducible representations
of 𝑆𝑁 . That is, the vector space 𝑉_ has a basis labelled by standard tableaux of shape _ and
𝜎 ∈ 𝑆𝑁 acts by permuting the numbers in the filling.

Proof. See [87, Theorem 2.4.6 and Theorem 2.5.2]. In Appendix A we elaborate on this
theorem and outline an algorithm for constructing all irreducible representations of 𝑆𝑁 . These
realisations are called the Young bases and have a combinatorial description in terms of per-
mutations acting on standard Young tableaux. The principle used in this appendix is closely
related to the construction in Chapter 3 that allows us to solve permutation invariant Gaussian
matrix models in Chapter 4. □

2.1.2 Group algebras and centers. Representations of 𝑆𝑁 also give rise to representations
of its group algebra, which will play an important role in this thesis.

Definition 7 (Group algebra). Let 𝐺 be a finite group and F = R,C be the real or complex
numbers. The group algebra F(𝐺) is the vector space

F(𝐺) = SpanF(𝑔 ∈ 𝐺), (2.10)

with multiplication defined through group multiplication and linearity.

Example 6. Let 𝐺 be a finite group with multiplication defined by

𝑔ℎ = 𝐶
𝑔′

𝑔ℎ
𝑔′, (2.11)

for 𝑔, ℎ, 𝑔′ ∈ 𝐺. For two elements 𝑎, 𝑏 ∈ F(𝐺) with expansions

𝑎 =
∑︁
𝑔∈𝐺

𝑎𝑔𝑔, 𝑏 =
∑︁
ℎ∈𝐺

𝑏ℎℎ, (2.12)

the product 𝑎𝑏 is
𝑎𝑏 =

∑︁
𝑔,ℎ∈𝐺

𝑎𝑔𝑏ℎ𝑔ℎ =
∑︁

𝑔,ℎ,𝑔′∈𝐺
𝑎𝑔𝑏ℎ𝐶

𝑔′

𝑔ℎ
𝑔′. (2.13)

The group algebra has a subalgebra that is particularly important in representation theory.
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Definition 8 (Center of F(𝐺)). The center Z[F(𝐺)] of a group algebra F(𝐺) is the set of
elements 𝑧 ∈ F(𝐺) such that

𝑧𝑔 = 𝑔𝑧, ∀𝑔 ∈ 𝐺. (2.14)

The center of a group algebra has two canonical bases.

Proposition 1. Let Cl(𝐺) be the set of conjugacy classes of 𝐺. The set of elements

{𝑧𝐶 =
∑︁
𝑔∈𝐶

𝑔 | ∀𝐶 ∈ Cl(𝐺)} (2.15)

form a basis for the center.

Proof. First we prove that any element in the center can be expanded in terms of 𝑧𝐶 . Suppose
𝑧 ∈ Z[F(𝐺)] has expansion

𝑧 =
∑︁
ℎ∈𝐺

𝑎ℎℎ. (2.16)

For 𝑧 to be a central element it has to satisfy

𝑔−1𝑧𝑔 = 𝑧 ⇒ 𝑎𝑔−1ℎ𝑔 = 𝑎ℎ . (2.17)

In other words, the coefficients of elements in the same conjugacy class are equal. For ℎ ∈ 𝐶
we write 𝑎𝐶 = 𝑎ℎ, then we can rewrite 𝑧 as

𝑧 =
∑︁

𝐶∈Cl(𝐺)

∑︁
ℎ∈𝐶

𝑎ℎℎ =
∑︁

𝐶∈Cl(𝐺)
𝑎𝐶 𝑧𝐶 . (2.18)

Lastly, we note that 𝑔−1𝑧𝐶𝑔 = 𝑧𝐶 . Therefore, any linear combination of 𝑧𝐶 is in the center. □

Remark 1. This shows that dimZ[F(𝐺)] = |Cl(𝐺) |.

The second canonical basis is labelled by irreducible representations of 𝐺.

Proposition 2. Let Rep(𝐺) be a labelling set for the set of non-isomorphic irreducible rep-
resentations of 𝐺 and for 𝑅 ∈ Rep(𝐺), let 𝜒𝑅 the corresponding irreducible character. The
set

{𝑝𝑅 =
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜒𝑅 (𝑔−1)𝑔 | ∀𝑅 ∈ Rep(𝐺)} (2.19)

form a basis for Z[F(𝐺)].

Proof. First we show that the 𝑝
𝑅

are linearly independent by showing that they are orthogonal
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with respect to the inner product

(𝑔, ℎ) =


1, if 𝑔 = ℎ−1

0, otherwise.
(2.20)

We have

(𝑝𝑅1
, 𝑝𝑅2
) = 1
|𝐺 |2

∑︁
𝑔,ℎ∈𝐺

𝜒𝑅1 (𝑔−1)𝜒𝑅2 (ℎ−1) (𝑔, ℎ) (2.21)

=
1
|𝐺 |2

∑︁
ℎ∈𝐺

𝜒𝑅1 (ℎ)𝜒𝑅2 (ℎ−1) = 𝛿𝑅1𝑅2

|𝐺 | , (2.22)

where the last step uses orthogonality of characters. From the equalities dimZ[F(𝐺)] =

|Cl(𝐺) | = |Rep(𝐺) |, it follows that the 𝑝
𝑅

form a spanning set. □

The following corollary highlights the importance of the centre to the study of representations.

Corollary 1. Let 𝑅 ∈ Rep(𝐺) and 𝐷𝑅 (𝑔) the corresponding matrix for 𝑔 ∈ 𝐺. Schur’s lemma
implies that the irreducible representation of a central element 𝑧 ∈ Z(F(𝐺)) is proportional to
the identity matrix

𝐷𝑅 (𝑧) = 𝜒𝑅 (𝑧)
𝜒𝑅 (1) I. (2.23)

This will be used many times in the following chapters.

2.2 Defining representation

The symmetric group 𝑆𝑁 is faithfully represented by the set of 𝑁 × 𝑁 permutation matrices.
This representation is called the defining representation of 𝑆𝑁 and is given by the following.

Definition 9 (Defining representation of 𝑆𝑁 ). Let 𝑉𝑁 be a 𝑁-dimensional vector space with
basis {𝑒1, . . . , 𝑒𝑁 }. The defining representation of 𝑆𝑁 associates to every 𝜎 ∈ 𝑆𝑁 a linear map
𝑃𝜎 ∈ End(𝑉𝑁 ) defined by

𝑃𝜎𝑒𝑖 = 𝑒 (𝑖)𝜎−1 . (2.24)

As we now prove, the definition in equation 2.24 is a homomorphism. Let 𝜎1, 𝜎2 ∈ 𝑆𝑁 and
consider

𝑃𝜎1𝑃𝜎2𝑒𝑖 = 𝑃𝜎1𝑒 (𝑖)𝜎−1
2

= 𝑒 (𝑖)𝜎−1
2 𝜎−1

1
= 𝑒 (𝑖) [𝜎1𝜎2 ]−1 = 𝑃𝜎1𝜎2𝑒𝑖 . (2.25)

We will use the common abuse of language of referring to 𝑉𝑁 as the defining representation,
with the homomorphism 𝑃𝜎 implicitly included. The matrices corresponding to the linear
operators 𝑃𝜎 defined in equation 2.24 are permutation matrices. To see this, we use equation
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2.24, which gives
(𝑃𝜎) 𝑗𝑖 𝑒 𝑗 = 𝑒 (𝑖)𝜎−1 . (2.26)

or
(𝑃𝜎) 𝑗𝑖 = 𝛿

𝑗

(𝑖)𝜎−1 = 𝛿
( 𝑗 )𝜎
𝑖

. (2.27)

where the last equality follows because 𝑗 = (𝑖)𝜎−1 implies that ( 𝑗)𝜎 = 𝑖. Notably, this is a
permutation of the rows of the identity matrix. That is, (𝑃𝜎) 𝑗𝑖 is a permutation matrix.

Example 7. Consider 𝜎1 = (123), 𝜎2 = (12) (3) as in Example 1. Using equation 2.27 we have

(𝑃𝜎1)1𝑖 = 𝛿2
𝑖 , (𝑃𝜎1)2𝑖 = 𝛿3

𝑖 , (𝑃𝜎1)3𝑖 = 𝛿1
𝑖

(𝑃𝜎2)1𝑖 = 𝛿2
𝑖 , (𝑃𝜎2)2𝑖 = 𝛿1

𝑖 , (𝑃𝜎2)3𝑖 = 𝛿3
𝑖 ,

(2.28)

or

(𝑃𝜎1)
𝑗

𝑖
=

©«
0 1 0
0 0 1
1 0 0

ª®®¬,
(𝑃𝜎2)

𝑗

𝑖
=

©«
0 1 0
1 0 0
0 0 1

ª®®¬.
(2.29)

2.2.1 Decomposition of defining representation. We will now study the defining represen-
tation in some detail. In particular, we will prove that it is a reducible representation, give its
decomposition into irreducible representations and give an explicit basis for each irreducible
subspace.

Proposition 3. The defining representation of 𝑆𝑁 is a reducible representation. It decomposes
into a one-dimensional representation 𝑉[𝑁 ] and a (𝑁−1)-dimensional irreducible representa-
tion 𝑉[𝑁−1,1] .

Proof. Define the homomorphism 𝜙 : 𝑒𝑖 ↦→ 𝑒1 + 𝑒2 + · · · + 𝑒𝑁 and

𝑉[𝑁 ] = im 𝜙 = Span(𝑒1 + 𝑒2 + · · · + 𝑒𝑁 ), 𝑉[𝑁−1,1] = ker 𝜙. (2.30)

Because 𝜙 is a homomorphism, the isomorphism theorem says that the above subspaces are
representations of 𝑆𝑁 , and we have the following decomposition of 𝑉𝑁 ,

𝑉𝑁 = 𝑉[𝑁 ] ⊕ 𝑉[𝑁−1,1] . (2.31)

The representation 𝑉[𝑁 ] forms an invariant one-dimensional subspace of 𝑉𝑁 and is therefore
irreducible. We will now prove that 𝑉[𝑁−1,1] is irreducible as well.
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Let 𝜒 be the character of 𝑉𝑁
𝜒(𝜎) = (𝑃𝜎)𝑖𝑖 . (2.32)

It is equal to the number of fixed points of 𝜎, which we call 𝐹 (𝜎)

𝜒(𝜎) = 𝐹 (𝜎). (2.33)

Let 𝜒[𝑁 ] = 1, 𝜒[𝑁−1,1] be characters of 𝑉[𝑁 ] , 𝑉[𝑁−1,1] respectively. By equation 2.31 we have

𝜒[𝑁−1,1] = 𝜒 − 𝜒[𝑁 ] = 𝜒 − 1. (2.34)

Character orthogonality implies that

1
|𝑆𝑁 |

∑︁
𝜎∈𝑆𝑁

𝜒[𝑁−1,1] (𝜎)𝜒[𝑁−1,1] (𝜎
−1) = 1 (2.35)

if and only if 𝑉[𝑁−1,1] is irreducible. Substituting equation 2.34 into the above equation gives

1
|𝑆𝑁 |

∑︁
𝜎∈𝑆𝑁

(
𝜒(𝜎)2 − 2𝜒(𝜎) + 1

)
= 1. (2.36)

To prove this, we use Burnside’s lemma. First, consider

1
|𝑆𝑁 |

∑︁
𝜎∈𝑆𝑁

𝜒(𝜎) = 1
|𝑆𝑁 |

∑︁
𝜎∈𝑆𝑁

𝐹 (𝜎). (2.37)

Burnside’s lemma say that

1
|𝑆𝑁 |

∑︁
𝜎∈𝑆𝑁

𝐹 (𝜎) = # Orbits of 𝑆𝑁 acting on {1, . . . , 𝑁} = 1, (2.38)

where the last equality follows since there exists at least one 𝜎 ∈ 𝑆𝑁 such that (𝑖)𝜎 = 𝑗 for any
pair (𝑖, 𝑗). To evaluate

1
|𝑆𝑁 |

∑︁
𝜎∈𝑆𝑁

𝜒(𝜎)2 =
1
|𝑆𝑁 |

∑︁
𝜎∈𝑆𝑁

𝐹 (𝜎)2 (2.39)

note that the number of fixed points of (𝜎1, 𝜎2) ∈ 𝑆𝑁 × 𝑆𝑁 acting on (𝑖, 𝑗) ∈ {1, . . . , 𝑁} ×
{1, . . . , 𝑁} as

(𝑖, 𝑗) ↦→ ((𝑖)𝜎1, ( 𝑗)𝜎2) (2.40)

is 𝐹 (𝜎1)𝐹 (𝜎2). The relevant special case is 𝜎1 = 𝜎2 = 𝜎. The average number of fixed points
of this diagonal subgroup is

1
|𝑆𝑁 |

∑︁
𝜎∈𝑆𝑁

𝐹 (𝜎)2 = # Orbits of 𝑆𝑁 acting on {1, . . . , 𝑁}×2 = 2, (2.41)
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where the last equality follows because elements of the form (𝑖, 𝑖) and (𝑖, 𝑗) with 𝑖 ≠ 𝑗 form
distinct orbits. Equation 2.38 and 2.41 proves

1
|𝑆𝑁 |

∑︁
𝜎∈𝑆𝑁

(
𝜒(𝜎)2 − 2𝜒(𝜎) + 1

)
= 2 − 2 + 1 = 1, (2.42)

and therefore 𝑉[𝑁−1,1] is irreducible. □

Proposition 4. The vectors

𝐸 [𝑁 ] =
𝑒1 + 𝑒2 + · · · + 𝑒𝑁√

𝑁
(2.43)

𝐸
[𝑁−1,1]
1 =

𝑒1 − 𝑒2√
2

(2.44)

... (2.45)

𝐸
[𝑁−1,1]
𝑎 =

𝑒1 + 𝑒2 + · · · + 𝑒𝑎 − 𝑎𝑒𝑎+1√︁
𝑎(𝑎 + 1)

(2.46)

... (2.47)

𝐸
[𝑁−1,1]
𝑁−1 =

𝑒1 + 𝑒2 + · · · + 𝑒𝑁−1 − (𝑁−1)𝑒𝑁√︁
𝑁 (𝑁 + 1)

(2.48)

form an orthonormal basis for 𝑉[𝑁 ] ⊕ 𝑉[𝑁−1,1] with respect to the 𝑆𝑁 -invariant inner product
(𝑒𝑖 , 𝑒 𝑗) = 𝛿𝑖 𝑗 .

Proof. Let 𝑎, 𝑏 ∈ {1, . . . , 𝑁−1} and assume 𝑎 < 𝑏. Then

(𝐸 [𝑁−1,1]
𝑎 , 𝐸

[𝑁−1,1]
𝑏

) =
∑𝑎
𝑖=1(𝑒𝑖 , 𝑒𝑖) − 𝑎√︁
𝑎(𝑎 + 1)𝑏(𝑏 + 1)

=
𝑎 − 𝑎√︁

𝑎(𝑎 + 1)𝑏(𝑏 + 1)
= 0, (2.49)

and by symmetry of the inner product (𝐸𝑎, 𝐸𝑏) = 0 for 𝑏 > 𝑎 as well. For 𝑎 = 𝑏 we have

(𝐸 [𝑁−1,1]
𝑎 , 𝐸

[𝑁−1,1]
𝑎 ) =

∑𝑎
𝑖=1(𝑒𝑖 , 𝑒𝑖) + 𝑎2

𝑎(𝑎 + 1) =
𝑎 + 𝑎2

𝑎(𝑎 + 1) = 1. (2.50)

Therefore,
(𝐸 [𝑁−1,1]
𝑎 , 𝐸

[𝑁−1,1]
𝑏

) = 𝛿𝑎𝑏 . (2.51)

Similar computations give

(𝐸 [𝑁 ] , 𝐸 [𝑁 ]) = 1, (𝐸 [𝑁 ] , 𝐸 [𝑁−1,1]
𝑎 ) = 0. (2.52)

□
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2.3 Tensor powers of defining representation

In the previous section we decomposed 𝑉𝑁 into irreducible representations. For applications
to matrix models, we want to consider arbitrary tensor powers

𝑉⊗𝑘𝑁 � 𝑉𝑁 ⊗ · · · ⊗ 𝑉𝑁︸            ︷︷            ︸
𝑘

. (2.53)

This is a representation of 𝑆𝑁 with vector space

𝑉⊗𝑘𝑁 = Span(𝑒𝑖1 ⊗ 𝑒𝑖2 ⊗ · · · ⊗ 𝑒𝑖𝑘 | 𝑖1, . . . , 𝑖𝑘 = 1, . . . , 𝑁), (2.54)

where 𝑆𝑁 acts diagonally through permutation matrices

𝑃𝜎 (𝑒𝑖1 ⊗ 𝑒𝑖2 ⊗ · · · ⊗ 𝑒𝑖𝑘 ) = 𝑃𝜎𝑒𝑖1 ⊗ 𝑃𝜎𝑒𝑖2 ⊗ · · · ⊗ 𝑃𝜎𝑒𝑖𝑘 . (2.55)

The following special case is of central importance to the matrix models studied in Chapter 4.

Proposition 5. Assume 𝑁 ≥ 4, then the decomposition of 𝑉𝑁 ⊗ 𝑉𝑁 into irreducible represen-
tations is given by

𝑉𝑁 ⊗ 𝑉𝑁 � 2𝑉[𝑁 ] ⊕ 3𝑉[𝑁−1,1] ⊕ 𝑉[𝑁−2,2] ⊕ 𝑉[𝑁−2,1,1] , (2.56)

where 𝑉[𝑁−2,2] , 𝑉[𝑁−2,1,1] are two irreducible representations with dimensions 𝑁 (𝑁 − 3)/2
and (𝑁 − 1) (𝑁 − 2)/2 respectively.

Proof. From the decomposition (2.31) we have

𝑉𝑁 ⊗ 𝑉𝑁 � (𝑉[𝑁 ] ⊕ 𝑉[𝑁−1,1]) ⊗ (𝑉[𝑁 ] ⊕ 𝑉[𝑁−1,1])

� (𝑉[𝑁 ] ⊗ 𝑉[𝑁 ]) ⊕ (𝑉[𝑁 ] ⊗ 𝑉[𝑁−1,1]) ⊕ (𝑉[𝑁−1,1] ⊗ 𝑉[𝑁 ])

⊕ (𝑉[𝑁−1,1] ⊗ 𝑉[𝑁−1,1]).

(2.57)

The first three factors decompose into 𝑉[𝑁 ] , 𝑉[𝑁−1,1] , 𝑉[𝑁−1,1] respectively since 𝑉[𝑁 ] is the
trivial representation. It remains to decompose the last factor, for which we use [88, Equation
7-167]

𝑉[𝑁−1,1] ⊗ 𝑉[𝑁−1,1] � 𝑉[𝑁 ] ⊕ 𝑉[𝑁−1,1] ⊕ 𝑉[𝑁−2,2] ⊕ 𝑉[𝑁−2,1,1] . (2.58)

This completes the proof of equation 2.56. □

When dealing with large tensor products of vector spaces it is useful to introduce diagram
notation. Diagram notation works as follows. Let 𝑉𝑁 = Span(𝑒1, . . . , 𝑒𝑁 ) be a 𝑁-dimensional
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vector space, and 𝑀 ∈ End(𝑉𝑁 ) be a linear map

𝑀 (𝑒𝑖) =
∑︁
𝑗

𝑀
𝑗

𝑖
𝑒 𝑗 . (2.59)

We identify the matrix 𝑀 𝑗

𝑖
with the following diagram

𝑀
𝑗

𝑖
= 𝑀

𝑗

𝑖

(2.60)

Composition of maps, or index contractions corresponds to connecting edges. For example,
matrix multiplication is given by

(𝑀𝑁) 𝑗
𝑖
=

∑︁
𝑘

𝑀
𝑗

𝑘
𝑁 𝑘𝑖 =

𝑀

𝑗

𝑁

𝑖

(2.61)

This generalizes to tensors and linear maps 𝑇 ∈ End(𝑉⊗𝑘
𝑁
),

𝑇
𝑗1... 𝑗𝑘
𝑖1...𝑖𝑘

= 𝑇

𝑗1 𝑗𝑘

𝑖1 𝑖𝑘

= 𝑇

𝑗1 𝑗𝑘

𝑖1 𝑖𝑘

(2.62)

The last diagram is used when keeping track of every individual index is superfluous. We will
now consider higher order tensor products of 𝑉𝑁 .

2.3.1 Decomposition of tensor powers. The decomposition of general tensor powers of the
defining representation can be computed combinatorially in terms of elementary objects.

Theorem 3 (Decomposition of𝑉⊗𝑘
𝑁

). Let𝑚_
𝑘,𝑁

be the multiplicity of irreducible representations
𝑉_ of 𝑆𝑁 in

𝑉⊗𝑘𝑁 �
⊕
_⊢𝑁

𝑚_𝑘,𝑁𝑉_. (2.63)

Then

𝑚_𝑘,𝑁 =

𝑁∑︁
𝑡=|_# |

𝑆(𝑘, 𝑡) 𝑓 _/[𝑁−𝑡 ] , (2.64)

where _# = [_2, . . . , _𝑙] is a partition of 𝑁 − _1, 𝑆(𝑘, 𝑡) is the second Stirling number and
𝑓 _/[𝑁−𝑡 ] is the number of standard tableaux with skew-shape _/[𝑁 − 𝑡].
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Proof. See [49, Section 3.1]. The Stirling numbers appear in this formula by considering a
fixed basis element in 𝑉⊗𝑘

𝑁
. This defines a set partition of {1, . . . , 𝑘} by considering which

tensor factor contain the same basis element of 𝑉𝑁 . For example 𝑒1 ⊗ 𝑒2 ⊗ 𝑒1 ⊗ 𝑒3 corresponds
to the set partition 13|2|4 with three blocks. The number of such set partitions is the Stirling
number 𝑆(4, 3). This partition structure is preserved by the action of 𝑆𝑁 and therefore define
subrepresentations of 𝑉⊗𝑘

𝑁
. However, these subrepresentation turn out to be reducible and the

decomposition into irreducible components is proven to be determined by 𝑓 _/[𝑁−𝑡 ] . □

Example 8. A useful fact is that 𝑚_
𝑘,𝑁

= 0 if
��_#

�� > 𝑘 because 𝑆(𝑘, 𝑡) = 0 for 𝑡 > 𝑘 .

Example 9. We can verify this theorem in the case of 𝑘 = 2 and 𝑁 ≥ 4 using equation 2.56. To
compute 𝑚 [𝑁 ]2,𝑁 note that

��[𝑁]#�� = | [] | = 0 and 𝑆(𝑘, 𝑡) vanishes for 𝑡 > 𝑘 and 𝑡 = 0. Therefore

𝑚
[𝑁 ]
2,𝑁 = 𝑆(2, 1) 𝑓 [𝑁 ]/[𝑁−1] + 𝑆(2, 2) 𝑓 [𝑁 ]/[𝑁−2]

= 𝑓 [𝑁 ]/[𝑁−1] + 𝑓 [𝑁 ]/[𝑁−2] , (2.65)

where the last equality follows because 𝑆(2, 1) = 𝑆(2, 2) = 1. The Young diagram 𝑌[𝑁 ]/[𝑁−1]

with skew-shape [𝑁]/[𝑁 − 1] is just

𝑌[𝑁 ]/[𝑁−1] = (2.66)

and it has a single standard filling 1 . Similarly,

𝑌[𝑁 ]/[𝑁−2] = (2.67)

has a single standard filling 1 2 . To compute 𝑚 [𝑁−1,1]
2,𝑁 we use

��[𝑁 − 1, 1]#
�� = | [1] | = 1 such

that
𝑚
[𝑁−1,1]
2,𝑁 = 𝑓 [𝑁−1,1]/[𝑁−1] + 𝑓 [𝑁−1,1]/[𝑁−2] . (2.68)

We have the two Young diagrams

𝑌[𝑁−1,1]/[𝑁−1] = 𝑌[𝑁−1,1]/[𝑁−2] = , (2.69)

with standard fillings
1 , 1

2
, 2

1
. (2.70)

That is,
𝑚
[𝑁−1,1]
2,𝑁 = 1 + 2 = 3. (2.71)

We compute 𝑚 [𝑁−2,2]
2,𝑁 similarly. We have

��[𝑁 − 2, 2]#
�� = | [2] | = 2,

𝑚
[𝑁−2,2]
2,𝑁 = 𝑆(2, 2) 𝑓 [𝑁−2,2]/[𝑁−2] = 𝑓 [𝑁−2,2]/[𝑁−2] . (2.72)
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The relevant Young diagram is
𝑌[𝑁−2,2]/[𝑁−2] = (2.73)

with a single standard filling 1 2 such that 𝑚 [𝑁−2,2]
2,𝑁 = 1. Lastly, for 𝑚 [𝑁−2,1,1]

2,𝑁 we have��[𝑁 − 2, 1, 1]#
�� = | [1, 1] | = 2 and

𝑚
[𝑁−2,1,1]
2,𝑁 = 𝑆(2, 2) 𝑓 [𝑁−2,1,1]/[𝑁−2] , (2.74)

The Young diagram is
𝑌[𝑁−2,1,1]/[𝑁−2] = (2.75)

with a single standard filling 1
2

such that 𝑚 [𝑁−2,1,1]
2,𝑁 = 1. This verifies the result in equation

2.56.

Example 10. Another example is 𝑘 = 3 with 𝑁 ≥ 6. We have

𝑚
[𝑁 ]
3,𝑁 = 𝑆(3, 1) 𝑓 + 𝑆(3, 2) 𝑓 + 𝑆(3, 3) 𝑓 (2.76)

𝑚
[𝑁−1,1]
3,𝑁 = 𝑆(3, 1) 𝑓 + 𝑆(3, 2) 𝑓 + 𝑆(3, 3) 𝑓 (2.77)

𝑚
[𝑁−2,2]
3,𝑁 = 𝑆(3, 2) 𝑓 + 𝑆(3, 3) 𝑓 (2.78)

𝑚
[𝑁−2,1,1]
3,𝑁 = 𝑆(3, 2) 𝑓 + 𝑆(3, 3) 𝑓 (2.79)

𝑚
[𝑁−3,3]
3,𝑁 = 𝑆(3, 3) 𝑓 (2.80)

𝑚
[𝑁−3,2,1]
3,𝑁 = 𝑆(3, 3) 𝑓 (2.81)

𝑚
[𝑁−3,1,1,1]
3,𝑁 = 𝑆(3, 3) 𝑓 (2.82)
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with 𝑆(3, 1) = 1, 𝑆(3, 2) = 3, 𝑆(3, 3) = 1 and

𝑓 = 𝑓 = 𝑓 = 1 (2.83)

𝑓 = 1, 𝑓 = 2, 𝑓 = 3 (2.84)

𝑓 = 1, 𝑓 = 3, (2.85)

𝑓 = 1, 𝑓 = 3 (2.86)

𝑓 = 1 (2.87)

𝑓 = 2 (2.88)

𝑓 = 1. (2.89)

This gives

𝑚
[𝑁 ]
3,𝑁 = 5 (2.90)

𝑚
[𝑁−1,1]
3,𝑁 = 10 (2.91)

𝑚
[𝑁−2,2]
3,𝑁 = 6 (2.92)

𝑚
[𝑁−2,1,1]
3,𝑁 = 6 (2.93)

𝑚
[𝑁−3,3]
3,𝑁 = 1 (2.94)

𝑚
[𝑁−3,2,1]
3,𝑁 = 2 (2.95)

𝑚
[𝑁−3,1,1,1]
3,𝑁 = 1, (2.96)

and
𝑉⊗3
𝑁 � 5𝑉[𝑁 ] ⊕ 10𝑉[𝑁−1,1] ⊕ 6𝑉[𝑁−2,2] ⊕ 6𝑉[𝑁−2,1,1]

⊕ 𝑉[𝑁−3,3] ⊕ 2𝑉[𝑁−3,2,1] ⊕ 𝑉[𝑁−1,1,1,1] .

(2.97)

2.3.2 Tensor powers from restriction and induction. The above theorem is very useful
when explicit computation of the multiplicities is necessary. It will be useful to interpret these
multiplicities using different combinatorial and representation theoretic structures. We will
now see that multiplicities𝑚_

𝑘,𝑁
also have an interpretation in terms of restriction and induction

of representations.

First, we recall what it means to restrict representations of 𝑆𝑁 to 𝑆𝑁−1.

Definition 10. Let 𝜎 ∈ 𝑆𝑁 , _ ⊢ 𝑁 and 𝑃_
𝑎𝑏
(𝜎) be an irreducible representation of 𝑆𝑁 with

corresponding vector space 𝑉_. The representation Res𝑆𝑁
𝑆𝑁−1
(𝑉_) of 𝑆𝑁−1 is given by 𝑃_

𝑎𝑏
(𝜎)
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acting on 𝑉_ for 𝜎 ∈ 𝑆𝑁−1. It is called the restricted representation.

Induction is a procedure for going in the opposite direction.

Definition 11. Let 𝜎 ∈ 𝑆𝑁−1, _ ⊢ 𝑁 − 1, and 𝑃_
𝑎𝑏
(𝜎) be an irreducible representation of

𝑆𝑁−1 acting on the vector space 𝑉_ with basis 𝑒𝑎. Consider the coset 𝑆𝑁/𝑆𝑁−1 with a set
{𝜎1, . . . , 𝜎𝑁 } of representatives. That is, any set of elements 𝜎1, . . . , 𝜎𝑁 ∈ 𝑆𝑁 such that

𝑆𝑁 =

𝑁⋃
𝑖=1

𝜎𝑖𝑆𝑁−1, 𝜎𝑖𝑆𝑁−1 ∩ 𝜎𝑗𝑆𝑁−1 = ∅ if 𝑖 ≠ 𝑗 . (2.98)

We define the vector space

Ind𝑆𝑁
𝑆𝑁−1
(𝑉_) = Span

(
𝜎𝑖 ⊗𝑆𝑁−1 𝑒𝑎 | 𝑖 = 1, . . . , 𝑁, 𝑎 = 1, . . . , dim𝑉_

)
. (2.99)

The tensor product symbol ⊗𝑆𝑁−1 means that elements of the group 𝑆𝑁−1 can be passed
through the tensor product. This new vector space, of dimension 𝑁 × dim𝑉_ is turned into
a representation of 𝑆𝑁 through the following action. Suppose 𝜎 ∈ 𝑆𝑁 and 𝜎𝑖 are such that
𝜎𝜎𝑖 = 𝜎𝑗𝜌 for 𝜌 ∈ 𝑆𝑁−1. Then the induced representation Π_ : 𝑆𝑁 → 𝐺𝐿 (Ind𝑆𝑁

𝑆𝑁−1
(𝑉_)) of

𝑆𝑁 is defined by

Π_(𝜎)
(
𝜎𝑖 ⊗𝑆𝑁−1 𝑒𝑎

)
= (𝜎𝜎𝑖) ⊗𝑆𝑁−1 𝑒𝑎 = 𝜎𝑗𝜌 ⊗𝑆𝑁−1 𝑒𝑎

= 𝜎𝑗 ⊗𝑆𝑁−1

∑︁
𝑏

𝑃_𝑏𝑎 (𝜌)𝑒𝑏 .
(2.100)

For general vectors, the action is extended linearly.

Example 11. The prototypical example of an induced representation comes from inducing
the trivial representation 𝑃

[𝑁−1]
𝑎𝑏

(𝜎) = 1 of 𝑆𝑁−1 to 𝑆𝑁 . The permutations 𝜎𝑖 = (𝑖𝑁) for
𝑖 = 1, . . . , 𝑁 − 1 and 𝜎𝑁 = (1) . . . (𝑁) form a set of representatives of left cosets. With
𝑉[𝑁−1] = Span 𝑒0 we have

Ind𝑆𝑁
𝑆𝑁−1
(𝑉[𝑁−1]) = Span(𝜎𝑖 ⊗𝑆𝑁−1 𝑒0 | 𝑖 = 1, . . . , 𝑁). (2.101)

If 𝜎 ∈ 𝑆𝑁 is such that 𝜎𝜎𝑖 = 𝜎𝑗𝜌 for 𝜌 ∈ 𝑆𝑁−1, then

Π_(𝜎)𝜎𝑖 ⊗𝑆𝑁−1 𝑒0 = 𝜎𝑗𝜌 ⊗𝑆𝑁−1 𝑒0 = 𝜎𝑗 ⊗𝑆𝑁−1 𝑒0, (2.102)

since 𝑃[𝑁−1]
𝑎𝑏

(𝜌) = 1. This is the permutation representation associated with the set 𝑆𝑁/𝑆𝑁−1

of cosets. In fact
Ind𝑆𝑁

𝑆𝑁−1
(𝑉[𝑁−1]) � 𝑉𝑁 , (2.103)

where 𝑉𝑁 is the defining representation of 𝑆𝑁 .

The following theorem also helps to build some intuition for induced representations.
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Theorem 4 (Frobenius reciprocity). Let 𝑉_ be an irreducible representation of 𝑆𝑁 and 𝑉𝜌 an
irreducible representation of 𝑆𝑁−1. Suppose we have the following two decompositions with
multiplicities 𝐼_𝜌 , 𝑅

𝜌

_

Ind𝑆𝑁
𝑆𝑁−1
(𝑉𝜌) =

⊕
_⊢𝑁

𝐼_𝜌𝑉_, (2.104)

Res𝑆𝑁
𝑆𝑁−1
(𝑉_) =

⊕
𝜌⊢𝑁−1

𝑅
𝜌

_
𝑉𝜌. (2.105)

Frobenius reciprocity gives
𝐼_𝜌 = 𝑅

𝜌

_
. (2.106)

Frobenius reciprocity gives a precise sense in which induction is the ”dual” or adjoint of
restriction.

Proof. This is a standard result proven in most textbooks on representation theory of finite
groups, see for example [89, Theorem 13]. We give a very rough sketch of an elementary proof
of this. The above theorem corresponds to an identity between two inner products of characters
of 𝑆𝑁 and 𝑆𝑁−1 respectively. Schematically, it takes the form

⟨𝑉_, Ind𝑆𝑁
𝑆𝑁−1
(𝑉𝜌)⟩𝑆𝑁 = ⟨𝑉𝜌,Res𝑆𝑁

𝑆𝑁−1
(𝑉_)⟩𝑆𝑁−1 . (2.107)

The identity is proven by invoking the definition of the character of an induced representation
(see [89, Theorem 12]). □

Example 11 is a special case of a more general relationship.

Theorem 5. Tensor powers of the defining representation of 𝑆𝑁 are isomorphic to iterated
induction and restriction of the trivial representation of 𝑆𝑁 .

𝑉𝑁 � Ind𝑆𝑁
𝑆𝑁−1
(Res𝑆𝑁

𝑆𝑁−1
(𝑉[𝑁 ])) (2.108)

𝑉⊗2
𝑁 � Ind𝑆𝑁

𝑆𝑁−1
(Res𝑆𝑁

𝑆𝑁−1
(Ind𝑆𝑁

𝑆𝑁−1
(Res𝑆𝑁

𝑆𝑁−1
(𝑉[𝑁 ])))) (2.109)

... (2.110)

𝑉⊗𝑘𝑁 � (Ind Res)𝑘 (𝑉[𝑁 ]), (2.111)

where (Ind Res)𝑘 is shorthand for iterated restriction followed by induction.

Proof. An inductive proof of this is given in [49, Section 2.3]. It uses the identity

Ind𝑆𝑁
𝑆𝑁−1
(𝑋 ⊗ Res𝑆𝑁

𝑆𝑁−1
(𝑌 )) = Ind𝑆𝑁

𝑆𝑁−1
(𝑋) ⊗ 𝑌, (2.112)
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that can be found in for example [89, Remark (3) below Theorem 13]. Choose

𝑋 = 𝑉⊗𝑘𝑁 , 𝑌 = Res𝑆𝑁
𝑆𝑁−1
(𝑉[𝑁 ]), (2.113)

the identity implies

Ind𝑆𝑁
𝑆𝑁−1
(Res𝑆𝑁

𝑆𝑁−1
(𝑉⊗𝑘𝑁 )) = Ind𝑆𝑁

𝑆𝑁−1
(Res𝑆𝑁

𝑆𝑁−1
(𝑉⊗𝑘𝑁 ) ⊗ Res𝑆𝑁

𝑆𝑁−1
(𝑉[𝑁 ]))

= 𝑉⊗𝑘𝑁 ⊗ Ind𝑆𝑁
𝑆𝑁−1
(Res𝑆𝑁

𝑆𝑁−1
(𝑉[𝑁 ])) = 𝑉⊗𝑘𝑁 ⊗ 𝑉𝑁 = 𝑉⊗𝑘+1𝑁

(2.114)

The theorem follows by induction. □

The upside of this formulation of tensor powers is that restriction and induction of symmetric
groups can be computed combinatorially using Young diagrams.

Theorem 6. Let _ ⊢ 𝑁 , then

Res𝑆𝑁
𝑆𝑁−1
(𝑉_) �

⊕
_′∈_−

𝑉_′ , (2.115)

and if _ ⊢ 𝑁 − 1
Ind𝑆𝑁

𝑆𝑁−1
(𝑉_) �

⊕
_′∈_+

𝑉_′ , (2.116)

where _ − is the set of Young diagrams obtainable by removing a box from the end of a row
of _ and _ + the set of Young diagrams obtainable by adding a box to the end of a row of _.

Proof. See [87, Theorem 2.8.3] for a proper proof of this. Intuitively, the restriction can be
understood by considering 𝑉_ as a vector space with basis labelled by standard Young tableaux
of shape _. The cell of a standard Young tableaux filled with 𝑁 can always be removed to give a
new standard Young tableaux of shape _′ = _− . This tableau is a vector in the representation
𝑉_′ . By considering all standard tableaux of shape _ we find all possible _′ that appear in the
restriction. The induction formula follows from Frobenius reciprocity. □

Note that restriction(induction) of irreducible representations of 𝑆𝑁 is multiplicity free. Fur-
thermore, it acts linearly on direct sums of irreducible representations

Res𝑆𝑁
𝑆𝑁−1
(𝑉_ ⊕ 𝑉_′) = Res𝑆𝑁

𝑆𝑁−1
(𝑉_) ⊕ Res𝑆𝑁

𝑆𝑁−1
(𝑉_′), (2.117)

and similarly for induction. Consequently, specifying the irreducible representations in each
sequence of restrictions and inductions in (2.111) gives a complete description of the multiplic-
ities of the final irreducible representations. This is a theorem, which we will state using the
following definition.
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Definition 12 (Vacillating tableau). Let _ ⊢ 𝑁 with
��_#

�� ≤ 𝑘 . An alternating sequence

𝔳 = (_ (0) = [𝑁], _ ( 1
2 ) = [𝑁 − 1], _ (1) , _ ( 3

2 ) , . . . , _ (𝑘 ) = _) (2.118)

is called a vacillating tableau of shape _ and length 𝑘 if

_ (𝑖+
1
2 ) ∈ _ (𝑖) − , (2.119)

_ (𝑖+1) ∈ _ (𝑖+ 1
2 ) + , (2.120)

and

_ (𝑖) ∈ Λ𝑖,𝑁 = {_ ⊢ 𝑁 | |_# | ≤ 𝑖} (2.121)

_ (𝑖+
1
2 ) ∈ Λ𝑖+ 1

2 ,𝑁
= {_ ⊢ 𝑁 − 1 | |_# | ≤ 𝑖}. (2.122)

Example 12. The following is the set of all vacillating tableaux of length 𝑘 = 2.

_ = [𝑁] :𝔳1 = ( [𝑁], [𝑁 − 1], [𝑁], [𝑁 − 1], [𝑁]),

𝔳2 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 1], [𝑁])

(2.123)

_ = [𝑁 − 1, 1] :𝔳1 = ( [𝑁], [𝑁 − 1], [𝑁], [𝑁 − 1], [𝑁 − 1, 1]),

𝔳2 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 2, 1], [𝑁 − 1, 1]),

𝔳3 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 1], [𝑁 − 1, 1])

(2.124)

_ = [𝑁 − 2, 2] :𝔳1 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 2, 1], [𝑁 − 2, 2]), (2.125)

_ = [𝑁 − 2, 1, 1] :𝔳1 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 2, 1], [𝑁 − 2, 1, 1]). (2.126)

Observe that the number of vacillating tableaux of shape _ and length 𝑘 = 2 is equal to 𝑚_2,𝑁
as computed in Example 9. The general theorem is the following.

Theorem 7. Let _ ∈ Λ𝑘,𝑁 , then

𝑚_𝑘,𝑁 = |{vacillating tableaux of shape _ and length 𝑘}|. (2.127)

Proof. This is proven in for example [49, Section 2.3]. □

Therefore the multiplicities 𝑚_
𝑘,𝑁

in the decomposition of 𝑉⊗𝑘
𝑁

can be understood in terms
of counting of vacillating tableaux of shape _ and length 𝑘 . This structure behind the tensor
powers will be crucial for the constructions in the next chapter.
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2.4 Summary

In this chapter we reviewed some basic aspects of symmetric groups and their representation
theory. We focused on the defining representation𝑉𝑁 , where the symmetric group is represented
by permutation matrices. This representation will be directly relevant to the symmetry in
permutation invariant matrix models. We saw that the defining representation of 𝑆𝑁 can be
constructed by inducing the trivial representation of 𝑆𝑁−1. This was a special case of a more
general construction, that of the tensor powers𝑉⊗𝑘

𝑁
from repeated restriction and induction. This

repeated restriction and induction could be understood from the combinatorial rules (2.115),
(2.116) of removing and adding boxes to a Young diagram. A very important theorem was the
relationship between the sequence of restrictions and inductions, called vacillating tableaux, and
multiplicities in the decomposition of tensor powers 𝑉⊗𝑘

𝑁
into irreducible representations. This

structure will play an important role in understanding the inductive chain of partition algebras
and construction of matrix units, which we review in the next chapter. In matrix models, tensor
powers with 𝑘 = 1, 2 will be essential. They correspond to linear and quadratic parts of the
action, respectively.
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Chapter 3

Partition algebras

The group algebra C(𝑆𝑘) fits into a class of finite associative algebras known as diagram
algebras. These are algebras with distinguished bases labelled by diagrams. In the diagram
basis the algebra product takes the form of diagram concatenation. For example, consider 𝑆3

where
(12) ↔ , (123) ↔ , (3.1)

and

(12) (123) = = = (13). (3.2)

As mentioned in the introduction, diagram algebras feature in the mathematical duality known
as (generalized) Schur-Weyl duality. The classical instance of Schur-Weyl duality relates repre-
sentation theory of 𝐺𝐿 (𝑁) to representation theory of C(𝑆𝑘) [25]. In particular, consider the
diagonal action of 𝑔 ∈ 𝐺𝐿 (𝑁) on 𝑉⊗𝑘

𝑁

𝑔(𝑣1 ⊗ 𝑣2 ⊗ . . . 𝑣𝑘) = 𝑔𝑣1 ⊗ 𝑔𝑣2 ⊗ · · · ⊗ 𝑔𝑣𝑘 . (3.3)

Since the same 𝑔 ∈ 𝐺𝐿 (𝑁) acts on all tensor factors, it commutes with the action of C(𝑆𝑘)
permuting the order of tensor factors. Schur-Weyl duality says that this action of C(𝑆𝑘) is the
complete set of elements in End𝐺𝐿 (𝑁 ) (𝑉⊗𝑘𝑁 ) ⊂ End(𝑉⊗𝑘

𝑁
) that commute with 𝐺𝐿 (𝑁). That is,

End𝐺𝐿 (𝑁 ) (𝑉⊗𝑘𝑁 ) � C(𝑆𝑘), (3.4)

as long as 𝑁 > 𝑘 . As we will review, the double centralizer theorem then implies that

𝑉⊗𝑘𝑁 �
⊕
_⊢𝑘

𝑙 (_)≤𝑁

𝑊_ ⊗ 𝑉_, (3.5)

27
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where 𝑊_ are irreducible representations of 𝐺𝐿 (𝑁) and 𝑉_ irreducible representations of 𝑆𝑘 .
Note that this decomposition is multiplicity free, or equivalently, there is a one-to-one corre-
spondence between irreducible representations 𝑊_ and 𝑉_. This implies that the multiplicity
of𝑊_ in the decomposition is equal to the dimension of 𝑉_ – that is |SYT_ |. Therefore, Schur-
Weyl duality serves as a powerful tool for dealing with the multiplicities in this tensor product
decomposition.

Schur-Weyl duality has been generalized in various directions, including other matrix groups
such as 𝑂 (𝑁) and 𝑆𝑝(𝑁) [90] . It has also been generalized to other actions and vector spaces.
In these cases, more general diagram algebras replace C(𝑆𝑘), such as Brauer algebras, which
have played a role in large 𝑁 physics [32].

In this thesis we are concerned with large 𝑁 models with permutation symmetry. As we will
review in detail in chapter 4, such models are described by a quadratic polynomial in matrices
𝑋 = | |𝑋𝑖 𝑗 | |. For example,

𝑁∑︁
𝑖, 𝑗 ,𝑘,𝑙=1

𝐺𝑖 𝑗;𝑘𝑙𝑋𝑖 𝑗𝑋𝑘𝑙 , (3.6)

where the tensor 𝐺𝑖 𝑗;𝑘𝑙 parametrises the contribution to the action. The model is permutation
invariant if and only if

𝐺𝑖 𝑗;𝑘𝑙 = 𝐺 (𝑖)𝜎 ( 𝑗 )𝜎;(𝑘 )𝜎 (𝑙)𝜎 ∀𝜎 ∈ 𝑆𝑁 . (3.7)

Invariant tensors like these correspond to elements of End𝑆𝑁 (𝑉⊗2
𝑁
). This is how Schur-Weyl

duality appears in the context of matrix models.

Fortunately, Schur-Weyl duality has been developed for tensor powers of defining representations
of 𝑆𝑁 . In this case, the dual algebras End𝑆𝑁 (𝑉⊗𝑘𝑁 ) are isomorphic to the partition algebras
𝑃𝑘 (𝑁). They were first discovered in the context of statistical mechanics and Potts models
[45, 46], where they appear as the algebra generated by transfer matrices. The study of these
diagram algebras has seen a lot of recent progress [49–52] (this is by no means an exhaustive
list).

In this chapter, we will use these results to construct a basis of matrix units for 𝑃1(𝑁), 𝑃2(𝑁).
This basis gives an efficient and explicit parametrisations of the permutation invariant Gaussian
matrix models, or equivalently the tensors 𝐺𝑖 𝑗;𝑘𝑙.

3.1 Schur-Weyl duality

In this section we will investigate the set of linear maps on𝑉⊗𝑘
𝑁

that commute with 𝑆𝑁 . We will
give a basis for the vector space of such maps and explain its relevance to the decomposition of
𝑉⊗𝑘
𝑁

through the double centralizer theorem. We will then explain how the partition algebras
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enter the picture and explore its inductive structure.

Let End(𝑉⊗𝑘
𝑁
) be the set of linear maps 𝑇 : 𝑉⊗𝑘

𝑁
→ 𝑉⊗𝑘

𝑁
. It is isomorphic to

End(𝑉⊗𝑘𝑁 ) � 𝑉
⊗𝑘
𝑁 ⊗ (𝑉

∗
𝑁 )⊗𝑘 (3.8)

with 𝑉∗
𝑁

the dual space

𝑉∗𝑁 = Span( 𝑓𝑖 | 𝑖 = 1, . . . , 𝑁 with 𝑓𝑖 (𝑒 𝑗) = 𝛿𝑖 𝑗). (3.9)

We have
𝑓𝑖 (𝑒 𝑗) = (𝑒𝑖 , 𝑒 𝑗), (3.10)

and the map 𝑓𝑖 ↦→ 𝑒𝑖 is an isomorphism of vector spaces.

In fact, the two vector spaces are isomorphic as representations of 𝑆𝑁 .

Definition 13. (Dual representation) We define the representation 𝑃∗𝜎 of 𝜎 ∈ 𝑆𝑁 on 𝑉∗
𝑁

by

(𝑃∗𝜎 𝑓𝑖) (𝑒 𝑗) = 𝑓𝑖 (𝑃𝜎−1𝑒 𝑗), (3.11)

such that

(𝑃∗𝜎1𝜎2 𝑓𝑖) (𝑒 𝑗) = 𝑓𝑖 (𝑃𝜎−1
2
𝑃𝜎−1

1
𝑒 𝑗) = (𝑃∗𝜎2 𝑓𝑖) (𝑃𝜎−1

1
𝑒 𝑗) = (𝑃∗𝜎1𝑃

∗
𝜎2 𝑓𝑖) (𝑒 𝑗). (3.12)

In coordinates (3.11) reads
(𝑃∗𝜎)

𝑗

𝑖
= (𝑃𝜎−1)𝑖𝑗 . (3.13)

Corollary 2. Because the defining representation is orthogonal (real unitary) (𝑃𝜎−1)𝑖𝑗 =

(𝑃𝜎) 𝑗𝑖 . Therefore, 𝑉∗
𝑁
� 𝑉𝑁 as representations of 𝑆𝑁 and by extension (𝑉∗

𝑁
)⊗𝑘 � 𝑉⊗𝑘

𝑁
.

This also implies that End(𝑉⊗𝑘
𝑁
) � 𝑉⊗2𝑘

𝑁
. This correspondence is frequently used in matrix

model computations.

We are interested in the subspace of End(𝑉⊗𝑘
𝑁
) that commute with 𝑆𝑁 .

Definition 14. The 𝑆𝑁 invariant subspace of End(𝑉⊗𝑘
𝑁
) is defined as

End𝑆𝑁 (𝑉⊗𝑘𝑁 ) = {𝑇 ∈ End(𝑉⊗𝑘𝑁 ) with 𝑇𝑃𝜎 = 𝑃𝜎𝑇 ∀𝜎 ∈ 𝑆𝑁 }. (3.14)

This vector space is in fact an algebra with multiplication given by composition of maps.

Remark 2. It is instructive to look at the constraint 𝑇𝑃𝜎 = 𝑃𝜎𝑇 in components. We re-write
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this as 𝑃𝜎−1𝑇𝑃𝜎 = 𝑇 , which in components reads

𝑇
( 𝑗1 )𝜎 ( 𝑗2 )𝜎...( 𝑗𝑘 )𝜎
(𝑖1 )𝜎 (𝑖2 )𝜎...(𝑖𝑘 )𝜎 = 𝑇

𝑗1 𝑗2... 𝑗𝑘
𝑖1𝑖2...𝑖𝑘

∀𝜎 ∈ 𝑆𝑁 . (3.15)

A basis for End𝑆𝑁 (𝑉⊗𝑘𝑁 ) can be constructed by considering orbits of 𝑆𝑁 on a basis for End(𝑉⊗𝑘
𝑁
).

A basis for End(𝑉⊗𝑘
𝑁
) is simply the set of rank 2𝑘 tensors that vanish for all components except

one. For example, consider 𝑘 = 3 and focus on the tensor whose only non-zero component is

𝑇112
123 . (3.16)

We construct the 𝑆𝑁 orbit
{𝑇 (1)𝜎 (1)𝜎 (2)𝜎(1)𝜎 (2)𝜎 (3)𝜎 | ∀𝜎 ∈ 𝑆𝑁 }. (3.17)

Because 𝜎 ∈ 𝑆𝑁 is a bijection, it preserves relations such as 𝑖 ≠ 𝑗 or 𝑖 = 𝑗 . Therefore, the
above set is equal to the set

{𝑇 𝑖𝑖 𝑗
𝑖 𝑗𝑘
| 𝑖, 𝑗 , 𝑘 ∈ {1, . . . , 𝑁}, 𝑖 ≠ 𝑗 , 𝑖 ≠ 𝑘, 𝑗 ≠ 𝑘}. (3.18)

By considering all such basis tensors, we find a set of distinct orbits. The set of distinct orbits
label a basis for End𝑆𝑁 (𝑉⊗3

𝑁
).

Example 13. As an example, we can consider End𝑆2 (𝑉2). A basis for End(𝑉2) is given by the
elementary 2-by-2 matrices {𝐸11, 𝐸12, 𝐸21, 𝐸22}. They form two distinct orbits under the action
of 𝑆2,

𝑂1 = {𝐸11, 𝐸22}, 𝑂2 = {𝐸12, 𝐸21}. (3.19)

The tensors
(𝑂1)𝑖𝑗 = (𝐸11)𝑖𝑗 + (𝐸22)𝑖𝑗 , (𝑂2)𝑖𝑗 = (𝐸12)𝑖𝑗 + (𝐸21)𝑖𝑗 , (3.20)

are invariant since, for example,

(𝑂1) (𝑖)𝜎( 𝑗 )𝜎 = 𝛿
(𝑖)𝜎
1 𝛿1

( 𝑗 )𝜎 + 𝛿
(𝑖)𝜎
2 𝛿2

( 𝑗 )𝜎 = 𝛿𝑖(1)𝜎−1𝛿
(1)𝜎−1

𝑗
+ 𝛿𝑖(2)𝜎−1𝛿

(2)𝜎−1

𝑗
= (𝑂1)𝑖𝑗 (3.21)

for all 𝜎 ∈ 𝑆2 and form a basis for End𝑆2 (𝑉2).

The orbits 𝑂1, 𝑂2 are naturally thought of as set partitions of the set {𝑖, 𝑗}. Since the indices
of the elementary matrices in 𝑂1 are equal, we think of this as the set partition {𝑖, 𝑗} = {𝑖, 𝑗}.
On the other hand, the indices are distinct in the orbit 𝑂2 and we think of this as corresponding
to the set partition {𝑖} ¤∪{ 𝑗} = {𝑖, 𝑗}. We will now give a basis for End𝑆𝑁 (𝑉⊗𝑘𝑁 ) based on these
observations. To state the theorem, we need the following definition.

Definition 15 (Set partition). Let 𝑆 be a set of order 𝑘 . A set 𝜋 = {𝜋1, . . . , 𝜋𝑏} of non-empty
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subsets of 𝑆 is called a set partition of 𝑆 if

𝜋1 ¤∪𝜋2 ¤∪ . . . ¤∪𝜋𝑏 = 𝑆, (3.22)

where ¤∪ is meant to emphasize that the subsets in 𝜋 are disjoint. The set of all set partitions is
denoted Π𝑆 . A subset in a set partition is called a block and we write |𝜋 | = 𝑏 for the number of
blocks.

Example 14. As an example consider 𝑆 = {1, 2, 3, 4}. There are 15 set partitions 𝜋 of 𝑆, which
we write down in the following notation 𝜋 = 𝜋1 |𝜋2 | . . . |𝜋𝑏.

1234, 12|34, 13|24, 14|23, 123|4, 124|3, 134|2, 234|1 (3.23)

1|2|34, 1|3|24, 1|4|23, 2|3|14, 2|4|13, 3|4|12, 1|2|3|4. (3.24)

Every orbit of the type in (3.18) corresponds to a set partition of the 6 indices on 𝑇 𝑗1 𝑗2 𝑗3
𝑖1𝑖2𝑖3

. For
example, the orbit in (3.18) corresponds to 𝑖1 𝑗1 𝑗2 |𝑖2 𝑗3 |𝑖3. However, the orbits where the number
of distinct indices is larger than 𝑁 are empty. Generalizing these observations to general 𝑘
gives the following theorem

Theorem 8 (Orbit basis). The space End𝑆𝑁 (𝑉⊗𝑘𝑁 ) of 𝑆𝑁 equivariant maps 𝑉⊗𝑘
𝑁
→ 𝑉⊗𝑘

𝑁
has a

basis labelled by set partitions 𝜋 ∈ Π{1,...,𝑘,1′ ,...,𝑘′ } with |𝜋 | ≤ 𝑁 . We use the short-hand

[𝑘 |𝑘 ′] = {1, . . . , 𝑘, 1′, . . . , 𝑘 ′} (3.25)

and
Π[𝑘 |𝑘′ ],𝑁 =

{
𝜋 ∈ Π[𝑘 |𝑘′ ] , |𝜋 | ≤ 𝑁

}
. (3.26)

For 𝜋 ∈ Π[𝑘 |𝑘′ ],𝑁 we define 𝑋𝜋 ∈ End𝑆𝑁 (𝑉⊗𝑘𝑁 ) by

𝑋𝜋 (𝑒𝑖1⊗ · · · ⊗ 𝑒𝑖𝑘 ) = (𝑋𝜋)
𝑖1′ ...𝑖𝑘′
𝑖1...𝑖𝑘

𝑒𝑖1′⊗ · · · ⊗ 𝑒𝑖𝑘′ , (3.27)

where

(𝑋𝜋)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
=


1 if 𝑖𝑎 = 𝑖𝑏 if and only if 𝑎 and 𝑏 are in the same block of 𝜋,

0 otherwise.
(3.28)

The set of maps 𝑋𝜋 for 𝜋 ∈ Π[𝑘 |𝑘′ ],𝑁 form the so called orbit basis for End𝑆𝑁 (𝑉⊗𝑘𝑁 ).

Proof. See [45, Section §1] or [49, Theorem 5.4]. □

A great feature of this basis is that it works for all 𝑁 . A downside is that the composition of
maps is inconvenient to state in this basis.
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For 𝑁 ≥ 2𝑘 there exists a basis where multiplication has a beautiful combinatorial description

Theorem 9 (Diagram basis). Let 𝜋 ∈ Π[𝑘 |𝑘′ ] and 𝑁 ≥ 2𝑘 . Then the following set of maps form
a basis of End𝑆𝑁 (𝑉⊗𝑘𝑁 )

(𝐷 𝜋)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
=


1 if 𝑖𝑎 = 𝑖𝑏 when 𝑎 and 𝑏 are in the same block of 𝜋,

0 otherwise.
(3.29)

Proof. See [45, Section §1]. We will give formulas relating these two bases in Chapter 5. □

This basis has very simple expression in terms of Kronecker deltas

Example 15. Let 𝜋 = 123|1′ |2′3′ then

(𝐷 𝜋)𝑖1′ 𝑖2′ 𝑖3′𝑖1𝑖2𝑖3
= 𝛿𝑖1𝑖2𝛿𝑖2𝑖3𝛿

𝑖2′ 𝑖3′ . (3.30)

We will give a diagrammatic description of composition in this basis shortly. First, we want to
elaborate on why this algebra is important to study.

The motivation for studying the algebra End𝑆𝑁 (𝑉⊗𝑘𝑁 ) is the double centralizer theorem.

Theorem 10. The double centralizer theorem gives a multiplicity free decomposition of the
tensor power 𝑉⊗𝑘

𝑁
. We write

𝑉⊗𝑘𝑁 �
⊕
_⊢𝑁

𝑉_ ⊗ 𝑀_, (3.31)

where 𝑀_ are irreducible representations of End𝑆𝑁 (𝑉⊗𝑘𝑁 ).

Proof. See [91, Theorem 4.54] for a proof of the double centralizer theorem. The idea is that
End𝑆𝑁 (𝑉⊗𝑘𝑁 ) is the full centralizer of the image of 𝑆𝑁 in End(𝑉⊗𝑘

𝑁
) and vice versa. In particular,

every element in End(𝑉⊗𝑘
𝑁
) commutes with every element in the image of 𝑆𝑁 . Therefore, there

should exist a basis where this is manifest. Proving the exact form of the decomposition in the
theorem requires more care. □

In fact, from the restriction and induction description of tensor powers (2.111) we know that
above decomposition is more constrained,

𝑉⊗𝑘𝑁 �
𝑘⊕
𝑙=0

⊕
_#

𝑉[𝑁−𝑙,_# ] ⊗ 𝑀[𝑁−𝑙,_#] . (3.32)

The Young diagram _ = [𝑁 − 𝑙, _#], which is an integer partition of 𝑁 , is constructed by
placing the diagram _# (having 𝑙 boxes) below a first row of 𝑁 − 𝑙 boxes. This follows from the
fact that each repetition of restriction and induction can move at most one box below the first
row. Requiring _ to be a valid Young diagram imposes a condition on the first row length of
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𝑟1(_#) ≤ 𝑁 − 𝑙. For 𝑁 < 2𝑘 this is a non-trivial constraint, while it is trivially satisfied for all
_# having up to 𝑘 boxes for 𝑁 ≥ 2𝑘 . The latter is called the stable limit.

3.1.1 𝑆𝑁 Schur-Weyl duality. We now reach the first main theorem of this section, which is
the fact that End𝑆𝑁 (𝑉⊗𝑘𝑁 ) � 𝑃𝑘 (𝑁) for 𝑁 ≥ 2𝑘 . As mentioned, this is a diagram algebra and
the best way to introduce it is to introduce partition diagrams.

Definition 16 (Partition diagram). A partition diagram is a graphical representation of a set
partition 𝜋 ∈ Π[𝑘 |𝑘′ ] . Consider an undirected graph 𝑑 with 𝑘 vertices labelled by {1, . . . , 𝑘}
and another set of 𝑘 vertices labelled by {1′, . . . , 𝑘 ′}. We allow at most one edge connecting a
pair of vertices and disallow edges connected to the same vertex (loops). Every such graph 𝑑
corresponds to a set partition 𝜋 through the following map:

𝑑 ↦→ 𝜋 (3.33)

where 𝜋 is a set partition where 𝑎 is in the same subset as 𝑏 if they are connected by an edge in
𝑑. This map is surjective but not bijective – two different graphs can correspond to the same set
partition. For convenience these graphs are drawn with the first 𝑘 vertices ordered horizontally
in a row below the second set of 𝑘 vertices (see example below).

Example 16. Many of these aspects can be seen already for 𝑘 = 2. First, consider a set of
diagrams and their corresponding set partitions

1′ 2′

1 2

↦→ 11′ |22′,
1′ 2′

1 2

↦→ 11′ |2|2′, (3.34)

1′ 2′

1 2

↦→ 11′22′,
1′ 2′

1 2

↦→ 11′22′. (3.35)

The last two examples show that two different diagrams can correspond to the same set partition.

We think of two partition diagrams that correspond to the same set partition as equivalent.
When we use the term the set of partition diagrams, we mean the set of equivalence classes
under this identification. We write 𝑑𝜋 for any representative diagram that corresponds to the
set partition 𝜋.

It is often useful to consider the reflection of a partition diagram.

Definition 17 (Transpose diagram). Let 𝑑𝜋 be a partition diagram corresponding to the set
partition 𝜋. Then the transpose 𝑑𝑇𝜋 is the diagram corresponding to the set partition 𝜋𝑇 where
all unprimed integers are turned into primed integers and all primed integers are turned into
unprimed integers. Geometrically this is a horizontal reflection of the diagram 𝑑𝜋 .
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Definition 18. (Diagram basis) Consider the vector space

𝑃𝑘 = Span(𝑑𝜋 | 𝜋 ∈ Π[𝑘 |𝑘′ ]). (3.36)

We call this the diagram basis for 𝑃𝑘 . It has finite dimension dim 𝑃𝑘 = 𝐵(2𝑘). The Bell
number 𝐵(2𝑘) is the number of possible partitions of a set with 2𝑘 distinct elements and can
be computed using the generating function

∞∑︁
𝑘=0

𝐵(𝑘)
𝑘!

𝑥𝑘 = 𝑒𝑒
𝑥−1, (3.37)

from which one finds 𝐵(2𝑘) = 2, 15, 203, 4140 for 𝑘 = 1, 2, 3, 4.

The vector space 𝑃𝑘 is turned into an algebra 𝑃𝑘 (𝑁) as follows.

Definition 19 (Partition algebra). The partition algebras 𝑃𝑘 (𝑁) for 𝑘 = 1, 2, . . . are vector
spaces 𝑃𝑘 with multiplication defined through diagram concatenation (in the diagram basis).
Let 𝑑𝜋 and 𝑑𝜋′ be two diagrams in 𝑃𝑘 . The composition 𝑑𝜋′′ = 𝑑𝜋𝑑𝜋′ is constructed by
placing 𝑑𝜋 above 𝑑𝜋′ and identifying the bottom vertices of 𝑑𝜋 with the top vertices of 𝑑𝜋′ .
The diagram is simplified by following the edges connecting the bottom vertices of 𝑑𝜋′ to the
top vertices of 𝑑𝜋 . Any connected components within the middle rows are removed and we
multiply by 𝑁𝑐, where 𝑐 is the number of these complete blocks removed. Multiplication is
independent of the choice of representative diagram. For linear combinations of diagrams,
multiplication is defined by linear extension.

Example 17. For example,

= 𝑁 and = , (3.38)

where the factor of 𝑁 in the first equation comes from removing the middle component at vertex
1 and 2.

Partition algebras allow us to study𝑉⊗𝑘
𝑁

and End𝑆𝑁 (𝑉⊗𝑘𝑁 ) concretely, using Schur-Weyl duality.

Theorem 11 (𝑆𝑁 Schur-Weyl duality). The map

𝜙𝑘 : 𝑃𝑘 (𝑁) −→ End𝑆𝑁 (𝑉⊗𝑘𝑁 ) (3.39)

𝑑𝜋 ↦→ (𝐷 𝜋)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
, (3.40)

is a surjective algebra homomorphism.

Proof. The Kronecker delta representation given in Example 15 exactly reproduces the dia-
gram multiplication described above. However, outside the stable limit 𝑃𝑘 (𝑁) is larger than
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End𝑆𝑁 (𝑉⊗𝑘𝑁 ) and one will find non-trivial linear dependence among the elements in the image
of 𝜙𝑘 . We refer to [45] for a detailed proof of the theorem. □

For most purposes in this thesis, we will consider the stable limit, where the above homomor-
phism becomes an isomorphism. In other words, the map that associates with each diagram a
product of Kronecker deltas for every edge is a realisation of 𝑃𝑘 (𝑁).

Theorem 12. In the stable limit we can write the decomposition (3.31) in terms of 𝑆𝑁 × 𝑃𝑘 (𝑁)
representations

𝑉⊗𝑘𝑁 =
⊕
_∈Λ𝑘,𝑁

𝑉_ ⊗ 𝑍_, (3.41)

where
Λ𝑘,𝑁 = {_ ⊢ 𝑁 | |_# | ≤ 𝑘}, (3.42)

is a labelling set of irreducible representations 𝑍_ of 𝑃𝑘 (𝑁).

Proof. This follows from the isomorphism discussed in the previous theorem, together with the
double centralizer theorem, see [50, Section 2.5]. □

This implies that dim 𝑍_ = 𝑚
_
𝑘,𝑁

.

We take the r.h.s. of (3.41) to have an orthonormal basis

{𝐸_𝑎 ⊗ 𝐸_𝛼 | 𝑎 = 1, . . . , dim𝑉_, 𝛼 = 1, . . . , 𝑚_𝑘,𝑁 , _ ∈ Λ𝑘,𝑁 }. (3.43)

with respect to the inner product

(𝑒𝑖1 ⊗ . . . ⊗ 𝑒𝑖𝑘 , 𝑒𝑖1′ ⊗ . . . ⊗ 𝑒𝑖𝑘′ ) =


1 if 𝑖𝑎 = 𝑖𝑎′ for all 𝑎 = 1, . . . , 𝑘

0 otherwise.
(3.44)

They are related to the l.h.s. by Clebsch-Gordan coefficients

𝐸_𝑎 ⊗ 𝐸_𝛼 = (𝐶_𝑎,𝛼)𝑖1𝑖2...𝑖𝑘𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 , (3.45)

or inversely
𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 = (𝐶𝑎,𝛼

_
)𝑖1...𝑖𝑘𝐸_𝑎 ⊗ 𝐸_𝛼. (3.46)

It will be useful to introduce diagram notation for these equations. We write the Clebsch-Gordan
coefficients in (3.45) as

(𝐶_𝑎,𝛼)𝑖1𝑖2...𝑖𝑘 = 𝐶_

𝑖1 𝑖𝑘

𝑎 𝛼

(3.47)
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As matrix elements of equivariant maps, they have the property

(𝐶_𝑎,𝛼)𝑖1𝑖2...𝑖𝑘𝐷 𝜋 (𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 ) = 𝐸_𝑎 ⊗ 𝐷_𝛽𝛼 (𝑑𝜋)𝐸_𝛽 (3.48)

(𝐶_𝑎,𝛼)𝑖1𝑖2...𝑖𝑘𝑃𝜎 (𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 ) = 𝑃_𝑏𝑎 (𝜎)𝐸
_
𝑏 ⊗ 𝐸

_
𝛽 , (3.49)

where 𝑃_(𝜎), 𝐷_(𝑑𝜋) are irreducible representations of 𝑆𝑁 and 𝑃𝑘 (𝑁) respectively. Diagram-
matically, equivariance takes the form

𝐶_

𝑎 𝛼

𝐷 𝜋

𝑖1 𝑖𝑘

=

𝐶_

𝑖1 𝑖𝑘

𝑎 𝛼

𝑑𝜋

𝑖𝑘

(3.50)

and

𝐶_

𝑎 𝛼

𝑃𝜎

𝑖1 𝑖𝑘

=
𝐶_

𝑖1 𝑖𝑘

𝑎 𝛼

𝜎

(3.51)

Requiring orthonormality

(𝐸_𝑎 ⊗ 𝐸_𝛼, 𝐸_
′

𝑏 ⊗ 𝐸
_′
𝛽 ) = 𝛿𝑎𝑏𝛿𝛼𝛽𝛿__

′
, (3.52)

gives ∑︁
𝑖1...𝑖𝑘

[(𝐶_𝑎,𝛼)𝑖1𝑖2...𝑖𝑘 ]∗(𝐶_
′

𝑏,𝛽)
𝑖1𝑖2...𝑖𝑘 = 𝛿𝑎𝑏𝛿𝛼𝛽𝛿

__′ . (3.53)

In other words,
[(𝐶_𝑎,𝛼)𝑖1𝑖2...𝑖𝑘 ]∗ = (𝐶𝑎,𝛼_

)𝑖1...𝑖𝑘 . (3.54)

However, Clebsch-Gordan coefficients for 𝑆𝑁 can be chosen real [88, Section 7.14]. Therefore

(𝐶_𝑎,𝛼)𝑖1𝑖2...𝑖𝑘 = (𝐶𝑎,𝛼
_
)𝑖1...𝑖𝑘 . (3.55)

Example 18. It may be useful for the reader to consider Schur-Weyl duality in the simple case
of 𝑉⊗1

𝑁
= 𝑉𝑁 . The decomposition, including Clebsch-Gordan coefficients, was given in 4.

From this, we may deduce the irreducible representations of 𝑃1(𝑁). Note that 𝑃1(𝑁) has two
non-isomorphic irreducible representations, both of dimension one, since the decomposition of
𝑉𝑁 is multiplicity free. To find the irreducible representation 𝑍[𝑁 ] , we act on 𝐸 [𝑁 ] with the
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non-identity element in 𝑃1(𝑁):

(𝐸 [𝑁 ]) = 1
√
𝑁

𝑁∑︁
𝑖=1

(𝑒𝑖) =
1
√
𝑁

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑒 𝑗 = 𝑁𝐸

[𝑁 ] . (3.56)

Therefore, the non-identity element of 𝑃1(𝑁) is represented by the number 𝑁 . To find the
irreducible representation 𝑍[𝑁−1,1] , we may use any of the vectors 𝐸 [𝑁−1,1]

𝑎 . For example, we
have

(𝐸 [𝑁−1,1]
1 ) = 1

√
2

(
(𝑒1) − (𝑒2)

)
=

1
√

2

(∑︁
𝑖

𝑒𝑖 −
∑︁
𝑖

𝑒𝑖

)
= 0. (3.57)

Therefore, in this irreducible representation, the non-identity element is represented by 0.

One of the many powerful consequences of Schur-Weyl duality is that it allows us to relate
central elements in the group algebra of 𝑆𝑁 to elements in the center of partition algebras.

Definition 20 (𝑘-dual center). Let 𝑧 ∈ Z[F(𝑆𝑁 )] have expansion

𝑧 =
∑︁
𝜎∈𝑆𝑁

𝑎𝜎𝜎. (3.58)

We define a corresponding element 𝑃𝑧 ∈ End𝑆𝑁 (𝑉⊗𝑘𝑁 ) by

𝑃𝑧 =
∑︁
𝜎∈𝑆𝑁

𝑎𝜎𝑃𝜎 . (3.59)

Since
𝑃𝑧 ∈ End𝑆𝑁 (𝑉⊗𝑘𝑁 ) � 𝑃𝑘 (𝑁) (3.60)

for 𝑁 ≥ 2𝑘 , there exists
𝐷𝑧 =

∑︁
𝜋∈Π[𝑘 |𝑘′ ]

𝑎𝜋𝐷 𝜋 (3.61)

such that

𝑃𝑧 (𝑒𝑖1 ⊗ . . . ⊗ 𝑒𝑖𝑘 ) = 𝐷𝑧 (𝑒𝑖1 ⊗ . . . ⊗ 𝑒𝑖𝑘 ) = (𝐷𝑧)
𝑖1′ ...𝑖𝑘′
𝑖1...𝑖𝑘

𝑒𝑖1′ ⊗ . . . ⊗ 𝑒𝑖𝑘′ . (3.62)

This fixes the coefficients 𝑎𝜋 and we define 𝑑𝑧 ∈ 𝑃𝑘 (𝑁) by

𝑑𝑧 =
∑︁

𝜋∈Π[𝑘 |𝑘′ ]

𝑎𝜋𝑑𝜋 . (3.63)

For fixed 𝑘 , we call the image under the map 𝑧 ↦→ 𝑑𝑧 the 𝑘-dual center Z̃[𝑃𝑘 (𝑁)].
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Example 19. A useful example to consider is the 𝑘 = 1 dual of the sum of transpositions

𝑧 =
∑︁
𝑖< 𝑗

(𝑖 𝑗). (3.64)

To compute 𝐷𝑧 , we will use a trick involving elementary matrices

(𝐸 𝑗
𝑖
)𝑙𝑘 = 𝛿

𝑗𝑙𝛿𝑖𝑘 . (3.65)

Introduce the matrix-valued map 𝐸 : 𝑉𝑁 → End(𝑉𝑁 ) ⊗ 𝑉𝑁 by

𝐸 (𝑒𝑖) = 𝐸 𝑗𝑖 𝑒 𝑗 . (3.66)

Let 𝐷 𝜋 be a diagram basis element for End𝑆𝑁 (𝑉𝑁 ), we have the following property

Tr𝑉𝑁
(𝐸𝐷 𝜋)𝑖𝑗 = [𝐸 𝑘𝑙 (𝐷 𝜋)𝑙𝑘]

𝑖
𝑗 = (𝐸 𝑘𝑙 )

𝑖
𝑗 (𝐷 𝜋)𝑘𝑙 = 𝛿𝑘𝑖𝛿𝑙 𝑗 (𝐷 𝜋)𝑘𝑙 = (𝐷 𝜋)𝑖𝑗 . (3.67)

For example, we have

Tr𝑉𝑁
(𝐸𝐷12) =

∑︁
𝑖

𝐸 𝑖𝑖 = 𝐷12, Tr𝑉𝑁
(𝐸𝐷1 |2) =

∑︁
𝑖, 𝑗

𝐸 𝑖𝑗 = 𝐷1 |2. (3.68)

Now note that the linear operator corresponding to transpositions can be written as elementary
matrices

𝑃(𝑖 𝑗 ) =

(∑︁
𝑘

𝐸 𝑘𝑘

)
+ 𝐸 𝑖𝑗 + 𝐸

𝑗

𝑖
− 𝐸 𝑖𝑖 − 𝐸

𝑗

𝑗
. (3.69)

and 𝑧 can be re-written as an unrestricted sum

𝑧 =
1
2

∑︁
𝑖≠ 𝑗

(𝑖 𝑗). (3.70)

Therefore,

𝑃𝑧 =
1
2

∑︁
𝑖≠ 𝑗

[(∑︁
𝑘

𝐸 𝑘𝑘

)
+ 𝐸 𝑖𝑗 + 𝐸

𝑗

𝑖
− 𝐸 𝑖𝑖 − 𝐸

𝑗

𝑗

]
. (3.71)

We re-write ∑︁
𝑖≠ 𝑗

𝐸 𝑖𝑗 =
∑︁
𝑖, 𝑗

𝐸 𝑖𝑗 −
∑︁
𝑘

𝐸 𝑘𝑘 , and
∑︁
𝑖≠ 𝑗

𝐸 𝑖𝑖 = (𝑁 − 1)
∑︁
𝑘

𝐸 𝑘𝑘 (3.72)

to get

𝑃𝑧 =
𝑁 (𝑁 − 1)

2

∑︁
𝑘

𝐸 𝑘𝑘 +
∑︁
𝑖, 𝑗

𝐸 𝑖𝑗 − 𝑁
∑︁
𝑘

𝐸 𝑘𝑘 (3.73)
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From the previous observation (3.68) about sums of elementary matrices we can identify

𝐷𝑧 = 𝐷1 |1′ +
(
𝑁

2

)
𝐷11′ − 𝑁𝐷11′ , (3.74)

and
𝑑𝑧 = +

(
𝑁

2

)
− 𝑁 . (3.75)

Proposition 6. The 𝑘-dual center is a subalgebra of the full center of the partition algebra:
Z̃[𝑃𝑘 (𝑁)] ⊆ Z[𝑃𝑘 (𝑁)].

Proof. Since 𝑃𝑧𝐷 𝜋 = 𝐷 𝜋𝑃𝑧 for all 𝐷 𝜋 ∈ End𝑆𝑁 (𝑉⊗𝑘𝑁 ) we have 𝐷𝑧𝐷 𝜋 = 𝐷 𝜋𝐷𝑧 and conse-
quently 𝑑𝑧𝑑𝜋 = 𝑑𝜋𝑑𝑧 . □

This will be used to construct Cartan-like elements (known as Jucys-Murphy elements in the
theory of symmetric groups and partition algebras) of the partition algebra, allowing us to
construct important bases for 𝑃𝑘 (𝑁).

3.1.2 𝑆𝑁−1 Schur-Weyl duality. Theorem 5 indicates that the subgroup 𝑆𝑁−1 ⊂ 𝑆𝑁 plays an
important role in the description of𝑉⊗𝑘

𝑁
. In this section we give a version of Schur-Weyl duality

for 𝑉⊗𝑘
𝑁

when the action of 𝑆𝑁 is restricted to 𝑆𝑁−1.

As a representation of 𝑆𝑁−1 we have

𝑉⊗𝑘𝑁 � 𝑉
⊗𝑘
𝑁 ⊗ 𝑒𝑁 , (3.76)

since 𝑆𝑁−1 leaves 𝑒𝑁 invariant (see [51, Section 3]). This clever trick is used to consider

End𝑆𝑁−1 (𝑉⊗𝑘𝑁 ) � End𝑆𝑁−1 (𝑉⊗𝑘𝑁 ⊗ 𝑒𝑁 ). (3.77)

The elements on the r.h.s. are tensors satisfying

𝑇
( 𝑗1 )𝜎 ( 𝑗2 )𝜎...( 𝑗𝑘 )𝜎𝑁
(𝑖1 )𝜎 (𝑖2 )𝜎...(𝑖𝑘 )𝜎𝑁 = 𝑇

𝑗1 𝑗2... 𝑗𝑘𝑁
𝑖1𝑖2...𝑖𝑘𝑁

∀𝜎 ∈ 𝑆𝑁−1. (3.78)

In analogy to before, we consider the 𝑆𝑁−1 orbits of bases elements for End(𝑉⊗𝑘
𝑁
⊗ 𝑒𝑁 ). These

correspond to set partitions 𝜋 ∈ Π[𝑘+1 | (𝑘+1) ′ ] with the constraint that 𝑘 + 1 and (𝑘 + 1)′ always
lie in the same block, as to maintain the form 𝑉⊗𝑘

𝑁
⊗ 𝑒𝑁 . We note that the block containing

𝑘 + 1 and (𝑘 + 1)′ can also contain other numbers.

This indicates that the following special subalgebra of 𝑃𝑘+1(𝑁) is important.
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Definition 21. The partition algebras labelled by half-integers are defined by

𝑃𝑘+ 1
2
(𝑁) = Span(𝑑𝜋 | 𝜋 ∈ Π[𝑘+1 | (𝑘+1) ′ ] where 𝑘 + 1 and (𝑘 + 1)′ are in the same block).

(3.79)

Example 20. For example,

∈ 𝑃0+ 1
2
(𝑁), ∉ 𝑃0+ 1

2
(𝑁), ∈ 𝑃1+ 1

2
(𝑁). (3.80)

The half-integer partition algebras 𝑃𝑘+ 1
2
(𝑁) act on 𝑉⊗𝑘

𝑁
in an a priori unintuitive way, inspired

by the observation in (3.77).

Definition 22. Let 𝑑𝜋 ∈ 𝑃𝑘+ 1
2
(𝑁). Since 𝑑𝜋 is also an element of 𝑃𝑘+1(𝑁), it acts on 𝑉⊗𝑘+1

𝑁
in

the conventional way
𝐷 𝜋 (𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 ⊗ 𝑒𝑖𝑘+1). (3.81)

For the action on 𝑉⊗𝑘
𝑁

we define

(Δ𝜋)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
= (𝐷 𝜋)𝑖1′ ...𝑖𝑘′𝑁𝑖1...𝑖𝑘𝑁

, (3.82)

and Δ𝜋 ∈ End(𝑉⊗𝑘
𝑁
) corresponding 𝑑𝜋 by

Δ𝜋 (𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 ) = (Δ𝜋)
𝑖1′ ...𝑖𝑘′
𝑖1...𝑖𝑘

𝑒𝑖1′ ⊗ · · · ⊗ 𝑒𝑖𝑘′ . (3.83)

This action of 𝑃𝑘+ 1
2
(𝑁) is Schur-Weyl dual to 𝑆𝑁−1 acting on 𝑉⊗𝑘

𝑁
.

Theorem 13. Let 𝑑𝜋 ∈ 𝑃𝑘+ 1
2
(𝑁) and Δ𝜋 the corresponding linear map on 𝑉⊗𝑘

𝑁
in Definition

22. This correspondence is an isomorphism

End𝑆𝑁−1 (𝑉⊗𝑘𝑁 ) � 𝑃𝑘+ 1
2
(𝑁), (3.84)

of algebras for 𝑁 ≥ 2𝑘 + 1.

Proof. See [51, Theorem 3.6] and note that the kernel of the map is empty for 𝑁 ≥ 2𝑘 + 1.
This is the analogue of Theorem 11 but for 𝑆𝑁−1. □

As before, it follows that𝑉⊗𝑘
𝑁

has a multiplicity free decomposition in terms of 𝑆𝑁−1×𝑃𝑘+ 1
2
(𝑁)

representations (see [51, Theorem 3.22])

Corollary 3. As a representation of 𝑆𝑁−1 × 𝑃𝑘+ 1
2
(𝑁)

𝑉⊗𝑘𝑁 �
⊕

_∈Λ
𝑘+ 1

2 ,𝑁

𝑉_ ⊗ 𝑍1/2
_
, (3.85)
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where 𝑍1/2
_

are irreducible representations of 𝑃𝑘+ 1
2
(𝑁).

We take the r.h.s. to have an orthonormal (with respect to (3.44)) basis

{𝐸_𝑎 ⊗ 𝐸_𝛼 | 𝑎 = 1, . . . , dim𝑉_, 𝛼 = 1, . . . , dim 𝑍
1/2
_
, _ ∈ Λ𝑘+ 1

2 ,𝑁
}. (3.86)

Analogously to the 𝑆𝑁 Schur-Weyl duality case, we have a duality between the centerZ[F(𝑆𝑁−1)]
and the center Z[𝑃𝑘+ 1

2
(𝑁)].

Definition 23 ((𝑘 + 1
2 )-dual center). Let 𝑧 ∈ Z[F(𝑆𝑁−1)] and define Δ𝑧 through the equality

𝑃𝑧 (𝑒𝑖1 ⊗ . . . ⊗ 𝑒𝑖𝑘 ) = Δ𝑧 (𝑒𝑖1 ⊗ . . . ⊗ 𝑒𝑖𝑘 ). (3.87)

Suppose it has an expansion
Δ𝑧 =

∑︁
𝜋∈Π[𝑘+1| (𝑘+1) ′ ]

𝑎𝜋Δ𝜋 . (3.88)

The (𝑘 + 1
2 )-dual is the element 𝑑𝑧 defined by

𝑑𝑧 =
∑︁

𝜋∈Π[𝑘+1| (𝑘+1) ′ ]

𝑎𝜋𝑑𝜋 . (3.89)

We denote the image under the map 𝑧 → 𝑑𝑧 by Z̃[𝑃𝑘+ 1
2
(𝑁)].

Example 21. A useful example to consider is the 1 + 1
2 -dual of

𝑧 =
∑︁

1≤𝑙<𝑚≤𝑁−1
(𝑙𝑚). (3.90)

To find the dual, note that∑︁
1≤𝑙<𝑚≤𝑁−1

𝑃(𝑙𝑚) (𝑒𝑖⊗𝑒𝑁 ) =
∑︁

1≤𝑙<𝑚≤𝑁−1
𝑃(𝑙𝑚)𝑒𝑖⊗𝑒𝑁 =

∑︁
1≤𝑙<𝑚≤𝑁−1

𝑃(𝑙𝑚)⊗I(𝑒𝑖⊗𝑒𝑁 ). (3.91)

We re-write ∑︁
1≤𝑙<𝑚≤𝑁

(𝑙𝑚) −
𝑁−1∑︁
𝑙=1
(𝑙𝑁), (3.92)

such that∑︁
1≤𝑙<𝑚≤𝑁−1

𝑃(𝑙𝑚) ⊗ I(𝑒𝑖 ⊗ 𝑒𝑁 ) =
∑︁

1≤𝑙<𝑚≤𝑁
𝑃(𝑙𝑚) ⊗ I(𝑒𝑖 ⊗ 𝑒𝑁 ) −

𝑁−1∑︁
𝑙=1

𝑃(𝑙𝑁 ) ⊗ I(𝑒𝑖 ⊗ 𝑒𝑁 ). (3.93)

The dual of the first term immediately follows from Example 19 as

𝐷1 |1′ |22′ +
(
𝑁

2

)
𝐷11′ |22′ − 𝑁𝐷11′ |22′ , (3.94)



42 CHAPTER 3. PARTITION ALGEBRAS

since I =
∑
𝑘 𝐸

𝑘
𝑘
. It remains to find the dual of the second term. The second term can be

simplified by considering the cases 𝑖 = 𝑁, 𝑖 ≠ 𝑁

𝑁−1∑︁
𝑙=1

𝑃(𝑙𝑁 ) ⊗ I(𝑒𝑖 ⊗ 𝑒𝑁 ) = 𝛿𝑖𝑁
𝑁−1∑︁
𝑙=1

𝑒𝑙 ⊗ 𝑒𝑁 + (1 − 𝛿𝑖𝑁 ) (𝑒𝑁 ⊗ 𝑒𝑁 + (𝑁 − 2)𝑒𝑖 ⊗ 𝑒𝑁 ) (3.95)

= 𝛿𝑖𝑁

𝑁∑︁
𝑙=1

𝑒𝑙 ⊗ 𝑒𝑁 − 𝛿𝑖𝑁 𝑒𝑁 ⊗ 𝑒𝑁 + (1 − 𝛿𝑖𝑁 ) (𝑒𝑁 ⊗ 𝑒𝑁 + (𝑁 − 2)𝑒𝑖 ⊗ 𝑒𝑁 ), (3.96)

in the second equality we added 1 = 𝛿𝑖𝑁 𝑒𝑁 ⊗ 𝑒𝑁 − 𝛿𝑖𝑁 𝑒𝑁 ⊗ 𝑒𝑁 . Expand all the terms gives

𝛿𝑖𝑁

∑︁
𝑙

𝑒𝑙 ⊗ 𝑒𝑁 − 2𝛿𝑖𝑁 𝑒𝑁 ⊗ 𝑒𝑁 + 𝑒𝑁 ⊗ 𝑒𝑁 + (𝑁 − 2)𝑒𝑖 ⊗ 𝑒𝑁 − (𝑁 − 2)𝛿𝑖𝑁 𝑒𝑖 ⊗ 𝑒𝑁 . (3.97)

This corresponds to the action of the following tensor product of elementary matrices∑︁
𝑘,𝑙

𝐸 𝑙𝑘 ⊗𝐸
𝑘
𝑘 −2

∑︁
𝑘

𝐸 𝑘𝑘 ⊗𝐸
𝑘
𝑘 +

∑︁
𝑘,𝑙

𝐸 𝑘𝑙 ⊗𝐸
𝑘
𝑘 + (𝑁−2)

∑︁
𝑘,𝑙

𝐸 𝑘𝑘 ⊗𝐸
𝑙
𝑙 −(𝑁−2)

∑︁
𝑘

𝐸 𝑘𝑘 ⊗𝐸
𝑘
𝑘 (𝑒𝑖 ⊗ 𝑒𝑁 ).

Using the correspondence observed in Example 19 we find that this corresponds to the following
diagram basis elements

𝐷1′ |122′ − 𝑁𝐷11′22′ + 𝐷1 |1′22′ + (𝑁 − 2)𝐷11′ |22′ (𝑒𝑖 ⊗ 𝑒𝑁 ). (3.98)

Together with the terms in (3.94) we have the dual

𝑑𝑧 = +
(
𝑁

2

)
− 2𝑁 + 2 − − + 𝑁 . (3.99)

3.1.3 Inductive chain. The partition algebras 𝑃𝑘 (𝑁), 𝑃𝑘− 1
2
(𝑁) form a chain of subalgebras,

𝑃1(𝑁) ⊂ 𝑃1+ 1
2
(𝑁) ⊂ · · · ⊂ 𝑃𝑘− 1

2
(𝑁) ⊂ 𝑃𝑘 (𝑁), (3.100)

where 𝑃𝑘 (𝑁) is embedded into 𝑃𝑘+ 1
2
(𝑁) by adding a strand to the right of all diagram basis

elements. For example

𝑃1(𝑁) ∋ ↦→ ∈ 𝑃1+ 1
2
(𝑁) and (3.101)

↦→ ∈ 𝑃2(𝑁) and

↦→ ∈ 𝑃2+ 1
2
(𝑁).

(3.102)

We will now investigate the properties of restrictions of irreducible representations along the
chain. We will see that there is a close relationship between the induction/restriction construction
of 𝑉⊗𝑘

𝑁
and restriction of partition algebras.
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Proposition 7. We will prove the following statements.

(a) Let 𝑍_ be an irreducible representation of 𝑃𝑘 (𝑁). For _ ∈ Λ𝑘,𝑁 , the restriction to
𝑃𝑘− 1

2
(𝑁) decomposes into

Res𝑃𝑘 (𝑁 )
𝑃
𝑘− 1

2
(𝑁 ) (𝑍_) �

⊕
_′∈_−

𝑍
1/2
_′ . (3.103)

(b) Let 𝑍1/2
_

be an irreducible representation of 𝑃𝑘+ 1
2
(𝑁). For _ ∈ Λ𝑘+ 1

2 ,𝑁
. The restriction

to 𝑃𝑘 (𝑁) decomposes into

Res
𝑃
𝑘+ 1

2
(𝑁 )

𝑃𝑘 (𝑁 ) (𝑍
1/2
_
) �

⊕
_′∈_+

𝑍_. (3.104)

Proof. To prove (a), recall that Ind𝑆𝑁−1
𝑆𝑁
(Res𝑆𝑁

𝑆𝑁−1
(𝑉⊗𝑘−1
𝑁
)) � 𝑉⊗𝑘 . As a representation of

𝑆𝑁 × 𝑃𝑘 (𝑁) we have
𝑉⊗𝑘 �

⊕
_∈Λ𝑘,𝑁

𝑉_ ⊗ 𝑍_. (3.105)

On the other hand, as a representation of 𝑆𝑁 × 𝑃𝑘− 1
2
(𝑁),

Ind𝑆𝑁−1
𝑆𝑁
(Res𝑆𝑁

𝑆𝑁−1
(𝑉⊗𝑘−1
𝑁 )) �

⊕
_′∈Λ𝑘−1,𝑁

Ind𝑆𝑁
𝑆𝑁−1
(𝑉_′) ⊗ 𝑍1/2

_′ (3.106)

�
⊕

_′∈Λ𝑘−1,𝑁

⊕
_∈_′+

𝑉_ ⊗ 𝑍1/2
_′ . (3.107)

Note that the set of 𝑍1/2
_′ appearing next to 𝑉_ are such that _ ∈ _′ + , or equivalently the

subset of _′ ∈ Λ𝑘−1,𝑁 satisfying _′ ∈ _ − . Restricting 𝑍_ to 𝑃𝑘− 1
2
(𝑁) and comparing the

representations appearing next to 𝑉_ in the two decompositions gives

Res𝑃𝑘 (𝑁 )
𝑃
𝑘− 1

2
(𝑁 ) (𝑍_) �

⊕
_′∈_−

𝑍
1/2
_′ . (3.108)

To prove (b) we use a similar argument. As a representation of 𝑆𝑁 × 𝑃𝑘 (𝑁) we have

𝑉⊗𝑘 �
⊕
_∈Λ𝑘,𝑁

𝑉_ ⊗ 𝑍_, (3.109)

and therefore as a 𝑆𝑁−1 × 𝑃𝑘 (𝑁) representation

𝑉⊗𝑘 �
⊕
_∈Λ𝑘,𝑁

⊕
_′∈_−

𝑉_′ ⊗ 𝑍_. (3.110)
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On the other hand,
𝑉⊗𝑘 �

⊕
_′∈Λ

𝑘+ 1
2 ,𝑁

𝑉_′ ⊗ 𝑍1/2
_′ , (3.111)

as a representation of 𝑆𝑁−1 × 𝑃𝑘+ 1
2
(𝑁). Restricting 𝑍1/2

_′ to 𝑃𝑘 (𝑁) and comparing the two
decompositions gives

Res
𝑃
𝑘+ 1

2
(𝑁 )

𝑃𝑘 (𝑁 ) (𝑍
1/2
_′ ) �

⊕
_∈_′+

𝑍_, (3.112)

where _ ∈ Λ𝑘,𝑁 . □

It will be useful to introduce explicit matrices for these restrictions.

Definition 24. Let the representation 𝑍_ of 𝑃𝑘 (𝑁) have a basis 𝐸_𝛼 and define an inner product
where the basis is orthonormal. We take the r.h.s. of (3.103) to have a basis {𝐸_→_′

𝛽
| _′ ∈

_ − , 𝛽 = 1, . . . , dim 𝑍
1/2
_′ }. The two bases are related by the matrix R_→_

′
𝛼𝛽

𝐸_𝛼 =
∑︁
_′ ,𝛽

R_→_
′

𝛽𝛼 𝐸_→_
′

𝛽 (3.113)

We introduce a diagram for this change of basis matrix

R_→_
′

𝛽𝛼 =
R_→_

′

𝛽

𝛼

_

_′

(3.114)

Demanding that 𝐸_→_′
𝛽

are orthonormal gives

𝐸_→_
′

𝛽 =
∑︁
𝛼

⟨𝐸_→_′𝛽 , 𝐸_𝛼⟩𝐸_𝛼 =
∑︁
𝛼

R_→_
′

𝛽𝛼 𝐸_𝛼, (3.115)

and

⟨𝐸_→_′𝛼 , 𝐸_→_
′′

𝛽 ⟩ =
∑︁
𝛾,𝛾′

R_→_
′

𝛼𝛾 R_→_
′′

𝛽𝛾′ ⟨𝐸_𝛾 , 𝐸_𝛾′⟩ =
∑︁
𝛾,𝛾′

R_→_
′

𝛼𝛾 R_→_
′′

𝛽𝛾′ 𝛿𝛾𝛾′ = 𝛿
_′_′′𝛿𝛼𝛽 (3.116)

Let 𝑑 ∈ 𝑃𝑘− 1
2
(𝑁) and 𝐷_(𝑑), 𝐷_′ (𝑑) be irreducible representations of 𝑃𝑘 (𝑁), 𝑃𝑘− 1

2
(𝑁) re-

spectively. Then the change of basis matrix satisfies R_→_′𝐷_(𝑑) = 𝐷_′ (𝑑)R_→_′ or

R_→_
′

𝛽

𝛼

_

_′

𝑑

=
R_→_

′

𝛽

𝛼

_

_′

𝑑

(3.117)
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We use the same notation (R_→_′) for restriction matrices 𝑃𝑘+ 1
2
(𝑁) → 𝑃𝑘 (𝑁) and _ ∈

Λ𝑘+ 1
2 ,𝑁

, _′ ∈ Λ𝑘,𝑁 .

Let 𝐸_𝛼 a basis for 𝑍_ and repeat the restriction to find

𝐸_
(𝑘)
𝛼 =

∑︁
_
(𝑘− 1

2 ) ,𝛽

R_
(𝑘)→_(𝑘−

1
2 )

𝛽𝛼 𝐸_
(𝑘)→_(𝑘−

1
2 )

𝛽 (3.118)

=
∑︁

_
(𝑘− 1

2 ) ,𝛽

R_
(𝑘)→_(𝑘−

1
2 )

𝛽𝛼

∑︁
_(𝑘−1) ,𝛾

R_
(𝑘− 1

2 )→_(𝑘−1)
𝛾𝛽 𝐸_

(𝑘− 1
2 )→_(𝑘−1)

𝛾 . (3.119)

Let 𝔳 = (_ (0) = [𝑁], _ ( 1
2 ) = [𝑁 − 1], _ (1) , _ ( 3

2 ) , . . . , _ (𝑘 ) ) be a vacillating tableaux with shape
_ = _ (𝑘 ) and length 𝑘 (see Definition 12). Define

𝐸𝔳
𝛼 = (R_

(1+ 1
2 )→_(1)R_

(2)→_(1+
1
2 )
. . .R_

(𝑘− 1
2 )→_(𝑘−1)

R_
(𝑘)→_(𝑘−

1
2 ) )1𝛼𝐸_

(1+ 1
2 )→_(1)

1 , (3.120)

where we have used the fact that all irreducible 𝑃1(𝑁) representations are one-dimensional
to fix the index on 𝐸_(1)

𝛽
= 𝐸_

(1+ 1
2 )→_(1)

1 . With this definition, we can write the basis in the
following suggestive form

𝐸_
(𝑘)
𝛼 =

∑︁
𝔳

𝐸𝔳
𝛼, (3.121)

where the sum is over all vacillating tableaux of shape _ (𝑘 ) and length 𝑘 .

We give a diagrammatic definition of this chain of restriction matrices

R𝔳

𝛼

_(𝑘)

_(1)

=

R_
(𝑘)→_(𝑘−

1
2 )

𝛼

R_
(1+ 1

2 )→_(1)

(3.122)

This will be useful for constructing matrix units, which is the topic of the following sections.

3.2 Semi-simplicity of 𝑃𝑘 (𝑁) and matrix units

The partition algebras are known to be semi-simple for 𝑁 ≥ 2𝑘 . This means that they can
be understood as algebras of block matrices. In this section we will review the theoretical
background necessary to go from the diagram basis to the basis that makes this correspondence
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manifest. This is used in the next section where we give an explicit algorithm for constructing
the change of basis matrix as a function of 𝑁 for all 𝑁 ≥ 2𝑘 .

Let B = {𝑏1, . . . , 𝑏𝐵(2𝑘 ) } be a basis for 𝑃𝑘 (𝑁) with structure constants

𝑏𝑖𝑏 𝑗 =

𝐵(2𝑘 )∑︁
𝑘=1

𝐶𝑘𝑖 𝑗𝑏𝑘 . (3.123)

The regular representation of 𝑃𝑘 (𝑁) is defined by the action of 𝑃𝑘 (𝑁) on itself.

Definition 25 (Regular representation). Let 𝑉 reg be the vector space

𝑉 reg = Span(®𝑏𝑖), (3.124)

where we emphasise that ®𝑏𝑖 are vectors in 𝑉 reg in contrast to elements of the algebra 𝑃𝑘 (𝑁).
The partition algebra acts on 𝑉 reg by left multiplication

𝑏𝑖 ®𝑏 𝑗 = 𝐶𝑘𝑖 𝑗 ®𝑏𝑘 . (3.125)

and right multiplication
®𝑏 𝑗𝑏𝑖 = 𝐶𝑘𝑗𝑖 ®𝑏𝑘 . (3.126)

The trace of the left action on the regular representation can be written as

tr(𝑏𝑖) =
𝐵(2𝑘 )∑︁
𝑗=1

𝐶
𝑗

𝑖 𝑗
=

𝐵(2𝑘 )∑︁
𝑗=1

Coeff (𝑏 𝑗 , 𝑏𝑖𝑏 𝑗), (3.127)

where Coeff (𝑏 𝑗 , 𝑑) is the coefficient of 𝑏 𝑗 in the expansion of 𝑑 ∈ 𝑃𝑘 (𝑁) in the basis B.

We will use the following closely related theorems.

Theorem 14. For 𝑁 ≥ 2𝑘 , 𝑃𝑘 (𝑁) is semi-simple and therefore

𝐺𝑖 𝑗 ≡ tr
(
𝑏𝑖𝑏 𝑗

)
(3.128)

is an invertible matrix. We say that the trace in the regular representation defines a non-
degenerate bilinear form on 𝑃𝑘 (𝑁)

Proof. See [51, Theorem 3.27] and [51, Equation 5.9]. □

It will be useful to have the following equivalent definition of non-degeneracy in what follows.

Definition 26. A bilinear form on 𝑃𝑘 (𝑁) is non-degenerate if there exists no non-zero element
𝑑 ∈ 𝑃𝑘 (𝑁) such that

tr(𝑏𝑖𝑑) = 0 ∀𝑖 = 1, . . . , 𝐵(2𝑘). (3.129)
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3.2.1 Schur-Weyl duality and non-degenerate bilinear forms. Semi-simplicity of 𝑃𝑘 (𝑁)
also implies that the regular representation of 𝑃𝑘 (𝑁) is completely decomposable. In particular,
because the left and right action of 𝑃𝑘 (𝑁) commutes we have the following result.

Theorem 15. Let 𝑉 reg be the regular representation of 𝑃𝑘 (𝑁), then

𝑉 reg =
⊕
_∈Λ𝑘,𝑁

𝑍_ ⊗ 𝑍_. (3.130)

as a representation of the left and right action of 𝑃𝑘 (𝑁).

Proof. See statements in proof of [51, Proposition 5.7]. □

As a consequence of (3.130) we have

Corollary 4. The trace of 𝑑 ∈ 𝑃𝑘 (𝑁) in the regular representation can be decomposed as

tr(𝑑) =
∑︁

_∈Λ𝑘,𝑁

Tr
(
𝐷_(𝑑)

)
Tr

(
𝐷_(1)

)
=

∑︁
_∈Λ𝑘,𝑁

𝜒_(𝑑)𝑚_𝑘,𝑁 , (3.131)

where the sum is over all irreducible representations of 𝑃𝑘 (𝑁), 𝑚_𝑘,𝑁 is the dimension of the
representation 𝑍_ and 𝜒_ is the corresponding character.

Corollary 5. The characters can be extracted from the trace by means of projection operators
𝑝_ ∈ 𝑃𝑘 (𝑁),

tr(𝑝_𝑑) = 𝑚_𝑘,𝑁 𝜒
_(𝑑). (3.132)

Proof. This can be seen as a consequence of character orthogonality (see [92, Theorem 3.8,
Theorem 3.9])

𝐵(2𝑘 )∑︁
𝑖, 𝑗=1

𝑚_𝑘,𝑁 𝜒
_(𝑏𝑖) (𝐺−1)𝑖 𝑗 𝜒_

′ (𝑏 𝑗) = 𝛿__
′
, (3.133)

and the fact that projectors can be written as

𝑝_ =

𝐵(2𝑘 )∑︁
𝑖, 𝑗=1

𝑚_𝑘,𝑁 𝜒
_(𝑏𝑖) (𝐺−1)𝑖 𝑗𝑏 𝑗 , (3.134)

where (𝐺−1)𝑖 𝑗 is the inverse of the matrix 𝐺𝑖 𝑗 in (3.128). Alternatively, it follows from the
decomposition (3.130). □

We now move on to the trace in 𝑉⊗𝑘
𝑁

and show that it defines a non-degenerate bilinear form.
First we need the following proposition that relates the two traces.
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Proposition 8. Let 𝑑 ∈ 𝑃𝑘 (𝑁) and 𝐷 ∈ End𝑆𝑁 (𝑉⊗𝑘𝑁 ) be the corresponding linear map. Define

Ω =
∑︁

_∈Λ𝑘,𝑁

dim𝑉_

𝑚_
𝑘,𝑁

𝑝_. (3.135)

then,
Tr𝑉⊗𝑘

𝑁
(𝑑) = tr(Ω𝑑). (3.136)

Proof. Assume 𝑁 ≥ 2𝑘 , then Schur-Weyl duality (3.41) implies that the trace in 𝑉⊗𝑘
𝑁

decom-
poses as

Tr𝑉⊗𝑘
𝑁
(𝐷) =

∑︁
_∈Λ𝑘,𝑁

dim𝑉_𝜒
_(𝑑), (3.137)

where the sum is over the irreducible representations that appear in equation (3.41). Conse-
quently, we can relate the two traces by substituting (3.132) into each summand of (3.137)

Tr𝑉⊗𝑘
𝑁
(𝐷) =

∑︁
_∈Λ𝑘,𝑁

dim𝑉_𝜒
_(𝑑) =

∑︁
_∈Λ𝑘,𝑁

dim𝑉_

𝑚_
𝑘,𝑁

tr(𝑝_𝑑) = tr(Ω𝑑). (3.138)

□

We can now prove non-degeneracy.

Proposition 9. Let 𝑑, 𝑑′ ∈ 𝑃𝑘 (𝑁) and 𝐷, 𝐷′ ∈ End𝑆𝑁 (𝑉⊗𝑘𝑁 ) be the corresponding linear maps.
Define the bilinear form ⟨−,−⟩

⟨𝑑, 𝑑′⟩ = Tr𝑉⊗𝑘
𝑁
(𝐷 (𝐷′)𝑇 ) (3.139)

on 𝑃𝑘 (𝑁). It is non-degenerate for 𝑁 ≥ 2𝑘 .

Proof. We give a proof by contradiction. Let B = {𝑏1, . . . , 𝑏𝐵(2𝑘 ) } be a basis for 𝑃𝑘 (𝑁) and
𝐵𝑖 , 𝐷 ∈ End𝑆𝑁 (𝑉⊗𝑘𝑁 ) the corresponding linear maps. Assume 𝑑 ∈ 𝑃𝑘 (𝑁) is a non-zero element
(with corresponding linear map 𝐷) satisfying

⟨𝑏𝑖 , 𝑑⟩ = 0, ∀𝑖 = 1, . . . , 𝐵(2𝑘). (3.140)

From (3.136) this implies

⟨𝑏𝑖 , 𝑑⟩ = Tr𝑉⊗𝑘
𝑁
(𝐵𝑖𝐷𝑇 ) = tr

(
Ω𝑏𝑖𝑑

𝑇
)
= 0, ∀𝑖 = 1, . . . , 𝐵(2𝑘). (3.141)

Consequently, the element 𝑑′ = 𝑑𝑇Ω ∈ 𝑃𝑘 (𝑁) is such that

tr(𝑏𝑖𝑑′) = 0, ∀𝑖 = 1, . . . , 𝐵(2𝑘), (3.142)
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which contradicts the fact that the trace in the regular representation of 𝑃𝑘 (𝑁) defines a non-
degenerate bilinear form. □

The point of having a non-degenerate bilinear form is to define dual elements.

Proposition 10. Let B = {𝑏1, . . . , 𝑏𝐵(2𝑘 ) } be a basis for 𝑃𝑘 (𝑁) and 𝐵𝑖 the corresponding
linear maps. Define

𝑔𝑖 𝑗 = Tr𝑉⊗𝑘
𝑁
(𝐵𝑖𝐵 𝑗) (3.143)

and

𝑏∗𝑖 =
𝐵(2𝑘 )∑︁
𝑗=1
(𝑔−1)𝑖 𝑗𝑏 𝑗 (3.144)

The dual basis with respect to the inner product (3.139) is given by

𝑏
†
𝑖
=

𝐵(2𝑘 )∑︁
𝑗=1
(𝑔−1) 𝑗𝑖𝑏𝑇𝑗 = (𝑏∗𝑖 )𝑇 . (3.145)

Proof. Plugging the definition of the dual into (3.139) gives

⟨𝑏𝑖 , 𝑏†𝑗⟩ =
𝐵(2𝑘 )∑︁
𝑘=1

Tr𝑉⊗𝑘
𝑁
(𝐵𝑖 (𝑔−1) 𝑗𝑘 (𝐵𝑇𝑘 )

𝑇 ) =
𝐵(2𝑘 )∑︁
𝑘=1

Tr𝑉⊗𝑘
𝑁
(𝐵𝑖 (𝑔−1) 𝑗𝑘𝐵𝑘) = 𝛿𝑖 𝑗 . (3.146)

□

The dual elements are essential for proving orthogonality of matrix elements. The proof also
uses the following property of the bilinear form

⟨𝑏𝑖 , 𝑏 𝑗𝑏𝑘⟩ = ⟨𝑏𝑖𝑏𝑇𝑘 , 𝑏 𝑗⟩ = ⟨𝑏
𝑇
𝑗 𝑏𝑖 , 𝑏𝑘⟩. (3.147)

The first step uses (𝑏 𝑗𝑏𝑘)𝑇 = 𝑏𝑇
𝑘
𝑏𝑇
𝑗

and the second step uses cyclicity of the trace.

3.2.2 Orthogonality of matrix elements. The matrix elements 𝐷_1
𝛼𝛽
(𝑏𝑖) of irreducible repre-

sentations of 𝑃𝑘 (𝑁) are orthogonal. This is a generalization of the corresponding orthogonality
theorem for group algebras (see section 3.15 in [88]). Before proving this, we need some
intermediary results.

Proposition 11. Let 𝑑 ∈ 𝑃𝑘 (𝑁) and 𝐷 ∈ End𝑆𝑁 (𝑉⊗𝑘𝑁 ) the corresponding linear map. For
𝑁 ≥ 2𝑘 the irreducible representations of 𝑃𝑘 (𝑁) can be written as

𝐷_𝛼𝛽 (𝑑) =
∑︁
𝑖1,...,𝑖𝑘
𝑖1′ ,...,𝑖𝑘′

(𝐶_𝑎,𝛽)𝑖1...𝑖𝑘𝐷
𝑖1′ ...𝑖𝑘′
𝑖1...𝑖𝑘

(𝐶_𝑎,𝛼)𝑖1′ ...𝑖𝑘′ . (3.148)
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Proof. From (3.48) we have

(𝐶_𝑎,𝛼)𝑖1𝑖2...𝑖𝑘𝐷 (𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 ) = 𝐸_𝑎 ⊗ 𝐷_𝛽𝛼 (𝑑)𝐸_𝛽 . (3.149)

The l.h.s. can be expanded as

(𝐶_𝑎,𝛼)𝑖1𝑖2...𝑖𝑘𝐷
𝑖1′ ...𝑖𝑘′
𝑖1...𝑖𝑘

(𝐶𝑏𝛽
_′ )𝑖1′ ...𝑖𝑘′𝐸

_′

𝑏 ⊗ 𝐸
_′
𝛽

= (𝐶_𝑎,𝛼)𝑖1𝑖2...𝑖𝑘𝐷
𝑖1′ ...𝑖𝑘′
𝑖1...𝑖𝑘

(𝐶_′𝑏𝛽)
𝑖1′ ...𝑖𝑘′𝐸_

′

𝑏 ⊗ 𝐸
_′
𝛽 ,

(3.150)

where the equality follows from (3.55). The r.h.s. can be re-written as

𝛿𝑎𝑏𝛿
__′𝐸_

′

𝑏 ⊗ 𝐷
_′
𝛽𝛼 (𝑑)𝐸_

′
𝛽 . (3.151)

Equating the coefficients on the l.h.s. and r.h.s. gives

(𝐶_𝑎,𝛼)𝑖1𝑖2...𝑖𝑘𝐷
𝑖1′ ...𝑖𝑘′
𝑖1...𝑖𝑘

(𝐶_′𝑏𝛽)
𝑖1′ ...𝑖𝑘′ = 𝛿𝑎𝑏𝛿

__′𝐷_
′
𝛽𝛼 (𝑑), (3.152)

which reduces to (3.148) for 𝑎 = 𝑏, _ = _′ and swapping 𝛼↔ 𝛽. □

A consequence of this relationship between irreducible representations of 𝑃𝑘 (𝑁) and Clebsch-
Gordan coefficients is the following.

Corollary 6. The irreducible representations of 𝑃𝑘 (𝑁) as defined above satisfy

𝐷_𝛼𝛽 (𝑑𝑇 ) = 𝐷_𝛽𝛼 (𝑑), for 𝑑 ∈ 𝑃𝑘 (𝑁), (3.153)

where the transpose 𝑑𝑇 is defined in Definition 17.

Proof. This follows from

𝐷_𝛼𝛽 (𝑑𝑇 ) = 𝐶
_,𝛼
𝑎,𝑖1′ ...𝑖𝑘′

𝐶
_,𝛽

𝑎,𝑖1...𝑖𝑘
(𝑑𝑇 )𝑖1′ ...𝑖𝑘′

𝑖1...𝑖𝑘
(3.154)

= 𝐶
_,𝛼
𝑎,𝑖1′ ...𝑖𝑘′

𝐶
_,𝛽

𝑎,𝑖1...𝑖𝑘
(𝑑)𝑖1...𝑖𝑘

𝑖1′ ...𝑖𝑘′
= 𝐷_𝛽𝛼 (𝑑). (3.155)

□

Because the bilinear form (3.139) includes a transpose, the symmetrisation theorem (proposition
2.6 in [92]) is modified slightly. We have the following version.

Proposition 12. Let 𝐶 be a 𝑚_
𝑘,𝑁
× 𝑚_′

𝑘,𝑁
rectangular matrix, and 𝐷_(𝑑), 𝐷_′ (𝑑) be two

irreducible matrix representations of 𝑃𝑘 (𝑁) with dimension 𝑚_
𝑘,𝑁

, 𝑚_
′

𝑘,𝑁
respectively. Define
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the symmetrised matrix

[𝐶] =
𝐵(2𝑘 )∑︁
𝑖=1

𝐷_(𝑏𝑖)𝐶 [𝐷_
′ (𝑏†

𝑖
)]𝑇 =

𝐵(2𝑘 )∑︁
𝑖=1

𝐷_(𝑏𝑖)𝐶𝐷_
′ (𝑏∗𝑖 ). (3.156)

It satisfies
𝐷_(𝑑) [𝐶] = [𝐶]𝐷_′ (𝑑), (3.157)

for all 𝑑 ∈ 𝑃𝑘 (𝑁).

Proof. The proof follows from a straight-forward computation

𝐷_(𝑑) [𝐶] =
∑︁
𝑖

𝐷_(𝑑𝑏𝑖)𝐶𝐷_
′ (𝑏∗𝑖 ) =

∑︁
𝑖

𝐷_(
∑︁
𝑗

⟨𝑏†
𝑗
, 𝑑𝑏𝑖⟩𝑏 𝑗)𝐶𝐷_

′ (𝑏∗𝑖 )

=
∑︁
𝑗

𝐷_(𝑏 𝑗)𝐶𝐷_
′ (
∑︁
𝑖

𝑏∗𝑖 ⟨𝑏
†
𝑗
, 𝑑𝑏𝑖⟩)

=
∑︁
𝑗

𝐷_(𝑏 𝑗)𝐶𝐷_
′ (
∑︁
𝑖

𝑏∗𝑖 ⟨𝑑𝑇𝑏
†
𝑗
, 𝑏𝑖⟩)

=
∑︁
𝑗

𝐷_(𝑏 𝑗)𝐶𝐷_
′ (
∑︁
𝑖

𝑏𝑇𝑖 ⟨𝑑𝑇𝑏
†
𝑗
, 𝑏
†
𝑖
⟩)

=
∑︁
𝑗

𝐷_(𝑏 𝑗)𝐶𝐷_
′ ((𝑑𝑇𝑏†

𝑗
)𝑇 )

= [𝐶]𝐷_′ (𝑑),

(3.158)

where in the second equality we expand 𝑑𝑏𝑖 in terms of 𝑏 𝑗 using the inner product, the third
line uses the modified Frobenius associativity (3.147), the fourth line uses (𝑏∗

𝑖
)† = 𝑏𝑇

𝑖
. □

By Schur’s lemma, [𝐶] is proportional to the identity matrix if and only if _ = _′ and zero
otherwise. For some constant 𝑐_1 ,

[𝐶]𝛼𝜎 = 𝛿_1_
′
1𝑐_1𝛿𝛼𝜎 . (3.159)

This observation is key to proving orthogonality of matrix elements of irreducible representa-
tions of 𝑃𝑘 (𝑁).

Proposition 13. Let 𝐷_
𝛼𝛽
(𝑏𝑖) be irreducible representations of 𝑃𝑘 (𝑁) in the basis B =

{𝑏1, . . . , 𝑏𝐵(2𝑘 ) } and 𝑏† the dual element defined in Definition 10. Then

𝐵(2𝑘 )∑︁
𝑖=1

𝐷_𝛼𝛽 (𝑏𝑖)𝐷_
′
𝜌𝜎 (𝑏†𝑖 ) =

1
dim𝑉_

𝛿𝛼𝜌𝛿𝛽𝜎𝛿
__′ . (3.160)
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Proof. The l.h.s. of (3.160) reads∑︁
𝑖

(
𝐷_(𝑏𝑖)𝐸𝛽𝜌𝐷_

′ (𝑏†
𝑖
)
)
𝛼𝜎

=
∑︁
𝑖

(
𝐷_(𝑏𝑖)𝐸𝛽𝜎 [𝐷_

′ (𝑏†
𝑖
)]𝑇

)
𝛼𝜌

= [𝐸𝛽𝜎]𝛼𝜌, (3.161)

where 𝐸𝛽𝜌 is an elementary matrix with 0 everywhere except in row 𝛽, column 𝜌 which has a
1. Schur’s lemma gives

[𝐸𝛽𝜎]𝛼𝜌 = 𝐶_𝛽𝜎𝛿𝛼𝜌𝛿__
′
. (3.162)

It remains to determine the constant 𝐶_
𝛽𝜎

.

For this, set _ = _′ and note that∑𝑚_
𝑘,𝑁

𝛼=1 [𝐸𝛽𝜎]𝛼𝛼 =
∑𝐵(2𝑘 )
𝑖=1

∑𝑚_
𝑘,𝑁

𝛼=1 𝐷_
𝛼𝛽
(𝑏𝑖)𝐷_𝛼𝜎 (𝑏†𝑖 ) =

∑
𝑖 Tr

(
𝐷_(𝑏𝑖)𝐸𝛽𝜎 [𝐷_(𝑏†𝑖 )]𝑇

)

= =∑𝑚_
𝑘,𝑁

𝛼=1 𝐶_
𝛽𝜎
𝛿𝛼𝛼 = 𝐶_

𝛽𝜎
𝑚_
𝑘,𝑁

=
∑
𝑖 Tr

(
𝐷_((𝑏†

𝑖
)𝑇𝑏𝑖)𝐸𝛽𝜎

)
.

(3.163)
As we now show, the matrix 𝐷_(∑𝑖 (𝑏†𝑖 )𝑇𝑏𝑖) is proportional to the identity matrix.

In particular, the element
∑
𝑖 (𝑏†𝑖 )𝑇𝑏𝑖 is related to the Ω factor in (3.138). Since

(𝑏†
𝑖
)𝑇 = 𝑏∗𝑖 =

∑︁
𝑘

(𝑔−1)𝑘𝑖𝑏𝑘 (3.164)

we have ∑︁
𝑖

(𝑏†
𝑖
)𝑇𝑏𝑖 =

∑︁
𝑖,𝑘

(𝑔−1)𝑘𝑖𝑏𝑘𝑏𝑖 =
∑︁
𝑖

𝑏𝑖 (𝑏†𝑖 )
𝑇 , (3.165)

where the last step follows by (𝑔−1)𝑘𝑖 being symmetric. Define

Ω−1 =
∑︁

_∈Λ𝑘,𝑁

𝑚_
𝑘,𝑁

dim𝑉_
𝑝_, (3.166)

and consider

tr

(
𝑑
∑︁
𝑖

(𝑏†
𝑖
)𝑇𝑏𝑖

)
= tr

(
𝑑
∑︁
𝑖

𝑏𝑖 (𝑏†𝑖 )
𝑇

)
= Tr𝑉⊗𝑘

𝑁
(Ω−1𝑑

∑︁
𝑖

𝑏𝑖 (𝑏†𝑖 )
𝑇 )

=
∑︁
𝑖

⟨Ω−1𝑑𝑏𝑖 , 𝑏
†
𝑖
⟩

=
∑︁
𝑖

Coeff (𝑏𝑖 ,Ω−1𝑑𝑏𝑖)

= tr
(
Ω−1𝑑

)
.

(3.167)
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This implies that

tr

(
𝑑 (

∑︁
𝑖

(𝑏†
𝑖
)𝑇𝑏𝑖 −Ω−1)

)
= 0, (3.168)

for all 𝑑 ∈ 𝑃𝑘 (𝑁) and by the non-degeneracy of the trace in the regular representation∑︁
𝑖

(𝑏†
𝑖
)𝑇𝑏𝑖 = Ω−1. (3.169)

Thus, substituting this into (3.163) we find

𝐶_𝛽𝜎𝑚
_
𝑘,𝑁 = Tr

(
𝐷_(Ω−1)𝐸𝛽𝜎

)
=

∑︁
_′∈Λ𝑘,𝑁

𝑚_
′

𝑘,𝑁

dim𝑉_′
Tr

(
𝐷_(𝑝_′)𝐸𝛽𝜎

)
=
𝑚_
𝑘,𝑁

dim𝑉_
𝛿𝛽𝜎 ,

(3.170)

where the last step uses
𝐷_(𝑝_′) = 𝛿__

′
, Tr

(
𝐸𝛽𝜎

)
= 𝛿𝛽𝜎 . (3.171)

Therefore,
𝐶_𝛽𝜎 =

1
dim𝑉_

𝛿𝛽𝜎 . (3.172)

□

3.2.3 Matrix units for 𝑃𝑘 (𝑁). We will use the orthogonality in Proposition 13 to prove that
the following linear combinations of elements form a basis of matrix units.

Proposition 14. Let B = {𝑏1, . . . , 𝑏𝐵(2𝑘 ) } be a basis for 𝑃𝑘 (𝑁), 𝑏†𝑖 the corresponding duals
with respect to the inner product (3.139), 𝑏𝑇

𝑖
the transpose element defined in Definition 17

and _ ∈ Λ𝑘,𝑁 be a labelling set of non-isomorphic irreducible representations of 𝑃𝑘 (𝑁). Then
elements

𝑄_𝛼𝛽 =

𝐵(2𝑘 )∑︁
𝑖=1

dim𝑉_𝐷
_
𝛼𝛽 (𝑏

†
𝑖
)𝑏𝑖 , (3.173)

form a basis for 𝑃𝑘 (𝑁) with structure constants given by

𝑄_𝛼𝛽𝑄
_′
𝛼′𝛽′ = 𝛿

__′𝛿𝛽𝛼′𝑄
_
𝛼𝛽′ . (3.174)
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Proof. Plugging in the definition (3.173) we have

𝑄_𝛼𝛽𝑄
_′
𝛼′𝛽′ =

𝐵(2𝑘 )∑︁
𝑖, 𝑗=1

dim𝑉_ dim𝑉_′𝐷
_
𝛼𝛽 (𝑏

†
𝑖
)𝐷_′𝛼′𝛽′ (𝑏

†
𝑗
) 𝑏𝑖𝑏 𝑗︸︷︷︸∑

𝑘 ⟨𝑏𝑖𝑏 𝑗 ,𝑏
†
𝑘
⟩𝑏𝑘

(3.175)

=

𝐵(2𝑘 )∑︁
𝑖, 𝑗 ,𝑘=1

dim𝑉_ dim𝑉_′𝐷
_
𝛼𝛽 (𝑏

†
𝑖
)𝐷_′𝛼′𝛽′ (𝑏

†
𝑗
) ⟨𝑏𝑖𝑏 𝑗 , 𝑏†𝑘⟩︸      ︷︷      ︸
⟨𝑏 𝑗 ,𝑏

𝑇
𝑖
𝑏
†
𝑘
⟩

𝑏𝑘 (3.176)

=

𝐵(2𝑘 )∑︁
𝑖, 𝑗 ,𝑘=1

dim𝑉_ dim𝑉_′𝐷
_
𝛼𝛽 (𝑏

†
𝑖
)𝐷_′𝛼′𝛽′ (𝑏

†
𝑗
⟨𝑏 𝑗 , 𝑏𝑇𝑖 𝑏

†
𝑘
⟩)𝑏𝑘 (3.177)

=

𝐵(2𝑘 )∑︁
𝑖,𝑘=1

dim𝑉_ dim𝑉_′𝐷
_
𝛼𝛽 (𝑏

†
𝑖
)𝐷_′𝛼′𝛽′ (𝑏𝑇𝑖 𝑏

†
𝑘
)𝑏𝑘 (3.178)

=

𝐵(2𝑘 )∑︁
𝑖,𝑘=1

dim𝑉_ dim𝑉_′𝐷
_
𝛼𝛽 (𝑏

†
𝑖
)
𝑚_′

𝑘,𝑁∑︁
𝜌=1

𝐷_
′
𝛼′𝜌 (𝑏𝑇𝑖 )𝐷_

′
𝜌𝛽′ (𝑏

†
𝑘
)𝑏𝑘 , (3.179)

where (3.176) uses (3.147). The last line is simplified by using (3.153) and orthogonality
(3.160),

𝐵(2𝑘 )∑︁
𝑖=1

𝐷_𝛼𝛽 (𝑏
†
𝑖
)𝐷_′𝛼′𝜌 (𝑏𝑇𝑖 ) =

𝐵(2𝑘 )∑︁
𝑖=1

𝐷_
′
𝜌𝛼′ (𝑏𝑖)𝐷_𝛼𝛽 (𝑏

†
𝑖
) = 1

dim𝑉_
𝛿_
′_𝛿𝜌𝛼𝛿𝛼′𝛽 . (3.180)

Plugging this into (3.179) gives

𝑄_𝛼𝛽𝑄
_′
𝛼′𝛽′ =

𝐵(2𝑘 )∑︁
𝑘=1

𝑚_′
𝑘,𝑁∑︁
𝜌=1

𝛿_
′_𝛿𝜌𝛼𝛿𝛼′𝛽 dim𝑉_′𝐷

_′
𝜌𝛽′ (𝑏

†
𝑘
)𝑏𝑘 = 𝛿_

′_𝛿𝛼′𝛽𝑄
_
𝛼𝛽′ . (3.181)

□

Corollary 7. Equipped with a matrix unit basis of 𝑃𝑘 (𝑁) we use this to show

𝑑𝑄_𝛼𝛽 =

𝑚_
𝑘,𝑁∑︁
𝜎=1

𝐷_𝜎𝛼 (𝑑)𝑄_𝜎𝛽 , 𝑄_𝛼𝛽𝑑 =

𝑚_
𝑘,𝑁∑︁
𝜎=1

𝐷_𝛽𝜎 (𝑑)𝑄_𝛼𝜎 . (3.182)
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Proof. Using the definition we have

𝑑𝑄_𝛼𝛽 =

𝐵(2𝑘 )∑︁
𝑖=1

dim𝑉_𝐷
_
𝛼𝛽 (𝑏

†
𝑖
)𝑑𝑏𝑖 (3.183)

=

𝐵(2𝑘 )∑︁
𝑖, 𝑗=1

dim𝑉_𝐷
_
𝛼𝛽 (𝑏

†
𝑖
)⟨𝑑𝑏𝑖 , 𝑏†𝑗⟩𝑏 𝑗 (3.184)

=

𝐵(2𝑘 )∑︁
𝑖, 𝑗=1

dim𝑉_𝐷
_
𝛼𝛽 (𝑏

†
𝑖
)⟨𝑏𝑖 , 𝑑𝑇𝑏†𝑗⟩𝑏 𝑗 (3.185)

=

𝐵(2𝑘 )∑︁
𝑖, 𝑗=1

dim𝑉_𝐷
_
𝛼𝛽 (𝑏

†
𝑖
⟨𝑏𝑖 , 𝑑𝑇𝑏†𝑗⟩)𝑏 𝑗 (3.186)

=

𝐵(2𝑘 )∑︁
𝑗=1

dim𝑉_𝐷
_
𝛼𝛽 (𝑑𝑇𝑏

†
𝑗
)𝑏 𝑗 (3.187)

=

𝑚_
𝑘,𝑁∑︁
𝜎=1

𝐵(2𝑘 )∑︁
𝑗=1

dim𝑉_𝐷
_
𝛼𝜎 (𝑑𝑇 )𝐷_𝜎𝛽 (𝑏

†
𝑗
)𝑏 𝑗 (3.188)

=

𝑚_
𝑘,𝑁∑︁
𝜎=1

𝐷_𝜎𝛼 (𝑑)𝑄_𝜎𝛽 , (3.189)

where in the last line we used (3.153). The proof is identical for the right action. □

In summary, we have found an Artin-Wedderburn decomposition

𝑃𝑘 (𝑁) �
⊕
_∈Λ𝑘,𝑁

End(𝑍_, 𝑍_) �
⊕
_∈Λ𝑘,𝑁

𝑍_ ⊗ 𝑍_, (3.190)

where End(𝑍_, 𝑍_) is the algebra of 𝑚_
𝑘,𝑁
× 𝑚_

𝑘,𝑁
matrices.

3.3 Construction of matrix units

In this subsection we will give a construction of matrix units of 𝑃𝑘 (𝑁) starting from the diagram
basis. The construction uses the notion of 𝑘-duals and (𝑘 + 1

2 )-dual (Definition 20, 23) to find
a complete set of commuting elements in 𝑃𝑘 (𝑁), whose eigenvectors are the matrix units. We
show that the simultaneous eigenspaces of these elements are one-dimensional and produce
projection operators for each eigenspace.

3.3.1 Eigenvalues of duals of central elements. For 𝑛 = 𝑁 or 𝑁 − 1, let 𝑧 ∈ Z[F(𝑆𝑛)] be a
central element and 𝑃_ an irreducible representation of 𝑆𝑛. Schur’s lemma implies that

𝑃_𝑎𝑏 (𝑧) =
𝜒
_
(𝑧)

dim𝑉_
𝛿𝑎𝑏, (3.191)
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where 𝜒_(𝑧) =
∑
𝑎 𝑃

_
𝑎𝑎 (𝑧).

Definition 27 (Normalized character). The combination

�̂�_(𝑧) =
𝜒
_
(𝑧)

dim𝑉_
, (3.192)

is known as a normalized character.

A particularly important instance of this is the conjugacy class basis element

𝑧𝑛 =
∑︁

1≤𝑖< 𝑗≤𝑛
(𝑖 𝑗) ∈ Z[F(𝑆𝑛)] (3.193)

Normalized characters of 𝑧𝑛 are expressible in terms of combinatorial quantities of Young
diagrams.

Theorem 16. Let _ ⊢ 𝑛 = 𝑁, 𝑁 − 1 and 𝑌_ the corresponding Young diagram. Then

�̂�_(𝑧𝑛) =
∑︁
(𝑖, 𝑗 ) ∈𝑌_

( 𝑗 − 𝑖), (3.194)

where (𝑖, 𝑗) corresponds to the cell in the 𝑖th row and 𝑗 th column of the Young diagram (the top
left box has coordinate (1, 1)).

Proof. See [93, Example 7 in Section I.7]. □

Example 22. Some relevant examples for 𝑛 = 𝑁 are

�̂�[𝑁 ] (𝑧𝑁 ) = 0 + 1 + 2 + · · · + (𝑁 − 1) = 𝑁 (𝑁 − 1)
2

, (3.195)

�̂�[𝑁−1,1] (𝑧𝑁 ) = 0 + 1 + 2 · · · + (𝑁 − 2) − 1 =
𝑁 (𝑁 − 3)

2
, (3.196)

�̂�[𝑁−2,2] (𝑧𝑁 ) = 0 + 1 + 2 · · · + (𝑁 − 3) − 1 + 0 =
(𝑁 − 1) (𝑁 − 4)

2
, (3.197)

�̂�[𝑁−2,1,1] (𝑧𝑁 ) = 0 + 1 + 2 · · · + (𝑁 − 3) − 1 − 2 =
𝑁 (𝑁 − 5)

2
. (3.198)

The relevance of this result is that these normalized characters form eigenvalues of the following
linear operator.

Proposition 15. Define the following linear operator on 𝑉⊗𝑘
𝑁

𝑃𝑁 =
∑︁

1≤𝑖< 𝑗≤𝑁
𝑃(𝑖 𝑗 ) . (3.199)

It has eigenvalues �̂�
_
(𝑧𝑁 ) for _ ∈ Λ𝑘,𝑁 .
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Proof. The eigenvectors of 𝑃𝑁 are
𝐸_𝑎 ⊗ 𝐸_𝛼 (3.200)

as defined in (3.49), since

𝑃𝑁 (𝐸_𝑎 ⊗ 𝐸_𝛼) = 𝑃_𝑏𝑎 (𝑧𝑁 )𝐸
_
𝑏 ⊗ 𝐸

_
𝛼 = �̂�_(𝑧𝑁 )𝐸_𝑎 ⊗ 𝐸_𝛼. (3.201)

□

We can use this result for all 𝑙 ≤ 𝑘 to produce eigenvalues corresponding to characters of
irreducible representations of 𝑆𝑁 in each tensor product factor.

Proposition 16. Define the operator 𝑃 (𝑙)
𝑁

by

𝑃
(𝑙)
𝑁
(𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 ) = 𝑃𝑁 (𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑙 ) ⊗ 𝑒𝑖𝑙+1 ⊗ · · · ⊗ 𝑒𝑖𝑘 . (3.202)

It has eigenvalues �̂�
_
(𝑧𝑁 ) for _ ∈ Λ𝑙,𝑁 .

Proof. This follows analogously to the previous proof. An eigenbasis corresponds to vectors
of the form

𝐸_𝑎 ⊗ 𝐸_𝛼 ⊗ 𝑒𝑖𝑙+1 ⊗ · · · ⊗ 𝑒𝑖𝑘 , (3.203)

for _ ∈ Λ𝑙,𝑁 . □

We also want to produce eigenvalues corresponding to characters of irreducible representations
of 𝑆𝑁−1.

Proposition 17. Define
𝑃𝑁−1 =

∑︁
1≤𝑖< 𝑗≤𝑁−1

𝑃(𝑖 𝑗 ) (3.204)

and
𝑃
(𝑙+ 1

2 )
𝑁
(𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 ) = 𝑃𝑁−1(𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑙 ) ⊗ 𝑒𝑖𝑙+1 ⊗ · · · ⊗ 𝑒𝑖𝑘 . (3.205)

The eigenvalues of 𝑃 (𝑙+
1
2 )

𝑁
are normalized characters �̂�

_
(𝑧
𝑁−1) for _ ∈ Λ𝑙+ 1

2 ,𝑁
.

Proof. Let _ ⊢ 𝑁, _′ ∈ _ − , and

𝑉_ = Span(𝐸_𝑎 | 𝑎 = 1, . . . , dim𝑉_), (3.206)

𝑉_′ = Span(𝐸_′𝑎 | 𝑎 = 1, . . . , dim𝑉_′), (3.207)

be irreducible representations of 𝑆𝑁 and 𝑆𝑁−1, respectively. We assume the two bases to be
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orthonormal, and therefore related by the restriction matrix 𝑅_′
_

as

𝐸_𝑎 =
∑︁

_′∈_−

∑︁
𝑎

(𝑅_′_ )
𝑎
𝑎𝐸

_′
𝑎 , (3.208)

or
𝐸_
′
𝑎 =

∑︁
𝑎

(𝑅_′_ )𝑎𝑎𝐸_𝑎 . (3.209)

Therefore, 𝑉⊗𝑘
𝑁

has a basis

{𝐸_′𝑎 ⊗ 𝐸_𝛼 ⊗ 𝑒𝑖𝑙+1 ⊗ · · · ⊗ 𝑒𝑖𝑘 | _ ∈ Λ𝑙,𝑁 , _′ ∈ _ − }, (3.210)

with elements satisfying

𝑃𝑁−1(𝐸_
′
𝑎 ⊗ 𝐸_𝛼) ⊗ 𝑒𝑖𝑙+1 ⊗ · · · ⊗ 𝑒𝑖𝑘 =

∑︁
𝑏

𝑃_
′

𝑏 𝑎 (𝑧𝑁−1)𝐸_
′

𝑏 ⊗ 𝐸
_
𝛼 ⊗ 𝑒𝑖𝑙+1 ⊗ · · · ⊗ 𝑒𝑖𝑘 (3.211)

= �̂�_(𝑧𝑁−1)𝐸_
′
𝑎 ⊗ 𝐸_𝛼 ⊗ 𝑒𝑖𝑙+1 ⊗ · · · ⊗ 𝑒𝑖𝑘 . (3.212)

□

The 𝑙-duals of 𝑃 (𝑙)
𝑁

and (𝑙 + 1
2 )-duals of 𝑃 (𝑙+

1
2 )

𝑁
are in fact known. We will need the special cases

𝑙 = 1, 2 and 𝑙 + 1
2 = 1 + 1

2 .

Theorem 17.

(a) Define
𝑍1 = , (3.213)

it acts on 𝑉𝑁 as

𝑃
(1)
𝑁
−

(
𝑁

2

)
+ 𝑁, (3.214)

and is central in 𝑃1(𝑁).

(b) Define

𝑍2 = + + − − − − + + 𝑁 , (3.215)

𝑍1 1
2
= + − − + 𝑁 . (3.216)

They act on 𝑉⊗2
𝑁

as

𝑃
(2)
𝑁
−

(
𝑁

2

)
+ 2𝑁, 𝑃

(1+ 1
2 )

𝑁
−

(
𝑁

2

)
+ 2𝑁 − 1 (3.217)

respectively. Further, 𝑍2 is central in 𝑃2(𝑁) and 𝑍1 1
2

is central in 𝑃1+ 1
2
(𝑁).
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Proof. See Example 19 for statement (a), Example 21 for 𝑍1 1
2

and [51, Theorem 3.35 and
examples below Equation 3.32] for the general case and 𝑍2. □

This theorem leads to an important corollary.

Corollary 8. The inclusion of 𝑍1 into 𝑃1+ 1
2
(𝑁) is

𝑍1 ⊗ 1 = . (3.218)

It commutes with 𝑍1 1
2
, which is central in 𝑃1+ 1

2
(𝑁). It also commutes with 𝑍2, which is central

in 𝑃2(𝑁). That is 𝑍1 ⊗ 1, 𝑍1 1
2
, 𝑍2 form a set of commuting elements in 𝑃2(𝑁).

For the construction of matrix units, we are interested in the eigenvalues of these dual elements in
the regular representation of 𝑃2(𝑁). From Schur’s lemma, the eigenvalues will be normalized
characters of irreducible representations of 𝑃1(𝑁), 𝑃1+ 1

2
(𝑁) and 𝑃2(𝑁), respectively. We

will now show that Schur-Weyl duality has implications for the normalized characters of dual
elements.

Proposition 18. Let 𝑑𝑁 ∈ Z̃[𝑃𝑘 (𝑁)] be the 𝑘-dual of 𝑧𝑁 , �̂�_(𝑧𝑁 ) the normalized 𝑆𝑁 character
of 𝑧𝑁 and �̂�_(𝑑𝑁 ) the normalized 𝑃𝑘 (𝑁) character of 𝑑𝑁 for _ ∈ Λ𝑘,𝑁 , then

�̂�_(𝑧𝑁 ) = �̂�_(𝑑𝑁 ), (3.219)

Proof. Let 𝑑𝑁 have the expansion

𝑑𝑁 =
∑︁

𝜋∈Π[𝑘 |𝑘′ ]

𝑎𝜋𝑑𝜋 , (3.220)

and define
𝐷𝑁 =

∑︁
𝜋∈Π[𝑘 |𝑘′ ]

𝑎𝜋𝐷 𝜋 . (3.221)

𝑘-duality demands (see Definition 20)

𝑃𝑁 (𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 ) = 𝐷𝑁 (𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 ). (3.222)

Therefore, using (3.49) and (3.48) we have∑︁
𝑏

𝑃_𝑏𝑎 (𝑧𝑁 )𝐸
_
𝑏 ⊗ 𝐸

_
𝛼 = (𝐶_𝑎,𝛼)𝑖1...𝑖𝑘

∑︁
1≤𝑖< 𝑗≤𝑁

𝑃𝑁 (𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 )

= (𝐶_𝑎,𝛼)𝑖1...𝑖𝑘𝐷𝑁 (𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 )

=
∑︁
𝛽

𝐷_𝛽𝛼 (𝑑𝑁 )𝐸_𝑎 ⊗ 𝐸_𝛽 .

(3.223)
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In other words,
𝑃_𝑏𝑎 (𝑧𝑁 )𝛿𝛽𝛼 = 𝛿𝑎𝑏𝐷

_
𝛽𝛼 (𝑑𝑁 ). (3.224)

Taking the trace on both sides gives

𝜒_(𝑧𝑁 )𝑚_𝑘,𝑁 = dim𝑉_𝜒
_(𝑑𝑁 ) ⇒ �̂�_(𝑧𝑁 ) = �̂�_(𝑑𝑁 ), (3.225)

which is the claim in the proposition. □

The analogous result holds for normalized characters of (𝑘 + 1
2 ) dual elements.

Proposition 19. Let 𝑑𝑁−1 ∈ Z̃[𝑃𝑘+ 1
2
(𝑁)] be the (𝑘 + 1

2 )-dual of 𝑧𝑁−1, then

�̂�_(𝑧𝑁−1) = �̂�_(𝑑𝑁−1), (3.226)

for _ ∈ Λ𝑘+ 1
2 ,𝑁

.

Proof. Let 𝑑𝑁−1 have the expansion

𝑑𝑁−1 =
∑︁

𝜋∈Π[𝑘+1| (𝑘+1) ′ ]

𝑎𝜋𝑑𝜋 , (3.227)

and define
Δ𝑁−1 =

∑︁
𝜋∈Π[𝑘+1| (𝑘+1) ′ ]

𝑎𝜋Δ𝜋 . (3.228)

(𝑘 + 1
2 )-duality demands (see Definition 23)

𝑃𝑁−1(𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 ) = Δ𝑁−1(𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 ). (3.229)

Using the 𝑆𝑁−1 × 𝑃𝑘+ 1
2

irreducible basis (3.86) for 𝑉⊗𝑘
𝑁

this gives

𝑃_𝑏𝑎 (𝑧𝑁−1)𝛿𝛽𝛼 = 𝛿𝑎𝑏𝐷
_
𝛽𝛼 (𝑑𝑁−1), (3.230)

for _ ∈ Λ𝑘+ 1
2 ,𝑁

. Taking the trace on both sides gives

𝜒_(𝑧𝑁−1) dim 𝑍
1/2
_

= dim𝑉_𝜒
_(𝑑𝑁−1) ⇒ �̂�_(𝑧𝑁−1) = �̂�_(𝑑𝑁−1). (3.231)

□
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Example 23. It will be useful to consider some normalized characters of 𝑍1.

�̂�[𝑁 ] (𝑍1) = �̂�[𝑁 ] (𝑧𝑁 ) −
(
𝑁

2

)
+ 𝑁 = 𝑁 (3.232)

�̂�[𝑁−1,1] (𝑍1) = �̂�[𝑁−1,1] (𝑧𝑁 ) −
(
𝑁

2

)
+ 𝑁 =

𝑁 (𝑁 − 3) − 𝑁 (𝑁 − 1)
2

+ 𝑁 = −𝑁 (3.233)

3.3.2 Vacillating tableaux and projectors. In equation (3.120) we defined a set of elements
coming from repeated restriction of an irreducible representation 𝑍_ of 𝑃𝑘 (𝑁). We will now
use this definition to show that there exists a set of basis vectors that are eigenvectors of elements
dual to 𝑃𝑁 , 𝑃𝑁−1.

The following definition will be useful.

Definition 28. Let 𝔳 = (_ (0) = [𝑁], _ ( 1
2 ) = [𝑁 − 1], _ (1) , _ ( 3

2 ) , . . . , _ (𝑘 ) ) be a vacillating
tableaux of shape _ and length 𝑘 (see Definition 12). Consider the set of orthogonal projectors

{𝑝
_(𝑙)
∈ 𝑃𝑙 (𝑁) ⊂ 𝑃𝑘 (𝑁) | 𝑙 = 1,

3
2
, . . . , 𝑘}, (3.234)

to the corresponding irreducible representations of 𝑃𝑙 (𝑁) and define

𝑝𝔳 =
∏
𝑙

𝑝
_(𝑙)
. (3.235)

Note that the projectors 𝑝_(𝑙) commute among themselves because 𝑝_(𝑙) is central in 𝑃𝑙 (𝑁) and
therefore commutes with 𝑝_(𝑚) for 𝑚 ≤ 𝑙 since 𝑃𝑚(𝑁) ⊆ 𝑃𝑙 (𝑁). It follows from orthogonality
of projectors that 𝑝𝔳𝑝𝔳′ = 𝛿𝔳𝔳′ 𝑝𝔳.

The image of 𝑝𝔳 in 𝑍_ has a particularly simple expression in terms of elements in equation
(3.120). To see this we will prove the following.

Proposition 20. Let 𝔳 = (_ (0) = [𝑁], _ ( 1
2 ) = [𝑁 −1], _ (1) , _ ( 3

2 ) , . . . , _ = _ (𝑘 ) ) be a vacillating
tableau, 𝑝𝔳 be as above and consider 𝐸_𝛼 as a sum of elements defined in (3.120), then∑︁

𝛾

𝐷_𝛾𝛼 (𝑝𝔳)𝐸_𝛾 = 𝐸𝔳
𝛼 (3.236)

Proof. Plugging in (3.121) we have∑︁
𝛾

𝐷_𝛾𝛼 (𝑝𝔳)𝐸_𝛾 =
∑︁
𝔳′

∑︁
𝛾

𝐷_𝛾𝛼 (𝑝𝔳)𝐸𝔳′
𝛾 . (3.237)

Consider the contribution on the r.h.s. from a single vacillating tableaux 𝔳′ = (𝜌 (0) =
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[𝑁], 𝜌 ( 1
2 ) = [𝑁 − 1], 𝜌 (1) , 𝜌 ( 3

2 ) , . . . , _ (𝑘 ) ) of the same shape as 𝔳. This is equal to∑︁
𝛾

𝐷_𝛾𝛼 (𝑝𝔳) (R𝜌
(1+ 1

2 )→𝜌(1)R𝜌
(2)→𝜌(1+

1
2 )
. . .R𝜌

(𝑘− 1
2 )→𝜌(𝑘−1)

R_
(𝑘)→𝜌(𝑘−

1
2 ) )1𝛾𝐸𝜌

(1)

1 . (3.238)

Using the equivariance of the restriction matrix this gives

©«
𝐷𝜌

(1) (𝑝
_(1)
)R𝜌

(1+ 1
2 )→𝜌(1)𝐷𝜌

(1+ 1
2 ) (𝑝

_
(1+ 1

2 )
)R𝜌(2)→𝜌

(1+ 1
2 )
. . .

𝐷𝜌
(𝑘−1) (𝑝

_(𝑘−1) )R𝜌
(𝑘− 1

2 )→𝜌(𝑘−1)
𝐷𝜌

(𝑘− 1
2 ) (𝑝

_
(𝑘− 1

2 )
)R_(𝑘)→𝜌

(𝑘− 1
2 )
𝐷_

(𝑘) (𝑝
_(𝑘)
)

ª®®®¬1𝛼

𝐸
𝜌(1)

1 , (3.239)

or diagrammatically

R𝔳′

𝛼

_(𝑘)

_(1)

𝑝𝔳
=

R_
(𝑘)→𝜌(𝑘−

1
2 )

𝛼

R𝜌
(1+ 1

2 )→𝜌(1)

𝑝_(𝑘)

𝑝
_
(1+ 1

2 )

𝑝_(1)

(3.240)

This vanishes unless 𝔳 = 𝔳′ because of the projector property 𝐷_(𝑝
_(𝑙)
) = 𝛿__(𝑙) I, where I is

the identity matrix. □

In other words
im 𝑝𝔳 = Span(𝐸𝔳

𝛼). (3.241)

Crucially, as we will now see, the images are one-dimensional and therefore the projectors 𝑝𝔳
provide a means for constructing a nice basis for 𝑍_.

Proposition 21. Let 𝔳 = (_ (0) = [𝑁], _ ( 1
2 ) = [𝑁 −1], _ (1) , _ ( 3

2 ) , . . . , _ = _ (𝑘 ) ) be a vacillating
tableau of shape _. The image of 𝑝𝔳 is one-dimensional as a linear map on 𝑍_.

Proof. Since 𝑝𝔳 is a projector, the trace of the representation matrix gives the rank (dimension
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of the image). Therefore, we compute∑︁
𝛼

𝐷_𝛼𝛼 (𝑝𝔳) =
∑︁
𝛼

⟨𝐸_𝛼,
∑︁
𝛾

𝐷_𝛾𝛼 (𝑝𝔳)𝐸_𝛾⟩ (3.242)

=
∑︁
𝛼

⟨𝐸_𝛼, (R_
(1+ 1

2 )→_(1)R_
(2)→_(1+

1
2 )
. . .R_

(𝑘− 1
2 )→_(𝑘−1)

R_
(𝑘)→_(𝑘−

1
2 ) )1𝛼𝐸_

(1)

1 ⟩

=
∑︁
𝛼

⟨
∑︁
𝔳′
(R𝜌

(1+ 1
2 )→𝜌(1)R𝜌

(2)→𝜌(1+
1
2 )
. . .R𝜌

(𝑘− 1
2 )→𝜌(𝑘−1)

R_
(𝑘)→𝜌(𝑘−

1
2 ) )1𝛼𝐸𝜌

(1)

1 ,

(R_
(1+ 1

2 )→_(1)R_
(2)→_(1+

1
2 )
. . .R_

(𝑘− 1
2 )→_(𝑘−1)

R_
(𝑘)→_(𝑘−

1
2 ) )1𝛼𝐸_

(1)

1 ⟩,

where the second equality uses Proposition 20 and the sum is over vacillating tableaux 𝔳′ =

(𝜌 (0) = [𝑁], 𝜌 ( 1
2 ) = [𝑁 − 1], 𝜌 (1) , 𝜌 ( 3

2 ) , . . . , _ (𝑘 ) ) with shape _ (𝑘 ) = _. The last equation
includes matrix multiplications of the form∑︁

𝛼

R
_(𝑘)→𝜌(𝑘−

1
2 )

𝛽𝛼
R_

(𝑘)→_(𝑘−
1
2 )

𝛾𝛼 = 𝛿𝜌
(𝑘− 1

2 )_(𝑘−
1
2 )
𝛿𝛽𝛾 , (3.243)

where we used the orthonormality condition (3.116). Successively applying this identity gives∑︁
𝛼

𝐷_𝛼𝛼 (𝑝𝔳) =
∑︁
𝔳′
𝛿𝔳𝔳

′
= 1, (3.244)

where
𝛿𝔳𝔳

′
=

∏
𝑙

𝛿_
(𝑙)𝜌(𝑙) . (3.245)

□

As we promised, we have the following Corollary about dual elements acting on the image of
𝑝𝔳.

Corollary 9. Let 𝔳 be a vacillating tableaux of shape _ ∈ Λ2,𝑁 . The elements 𝑍1, 𝑍1 1
2
, 𝑍2 ∈

𝑃2(𝑁) defined in Theorem 17 act on 𝐸𝔳
𝛼 (the image of 𝑝𝔳 on 𝑍_) by normalized characters.

Proof. This readily follows by considering for example∑︁
𝛾

𝐷_𝛾𝛼 (𝑍1)𝐸𝔳
𝛾 , (3.246)

and using the equivariance property of the restriction matrices together with

𝐷_
(1) (𝑍1) = �̂�_

(1) (𝑍1)I. (3.247)

Similarly for 𝑍1 1
2
, 𝑍2. □
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Note that this allows us to pick up normalized characters of the various irreducible representa-
tions in the vacillating tableau.

From Theorem 7, the number of vacillating tableaux is equal to the dimension of 𝑍_. Therefore,
we have found a complete set of orthogonal projectors with rank one, and together their images
form a total space isomorphic to 𝑍_. Let 𝐸_𝔳 be a basis for the image of 𝑝𝔳, then the irreducible
representation of 𝑃𝑘 (𝑁)

𝑍_ � Span(𝐸_𝔳 | for all vacillating tableaux 𝔳 of shape _ and length 𝑘 .). (3.248)

The vectors 𝐸_𝔳 are simultaneous eigenvectors of 𝑍1, 𝑍1 1
2
, 𝑍2 ∈ 𝑃2(𝑁). We give a name to the

change of basis matrix
𝐸_𝔳 =

∑︁
𝛼

𝑉_𝛼𝔳𝐸
_
𝛼. (3.249)

Because the restriction properties of these basis elements are manifest in the vacillating tableaux
labelling them, it is called an inductive basis. Inductive bases respecting the restriction of 𝑃𝑘 (𝑁)
are discussed in [51, Theorem 3.37].

So far we have only discussed the existence of an inductive basis and seen that it forms an
eigenbasis of a set of commuting operators (e.g. 𝑍1, 𝑍1 1

2
, 𝑍2). In the next subsection we will

use this in the context of the regular representation of 𝑃𝑘 (𝑁) to give an explicit procedure for
constructing matrix units.

3.3.3 All 𝑁 construction of matrix units. Recall that the regular representation of 𝑃𝑘 (𝑁)
decomposes into representations of the left and right action as (see (3.190))

𝑃𝑘 (𝑁) �
⊕
_∈Λ𝑘,𝑁

𝑍_ ⊗ 𝑍_. (3.250)

From the previous section, each component on the r.h.s. has a basis

𝑍_⊗𝑍_ � Span(𝐸_𝔳 ⊗𝐸_𝔳′ | for all vacillating tableaux 𝔳, 𝔳′ of shape _ and length 𝑘 .). (3.251)

In principle, this basis is found by acting on 𝑃𝑘 (𝑁) from the left and right using 𝑝𝔳, 𝑝𝔳′ and
producing a basis for the image. However, explicit forms of the projectors are not known in
general. Fortunately, a Lagrange interpolation method can be used to construct them [54]. We
state the result for 𝑘 = 2. The case of 𝑘 = 1 is given by removing the terms involving 𝑍1 1

2
, 𝑍2

(see Example 24 below). For general 𝑘 it is necessary to consider additional 𝑍𝑖 .

Proposition 22. Let 𝔳 = (_ (0) = [𝑁], _ ( 1
2 ) = [𝑁−1], _ (1) , _ (1+ 1

2 ) , _ (2) ) be a vacillating tableau
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of length two, then

𝑝𝔳 =
∏

𝜌(1) ∈Λ1,𝑁
𝜌(1)≠_(1)

𝑍1 − �̂�𝜌
(1) (𝑍1)

�̂�_
(1) (𝑍1) − �̂�𝜌(1) (𝑍1)

×

∏
𝜌
(1+ 1

2 ) ∈Λ1+ 1
2 ,𝑁

𝜌
(1+ 1

2 )≠_(1+
1
2 )

𝑍1 1
2
− �̂�𝜌

(1+ 1
2 ) (𝑍1 1

2
)

�̂�_
(1+ 1

2 ) (𝑍1 1
2
) − �̂�𝜌(1+

1
2 ) (𝑍1 1

2
)
×

∏
𝜌(2) ∈Λ2,𝑁
𝜌(2)≠_(2)

𝑍2 − �̂�𝜌
(2) (𝑍2)

�̂�_
(2) (𝑍2) − �̂�𝜌(2) (𝑍2)

.

(3.252)

Proof. By construction, this operator vanishes when acting on 𝐸_
𝔳′ unless 𝔳 = 𝔳′, since

𝑍1, 𝑍1 1
2
, 𝑍2 act through normalized characters that are all distinct. □

We define new linear operators on 𝑃𝑘 (𝑁) labelled by two vacillating tableaux.

Definition 29. Let 𝔳, 𝔳′ be two vacillating tableaux of the same shape and length 𝑘 . Define
P𝔳,𝔳′ by

P𝔳𝔳′ (𝑑) = 𝑝𝔳𝑑𝑝𝔳′ . (3.253)

Example 24. The simplest example is to consider 𝑃1(𝑁), where we only need to consider
𝑍1 = . There are two vacillating tableaux 𝔳1 = ( [𝑁], [𝑁], [𝑁]), 𝔳2 = ( [𝑁], [𝑁], [𝑁 − 1, 1])
and using Theorem 17 together with Example 22 we have

𝑝𝔳1 =

− 𝜒[𝑁−1,1]
( )

𝜒[𝑁 ]
( )
− 𝜒[𝑁−1,1]

( ) =
𝑁

(3.254)

𝑝𝔳2 =

− 𝜒[𝑁 ]
( )

𝜒[𝑁−1,1]
( )
− 𝜒[𝑁 ]

( ) =
− 𝑁

−𝑁 (3.255)

Therefore

P𝔳1𝔳1 ( ) =

P𝔳1𝔳1 ( ) =
1
𝑁

P𝔳2𝔳2 ( ) = 0

P𝔳2𝔳2 ( ) = − 1
𝑁

(3.256)

and

im(P𝔳1𝔳1) = Span(𝑄 [𝑁 ] = 1
𝑁
), im(P𝔳2𝔳2) = Span(𝑄 [𝑁−1,1] = − 1

𝑁
). (3.257)
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Note that 𝑄_𝑄_′ = 𝛿__′𝑄_.

The image of a matrix can be found by computing its pivot columns [94, 2O in Section 2.4].
The vectors formed by the pivot columns constitute a basis of the image. From the previous
example, we see that the matrices corresponding to P𝔳𝔳′ have rational functions of 𝑁 as entries.
In general, it is non-trivial to compute the pivot columns of a matrix with rational functions.
Instead, we use the following trick.

Consider the matrix associated with the operators 𝑃𝔳𝔳′ in the diagram basis

P𝔳𝔳′ (𝑑𝜋) =
∑︁

𝜋′∈Π[𝑘 |𝑘′ ]

(P𝔳𝔳′)𝜋′ 𝜋𝑑𝜋′ . (3.258)

Because we know that the image is one-dimensional, this matrix has a single pivot column. We
find the pivot column by substituting 𝑁 = 𝑛 for some integer 𝑛 ≥ 2𝑘 . Let this matrix have pivot
column a, then the element ∑︁

𝜋∈Π[𝑘 |𝑘′ ]

(P𝔳𝔳′)𝜋a𝑑𝜋 , (3.259)

is a basis for the image of P𝔳𝔳′ . For two vacillating tableaux 𝔳, 𝔳′ of shape _ ∈ Λ𝑘,𝑁 we define
the matrix units

𝑄_𝔳𝔳′ =
∑︁

𝜋∈Π[𝑘 |𝑘′ ]

(P𝔳𝔳′)𝜋a𝑑𝜋 . (3.260)

The validity of this trick is argued as follows. Suppose we were able to find the row echelon
form �(P𝔳𝔳′) 𝜋′ 𝜋 (3.261)

of (P𝔳𝔳′)𝜋′ 𝜋 . The row echelon form has a single non-zero row and pivot element

�(P𝔳𝔳′)1a = 𝑓 (𝑁). (3.262)

Since 𝑓 (𝑁) is a rational function it has a finite number of zeroes and poles. Away from these
we can construct the matrix

1
𝑓 (𝑁)

�(P𝔳𝔳′) 𝜋′ 𝜋 , (3.263)

whose pivot element is 1, and in particular independent of 𝑁 . This matrix is now in reduced
row echelon form. The reduced row echelon form of a matrix is unique. Thus, away from the
poles and zeroes of 𝑓 (𝑁), we can argue that the pivot column is independent of 𝑁 .

In appendix B we give the result of applying this procedure to 𝑃2(𝑁) and give a table of matrix
units. Note that the above procedure does not fix the normalization of each matrix unit, since a
basis for a one-dimensional subspace is only determined up to a scalar. We address this issue
in the following chapter (see section 4.3.5).
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3.4 Summary

In the first section of this chapter we saw that partition algebras 𝑃𝑘 (𝑁), 𝑃𝑘+ 1
2
(𝑁), form a

family of diagram algebras that are Schur-Weyl dual to the symmetric groups 𝑆𝑁 and 𝑆𝑁−1

respectively. This duality implies that the representation theory of 𝑃𝑘 (𝑁) (𝑃𝑘+ 1
2
(𝑁)) can be

used to study the representation theory of 𝑆𝑁 (𝑆𝑁−1) and vice versa. The partition algebras
form an ”inductive chain”

𝑃1(𝑁) ⊂ 𝑃1+ 1
2
(𝑁) ⊂ · · · ⊂ 𝑃𝑘− 1

2
(𝑁) ⊂ 𝑃𝑘 (𝑁), (3.264)

and we saw that the restriction-induction construction of tensor powers, discussed in Chapter 2,
determine the decomposition of representations 𝑍_ of partition algebras under restriction along
this chain. Particularly noteworthy is the absence of multiplicities of irreducible representations
in the restriction. This gave rise to an ”inductive basis” of elements labelled by vacillating
tableaux. A vacillating tableau describes the set of irreducible representations a particular
basis element of 𝑍_ belongs to under restriction along the inductive chain. The fact that all
irreducible representations of 𝑃1(𝑁) are one-dimensional, together with the fact that restrictions
along the chain are multiplicity free, guaranteed that these elements form a basis and that each
basis element is unique up to normalization. The inductive structure of 𝑃𝑘 (𝑁) and its relation,
through Schur-Weyl duality, to induction and restriction of 𝑆𝑁 and 𝑆𝑁−1 is well-known in
the mathematical literature [47, 51]. We have attempted to present this structure in language
familiar to physicists.

In the second section, we studied the semi-simplicity of 𝑃𝑘 (𝑁). We found that there exists
a basis of matrix units for 𝑃𝑘 (𝑁), where it is clear that it corresponds to an algebra of block
matrices. The explicit change of basis is a generalization of the Fourier inversion formula
studied in finite group theory. Semi-simplicity of partition algebras and formal expressions for
matrix units are known in the literature, see [51] and [92] respectively. In [92], general semi-
simple algebras are discussed, and the regular representation is used to define a non-degenerate
bilinear form. The formula for matrix units in this thesis uses a non-degenerate bilinear form
coming from a trace in 𝑉⊗𝑘

𝑁
. The proof of this formula is new and was first proven in [3].

In the third and last section, we gave a method for constructing the matrix units starting from
the diagram basis. For this, we used the existence of the inductive basis. Crucially, we were
able to construct projection operators P𝔳𝔳′ : 𝑃𝑘 (𝑁) → 𝑃𝑘 (𝑁), with one-dimensional images
corresponding to each matrix unit (up to normalization). Because the matrices corresponding
to projection operators contain rational functions in 𝑁 , the usual procedure for finding a basis
of the image does not work and/or is inefficient. Instead, we devised an all 𝑁 construction of
the images using a trick. The validity of this trick can be argued based on poles and zeroes of a
particular entry in the row echelon form of the projection matrix. The matrix units for 𝑃1(𝑁)
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and 𝑃2(𝑁) underlie the construction of permutation invariant matrix models in the next chapter.

The use of 𝑘-duals and (𝑘 + 1
2 )-duals of central elements in C(𝑆𝑁 ) to construct matrix units for

𝑃𝑘 (𝑁) is new. The construction of idempotent elements in algebras like the partition algebras,
using central elements, has been discussed in [54]. The fact that P𝔳𝔳′ can be constructed from
left and right actions of such idempotents is implicit in the mathematical literature but we
have not seen an explicit and concrete discussion of this in the literature. In this sense, our
construction of matrix units is new and the technique used for finding the image for all 𝑁 is new
as well. This procedure was invented in the upcoming work [4], where it is used to construct
permutation invariant Gaussian tensor models.



Chapter 4

Permutation invariant matrix models

Matrix models can be thought of as zero-dimensional quantum field theories. They are defined
by giving a probability distribution 𝑝(𝑋) on a space of matrices 𝑋 =

����𝑋𝑖 𝑗 ���� for 𝑖, 𝑗 = 1, . . . , 𝑁 .
In this chapter we use the results of the previous section to give some new perspectives on the
class of matrix models defined in [21, 22]. Unlike the classical matrix models [5, 6], which are
invariant under a continuous symmetry group, these matrix models have discrete (permutation)
symmetry. We give a new algorithm for computing expectation values of observables in these
models, based on the new ideas.

The most general permutation invariant Gaussian one-matrix models were first solved in [22]: a
13-parameter model was constructed using Clebsch-Gordan coefficients for the decomposition
of 𝑉𝑁 ⊗ 𝑉𝑁 into irreducible representations of 𝑆𝑁 ; the first and second moments were given
as functions of 𝑁 and general expectation values were shown to be computable using Wick’s
theorem. Observables in permutation invariant matrix models are permutation invariant matrix
polynomials. A basis for the space of observables at large 𝑁 , labelled by directed graphs, was
proposed in [21]. Several expectation values of observables in the graph basis were computed
in [22] using Wick’s theorem. These results were generalized to two-matrix models in [1] and
a precise bijection between observables and directed graphs with no more than 𝑁 vertices was
proven. A combinatorial framework for counting and constructing observables using directed
graphs and double cosets of permutation groups was explained in [1]. A general algorithm
for computing expectation values, as explicit functions of 𝑁 , of observables in the 2-matrix
model was given in [1]. The expected connection between permutation invariant matrix models
and partition algebras through Schur-Weyl duality was mentioned in [21]. This connection
was explicitly used in [2] to construct observables from partition algebra elements. Various
parameter limits of the permutation invariant Gaussian matrix models were explored as well, and
points in the parameter space where the 𝑆𝑁 symmetry got enhanced to 𝑂 (𝑁) symmetry were
discovered. Interesting factorisation results, for two-point functions of observables, were proven
at the simplest of𝑂 (𝑁) symmetric points in parameter space. The factorisation result intimately

69
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relied on the connection to partition algebras. We now give an introductory description of the
model solved in [22] and elaborate on some of the above points. Along the way we will point
out the new contributions in this thesis and point to the specific sections where further details
are given.

The probability distribution of a permutation invariant Gaussian matrix model (PIGMM) is
defined in terms of a quadratic polynomial function 𝑉 (𝑋)

𝑉 (𝑋) =
𝑁∑︁

𝑖, 𝑗=1
𝐽𝑖 𝑗𝑋𝑖 𝑗 +

𝑁∑︁
𝑖, 𝑗 ,𝑘,𝑙=1

𝐺𝑖 𝑗;𝑘𝑙𝑋𝑖 𝑗𝑋𝑘𝑙 , (4.1)

where the parameters 𝐽𝑖 𝑗 , 𝐺𝑖 𝑗;𝑘𝑙 are constrained by demanding

𝑉 (𝑃𝜎𝑋𝑃𝑇𝜎) = 𝑉 (𝑋) ∀𝜎 ∈ 𝑆𝑁 , (4.2)

or equivalently

𝐽 (𝑖)𝜎 ( 𝑗 )𝜎 = 𝐽𝑖 𝑗 , 𝐺 (𝑖)𝜎 ( 𝑗 )𝜎;(𝑘 )𝜎 (𝑙)𝜎 = 𝐺𝑖 𝑗;𝑘𝑙 ∀𝜎 ∈ 𝑆𝑁 , (4.3)

and
Z =

∫
d𝑋 e−𝑉 (𝑋) < ∞. (4.4)

Here d𝑋 =
∏𝑁
𝑖, 𝑗=1 d𝑋𝑖 𝑗 . The probability to find the matrix 𝑋 in the interval d𝑋 is given by

𝑝(𝑋) = d𝑋 e−𝑉 (𝑋)

Z
. (4.5)

In this form, the model is non-trivial to solve for large 𝑁 because it involves inverting the
𝑁2 × 𝑁2 matrix 𝐺𝑖 𝑗;𝑘𝑙.

Instead, the model was reformulated in [22] using a representation theoretic change of basis,
from the matrix basis 𝑋𝑖 𝑗 to the irreducible basis

𝑋_,𝛼,𝑎 =

𝑁∑︁
𝑖, 𝑗=1

𝐶
𝑖 𝑗

_𝛼𝑎
𝑋𝑖 𝑗 . (4.6)

Here 𝐶𝑖 𝑗
_𝛼𝑎

are Clebsch-Gordan coefficients for the decomposition of 𝑉𝑁 ⊗ 𝑉𝑁 into irreducible
representations of 𝑆𝑁 . The indices 𝛼, 𝛽 are multiplicity indices for this decomposition and
the most general quadratic invariants were shown to be linear combinations of polynomials
𝑞_;𝛼𝛽 (𝑋) defined as

𝑞_;𝛼,𝛽 (𝑋) =
∑︁
𝑎

𝑋_,𝛼,𝑎𝑋_,𝛽,𝑎 . (4.7)

As we will see, there are only 11 independent polynomials of this form. This follows from
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studying the multiplicities in the decomposition of𝑉𝑁 ⊗𝑉𝑁 . From Proposition 5 the multiplicity
of any particular irreducible representations in 𝑉𝑁 ⊗ 𝑉𝑁 is less than four. This implies that
solving the model in this formulation only requires the inversion of matrices of at most size
three. As mentioned, we will elaborate on this in full detail in the next section. By first
computing the one-point and two-point functions in the representation basis, where they are
simple, and then going back to the matrix basis, formulas for the expectation values

〈
𝑋𝑖 𝑗

〉
and〈

𝑋𝑖 𝑗𝑋𝑘𝑙
〉

were computed. As we will see, the latter takes the form of linear combinations of
the invariant tensors

𝑄
𝑖 𝑗;𝑘𝑙
_;𝛼𝛽 =

∑︁
𝑎

𝐶
𝑖 𝑗

_𝛼𝑎
𝐶𝑘𝑙_𝛽𝑎 . (4.8)

A similar story is true for
〈
𝑋𝑖 𝑗

〉
, which has an expansion in terms of invariant tensors as well.

Since the model is quadratic, general expectation values could be exactly formulated using
Wick’s theorem. Therefore, an explicit solution to the model is determined by computing the
above-mentioned invariant tensors. In [22] this was done through a careful analysis of the
decomposition of 𝑉𝑁 as well as 𝑉𝑁 ⊗ 𝑉𝑁 . The above formulation of PIGMMs is reviewed
section 4.1.

The expectation value of a polynomial function 𝑓 : Mat𝑁 (R) → R in a PIGMM is given by

⟨ 𝑓 ⟩ =
∫

d𝑋 𝑓 (𝑋)e−𝑉 (𝑋)

Z
. (4.9)

For our purposes, we will restrict our attention to invariant functions O(𝑋) satisfying

O(𝑃𝜎𝑋𝑃𝑇𝜎) = O(𝑋) ∀𝜎 ∈ 𝑆𝑁 , (4.10)

where 𝑃𝜎 is a permutation matrix. As mentioned, a bijection between directed graphs with 𝑘
edges and a basis for the space of invariant functions of homogeneous degree 𝑘 was proposed
in [21, 22]. This bijection was proven in [1]. In fact, the proof also gives a bijection that works
away from the stable limit (𝑁 ≥ 2𝑘). We review this in section 4.2. Section 4.2 also gives a new
description of the graph basis in terms of equivalence classes of 1-row set partition diagrams.
This description was implicitly used in the algorithm in [1], but the connection to partition
algebras and 1-row diagrams was not known at the time. The construction of observables using
partition algebras, given in [2], naturally leads to 2-row set partition diagrams. In this thesis we
will see that the 1-row partition diagram description is useful for computing expectation values.
However, the invariant tensors in (4.8) are closely related to 2-row diagrams and we will need
a prescription for translating between the two.

A complete set of quadratic and a selection of cubic and quartic expectation values were
computed in [22] using the graph basis and Wick’s theorem. Later [1], an algorithm for
computing general expectation values was given in terms of manipulations of so-called F-
graphs. In this thesis, and in particular section 4.3, we will give a new algorithm for computing
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expectation values of observables. It is based on the connection between permutation invariant
tensors and partition algebra elements on one hand, and partition algebra elements and 1-row
partition diagrams on the other hand. In particular, we will see that the invariant tensors in
(4.8) correspond to matrix units of 𝑃2(𝑁). Matrix units of 𝑃1(𝑁) enter into the one-point
function. This observation is new and has not been exploited in the previous literature on
permutation invariant matrix models. However, the observation is largely based on the insight
from upcoming work [4] that uses this to construct permutation invariant tensor models. While
we claim that this algorithm is new, it can roughly speaking be understood, in the matrix
model case, as fully expanding the F-tensors appearing in the algorithm of [1] in terms of
products of Kronecker deltas and interpreting these products as 1-row diagrams. We will
explain how the 2-row diagrams appearing in the expansion of matrix units of 𝑃1(𝑁), 𝑃2(𝑁)
are translated into 1-row diagrams. This is crucial, since it allows us to formulate degree 𝑘
expectation values as formal linear combinations of 1-row diagrams 𝜋𝑖 , using Wick’s theorem.
In turn, the expectation value of an invariant polynomial corresponding to a 1-row diagram
𝜋 can be computed by pairing 𝜋 with all the 𝜋𝑖 . This is explained in detail in section 4.3
and is supplemented by Appendix C which contains a detailed description of computer code
implementing the algorithm.

The combinatorial framework for counting and constructing observables, first presented in [1]
for the case of permutation invariant observables, is reviewed in section 4.4 and Appendix D
with accompanying code for counting double cosets of permutation groups.

4.1 Distributions: Potentials and block diagonalization

We will now show that the space of PIGMM’s is parametrised by

Mat+2 (R) ×Mat+3 (R) × R
+ × R+, (4.11)

where Mat+𝑖 (R) are real positive-definite 𝑖-by-𝑖 matrices and R+ positive real numbers. This
is achieved using the matrix units of 𝑃2(𝑁) constructed in the previous chapter. As we will
see, they give a basis for the space of quadratic invariant functions of 𝑋 that block diagonalize
the matrix 𝐺𝑖 𝑗;𝑘𝑙 in equation 4.1. Further, the construction gives explicit formulas for the
expectation values 〈

𝑋𝑖 𝑗
〉
,

〈
𝑋𝑖 𝑗𝑋𝑘𝑙

〉
. (4.12)

This is sufficient data to determine arbitrary expectation values ⟨O⟩ through Wick’s theorem.

To understand the connection between permutation invariant matrix models and partition alge-
bras note that

(𝑃𝜎𝑋𝑃𝑇𝜎)𝑖 𝑗 = 𝑋(𝑖)𝜎−1 ( 𝑗 )𝜎−1 , (4.13)
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and therefore
Span(𝑋𝑖 𝑗 | 𝑖, 𝑗 = 1, . . . , 𝑁) � 𝑉𝑁 ⊗ 𝑉𝑁 , (4.14)

as a representation of 𝑆𝑁 . From corollary 5

𝑉𝑁 ⊗ 𝑉𝑁 � 2𝑉[𝑁 ] ⊕ 3𝑉[𝑁−1,1] ⊕ 𝑉[𝑁−2,2] ⊕ 𝑉[𝑁−2,1,1] . (4.15)

The l.h.s. has a basis 𝑋𝑖 𝑗 while the RHS has a basis 𝑋_,𝛼,𝑎 with labels

_ = {[𝑁], [𝑁 − 1, 1], [𝑁 − 2, 2], [𝑁 − 2, 1, 1]}, (4.16)

𝛼 = 1, . . . , 𝑚_2,𝑁 , (4.17)

𝑎 = 1, . . . , dim𝑉_. (4.18)

The indices 𝛼, 𝛽 should be thought of as vacillating tableaux 𝔳 of shape _ and length 2. The
two bases are related by Clebsch-Gordan coefficients

𝑋_,𝛼,𝑎 =

𝑁∑︁
𝑖, 𝑗=1

𝐶
𝑖 𝑗

_𝛼𝑎
𝑋𝑖 𝑗 , (4.19)

𝑋𝑖 𝑗 =
∑︁
_,𝛼,𝑎

𝐶_𝛼𝑎𝑖 𝑗 𝑋_,𝛼,𝑎, (4.20)

satisfying ∑︁
_,𝛼,𝑎

𝐶_𝛼𝑎𝑖 𝑗 𝐶𝑘𝑙_𝛼𝑎 = 𝛿
𝑘
𝑖 𝛿
𝑙
𝑗 (4.21)

𝑁∑︁
𝑖, 𝑗=1

𝐶_𝛼𝑎𝑖 𝑗 𝐶
𝑖 𝑗

_′𝛽𝑏 = 𝛿
_
_′𝛿

𝛼
𝛽 𝛿

𝑎
𝑏 . (4.22)

That is 𝐶_𝛼𝑎
𝑖 𝑗

is the inverse of 𝐶𝑖 𝑗
_𝛼𝑎

and vice versa.

We are free to choose an orthonormal basis satisfying

(𝑋_,𝛼,𝑎, 𝑋_′ ,𝛽,𝑏) = 𝛿__′𝛿𝛼𝛽𝛿𝑎𝑏, (4.23)

with respect to the inner product defined by

(𝑋𝑖 𝑗 , 𝑋𝑘𝑙) = 𝛿𝑖𝑘𝛿 𝑗𝑙 . (4.24)

This implies
𝐶_𝛼𝑎𝑖 𝑗 = 𝐶

𝑖 𝑗

_𝛼𝑎
. (4.25)
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Because the Clebsch-Gordan coefficients are matrix elements of an equivariant map they satisfy

𝑁∑︁
𝑖, 𝑗=1

𝐶
𝑖 𝑗

_𝛼𝑎
(𝑃𝜎𝑋𝑃𝑇𝜎)𝑖 𝑗 =

∑︁
𝑏

𝐷 (_) (𝜎)𝑏𝑎𝑋_𝛼𝑏, (4.26)

where 𝐷_(𝜎) are real orthogonal irreducible representations of 𝑆𝑁 . The above equation
corresponds to a system of linear equations over real numbers. Consequently, the solutions can
be chosen real. In other words, Clebsch-Gordan coefficients for 𝑆𝑁 can be chosen to be real.

The above results can be used to state a characterisation of the set of invariant potentials 𝑉 (𝑋).

Proposition 23. The space of permutation invariant Gaussian matrix models can be understood
by the following two statements.

(a) The linear parameters in 𝑉 (𝑋) can be expanded in terms of Clebsch-Gordan coefficients

𝐽𝑖 𝑗 =

2∑︁
𝛼=1

𝐽𝛼𝐶
𝑖 𝑗

[𝑁 ]𝛼, (4.27)

(b) The quadratic parameters have the form

𝐺𝑖 𝑗;𝑘𝑙 =
∑︁

_,𝛼,𝛽,𝑎

𝐺_;𝛼𝛽𝐶
𝑖 𝑗

_𝛼𝑎
𝐶𝑘𝑙_𝛽𝑎, (4.28)

where 𝐺_;𝛼𝛽 is symmetric in 𝛼, 𝛽. Define

𝑄
𝑖 𝑗;𝑘𝑙
_;𝛼𝛽 =

∑︁
𝑎

𝐶
𝑖 𝑗

_𝛼𝑎
𝐶𝑘𝑙_𝛽𝑎 (4.29)

then
𝐺𝑖 𝑗;𝑘𝑙 =

∑︁
_,𝛼,𝛽

𝐺_;𝛼𝛽𝑄
𝑖 𝑗;𝑘𝑙
_;𝛼𝛽 (4.30)

Proof. First we prove statement (a). The invariant linear polynomials in 𝑋𝑖 𝑗 are vectors in the
trivial subrepresentation of 𝑉𝑁 ⊗ 𝑉𝑁 . This is spanned by 𝑋[𝑁 ],1, 𝑋[𝑁 ],2 and therefore

𝑁∑︁
𝑖, 𝑗=1

𝐽𝑖 𝑗𝑋𝑖 𝑗 =
∑︁
𝛼

𝐽𝛼𝑋[𝑁 ],𝛼 =

𝑁∑︁
𝑖, 𝑗=1,𝛼

𝐽𝛼𝐶
𝑖 𝑗

[𝑁 ]𝛼𝑋𝑖 𝑗 . (4.31)

The proof of (b) goes as follows. The quadratic invariant polynomials in 𝑋𝑖 𝑗 correspond to
invariant vectors Sym2(𝑉𝑁 ⊗𝑉𝑁 ), the symmetric subspace of (𝑉𝑁 ⊗𝑉𝑁 )⊗2. Let𝑉_, 𝑉_′ be two
irreducible representations of 𝑆𝑁 , then

Hom(𝑉_, 𝑉_′) = 𝑉_′ ⊗ 𝑉∗_ , (4.32)
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where 𝑉∗
_

is the dual space (linear functions on 𝑉_). If 𝑆𝑁 acts on 𝑉_ through the matrix
𝐷_(𝜎), the action on 𝑉∗

_
in the dual basis is through the matrix 𝐷_(𝜎−1)𝑇 . For orthogonal

representations
𝐷_(𝜎−1)𝑇 = 𝐷_(𝜎), (4.33)

and therefore
𝑉_′ ⊗ 𝑉∗_ � 𝑉_′ ⊗ 𝑉_. (4.34)

Secondly, the vector space of 𝑆𝑁 -equivariant linear maps (homomorphisms)

Hom𝑆𝑁 (𝑉_, 𝑉_′), (4.35)

is isomorphic to the subspace of invariants in (4.34). We write this as

Hom𝑆𝑁 (𝑉_, 𝑉_′) � (𝑉_′ ⊗ 𝑉∗_)𝑆𝑁 � (𝑉_′ ⊗ 𝑉_)𝑆𝑁 . (4.36)

To show this, let 𝐸_𝑎 be a basis for𝑉_. In this basis, an element in Hom𝑆𝑁 (𝑉_, 𝑉_′) corresponds
to a matrix 𝑀 satisfying

𝑀𝐷_(𝜎) = 𝐷_′ (𝜎)𝑀, (4.37)

or
𝐷_

′ (𝜎−1)𝑀𝐷_(𝜎) = [𝐷_′ (𝜎)]𝑇𝑀𝐷_(𝜎) = 𝑀. (4.38)

If 𝑀𝑏
𝑎 are the matrix elements of 𝑀 , then the above equation implies that∑︁

𝑎,𝑏

𝑀𝑏
𝑎𝐸_𝑎 ⊗ 𝐸_′𝑏 (4.39)

is an invariant vector. The converse statement holds as well. Schur’s lemma says that for any
𝑀 ∈ Hom𝑆𝑁 (𝑉_, 𝑉_′), 𝑀𝑎

𝑏
∝ 𝛿𝑎

𝑏
𝛿__′ . That is,

(𝑉_ ⊗ 𝑉_)𝑆𝑁 = Span(
∑︁
𝑎

𝐸_𝑎 ⊗ 𝐸_𝑎). (4.40)

We now apply this to

Hom𝑆𝑁 (𝑉𝑁 ⊗ 𝑉𝑁 , 𝑉𝑁 ⊗ 𝑉𝑁 ) = End𝑆𝑁 (𝑉⊗2
𝑁 ) (4.41)

� (𝑉𝑁 ⊗ 𝑉𝑁 ⊗ 𝑉𝑁 ⊗ 𝑉𝑁 )𝑆𝑁 . (4.42)

Schur’s lemma together with (2.56) gives,

End𝑆𝑁 (𝑉⊗2
𝑁 ) �

⊕
_

Hom𝑆𝑁 (𝑚_2,𝑁𝑉_, 𝑚
_
2,𝑁𝑉_), (4.43)

since there are no homomorphisms between non-isomorphic irreducible representations. This
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implies that
(𝑉𝑁 ⊗ 𝑉𝑁 ⊗ 𝑉𝑁 ⊗ 𝑉𝑁 )𝑆𝑁 = Span(

∑︁
𝑎

𝑋_𝛼𝑎 ⊗ 𝑋_𝛽𝑎). (4.44)

A basis of invariant quadratic polynomials is{∑︁
𝑎

𝑋_𝛼𝑎𝑋_𝛽𝑎 | 𝛼 ≤ 𝛽
}
, (4.45)

since 𝑋_𝛼𝑎 are commuting variables. Explicitly, any quadratic invariant polynomial has the
form ∑︁

_,𝛼,𝛽

𝐺_;𝛼𝛽
∑︁
𝑎

𝑋_𝛼𝑎𝑋_𝛽𝑎 =
∑︁

_,𝛼,𝛽,𝑎

𝑁∑︁
𝑖, 𝑗 ,𝑘,𝑙=1

𝐺_;𝛼𝛽𝐶
𝑖 𝑗

_𝛼𝑎
𝐶𝑘𝑙_𝛽𝑎𝑋𝑖 𝑗𝑋𝑘𝑙 . (4.46)

This concludes the proof. □

It immediately follows that

Corollary 10. The most general permutation invariant Gaussian matrix potential is

𝑉 (𝑋) = −
∑︁
𝛼

𝐽𝛼𝑋[𝑁 ],𝛼 +
1
2

∑︁
_,𝑎

∑︁
𝛼𝛽

𝐺_;𝛼𝛽𝑋_𝛼𝑎𝑋_𝛽𝑎 . (4.47)

From now on we will use summation convention for paired upper and lower indices, unless
stated otherwise. Having introduced the variables 𝑋_𝛼𝑎, it will be useful to define the partition
function in terms of them. In fact they give rise to an almost fully decoupled partition function.
We will now prove that

Proposition 24. The permutation invariant Gaussian matrix models have partition function

Z =

∫
d𝑋 e𝐽

𝛼𝑋[𝑁 ],𝛼− 1
2
∑

_,𝑎 𝐺
_;𝛼𝛽𝑋_𝛼𝑎𝑋_𝛽𝑎 , (4.48)

where d𝑋 =
∏
_,𝛼,𝑎 d𝑋_𝛼𝑎 =

∏
𝑖, 𝑗=1 d𝑋𝑖 𝑗 .

Proof. The form of the polynomial in the exponential follows from corollary 10. It remains to
show that ∏

_,𝛼,𝑎

d𝑋_𝛼𝑎 =
∏
𝑖, 𝑗=1

d𝑋𝑖 𝑗 . (4.49)

This is a consequence of both 𝑋_𝛼𝑎 and 𝑋𝑖 𝑗 forming orthonormal bases and therefore the
Jacobian matrix

𝜕𝑋𝑖 𝑗

𝜕𝑋_𝛼𝑎
= 𝐶_𝛼𝑎𝑖 𝑗 , (4.50)
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is an orthogonal matrix. From equation (4.24)∑︁
𝑖, 𝑗

𝐶_𝛼𝑎𝑖 𝑗 𝐶
_′𝛽𝑏
𝑖 𝑗

= 𝛿__′𝛿𝛼𝛽𝛿𝑎𝑏, (4.51)

which should be read as the matrix equation 𝐶𝐶𝑇 = 1. Consequently |det(𝐶) | = 1 and∏
𝑖, 𝑗=1

d𝑋𝑖 𝑗 = |det(𝐶) |
∏
_,𝛼,𝑎

d𝑋_𝛼𝑎 =
∏
_,𝛼,𝑎

d𝑋_𝛼𝑎 . (4.52)

□

We now have all the ingredients necessary to construct the generating function of expectation
values

Definition 30. The generating function is given by

Z[𝐽] =
∫

d𝑋 e𝐽
_𝛼𝑎𝑋_𝛼𝑎− 1

2
∑

_,𝑎 𝐺
_;𝛼𝛽𝑋_𝛼𝑎𝑋_𝛽𝑎 . (4.53)

Standard results on multi-variate Gaussian integration gives

Z[𝐽] =

√︄
(2𝜋)𝑁2∏
_ det

(
𝐺_

) e
1
2
∑

_,𝛼,𝛽,𝑎 𝐽
_𝛼𝑎 (𝐺−1 )_;𝛼𝛽 𝐽

_𝛽𝑎

. (4.54)

Corollary 11. We compute the average as〈
𝑋_,𝛼𝑎

〉
=

1
Z

𝜕

𝜕𝐽_𝛼𝑎
Z[𝐽]

����
𝐽𝛼≠0

= 𝛿_[𝑁 ] (𝐺−1)[𝑁 ];𝛼𝛽𝐽𝛽 (4.55)

where the subscript 𝐽𝛼 ≠ 0 is a reminder to set all 𝐽_𝛼𝑎 except 𝐽𝛼 = 𝐽 [𝑁 ]𝛼 to zero.

Corollary 12. To compute the second moment we need

〈
𝑋_𝛼𝑎𝑋_′𝛽𝑏

〉
=

1
Z

𝜕2

𝜕𝐽_𝛼𝑎𝜕𝐽_
′𝛽𝑏

Z[𝐽]
����
𝐽𝛼≠0

(4.56)

=

(
𝛿_[𝑁 ] (𝐺−1)[𝑁 ];𝛼𝛾𝐽𝛾

) (
𝛿_′ [𝑁 ] (𝐺−1)[𝑁 ];𝛽𝛿𝐽 𝛿

)
+ 𝛿__′ (𝐺−1)_;𝛼𝛽𝛿𝑎𝑏, (4.57)

note that the first term is simply
⟨𝑋_𝛼𝑎⟩

〈
𝑋_′𝛽𝑏

〉
. (4.58)

It is useful to define〈
𝑋_𝛼𝑎𝑋_′𝛽𝑏

〉
𝑐
=

〈
𝑋_𝛼𝑎𝑋_′𝛽𝑏

〉
− ⟨𝑋_𝛼𝑎⟩

〈
𝑋_′𝛽𝑏

〉
= 𝛿__′ (𝐺−1)_;𝛼𝛽𝛿𝑎𝑏 . (4.59)
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This sets us up for the main result in this section.

Proposition 25. The average in the matrix basis is given by〈
𝑋𝑖 𝑗

〉
= 𝐶

[𝑁 ]𝛼
𝑖 𝑗

(𝐺−1)[𝑁 ];𝛼𝛽𝐽𝛽 (4.60)

and 〈
𝑋𝑖 𝑗𝑋𝑘𝑙

〉
𝑐
= (𝐺−1)_;𝛼𝛽𝑄

_;𝛼𝛽
𝑖 𝑗;𝑘𝑙 , (4.61)

where
𝑄
_;𝛼𝛽
𝑖 𝑗:𝑘𝑙 =

∑︁
𝑎

𝐶_𝛼𝑎𝑖 𝑗 𝐶
_𝛽𝑎

𝑘𝑙
=

∑︁
𝑎

𝐶
𝑖 𝑗

_𝛼𝑎
𝐶𝑘𝑙_𝛽𝑎 = 𝑄

𝑖 𝑗;𝑘𝑙
_;𝛼𝛽 . (4.62)

Proof. From equation 4.20 and 4.55 we have〈
𝑋𝑖 𝑗

〉
= 𝐶_𝛼𝑎𝑖 𝑗

〈
𝑋_,𝛼,𝑎

〉
=

∑︁
_

𝐶_𝛼𝑎𝑖 𝑗 𝛿_[𝑁 ] (𝐺−1)_;𝛼𝛽𝐽
𝛽

= 𝐶
[𝑁 ]𝛼
𝑖 𝑗

(𝐺−1)[𝑁 ];𝛼𝛽𝐽𝛽 ,
(4.63)

and from (4.59)〈
𝑋𝑖 𝑗𝑋𝑘𝑙

〉
𝑐
= 𝐶_𝛼𝑎𝑖 𝑗 𝐶

_′𝛽𝑏
𝑘𝑙

〈
𝑋_,𝛼,𝑎𝑋_′ ,𝛽,𝑏

〉
𝑐

= 𝐶_𝛼𝑎𝑖 𝑗 𝐶
_′𝛽𝑏
𝑘𝑙

𝛿__′ (𝐺−1)_;𝛼𝛽𝛿𝑎𝑏 = (𝐺−1)_;𝛼𝛽𝑄
_;𝛼𝛽
𝑖 𝑗;𝑘𝑙 .

(4.64)

□

Remark 3. The Clebsch-Gordan coefficients 𝐶 [𝑁 ]𝛼
𝑖 𝑗

correspond to elements of End𝑆𝑁 (𝑉𝑁 ).
In particular, they are the matrix units for 𝑃1(𝑁) found in example 24. The invariant tensors
𝑄
_;𝛼𝛽
𝑖 𝑗;𝑘𝑙 correspond to elements of End𝑆𝑁 (𝑉⊗2

𝑁
). In fact, they correspond to the matrix units

constructed in section 3.3. These can be found in Appendix B.

Before concluding this section, we comment on equation 4.11, the claimed parameter space of
PIGMM’s. The convergence of the partition function in Theorem 24 is guaranteed for positive
definite matrices 𝐺_ and the generating function (4.54) exists since positive definite matrices
are invertible.

4.2 Observables: Directed graphs and set partitions

In this section we will give two bases of observables. The first one is based on 1-row partition
diagrams and is particularly useful for computing expectation values. The second basis uses
directed graphs and is more amenable to combinatorial counting and construction methods.

To understand the space of observables we must first understand the space of matrix polynomials.
The following proposition gives a description in terms of representations of 𝑆𝑁 .
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Proposition 26. The vector space of polynomials in 𝑋𝑖 𝑗 is isomorphic to

∞⊕
𝑘=0

Sym𝑘 (𝑉⊗2
𝑁 ). (4.65)

Proof. A general matrix polynomial has the form

∞∑︁
𝑘=0

𝑎
𝑖1𝑖1′ ,...,𝑖𝑘 𝑖𝑘′
(𝑘 ) 𝑋𝑖1𝑖1′ . . . 𝑋𝑖𝑘 𝑗𝑘′ , (4.66)

with a finite number of non-zero coefficients 𝑎 (𝑘 ) . Therefore, the space of matrix polynomials
is a graded vector space, with grading given by the degree. For fixed degree 𝑘 the map

𝑋𝑖1𝑖1′ . . . 𝑋𝑖𝑘 𝑗𝑘′ ↦→
1
𝑘!

∑︁
𝜏∈𝑆𝑘
(𝑒𝑖(1)𝜏 ⊗ 𝑒𝑖(1)𝜏′ ) ⊗ · · · ⊗ (𝑒𝑖(𝑘)𝜏 ⊗ 𝑒𝑖(𝑘)𝜏′ ), (4.67)

is an isomorphism from the vector space of degree 𝑘 matrix polynomials to Sym𝑘 (𝑉⊗2
𝑁
).

Applying this map for every degree 𝑘 proves the above theorem.

□

As we discovered in section 3.1, 𝑆𝑁 invariant tensors are closely related to set partitions. For
invariant maps, it was useful to describe the set partitions in terms of 2-row partition diagrams.
For a basis of (𝑉⊗2𝑘

𝑁
)𝑆𝑁 it is natural to consider 1-row partition diagrams. We will use set

partitions 𝜋 ∈ Π{1,...,2𝑘} and diagrams interchangeably. As an example of this correspondence
we have

1|2 = 1 2 ←→
∑︁
𝑖1,𝑖2

𝛿𝑖1𝑖2𝑒𝑖1 ⊗ 𝑒𝑖2 , (4.68)

13|2|4 = 1 2 3 4 ←→
∑︁

𝑖1,𝑖2,𝑖3,𝑖4

𝛿𝑖1𝑖3𝑒𝑖1 ⊗ 𝑒𝑖2 ⊗ 𝑒𝑖3 ⊗ 𝑒𝑖4 , (4.69)

1234 = 1 2 3 4 ←→
∑︁

𝑖1,𝑖2,𝑖3,𝑖4

𝛿𝑖1𝑖2𝛿𝑖2𝑖3𝛿𝑖3𝑖4𝑒𝑖1 ⊗ 𝑒𝑖2 ⊗ 𝑒𝑖3 ⊗ 𝑒𝑖4 . (4.70)

Remark 4. The projection to Sym𝑘 (𝑉⊗2
𝑁
) is given on the r.h.s of (4.67). It identifies distinct

invariant vectors, for example

1 2 3 4 − 1 2 3 4 ↦→ 0. (4.71)

Therefore, a basis of invariant matrix polynomials is labelled by equivalence classes of 1-row
diagrams.

For a set partition(1-row diagram) 𝜋 ∈ Π{1,...,2𝑘} we write 𝑋 (𝜋) for the corresponding matrix
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polynomial and vector in Sym𝑘 (𝑉⊗2
𝑁
), for example

𝑋 (12|3|4) = 𝑋 ( 1 2 3 4 ) =
∑︁

𝑖1,𝑖2,𝑖3,𝑖4

𝛿𝑖1𝑖2𝑋𝑖1𝑖2𝑋𝑖3𝑖4 (4.72)

= 𝑋 ( 1 2 3 4 ). (4.73)

We will now prove that there is a bijection from equivalence classes of 1-row partition diagrams
and invariant matrix polynomials. For this, we will use an intermediate bijection, between
equivalence classes of 1-row partition diagrams and directed graphs. We will then prove that
directed graphs are in bijection with invariant matrix polynomials.

Proposition 27. Let G𝑘 be the set of unlabelled directed graphs with 𝑘 edges. There exists a
surjective map

𝑃 :Π{1,...,2𝑘} → G𝑘 (4.74)

𝜋 ↦→ 𝐺 (4.75)

with the property that the inverse image

𝑃−1(𝐺) = {𝜋 ∈ Π{1,...,2𝑘} | 𝑃(𝜋) = 𝐺} (4.76)

satisfies
𝑋 (𝜋) = 𝑋 (𝜋′) (4.77)

for all pairs 𝜋, 𝜋′ ∈ 𝑃−1(𝐺).

Proof. We describe a directed graph 𝐺 ∈ G𝑘 with 𝑙 vertices by a collection of 𝑘 pairs (𝑖, 𝑗) ∈
{1, . . . , 𝑙} × {1, . . . , 𝑙}. Each ordered pair corresponds to an edge from the vertex 𝑖 to the vertex
𝑗 .

The graph 𝐺 = 𝑃(𝜋) is constructed as follows. Given a set partition 𝜋 = {𝜋1, . . . , 𝜋𝑙} ∈
Π{1,...,2𝑘} we define an ordered list of blocks 𝜋𝑜 = (𝜋1, . . . , 𝜋𝑙) (for example any total ordering
on the set of subsets of {1, . . . , 2𝑘} will work). The ordered list 𝜋𝑜 defines a map

𝑝 : {1, . . . , 2𝑘} → {1, . . . , 𝑙} 𝑝(𝑖) = 𝑗 if 𝑖 is in 𝜋 𝑗 . (4.78)

The collection
𝐺 = 𝑃(𝜋) = (𝑝(1), 𝑝(2)), . . . , (𝑝(2𝑘 − 1), 𝑝(2𝑘)) (4.79)

of pairs is a graph 𝐺 ∈ G𝑘 with 𝑙 vertices, corresponding to the set partition 𝜋. Observe that
re-ordering the blocks in 𝜋𝑜 corresponds to relabelling the vertices in 𝐺 (𝜋).

For this to be a surjection there should exist at least one 𝜋 for every graph 𝐺. Let 𝐺 ∈ G𝑘 with
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𝑙 vertices be described by a collection of 𝑘 pairs. We want to match these with the set of pairs
(1, 2), . . . , (2𝑘 − 1, 2𝑘) to define a map 𝑝 as above. To do this, pick an ordering of the pairs in
𝐺 and label the entries of the ordered pairs as

(𝑖1, 𝑖2), . . . , (𝑖2𝑘−1, 𝑖2𝑘) (4.80)

Now define the function
𝑝(𝑟) = 𝑖𝑟 , 𝑟 = 1, . . . , 2𝑘. (4.81)

This corresponds to the set partition made out of blocks 𝜋 𝑗 with the property

𝜋 𝑗 = {𝑟 ∈ {1, . . . , 2𝑘} | 𝑝(𝑟) = 𝑗}. (4.82)

Therefore, at least one 𝜋 = 𝜋1 | . . . |𝜋𝑙 ∈ Π{1,...,2𝑘} exists for every 𝐺 ∈ G𝑘 .

Lastly, note that two set partitions 𝜋, 𝜋′ give rise to the same graph 𝐺 if there exists 𝜏 ∈
diag(𝑆𝑘) ⊂ 𝑆𝑘 × 𝑆𝑘 ⊂ 𝑆2𝑘 permuting the 𝑘 pairs such that

(𝑝((1)𝜏), 𝑝((2)𝜏)), . . . , (𝑝((2𝑘 − 1)𝜏), 𝑝((2𝑘)𝜏))

= (𝑝′(1), 𝑝′(2)), . . . , (𝑝′(2𝑘 − 1), 𝑝′(2𝑘)) = 𝑃(𝜋′). (4.83)

This is exactly the relation that makes two set partitions satisfy 𝑋 (𝜋) = 𝑋 (𝜋′). □

Example 25. To illustrate this, we consider some simple examples for 𝑘 = 2. First, let
𝜋 = 12|3|4 and pick 𝜋𝑜 = (𝜋1, 𝜋2, 𝜋3) = ({1, 2}, {3}, {4}) such that

𝐺 = 𝑃(12|3|4) = 𝑃( 1 2 3 4 ) = {(𝑝(1), 𝑝(2)), (𝑝(3), 𝑝(4))} = {(1, 1), (2, 3)}. (4.84)

Had we chosen 𝜋𝑜 = ({2}, {3}, {1, 2}) we would find

𝐺 = 𝑃(12|3|4) = {(𝑝(1), 𝑝(2)), (𝑝(3), 𝑝(4))} = {(3, 3), (1, 2)}. (4.85)

As unlabelled directed graphs these are the same.

Example 26. We give an example of the opposite construction. Let 𝐺 be the graph described
by the set of pairs

𝐺 = {(1, 1), (2, 3), (2, 4)}. (4.86)

We order them as written above. This gives the map

𝑝(1) = 1, 𝑝(2) = 1, 𝑝(3) = 2, 𝑝(4) = 3, 𝑝(5) = 2, 𝑝(6) = 4. (4.87)
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The corresponding blocks of 𝜋 are 𝜋1 = {1, 2}, 𝜋2 = {3, 5}, 𝜋3 = {4}, 𝜋4 = {6} or

𝜋 = 1 2 3 4 5 6 . (4.88)

Had we ordered the pairs as (2, 3), (1, 1), (2, 4) we get the map

𝑝(1) = 2, 𝑝(2) = 3, 𝑝(3) = 1, 𝑝(4) = 1, 𝑝(5) = 2, 𝑝(6) = 4 (4.89)

and set partition with blocks 𝜋′1 = {3, 4}, 𝜋′2 = {1, 5}, 𝜋′3 = {2}, 𝜋′4 = {6} or

𝜋′ =
1 2 3 4 5 6

. (4.90)

However, these are equivalent in the sense of 𝑋 (𝜋) = 𝑋 (𝜋′) since we can swap the vertices 1, 2
with the vertices 3, 4 in the 1-row diagrams.

The space of degree 𝑘 observables is the space of invariants under the action of 𝑆𝑁 × 𝑆𝑘 on
𝑉⊗2𝑘
𝑁

. We denote this subspace of invariants by [𝑉⊗2𝑘
𝑁
]𝑆𝑁×𝑆𝑘 . Define the following projectors

on 𝑉⊗2𝑘
𝑁

𝑃[𝑁 ] (𝑒𝑖1 ⊗ 𝑒𝑖1′ ⊗ . . . ⊗ 𝑒𝑖𝑘 ⊗ 𝑒𝑖𝑘′ )

=
1
𝑁!

∑︁
𝜎∈𝑆𝑁

𝑒 (𝑖1 )𝜎 ⊗ 𝑒 (𝑖1′ )𝜎 ⊗ · · · ⊗ 𝑒 (𝑖𝑘 )𝜎 ⊗ 𝑒 (𝑖𝑘′ )𝜎 ,

(4.91)

𝑃[𝑘 ] (𝑒𝑖1 ⊗ 𝑒𝑖1′ ⊗ . . . ⊗ 𝑒𝑖𝑘 ⊗ 𝑒𝑖𝑘′ )

=
1
𝑘!

∑︁
𝜏∈𝑆𝑘

𝑒𝑖(1)𝜏 ⊗ 𝑒𝑖(1)𝜏′ ⊗ · · · ⊗ 𝑒𝑖(𝑘)𝜏 ⊗ 𝑒𝑖(𝑘)𝜏′ .

(4.92)

Then
dim [𝑉⊗2𝑘

𝑁 ]𝑆𝑁×𝑆𝑘 = Tr𝑉⊗2𝑘
𝑁
(𝑃[𝑁 ]𝑃[𝑘 ]) (4.93)

and we will prove that

Proposition 28. Let G𝑘,𝑁 be the set of unlabelled directed graphs with 𝑘 edges and 𝑁 vertices,
then

dim [𝑉⊗2𝑘
𝑁 ]𝑆𝑁×𝑆𝑘 =

��G𝑘,𝑁 ��. (4.94)

Proof. A directed graph with 𝑙 labelled vertices and 𝑘 labelled edges corresponds to an ordered
list of 𝑘 pairs (𝑖𝑎, 𝑖𝑎′) ∈ {1, . . . , 𝑙}×2 with 𝑎 ∈ {1, . . . , 𝑘}. Unlabelled directed graphs are in
one-to-one correspondence with orbits of such sets under the action

(𝑖𝑎, 𝑖𝑎′) ↦→ ((𝑖𝑎)𝜎, (𝑖𝑎′)𝜎), 𝜎 ∈ 𝑆𝑙 (4.95)
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and
(𝑖𝑎, 𝑖𝑎′) ↦→ (𝑖 (𝑎)𝜏 , 𝑖 (𝑎) ′𝜏) 𝜏 ∈ 𝑆𝑘 . (4.96)

By Burnside’s lemma the number of orbits is equal to the average number of fixed points. The
ordered list is fixed by 𝜎 ∈ 𝑆𝑙, 𝜏 ∈ 𝑆𝑘 if

(𝑖𝑎, 𝑖𝑎′) = ((𝑖 (𝑎)𝜏)𝜎, (𝑖 (𝑎) ′𝜏)𝜎), ∀𝑎 ∈ {1, . . . , 𝑘}, (4.97)

or equivalently
𝑘∏
𝑎=1

𝛿𝑖𝑎 , (𝑖(𝑎)𝜏 )𝜎𝛿𝑖𝑎′ , (𝑖(𝑎) ′𝜏 )𝜎 = 1. (4.98)

Therefore, the number of orbits is equal to

��G𝑘,𝑙 �� = 𝑙∑︁
𝑖𝑎 ,𝑖𝑎′=1

1
𝑙!

1
𝑘!

∑︁
𝜎∈𝑆𝑙

∑︁
𝜏∈𝑆𝑘

𝑘∏
𝑎=1

𝛿𝑖𝑎 , (𝑖(𝑎)𝜏 )𝜎𝛿𝑖𝑎′ , (𝑖(𝑎) ′𝜏 )𝜎 . (4.99)

On the other hand, this is equal to

Tr𝑉⊗2𝑘
𝑙
(𝑃[𝑙 ]𝑃[𝑘 ]) (4.100)

for 𝑙 = 𝑁 since the trace can be computed as

𝑁∑︁
𝑖𝑎 ,𝑖𝑎′=1

(𝑒𝑖1 ⊗ 𝑒𝑖1′ ⊗ · · · ⊗ 𝑒𝑖𝑘 ⊗ 𝑒𝑖𝑘′ , 𝑃[𝑁 ]𝑃[𝑘 ]𝑒𝑖1 ⊗ 𝑒𝑖1′ ⊗ · · · ⊗ 𝑒𝑖𝑘 ⊗ 𝑒𝑖𝑘′ ) (4.101)

=
1
𝑁!

1
𝑘!

∑︁
𝜎∈𝑆𝑁

∑︁
𝜏∈𝑆𝑘

𝑁∑︁
𝑖𝑎 ,𝑖𝑎′=1

𝑘∏
𝑎=1
(𝑒𝑖𝑎 , 𝑒 (𝑖(𝑎)𝜏 )𝜎) (𝑒𝑖𝑎′ , 𝑒 (𝑖(𝑎) ′𝜏 )𝜎) (4.102)

=
1
𝑁!

1
𝑘!

∑︁
𝜎∈𝑆𝑁

∑︁
𝜏∈𝑆𝑘

𝑁∑︁
𝑖𝑎 ,𝑖𝑎′=1

𝑘∏
𝑎=1

𝛿𝑖𝑎 , (𝑖(𝑎)𝜏 )𝜎𝛿𝑖𝑎′ , (𝑖(𝑎) ′𝜏 )𝜎 . (4.103)

To conclude we have found that��G𝑘,𝑁 �� = Tr𝑉⊗2𝑘
𝑁
(𝑃[𝑁 ]𝑃[𝑘 ]) = dim [𝑉⊗2𝑘

𝑁 ]𝑆𝑁×𝑆𝑘 . (4.104)

□

The previous results gives an immediate corollary on the stability of the dimension of the space
of observables.

Corollary 13. Since the maximum number of vertices that can be occupied by 𝑘 edges is equal
to 2𝑘 we have ��G𝑘,2𝑘 �� = ��G𝑘,2𝑘+𝑝 ��, (4.105)
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for all non-negative integers 𝑝. Consequently

dim [𝑉⊗2𝑘
𝑁 ]𝑆𝑁×𝑆𝑘 , (4.106)

stabilizes at 𝑁 = 2𝑘 .

The trace in ��G𝑘,𝑁 �� = Tr𝑉⊗2𝑘
𝑁
(𝑃[𝑁 ]𝑃[𝑘 ]) (4.107)

was computed in [21, Appendix B]. It was found that

��G𝑘,𝑁 �� = ∑︁
𝑝⊢𝑁

∑︁
𝑞⊢𝑘

1∏𝑁
𝑖=1 𝑖

𝑝𝑖 𝑝𝑖!
∏𝑘
𝑖=1 𝑖

𝑞𝑖𝑞𝑖!

𝑘∏
𝑖=1

(∑︁
𝑙 |𝑖
𝑙 𝑝𝑙

)2𝑞𝑖 .

The sums are over 𝑙 |𝑖, the set of divisors of 𝑖, and partitions 𝑝 = {𝑝1, 𝑝2, . . . , 𝑝𝑁 }, 𝑞 =

{𝑞1, 𝑞2, . . . , 𝑞𝑘} obeying
∑
𝑖 𝑖𝑝𝑖 = 𝑁 ,

∑
𝑖 𝑖𝑞𝑖 = 𝑘 respectively. A more detailed derivation of

this result is contained within the appendices of [21]. In Table 4.1 we give
��G𝑘,𝑁=2𝑘

�� for various
𝑘 .

Table 4.1: Number of invariants contained within Sym𝑘 (𝑉⊗2
𝑁
)

𝑘
��G𝑘,𝑁=2𝑘

��
1 2
2 11
3 52
4 296
5 1724
6 11060

In section 4.4 we give a group theoretical algorithm for enumerating and counting directed
graphs. Having introduced the equivalence classes of 1-row diagrams, we can describe a
combinatorial algorithm for computing expectation values of invariant polynomials.

4.3 Expectation values: Combinatorial algorithms

In this section we will give a combinatorial algorithm for computing expectation values ⟨𝑋 (𝜋)⟩,
for general permutation invariant matrix polynomials labelled by 𝜋 ∈ Π{1,...,2𝑘} .

As previously mentioned, expectation values can be computed exactly through Wick’s theorem
which says

Theorem 18 (Wick’s theorem). Consider a Gaussian distribution with mean/1-point func-
tion/expectation value

〈
𝑋𝑖 𝑗

〉
and covariance/two-point function/propagator

〈
𝑋𝑖 𝑗𝑋𝑘𝑙

〉
𝑐
. For

𝜋 = 𝜋1 | . . . |𝜋𝑏 a partition of the set {(1, 2), . . . , (2𝑘 − 1, 2𝑘)} with parts of size one or two,
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define

⟨𝑋⟩𝜋𝑖 =

〈
𝑋𝑖𝑎𝑖𝑏

〉
for (𝑎, 𝑏) ∈ 𝜋𝑖 , if |𝜋𝑖 | = 1,〈

𝑋𝑖𝑎𝑖𝑏𝑋𝑖𝑐𝑖𝑑
〉
𝑐

for (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝜋𝑖 if |𝜋𝑖 | = 2.
(4.108)

The expectation value of a product of matrix elements is equal to

〈
𝑋𝑖1𝑖2 . . . 𝑋𝑖2𝑘−1𝑖2𝑘

〉
=

∑︁
𝜋

| 𝜋 |∏
𝑖=1
⟨𝑋⟩𝜋𝑖 , (4.109)

where the sum is over all set partitions of the kind mentioned above.

Example 27. The first non-trivial example is 𝑘 = 3. Note that there are 4 set partitions of
{(1, 2), (3, 4), (5, 6)} with parts of size one or two:

𝜋 = (1, 2) | (3, 4) | (5, 6), 𝜋 = (1, 2) (3, 4) | (5, 6) (4.110)

𝜋 = (1, 2) (5, 6) | (3, 4), 𝜋 = (3, 4) (5, 6) | (1, 2). (4.111)

Thus, 〈
𝑋𝑖1𝑖2𝑋𝑖3𝑖4𝑋𝑖5𝑖6

〉
=

〈
𝑋𝑖1𝑖2

〉 〈
𝑋𝑖3𝑖4

〉 〈
𝑋𝑖5𝑖6

〉
+

〈
𝑋𝑖1𝑖2𝑋𝑖3𝑖4

〉
𝑐

〈
𝑋𝑖5𝑖6

〉
+

〈
𝑋𝑖1𝑖2𝑋𝑖5𝑖6

〉
𝑐

〈
𝑋𝑖3𝑖4

〉
+

〈
𝑋𝑖3𝑖4𝑋𝑖5𝑖6

〉
𝑐

〈
𝑋𝑖1𝑖2

〉
.

(4.112)

4.3.1 1-row diagrams from 2-row diagrams. Each term on the r.h.s. of (4.109) can be
expanded in terms of Clebsch-Gordan coefficients and invariant tensors 𝑄_;𝛼𝛽

𝑖 𝑗:𝑘𝑙 using (4.63),
(4.64). We now connect these invariant tensors to the matrix units constructed in 3.3 and give
them a 1-row partition interpretation.

Clebsch-Gordan coefficients 𝐶 [𝑁 ]𝛼
𝑖 𝑗

correspond to matrix units of 𝑃1(𝑁) since

Hom𝑆𝑁 (𝑉⊗2
𝑁 ,C) � End𝑆𝑁 (𝑉𝑁 ), (4.113)

as vector spaces. The matrix units are (see Example 24)

𝑄 [𝑁 ] =
1
𝑁

, (4.114)

𝑄 [𝑁−1,1] = − 1
𝑁

. (4.115)

The corresponding Clebsch-Gordan coefficients are written as linear combinations of 1-row
partitions. We define

𝔳1 = ( [𝑁], [𝑁−1], [𝑁], [𝑁−1], [𝑁]), 𝔳2 = ( [𝑁], [𝑁−1], [𝑁−1, 1], [𝑁−1], [𝑁]) (4.116)
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then

𝐶
[𝑁 ],𝔳1
𝑖 𝑗

=
1
𝑁

(4.117)

𝐶
[𝑁 ],𝔳2
𝑖 𝑗

=
1

√
𝑁 − 1

− 1
𝑁
√
𝑁 − 1

. (4.118)

The translation between 2-row diagrams and 1-row diagrams is defined by placing the top row
to the right of the bottom row. The difference in normalization comes from demanding that the
Clebsch-Gordan coefficients define vectors with norm 1. Note that the normalization constants
are √︃

Tr𝑉𝑁
(𝑄 [𝑁 ]) = 1, (4.119)√︃

Tr𝑉𝑁
(𝑄 [𝑁−1,1]) =

√︃
dim𝑉[𝑁−1,1] =

√
𝑁 − 1. (4.120)

Similarly for the invariant tensors of degree two. Recall that matrix units 𝑄_
𝛼𝛽

of 𝑃2(𝑁) have
an expansion in the diagram basis. We write the corresponding element of End𝑆𝑁 (𝑉⊗2

𝑁
) as

(𝑄_𝛼𝛽)
𝑖3𝑖4
𝑖1𝑖2
. (4.121)

This is identified with the invariant tensor of degree two

𝑄
_;𝛼𝛽
𝑖1𝑖2:𝑖3𝑖4 . (4.122)

The diagrammatic translation between the two is again defined by placing the top row to the
right of the bottom row. For example

↦→ , ↦→ (4.123)

With this translation, the invariant tensors are formal linear combinations of 1-row diagrams.

Wick’s theorem (4.109) includes tensor products of invariant tensors. Thus, it is natural to
define a tensor product on the space of 1-row diagrams. The tensor product 𝑑 ⊗ 𝑑′ of two 1-row
diagrams is the union of the 1-row diagrams. For example

⊗ = . (4.124)

We remark that at the level of set partitions, this procedure requires a relabelling in the second
set partitions. Considering the same example but in set partition language, we have

13|2|4 ⊗ 12|3|4 = 13|56|2|4|7|8. (4.125)

This allows us to expand Wick’s theorem in terms linear combinations of tensor products of
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1-row diagrams (for example at degree three (4.112), using (4.63), (4.64)). That is, we can
write 〈

𝑋𝑖1𝑖2 . . . 𝑋𝑖2𝑘−1𝑖2𝑘

〉
=

∑︁
𝜋∈Π[2𝑘 ]

𝑐𝜋 (𝑁)𝜋, (4.126)

where 𝜋 is a 1-row partition diagram with 2𝑘 vertices, and 𝑐𝜋 (𝑁) are coefficients that are
computed through Wick’s theorem. Examples of this expansion are given below.

4.3.2 Join of 1-row diagrams. We now describe the different contributions to expectation
values of observables in terms of operations on 1-row diagrams. We begin by considering a toy
example. Consider the expansion of 〈

𝑋𝑖1𝑖2𝑋𝑖3𝑖4𝑋𝑖5𝑖6
〉

(4.127)

using Equation 4.126 and suppose it contained a tensor

𝛿𝑖1𝑖2𝛿𝑖2𝑖3𝛿𝑖4𝑖5 ←→ . (4.128)

As an example, we want to compute its contribution to the expectation value〈∑︁
𝑖, 𝑗

𝑋𝑖𝑖𝑋𝑖 𝑗𝑋 𝑗 𝑗

〉
= ⟨𝑋 ( )⟩ . (4.129)

Writing ∑︁
𝑖, 𝑗

𝑋𝑖𝑖𝑋𝑖 𝑗𝑋 𝑗 𝑗 =
∑︁
𝑖1,...𝑖6

𝛿𝑖1𝑖2𝛿𝑖2𝑖3𝛿𝑖4𝑖5𝛿𝑖5𝑖6𝑋𝑖1𝑖2𝑋𝑖3𝑖4𝑋𝑖5𝑖6 , (4.130)

the contribution corresponds to∑︁
𝑖1,...𝑖6

𝛿𝑖1𝑖2𝛿𝑖2𝑖3𝛿𝑖4𝑖5𝛿𝑖5𝑖6𝛿𝑖1𝑖2𝛿𝑖2𝑖3𝛿𝑖4𝑖5 = 𝑁
2. (4.131)

Our algorithm is based on the simple observation that the power of 𝑁 on the r.h.s. is equal to
the number of components in the join

∨ = = . (4.132)

We give the general definition.

Definition 31 (Join). The join 𝜋 ∨ 𝜋′ of two 1-row diagrams 𝜋, 𝜋′ ∈ Π[𝑘 ] is constructed as
follows. Place 𝜋 above 𝜋′ and connect the 𝑖th vertex of 𝜋 to the 𝑖th vertex of 𝜋′. Simplify the
diagram into a 1-row diagram 𝜋 ∨ 𝜋′ where vertex 𝑖 is connected to vertex 𝑗 if they are in the
same part of the above 2-row diagram.

Given this observation and (4.126) we have the following result.
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Corollary 14. Let 𝜋 ∈ Π[2𝑘 ] be a 1-row diagram and 𝑋 (𝜋) the corresponding polynomial.
Then the expectation value

⟨𝑋 (𝜋)⟩ =
∑︁

𝜋′∈Π[2𝑘 ]

𝑐𝜋′𝑁
| 𝜋∨𝜋′ | , (4.133)

where |𝜋 ∨ 𝜋′ | is the number of components in the join of 𝜋 and 𝜋′.

The Sage code implementing this algorithm is detailed in Appendix C. Instead of explaining this
implementation here we will exemplify the algorithm outlined above for the cases of 𝑘 = 1, 2.

4.3.3 Example 1. For 𝑘 = 1 the only contribution to the expectation value comes from
Clebsch-Gordan coefficients

〈
𝑋𝑖1𝑖2

〉
= 𝐽𝛽

(
(𝐺−1)[𝑁 ];𝔳1𝛽

𝑁
1 2 +

(𝐺−1)[𝑁 ];𝔳2𝛽√
𝑁 − 1

1 2 −
(𝐺−1)[𝑁 ];𝔳2𝛽

𝑁
√
𝑁 − 1

1 2

)
. (4.134)

Therefore, Wick’s theorem gives

𝑐1 |2(𝑁) =
𝐽𝛽

𝑁

(
(𝐺−1)[𝑁 ];𝔳1𝛽 −

(𝐺−1)[𝑁 ];𝔳2𝛽√
𝑁 − 1

)
(4.135)

𝑐12(𝑁) =
𝐽𝛽 (𝐺−1)[𝑁 ];𝔳2𝛽√

𝑁 − 1
. (4.136)

This allows us to compute the expectation value of 𝑋 (1|2)

⟨𝑋 (1|2)⟩ = 𝑐1 |2(𝑁)𝑁 |1 |2∨1 |2 | + 𝑐12(𝑁)𝑁 |1 |2∨12 | = 𝑐1 |2(𝑁)𝑁2 + 𝑐12(𝑁)𝑁1 (4.137)

= 𝐽𝛽𝑁 (𝐺−1)[𝑁 ];𝔳1𝛽 (4.138)

Similarly for 𝑋 (12)

⟨𝑋 (12)⟩ = 𝑐1 |2(𝑁)𝑁 |12∨1 |2 | + 𝑐12(𝑁)𝑁 |12∨12 | = 𝑐1 |2(𝑁)𝑁1 + 𝑐12(𝑁)𝑁1 (4.139)

= 𝐽𝛽

(
(𝐺−1)[𝑁 ];𝔳1𝛽 + (𝑁 − 1)

(𝐺−1)[𝑁 ];𝔳2𝛽√
𝑁 − 1

)
. (4.140)

In what follows, it will be useful to define

`1 = 𝐽𝛼 (𝐺−1)[𝑁 ],𝔳1,𝛼, `2 = 𝐽𝛼 (𝐺−1)[𝑁 ],𝔳2,𝛼, (4.141)

such that
⟨𝑋 (12)⟩ = `1 +

√
𝑁 − 1`2 (4.142)

4.3.4 Example 2. The case of 𝑘 = 2 is more interesting because the tensor product of 1-row
diagrams enters the computation. We will not compute the full contributions here, but from
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Wick’s theorem we have a contribution 〈
𝑋𝑖1𝑖2

〉 〈
𝑋𝑖3𝑖4

〉
(4.143)

to the degree two expectation value. We will study this contribution because it showcases the
tensor product of 1-row diagrams. In the previous section we gave the diagrammatic expansion
of the degree one expectation values. The tensor product we want to compute is(
`1
𝑁

1 2 + `2√
𝑁 − 1

1 2 − `2

𝑁
√
𝑁 − 1

1 2

)
⊗

(
`1
𝑁

1 2 + `2√
𝑁 − 1

1 2 − `2

𝑁
√
𝑁 − 1

1 2

)

=

©«

`1`1

𝑁2
1 2 3 4 + `1`2

𝑁
√
𝑁 − 1

1 2 3 4 − `1`2

𝑁2
√
𝑁 − 1

1 2 3 4

+ `1`2

𝑁
√
𝑁 − 1

1 2 3 4 + `2`2
𝑁 − 1

1 2 3 4 − `2`2
𝑁 (𝑁 − 1)

1 2 3 4

− `1`2

𝑁2
√
𝑁 − 1

1 2 3 4 − `2`2
𝑁 (𝑁 − 1)

1 2 3 4 + `2`2

𝑁2𝑁 − 1
1 2 3 4

ª®®®®®®®¬
(4.144)

Therefore, we find that it contributes to 𝑐12 |34(𝑁) by

𝐽𝛼𝐽𝛽
`2`2
𝑁 − 1

(4.145)

and 𝑐1 |2 |3 |4(𝑁) by
1
𝑁2

(
`1 −

`2√
𝑁 − 1

)2
(4.146)

Having computed some of the 𝑐𝜋 (𝑁), we can compute their contributions to expectation values
of degree two observables. For example 𝑋 (1|23|4) receives contributions from the above given
by

𝑐12 |34(𝑁)𝑁 |1 |23 |4∨12 |34 | + 𝑐1 |2 |3 |4(𝑁)𝑁 |1 |23 |4∨1 |2 |3 |4 | = 𝑐12 |34(𝑁)𝑁1 + 𝑐1 |2 |3 |4(𝑁)𝑁3. (4.147)

4.3.5 Normalization In the next subsection we will compare the results of this algorithm to
the previously know results [1, 21, 22]. Before this, we need to fix the normalization of the
𝑃2(𝑁) matrix units, or equivalently the constants (𝐺−1)_;𝛼𝛽 multiplying them.

To fix the normalization, consider the combination∑︁
𝑖, 𝑗 ,𝑘,𝑙

〈
𝑋𝑖 𝑗𝑋𝑘𝑙

〉
𝑐

〈
𝑋𝑘𝑙𝑋𝑖 𝑗

〉
𝑐
= (𝐺−1)_,𝛼𝛽 (𝐺−1)_′;𝛼′𝛽′𝑄_;𝛼𝛽

𝑖 𝑗;𝑘𝑙𝑄
_′;𝛼′𝛽′
𝑘𝑙;𝑖 𝑗 . (4.148)

From the normalization condition (4.51) we find∑︁
𝑖, 𝑗 ,𝑘,𝑙

〈
𝑋𝑖 𝑗𝑋𝑘𝑙

〉
𝑐

〈
𝑋𝑘𝑙𝑋𝑖 𝑗

〉
𝑐
=

∑︁
_,𝛼,𝛽

(𝐺−1)_,𝛼𝛽 (𝐺−1)_,𝛼𝛽 dim𝑉_, (4.149)
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where we have used the fact that parameter matrices are symmetric to put it into a sum of
squares form.

We will now compute this using the matrix units in Appendix B. Matching the factor of dim𝑉_

fixes the normalization up to signs. To keep equations short, we introduce the following
short-hands for vacillating tableaux of length 𝑘 = 2

𝔳1 = ( [𝑁], [𝑁 − 1], [𝑁], [𝑁 − 1], [𝑁]), (4.150)

𝔳2 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 1], [𝑁]) (4.151)

𝔳3 = ( [𝑁], [𝑁 − 1], [𝑁], [𝑁 − 1], [𝑁 − 1, 1]), (4.152)

𝔳4 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 1], [𝑁 − 1, 1]) (4.153)

𝔳5 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 2, 1], [𝑁 − 1, 1]), (4.154)

𝔳6 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 2, 1], [𝑁 − 2, 2]), (4.155)

𝔳7 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 2, 1], [𝑁 − 2, 1, 1]). (4.156)

In this notation, computing the above combination of correlators using the matrix units in B
gives

1
𝑁2 (𝐺

−1)2[𝑁 ];𝔳1𝔳1
+ (𝑁 − 1)

2𝑁2 (𝐺
−1)2[𝑁 ];𝔳2𝔳1

+ (𝑁 − 1)2
𝑁2 (𝐺−1)2[𝑁 ];𝔳2𝔳2

+

(𝑁 − 1)
𝑁2 (𝐺−1)2[𝑁−1,1];𝔳3𝔳3

+ (𝑁 − 1)2
2𝑁2 (𝐺−1)2[𝑁−1,1];𝔳4𝔳3

+ (𝑁 − 1)3
𝑁2 (𝐺−1)2[𝑁−1,1];𝔳4𝔳4

+

(𝑁 − 2)
2
(𝐺−1)2[𝑁−1,1];𝔳5𝔳3

+ (𝑁 − 1) (𝑁 − 2)
2

(𝐺−1)2[𝑁−1,1];𝔳5𝔳4
+ 1
(𝑁 − 1) (𝐺

−1)2[𝑁−1,1];𝔳5𝔳5
+

𝑁 (𝑁 − 3)
2

(𝐺−1)2[𝑁−2,2];𝔳6𝔳6
+ (𝑁 − 1) (𝑁 − 2)

2
(𝐺−1)2[𝑁−2,1,1];𝔳7𝔳7

.

(4.157)
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Therefore, the correct normalization of matrix units is given by

𝑄
[𝑁 ]
𝔳1𝔳1 ↦→ 𝑁𝑄

[𝑁 ]
𝔳1𝔳1

𝑄
[𝑁 ]
𝔳2𝔳1 ↦→ 𝑁

√︂
2

𝑁 − 1
𝑄
[𝑁 ]
𝔳2𝔳1

𝑄
[𝑁 ]
𝔳2𝔳2 ↦→

𝑁

(𝑁 − 1)𝑄
[𝑁 ]
𝔳2𝔳2

𝑄
[𝑁−1,1]
𝔳3𝔳3 ↦→ 𝑁𝑄

[𝑁−1,1]
𝔳3𝔳3

𝑄
[𝑁−1,1]
𝔳4𝔳3 ↦→ 𝑁

√︂
2

𝑁 − 1
𝑄
[𝑁−1,1]
𝔳4𝔳3

𝑄
[𝑁−1,1]
𝔳4𝔳4 ↦→ 𝑁

(𝑁 − 1)𝑄
[𝑁−1,1]
𝔳4𝔳4

𝑄
[𝑁−1,1]
𝔳5𝔳3 ↦→

√︄
2(𝑁 − 1)
(𝑁 − 2) 𝑄

[𝑁−1,1]
𝔳5𝔳3

𝑄
[𝑁−1,1]
𝔳5𝔳4 ↦→

√︂
2

𝑁 − 2
𝑄
[𝑁−1,1]
𝔳5𝔳4

𝑄
[𝑁−1,1]
𝔳5𝔳5 ↦→ (𝑁 − 1)𝑄 [𝑁−1,1]

𝔳5𝔳5 .

(4.158)

while the _ = [𝑁 − 2, 2], [𝑁 − 2, 1, 1] units are correctly normalized (up to signs) as stated
in Appendix B. Alternatively, the same transformations can be performed on the parameters
(𝐺−1)_;𝛼𝛽.

4.3.6 Matching results Having fixed the normalizations in the previous subsection, we can
now compare the outputs of our algorithm to previous results. Since we are using a different
orthonormal basis for the multiplicity space compared to [22], we should expect the coupling
constants to be related by a change of basis. We will now compute the set of degree two
expectation values necessary to set up a system of linear equations for finding the change of
basis by comparing the results of [22, Section 3].

Computing the expectation value ⟨𝑋 (13|24)⟩ = ∑
𝑖, 𝑗

〈
𝑋𝑖 𝑗𝑋𝑖 𝑗

〉
using the Sage code gives

`2
1 + `

2
2 + (𝐺

−1)[𝑁 ];𝔳1𝔳1 + (𝐺−1)[𝑁 ];𝔳2𝔳2 + (𝑁 − 1) (𝐺−1)[𝑁−1,1];𝔳3𝔳3 (4.159)

+ (𝑁 − 1) (𝐺−1)[𝑁−1,1];𝔳4𝔳4 + (𝑁 − 1) (𝐺−1)[𝑁−1,1];𝔳5𝔳5 (4.160)

+ 𝑁 (𝑁 − 3)
2

(𝐺−1)[𝑁−2,2];𝔳6𝔳6 −
(𝑁 − 1) (𝑁 − 2)

2
(𝐺−1)[𝑁−2,1,1];𝔳7𝔳7 . (4.161)
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The expectation value ⟨𝑋 (14|23)⟩ = ∑
𝑖, 𝑗

〈
𝑋𝑖 𝑗𝑋 𝑗𝑖

〉
is equal to

`2
1 + `

2
2 + (𝐺

−1)[𝑁 ];𝔳1𝔳1 + (𝐺−1)[𝑁 ];𝔳2𝔳2 +
√︁

2(𝑁 − 1) (𝐺−1)[𝑁−1,1];𝔳4𝔳3 (4.162)

+
√︁

2(𝑁 − 1) (𝑁 − 2) (𝐺−1)[𝑁−1,1];𝔳5𝔳3 −
√︁

2(𝑁 − 2) (𝐺−1)[𝑁−1,1];𝔳5𝔳4 (4.163)

+
√︁

2(𝑁 − 2) (𝐺−1)[𝑁−1,1];𝔳5𝔳5 (4.164)

+ 𝑁 (𝑁 − 3)
2

(𝐺−1)[𝑁−2,2];𝔳6𝔳6 +
(𝑁 − 1) (𝑁 − 2)

2
(𝐺−1)[𝑁−2,1,1];𝔳7𝔳7 . (4.165)

The expectation value ⟨𝑋 (123|4)⟩ = ∑
𝑖, 𝑗

〈
𝑋𝑖𝑖𝑋𝑖 𝑗

〉
is equal to

`2
1 +
√
𝑁 − 1`1`2 + (𝐺−1)[𝑁 ];𝔳1𝔳1 +

√︂
𝑁 − 1

2
(𝐺−1)[𝑁 ];𝔳2𝔳1 (4.166)

+
√︂
𝑁 − 1

2
(𝑁 − 1) (𝐺−1)[𝑁−1,1];𝔳4𝔳3 + (𝑁 − 1) (𝐺−1)[𝑁−1,1];𝔳3𝔳3 (4.167)

The expectation value ⟨𝑋 (124|3)⟩ = ∑
𝑖, 𝑗

〈
𝑋𝑖𝑖𝑋 𝑗𝑖

〉
is equal to

`2
1 +
√
𝑁 − 1`1`2 + (𝐺−1)[𝑁 ];𝔳1𝔳1 +

√︂
𝑁 − 1

2
(𝐺−1)[𝑁 ];𝔳2𝔳1 (4.168)

+
√︂
𝑁 − 1

2
(𝐺−1)[𝑁−1,1];𝔳4𝔳3 + (𝑁 − 1) (𝐺−1)[𝑁−1,1];𝔳4𝔳4 (4.169)

+
√︂
(𝑁 − 1) (𝑁 − 2)

2
(𝐺−1)[𝑁−1,1];𝔳5𝔳3 +

√︂
(𝑁 − 2)

2
(𝑁 − 1) (𝐺−1)[𝑁−1,1];𝔳5𝔳4 (4.170)

The expectation value ⟨𝑋 (13|2|4)⟩ = ∑
𝑖, 𝑗 ,𝑘

〈
𝑋𝑖 𝑗𝑋𝑖𝑘

〉
is equal to

`2
1 + 𝑁 (𝐺

−1)[𝑁 ];𝔳1𝔳1 +
√︁

2(𝑁 − 2)𝑁 (𝐺−1)[𝑁 ];𝔳5𝔳4 (4.171)

+ (𝑁 − 2) (𝐺−1)[𝑁−1,1];𝔳5𝔳5 + 𝑁 (𝐺−1)[𝑁−1,1];𝔳4𝔳4 (4.172)

The expectation value ⟨𝑋 (24|1|3)⟩ = ∑
𝑖, 𝑗 ,𝑘

〈
𝑋𝑖 𝑗𝑋𝑘 𝑗

〉
is equal to

𝑁`2
1 + 𝑁 (𝐺

−1)[𝑁 ];𝔳1𝔳1 + (𝑁 − 1) (𝐺−1)[𝑁 ];𝔳3𝔳3 (4.173)

The expectation value ⟨𝑋 (23|1|4)⟩ = ∑
𝑖, 𝑗

〈
𝑋𝑖 𝑗𝑋 𝑗𝑘

〉
is equal to

𝑁`2
1 + 𝑁 (𝐺

−1)[𝑁 ];𝔳1𝔳1 + 𝑁
√︂
𝑁 − 1

2
(𝐺−1)[𝑁 ];𝔳4𝔳3 (4.174)

+ 𝑁
√︂
(𝑁 − 1) (𝑁 − 2)

2
(𝐺−1)[𝑁−1,1];𝔳5𝔳3 (4.175)
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The expectation value ⟨𝑋 (1|2|3|4)⟩ = ∑
𝑖, 𝑗 ,𝑘,𝑙

〈
𝑋𝑖 𝑗𝑋𝑘𝑙

〉
is equal to

𝑁2`2
1 + 𝑁

2(𝐺−1)[𝑁 ];𝔳1𝔳1 (4.176)

The expectation value ⟨𝑋 (1234)⟩ = ∑
𝑖 ⟨𝑋𝑖𝑖𝑋𝑖𝑖⟩ is equal to

1
𝑁
`2

1 +
𝑁 − 1
𝑁

`2
2 + 2
√
𝑁 − 1
𝑁

`1`2 +
1
𝑁
(𝐺−1)[𝑁 ];𝔳1𝔳1 +

√︁
2(𝑁 − 1)
𝑁

(𝐺−1)[𝑁 ];𝔳2𝔳1+ (4.177)

(𝑁 − 1)
𝑁

(𝐺−1)[𝑁 ];𝔳2𝔳2 +
(𝑁 − 1)
𝑁

(𝐺−1)[𝑁−1,1];𝔳3𝔳3 (4.178)

+
√︁

2(𝑁 − 1)
𝑁

(𝑁 − 1) (𝐺−1)[𝑁−1,1];𝔳4𝔳3 +
(𝑁 − 1)2

𝑁
(𝐺−1)[𝑁−1,1];𝔳4𝔳4 (4.179)

The expectation value ⟨𝑋 (12|34)⟩ = ∑
𝑖, 𝑗

〈
𝑋𝑖𝑖𝑋 𝑗 𝑗

〉
is equal to

`2
1 + 𝑁 − 1`2

2 + 2
√
𝑁 − 1`1`2 + (𝐺−1)[𝑁 ];𝔳1𝔳1+ (4.180)√︁

2(𝑁 − 1) (𝐺−1)[𝑁 ];𝔳2𝔳1 + (𝑁 − 1) (𝐺−1)[𝑁 ];𝔳2𝔳2 (4.181)

The expectation value ⟨𝑋 (12|3|4)⟩ = ∑
𝑖, 𝑗 ,𝑘

〈
𝑋𝑖𝑖𝑋 𝑗𝑘

〉
is equal to

𝑁`2
1 + 𝑁

√
𝑁 − 1`1`2 + 𝑁 (𝐺−1)[𝑁 ];𝔳1𝔳1 +

√︂
(𝑁 − 1)

2
(𝐺−1)[𝑁 ];𝔳2𝔳1 (4.182)

As a proof of concept, we can relate the constants (𝐺−1)[𝑁 ],𝛼𝛽 to the constants (Λ−1
𝑉0
)11, (Λ−1

𝑉0
)12, (Λ−1

𝑉0
)22

in [22]. Comparing the expectation values of 𝑋 (13|24), 𝑋 (123|4) and 𝑋 (13|2|4) gives

©«
1 0 1

1
√︃
𝑁−1

2 0
𝑁 0 0

ª®®®¬
©«
(𝐺−1)[𝑁 ],𝔳1𝔳1

(𝐺−1)[𝑁 ],𝔳2𝔳1

(𝐺−1)[𝑁 ],𝔳2𝔳2

ª®®¬ =
©«

1 0 1
1
√
𝑁 − 1 0

𝑁 0 0

ª®®¬
©«
(Λ−1
𝑉0
)11

(Λ−1
𝑉0
)12

(Λ−1
𝑉0
)22

ª®®®¬. (4.183)

Inverting the matrix on the l.h.s. gives

(𝐺−1)[𝑁 ],𝔳1𝔳1 = (Λ−1
𝑉0
)11 (4.184)

(𝐺−1)[𝑁 ],𝔳2𝔳1 =
1
√

2
(Λ−1
𝑉0
)12 (4.185)

(𝐺−1)[𝑁 ],𝔳2𝔳2 = (Λ−1
𝑉0
)22. (4.186)

Identical procedures will relate the constants (𝐺−1)[𝑁−1,1],𝛼𝛽 to (Λ−1
𝑉𝐻
) in [22]. We do not

perform this procedure here.
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4.4 Graph counting: Graph generating permutation diagrams

By Proposition 28, observables can be enumerated by directed graphs. We will now set up a
scheme for counting and constructing graphs using group theory. By generalizing the double
coset description of directed graphs introduced in [96, 97] we can enumerate invariants using
appropriate equivalence classes of permutations, which define double cosets.

It is useful to describe the local structure (number of incoming and outgoing edges at each
vertex) of a directed graph using vector partitions.

Definition 32 (Vector partition). A vector partition of the vector (𝐾1, 𝐾2, . . . , 𝐾𝑐) ∈ Z×𝑐+ is a
set of vectors {(𝑘 (𝑖)1 , . . . , 𝑘

(𝑖)
𝑐 )}𝑙𝑖=1 satisfying

(𝐾1, . . . , 𝐾𝑐) =
𝑙∑︁
𝑖=1
(𝑘 (𝑖)1 , . . . , 𝑘

(𝑖)
𝑐 ). (4.187)

We call 𝑙 the number of parts.

Let 𝐺 be a directed graph with 𝑘 edges and 𝑙 vertices. We record the number of outgoing and
incoming edges at each vertex in terms of a set of 𝑙 pairs (𝑘+

𝑖
, 𝑘−
𝑖
), where 𝑘+

𝑖
(𝑘−
𝑖
) is the number

of outgoing (incoming) edges at vertex 𝑖. We use the set of pairs to define a vector partition

(𝑘, 𝑘) = (𝑘+1 , 𝑘
−
1 ) + · · · + (𝑘

+
𝑙 , 𝑘

−
𝑙 ), 0 ≤ 𝑘±𝑖 ≤ 𝑘. (4.188)

We also define the vectors

®𝑘+ = (𝑘+1 , . . . , 𝑘
+
𝑙 ) (4.189)

®𝑘− = (𝑘−1 , . . . , 𝑘
−
𝑙 ), (4.190)

and introduce the shorthand ( ®𝑘+, ®𝑘−) for the corresponding vector partition.

Example 28. For example, the graph in Figure 4.1 is associated with the vector partition
( ®𝑘+, ®𝑘−) = {(3, 0), (1, 2), (1, 1), (0, 2)}.

The set of directed graphs with 𝑘 edges and local structure ( ®𝑘+, ®𝑘−) can be generated using
permutations 𝜎 ∈ 𝑆𝑘 . This is illustrated in Figure 4.1a. We call a diagram of this type a graph
generating permutation diagram (GGPD).

Definition 33 (Graph Generating Permutation Diagram (GGPD)). A GGPD is specified by a
vector partition ( ®𝑘+, ®𝑘−) with 𝑙 parts and the following choices

1. Label the set of vertices using {1, . . . , 𝑙} and order them in ascending order from left to
right.

2. The 𝑖th vertex has 𝑘+
𝑖

outgoing edges emanating north of the vertex, and 𝑘−
𝑖

incoming
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edges emanating south of the vertex.

3. Label the incoming edges using {1, . . . , 𝑘}. Pick an order for the incoming edge labels.
For example, we will use 1 < 2 < · · · < 𝑘 from left to right as seen in Figure 4.1.

4. Label and order the outgoing edges similarly.

The edges in a GGPD are connected to vertices using the following rules.

1. Apply a permutation 𝜎 to the labels of the outgoing edges, which corresponds in Figure
4.1a to a re-ordering of the edges coming into the 𝜎-box from below before they emerge
at the top.

2. Identify the end-points on the top line which have incoming lines to the points on the
bottom line directly below them, with outgoing lines.

Example 29. In Figure 4.1a we take the incoming (and outgoing) edges as initially labeled
1, 2, . . . , 5 (from left to right). For 𝜎 = (34) the third edge on the first vertex is swapped with
the edge on the second vertex and we arrive at the graph in Figure 4.1b.

1 2 3 4 5

1 2 3 4 5

𝜎

(a) (b)

Figure 4.1: Directed graphs of a fixed type (determined by a vector partition) correspond to a
permutation 𝜎 ∈ 𝑆𝑘 , where 𝑘 is the number of edges. (a) illustrates the correspondence with
an example where the graph type is a vector partition (5, 5) = (3, 0) + (1, 2) + (1, 1) + (0, 2).
(b) is the graph constructed from this vector partition with the permutation 𝜎 = (34).

By scanning over all 𝜎 ∈ 𝑆𝑘 we can construct all graphs consistent with the local structure
defined by the vector partition. However, some permutations lead to equivalent graphs. We
use this to define an equivalence relation on permutations 𝜎 ∈ 𝑆𝑘 . The permutations within
an equivalence class lead to different labellings of the same graph. We will now describe this
equivalence relation in detail.
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4.4.1 Edge symmetry groups. There are two parts to the equivalence relation on permutations
𝜎 ∈ 𝑆𝑘 . We will first describe the part due to edge permutation symmetry. The second part,
described in the next subsection is due to vertex permutation symmetry.

Given a GGDP we can define two ordered lists of ordered lists

[𝐾+1 , 𝐾
+
2 , · · · , 𝐾

+
𝑙 ], (4.191)

[𝐾−1 , 𝐾
+
2 , · · · , 𝐾

−
𝑙 ], (4.192)

where 𝐾+
𝑖
(𝐾−
𝑖
) is an ordered list of the outgoing (incoming) edge labels at vertex 𝑖. Explicitly

for 𝐾+
𝑖

we have

𝐾+1 = [1, 2, · · · , 𝑘+1 ] (4.193)

𝐾+2 = [𝑘+1 + 1, 𝑘+1 + 2, · · · , 𝑘+1 + 𝑘
+
2 ] (4.194)

...

𝐾+𝑖 = [𝑘+1 + 𝑘
+
2 + · · · + 𝑘

+
𝑖−1 + 1, 𝑘+1 + 𝑘

+
2 + · · · + 𝑘

+
𝑖−1 + 2, · · · , 𝑘+1 + 𝑘

+
2 + · · · + 𝑘

+
𝑖−1 + 𝑘

+
𝑖 ]

(4.195)
...

𝐾+𝑙 = [𝑘+1 + 𝑘
+
2 + · · · + 𝑘

+
𝑙−1 + 1, 𝑘+1 + 𝑘

+
2 + · · · + 𝑘

+
𝑙−1 + 2, · · · , 𝑘+1 + 𝑘

+
2 + · · · + 𝑘

+
𝑙−1 + 𝑘

+
𝑙 ],

(4.196)

and similarly for 𝐾−
𝑖

. Note that the concatenation of these lists is the set of numbers [1, . . . , 𝑘].

[𝐾+1 , 𝐾
+
2 , · · · , 𝐾

+
𝑙 ] = [1, 2, . . . , 𝑘] (4.197)

Example 30. For example, Figure 4.1a defines

𝐾+1 = [1, 2, 3], 𝐾+2 = [4], 𝐾+3 = [5]𝐾+4 = [], (4.198)

𝐾−1 = [], 𝐾−2 = [1, 2], 𝐾−3 = [3]𝐾−4 = [4, 5] . (4.199)

We view a permutation 𝜎 ∈ 𝑆𝑘 as a re-arrangement of this list (similarly to one-line notation
for permutations). The permutations within the sublists 𝐾+

𝑖
or 𝐾−

𝑖
define subgroups of 𝑆𝑘

isomorphic to
𝑆 ®𝑘+ � 𝑆𝑘+1 × 𝑆𝑘+2 × · · · × 𝑆𝑘+𝑙 , (4.200)

and
𝑆 ®𝑘− = 𝑆𝑘−1 × 𝑆𝑘−2 × · · · × 𝑆𝑘−𝑙 . (4.201)
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Example 31. For example, Figure 4.1a gives

𝑆 ®𝑘+ � 𝑆3 × 𝑆1 × 𝑆1 × 𝑆0 (4.202)

and
𝑆 ®𝑘− = 𝑆0 × 𝑆2 × 𝑆1 × 𝑆2 (4.203)

where 𝑆1 is the trivial group and 𝑆0 is the empty set.

It will be useful to view these groups as symmetric groups

𝑆𝑘±
𝑖
= Perms({1, . . . , 𝑘±𝑖 }), (4.204)

and as subgroups of 𝑆𝑘 = Perms({1, . . . , 𝑘}) simultaneously. For this, we define injective
homomorphisms Perms({1, . . . , 𝑘±

𝑖
}) → 𝑆𝑘 .

Definition 34 (Edge symmetry group). We describe the map for outgoing edges – the construc-
tion is identical for incoming. Let a+

𝑖
∈ 𝑆𝑘+

𝑖
and define 𝛾𝑘+

𝑖
(a+
𝑖
) ∈ 𝑆𝑘 as the map

𝛾+𝑖 (a+𝑖 ) : [𝐾+1 , 𝐾
+
2 , · · · , 𝐾

+
𝑖 , · · · , 𝐾+𝑙 ] ↦→ [𝐾

+
1 , 𝐾

+
2 , · · · , a

+
𝑖 (𝐾+𝑖 ), · · · , 𝐾+𝑙 ] (4.205)

where

a+𝑖 (𝐾+𝑖 ) = [
𝑖−1∑︁
𝑗=1

𝑘+𝑗 + a+𝑖 (1),
𝑖−1∑︁
𝑗=1

𝑘+𝑗 + a+𝑖 (2), · · · ,
𝑖−1∑︁
𝑗=1

𝑘+𝑗 + a+𝑖 (𝑘+𝑖 )] (4.206)

For a general element a+ ∈ 𝑆 ®𝑘+ we apply 𝛾+
𝑖

to each factor to get a homomorphism

𝛾+ : 𝑆 ®𝑘+ → 𝑆𝑘 . (4.207)

A similar construction exists for incoming lines collected into lists 𝐾−
𝑖

and a homomorphism

𝛾− : 𝑆 ®𝑘− → 𝑆𝑘 . (4.208)

We call the image of 𝛾+, 𝛾− the outgoing and incoming edge symmetry group of a GGPD,
respectively.

The naming of these subgroups is motivated by the fact that 𝜎 ∈ 𝑆𝑘 and

𝜎′ = 𝛾+𝜎(𝛾−)−1, (4.209)

generate the same directed graph for any 𝛾+ ∈ im 𝛾+, 𝛾− ∈ im 𝛾−.

Example 32. Continuing the example of Figure 4.1a we have 𝑆𝑘 = 𝑆5 and we have the
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embeddings(homomorphisms)

𝛾+ : 𝑆 ®𝑘+ → Perms({1, 2, 3}) × Perms({4}) × Perms({5}) × Perms(∅) (4.210)

and

𝛾− : 𝑆 ®𝑘− → Perms(∅) × Perms({1, 2}) × Perms({3}) × Perms({4, 5}), (4.211)

where the group of permutations of a single element set is just the identity element and the
group of permutations of the empty set is the empty ”group”.

Example 33. Consider the graph in Figure 4.2 where the first vertex has three outgoing edges
labeled 1, 2, 3. Here two permutations 𝜎 ∈ 𝑆5, which are related by a permutation a+1 in
𝑆3 permuting the list [1, 2, 3], lead to equivalent graphs. From Figure 4.2 we see that this
equivalence comes from left multiplication 𝜎 ∼ 𝛾+1 (a

+
1 )𝜎. Similarly, for incoming edges we

have equivalence under right multiplication 𝜎 ∼ 𝜎𝛾−2 ((a
−
2 )
−1)𝛾−4 ((a

−
4 )
−1).

Figure 4.2: For any permutation 𝜎 in 𝑆5, the two diagrams correspond to the same graph for
any a+1 ∈ 𝑆3, a

−
2 ∈ 𝑆2, a

−
4 ∈ 𝑆2.

1 2 3 4 5

1 2 3 4 5

𝜎

a+1

(a−2 )
−1 (a−4 )

−1

∼

1 2 3 4 5

1 2 3 4 5

𝜎

In general, we have combined left and right equivalence

𝜎 ∼ 𝜎′ iff ∃a+ ∈ 𝑆 ®𝑘+ , a
− ∈ 𝑆 ®𝑘− , st 𝜎 = 𝛾+(a+)𝜎′𝛾− ((a−)−1) (4.212)

The equivalence classes are in one-to-one correspondence with distinct graphs when the ordered
pairs (𝑘+

𝑖
, 𝑘−
𝑖
) are all different.1

1Recall that 𝑘±
𝑖

can be zero and one, and we defined 𝑆0 to be the empty set and 𝑆1 to be the trivial group,
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4.4.2 Vertex symmetry group. When (𝑘+
𝑖
, 𝑘−
𝑖
) = (𝑘+

𝑗
, 𝑘−
𝑗
) for 𝑖 ≠ 𝑗 , the symmetry is en-

hanced and permutations which are related by permuting indistinguishable vertices give equiv-
alent graphs. For example, the graphs in Figure 4.3 have (𝑘+1 , 𝑘

−
1 ) = (𝑘+2 , 𝑘

−
2 ) = (3, 2).

Indistinguishable vertices define a subgroup of 𝑆𝑙 = Perms( [1, 2, · · · , 𝑙]) which permutes la-
bels of vertices having the same number of incoming and outgoing vertices. As mentioned,
this is a symmetry of the GGPD. To describe the equivalence relation on 𝜎 ∈ 𝑆𝑘 due to this
symmetry we embed this subgroup into 𝑆𝑘 as well.

Definition 35 (Vertex symmetry group). The permutations ` ∈ 𝑆𝑙 of identical vertices are
mapped to permutations in 𝑆𝑘 as rearrangements of the concatenated lists. We define 𝜌+, 𝜌− :
𝑆𝑙 → 𝑆𝑘 as

𝜌+(`) : [𝐾+1 , 𝐾
+
2 , · · · , 𝐾

+
𝑙 ] → [𝐾

+
` (1) , 𝐾

+
` (2) , · · · , 𝐾

+
` (𝑙) ] (4.213)

and

𝜌− (`) : [𝐾−1 , 𝐾
−
2 , · · · , 𝐾

−
𝑙 ] → [𝐾

−
` (1) , 𝐾

−
` (2) , · · · , 𝐾

−
` (𝑙) ] . (4.214)

The images of these maps are called outgoing and incoming vertex symmetry groups, respec-
tively.

Example 34. Consider the GGPD on the l.h.s. of Figure 4.3. A permutation ` ∈ 𝑆2 ⊂ 𝑆3

which swaps the first two vertices

𝜌+((1, 2)) :[𝐾+1 , 𝐾
+
2 , 𝐾

+
3 ] → [𝐾

+
2 , 𝐾

+
1 , 𝐾

+
3 ]

𝜌− ((1, 2)) :[𝐾−1 , 𝐾
−
2 , 𝐾

−
3 ] → [𝐾

−
2 , 𝐾

−
1 , 𝐾

−
3 ] (4.215)

gives back the same graph. In cycle notation we have

𝜌+((1, 2)) = (14) (25) (36), 𝜌− ((1, 2)) = (13) (24). (4.216)

More generally, if (𝑘+
𝑖1
, 𝑘−
𝑖1
) = · · · = (𝑘+

𝑖𝑟
, 𝑘−
𝑖𝑟
) for a set of vertex labels {𝑖1, . . . , 𝑖𝑟 } ⊆ {1, . . . , 𝑙},

the subgroup 𝑆𝑟 � Perms( [𝑖1, . . . 𝑖𝑟 ]) ⊆ 𝑆𝑙 will give equivalent graphs when acting on vertices.
For sets of identical vertices of size 𝑙1, 𝑙2, . . . the full group of permutations is isomorphic to

𝑆®𝑙 = 𝑆𝑙1 × 𝑆𝑙2 × . . . . (4.217)

We can now state the full equivalence relation on GGPD’s given by edge and vertex symmetry.

Definition 36 (Equivalent GGPD). Two GGPDs are equivalent if their vector partition is the

containing just the identity element.
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same and their respective permutations 𝜎, 𝜎′ are equivalent under the relation

𝜎 ∼ 𝜎′ iff ∃a+ ∈ 𝑆 ®𝑘+ , a
− ∈ 𝑆 ®𝑘− , ` ∈ 𝑆®𝑙, (4.218)

st 𝜎 = 𝜌+(`)𝛾+(a+)𝜎′(𝜌− (`)𝛾− (a−))−1. (4.219)

Diagrammatically this equivalence corresponds to Figure 4.3.

1 2 3 4 5 6 7

1 2 3 4 5 6 7

𝜎

∼

1 2 3 4 5 6 7

1 2 3 4 5 6 7

𝜎

a+1 a+2

(a−1 )
−1 (a−2 )

−1 (a−3 )
−1

`

`−1

Figure 4.3: This graph has two identical vertices of type (3, 2). Therefore any ` ∈ 𝑆𝑘 which
swaps all the edges of the two vertices gives rise to the same graph.

4.4.3 Double coset description. The equivalence relation in (4.219) can be viewed as a
partially solved (”gauge fixed” in physics jargon) version of a double coset.

Definition 37 (Double coset). A double coset

𝐻1 \𝐺/𝐻2, (4.220)

is the set of equivalence classes of elements 𝑔, 𝑔′ ∈ 𝐺 under the identification

𝑔 ∼ 𝑔′ iff ∃ℎ1 ∈ 𝐻1, ℎ2 ∈ 𝐻2, 𝑔 = ℎ1𝑔
′ℎ−1

2 , (4.221)
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where 𝐻1, 𝐻2 are subgroups of 𝐺. The equivalence classes are called double cosets.

In our case, the double coset will have the form

𝐺 ( ®𝑘+, ®𝑘−)
∖ (
𝑆+𝑘 × 𝑆

−
𝑘

) /
diag(𝑆𝑘), (4.222)

and we will now define the groups appearing in this quotient and prove

Proposition 29. The number of double cosets is equal to the number of inequivalent GGPDs

𝑁 ( ®𝑘+, ®𝑘−) =
���𝐺 ( ®𝑘+, ®𝑘−) ∖ (

𝑆+𝑘 × 𝑆
−
𝑘

) /
diag(𝑆𝑘)

��� = # Inequivalent GGPDs with

vertex structure ( ®𝑘+, ®𝑘−).
(4.223)

1 2 3 4 5 6 7

1 2 3 4 5 6 7

𝜎1

𝜎−1
2

∼

1 2 3 4 5 6 7

1 2 3 4 5 6 7

𝛾

𝛾−1

𝜎1

𝜎−1
2

a+1 a+2

`

(a−1 )
−1 (a−2 )

−1 (a−3 )
−1

`−1

Figure 4.4: Diagrammatic description of the double coset equivalence in equation (4.225).

Proof. The diagrammatic equivalence to have in mind for the double coset is Figure 4.4.
Because the incoming edges at the top line are identified with the outgoing edges of the bottom
line, it is effectively only the product 𝜎1𝜎

−1
2 which acts on the edges in this picture. We

have increased the redundancy in the picture by going from a single permutation to a pair
(𝜎1, 𝜎2) ∈ 𝑆+

𝑘
× 𝑆−

𝑘
. If (𝜎1, 𝜎2) is replaced by (𝜎1𝛾, 𝜎2𝛾) for 𝛾 ∈ 𝑆𝑘 , the combination

𝜎1𝜎
−1
2 ↦→ 𝜎1𝛾𝛾

−1𝜎−1
2 = 𝜎1𝜎

−1
2 is unchanged. This is the origin of the quotient by diag(𝑆𝑘),

it describes the redundancy of using pairs of permutations.
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The group 𝐺 ( ®𝑘+, ®𝑘−) is the subgroup of 𝑆+
𝑘
× 𝑆−

𝑘
with elements of the form

(𝜌+(`)𝛾+(a+), 𝜌− (`)𝛾− (a−)), (4.224)

for ` ∈ 𝑆®𝑙, a
+ ∈ 𝑆 ®𝑘+ , a

− ∈ 𝑆 ®𝑘− . The double cosets are equivalence classes of the relation

(𝜎1, 𝜎2) ∼(𝜎′1, 𝜎
′
2) iff ∃a+ ∈ 𝑆 ®𝑘+ , a

− ∈ 𝑆 ®𝑘− , ` ∈ 𝑆 ®𝑘 , 𝛾 ∈ 𝑆𝑘 ,

st (𝜎1, 𝜎2) = (𝜌+(`)𝛾+(a+)𝜎′1𝛾
−1, 𝜌− (`)𝛾− (a−)𝜎′2𝛾

−1). (4.225)

To see how equation (4.225) relates to (4.219), we count the number of equivalence classes.
We define the Kronecker delta on a group 𝐺 as the function that evaluates to 1 on the identity
element and vanishes otherwise,

𝛿(𝑔) =


1, if 𝑔 = 𝑒

0, otherwise .
(4.226)

By Burnside’s lemma, the number of double cosets is

𝑁 ( ®𝑘+, ®𝑘−) = 1
|𝐺 ( ®𝑘+, ®𝑘−) | |𝑆𝑘 |

×∑︁
`∈𝑆®𝑙 ,a

+∈𝑆 ®𝑘+
a−∈𝑆 ®𝑘− ,𝛾∈diag(𝑆𝑘 )

∑︁
𝜎1,𝜎2∈𝑆𝑘

𝛿(𝜎−1
1 𝜌+(`)𝛾+(a+)𝜎1𝛾

−1)

𝛿(𝜎−1
2 𝜌− (`)𝛾− (a−)𝜎2𝛾

−1)

(4.227)

=
1

|𝐺 ( ®𝑘+, ®𝑘−) | |𝑆𝑘 |
× (4.228)∑︁

`∈𝑆®𝑙 ,a
+∈𝑆 ®𝑘+

a−∈𝑆 ®𝑘−

∑︁
𝜎1,𝜎2∈𝑆𝑘

𝛿(𝜎−1
1 𝜌+(`)𝛾+(a+)𝜎1𝜎

−1
2 𝛾− ((a−)−1)𝜌− (`−1)𝜎2)

=
1

|𝐺 ( ®𝑘+, ®𝑘−) |

∑̀︁
∈𝑆®𝑙

a+∈𝑆 ®𝑘+
a−∈𝑆 ®𝑘−

∑︁
𝜎∈𝑆𝑘

𝛿(𝜎−1𝜌+(`)𝛾+(a+)𝜎𝛾− ((a−)−1)𝜌− (`−1)).

(4.229)

In the second equality, we carried out the sum over 𝛾 to impose the second delta function.
In the third equality we renamed 𝜎1𝜎

−1
2 ≡ 𝜎, this makes the summand independent of 𝜎2.

Consequently the sum over 𝜎2 just gives a factor of |𝑆𝑘 |. From Burnside’s lemma, we recognize
the last line as the counting of equivalence classes of (4.219). This shows the correspondence
between the double coset and the counting of graphs under edge and vertex symmetry.

□

In appendix D we give a procedure for explicitly computing the number of double cosets in
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Proposition 29 using generating functions known as cycle indices.

4.5 Summary

In this chapter we have described a class of matrix models, based on discrete permutation sym-
metry. We gave a description of the most general Gaussian permutation invariant distribution
on real matrices. The matrix units constructed in chapter 3 enabled us to explicitly solve for
the mean/one-point function/expectation values and covariance/two-point function/propagator
of matrix elements for general 𝑁 . This was first done in [21, 22] without the use of the partition
algebra technology presented here. The partition algebra construction is new and naturally gives
rise to the interpretation of correlators in terms of linear combinations of 1-row diagrams. We
presented this new perspective here because it generalizes beyond matrix models. In particular,
this interpretation is used for permutation invariant tensor models in the upcoming work [4].

Observables in these models are defined to be permutation invariant polynomial functions in the
matrix elements of general degree, following [21, 22]. We gave two useful descriptions of the
vector space of observables. The first one was a basis labelled by equivalence classes of 1-row
partition diagrams. This basis was used in an algebraic combinatorial algorithm for computing
expectation values of observables. The algorithm was based on the observation that expectation
values can be computed in terms of a pairing on the vector space of 1-row partitions, where the
pairing computes the number of components in the join of two 1-row partitions. The algorithm
outputs an exact function of 𝑁 and all the coupling constants/parameters in the model. This
algorithm is new, and in fact different from the algorithm presented in [1] based on so-called
F-graphs.

The second basis of observables was labelled by directed graphs. This description was already
known in [21, 22]. We saw that this description was useful for constructing generating functions
that count observables. In particular, we saw that directed graphs can be understood through
permutations acting on GGPDs defined by a vector partition. These diagrams had two types of
symmetry, edge symmetry and vertex symmetry, and the symmetries gave rise to equivalence
relations on the set of permutations. We described the symmetry groups as permutation groups
acting on the GGPDs. Finally, we saw that these equivalence classes could be understood
as double cosets of permutation groups. We refer to Appendix D for explicit descriptions of
the permutation subgroups entering the double coset, and constructions of generating functions
counting directed graphs/double cosets. The use of GGPD’s to enumerate graphs corresponding
to gauge invariant quantities in gauge-string duality is not new (see for example [96, 97]). Our
construction is a generalization of this to permutation invariant observables. This is new and
was first presented in [1].
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Chapter 5

Matrix quantum mechanics

In this chapter we apply the mathematical techniques developed in the previous sections to
matrix quantum mechanics. Quantum mechanics corresponds to quantum field theory in one
dimension and matrix models can be considered quantum field theories in zero dimensions.
Therefore, matrix quantum mechanics is a natural avenue to extend the techniques to. This
chapter is based on [3], where permutation invariant matrix quantum mechanics was first
invented.

In section 5.1 we introduce systems of quantum matrix harmonic oscillators. We use the
simplest model, that of 𝑁2 decoupled harmonic oscillators, to set up the basic language used
in later sections. A useful description of the Hilbert space of the matrix harmonic oscillator
is in terms of a Fock space spanned by states constructed from creation operators 𝑎†

𝑖 𝑗
acting

on the vacuum. As expected, the Hamiltonian measures the number of oscillators – or degree
as a polynomial in 𝑎†

𝑖 𝑗
– in the state. We then review the model of harmonic oscillators in a

permutation invariant quadratic potential constructed and solved in [3].

In the subsequent sections we take inspiration from quantum mechanical systems with singlet
constraints, such as gauged matrix models and spin matrix theory [80, 81], by considering the
physics and algebraic structure of the permutation invariant subspace of the matrix harmonic
oscillator. Section 5.2 reviews the observations in [3] concerning this subspace and its connec-
tion to partition algebras. We present three bases: the diagram basis, the orbit basis and the
representation basis for the subspace of invariants. The three bases have several distinguishing
properties. The diagram basis is the most geometrical of the three and forms an orthogonal
basis for 𝑁 → ∞. The orbit basis is exactly orthogonal for all 𝑁 and is useful for describing
finite 𝑁 effects. As we will see, the representation basis is closely related to matrix units for
𝑃𝑘 (𝑁) and forms an eigenbasis of the algebraic Hamiltonians that we describe in section 5.3.

Algebraic Hamiltonians, based on partition algebras, that act on the subspace of invariants
through diagram multiplication were constructed in [3]. For particular choices, these have

105
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exactly solvable spectra. Their description in terms of creation and annihilation operators used
projectors onto fixed degree 𝑘 states. As we will see in section 5.3, these algebraic Hamiltonians
have a nice description – without projection operators – when the diagrams are restricted to
permutation diagrams. This is a new observation in this particular context, but Hamiltonians
based on symmetric groups have been considered in spin matrix theory. In this thesis, we
present the Hamiltonians based on partition algebras as generalizations of those coming from
permutation diagrams. Therefore, it is natural to forgo the inclusion of projectors. We illustrate
the challenges involved in solving these Hamiltonians when projectors are excluded but do not
commit to a particular solution.

In the last section we consider vacuum expectation values inspired by extremal correlators in
N = 4 SYM. We show that they have a nice description in terms of an outer product in the
diagram basis. The representation basis is used to prove representation theoretic selection rules
for the extremal correlators. This was first proved in [3].

5.1 Matrix harmonic oscillator

The simplest matrix harmonic oscillator has a Lagrangian

𝐿0 =
1
2

(
𝑁∑︁

𝑖, 𝑗=1
𝜕𝑡𝑋𝑖 𝑗𝜕𝑡𝑋𝑖 𝑗 − 𝑋𝑖 𝑗𝑋𝑖 𝑗

)
. (5.1)

It describes a system of 𝑁2 decoupled oscillators. The conjugate momenta are

Π𝑖 𝑗 =
𝜕𝐿0

𝜕 (𝜕𝑡𝑋𝑖 𝑗)
=
𝜕

𝜕𝑡
𝑋𝑖 𝑗 . (5.2)

The Hamiltonian corresponding to 𝐿0 is

𝐻0 =
1
2

(
𝑁∑︁

𝑖, 𝑗=1
Π𝑖 𝑗Π𝑖 𝑗 + 𝑋𝑖 𝑗𝑋𝑖 𝑗

)
. (5.3)

The canonical commutation relations are[
𝑋𝑖 𝑗 ,Π𝑘𝑙

]
= 𝑖𝛿𝑖𝑘𝛿 𝑗𝑙 . (5.4)

The Hamiltonian given in (5.3) is diagonalized in the usual way - introducing oscillators 𝑎†
𝑖 𝑗
, 𝑎𝑖 𝑗

defined by

𝑋𝑖 𝑗 =

√︂
1
2

(
𝑎
†
𝑖 𝑗
+ 𝑎𝑖 𝑗

)
,

Π𝑖 𝑗 = 𝑖

√︂
1
2

(
𝑎
†
𝑖 𝑗
− 𝑎𝑖 𝑗

)
,

(5.5)
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with commutation relations [
𝑎𝑖 𝑗 , 𝑎

†
𝑘𝑙

]
= 𝛿𝑖𝑘𝛿 𝑗𝑙 . (5.6)

Normal ordering 𝐻0 gives

𝐻0 =

𝑁∑︁
𝑖, 𝑗=1

𝑎
†
𝑖 𝑗
𝑎𝑖 𝑗 , (5.7)

which is just a number operator. We now show that 𝐻0 is invariant under a 𝑈 (𝑁2) symmetry
that acts on oscillators as

𝑎𝑖 𝑗 →
𝑁∑︁
𝑘,𝑙=1

𝑈𝑖 𝑗;𝑘𝑙𝑎𝑘𝑙, (5.8)

𝑎
†
𝑖 𝑗
→

𝑁∑︁
𝑘,𝑙=1

𝑈
†
𝑘𝑙;𝑖 𝑗𝑎

†
𝑘𝑙
, (5.9)

with𝑈𝑖 𝑗;𝑘𝑙 an 𝑁2 × 𝑁2 unitary matrix satisfying

𝑁∑︁
𝑘,𝑙=1

𝑈𝑖 𝑗;𝑘𝑙𝑈
†
𝑘𝑙;𝑚𝑛 = 𝛿𝑖𝑚𝛿 𝑗𝑛. (5.10)

Under the𝑈 (𝑁2) transformation 𝐻0 is invariant,

𝐻0 →
∑︁

𝑖, 𝑗 ,𝑘,𝑙,𝑚,𝑛

𝑈
†
𝑘𝑙;𝑖 𝑗𝑈𝑖 𝑗;𝑚𝑛𝑎

†
𝑘𝑙
𝑎𝑚𝑛

=
∑︁
𝑘,𝑙,𝑚,𝑛

𝛿𝑘𝑚𝛿𝑙𝑛𝑎
†
𝑘𝑙
𝑎𝑚𝑛

=
∑︁
𝑘,𝑙

𝑎
†
𝑘𝑙
𝑎𝑘𝑙 . (5.11)

The oscillator states ∏
𝑖, 𝑗

(𝑎†
𝑖 𝑗
)𝑘𝑖 𝑗√︁
𝑘𝑖 𝑗!

|0⟩ (5.12)

labelled by non-negative integers 𝑘𝑖 𝑗 with 𝑖, 𝑗 = 1, . . . , 𝑁 are energy eigenstates of 𝐻0. The
total Hilbert (Fock) space H decomposes into subspaces H(𝑘 ) with fixed number of oscillators
(degree) 𝑘 ,

H �
∞⊕
𝑘=0

H(𝑘 ) . (5.13)

The subset of states with 𝑘 =
∑
𝑖, 𝑗 𝑘𝑖 𝑗 form an eigenbasis for the subspace H(𝑘 ) and have energy

𝑘 . In general the spectrum is highly degenerate. The number of states with energy 𝑘 is

dimH(𝑘 ) =

(
𝑁2 + 𝑘 − 1

𝑘

)
=
𝑁2(𝑁2 + 1) . . . (𝑁2 + 𝑘 − 1)

𝑘!
. (5.14)
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This is the number of ways to choose 𝑘 elements from a set of 𝑁2 when repetition is allowed.
It is also the dimension of the symmetric part of a 𝑘-fold tensor product of a vector space with
dimension 𝑁2. Equivalently, it is the dimension of the vector space of states composed of 𝑘
bosonic oscillators 𝑎†

𝑖 𝑗
. For fixed 𝑘 and 𝑁 ≫ 2𝑘 the dimension grows as 𝑁2𝑘 .

5.1.1 Permutation invariant quadratic potentials. The construction in chapter 4 is closely
related to solving a model of matrix oscillators in a permutation invariant quadratic potential
𝑉 (𝑋). We show how the techniques developed in previous chapters can be used to exactly
derive the energy spectrum of this system.

A system of 𝑁2 particles in a potential is described by the Lagrangian

𝐿 =
1
2

𝑁∑︁
𝑖, 𝑗=1

𝜕𝑡𝑋𝑖 𝑗𝜕𝑡𝑋𝑖 𝑗 −
1
2
𝑉 (𝑋). (5.15)

We take the potential to be a general quadratic 𝑆𝑁 invariant potential

𝑉 (𝑋𝑖 𝑗) = 𝑉 (𝑋(𝑖)𝜎 ( 𝑗 )𝜎), ∀𝜎 ∈ 𝑆𝑁 . (5.16)

The action of 𝑆𝑁 on 𝑋𝑖 𝑗 defined in (5.16) corresponds to the diagonal action on the tensor
product 𝑉𝑁 ⊗ 𝑉𝑁 .

In chapter 4 we parametrised the general quadratic 𝑆𝑁 invariant potential using representation
variables (see (4.19))

𝑋_,𝛼,𝑎 = 𝐶
𝑖 𝑗

_𝛼𝑎
𝑋𝑖 𝑗 , (5.17)

where 𝐶𝑖 𝑗
_𝛼𝑎

are Clebsch-Gordan coefficients for the decomposition of 𝑉𝑁 ⊗ 𝑉𝑁 . The full
Lagrangian in the representation basis is

𝐿 =
∑︁

_,𝛼,𝛽,𝑎

(
𝛿𝛼𝛽𝜕𝑡𝑋_,𝛼,𝑎𝜕𝑡𝑋_,𝛽,𝑎 − 𝑋_,𝛼,𝑎𝐺_;𝛼𝛽𝑋_,𝛽,𝑎

)
. (5.18)

It describes a set of coupled harmonic oscillators. Writing this Lagrangian in decoupled form
only requires the diagonalization of a set of small parameter matrices 𝐺_;𝛼𝛽 (a real symmetric
3×3 matrix and another real symmetric 2×2 matrix), despite having a potentially large number
of harmonic oscillators (𝑁2).

Let
Ω_;𝛼𝛽 = (𝜔_;𝛼)2𝛿𝛼𝛽 (5.19)
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be the diagonal matrix1 such that

𝐺_;𝛼𝛽 =
∑︁
𝛾, 𝛿

(𝑈_)𝛼𝛾Ω_;𝛾𝛿 (𝑈_)𝛽
𝛿
, (5.20)

where𝑈_ are orthogonal change of basis matrices. In the decoupled basis

𝑆_,𝛼,𝑎 =
∑︁
𝛽

𝑋_,𝛽,𝑎 (𝑈_)𝛽𝛼, (5.21)

we have
𝐿 =

1
2

∑︁
_,𝛼,𝑎

(
𝜕𝑡𝑆_,𝛼,𝑎𝜕𝑡𝑆_,𝛼,𝑎 − (𝜔_;𝛼)2𝑆_,𝛼,𝑎𝑆_,𝛼,𝑎

)
. (5.22)

The canonical momenta are given by

Σ_,𝛼,𝑎 = 𝜕𝑡𝑆_,𝛼,𝑎 . (5.23)

The new canonical coordinates satisfy[
Σ_,𝛼,𝑎, 𝑆_′ ,𝛽,𝑏

]
= 𝑖𝛿__′𝛿𝛼𝛽𝛿𝑎𝑏, (5.24)

since𝑈_ are orthogonal matrices.

The corresponding Hamiltonian,

𝐻 =
1
2

∑︁
_,𝛼,𝑎

(
Σ_,𝛼,𝑎Σ_,𝛼,𝑎 + (𝜔_;𝛼)2𝑆_,𝛼,𝑎𝑆_,𝛼,𝑎

)
, (5.25)

is diagonalized by introducing oscillators

𝑆_,𝛼,𝑎 =

√︂
1

2𝜔_;𝛼 (𝐴
†
_,𝛼,𝑎

+ 𝐴_,𝛼,𝑎),

Σ_,𝛼,𝑎 = 𝑖

√︂
𝜔_;𝛼

2
(𝐴†
_,𝛼,𝑎

− 𝐴_,𝛼,𝑎),
(5.26)

which satisfy [
𝐴_,𝛼,𝑎, 𝐴

†
_′ ,𝛼′ ,𝑎′

]
= 𝛿__′𝛿𝛼𝛼′𝛿𝑎𝑎′ . (5.27)

In the oscillator basis, the normal ordered Hamiltonian has the form

𝐻 =
∑︁
_,𝛼,𝑎

𝜔_;𝛼𝐴†
_,𝛼,𝑎

𝐴_,𝛼,𝑎 . (5.28)

1We assume the eigenvalues are positive such that the spectrum of the Hamiltonian is bounded from below.
Therefore, we may write the eigenvalues as squares without loss of generality.
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5.2 Permutation invariant sectors for quantum matrix systems

We will now consider the algebraic structure behind the subspace of permutation invariant
states. We will see that these subspaces are closely connected to partition algebras. To discuss
the connection between invariant states and partition algebras, it will be useful to introduce the
following matrices of oscillators

(𝑎†)𝑖𝑗 = 𝑎
†
𝑗𝑖
, 𝑎𝑖𝑗 = 𝑎𝑖 𝑗 , (5.29)

which satisfy [
𝑎𝑖𝑗 , (𝑎†)𝑙𝑘

]
= 𝛿𝑖𝑘𝛿

𝑙
𝑗 . (5.30)

We think of these as the matrix elements of operator-valued maps in End(𝑉𝑁 )

𝑎†(𝑒𝑖) =
𝑁∑︁
𝑗=1
(𝑎†) 𝑗

𝑖
𝑒 𝑗 and 𝑎(𝑒𝑖) =

𝑁∑︁
𝑗=1
𝑎
𝑗

𝑖
𝑒 𝑗 , (5.31)

and End(𝑉⊗𝑘
𝑁
) more generally by

(𝑎†)⊗𝑘 (𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 ) = 𝑎†(𝑒𝑖1) ⊗ · · · ⊗ 𝑎†(𝑒𝑖𝑘 ), (5.32)

and
𝑎⊗𝑘 (𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 ) = 𝑎(𝑒𝑖1) ⊗ · · · ⊗ 𝑎(𝑒𝑖𝑘 ). (5.33)

With this notation at hand, we can define general states in H(𝑘 ) with a beautiful formula.

Definition 38. Let 𝑇 ∈ End(𝑉⊗𝑘
𝑁
). We define a state corresponding to 𝑇 by

|𝑇⟩ = Tr𝑉⊗𝑘
𝑁
(𝑇 (𝑎†)⊗𝑘) |0⟩ . (5.34)

We also define ⟨𝑇 | as

⟨𝑇 | = ⟨0| Tr𝑉⊗𝑘
𝑁
(𝑇 (𝑎†)⊗𝑘)† = ⟨0| Tr𝑉⊗𝑘

𝑁
(𝑇†𝑎⊗𝑘), (5.35)

where 𝑇† is the complex conjugate and transpose of 𝑇 . We have used the fact that [(𝑎†)𝑖
𝑗
]† =

[𝑎†
𝑗𝑖
]† = 𝑎 𝑗𝑖 = 𝑎 𝑗𝑖 in the last equality.

The pairing of two states in this notation has a nice expression in terms of traces.

Proposition 30. Let |𝑇⟩ , |𝑇 ′⟩ ∈ H(𝑘 ) be two vectors defined by tensors 𝑇,𝑇 ′. The pairing

⟨𝑇 |𝑇 ′⟩ =
∑︁
𝛾∈𝑆𝑘

Tr𝑉⊗𝑘
𝑁
(𝑇†𝐷𝛾𝑇 ′𝐷𝛾−1), (5.36)
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where for 𝛾 ∈ 𝑆𝑘 , 𝐷𝛾 is the corresponding linear operator that permutes tensors factors of
𝑉⊗𝑘
𝑁

.

Proof. This pairing is computed by summing over all the ways of contracting creation operators
into annihilation operators. Using the fact that

⟨0| 𝑎𝑖1
𝑗1
. . . 𝑎

𝑖𝑟
𝑗𝑟
(𝑎†)𝑙1

𝑘1
. . . (𝑎†)𝑙𝑟

𝑘𝑟
|0⟩ =

∑︁
𝛾∈𝑆𝑟
[𝑎𝑖(1)𝛾
𝑗(1)𝛾

, (𝑎†)𝑙1
𝑘1
] . . . [𝑎𝑖(𝑟 )𝛾

𝑗(𝑟 )𝛾
, (𝑎†)𝑙𝑟

𝑘𝑟
], (5.37)

we have
⟨𝑇 |𝑇 ′⟩ =

∑︁
𝛾∈𝑆𝑘
(𝑇†)𝑖1...𝑖𝑘

𝑗1... 𝑗𝑘
(𝑇 ′)𝑖(1)𝛾 ...𝑖(𝑘)𝛾

𝑗(1)𝛾 ... 𝑗(𝑘)𝛾
=

∑︁
𝛾∈𝑆𝑘

Tr𝑉⊗𝑘
𝑁
(𝑇†𝐷𝛾𝑇 ′𝐷𝛾−1). (5.38)

□

In the next section we define invariant states and relate them to partition algebras. We will then
describe three bases for the subspace Hinv of invariant states, and some of their distinguished
properties.

5.2.1 Invariant states and partition algebras. The action of 𝜎 ∈ 𝑆𝑁 on 𝑋𝑖 𝑗 translates to an
action on the oscillators

𝑎𝑖 𝑗 ↦→ 𝑎 (𝑖)𝜎−1 ( 𝑗 )𝜎−1 , 𝑎
†
𝑖 𝑗
↦→ 𝑎

†
(𝑖)𝜎−1 ( 𝑗 )𝜎−1 . (5.39)

We extend this to an action on the Hilbert space H,

Definition 39 (Adjoint action). Let 𝜎 ∈ 𝑆𝑁 and define Ad(𝜎) : H→ H by

Ad(𝜎)𝑎†
𝑖1 𝑗1

. . . 𝑎
†
𝑖𝑘 𝑗𝑘
|0⟩ = 𝑎†(𝑖1 )𝜎 ( 𝑗1 )𝜎 . . . 𝑎

†
(𝑖𝑘 )𝜎 ( 𝑗𝑘 )𝜎 |0⟩ . (5.40)

We call this the adjoint action of 𝜎 on H.

The goal of this section is to describe and construct the subspace of Ad(𝜎) invariant states of
H, denoted

Hinv = {|𝑇⟩ ∈ H | Ad(𝜎) |𝑇⟩ = |𝑇⟩ ∀𝜎 ∈ 𝑆𝑁 }. (5.41)

In the notation of Definition 38, the adjoint action of 𝜎 ∈ 𝑆𝑁 takes the form

Ad(𝜎) |𝑇⟩ = Tr𝑉⊗𝑘
𝑁
(𝑃𝜎𝑇𝑃𝜎−1 (𝑎†)⊗𝑘) |0⟩ . (5.42)

Consequently, the adjoint invariant vectors in H correspond to 𝑆𝑁 invariant tensors,

Ad(𝜎) |𝑇⟩ = |𝑇⟩ ⇔ 𝑇
( 𝑗1 )𝜎...( 𝑗𝑘 )𝜎
(𝑖1 )𝜎...(𝑖𝑘 )𝜎 . (5.43)
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For 𝑁 ≥ 2𝑘 we may use the isomorphism with partition algebras. That is,

H
(𝑘 )
inv ⊂ End𝑆𝑁 (𝑉⊗𝑘𝑁 ) � 𝑃𝑘 (𝑁), (5.44)

where H
(𝑘 )
inv is the subspace of Hinv of degree 𝑘 states.

The bosonic(commutative) nature of the creation operators leads to redundancy in the corre-
spondence 𝑇 ↔ |𝑇⟩. In particular, let 𝜏 ∈ 𝑆𝑘 , 𝐷𝜏 ∈ End𝑆𝑁 (𝑉⊗𝑘𝑁 ) the corresponding operator
and 𝑇 ∈ End(𝑉⊗𝑘

𝑁
) then

|𝑇⟩ =
���𝐷𝜏𝑇𝐷𝜏−1

〉
. (5.45)

This observation leads to the following corollaries

Corollary 15. Define the vector space

End𝑆𝑘 (𝑉⊗𝑘𝑁 ) = SpanC{𝑇 ∈ End(𝑉⊗𝑘𝑁 ) | 𝐷𝜏𝑇𝐷𝜏−1 = 𝑇 ∀𝜏 ∈ 𝑆𝑘}, (5.46)

for linear maps on 𝑉⊗𝑘
𝑁

that commute with 𝑆𝑘 . As vector spaces we have

H(𝑘 ) � End𝑆𝑘 (𝑉⊗𝑘𝑁 ). (5.47)

The action of 𝑆𝑘 commutes with the action of 𝑆𝑁 on𝑉⊗𝑘
𝑁

. Therefore, we can consider the set of
elements in End(𝑉⊗𝑘

𝑁
) that commute with both. We have the following corollary relating this

vector space to the Hilbert space of invariant states.

Corollary 16. Combing the above corollary with equation (5.43) we have

H
(𝑘 )
inv � End𝑆𝑁×𝑆𝑘 (𝑉⊗𝑘𝑁 ) ⊂ 𝑃𝑘 (𝑁). (5.48)

We define the symmetrized subalgebra of 𝑃𝑘 (𝑁)

𝑆𝑃𝑘 (𝑁) =
𝑃𝑘 (𝑁)
𝑆𝑘

� End𝑆𝑁×𝑆𝑘 (𝑉⊗𝑘𝑁 ), (5.49)

where
𝑃𝑘 (𝑁)
𝑆𝑘

= {𝑑 ∈ 𝑃𝑘 (𝑁) | 𝜏𝑑𝜏−1 = 𝑑 ∀𝜏 ∈ 𝑆𝑘 ⊂ 𝑃𝑘 (𝑁)}. (5.50)

Therefore, assuming 𝑁 ≥ 2𝑘 , we have

H
(𝑘 )
inv � 𝑆𝑃𝑘 (𝑁). (5.51)

To summarise the above steps in words, we are investigating the adjoint action of permutations
in 𝑆𝑁 on 𝑁 × 𝑁 quantum mechanical matrix variables 𝑋𝑖 𝑗 . The corresponding oscillators
inherit the adjoint 𝑆𝑁 action. Oscillator states with 𝑘 oscillators correspond to tensors 𝑇 with
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𝑘 upper and lower indices, subject to an 𝑆𝑘 symmetry permuting the 𝑘 upper-lower index pairs
along the tensor. This 𝑆𝑘 symmetry arises from the bosonic nature of the oscillators. The 𝑆𝑁
invariant 𝑘-oscillator states correspond to tensors having 𝑘 upper and 𝑘 lower indices, subject to
an 𝑆𝑁 ×𝑆𝑘 invariance. This subspace of tensors can be described as a symmetrized sub-algebra
𝑆𝑃𝑘 (𝑁) of the partition algebra 𝑃𝑘 (𝑁). This will be used in the following subsections to
construct bases for Hinv.

5.2.2 Diagram basis. In Definition 19 we introduced the partition algebra using the diagram
basis. As we now describe, the symmetrized partition algebra inherits a diagram basis from
𝑃𝑘 (𝑁). Consider a diagram basis element 𝑑𝜋 ∈ 𝑃𝑘 (𝑁) and define the orbit

[𝑑𝜋] = {𝜏𝑑𝜋𝜏−1, ∀𝜏 ∈ 𝑆𝑘}. (5.52)

The set of all such orbits of 𝑃𝑘 (𝑁) define a diagram basis for 𝑆𝑃𝑘 (𝑁).

Proposition 31. Let [𝑑𝜋] be the 𝑆𝑘 orbit of 𝑑𝜋 ∈ 𝑃𝑘 (𝑁). Define the corresponding element
𝔡𝜋 ∈ 𝑆𝑃𝑘 (𝑁) by

𝔡𝜋 =
1
| [𝑑𝜋] |

∑︁
𝑑𝜋′ ∈[𝑑𝜋 ]

𝑑𝜋′ =
1
𝑘!

∑︁
𝜏∈𝑆𝑘

𝜏𝑑𝜋𝜏
−1. (5.53)

The set of elements 𝔡𝜋 corresponding to distinct 𝑆𝑘 orbits form a basis for 𝑆𝑃𝑘 (𝑁).

Proof. Let 𝔡 ∈ 𝑆𝑃𝑘 (𝑁) have an expansion

𝔡 =
∑︁
𝑑𝜋

𝑎(𝑑𝜋)𝑑𝜋 , (5.54)

with coefficients 𝑎(𝑑𝜋). Invariance under 𝑆𝑘 implies∑︁
𝑑𝜋

𝑎(𝑑𝜋)𝑑𝜋 =
∑︁
𝑑𝜋

𝑎(𝑑𝜋)𝜏𝑑𝜋𝜏−1, ∀𝜏 ∈ 𝑆𝑘 . (5.55)

Conjugation by 𝑆𝑘 on the diagram basis is a bijective map. Therefore, relabelling the sum gives

𝑎(𝑑𝜋) = 𝑎(𝜏𝑑𝜋𝜏−1), ∀𝜏 ∈ 𝑆𝑘 . (5.56)

In other words, the coefficients are constant on the orbits [𝑑𝜋] and 𝔡 can be expanded in terms
of their sum 𝔡𝜋 . □

Given this basis for 𝑆𝑃𝑘 (𝑁) we have a corresponding basis for H(𝑘 )inv .

Definition 40. Let 𝔡 ∈ 𝑆𝑃𝑘 (𝑁) and 𝔇 ∈ End𝑆𝑁×𝑆𝑘 (𝑉⊗𝑘𝑁 ) the corresponding linear map. We
define the state |𝔡⟩ ∈ H(𝑘 )inv by

|𝔡⟩ = Tr𝑉⊗𝑘
𝑁
(𝔇(𝑎†)⊗𝑘) |0⟩ . (5.57)
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Example 35. At 𝑘 = 1 there are two invariant states��� 〉
=

∑︁
𝑖, 𝑗

(𝑎†)𝑖𝑗 |0⟩ ,
��� 〉

=
∑︁
𝑖

(𝑎†)𝑖 |0⟩ , (5.58)

At 𝑘 = 2 there are 11 invariant states, some examples are��� 〉
=

∑︁
𝑖, 𝑗

(𝑎†)𝑖𝑖 (𝑎†)
𝑗

𝑗
|0⟩ , (5.59)��� 〉

=
∑︁
𝑖, 𝑗

(𝑎†) 𝑗
𝑖
(𝑎†)𝑖𝑗 |0⟩ , (5.60)��� 〉

=

��� 〉
=

∑︁
𝑖, 𝑗 ,𝑘

(𝑎†)𝑖𝑖 (𝑎†)
𝑗

𝑘
|0⟩ , (5.61)��� 〉

=
∑︁
𝑖, 𝑗 ,𝑘,𝑙

(𝑎†) 𝑗
𝑖
(𝑎†)𝑙𝑘 |0⟩ . (5.62)

We now state the main property of the diagram basis and will spend the rest of this subsection
proving it.

Proposition 32. (Large 𝑁 factorisation) Consider two vectors |𝔡𝜋⟩ , |𝔡𝜋′⟩ ∈ H(𝑘 )inv correspond-
ing to diagram basis elements of 𝑆𝑃𝑘 (𝑁). Define the normalized states

|̂𝔡𝜋⟩ =
|𝔡𝜋⟩√︁
⟨𝔡𝜋 |𝔡𝜋⟩

, |̂𝔡𝜋′⟩ =
|𝔡𝜋′⟩√︁
⟨𝔡𝜋′ |𝔡𝜋′⟩

. (5.63)

They are orthonormal at large 𝑁 ,

⟨̂𝔡𝜋 |̂𝔡𝜋′⟩ =


1 +𝑂 (1/
√
𝑁) if [𝑑𝜋] = [𝑑′𝜋],

0 +𝑂 (1/
√
𝑁) if [𝑑𝜋] ≠ [𝑑′𝜋].

(5.64)

We call this large 𝑁 factorisation.

To prove this, we will study the powers of 𝑁 appearing in

Tr𝑉⊗𝑘
𝑁
(𝔇𝜋𝐷𝛾𝔇

𝑇
𝜋′𝐷𝛾−1) = Tr𝑉⊗𝑘

𝑁
(𝐷 𝜋𝐷𝛾𝐷

𝑇
𝜋′𝐷𝛾−1). (5.65)

For this purpose, it is useful to consider a simpler case.

Proposition 33. Let 𝜋, 𝜋′ ∈ Π[𝑘 |𝑘′ ] and 𝑑𝜋 ∨ 𝑑𝜋′ be the join of the set partition diagrams and
𝜋 ∨ 𝜋′ the corresponding set partition. The trace has a formula in terms of components of the
join,

Tr𝑉⊗𝑘
𝑁
(𝐷 𝜋𝐷

𝑇
𝜋′) = 𝑁 | 𝜋∨𝜋

′ | , (5.66)

where |𝜋 ∨ 𝜋′ | = |𝑑𝜋 ∨ 𝑑𝜋′ | is the number of components in the join 𝑑𝜋 ∨ 𝑑𝜋′ , or equivalently
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the number of blocks in 𝜋 ∨ 𝜋′.

Proof. Recall that the join operation (see Definition 31) adds the edges of the diagrams 𝑑𝜋 , 𝑑𝜋′
together. Since every edge corresponds to a Kronecker delta, we have

(𝐷 𝜋∨𝜋′)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
= (𝐷 𝜋)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘

(𝐷 𝜋′)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
(no sum). (5.67)

It follows that

Tr𝑉⊗𝑘
𝑁
(𝐷 𝜋𝐷

𝑇
𝜋′) =

∑︁
𝑖1,...,𝑖𝑘
𝑖1′ ,...𝑖𝑘′

(𝐷 𝜋)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
(𝐷 𝜋)𝑖1...𝑖𝑘𝑖1′ ...𝑖𝑘′

=
∑︁
𝑖1,...,𝑖𝑘
𝑖1′ ,...𝑖𝑘′

(𝐷 𝜋∨𝜋′)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
. (5.68)

It remains to show that this equals 𝑁 | 𝜋∨𝜋′ | . For this, let 𝜌1, . . . , 𝜌𝑏 be the blocks of 𝜋∨ 𝜋′, then∑︁
𝑖1,...,𝑖𝑘
𝑖1′ ,...𝑖𝑘′

(𝐷 𝜋∨𝜋′)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
= (

∑︁
𝜌1

1) . . . (
∑︁
𝜌𝑏

1) = 𝑁 | 𝜋∨𝜋′ | , (5.69)

where the sums over parts correspond to sums where indices in each part are set equal. □

The proof of the following factorisation result contains most of the essential ingredients neces-
sary for the main factorisation result and will serve as a useful warm-up exercise.

Proposition 34. Let 𝜋, 𝜋′ ∈ Π[𝑘 |𝑘′ ] , 𝑑𝜋 , 𝑑𝜋′ ∈ 𝑃𝑘 (𝑁) and 𝐷 𝜋 , 𝐷 𝜋′ the corresponding linear
operators on 𝑉⊗𝑘

𝑁
, then

Tr𝑉⊗𝑘
𝑁
(𝐷 𝜋𝐷

𝑇
𝜋′)√︃

Tr𝑉⊗𝑘
𝑁
(𝐷 𝜋𝐷

𝑇
𝜋) Tr𝑉⊗𝑘

𝑁
(𝐷 𝜋′𝐷

𝑇
𝜋′)

=


1 +𝑂 (1/

√
𝑁) if 𝜋 = 𝜋′,

0 +𝑂 (1/
√
𝑁) if 𝜋 ≠ 𝜋′,

(5.70)

This equation (5.70) is related to the properties of the distance function defined in proposition
3.1 of [98].

To prove this proposition it will be useful to introduce the following partial ordering on set
partitions.

Definition 41. Let 𝜋, 𝜋′ ∈ Π[𝑘 |𝑘′ ] . We introduce a partial ordering ≤ on Π[𝑘 |𝑘′ ] by

𝜋 ≤ 𝜋′ if every block of 𝜋 is contained within a block of 𝜋′. (5.71)

We say that 𝜋 is a refinement of 𝜋′ or equivalently that 𝜋′ is a coarsening of 𝜋. Equivalently,
𝜋 ≤ 𝜋′ if 𝑑𝜋 only contains edges that are also contained in 𝑑𝜋′ . We use this partial ordering as
a partial ordering on diagrams 𝑑𝜋 and set partitions 𝜋 interchangeably.
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Example 36. For example,

< and < . (5.72)

The factorization in Proposition 34 is a consequence of the following proposition.

Proposition 35. Let 𝜋, 𝜋′ ∈ Π[𝑘 |𝑘′ ] , then

2|𝜋 ∨ 𝜋′ | = |𝜋 ∨ 𝜋 | + |𝜋′ ∨ 𝜋′ | = |𝜋 | + |𝜋′ | if 𝜋 = 𝜋′,

2|𝜋 ∨ 𝜋′ | < |𝜋 ∨ 𝜋 | + |𝜋′ ∨ 𝜋′ | = |𝜋 | + |𝜋′ | if 𝜋 ≠ 𝜋′,
(5.73)

where we have used |𝜋 ∨ 𝜋 | + |𝜋′ ∨ 𝜋′ | = |𝜋 | + |𝜋′ | since 𝑑𝜋 ∨ 𝑑𝜋 = 𝑑𝜋 .

Proof. We will prove Proposition 35 by separating the general pairs 𝑑𝜋 , 𝑑𝜋′ into three distinct
cases:

1. < If 𝑑𝜋 only contains edges that are also contained in 𝑑𝜋′ , but 𝑑𝜋 ≠ 𝑑𝜋′ we have 𝜋 < 𝜋′.
In this case, 𝑑𝜋 ∨ 𝑑𝜋′ = 𝑑𝜋′ and it follows that,

|𝜋 ∨ 𝜋′ | = |𝜋′ |. (5.74)

Note that 𝑑𝜋 < 𝑑𝜋′ implies |𝜋 | > |𝜋′ | since every addition of a new edge decreases the
number of components by at least one. This because at least one new vertex is put into
an already existing block. For example, in going from

→ , (5.75)

we decrease the number of components by exactly one. Therefore,

2|𝜋 ∨ 𝜋′ | = |𝜋′ | + |𝜋′ | < |𝜋 | + |𝜋′ |. (5.76)

Since the LHS and RHS are symmetric under exchanging 𝜋 ↔ 𝜋′, the inequality
2|𝜋 ∨ 𝜋′ | < |𝜋 | + |𝜋′ | holds for 𝑑𝜋′ < 𝑑𝜋 as well.

2. ̸⋚ Suppose 𝑑𝜋 ≠ 𝑑𝜋′ and that there is no set of edges that can be added to 𝑑𝜋 to turn it into
𝑑𝜋′ , nor is there a set of edges that can be added to 𝑑𝜋′ to obtain 𝑑𝜋 . Then, we say that
𝑑𝜋 and 𝑑𝜋′ are incomparable. We denote this by 𝑑𝜋 ̸⪋ 𝑑𝜋′ . The following diagrams are
examples of incomparable diagrams

̸⪋ , and ̸⪋ . (5.77)
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In this incomparable case, we have

|𝜋 ∨ 𝜋′ | < |𝜋 |, and |𝜋 ∨ 𝜋′ | < |𝜋′ | (5.78)

since the forming of the join involves adding to 𝑑𝜋 , additional edges creating connections
which did not exist in 𝑑𝜋 , or alternatively adding to 𝑑𝜋′ additional edges that did not exist
in 𝑑𝜋′ . Consequently we have the inequality

2|𝜋 ∨ 𝜋′ | < |𝜋 | + |𝜋′ |. (5.79)

3. = If 𝑑𝜋 = 𝑑𝜋′ we have
|𝜋 ∨ 𝜋′ | = |𝜋 ∨ 𝜋 | = |𝜋 | = |𝜋′ |, (5.80)

and therefore,
2|𝜋 ∨ 𝜋′ | = |𝜋 | + |𝜋′ |. (5.81)

□

To summarize, 2|𝜋 ∨ 𝜋′ | ≤ |𝜋 | + |𝜋′ | with equality if and only if 𝜋 = 𝜋′.

With this proposition we can prove the simplified factorization case.

Proof of Proposition 34. From Proposition 33, we have

©«
Tr𝑉⊗𝑘

𝑁
(𝐷 𝜋𝐷

𝑇
𝜋′)√︃

Tr𝑉⊗𝑘
𝑁
(𝐷 𝜋𝐷

𝑇
𝜋) Tr𝑉⊗𝑘

𝑁
(𝐷 𝜋′𝐷

𝑇
𝜋′)

ª®®¬
2

=
𝑁2 | 𝜋∨𝜋′ |

𝑁 | 𝜋 |+| 𝜋′ |
. (5.82)

It immediately follows from Proposition 35

𝑁2 | 𝜋∨𝜋′ |

𝑁 | 𝜋 |+| 𝜋′ |
=


1 if 𝜋 = 𝜋′

0 +𝑂 (1/𝑁) if 𝜋 ≠ 𝜋′ .
(5.83)

Taking the square-root gives Proposition 34. □

The above discussion leads to the following corollary, which will be useful in proving the main
proposition.

Corollary 17. Consider a fixed diagram 𝑑𝜋′ and family of diagrams 𝑑𝜋1 , 𝑑𝜋2 , . . . with fixed
|𝜋1 | = |𝜋2 | = . . . such that |𝜋′ | > |𝜋𝑖 |. It follows from (5.74) and (5.78) that for every 𝜋𝑖 ,

|𝜋 ∨ 𝜋𝑖 | < |𝜋𝑖 | if 𝑑𝜋 ̸⪋ 𝑑𝜋𝑖 (5.84)

|𝜋 ∨ 𝜋𝑖 | = |𝜋𝑖 | if 𝑑𝜋 < 𝑑𝜋𝑖 . (5.85)
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The inner products in Proposition 32 include sums over 𝑆𝑘 ,

⟨̂𝔡𝜋 |̂𝔡𝜋′⟩ =
∑
𝛾1∈𝑆𝑘 𝑁

|𝜋∨𝛾1𝜋
′𝛾−1

1 |√︃∑
𝛾2∈𝑆𝑘 𝑁

|𝜋∨𝛾2𝜋𝛾
−1
2 | ∑

𝛾3∈𝑆𝑘 𝑁
|𝜋′∨𝛾3𝜋′𝛾−1

3 |
, (5.86)

where 𝛾𝜋𝛾−1 is the set partition corresponding to the diagram obtained by computing 𝛾𝑑𝜋𝛾−1.
Proposition 32 follows from the following result.

Proposition 36.

2 max
𝛾1

��𝜋 ∨ 𝛾1𝜋
′𝛾−1

1
�� = max

𝛾2

��𝜋 ∨ 𝛾2𝜋𝛾
−1
2

�� +max
𝛾3

��𝜋′ ∨ 𝛾3𝜋
′𝛾−1

3
�� if [𝑑𝜋] = [𝑑𝜋′],

2 max
𝛾1

��𝜋 ∨ 𝛾1𝜋
′𝛾−1

1
�� < max

𝛾2

��𝜋 ∨ 𝛾2𝜋𝛾
−1
2

�� +max
𝛾3

��𝜋′ ∨ 𝛾3𝜋
′𝛾−1

3
�� if [𝑑𝜋] ≠ [𝑑𝜋′]

(5.87)

Proof. The first step in proving this is to simplify the terms on the r.h.s. The inequalities
in Proposition 35 imply that

��𝜋 ∨ 𝛾𝜋𝛾−1
�� is maximised when 𝜋 = 𝛾𝜋𝛾−1. Since the identity

permutation 𝛾 = 1 always satisfies this equality we have

max
𝛾

��𝜋 ∨ 𝛾𝜋𝛾−1�� = |𝜋 |. (5.88)

We are left with proving

2 max
𝛾

��𝜋 ∨ 𝛾𝜋′𝛾−1�� = |𝜋 | + |𝜋′ | if [𝑑𝜋] = [𝑑𝜋′],

2 max
𝛾

��𝜋 ∨ 𝛾𝜋′𝛾−1�� < |𝜋 | + |𝜋′ | if [𝑑𝜋] ≠ [𝑑𝜋′] .
(5.89)

We employ the same strategy as before, and consider three distinct cases.

1. Suppose |𝜋 | > |𝜋′ | and consider the set partition 𝛾𝜋′𝛾−1 for 𝛾 ∈ 𝑆𝑘 . We have |𝜋 | >��𝛾𝜋′𝛾−1
�� = |𝜋′ |, because conjugation does not change the number of blocks(components).

Therefore, either 𝑑𝜋 < 𝛾𝑑𝜋′𝛾
−1 or 𝑑𝜋 ̸⪋ 𝛾𝑑𝜋′𝛾

−1. Assume 𝜋, 𝜋′ are such that there
exists some 𝛾∗ with 𝑑𝜋 < 𝛾∗𝑑𝜋′ (𝛾∗)−1. For any such 𝛾∗, Corollary 17 implies that

2
��𝜋 ∨ 𝛾∗𝜋′(𝛾∗)−1�� = 2|𝜋′ | < |𝜋 | + |𝜋′ |. (5.90)

Any 𝛾 not satisfying this condition leads to 𝑑𝜋 ̸⪋ 𝛾𝑑𝜋′𝛾−1, and the inequality in Corollary
17 implies that

2
��𝜋 ∨ 𝛾𝜋′𝛾−1�� < 2|𝜋′ |. (5.91)

This implies that

2 max
𝛾

��𝜋 ∨ 𝛾𝜋′𝛾−1�� = 2
��𝜋 ∨ 𝛾∗𝜋′(𝛾∗)−1�� = 2|𝜋′ | < |𝜋 | + |𝜋′ |. (5.92)



5.2. PERMUTATION INVARIANT SECTORS FOR QUANTUM MATRIX SYSTEMS 119

The pair
𝑑𝜋 = , 𝑑𝜋′ = , (5.93)

is an example of this case since

< = . (5.94)

The argument is identical for the case where |𝜋 | < |𝜋′ |, and there exists some 𝛾∗ ∈ 𝑆𝑘
such that 𝑑𝜋′ < 𝛾∗𝑑𝜋 (𝛾∗)−1. In this case, by renaming 𝜋 ↔ 𝜋′ in (5.92), we have

2 max
𝛾

��𝜋′ ∨ 𝛾𝜋𝛾−1�� = 2
��𝜋′ ∨ 𝛾∗𝜋(𝛾∗)−1�� = 2|𝜋 | < |𝜋 | + |𝜋′ |. (5.95)

Using the symmetry of the inner product it follows

2 max
𝛾

��𝜋 ∨ 𝛾𝜋′𝛾−1�� < |𝜋 | + |𝜋′ |. (5.96)

2. Secondly, consider the case of incomparability,

𝑑𝜋 ̸⪋ 𝛾𝑑𝜋′𝛾−1 ∀𝛾 ∈ 𝑆𝑘 . (5.97)

Recall that for incomparable diagrams we have (5.79) which says that

2
��𝜋 ∨ 𝛾𝜋′𝛾−1�� < |𝜋 | + ��𝛾𝜋′𝛾−1�� = |𝜋 | + |𝜋′ |, (5.98)

where the last equality follows because conjugation by a permutation does not change the
number of connected components. Therefore

2 max
𝛾

��𝜋 ∨ 𝛾𝜋′𝛾−1�� < |𝜋 | + |𝜋′ |, (5.99)

in this case as well.

3. When 𝜋 = 𝛾𝜋′𝛾−1 for some 𝛾 ∈ 𝑆𝑘 , the bound is saturated and

2 max
𝛾

��𝜋 ∨ 𝛾𝜋′𝛾−1�� = 2|𝜋 |. (5.100)

The condition 𝜋 = 𝛾𝜋′𝛾−1 implies [𝑑𝜋] = [𝑑𝜋′].

□

Having proven the inequalities in equation (5.87), arguments similar to those used to prove
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Proposition 34 lead to a proof of Proposition 32. To summarise, the diagram basis for H(𝑘 )inv
forms an orthonormal basis at large 𝑁 .

5.2.3 Orbit basis. In Theorem 8, we described the orbit basis for End𝑆𝑁 (𝑉⊗𝑘𝑁 ). In this
subsection we will describe the corresponding orbit basis for 𝑃𝑘 (𝑁) and show that it corresponds
to an orthogonal basis for H(𝑘 )inv .

The orbit basis can be expressed in terms of the diagram basis using the partial ordering in
Definition 41.

Theorem 19. The orbit basis elements 𝑥𝜋′ for 𝜋′ ∈ Π[𝑘 |𝑘′ ] defined by

𝑑𝜋 =
∑︁
𝜋≤𝜋′

𝑥𝜋′ , (5.101)

form a basis for 𝑃𝑘 (𝑁). The change of basis matrix determined by (5.101), denoted Z2𝑘 , is
called the zeta matrix of the partially ordered set Π[𝑘 |𝑘′ ] . It is upper triangular, with ones on
the diagonal and hence invertible. The inverse of Z2𝑘 is the matrix `2𝑘

𝑥𝜋 =
∑︁
𝜋≤𝜋′

`2𝑘 (𝜋, 𝜋′)𝑑𝜋′ , (5.102)

where if 𝜋 ≤ 𝜋′ and 𝜋′ consists of 𝑏 blocks such that the 𝑖th block of 𝜋′ is the union of 𝑏𝑖 blocks
of 𝜋 then

`2𝑘 (𝜋, 𝜋′) =
𝑏∏
𝑖=1
(−1)𝑏𝑖−1(𝑏𝑖 − 1)! (5.103)

Proof. See [49, Section 4.2, 4.3]. □

Example 37. The diagram basis element 𝑑𝜋 is a sum of all orbit basis elements labelled by set
partitions equal to or coarser than 𝜋, for example

= + + + + . (5.104)

We will continue to distinguish the diagram and orbit bases by drawing diagram basis elements
with black vertices and labelling them with the letter 𝑑, and drawing orbit basis elements with
white vertices and labelling them with the letter 𝑥.

Example 38. We have the following expansion of the orbit basis element labelled by 𝜋 =

1|2|1′ |2′

= − − − − − − + + +

+ 2 + 2 + 2 + 2 − 6 . (5.105)
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As with the diagram basis, we can construct an orbit basis for 𝑆𝑃𝑘 (𝑁) by considering 𝑆𝑘 orbits.

Definition 42. Let 𝑥𝜋 be an orbit basis element of 𝑃𝑘 (𝑁) and consider the orbit

[𝑥𝜋] = {𝜏𝑥𝜋𝜏−1, ∀𝜏 ∈ 𝑆𝑘}. (5.106)

Define the corresponding element of 𝑆𝑃𝑘 (𝑁) by

𝔵𝜋 =
1
| [𝑥𝜋] |

∑︁
𝑥′𝜋 ∈[𝑥𝜋 ]

𝑥𝜋′ =
1
𝑘!

∑︁
𝜏∈𝑆𝑘

𝜏𝑥𝜋𝜏
−1. (5.107)

The set of distinct orbits define a basis for 𝑆𝑃𝑘 (𝑁). The proof is analogous to the diagram basis
case. Given this orbit basis for 𝑆𝑃𝑘 (𝑁), we define the corresponding orbit basis for H(𝑘 )inv

Definition 43. Let 𝔵 ∈ 𝑆𝑃𝑘 (𝑁) and 𝔛 ∈ End𝑆𝑁×𝑆𝑘 (𝑉⊗𝑘𝑁 ) the corresponding linear map. We
define the state |𝔵⟩ ∈ H(𝑘 )inv by

|𝔵⟩ = Tr𝑉⊗𝑘
𝑁
(𝔛(𝑎†)⊗𝑘) |0⟩ . (5.108)

We state the main property of the orbit basis and will spend the rest of this subsection proving
it.

Proposition 37. Let 𝔵𝜋 , 𝔵𝜋′ ∈ 𝑆𝑃𝑘 (𝑁) be orbit basis elements, then

⟨𝔵𝜋 |𝔵𝜋′⟩ =

|𝐺 𝜋 |𝑁 ( | 𝜋 | ) if [𝑥𝜋′] = [𝑥𝜋],

0 otherwise.
(5.109)

where 𝑁 (𝑙) = 𝑁 (𝑁 − 1) . . . (𝑁 − 𝑙 + 1) is the falling factorial and |𝐺 𝜋 | is the order of the
subgroup of 𝑆𝑘 that leaves 𝑥𝜋 invariant.

Before proving this, consider the simpler proposition

Proposition 38. Let 𝑋𝜋 , 𝑋𝜋′ be the orbit basis elements of End𝑆𝑁 (𝑉⊗𝑘𝑁 ) (see Theorem 8) then

Tr𝑉⊗𝑘
𝑁
(𝑋𝜋𝑋𝑇𝜋′) = 𝑁 ( | 𝜋 | )𝛿𝜋𝜋′ . (5.110)

Proof. The trace is equal to

Tr𝑉⊗𝑘
𝑁
(𝑋𝜋𝑋𝑇𝜋′) =

∑︁
𝑖1...𝑖𝑘
𝑖1′ ...𝑖𝑘′

(𝑋𝜋)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
(𝑋𝜋′)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘

. (5.111)
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As we now explain, Equation (3.28) implies

(𝑋𝜋)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
(𝑋𝜋′)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘

=


1 if 𝑖𝑎 = 𝑖𝑏 if and only if 𝑎 and 𝑏 are in the same block

of 𝜋 and the same block of 𝜋′,
0 otherwise.

(5.112)
If 𝜋 ≠ 𝜋′ two situations exist. Consider the set of all pairs (𝑎, 𝑏) for 𝑎, 𝑏 = 1, . . . , 𝑘, 1′, . . . , 𝑘 ′

such that 𝑎 and 𝑏 are in the same block of 𝜋. Since 𝜋 ≠ 𝜋′ at least one of these pairs are such
that 𝑎 and 𝑏 are in different blocks of 𝜋′. The second case is the reverse. Consider the set of
all (𝑎, 𝑏) such that 𝑎 and 𝑏 are in the same block of 𝜋′. Then 𝜋′ ≠ 𝜋 implies that there exists
at least one pair such that 𝑎 and 𝑏 are not in the same block of 𝜋. In that case, there are no
choices of 𝑖𝑎, 𝑖𝑏 which satisfy the first criteria in (5.112). For example, take 𝑎, 𝑏 to be in the
same block of 𝜋 but different blocks of 𝜋′. The matrix elements (𝑋𝜋)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘

vanish if 𝑖𝑎 ≠ 𝑖𝑏

while the matrix elements (𝑋𝜋′)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
vanish unless 𝑖𝑎 ≠ 𝑖𝑏. Therefore, the product identically

vanishes,
(𝑋𝜋)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘

(𝑋𝜋′)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
= 𝛿𝜋𝜋′ (𝑋𝜋)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘

(5.113)

and

Tr𝑉⊗𝑘
𝑁
(𝑋𝜋𝑋𝑇𝜋′) =

∑︁
𝑖1...𝑖𝑘
𝑖1′ ...𝑖𝑘′

(𝑋𝜋)𝑖1′ ...𝑖𝑘′𝑖1...𝑖𝑘
𝛿𝜋𝜋′ = 𝛿𝜋𝜋′𝑁 (𝑁 − 1) . . . (𝑁 − |𝜋 | + 1). (5.114)

The last equality is a consequence of (3.28). For example, consider the set partition 12|1′2′.
The trace of 𝑋12 |1′2′ is

Tr𝑉⊗2
𝑁
(𝑋12 |1′2′) =

∑︁
𝑖1=𝑖2≠𝑖3,𝑖3=𝑖4

= 𝑁 (𝑁 − 1), (5.115)

since we have 𝑁 choices of indices for 𝑖1 and (𝑁 − 1) choices for 𝑖3 (for every choice of 𝑖1).
The general case is analogous,

Tr𝑉⊗𝑘
𝑁
(𝑋𝜋) = 𝑁 ( | 𝜋 | ) . (5.116)

We have 𝑁 choices for the indices of the first block of 𝜋, 𝑁 − 1 choices for the indices of the
second block and so on. □

We now have the tools to prove the main proposition in this subsection.

Proof of Proposition 37. Note that the inner product of two orbit basis elements of is given by

⟨𝔵𝜋 |𝔵𝜋′⟩ =
∑︁
𝛾∈𝑆𝑘

Tr𝑉⊗𝑘
𝑁
(𝐷𝛾𝔛𝜋𝐷𝛾−1𝔛

𝑇
𝜋′). (5.117)
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Note that∑︁
𝛾∈𝑆𝑘

𝐷𝛾𝔛𝜋𝐷𝛾−1 =
1
𝑘!

∑︁
𝛾,`∈𝑆𝑘

𝐷𝛾𝐷`𝑋𝜋𝐷`−1𝐷𝛾−1 =
∑︁
𝛾∈𝑆𝑘

𝐷𝛾𝑋𝜋𝐷𝛾−1 , (5.118)

and therefore∑︁
𝛾∈𝑆𝑘

Tr𝑉⊗𝑘
𝑁
(𝐷𝛾𝔛𝜋𝐷𝛾−1𝔛

𝑇
𝜋′) =

1
(𝑘!)2

∑︁
𝛾,`,a∈𝑆𝑘

Tr𝑉⊗𝑘
𝑁
(𝐷a𝐷𝛾𝐷`𝑋𝜋𝐷`−1𝐷𝛾−1𝐷a−1𝑋𝑇𝜋′)

(5.119)

=
∑︁
𝛾∈𝑆𝑘

Tr𝑉⊗𝑘
𝑁
(𝐷𝛾𝑋𝜋𝐷𝛾−1𝑋𝑇𝜋′). (5.120)

We re-write ∑︁
𝛾∈𝑆𝑘

𝐷𝛾𝑋𝜋𝐷𝛾−1 = |𝐺 𝜋 |
∑︁

𝑥_∈[𝑥𝜋 ]
𝑋_, (5.121)

where the sum on the r.h.s. is over the distinct elements in the 𝑆𝑘 orbit of 𝑥𝜋 . Substituting this
into the trace gives

⟨𝔵𝜋 |𝔵𝜋′⟩ = |𝐺 𝜋 |
∑︁

𝑥_∈[𝑥𝜋 ]
Tr𝑉⊗𝑘

𝑁
(𝑋_𝑋𝑇𝜋′) = |𝐺 𝜋 |

∑︁
𝑥_∈[𝑥𝜋 ]

𝑁 ( | 𝜋 | )𝛿_𝜋′ (5.122)

=


|𝐺 𝜋 |𝑁 ( | 𝜋 | ) if [𝑥𝜋′] = [𝑥𝜋],

0 otherwise,
(5.123)

where we used Proposition 38 in the second equality. □

To summarise we have found that the orbit basis is orthogonal for all 𝑁 . Note that the norm
of |𝔵𝜋⟩ vanishes if 𝑁 ≤ |𝜋 | since then 𝑁 ( | 𝜋 | ) = 0. We leave it for future work to investigate
consequences of this.

5.2.4 Representation basis. In section 3.2 we saw that 𝑃𝑘 (𝑁) has a basis of matrix units
for 𝑁 ≥ 2𝑘 . In this section we will see that 𝑆𝑃𝑘 (𝑁) also has a basis of matrix units. The
corresponding basis forH(𝑘 )inv is called the representation basis. It is orthogonal and diagonalizes
a set of commuting charges.

The matrix units for 𝑆𝑃𝑘 (𝑁) are constructed from the matrix units 𝑄_
𝛼𝛽

in (3.173) using
Branching coefficients. Branching coefficients are understood as follows. The partition algebra
𝑃𝑘 (𝑁) has a subalgebra (isomorphic to) C[𝑆𝑘]. For any given irreducible representation 𝑍_
of 𝑃𝑘 (𝑁) there exists a basis where the action of C[𝑆𝑘] ⊂ 𝑃𝑘 (𝑁) is manifest and irreducible.
That is, as a representation of 𝑆𝑘

𝑍_ �
⊕
𝛾⊢𝑘

𝑉𝛾 ⊗ 𝑀_→𝛾 , (5.124)
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where 𝑀_→𝛾 is a multiplicity space. We take the l.h.s. to have an orthonormal basis

𝐸_𝛼, 𝛼 ∈ {1, . . . 𝑚_𝑘,𝑁 }. (5.125)

The r.h.s. has a basis
𝐸
_,𝛾
𝑝` , 𝑝 ∈ {1, . . . , dim𝑉𝛾},

` ∈ {1, . . . , dim(𝑀_→𝛾)},
(5.126)

where ` is a multiplicity label for the irreducible representation 𝑉𝛾 of 𝑆𝑘 in the decomposition.
We demand that the representation of 𝜏 ∈ C[𝑆𝑘] is irreducible in this basis and that the basis is
orthonormal with respect to the inner product defined by 𝐸_𝛼.

Definition 44. The change of basis coefficients in (5.124) are called branching coefficients.
They are defined by

𝐸
_,𝛾
𝑝` =

∑︁
𝛼

(𝐵_→𝛾)𝛼𝑝`𝐸_𝛼. (5.127)

Given this definition we can define matrix units for 𝑆𝑃𝑘 (𝑁)

Proposition 39. The elements

𝑄
_,𝛾
`a =

∑︁
𝛼,𝛽,𝑝

𝑄_𝛼𝛽 (𝐵_→𝛾)𝛼𝑝` (𝐵_→𝛾)
𝛽
𝑝a . (5.128)

form matrix units for 𝑆𝑃𝑘 (𝑁). The sum over 𝑝 in (5.128) implements the projection to 𝑆𝑘
invariants.

Proof. The matrix unit property

𝑄
_,𝛾
`a 𝑄

_′ ,𝛾′

`′a′ = 𝛿__
′
𝛿𝛾𝛾

′
𝛿a`′𝑄

_,𝛾

`a′ , (5.129)

of the 𝑆𝑃𝑘 (𝑁) basis follows from that of the 𝑃𝑘 (𝑁) units together with orthogonality of 𝐸_,𝛾𝑝` ,

𝑄
_,𝛾
`a 𝑄

_′ ,𝛾′

`′a′ =
∑︁
𝛼,𝛽,𝑝
𝛼′ ,𝛽′ , 𝑝′

(𝐵_→𝛾)𝛼𝑝` (𝐵_→𝛾)
𝛽
𝑝a (𝐵_

′→𝛾′)𝛼′𝑝′`′ (𝐵_
′→𝛾′)𝛽

′

𝑝′a′𝑄
_
𝛼𝛽𝑄

_′
𝛼′𝛽′

=
∑︁
𝛼,𝛽,𝑝
𝛼′ ,𝛽′ , 𝑝′

(𝐵_→𝛾)𝛼𝑝` (𝐵_→𝛾)
𝛽
𝑝a (𝐵_

′→𝛾′)𝛼′𝑝′`′ (𝐵_
′→𝛾′)𝛽

′

𝑝′a′𝛿
__′𝛿𝛽𝛼′𝑄

_
𝛼𝛽′

=
∑︁
𝛼,𝑝
𝛽′ , 𝑝′

(𝐵_→𝛾)𝛼𝑝` (𝐵_
′→𝛾′)𝛽

′

𝑝′a′𝛿
__′𝛿𝛾𝛾

′
𝛿𝑝𝑝′𝛿a`′𝑄

_
𝛼𝛽′

=
∑︁
𝛼,𝛽′ , 𝑝

(𝐵_→𝛾)𝛼𝑝` (𝐵_
′→𝛾′)𝛽

′

𝑝a′𝛿
__′𝛿𝛾𝛾

′
𝛿a`′𝑄

_
𝛼𝛽′

= 𝛿__
′
𝛿𝛾𝛾

′
𝛿a`′𝑄

_,𝛾

`a′ .

(5.130)
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Going from the first line to the second we used the matrix unit property of 𝑄_1
𝛼𝛽

. Going from
the second line to the third line uses orthogonality∑︁

𝛼

(𝐵_→𝛾)𝛼𝑝` (𝐵_→𝛾
′)𝛼𝑞a = 𝛿𝛾𝛾

′
𝛿𝑝𝑞𝛿`a . (5.131)

□

This proposition should be understood as the Artin-Wedderburn decomposition of 𝑆𝑃𝑘 (𝑁).
Recall that

𝑃𝑘 (𝑁) �
⊕
_∈Λ𝑘,𝑁

𝑍_ ⊗ 𝑍_, (5.132)

as a left and right representation of 𝑃𝑘 (𝑁). As a left and right representation of 𝑆𝑘 we have
(using (5.124)) ⊕

_∈Λ𝑘,𝑁

©«
⊕
𝛾⊢𝑘

𝑉𝛾 ⊗ 𝑀_→𝛾
ª®¬ ⊗ ©«

⊕
𝛾′⊢𝑘

𝑉𝛾′ ⊗ 𝑀_→𝛾′
ª®¬. (5.133)

Projecting to the 𝑆𝑘 invariant part gives

𝑆𝑃𝑘 (𝑁) �
⊕
_∈Λ𝑘,𝑁

⊕
𝛾⊢𝑘

𝑀_→𝛾 ⊗ 𝑀_→𝛾 . (5.134)

These steps are precisely mimicked in (5.128) – we branch to 𝑆𝑘 on both sides and project
to the 𝑆𝑘 invariants by contracting the 𝑆𝑘 representation indices. The above equation is an
Artin-Wedderburn decomposition of

𝑆𝑃𝑘 (𝑁) � End𝑆𝑁×𝑆𝑘 (𝑉⊗𝑘𝑁 ). (5.135)

The matrix units define states in H
(𝑘 )
inv

Definition 45. Let 𝑁 ≥ 2𝑘 and define the representation states

|𝑄_,𝛾`a ⟩ = Tr𝑉⊗𝑘
𝑁
(𝑄_,𝛾`a (𝑎†)⊗𝑘) |0⟩ . (5.136)

They form a basis for H(𝑘 )inv .

Proposition 40. The representation basis is orthogonal (for 𝑁 ≥ 2𝑘)

⟨𝑄_,𝛾`a |𝑄_
′ ,𝛾′

`′a′ ⟩ ∝ 𝛿
__′𝛿𝛾𝛾

′
𝛿``′𝛿aa′ . (5.137)
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Proof. The proof goes as follows

⟨𝑄_,𝛾`a |𝑄_
′ ,𝛾′

`′a′ ⟩ =
∑︁
𝜏∈𝑆𝑘

Tr𝑉⊗𝑘
𝑁
(𝑄_,𝛾`a 𝜏

(
𝑄
_′ ,𝛾′

`′a′

)𝑇
𝜏−1)

=
∑︁
𝜏∈𝑆𝑘

Tr𝑉⊗𝑘
𝑁
(𝑄_,𝛾`a 𝜏

(
𝑄
_′ ,𝛾′

`′a′

)𝑇
𝜏−1)

= 𝑘! Tr𝑉⊗𝑘
𝑁
(𝑄_,𝛾`a

(
𝑄
_′ ,𝛾′

`′a′

)𝑇
)

= 𝑘!𝛿__
′
𝛿𝛾𝛾′𝛿aa′ Tr𝑉⊗𝑘

𝑁
(𝑄_,𝛾

``′).

(5.138)

In the second equality we used
(
𝑄
_′ ,𝛾′

`′a′

)𝑇
= 𝑄

_′ ,𝛾′

a′`′ which follows from equation (3.155). Note
that

Tr𝑉⊗𝑘
𝑁
(𝑄_

′ ,𝛾′

``′ ) = Tr𝑉⊗𝑘
𝑁
(𝑄_

′ ,𝛾′

`1 𝑄
_′ ,𝛾′

1`′ )

= Tr𝑉⊗𝑘
𝑁
(𝑄_

′ ,𝛾′

1`′ 𝑄
_′ ,𝛾′

`1 )

= 𝛿``′ Tr𝑉⊗𝑘
𝑁
(𝑄_

′ ,𝛾′

11 )

(5.139)

such that the normalization only depends on irreducible representations _, 𝛾, which proves
orthogonality. □

The normalization constant is readily computed as follows. From Proposition 13

𝜒_
′ (𝑄_𝛼𝛽) = 𝛿__

′
𝛿𝛼𝛽 . (5.140)

We use this fact together with Schur-Weyl duality to compute Tr𝑉⊗𝑘
𝑁
(𝑄_

𝛼𝛽
)

Tr𝑉⊗𝑘
𝑁
(𝑄_𝛼𝛽) =

∑︁
_′∈Λ𝑘,𝑁

dim𝑉_′ 𝜒
_′ (𝑄_𝛼𝛽) =

∑︁
_′∈Λ𝑘,𝑁

dim𝑉_′𝛿
__′𝛿𝛼𝛽 = dim𝑉_𝛿𝛼𝛽 . (5.141)

Consequently,
Tr𝑉⊗𝑘

𝑁
(𝑄_,𝛾`a ) =

∑︁
𝛼,𝛽,𝑝

(𝐵_→𝛾)𝛼𝑝` (𝐵_→𝛾)
𝛽
𝑝a𝛿𝛼𝛽 dim𝑉_

=
∑︁
𝑝

𝛿𝑝𝑝𝛿`a dim𝑉_

= 𝛿`a dim𝑉_ dim𝑉𝛾 ,

(5.142)

where the last two equalities hold if and only if the branching coefficients are non-zero.

In [3] we gave explicit constructions of matrix units for 𝑆𝑃1(𝑁), 𝑆𝑃2(𝑁) and 𝑆𝑃3(𝑁) using
sets of commuting elements, inspired by the method used to construct matrix units for 𝑃𝑘 (𝑁) in
Section 3.3. This required careful choices of commuting elements for each 𝑘 = 1, 2, 3 to ensure
that all indices are distinguished by the eigenvalues of the corresponding linear operators. Here,
we will describe a procedure that works for general 𝑘 given the matrix units for 𝑃𝑘 (𝑁). The
downside is that this procedure only works for a subset of matrix units with _ such that

��_#
�� = 𝑘 .
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The procedure relies on the following result.

Theorem 20. Let 𝑍_ be an irreducible representation of 𝑃𝑘 (𝑁) with
��_#

�� = 𝑘 . Then the
restriction to C𝑆𝑘 is multiplicity free and

Res𝑃𝑘 (𝑁 )
C𝑆𝑘

(𝑍_) = 𝑉_# . (5.143)

Proof. See [50, Remark 4.18]. □

This implies that there exists a basis for 𝑍_ (given in [50] in terms of set partition tableaux)
where the branching coefficients are trivial

(𝐵_→_#)𝛼𝑝 = 𝛿𝛼𝑝 . (5.144)

Consequently

𝑄_,_
#
=

𝑚_
𝑘,𝑁∑︁
𝛼=1

𝑄_𝛼𝛼. (5.145)

This allows us to leverage the construction of 𝑃𝑘 (𝑁) matrix units in Section 3.3 to immediately
find the multiplicity free matrix units of 𝑆𝑃𝑘 (𝑁).

5.3 Algebraic Hamiltonians on algebraic states

In this section we will leverage the results in the previous section to construct Hamiltonians
that act algebraically through diagram concatenation on the invariant states. These operators
will be labelled by elements of the partition algebra, and in the subspace Hinv ⊂ H, the matrix
units form exact eigenvectors. We discuss some challenges in constructing Hamiltonians that
distinguish all the labels of 𝑆𝑃𝑘 (𝑁) matrix units.

To motivate the next definition, consider the following operator

O =
1
2
(𝑎†)𝑖1′

𝑖2
(𝑎†)𝑖2′

𝑖1
𝑎
𝑖1
𝑖1′
𝑎
𝑖2
𝑖2′
. (5.146)

The following proposition gives the action of this operator on H.

Proposition 41. Let O be the operator defined in the previous equation and |𝑇⟩ ∈ H(𝑟 ) a
degree 𝑟 state as in Definition 38, then

O |𝑇⟩ =

∑

1≤𝑖< 𝑗≤𝑟
��𝐷 (𝑖 𝑗 )𝑇〉

for 𝑟 ≥ 2 ,

0 otherwise,
(5.147)

where 𝐷 (𝑖 𝑗 ) acts on 𝑉⊗𝑟
𝑁

by permuting tensor factors 𝑖 and 𝑗 .
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Proof. It is clear that O vanishes on states of degree 𝑟 < 2. Thus, we now assume 𝑟 ≥ 2, for
which the proposition follows from a straight-forward computation. First note that

𝑎
𝑖1
𝑖1′
𝑎
𝑖2
𝑖2′
(𝑎†)𝑙1

𝑘1
. . . (𝑎†)𝑙𝑟

𝑘𝑟
|0⟩ (5.148)

=
1

(𝑟 − 2)!
∑︁
𝛾∈𝑆𝑟

[
𝑎
𝑖1
𝑖1′
, (𝑎†)𝑙(1)𝛾

𝑘(1)𝛾

] [
𝑎
𝑖2
𝑖2′
, (𝑎†)𝑙(2)𝛾

𝑘(2)𝛾

]
(𝑎†)𝑙(3)𝛾

𝑘(3)𝛾
. . .(𝑎†)𝑙(𝑟 )𝛾

𝑘(𝑟 )𝛾
|0⟩ . (5.149)

Therefore

O(𝑎†)𝑙1
𝑘1
. . . (𝑎†)𝑙𝑟

𝑘𝑟
|0⟩ = 1

2(𝑟 − 2)!
∑︁
𝛾∈𝑆𝑟
(𝑎†)𝑙(1)𝛾

𝑘(2)𝛾
(𝑎†)𝑙(2)𝛾

𝑘(1)𝛾
(𝑎†)𝑙(3)𝛾

𝑘(3)𝛾
. . .(𝑎†)𝑙(𝑟 )𝛾

𝑘(𝑟 )𝛾
|0⟩ . (5.150)

Define 𝜏 = (12) ∈ 𝑆𝑟 and re-write the above equation as

O(𝑎†)𝑙1
𝑘1
. . . (𝑎†)𝑙𝑟

𝑘𝑟
|0⟩ = 1

2(𝑟 − 2)!
∑︁
𝛾∈𝑆𝑟
(𝑎†)𝑙(1)𝛾

𝑘(1)𝜏𝛾
(𝑎†)𝑙(2)𝛾

𝑘(2)𝜏𝛾
(𝑎†)𝑙(3)𝛾

𝑘(3)𝛾
. . .(𝑎†)𝑙(𝑟 )𝛾

𝑘(𝑟 )𝛾
|0⟩ . (5.151)

Therefore

O |𝑇⟩ =
∑︁
𝑙1...𝑙𝑟
𝑘1...𝑘𝑟

𝑇
𝑘1...𝑘𝑟
𝑙1...𝑙𝑟

1
2(𝑟 − 2)!

∑︁
𝛾∈𝑆𝑟
(𝑎†)𝑙(1)𝛾

𝑘(1)𝜏𝛾
(𝑎†)𝑙(2)𝛾

𝑘(2)𝜏𝛾
(𝑎†)𝑙(3)𝛾

𝑘(3)𝛾
. . .(𝑎†)𝑙(𝑟 )𝛾

𝑘(𝑟 )𝛾
|0⟩ (5.152)

=
1

2(𝑟 − 2)!
∑︁
𝛾∈𝑆𝑟

∑︁
𝑙1...𝑙𝑟
𝑘1...𝑘𝑟

𝑇
𝑘(1) (𝜏𝛾)−1 𝑘(2) (𝜏𝛾)−1 𝑘(3)𝛾−1 ...𝑘(𝑟 )𝛾−1

𝑙(1)𝛾−1 ...𝑙(𝑟 )𝛾−1
(𝑎†)𝑙1

𝑘1
(𝑎†)𝑙2

𝑘2
(𝑎†)𝑙3

𝑘3
. . .(𝑎†)𝑙𝑟

𝑘𝑟
|0⟩

(5.153)

=
1

2(𝑟 − 2)!
∑︁
𝛾∈𝑆𝑟

∑︁
𝑙1...𝑙𝑟
𝑘1...𝑘𝑟

𝑇
𝑘(1)𝛾𝜏 𝑘(2)𝛾𝜏 𝑘(3)𝛾 ...𝑘(𝑟 )𝛾
𝑙(1)𝛾 ...𝑙(𝑟 )𝛾

(𝑎†)𝑙1
𝑘1
(𝑎†)𝑙2

𝑘2
(𝑎†)𝑙3

𝑘3
. . .(𝑎†)𝑙𝑟

𝑘𝑟
|0⟩ , (5.154)

where in the last line we relabelled the sum over 𝛾 to a sum over 𝛾−1 and used 𝜏−1 = (12)−1 =

(12) = 𝜏. We re-write this as a trace of operators on 𝑉⊗𝑟
𝑁

and find

O |𝑇⟩ = 1
2(𝑟 − 2)!

∑︁
𝛾∈𝑆𝑟

��𝐷𝜏𝐷𝛾−1𝑇𝐷𝛾
〉
=

∑︁
1≤𝑖< 𝑗≤𝑟

��𝐷 (𝑖 𝑗 )𝑇〉
. (5.155)

The last equality follows from 𝐷𝛾 (𝑎†)⊗𝑘 = (𝑎†)⊗𝑟𝐷𝛾 and the fact that (𝑖 𝑗) is fixed by elements
in 𝑆2 × 𝑆𝑟−2 ⊂ 𝑆𝑟 under conjugation. □

The operator O can be written in the very suggestive form

O =
1
2

Tr𝑉⊗2
𝑁
((𝑎†)⊗2𝐷𝜏𝑎

⊗2), (5.156)

where 𝜏 = (12). It has a natural generalization
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Definition 46. Let 𝜏 = (12 . . . 𝑘) ∈ 𝑆𝑘 and define the operator

O𝑘 =
1
𝑘

Tr𝑉⊗𝑘
𝑁
((𝑎†)⊗𝑘𝐷𝜏𝑎⊗𝑘). (5.157)

Note that 𝜏 is invariant under conjugation by permutations in 𝑆𝑟−𝑘 and cyclic permutations of
{1, 2, . . . , 𝑘}. Identical steps as for the 𝑘 = 2 case gives the following corollary.

Corollary 18. Let𝐶𝑘 be the conjugacy class of 𝑆𝑟 with elements having the same cycle structure
as (12 . . . 𝑘) (𝑘 + 1) . . . (𝑟) and |𝑇⟩ ∈ H(𝑟 ) , then

O𝑘 |𝑇⟩ =

∑
𝜏∈𝐶𝑘⊂𝑆𝑟 |𝐷𝜏𝑇⟩ for 𝑟 ≥ 𝑘 ,

0 otherwise.
(5.158)

We now use these operators to construct Hamiltonians with solvable spectra.

5.3.1 Spectra of algebraic Hamiltonians. The operators O𝑘 are in fact Hermitian since

⟨𝑇 ′ |O𝑘 |𝑇⟩ =
∑︁

𝜏∈𝐶𝑘⊂𝑆𝑟
⟨𝑇 |𝐷𝜏𝑇⟩ (5.159)

=
∑︁
𝛾∈𝑆𝑟

∑︁
𝜏∈𝐶𝑘⊂𝑆𝑟

Tr𝑉⊗𝑟
𝑁
((𝑇 ′)†𝐷𝛾𝐷𝜏𝑇𝐷𝛾−1) (5.160)

=
∑︁
𝛾∈𝑆𝑟

∑︁
𝜏∈𝐶𝑘⊂𝑆𝑟

Tr𝑉⊗𝑟
𝑁
((𝑇 ′)†𝐷𝜏𝐷𝛾𝑇𝐷𝛾−1) (5.161)

=
∑︁
𝛾∈𝑆𝑟

∑︁
𝜏∈𝐶𝑘⊂𝑆𝑟

Tr𝑉⊗𝑟
𝑁
((𝐷†𝜏𝑇 ′)†𝐷𝛾𝑇𝐷𝛾−1) (5.162)

=
∑︁
𝛾∈𝑆𝑟

∑︁
𝜏∈𝐶𝑘⊂𝑆𝑟

Tr𝑉⊗𝑟
𝑁
((𝐷𝜏𝑇 ′)†𝐷𝛾𝑇𝐷𝛾−1) (5.163)

= ⟨𝑇 ′ |O†
𝑘
|𝑇⟩ (5.164)

where in going to (5.161) we used the fact that
∑
𝜏∈𝐶𝑘⊂𝑆𝑟 𝐷𝛾𝐷𝜏 =

∑
𝜏∈𝐶𝑘⊂𝑆𝑟 𝐷𝜏𝐷𝛾 and

(5.163) uses ∑︁
𝜏∈𝐶𝑘⊂𝑆𝑟

𝐷†𝜏 =
∑︁

𝜏∈𝐶𝑘⊂𝑆𝑟
𝐷𝜏−1 =

∑︁
𝜏∈𝐶𝑘⊂𝑆𝑟

𝐷𝜏 , (5.165)

which holds because 𝜏 and 𝜏−1 are in the same conjugacy class for symmetric groups.

Note that the following element of C𝑆𝑟 ∑︁
𝜏∈𝐶𝑘⊂𝑆𝑟

𝜏, (5.166)

is central. Therefore, the corresponding linear operator O𝑘 acts on irreducible representations
of 𝑆𝑟 by a scalar, and in particular a normalized character. The normalized characters are known
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for general 𝑟 = 𝑘 [99, Theorem 4] (see (3.194) for 𝑘 = 2). For 𝑘 = 3 we have

Theorem 21. Let 𝛾 ⊢ 𝑟 and 𝑌𝛾 the corresponding Young diagram. Then∑︁
𝜏∈𝐶𝑘⊂𝑆𝑟

�̂�𝛾 (𝜏) =
∑︁
(𝑖, 𝑗 ) ∈𝑌𝛾

( 𝑗 − 𝑖)2 −
(
𝑘

2

)
, (5.167)

where (𝑖, 𝑗) corresponds to the cell in the 𝑖th row and 𝑗 th column of the Young diagram (the top
left box has coordinate (1, 1)).

Proof. See [99, Theorem 4]. □

This leads us to define the following Hamiltonians

Definition 47. Let O𝑘 be as in Definition 46 and define the Hermitian operator

𝐻 =
𝐾 (𝐾 + 1)

2
+ O3 + 𝑔O2, (5.168)

where

𝐾 =

𝑁∑︁
𝑖, 𝑗=1

𝑎
†
𝑖 𝑗
𝑎𝑖 𝑗 . (5.169)

From (3.194), (5.167) and the fact that 𝐾 has eigenvalue 𝑟 on H(𝑟 ) , we find that the eigenvalues
of 𝐻 are

𝑟 for 𝑟 = 0, 1, (5.170)

𝑟 + 𝑔
∑︁
(𝑖, 𝑗 ) ∈𝑌𝛾

( 𝑗 − 𝑖) for 𝑟 = 2, (5.171)

𝑟 +
∑︁
(𝑖, 𝑗 ) ∈𝑌𝛾

( 𝑗 − 𝑖)2 + 𝑔( 𝑗 − 𝑖) for 𝑟 ≥ 3. (5.172)

where 𝛾 ⊢ 𝑟 . The first two terms are always positive, while the third term is negative for Young
diagrams with many rows and few columns. In fact, for fixed 𝑟 and 𝑔 > 0 the third term is
minimized for the anti-symmetric Young diagram [1𝑟 ]. For 𝑔 < 0 it is minimized for the
symmetric diagram [𝑟]. We leave it as a future direction to investigate when the spectrum of
this Hamiltonian is bounded from below, and what the ground states are.

5.3.2 Algebraic eigenvectors. It is difficult to exactly diagonalize the Hamiltonian (5.168) in
H(𝑘 ) for large 𝑁 . However, in the smaller subspace H

(𝑘 )
inv the Hamiltonian can be understood

as acting on 𝑆𝑃𝑘 (𝑁) ⊂ 𝑃𝑘 (𝑁) through left multiplication. The dimension of 𝑃𝑘 (𝑁) is
independent of 𝑁 and there is hope in finding exact eigenvectors of 𝐻 inside Hinv for all 𝑁 . As
we will now see, the matrix units of 𝑆𝑃𝑘 (𝑁) are exact eigenvectors of 𝐻.
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The following corollary gives the action of 𝜏 on matrix units 𝑄_,𝛾`a .

Corollary 19. Let 𝜏 ∈ 𝑆𝑘 and 𝑄_,𝛾`a a matrix unit as defined in (5.128) then

𝐷𝜏𝑄
_,𝛾
`a =

∑︁
𝛼,𝛽,𝑞, 𝑝

𝑄_𝛼𝛽𝐷
𝛾
𝑞𝑝 (𝜏) (𝐵_→𝛾)𝛼𝑞` (𝐵_→𝛾)

𝛽
𝑝a . (5.173)

This follows from Corollary 7 and the equivariance property of the branching coefficients. An
immediate consequence of this is that∑︁

𝜏∈𝐶𝑘⊂𝑆𝑘
𝐷𝜏𝑄

_,𝛾
`a =

∑︁
𝜏∈𝐶𝑘⊂𝑆𝑘

�̂�𝛾 (𝜏)𝑄
_,𝛾
`a , (5.174)

because
∑
𝜏∈𝐶𝑘⊂𝑆𝑘 𝐷𝜏 is central in C𝑆𝑘 . As we show below, it follows that the representation

basis elements form eigenvectors of O𝑘 ,

O𝑘

���𝑄_,𝛾`a 〉
=

∑︁
𝜏∈𝐶𝑘⊂𝑆𝑘

���𝐷𝜏𝑄_,𝛾`a 〉
=

∑︁
𝜏∈𝐶𝑘⊂𝑆𝑘

�̂�𝛾 (𝜏)
���𝑄_,𝛾`a 〉

. (5.175)

Hamiltonians very similar to those constructed in this section were discussed in [11, Section
5]. Here we have given a construction of these Hamiltonians in a matrix oscillator setting. In
the next subsection we discuss some extensions beyond symmetric group Hamiltonians

5.3.3 Extensions beyond symmetric group Hamiltonians. In Equation 5.175 we saw that
the irreducible representation 𝛾 of 𝑆𝑘 is closely connected to the eigenvalues of the Hamiltonian
defined in (5.168). Naturally, we ask if there exists analogues of the Hermitian operators O𝑘 ,
whose eigenvalues are closely connected to the irreducible representation _ of 𝑆𝑁 .

There is no issue in generalizing Definition 46 to arbitrary elements 𝔡 ∈ 𝑆𝑃𝑘 (𝑁).

Definition 48. Let 𝔡 ∈ 𝑆𝑃𝑘 (𝑁) and define the operator

O𝔡 =
1
𝑘!

Tr𝑉⊗𝑘
𝑁
((𝑎†)⊗𝑘𝔡𝑎⊗𝑘). (5.176)

Unfortunately, the action ofO𝔡 onH(𝑟 ) is more complicated than the action ofO𝑘 . In particular,
using the same computation as for proving Proposition 41, one finds

O𝔡 |𝑇⟩ =


0 for 𝑟 < 𝑘 ,

|𝔡𝑇⟩ for 𝑟 = 𝑘 ,
1
𝑘!

∑
𝛾∈𝑆𝑟

��𝐷𝛾 (𝔡 ⊗ I𝑟−𝑘)𝐷𝛾−1𝑇
〉

for 𝑟 > 𝑘 .

(5.177)
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Therefore, one might pick 𝔡 to be an element of the center of 𝑃𝑘 (𝑁), in which case

O𝔡

���𝑄_,𝛾`a 〉
= �̂�_(𝔡)

���𝑄_,𝛾`a 〉
, (5.178)

for𝑄_,𝛾`a ∈ 𝑆𝑃𝑘 (𝑁). However, for representation basis elements corresponding to 𝑆𝑃𝑟 (𝑁) with
𝑟 > 𝑘 we have

O𝔡

���𝑄_,𝛾`a 〉
=

1
𝑘!

∑︁
𝛾∈𝑆𝑟

���𝐷𝛾 (𝔡 ⊗ I𝑟−𝑘)𝐷𝛾−1𝑄
_,𝛾
`a

〉
. (5.179)

It is not clear that ∑︁
𝛾∈𝑆𝑟

𝛾(𝔡 ⊗ I𝑟−𝑘)𝛾−1, (5.180)

is a central element of 𝑆𝑃𝑟 (𝑁) or 𝑃𝑟 (𝑁). Therefore, we are no longer able prove that this acts
by a normalized character of the representation _.

In [3] we proposed a solution to this by defining operators that vanish unless 𝑟 = 𝑘 . This
definition allowed us to construct Hamiltonians that completely distinguish all the labels on
matrix units using a complete set of commuting operators. So far, we do not have nice
expressions for these operators in terms of finite sums of oscillators, as we do for O𝑘 . Finding
such expressions is a very interesting problem for the future.

5.4 Extremal correlators

Extremal correlators inN = 4 SYM form interesting sectors having non-renormalization proper-
ties [100]. They are closely connected to representation theoretic quantities such as Littlewood-
Richardsson coefficients, and form a crucial set of examples for checking the AdS/CFT cor-
respondence. In the quantum mechanical model presented in this paper, vacuum expectation
values similar to extremal correlators can be computed exactly. They form generalizations of
the two-point functions(inner products) previously considered and obey representation theoretic
selection rules that we derive in the representation basis.

Definition 40 can be interpreted as a quantum mechanical operator-state correspondence for 𝑆𝑁
invariant states

|𝔡𝜋⟩ ←→ O𝜋 = Tr𝑉⊗𝑘
𝑁
(𝔇𝜋 (𝑎†)⊗𝑘). (5.181)

From equation (38) we have
O†𝜋 = Tr𝑉⊗𝑘

𝑁
(𝔇†𝜋𝑎⊗𝑘). (5.182)

The time-dependent operators are given by

O𝜋 (𝑡) = e−𝑖𝐻0𝑡O𝜋e𝑖𝐻0𝑡 = e−𝑖𝑘𝑡O𝜋 , (5.183)

where𝐻0 is the free Hamiltonian, defined in equation (5.7).
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With this notation, proposition 32 takes the form〈
O†𝜋O𝜋′

〉
√︂〈

O†𝜋O𝜋
〉 〈

O†
𝜋′O𝜋′

〉 = 𝛿𝜋∼𝜋′ +𝑂 (1/
√
𝑁), (5.184)

where

𝛿𝜋∼𝜋′ =


1 if 𝜋, 𝜋′ differ by a permutation,

0 otherwise.
(5.185)

5.4.1 Three-point correlators We now study the following generalization of the above ex-
pectation value

Definition 49 (Extremal correlator). Let 𝔡𝜋1 ∈ 𝑆𝑃𝑘1 (𝑁), 𝔡𝜋2 ∈ 𝑆𝑃𝑘2 (𝑁), 𝔡𝜋 ∈ 𝑆𝑃𝑘 (𝑁) such
that 𝑘 = 𝑘1 + 𝑘2. Extremal three-point correlators (of degree k) are expectation values of the
form

⟨0|O†𝜋1 (𝑡1)O
†
𝜋2 (𝑡2)O𝜋 (𝑡) |0⟩ . (5.186)

In what follows, we will ignore the trivial time-dependence that factorizes as

e𝑖𝑘1𝑡1+𝑖𝑘2𝑡2−𝑖𝑘𝑡 ⟨0|O†𝜋1O
†
𝜋2O𝜋 |0⟩ . (5.187)

As we now show, extremal correlators are simple in the diagram basis.

Proposition 42. Let
⟨0|O†𝜋1O

†
𝜋2O𝜋 |0⟩ , (5.188)

be an extremal correlator of degree 𝑘 (ignoring the time-dependence). It is equal to∑︁
𝛾∈𝑆𝑘

𝑁 |𝜋1⊗𝜋2∨𝛾𝜋𝛾−1 | , (5.189)

where the tensor product 𝜋1 ⊗ 𝜋2 is the diagram obtained by horizontal concatenation. For
example,

⊗ = . (5.190)

Proof. We compute the extremal correlator using Wick contractions. By construction, there
are no contractions between O†𝜋1 and O†𝜋2 that give a non-zero result. Therefore,

⟨0|O†𝜋1O
†
𝜋2O𝜋 |0⟩ =

∑︁
𝛾∈𝑆𝑘

Tr𝑉⊗𝑘
𝑁
((𝐷𝑇𝜋1 ⊗ 𝐷

𝑇
𝜋2)𝐷𝛾𝐷 𝜋𝐷𝛾−1), (5.191)

where the contractions are encoded using the sum over 𝑆𝑘 and 𝐷 𝜋1 , 𝐷 𝜋2 , 𝐷 𝜋 are linear maps
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corresponding representative diagrams in the 𝑆𝑘 orbits [𝑑𝜋1], [𝑑𝜋2], [𝑑𝜋]. The proof follows
since the trace is 𝑁 raised to the number of connected components. □

We will now derive representation theoretic selection rules for the extremal correlators.

Proposition 43. Consider the operator-state correspondence in the representation basis

|𝑄_,𝛾`a ⟩ → O
_,𝛾
`a = Tr𝑉⊗𝑘

𝑁
(𝑄_,𝛾`a (𝑎†)⊗𝑘). (5.192)

Extremal correlators in the representation basis satisfies

⟨0| (O_
′ ,𝛾′

`′a′ )
†(O_

′′ ,𝛾′′

`′′a′′ )
†O_,𝛾`a |0⟩ = 0 if 𝐶 (_, _′, _′′) = 0, (5.193)

where 𝐶 (_, _′, _′′) is the Kronecker coefficient, or multiplicities of irreducible representations
in the decomposition of tensor products of 𝑆𝑁 representations.

Proof. As before, this correlator (modulo time-dependence) is proportional to a trace

Tr𝑉⊗𝑘
𝑁
(𝑄_

′ ,𝛾′

a′`′ ⊗ 𝑄
_′′ ,𝛾′′

a′′`′′ 𝑄
_,𝛾
`a ), (5.194)

where we used the fact that transposition exchanges the order of the multiplicity indices and
𝑄
_,𝛾
`a being invariant under conjugation by 𝛾 ∈ 𝑆𝑘 .

To prove this proposition, it is sufficient to consider a trace of 𝑃𝑘 (𝑁) matrix units,

Tr𝑉⊗𝑘
𝑁
(𝑄_′𝛽′𝛼′ ⊗ 𝑄_

′′
𝛽′′𝛼′′𝑄

_
𝛼𝛽). (5.195)

Schur-Weyl duality (3.41) gives a decomposition of the trace into 𝑆𝑁 × 𝑃𝑘 (𝑁) representations

Tr𝑉⊗𝑘
𝑁
(𝑄_′𝛽′𝛼′ ⊗ 𝑄_

′′
𝛽′′𝛼′′𝑄

_
𝛼𝛽) =

∑︁
_̃∈Λ𝑘,𝑁

dim𝑉_̃ Tr𝑍_̃ (𝑄
_′
𝛽′𝛼′ ⊗ 𝑄_

′′
𝛽′′𝛼′′𝑄

_
𝛼𝛽). (5.196)

From orthogonality of matrix elements (3.160) this vanishes unless _̃ = _,

Tr𝑉⊗𝑘
𝑁
(𝑄_′𝛽′𝛼′ ⊗ 𝑄_

′′
𝛽′′𝛼′′𝑄

_
𝛼𝛽) = dim𝑉_ Tr𝑍_ (𝑄_

′
𝛽′𝛼′ ⊗ 𝑄_

′′
𝛽′′𝛼′′𝑄

_
𝛼𝛽). (5.197)

Orthogonality also gives

Tr𝑍_ (𝑄_
′
𝛽′𝛼′ ⊗ 𝑄_

′′
𝛽′′𝛼′′𝑄

_
𝛼𝛽) = 𝐷_𝛽𝛼 (𝑄_

′
𝛽′𝛼′ ⊗ 𝑄_

′′
𝛽′′𝛼′′). (5.198)

To find the selection rule, we want to consider 𝑍_ as a representation of 𝑃𝑘1 (𝑁) ⊗ 𝑃𝑘2 (𝑁).
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Suppose 𝑍_ decomposes as follows under this restriction

𝑍_ �
⊕

_̃′∈Λ𝑘1 ,𝑁

_̃′′∈Λ𝑘2 ,𝑁

𝑍
_̃′ ⊗ 𝑍_̃′′ ⊗ 𝑀

_̃′ ,_̃′′

_
, (5.199)

with multiplicities given by dim𝑀
_̃′ ,_̃′′

_
. Again, orthogonality implies that the representation

_̃′ of a matrix unit 𝑄_′
𝛽′𝛼′ vanishes unless _̃′ = _′. Therefore, we find that

⟨0| (O_
′ ,𝛾′

`′a′ )
†(O_

′′ ,𝛾′′

`′′a′′ )
†O_,𝛾`a |0⟩ ∝ dim𝑉_𝐷

_
𝛽𝛼 (𝑄_

′
𝛽′𝛼′ ⊗ 𝑄_

′′
𝛽′′𝛼′′) (5.200)

= 0 if dim𝑀
_′ ,_′′

_
= 0 . (5.201)

The branching multiplicities for partition algebras are related to the multiplicities 𝐶 (_, _′, _′′),
known as Kronecker coefficients, of irreducible representations _ in tensor products of 𝑆𝑁
representations _′ ⊗ _′′ (see eq. (3.1.3) of [101])

dim𝑀
_′ ,_′′

_
= 𝐶 (_, _′, _′′). (5.202)

For simplicity we are assuming 𝑁 ≥ (2𝑘1 + 2𝑘2).

Matrix units of 𝑆𝑃𝑘 (𝑁) are linear combinations of matrix units for 𝑃𝑘 (𝑁) with fixed _.
Therefore, the same selection rule applies, and the proposition follows. □

Remark 5. Analogous selection rules for extremal correlators in general quiver gauge theories
are described in [38]. For comparison, in Schur-Weyl duality between 𝑈 (𝑁) and C[𝑆𝑘],
Littlewood-Richardson coefficients are branching multiplicities for 𝑆𝑘1+𝑘2 → 𝑆𝑘1 × 𝑆𝑘2 but
correspond to decomposition of tensor products of𝑈 (𝑁) representations.

5.5 Summary

This chapter extends the mathematical techniques developed in chapter 3 to one-dimensional
(quantum mechanical) matrix models. We reviewed the basics of matrix harmonic oscillators,
their quantization and diagonalization of the free Hamiltonian. Following the review, we studied
harmonic oscillators in a permutation invariant quadratic potential. The most general such
potential can be constructed using similar techniques to those used to construct the distributions
in chapter 4. This gives a Hamiltonian with exactly solvable eigenvalues. In particular, the very
difficult problem of diagonalizing a 𝑁2 × 𝑁2 matrix at large 𝑁 is reduced to diagonalizing two
real symmetric matrices of size two and three. This result was first presented in [3].

In the next section we studied the subspace Hinv ⊂ H of 𝑆𝑁 invariant states. This was also first
done in [3] where it was realised that the subspace is closely related to partition algebras. A
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basis for degree 𝑘 states in Hinv is in one-to-one correspondence with a basis for the subalgebra
𝑆𝑃𝑘 (𝑁) ⊂ 𝑃𝑘 (𝑁), called the symmetrised partition algebra. These algebras were first defined
in [2], but are special cases of permutation centralizer algebras [10] with 𝐴 = 𝑃𝑘 (𝑁) and
𝐵 = C(𝑆𝑘).

We described three bases for 𝑆𝑃𝑘 (𝑁): the diagram basis, the orbit basis and the representation
basis. The orbit and diagram bases come from symmetrisation of the corresponding bases
of 𝑃𝑘 (𝑁). The diagram and orbit bases of 𝑃𝑘 (𝑁) were known already by Jones and Martin
[45, 46]. The existence of representation bases is also known in the literature since it follows
from semi-simplicity of 𝑃𝑘 (𝑁). The diagram basis is the most geometrical of the three. It
forms an orthogonal basis for 𝑁 → ∞. The orbit basis is exactly orthogonal, for all 𝑁 . It is
particularly useful for describing finite 𝑁 effects, where the Hilbert space may develop states
with zero norm. The first result was first proven in [2], but in the setting of zero-dimensional
matrix models. The second result was proven in [3]. The representation basis is based on matrix
units for 𝑆𝑃𝑘 (𝑁) and form eigenvectors of algebraic Hamiltonians described in the subsequent
section. Furthermore, they are useful for deriving selection rules of extremal correlators, as
described in the last section of this chapter.

In the penultimate section we used diagram algebras to construct Hamiltonian operators that act
on the invariant states through diagram multiplication. We described a family of such operators,
based on the diagram algebra C(𝑆𝑘). As mentioned, we found that the representation basis is
an eigenbasis for these operators. However, these algebraic operators have a highly degenerate
spectrum. This naturally raised the question of constructing generalizations of the algebraic
Hamiltonians where all labels on the representation basis elements are distinguished by their
eigenvalue. We discussed generalizations of these algebraic Hamiltonians based on partition
algebras and some of the challenges of solving them. In particular, we saw that algebraic
Hamiltonians coming from elements of 𝑆𝑃𝑘 (𝑁) act nicely on states with degree 𝑟 = 𝑘 . On
states with 𝑟 > 𝑘 the action is significantly more complicated due to what essentially amounts
to a non-trivial embedding of 𝑆𝑃𝑘 (𝑁) → 𝑆𝑃𝑟 (𝑁). At the moment we do not have a nice
description of this embedding. Hamiltonians based on sums of symmetric group elements have
been considered in Spin Matrix Theory [80] in connection to AdS/CFT andN = 4 SYM. We have
considered a special case of exactly solvable combinations. The generalizations of algebraic
Hamiltonians coming from 𝑆𝑃𝑘 (𝑁) were first constructed in [3]. Here, operators projecting to
fixed degree 𝑟 = 𝑘 states were used to overcome the previously mentioned challenges.

In the last section we studied expectation values inspired by extremal correlators in AdS/CFT.
Schur-Weyl duality has been very successful in studying extremal correlators in gauge theories
with continuous group symmetries [27]. This work generalizes many of these results to permu-
tation invariant observables. We found that the extremal correlators in the diagram basis have
a simple description in terms of geometric quantities, e.g. number of connected components in
the join of tensor products of diagrams. Extremal correlators in the representation basis gave
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rise to selection rules based on Kronecker coefficients of 𝑆𝑁 irreducible representations. This
was proven in detail in [3]. In this thesis, we took a shortcut that gives the selection rule but
does not reveal the full detailed structure of the extremal correlators.
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Chapter 6

Conclusion

In this thesis we have built on the Schur-Weyl duality framework for studying matrix models and
invariant observables. Previous applications have focused on matrix models with continuous
symmetry, where the Schur-Weyl dual algebras correspond to the symmetric group algebras
C(𝑆𝑘) or Brauer algebras. Here, we considered models with significantly less symmetry, that
of discrete permutation symmetry. For models with permutation symmetry, the dual algebras
are called partition algebras 𝑃𝑘 (𝑁). They generalize symmetric group algebras, and in fact
C(𝑆𝑘) ⊂ 𝑃𝑘 (𝑁).

The first chapter of this thesis contained a short review of the essential facts about symmetric
groups and their representation theory. The combinatorial objects known as vacillating tableaux
played a particularly important role in determining the multiplicities in the decomposition of
𝑉⊗𝑘
𝑁

. These facts were used in the subsequent chapter, where we defined and studied the
structure of partition algebras. In particular, we saw that partition algebras are semi-simple
algebras and form a so-called inductive chain 𝑃1(𝑁) ⊂ · · · ⊂ 𝑃𝑘 (𝑁). Semi-simplicity implies
that there exists a basis of matrix units for 𝑃𝑘 (𝑁), where multiplication mimics multiplication
of block matrices. The inductive chain was used to construct this basis as eigenvectors of a
complete set of commuting operators. This culminated in an all 𝑁 construction of the matrix
units for 𝑃𝑘 (𝑁). A table of matrix units for 𝑃2(𝑁), up to normalization, was given in appendix
B.

In the next chapter, the matrix units were used to define the most general permutation invariant
Gaussian/quadratic matrix model, in block diagonal form. The block diagonal form (matrix
units form) was essential for describing the first and second moment of the matrix model in
closed form. Because the matrix model is quadratic, expectation values of observables are
exactly computable using Wick’s theorem and the expressions for first and second moments.
We defined observables as general permutation invariant matrix polynomials and found that the
space of observables has two useful bases: the 1-row partition basis and the basis of directed
graphs. Using the 1-row partition basis, we gave an algebraic combinatorial algorithm for com-
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puting expectation values of observables. Code implementing this algorithm in Python/Sage is
given in appendix C with detailed comments. The directed graph basis is useful for combina-
torial counting and construction. We introduced Graph Generating Permutation Diagrams for
describing directed graphs. This ultimately led to a double coset description of the space of
observables described by graphs with fixed local structure. That is, graphs with fixed number
of in/out-going edges at each vertex. A detailed discussion of how to compute the order of these
double cosets using generating functions/cycle indices and associated computer code is given
in appendix D.

In the last chapter, we applied our mathematical techniques to matrix models in one dimension.
That is, the physics of quantum mechanical matrix oscillators. We constructed exactly solvable
models of harmonic oscillators in a permutation invariant quadratic potential. Following that,
we focused on the subspace of states invariant under the adjoint action of permutations. We
presented three interesting bases for this subspace, based on the symmetrized partition algebra
𝑆𝑃𝑘 (𝑁) ⊂ 𝑃𝑘 (𝑁): the diagram basis, the orbit basis and the representation basis. We then
considered algebraic interacting Hamiltonians based on partition algebras. We found that
the representation basis forms an eigenbasis for the Hamiltonians based on symmetric group
algebras C(𝑆𝑘) ⊂ 𝑃𝑘 (𝑁) and discussed some of the challenges in diagonalizing the more
general Hamiltonians based on partition algebras. The representation basis was also useful for
deriving selection rules of extremal correlators inspired by AdS/CFT. Extremal correlators play
a crucial role in AdS/CFT where they provide non-trivial checks on the duality.

The main results in the thesis are

1. The construction of projection operators 𝑃𝔳𝔳′ : 𝑃𝑘 (𝑁) → 𝑃𝑘 (𝑁) in Definition 29,
labelled by pairs of vacillating tableaux of shape _, whose one-dimensional image is
spanned by matrix units 𝑄_

𝔳𝔳′ ∈ 𝑃𝑘 (𝑁) for 𝑘 = 1, 2.

2. The all 𝑁 algorithm in section 3.3.3 for finding a basis for the above-mentioned one-
dimensional subspaces, or equivalently a set of matrix units for 𝑃𝑘 (𝑁) as closed form
functions of 𝑁 for 𝑘 = 1, 2.

3. The connection between first and second moments of PIGMMs given in Proposition 25
and matrix units for 𝑃1(𝑁), 𝑃2(𝑁), as explained in section 4.3.1.

4. The diagrammatic interpretation of permutation invariant observables as 1-row partition
diagrams as explained in the beginning of section 4.2.

5. Proposition 28, which proves that permutation invariant observables of degree 𝑘 are in
one-to-one correspondence with unlabelled directed graphs with 𝑘 edges and 𝑁 vertices.

6. The combinatorial algorithm for computing expectation values of observables as functions
of 𝑁 using the diagrammatics of 1-row diagrams and partition algebras, together with
Wick’s theorem. This is given in section 4.3.
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7. The group theoretical framework for enumerating directed graphs and permutation in-
variant observables, given in section 4.4.

8. Proposition 32, or Large 𝑁 factorisation of permutation invariant states in matrix quantum
mechanics.

Zero-dimensional matrix models with continuous symmetry broken to a discrete symmetry
were considered in [95], where the introduction of higher-order terms in the action breaks the
continuous symmetry. This is distinct from the models considered here, where the continuous
symmetry acting on matrices is broken already at the quadratic level. Permutation invariant
random matrix models have also been considered within mathematical statistics [98, 102, 103].
It would be interesting to explore applications of the techniques developed here to these models.
More generally, adding higher-order terms into the models is a good problem to tackle in the
future. This would allow us to explore the phase structure of permutation invariant models as
has been done for𝑈 (𝑁) invariant models [104–113].

The techniques presented in this thesis, for constructing permutation invariant matrix models,
generalizes to tensor models [4]. This was one of the main motivations behind the authors
choice in presenting the permutation invariant 1-matrix model of [22] in the manner laid out
in this thesis. Furthermore, Schur-Weyl duality itself has been generalized to many settings.
Therefore, the techniques described in this thesis should have applications to matrix/tensor
models with other symmetries given by families of groups𝐺𝑁 . This would require the study of
Jucys-Murphy type elements in other dual algebras. The framework should be a valuable tool for
studying large 𝑁 models beyond the conventional settings and beyond eigenvalue distributions.
Following this direction will form important bridges between classical random matrix theory
and the work this thesis is based on.

A natural question to ask is whether there exists a gauge-string dual interpretation of permutation
invariant observables in matrix models. In models with 𝑈 (𝑁) symmetry, non-singlet sectors
have been considered in models of low-dimensional black holes [114–116]. Permutation
invariant sectors go beyond the 𝑈 (𝑁) singlet sector and it would be interesting to explore
implications of the results in this thesis for space-time duals of permutation invariant states.
The large 𝑁 factorization of diagram basis elements is a particularly promising result in this
direction. It indicates that classicality emerges as 𝑁 →∞, in the space of diagram basis states.
This could be studied, for example, using the coherent state method [83].

Related to this, is the observation that the 1/𝑁 expansion of correlators in𝑈 (𝑁) invariant matrix
models have a geometric interpretation in terms of counting branched coverings [61, 62] (see
also [63, 64] for connections to topological strings). Given that the partition functions of matrix
models with higher order 𝑈 (𝑁) invariant potentials can be interpreted as generating functions
for branched covers, it is natural to ask if permutation invariant potentials have a similar
geometric interpretation. A good starting point would be to consider cubic deformations, for
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example,
𝛿𝑉 (𝑋) =

∑︁
𝑖, 𝑗 ,𝑘,𝑙,𝑚,𝑛

𝑋𝑖 𝑗𝑋𝑘𝑙𝑋𝑚𝑛, (6.1)

of the𝑈 (𝑁) invariant quadratic potential, explicitly breaking the symmetry to 𝑆𝑁 . Computing〈
e_𝛿𝑉

〉
, (6.2)

order-by-order in _ may give some hints towards a geometric interpretation.

Hamiltonians based on symmetric groups have been considered in Spin Matrix Theory [80, 81]
in connection to AdS/CFT and N = 4 SYM. The algebraic Hamiltonians based on symmetric
groups constructed in this thesis form exactly solvable versions, corresponding to elements in
the centres of the group algebras. The extensions to Hamiltonians based on partition algebras
are a natural generalization of the ones in Spin Matrix Theory. They deserve a more detailed
investigation than the one presented here. For example, Spin Matrix Theory is connected to
spin chains at large 𝑁 and low temperature. I find it plausible that a similar connection can be
extended to the permutation invariant case. The Hamiltonians constructed in this thesis also
have a natural interpretation in terms of a 𝑁-by-𝑁 lattice of oscillators 𝑎†

𝑖 𝑗
labelled by sites

(𝑖, 𝑗). This was explored in [3]. In the lattice interpretation, permutation invariant operators
seem non-local at first glance, but may have a physical interpretation if a more sophisticated
perspective is developed. For some applications it would be useful to study invariant operators
that are polynomials in the position operators 𝑋𝑖 𝑗 . This is related to understanding the action
of invariant operators that do not have equal numbers of annihilation and creation operators.
I expect that Schur-Weyl duality, in combination with diagrammatic techniques similar to the
ones presented in this thesis, can provide a powerful tool for tackling this problem. This is
particularly true for multi-matrix models, since Schur-Weyl duality techniques readily generalize
to such models, and would be interesting even for the𝑈 (𝑁) case.



Appendix A

Matrix units for C(𝑆𝑁)

Theorem 2 tells us that the set of non-isomorphic irreducible representations of 𝑆𝑁 are vector
spaces 𝑉_ of dimension |SYT_ | for _ ⊢ 𝑁 . In this appendix we briefly review the inductive
approach to representation theory of symmetric groups presented in [117]. We will see that the
basis of standard Young tableaux can be understood through so called Jucys-Murphy elements.
In particular, diagonalizing the Jucys-Murphy elements acting on the group algebra gives the
basis of matrix units and therefore the irreducible representations of 𝑆𝑁 .

The famous formula
|𝐺 | =

∑︁
𝑅∈Rep(𝐺)

𝑑2
𝑅, (A.1)

where 𝑑𝑅 = 𝜒𝑅 (1) is the dimension of the irreducible representation 𝑅 is direct consequence of
the Artin-Wedderburn decomposition [55, 56] of C(𝐺). Let𝑉𝑅 be an irreducible representation
of 𝐺, the decomposition says that

C(𝐺) =
⊕

𝑅∈Rep(𝐺)
End(𝑉𝑅), (A.2)

where End(𝑉𝑅) is the set of linear maps from 𝑉𝑅 to 𝑉𝑅. Given a basis for 𝑉𝑅, End(𝑉𝑅) is the
algebra of 𝑑𝑅 × 𝑑𝑅 matrices. In other words, (A.2) says that there exists a change of basis on
the group algebra that makes it manifestly an algebra of block matrices. The blocks are labelled
by 𝑅 and each block is of dimension 𝑑𝑅. A formula for this change of basis is known.

Theorem 22. (Fourier inversion formula) Let C(𝐺) be a group algebra and 𝐷𝑅
𝑎𝑏
(𝑔) be irre-

ducible matrix representations of 𝐺 for all 𝑅 ∈ Rep(𝐺). The following elements in C(𝐺)

𝑄𝑅𝑎𝑏 =
1
|𝐺 |

∑︁
𝑔∈𝐺

𝑑𝑅𝐷
𝑅
𝑎𝑏 (𝑔

−1)𝑔, (A.3)
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is an isomorphism of the type in (A.2). In other words,

𝑄𝑅𝑎𝑏𝑄
𝑅′
𝑎′𝑏′ = 𝛿

𝑅𝑅′𝛿𝑏𝑎′𝑄
𝑅
𝑎𝑏′ . (A.4)

These elements, called matrix units, form a basis for the group algebra.

Proof. This is a standard result in group theory and abstract algebra (see for example [89,
Proposition 11]). We proved a version of this for partition algebras in Section 3.2. □

We will use the fact that matrix units have the following property

ℎ𝑄𝑅𝑎𝑏 =
1
|𝐺 |

∑︁
𝑔∈𝐺

𝑑𝑅𝐷
𝑅
𝑎𝑏 (𝑔

−1)ℎ𝑔 (A.5)

=
1
|𝐺 |

∑︁
𝑔∈𝐺

𝑑𝑅𝐷
𝑅
𝑎𝑏 ((ℎ

−1𝑔)−1)𝑔 (A.6)

=
1
|𝐺 |

∑︁
𝑔∈𝐺

𝑑𝑅𝐷
𝑅
𝑎𝑏 (𝑔

−1ℎ)𝑔 (A.7)

= 𝑄𝑅𝑎𝑐𝐷
𝑅
𝑐𝑏 (ℎ), (A.8)

and similarly for 𝑄𝑅
𝑎𝑏
ℎ.

A.1 Jucys-Murphy elements

In the special case of𝐺 = 𝑆𝑁 , Theorem 2 says that the indices 𝑎, 𝑏 on𝐷_
𝑎𝑏
(𝜎) can be understood

as standard Young tableaux of shape _. We will define the following elements of C(𝑆𝑁 ).

Definition 50. (Jucys-Murphy elements) Let 𝑋1 = 0 and

𝑋𝑖 = (1𝑖) + (2𝑖) + · · · + (𝑖 − 1𝑖), 𝑖 = 2, . . . , 𝑁. (A.9)

Remark 6. Note that
𝑋𝑖 = 𝑧𝑖 − 𝑧𝑖−1, (A.10)

where 𝑧𝑖 are the sums over transpositions in 𝑆𝑖 as defined in (3.193).

They span a maximal commutative subalgebra ofC(𝑆𝑁 ) [117]. Remarkably, they act diagonally
on the basis labelled by standard Young tableaux.

Theorem 23. Let _ ⊢ 𝑁 , 𝑎 ∈ SYT_ a standard Young tableaux of shape _ and 𝑣𝑎 the
corresponding basis element in 𝑉_. Let (𝑖, 𝑗) be the coordinate of the box in 𝑎 filled with the
number 𝑘 , then

𝑋𝑘𝑣𝑎 = ( 𝑗 − 𝑖)𝑣𝑎 . (A.11)
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The number 𝑗 − 𝑖 is known as the content of the box containing 𝑘 . We denote this by 𝑐𝑘 (𝑎).

Proof. See for example [118, Equation 12]. □

In [117] they proved that the vector 𝑣𝑎, or equivalently the standard Young tableaux 𝑎 is uniquely
determined by the tuple of eigenvalues of 𝑋𝑖 . That is, there is a bijection between ordered lists

(𝑐1(𝑎), 𝑐2(𝑎), . . . , 𝑐𝑁 (𝑎)) (A.12)

and standard Young tableaux 𝑎.

Representation theoretically, this bijection can be understood from the following property of the
Young tableaux basis. Suppose 𝑎 is a standard Young tableaux of shape _ (𝑁 ) ⊢ 𝑁 . Removing
the box labelled by 𝑁 gives a new standard Young tableaux of shape _ (𝑁−1) ⊢ 𝑁 − 1. Iterating
this procedure gives a sequence of standard Young tableaux of shape _ (1) , . . . , _ (𝑁 ) . For
example

1 2 3
4 5
6

→ 1 2 3
4 5
→ 1 2 3

4
→ 1 2 3 → 1 2 → 1 (A.13)

_6 → _5 → _4 → _3 → _2 → _1. (A.14)

In particular, the sequence of Young diagrams themselves (not including fillings) completely
fix the positions of the numbers {1, . . . , 𝑁} in the final tableaux. This is another way of saying
that the branching 𝑆𝑛 → 𝑆𝑛−1 is multiplicity free, and therefore the sequence of irreducible
representations in the branching𝑆𝑁 → 𝑆𝑁−1 → · · · → 𝑆1 label a unique (up to scalar) vector
in an irreducible representation. Essentially, the ordered list (A.12) specifies the position of
each number in the Young tableaux. We have not proven this here. For more information on
this construction see [117].

It follows from (A.8) that

𝑋𝑘𝑄
𝑅
𝑎𝑏 = 𝑐𝑘 (𝑏)𝑄

𝑅
𝑎𝑏, 𝑄𝑅𝑎𝑏𝑋𝑘 = 𝑐𝑘 (𝑎)𝑄

𝑅
𝑎𝑏 . (A.15)

Therefore, the simultaneous eigenbasis of the operators corresponding to left action and right
action of 𝑋𝑖 on the group algebra C(𝑆𝑁 ) is the matrix unit basis.

A.1.1 Example 1. The simplest case to consider is 𝑁 = 2 or 𝑆2. In this case we only need to
consider

𝑋2 = (12), (A.16)

since 𝑋1 = 0. We have

𝑋2(12) = (12)𝑋2 = (1) (2), 𝑋2(1) (2) = (12). (A.17)
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That is, the matrices of the left and right action of 𝑋2 on C(𝑆2) are

𝑋𝐿2 = 𝑋𝑅2 =

(
0 1
1 0

)
. (A.18)

The vectors
𝑄
[2]
1 2 , 1 2 = (1) (2) + (12), 𝑄

[1,1]
1
2
, 1

2
= (1) (2) − (12), (A.19)

form an eigenbasis of 𝑋𝐿2 and 𝑋𝑅2 since

𝑋2𝑄
[2]
1 2 , 1 2 = 𝑄

[2]
1 2 , 1 2 𝑋2 = 𝑄

[2]
1 2 , 1 2 , 𝑋2𝑄

[1,1]
1
2
, 1

2
= 𝑄

[1,1]
1
2
, 1

2
𝑋2 = −𝑄 [1,1]1

2
, 1

2
. (A.20)

Indeed, these eigenvalues are the contents of corresponding to the standard tableaux

𝑐2( 1 2 ) = 1 − 0 = 1, 𝑐2( 1
2
) = 0 − 1 = −1. (A.21)

A.1.2 Example 2. For 𝑆3 we will not present the explicit diagonalization. Instead, we will
give a table that shows that the ordered list of contents (eigenvalues of 𝑋𝑖) distinguishes between
all standard Young tableaux for 𝑆3. Each row in the table is a standard Young tableaux 𝑎 and
each column corresponds to the contents 𝑐2(𝑎), 𝑐3(𝑎).

SYT 𝑎 𝑐2(𝑎) 𝑐3(𝑎)
1 2 3 1 2
1
2
3

−1 −2

1 2
3

1 −1
1 3
2

−1 1

(A.22)

Note that each row of numbers is distinct.
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Table of matrix units for 𝑃2(𝑁)

In section 3.3 we gave an all 𝑁 construct of matrix units for 𝑃𝑘 (𝑁). Here we list the result of
the Sage code implementing this procedure for 𝑘 = 2. The full sage code is explained in detail
in Appendix C. To make the equations more readable we use the following short hands for the
relevant vacillating tableaux

𝔳1 = ( [𝑁], [𝑁 − 1], [𝑁], [𝑁 − 1], [𝑁]), (B.1)

𝔳2 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 1], [𝑁]) (B.2)

𝔳3 = ( [𝑁], [𝑁 − 1], [𝑁], [𝑁 − 1], [𝑁 − 1, 1]), (B.3)

𝔳4 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 1], [𝑁 − 1, 1]) (B.4)

𝔳5 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 2, 1], [𝑁 − 1, 1]), (B.5)

𝔳6 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 2, 1], [𝑁 − 2, 2]), (B.6)

𝔳7 = ( [𝑁], [𝑁 − 1], [𝑁 − 1, 1], [𝑁 − 2, 1], [𝑁 − 2, 1, 1]). (B.7)

For _ = [𝑁] we have the following matrix units

𝑄
[𝑁 ]
𝔳1𝔳1 =

1
𝑁3 (B.8)

𝑄
[𝑁 ]
𝔳1𝔳2 = −

1
𝑁3 + 1

𝑁2 (B.9)

𝑄
[𝑁 ]
𝔳2𝔳1 = −

1
𝑁3 + 1

𝑁2 (B.10)

𝑄
[𝑁 ]
𝔳2𝔳2 =

1
𝑁3 − 1

𝑁2 − 1
𝑁2 + 1

𝑁
(B.11)

For _ = [𝑁 − 1, 1] we have nine matrix units. Since (𝑄𝛾
𝛼𝛽
)𝑇 = 𝑄_

𝛽𝛼
we only give those that are
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not related by diagram transposition.

𝑄
[𝑁−1,1]
𝔳3𝔳3 = − 1

𝑁3 + 1
𝑁2 (B.12)

𝑄
[𝑁−1,1]
𝔳5𝔳3 = − 1

(𝑁 − 1)𝑁 + 1
(𝑁 − 1)𝑁 + 1

𝑁
+ − 1

𝑁 − 1
+ 1
(𝑁 − 1)𝑁 (B.13)

𝑄
[𝑁−1,1]
𝔳5𝔳5 = − 1

(𝑁 − 1)2(𝑁 − 2)
+ 1
(𝑁 − 1)2(𝑁 − 2)

+ 1
(𝑁 − 2)𝑁

− 1
(𝑁 − 1) (𝑁 − 2) + 1

(𝑁 − 1) (𝑁 − 2)𝑁 + 1
(𝑁 − 1)2(𝑁 − 2)

− 1
(𝑁 − 1)2(𝑁 − 2)

− 1
(𝑁 − 1) (𝑁 − 2) + 𝑁

(𝑁 − 1)2(𝑁 − 2)

− 1
(𝑁 − 1)2(𝑁 − 2)

+ 1
(𝑁 − 1) (𝑁 − 2)𝑁 − 1

(𝑁 − 1)2(𝑁 − 2)

+ 1
(𝑁 − 1)2(𝑁 − 2)𝑁

(B.14)

𝑄
[𝑁−1,1]
𝔳4𝔳3 =

1
𝑁3 − 1

𝑁2 + 1
𝑁

− 1
𝑁2 (B.15)

𝑄
[𝑁−1,1]
𝔳4𝔳5 =

1
(𝑁 − 1)𝑁 − 1

𝑁 − 1
+

− 1
𝑁

− 1
(𝑁 − 1)𝑁 + 1

𝑁 − 1

− 𝑁

𝑁 − 1
+ 1
𝑁 − 1

+ 1
𝑁 − 1

− 1
(𝑁 − 1)𝑁

(B.16)

𝑄
[𝑁−1,1]
𝔳4𝔳4 = − 1

𝑁3 + 1
𝑁2 + 1

𝑁2 − 1
𝑁

+ − 1
𝑁

− 1
𝑁

+ 1
𝑁2

(B.17)

For _ = [𝑁 − 2, 2] there is only one matrix unit.

𝑄
[𝑁−2,2]
𝔳6𝔳6 =

1
(𝑁 − 1) (𝑁 − 2) − 1

(𝑁 − 1) (𝑁 − 2) − 1
2 (𝑁 − 2) (B.18)

+ 1
𝑁 − 2

− 1
2 (𝑁 − 2) − 1

(𝑁 − 1) (𝑁 − 2) (B.19)

+ 1
(𝑁 − 1) (𝑁 − 2) + 1

𝑁 − 2
− 𝑁

𝑁 − 2
(B.20)

+ 1
𝑁 − 2

− 1
2 (𝑁 − 2) + 1

2
(B.21)

+ 1
𝑁 − 2

− 1
2 (𝑁 − 2) + 1

2
(B.22)
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For _ = [𝑁 − 2, 1, 1] there is just one matrix unit as well

𝑄
[𝑁−2,1,1]
𝔳7𝔳7 =

1
2𝑁

− 1
2𝑁

− 1
2𝑁

+ 1
2

+ 1
2𝑁

− 1
2

(B.23)

Note that we have not included the normalization constants that we computed in section 4.3.5.
Rather, we have chosen to tabulate the exact output of the construction algorithm for ease of
comparison.
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Appendix C

Expectation values: Combinatorial
algorithm (code)

In this section we will describe the SageMath [122] code implementing the combinatorial
algorithm discussed in section 4.3. Roughly, the code has two parts. The first part uses the
matrix units construction in 3.3 to compute the 1-point and 2-point function of matrix elements.
The second part uses the matrix units to compute expectation values of observables labelled by
1-row partition diagrams. The code can be found at Link to GitHub Repository.

C.1 Propagators

Throughout this section and the code, we use the following alternative description of partitions
_ ⊢ 𝑁 , which is useful when describing large 𝑁 partitions. Let _# = [_2, . . . , _𝑙] ⊢ 𝑘 . This
corresponds to a partition _ = [_1, _2, . . . , _𝑙] ⊢ 𝑁 where _1 = 𝑁 − 𝑘 . For example, the
empty partition _# = [] corresponds to [𝑁]; the partition [1] corresponds to [𝑁 − 1, 1]; [1, 1]
corresponds to [𝑁 − 2, 1, 1] and [2] corresponds to [𝑁 − 2, 2].

The first cell in the notebook defines a polynomial ring Q[𝑁] with variable 𝑁 . This ring is
necessary to define the partition algebras 𝑃1(𝑁), 𝑃2(𝑁).

[1]: ## Define Polynomial ring QQ[N], Partition algebras P_1(N)

↩→and P_2(N)

R.<N> = QQ[]

P1N = PartitionAlgebra(1,N)

P2N = PartitionAlgebra(2,N)

In the second cell, we define three functions that take in partitions (respectively irreducible
representations of 𝑆𝑁 ) R1, R2, R3 and return the three factors defined in (22). We remark that
R1, R2 should only take values from [], [1]; R3 can take values from [], [1], [2], [1, 1]. The
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variables Z1, Z32, Z2 corresponds to the commuting elements defined in Theorem 17, where we
have removed the constant factor such that eigenvalues correspond to those of 𝑃 (1)

𝑁
, 𝑃
(2)
𝑁
, 𝑃
(1+ 1

2 )
𝑁

.
We construct the numerator and denominator of (22) separately and return both. This will be
useful in what follows.

[2]: ## We define the projector on the first slot in the

↩→vacillating tableau

def P_R1(R1):

R.<N> = QQ[]

## Construct T2 \otimes \idn \otimes \idn defined in

↩→equation (3.42)

Z1 = P2N(sum(P1N.jucys_murphy_element(i/2) for i in [1..

↩→2])+(N*(N-1)/2-N)*P1N.one())

## Define the set of irreps and corresponding normalized

↩→characters to take a product over in equation (3.52)

IrrepsEigenvaluesDictionary = {Partition([]): R(1/

↩→2*(N-1)*N), Partition([1]): R((N-3)*N/2)}

numerator = prod((Z1-ev2*P2N.one()) for (rep, ev2) in

↩→IrrepsEigenvaluesDictionary.items() if rep != R1)

denom = prod(IrrepsEigenvaluesDictionary[R1]-ev2 for

↩→(rep,ev2) in IrrepsEigenvaluesDictionary.items() if rep != R1)

return numerator, denom

## We define the projector on the second slot in the

↩→vacillating tableau

def P_R2(R2):

R.<N> = QQ[]

## Construct T2 \otimes \idn \otimes \idn defined in

↩→equation (3.42)

Z32 = P2N(sum(P2N.jucys_murphy_element(i/2) for i in [1..

↩→3])+(N*(N-1)/2-2*N+1)*P2N.one())

## Define the set of irreps and corresponding normalized

↩→characters to take a product over in equation (3.52)

IrrepsEigenvaluesDictionary = {Partition([]): R(1/

↩→2*(N-2)*(N-1)), Partition([1]): R((N-4)*(N-1)/2)}

numerator = prod((Z32-ev2*P2N.one()) for (rep, ev2) in

↩→IrrepsEigenvaluesDictionary.items() if rep != R2)

denom = prod(IrrepsEigenvaluesDictionary[R2]-ev2 for

↩→(rep,ev2) in IrrepsEigenvaluesDictionary.items() if rep != R2)

return numerator, denom

## We define the projector on the third slot in the

↩→vacillating tableau

def P_R3(R3):

R.<N> = QQ[]
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## Construct T2 \otimes \idn \otimes \idn defined in

↩→equation (3.42)

Z2 = P2N(sum(P2N.jucys_murphy_element(i/2) for i in [1..

↩→4])+(N*(N-1)/2-2*N)*P2N.one())

## Define the set of irreps and corresponding normalized

↩→characters to take a product over in equation (3.52)

IrrepsEigenvaluesDictionary = {Partition([]): R(1/

↩→2*(N-1)*N), Partition([1]): R((N-3)*N/2), Partition([2]): R(1/2*(N -

↩→1)*(N - 4)), Partition([1,1]): R(1/2*(N - 5)*N)}

numerator = prod((Z2-ev2*P2N.one()) for (rep, ev2) in

↩→IrrepsEigenvaluesDictionary.items() if rep != R3)

denom = prod(IrrepsEigenvaluesDictionary[R3]-ev2 for

↩→(rep,ev2) in IrrepsEigenvaluesDictionary.items() if rep != R3)

return numerator, denom

Now we construct the projector 𝑃𝔳𝔳′ and the corresponding matrix (3.258). For this it is useful
to enumerate all the allowed vacillating tableaux 𝔳. This is done in the third cell.

[3]: ## The set of all vacillating tableaux at k=2

VacTabs = [ (Partition([]),Partition([]),Partition([])), \

(Partition([]),Partition([]),Partition([1])), \

(Partition([1]),Partition([1]),Partition([1])), \

(Partition([1]),Partition([1]),Partition([2])), \

(Partition([1]),Partition([1]),Partition([1,1])), \

(Partition([1]),Partition([]),Partition([])), \

(Partition([1]),Partition([]),Partition([1]))]

For each pair of vacillating tableaux, there is a corresponding coupling constant. These will be
symbolic variables. We define these and collect them into a dictionary in the fourth cell, for
future convenience.

[4]: ## Some initializations

g = {}

k = len(VacTabs)

## Now produce the diagram element corresponding to the

↩→connected 2-point function

## For this we need symbolic variables corresponding to

↩→coupling constants.

## We encode these in a dictionary

for v1 in range(k):

for v2 in range(k):

if v2 <= v1:
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g[(VacTabs[v1],VacTabs[v2])] = var('g_{0}{1}'.

↩→format(v1,v2))

We record the normalization constants in (4.158), associated with pairs of vacillating tableaux.

[ ]: ## We also collect the set of normalization constants

↩→computed in section 4.3.5

n = {}

n[0,0] = N

n[1,0] = N*sqrt(2/(N-1))

n[1,1] = N/(N-1)

n[2,2] = N

n[3,2] = N*sqrt(2/(N-1))

n[3,3] = N/(N-1)

n[4,2] = sqrt(2*(N-1)/(N-2))

n[4,3] = sqrt(2/(N-2))

n[4,4] = (N-1)

n[5,5] = 1

n[6,6] = 1

To construct the element of 𝑃2(𝑁) corresponding to a propagator we define a partition algebra
over symbolic rings (P2SR in the code), this is necessary for taking linear combinations
of elements weighted by coupling constants. For this we iterate over all pairs of vacillating
tableaux (v1, v2). At each iteration we construct the tuple LeftZip associated with the vacillating
tableau v1. In the first slot LeftZip[0], there is a list of numerators for the three projectors
previously defined. The second slot, LeftZip[1] is a list of numerators. LeftProj is a product
of the numerators in LeftZip[0]. We also construct RightZip, RightProj corresponding to the
vacillating tableau v2.

Given the two elements LeftProj, RightProj in 𝑃2(𝑁) we construct the matrix corresponding to
left multiplication by LeftProj and right multiplication by RightProj on 𝑃2(𝑁). This matrix is
called ProjMatrix in the cell. We want to compute the pivot column of this matrix in accordance
with the construction in section 3.3. In particular we compute it for 𝑁 = 10 and store the column
index in the variable pivot. Given the pivot column index we can extract the pivot column as
ProjMatrix.column(pivot[0]). This is stored in the variable Q. Note that we have ignored the
denominators up to now. We restore these to get the correct normalization for Q. The last step
is to construct the transposition symmetrized element of Q, as these are the ones relevant for
the propagator, and weight it by the coupling constant and normalization corresponding to the
pair (v1,v2) of vacillating tableaux. This is added to the variable SRQ, which after running this
cell, captures the full 1-matrix model propagator.
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[5]: ## We now generate all the matrix units and multiply by the

↩→corresponding coupling constant (which are symbolic)

## For this we need to use the partition algebra over a

↩→symbolic ring

N = var('N')

P2SR = PartitionAlgebra(2,N,SR)

## Some initializations

Q = 0

SRQ = 0

## We now iterate over all the pairs of vacillating tableaux

for v1 in range(k):

LeftZip =

↩→list(zip(P_R3(VacTabs[v1][2]),P_R2(VacTabs[v1][1]),P_R1(VacTabs[v1][0])))

## LeftZip[0] is a list of the numerators of the three

↩→projectors for the first vacillating tableaux

LeftProj =prod(LeftZip[0])

## We take their product to get the projector associated

↩→with the first vacillating tableaux

for v2 in range(k):

if v2 <= v1:

RightZip =

↩→list(zip(P_R3(VacTabs[v2][2]),P_R2(VacTabs[v2][1]),P_R1(VacTabs[v2][0])))

## RightZip[0] is a list of the numerator of the three

↩→projectors for the second vacillating tableau

RightProj =prod(RightZip[0])

## We take their product to get the projector associated

↩→with the second vacillating tableaux

ProjMatrix = LeftProj.to_matrix(side='left')*RightProj.

↩→to_matrix(side='right')

## ProjMatrix is the matrix representing the simultaneous

↩→left action of LeftProj and right action of RightProj

pivot = ProjMatrix.subs(N=10).pivots()

## Compute the pivot columns of ProjMatrix for N=10

if len(pivot) > 0:

Q = ProjMatrix.column(pivot[0])/prod(LeftZip[1])/

↩→prod(RightZip[1])

## As long as ProjMatrix has a pivot, extract the pivot

↩→column and divide by the numerators of the projectors

SRQ += n[v1,v2]*g[(VacTabs[v1],VacTabs[v2])]*(P2SR.

↩→from_vector(Q)/2+ P2SR.from_vector(Q).dual()/2)

## We take the average of the pivot column and its transpose,

## weight it by the coupling constant associated with the

↩→pair of vacillating tableaux and add it to SRQ,



156 APPENDIX C. EXPECTATION VALUES: COMBINATORIAL ALGORITHM (CODE)

## SRQ will correspond to the connected two-point function

↩→(propagator) in our matrix model

This ends the first part of the code. We now implement the 1-row partition combinatorics.

C.2 One-row partitions

To compute expectation values we need to: implement a vector space with basis labelled by
set partitions/1-row diagrams; translate the element SRQ into a linear combination of 1-row
diagrams; construct the linear combination of 1-row diagrams corresponding to the 1-point
function; implement tensor products of 1-row diagrams and an inner product of two 1-row
diagrams that returns 𝑁 to the number of components in the join of the two diagrams. This is
done in the sixth cell of the notebook.

The CombinatorialFreeModule together with AlgebrasWithBasis in Sage provide the skeletons
for constructing this. All that we need to provide is the labelling set for the vector space – this
is the set of all set partitions – which is returned by calling 𝑆𝑒𝑡𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠(). Secondly, we
have to define the product of two set partitions as product on basis(). This should mimic the
tensor product of two diagrams, which corresponds to concatenation of the set partitions. Note
that our current implementation assumes that the two set partitions are set partitions of distinct
sets. This will be sufficient for our application. A careful implementation should allow these
two sets to overlap (it is then necessary to relabel and reorder the elements in the set partitions).
Thirdly, we define the identity element with respect to the tensor product – this is just the empty
partition []. To define the inner product, or pairing of two set partitions, we first define the
inner product of two basis elements as inner product on basis(). It takes two set partitions of
the same set, constructs the join and counts the number of blocks. We return 𝑁 to the power of
the number of blocks. For a pair of general elements in this vector space we define inner prod
by linear extension. There are two help functions in this class: from partition algebra() takes
in an element of 𝑃2(𝑁) – for example SRQ – and returns the corresponding linear combination
of vectors in this space. It will also be useful to have a function relabel element() that relabels
the labelling set of the set partitions in an element. For example – if an element 𝑎 contains
set partitions of {1, 2, 3, 4}, relabel element(a, [5,6,7,8]) returns the same element as a linear
combination of set partitions of {5, 6, 7, 8} by replacing 1→ 5, . . . , 4→ 8.

[6]: ## We define a vector space labeled by set partitions

## It has a "product" that combines set partitions by

↩→concatenation of lists: see product_on_basis()

## This product implements tensor products of diagrams

## It has some help functions, such as

## (1) a function that converts a partition algebra element

↩→into an element of this vector space: see from_partition_algebra()
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## (2) a function that lets you change the label set of an

↩→element: see relabel_element()

## (3) an inner product function that computes the number of

↩→parts in the join of two set partitions (linearly extended for general

↩→elements): see inner_prod()

class SetPartitionNA(CombinatorialFreeModule):

def __init__(self, **keywords):

self._baseset = SetPartitions()

CombinatorialFreeModule.__init__(self, SR, self._baseset,

category=AlgebrasWithBasis(SR), **keywords)

def product_on_basis(self, left, right):

l = list(left)

r = list(right)

return self.monomial(SetPartition(l+r))

def one_basis(self):

return SetPartition([])

def algebra_generators(self):

return SetPartitions()

def _repr_(self):

return "Algebra of set partitions over %s with

↩→multiplication given by concatenation"%(SR)

def inner_product_on_basis(self, left, right):

if left.base_set() != right.base_set():

return 0

else:

join = left.sup(right)

return SR(Nˆlen(join))

def inner_prod(self, left, right):

innerprod = 0

for l in left:

for r in right:

innerprod += l[1]*r[1]*self.inner_product_on_basis(l[0],r[0])

return innerprod

def from_partition_algebra(self, d, baseset_left,

↩→baseset_right):
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B = self.basis()

element = 0

for (setpart, coeff) in d:

setpartnew = []

for part in setpart.set_partition():

partnew = []

for p in part:

if p > 0:

partnew += [baseset_left[p-1]]

elif p < 0:

partnew += [baseset_right[-p-1]]

setpartnew += [partnew]

element += coeff*B[SetPartition(setpartnew)]

return element

def relabel_element(self, elem, labelset):

B = self.basis()

element = 0

for (setpart, coeff) in elem:

setpartnew = []

for part in setpart:

partnew = []

for p in part:

partnew += [labelset[p-1]]

setpartnew += [partnew]

element += coeff*B[SetPartition(setpartnew)]

return element

In cell seven we initialize this vector space with tensor product as 𝐴 and give the basis a name
𝐵.

[7]: ## Initialize this vector space

A = SetPartitionNA()

B = A.basis()

We are now ready to define the linear combination corresponding to the 1-point function
(4.63). We define two variables gJ1, gJ2 capturing the coupling constants (𝐺−1)[𝑁 ];1𝛽𝐽𝛽 and
(𝐺−1)[𝑁 ];2𝛽𝐽𝛽 respectively. C00 and CHH are the two distinct contributions to the 1-point
function and EXP VAL is just their weighted sum.

[8]: ## Define Clebsches as elements of this vector space

gJ1, gJ2 = var('gJ1, gJ2')

C00 = 1/N*B[SetPartition([[1],[2]])]
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CHH = 1/sqrt((N-1))*B[SetPartition([[1,2]])] - 1/N*1/

↩→sqrt((N-1))*B[SetPartition([[1],[2]])]

## The one point function is a linear combination of these

EXP_VAL = gJ1*C00+gJ2*CHH

For the propagator we use the partition algebra element SRQ and the help function
from partition algebra(SRQ).

[9]: ## The connected two point function (propagator) is given by

↩→the partition algebra element SRQ computed earlier

PROPAGATOR = A.from_partition_algebra(SRQ, [1,2], [3,4])

We now have all the technology necessary to compute expectation values of observables.
Observables are specified by a set partition. For degree 𝑘 observables they are set partitions of
{1, . . . , 2𝑘}. We give some examples in cell ten.

[10]: ## Observables are specified by a set partiton. E.g.

observable_as_set_partition = B[SetPartition([[1,2]])]

## For a degree 1 observable

observable_as_set_partition = B[SetPartition([[1,2],[3,4]])]

## For a degree 2 observable

observable_as_set_partition =

↩→B[SetPartition([[1],[2],[3],[4],[5],[6]])]

## For a degree 3 observable

To compute a degree 1 expectation values we specify an observable. The expectation value
only gets contributions from the one-point function. To compute the expectation value we take
the inner product of the observable and the onepoint function variable.

[11]: ## Degree 1 expvals are computed as

observable_as_set_partition = B[SetPartition([[1,2]])]

onepoint = EXP_VAL

A.inner_prod(observable_as_set_partition, onepoint)

This returns the expectation value as a function of 𝑁 and the parameters gJ1, gJ2.

[11]: N*(gJ1/N - gJ2/(sqrt(N - 1)*N)) + N*gJ2/sqrt(N - 1)

For degree two expectation values we receive contributions from the product of two one-point
functions and a propagator – this is stored in the variable twopoint. To get the correct form of the
product of one-point functions we need to relabel EXP VAL. Recall that it initially was defined
in terms of set partitions of {1, 2}. The second EXP VAL should correspond to set partitions
of {3, 4}. Therefore, we relabel it and then take a tensor product. To find the expectation value
we simply compute the inner product of twopoint function and the observable.
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[12]: ## Degree 2 expvals are computed as

observable_as_set_partition = B[SetPartition([[1,2],[3,4]])]

twopoint = PROPAGATOR + EXP_VAL*A.relabel_element(EXP_VAL,

↩→[3,4])

A.inner_prod(observable_as_set_partition, twopoint)

This gives the following function of coupling constants and 𝑁

[12]: ((gJ1/N - gJ2/(sqrt(N - 1)*N))ˆ2 - g 21/(Nˆ2 - N) - g 22/

↩→(Nˆ3 - 4*Nˆ2 + 5*N - 2)

+ g 33/(Nˆ2 - 3*N + 2) + g 62/(Nˆ2 - N) + g 00/Nˆ3 - g 11/Nˆ3

↩→- g 50/Nˆ3 +

g 55/Nˆ3 + g 61/Nˆ3 - g 66/Nˆ3)*Nˆ2 - (g 62*(1/(Nˆ2 - N) + 1/

↩→(N - 1)) -

2*gJ2*(gJ1/N - gJ2/(sqrt(N - 1)*N))/sqrt(N - 1) - g 21/(Nˆ2

↩→- N) - 2*g 22/(Nˆ3 -

4*Nˆ2 + 5*N - 2) + 2*g 33/(Nˆ2 - 3*N + 2) - g 50/Nˆ2 + 2*g 55/

↩→Nˆ2 + g 61/Nˆ2 -

2*g 66/Nˆ2)*Nˆ2 + Nˆ2*(gJ2ˆ2/(N - 1) - g 22/(Nˆ3 - 4*Nˆ2 +

↩→5*N - 2) + g 33/(Nˆ2

- 3*N + 2) + g 55/N + g 62/(N - 1) - g 66/N) + N*(N*g 22/(Nˆ3

↩→- 4*Nˆ2 + 5*N - 2)

- N*g 33/(N - 2) - N*g 62/(N - 1) + g 66) + 1/2*N*(g 33 +

↩→g 44) + 1/2*N*(g 33 -

g 44) + N*(g 62 - 2*g 22/(Nˆ2 - 3*N + 2) + 2*g 33/(N - 2)) +

↩→1/2*N*(2*g 21/(Nˆ2

- N) + 2*g 22/(Nˆ4 - 4*Nˆ3 + 5*Nˆ2 - 2*N) - g 33/(N - 2) +

↩→g 44/N - 2*g 62/(Nˆ2

- N) + 2*g 11/Nˆ2 - 2*g 61/Nˆ2 + 2*g 66/Nˆ2) - N*(g 21/(N -

↩→1) + 2*g 22/(Nˆ3 -

4*Nˆ2 + 5*N - 2) - 2*g 33/(N - 2) - g 61/N - 2*g 62/(N - 1) +

↩→2*g 66/N) +

N*(g 21/N + 2*g 22/(Nˆ3 - 3*Nˆ2 + 2*N) - g 33/(N - 2) - g 44/

↩→N - g 62/N) +

1/2*N*(2*g 22/(Nˆ2 - 2*N) - g 33/(N - 2) + g 44/N)

Similar considerations give expectation values of degree three observables. By Wick’s theorem
we get contributions from four different terms – these are store in the threepoint variable. We
use the relabeling function to get the correct set partitions.

[13]: ## Degree 3 expvals are computed as

observable_as_set_partition =

↩→B[SetPartition([[1],[2],[3],[4],[5],[6]])]
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threepoint = PROPAGATOR*A.relabel_element(EXP_VAL, [5,6])

threepoint += A.relabel_element(PROPAGATOR, [1,2,5,6])*A.

↩→relabel_element(EXP_VAL, [3,4])

threepoint += A.relabel_element(PROPAGATOR, [3,4,5,6])*A.

↩→relabel_element(EXP_VAL, [1,2])

threepoint += A.relabel_element(EXP_VAL, [1,2])*A.

↩→relabel_element(EXP_VAL, [3,4])*A.relabel_element(EXP_VAL, [5,6])

A.inner_prod(observable_as_set_partition,threepoint)

We do not print the result of this computation due its length.

For higher-degree expectation values we automate the computation of Wick contractions. The
function kpoint(k) returns the appropriate element encoding Wick’s theorem for degree 𝑘

expectation values.

[14]: ## For higher degree expvals it is useful to automate the

↩→Wick contractions

def kpoint(k):

## Fix a degree k

pairs = [(2*i-1,2*i) for i in [1..k]]

## Generate the set of pairs [(1,2),....,(2k-1,2k)]

kpoint=0

for i in [0..floor(k/2)]:

## Iterate over all set partitions of the pairs with blocks

↩→of size 1 or 2

for term in SetPartitions(pairs, sorted((k-2*i)*[1]+i*[2],

↩→reverse=True)):

kpoint += prod(A.relabel_element(EXP_VAL, list(i for c in

↩→contraction for i in c)) if len(contraction)==1 else A.

↩→relabel_element(PROPAGATOR, list(i for c in contraction for i in c)) for

↩→contraction in term )

return kpoint

This function can be checked against the known examples at degree 1, 2, 3.

[15]: ## We can check that this gives the right answer for k=1,2,3

kpoint(1) == onepoint and kpoint(2) == twopoint and

↩→kpoint(3) == threepoint

[15]: True

To use this, for example at degree 4 we fix an observable and compute
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[40]: ## Now we can compute degree 4 expectation values

observable_as_set_partition =

↩→B[SetPartition([[1],[2],[3],[4],[5],[6],[7],[8]])]

fourpoint=kpoint(4)

A.inner_prod(observable_as_set_partition, fourpoint)

We do not print the result here either, but it can be found by running the code found at Link to
GitHub Repository.

https://github.com/adrianpadellaro/PhD-Thesis
https://github.com/adrianpadellaro/PhD-Thesis


Appendix D

Observables: Double coset counting

This appendix is devoted to a procedure for explicitly computing the number of double cosets
of the type defined in Proposition 29.

In general, the number of double cosets in 𝐻1 \𝐺/𝐻2 can be written [119]

|𝐻1 \𝐺/𝐻2 | =
1

|𝐻1 | |𝐻2 |
∑︁
𝐶

𝑍
𝐻1→𝐺
𝐶

𝑍
𝐻2→𝐺
𝐶

Sym(𝐶), (D.1)

where the sum is over conjugacy classes of𝐺. The symbols 𝑍𝐺→𝐻1
𝐶

, 𝑍
𝐺→𝐻2
𝐶

denote the number
of elements of 𝐻1 and 𝐻2 in the conjugacy class 𝐶 of 𝐺, respectively. Sym(𝐶) is the number
of elements in 𝐺 which commute with an element in 𝐶.

Proposition 44. For a permutation subgroup 𝐻 ⊂ 𝐺1 × 𝐺2, let 𝑍𝐻𝑝,𝑞 be the number of
permutations (ℎ1, ℎ2) ∈ 𝐻 with cycle structure 𝑝 ⊢ 𝑘 in the first slot and 𝑞 ⊢ 𝑘 in the second
slot. For the double coset in (4.222) we have

𝑁 ( ®𝑘+, ®𝑘−) = 1
|𝐺 ( ®𝑘+, ®𝑘−) | |𝑆𝑘 |

∑︁
𝑝⊢𝑘

𝑍
𝐺 ( ®𝑘+, ®𝑘− )
𝑝,𝑝 𝑍

diag(𝑆𝑘 )
𝑝,𝑝 Sym(𝑝)2

=
1

|𝐺 ( ®𝑘+, ®𝑘−) |

∑︁
𝑝⊢𝑘

𝑍
𝐺 ( ®𝑘+, ®𝑘− )
𝑝,𝑝 Sym(𝑝). (D.2)

with

Sym(𝑝) =
𝑚∏
𝑖=1

𝑝𝑖!𝑖𝑝𝑖 ,
∑︁
𝑖

𝑖𝑝𝑖 = 𝑚. (D.3)

The last equality follows from

𝑍
diag(𝑆𝑘 )
𝑝,𝑝 = 𝑍

𝑆𝑘
𝑝 =

|𝑆𝑘 |
Sym(𝑝) . (D.4)

We now prove the first equality (the equivalence with the counting due to Burnside’s lemma

163
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(4.227)).

Proof. Organize the sum
∑
𝛾∈diag(𝑆𝑘 ) in (4.227) into a sum over conjugacy classes of 𝑆+

𝑘
× 𝑆−

𝑘
,

and a sum over elements in the conjugacy class,∑︁
𝛾∈diag(𝑆𝑚 )

=
∑︁
𝑝⊢𝑚

∑︁
𝛾∈𝐶𝑝

. (D.5)

The Kronecker delta 𝛿(𝜎−1
1 𝜌+(`)𝛾+(a+)𝜎1𝛾

−1) vanishes unless 𝜌+(`)𝛾+(a+) is in the same
conjugacy class as 𝛾−1 ∈ 𝐶𝑝. Similarly for the second Kronecker delta. The number of elements
(𝜌+(`)𝛾+(a+), 𝜌− (`)𝛾− (a−)) in the conjugacy class 𝐶𝑝 × 𝐶𝑝 of 𝑆+

𝑘
× 𝑆−

𝑘
is the definition of

the coefficients 𝑍𝐺 (
®𝑘+, ®𝑘− )

𝑝,𝑝 . The number of elements (𝛾, 𝛾) in the conjugacy class 𝐶𝑝 × 𝐶𝑝 is
𝑍

diag(𝑆𝑘 )
𝑝,𝑝 . Given an element in 𝐺 ( ®𝑘+, ®𝑘−) and an element in diag(𝑆𝑘) in the same conjugacy

class, there exists at least one element (𝜎1, 𝜎2) which relates the two by conjugation. Therefore,
the Kronecker delta is non-zero at least 𝑍𝐺 (

®𝑘+, ®𝑘− )
𝑝,𝑝 𝑍

diag(𝑆𝑘 )
𝑝,𝑝 times for each conjugacy class 𝐶𝑝.

In equations we have∑︁
`∈𝑆®𝑙 ,a

+∈𝑆 ®𝑘+
a−∈𝑆 ®𝑘− ,𝛾∈diag(𝑆𝑘 )

∑︁
𝜎1,𝜎2∈𝑆𝑘

𝛿(𝜎−1
1 𝜌+(`)𝛾+(a+)𝜎1𝛾

−1)𝛿(𝜎−1
2 𝜌− (`)𝛾− (a−)𝜎2𝛾

−1)

=
∑︁
𝑝⊢𝑘

∑︁
𝜎1,𝜎2∈𝑆𝑘

𝛿(𝜎−1
1 𝐺+𝑝𝜎1𝛾

−1
𝑝 )𝛿(𝜎−1

2 𝐺−𝑝𝜎2𝛾
−1
𝑝 )𝑍

𝐺 ( ®𝑘+, ®𝑘− )
𝑝,𝑝 𝑍

diag(𝑆𝑘 )
𝑝,𝑝

=
∑︁
𝑝⊢𝑘

𝑍
𝐺 ( ®𝑘+, ®𝑘− )
𝑝,𝑝 𝑍

diag(𝑆𝑘 )
𝑝,𝑝 Sym(𝑝)2. (D.6)

where (𝐺+𝑝, 𝐺−𝑝) is an arbitrary element of 𝐺 ( ®𝑘+, ®𝑘−) in the conjugacy class 𝐶𝑝 × 𝐶𝑝 and
similarly for 𝛾−1

𝑝 in diag(𝑆𝑘). To understand the last equality, consider the case where
(𝜎−1

1 𝐺+𝑝𝜎1, 𝜎
−1
2 𝐺−𝑝𝜎2) = (𝛾𝑝, 𝛾𝑝). If 𝜎′1, 𝜎

′
2 commute with 𝐺+𝑝 and 𝐺−𝑝 respectively, then

((𝜎′1𝜎1)−1𝐺+𝑝𝜎
′
1𝜎1, (𝜎′2𝜎2)−1𝐺−𝑝𝜎

′
2𝜎2) = (𝜎−1

1 𝐺+𝑝𝜎1, 𝜎
−1
2 𝐺−𝑝𝜎2) = (𝛾𝑝, 𝛾𝑝). (D.7)

The function Sym(𝑝) is the number of elements in 𝑆𝑘 which commute with 𝐺 𝑝. This only
depends on the conjugacy class 𝐶𝑝, or equivalently, the partition 𝑝. □

The functions 𝑍𝐻𝑝 , which count the number of elements in the conjugacy class labelled by 𝑝,
are of central importance in equation D.2.

Definition 51 (Cycle index). For a partition 𝑝 ⊢ 𝑙, let x𝑝 be the degree 𝑙 monomial 𝑥𝑝1
1 𝑥

𝑝2
2 . . . ,

where
∑
𝑗 𝑗 𝑝 𝑗 = 𝑙. We construct generating functions, called cycle indices

𝑍𝐻 (x) = 𝑍𝐻 (𝑥1, 𝑥2, . . . ) =
1
|𝐻 |

∑︁
𝑝

𝑍𝐻𝑝 x𝑝, (D.8)
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such that
1
|𝐻 | 𝑍

𝐻
𝑝 = Coefficient(𝑍𝐻 (𝑥1, 𝑥2, . . . ), x𝑝). (D.9)

We are interested in the cycle indices 𝑍𝐺 ( ®𝑘+, ®𝑘− ) . To efficiently describe them we define the
following compact notation.

Definition 52 (Exponential notation for vector partition). A vector partition

( ®𝑘+, ®𝑘−) = (𝑘+1 , 𝑘
−
1 ) + · · · + (𝑘

+
𝑙 , 𝑘

−
𝑙 ). (D.10)

can equivalently be described using a generalization of exponential notation for partitions,

( ®𝑘+, ®𝑘−) = 𝑝01(0, 1) + 𝑝10(1, 0) + · · · =
∑︁
𝑣 (2)

𝑝𝑣 (2) 𝑣
(2) , (D.11)

where the sum is over ordered lists of two integers 𝑣 (2) with at least one non-zero entry and
𝑝𝑣 (2) is the number of times it appears in the vector partition.

Definition 53 (Wreath product). A general wreath product 𝑆𝑙 [𝑆𝑣] is a semi-direct product

𝑆𝑙 ⋉ (𝑆𝑣 × · · · × 𝑆𝑣)︸             ︷︷             ︸
l factors

, (D.12)

which is naturally viewed as a subgroup of 𝑆𝑙𝑣 . For example, elements of 𝑆4 [𝑆2] correspond to
diagrams

`

a1 a2 a3 a4

(D.13)

with a𝑖 ∈ 𝑆2, ` ∈ 𝑆4. The vertices are concatenations of edges and ` permutes the resulting
collections

←→ (D.14)

Example 39. The illustration of 𝑆4 [𝑆2] in (D.13) can be made more explicit by embedding it
into 𝑆8. Labelling the edges at the bottom from left to right by 1, . . . , 8 we have the subgroups

a1 ∈ Perms(1, 2), a2 ∈ Perms(3, 4), a3 ∈ Perms(5, 6), a4 ∈ Perms(7, 8), (D.15)
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and ` is in the subgroup generated by the swaps

𝑆4 � ⟨(13) (24), (35) (46), (57) (68)⟩. (D.16)

With these definitions, we can write the symmetry group as

𝐺 ( ®𝑘+, ®𝑘−) =
?
𝑣 (2)

𝑆𝑝
𝑣 (2)
[𝑆𝑣 (2) ], 𝑣 (2) ∈ N×2 \{0, 0} (D.17)

where
𝑆𝑣 (2) = 𝑆𝑣 (2)1

× 𝑆
𝑣
(2)
2
, (D.18)

and 𝑆𝑝
𝑣 (2)
[𝑆𝑣 (2) ] is the wreath product.

The form (D.17) of the symmetry group is particularly useful for simplifying the computation
of its cycle index.

Proposition 45. Let 𝐺1 × 𝐺2 be a subgroup of 𝑆𝑘 = Perms({1, . . . , 𝑘}) for some 𝑘 . Then the
cycle index of the direct product is a product of cycle indices

𝑍𝐺1×𝐺2 (x) = 𝑍𝐺1 (x)𝑍𝐺2 (x). (D.19)

Proof. Suppose 𝑔1 ∈ 𝐺1 has cycle structure 𝑝 where 𝑝𝑖 is the number of 𝑖-cycles, and 𝑔2 ∈ 𝐺2

has cycle structure 𝑞. The cycle structure of the product 𝑔1𝑔2 is 𝑟 = (𝑝1 + 𝑞1, 𝑝2 + 𝑞2, . . . ).
Therefore, the contribution of (𝑔1, 𝑔2) ∈ 𝐺1 × 𝐺2 to the cycle index is

x𝑝x𝑞 . (D.20)

Summing up the contributions from every element gives

𝑍𝐺1×𝐺2 (x) = 𝑍𝐺1 (x)𝑍𝐺2 (x). (D.21)

□

It is convenient to formally think of x = (𝑥1, 𝑥2, . . . ) as a countably infinite number of variables.
In practice it truncates at 𝑥𝑐, where 𝑐 is the size of the largest cycle in 𝐺1 × 𝐺2.

Proposition 45 implies that we can compute the cycle indices of each wreath group separately.
Cycle indices of wreath products can be computed as follows.

Theorem 24. The cycle index of a wreath product 𝑆𝑙 [𝑆𝑣] is

𝑍𝑆𝑙 [𝑆𝑣 ] (𝑥1, . . . , 𝑥𝑙𝑣) = 𝑍𝑆𝑙 (𝑍𝑆𝑣1 (x), . . . , 𝑍
𝑆𝑣
𝑙
(x)), (D.22)



167

where
𝑍
𝑆𝑣
𝑖
(x) = 𝑍𝑆𝑣 (𝑥1·𝑖 , 𝑥2·𝑖 , . . . , 𝑥𝑣 ·𝑖), (D.23)

is given by multiplying the labels on 𝑥1, 𝑥2, . . . by 𝑖 in the cycle index.

Proof. This result originally proved by Pólya in [120] says: for a permutation (D.13) with `
fixed to have cycle structure 𝑝 ⊢ 𝑙, the contribution to the cycle index as we sum over 𝑆×𝑙𝑣 is
[121]

1
|𝑆𝑙 |

𝑍
𝑆𝑣
1 (x)

𝑝1 . . . 𝑍
𝑆𝑣
𝑙
(x) 𝑝𝑙 . (D.24)

□

We are interested in counting cycles of wreath products of the form 𝑆𝑙 [𝑆𝑣+ × 𝑆𝑣− ]. This
wreath product is most naturally thought of as a subgroup of 𝑆𝑙𝑣++𝑙𝑣− . However, elements in
𝑆𝑙 [𝑆𝑣+ × 𝑆𝑣− ] are determined by ` ∈ 𝑆𝑙, a+𝑖 ∈ 𝑆𝑣+ , a−𝑖 ∈ 𝑆𝑣− according to the diagram (in the
case of 𝑆4 [𝑆2 × 𝑆2])

`

a+1 a−1 a+2 a−2 a+3 a−3 a+4 a−4

(D.25)

which can be factorized as

`

a+1 a+2 a+3 a+4

`

a−1 a−2 a−3 a−4

(D.26)

This amounts to embedding 𝑆𝑙 [𝑆𝑣+ × 𝑆𝑣− ] as a subgroup of 𝑆𝑙𝑣+ × 𝑆𝑙𝑣− . From the double coset
(4.222) we can see that this is the type of embedding we are interested in. By using Theorem
24 for the cycle index of a wreath product, we can separately keep track of the cycle structure
of the left and right diagram in (D.26). For ` with fixed cycle structure 𝑝 ⊢ 𝑙, the contribution
of the cycle index for 𝑆𝑙 [𝑆𝑣+ × 𝑆𝑣− ] as embedded into 𝑆𝑙𝑣+ × 𝑆𝑙𝑣− is simply the product of the
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contribution from each. That is

1
|𝑆𝑙 |

[
𝑍
𝑆𝑣+
1 (x) 𝑝1 . . . 𝑍

𝑆𝑣+
𝑙
(x) 𝑝𝑙

] [
𝑍
𝑆𝑣−
1 (y) 𝑝1 . . . 𝑍

𝑆𝑣−
𝑙
(y) 𝑝𝑙

]
. (D.27)

If we sum over all ` ∈ 𝑆𝑘 we get the generating function

𝑍𝑆𝑙 [𝑆𝑣+×𝑆𝑣− ] (𝑥1, . . . , 𝑥𝑙𝑣++𝑙𝑣− ) = 𝑍𝑆𝑙 (𝑍𝑆𝑣+1 (x)𝑍𝑆𝑣−1 (y), . . . , 𝑍𝑆𝑣+
𝑙
(x)𝑍𝑆𝑣−

𝑙
(y)). (D.28)

Returning to the case at hand, 𝑆𝑝
𝑣 (2)

[
𝑆𝑣 (2)

]
is considered as a subgroup of 𝑆+

𝑘
× 𝑆−

𝑘
. Our

goal is to count the number of elements (𝜎+
𝑘
, 𝜎−
𝑘
) ∈ 𝑆𝑝

𝑣 (2)

[
𝑆𝑣 (2)

]
with cycle structure 𝑝1, 𝑝2,

respectively. To that end, we construct the refined version as

𝑍
𝑆𝑝

𝑣 (2)

[
𝑆
𝑣 (2)

]
(x, y) (D.29)

= 𝑍
𝑆𝑝

𝑣 (2)
(
𝑍

𝑆
𝑣
(2)
1

1 (x)𝑍
𝑆
𝑣
(2)
2

1 (y), . . . , 𝑍
𝑆
𝑣
(2)
1

𝑝
𝑣 (2)
(x)𝑍

𝑆
𝑣
(2)
2

𝑝
𝑣 (2)
(y)

)
(D.30)

Then the number of elements in 𝑆𝑝
𝑣 (4)

[
𝑆𝑣 (2)

]
with cycle structure 𝑝1, 𝑝2 is

1
|𝑆𝑝

𝑣 (2)
[𝑆𝑣 (2) ] |

𝑍
𝑆𝑝

𝑣 (2)

[
𝑆
𝑣 (2)

]
𝑝1, 𝑝2 = Coefficient(𝑍𝑆𝑝𝑣 (2)

[
𝑆
𝑣 (2)

]
(x, y), x𝑝1y𝑝2). (D.31)

For products of wreath products we can use the factorization property (D.19). Consequently,
the full cycle index of 𝐺 ( ®𝑘+, ®𝑘−) is given by a product

𝑍𝐺 (
®𝑘+, ®𝑘− ) (x, y) =

∏
𝑣 (2)

𝑍
𝑆𝑝

𝑣 (2)

[
𝑆
𝑣 (2)

]
(x, y). (D.32)

Example 40. It is instructive to calculate 𝑁 ( ®𝑘+, ®𝑘−) for Figure 4.4, where ( ®𝑘+, ®𝑘−) = (3, 2) +
(3, 2) + (1, 3) = 2(3, 2) + (1, 3). The first step is to write down𝐺 ( ®𝑘+, ®𝑘−) as a product of wreath
products,

𝐺 ( ®𝑘+, ®𝑘−) = 𝑆2 [𝑆3 × 𝑆2] × 𝑆1 × 𝑆3. (D.33)

Using the factorization property (D.19) for cycle indices we have

𝑍𝐺 (
®𝑘+, ®𝑘− ) (x, y) = 𝑍𝑆2 [𝑆3×𝑆2 ] (x, y)𝑍𝑆1 (x)𝑍𝑆3 (y), (D.34)

where
𝑍𝑆2 [𝑆3×𝑆2 ] (x, y) = 𝑍𝑆2 (𝑍𝑆3

1 (x)𝑍
𝑆2
1 (y), 𝑍

𝑆3
2 (x)𝑍

𝑆2
2 (y)). (D.35)

The four relevant cycle indices are

𝑍𝑆0 (x) = 1, 𝑍𝑆1 (x) = 𝑥1, 𝑍𝑆2 (x) = 1
2
(𝑥2

1 + 𝑥2), 𝑍𝑆3 (x) = 1
6
(𝑥3

1 + 3𝑥2𝑥1 + 2𝑥3). (D.36)
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Explicitly, the cycle index for the wreath product is

𝑍𝑆2 [𝑆3×𝑆2 ] (x, y) = 1
2

(
(𝑥3

1 + 3𝑥2𝑥1 + 2𝑥3)
6

)2 ( (𝑦2
1 + 𝑦2)

2

)2

+ 1
2
(𝑥3

2 + 3𝑥4𝑥2 + 2𝑥6)
6

(𝑦2
2 + 𝑦4)

2
.

(D.37)
To perform the sum in equation (D.2), we need to pick out the coefficients

Coefficient(𝑍𝐺 ( ®𝑘+, ®𝑘− ) , x𝑝y𝑝), 𝑝 ⊢ 7. (D.38)

There are seven non-zero coefficients of this form,

Coefficient(𝑍𝐺 ( ®𝑘+, ®𝑘− ) , 𝑥7
1𝑦

7
1) =

1
1728

,

Coefficient(𝑍𝐺 ( ®𝑘+, ®𝑘− ) , 𝑥5
1𝑥2𝑦

5
1𝑦2) =

5
288

,

Coefficient(𝑍𝐺 ( ®𝑘+, ®𝑘− ) , 𝑥4
1𝑥3𝑦

4
1𝑦3) =

1
216

,

Coefficient(𝑍𝐺 ( ®𝑘+, ®𝑘− ) , 𝑥3
1𝑥

2
2𝑦

3
1𝑦

2
2) =

7
192

,

Coefficient(𝑍𝐺 ( ®𝑘+, ®𝑘− ) , 𝑥2
1𝑥2𝑥3𝑦

2
1𝑦2𝑦3) =

1
36
,

Coefficient(𝑍𝐺 ( ®𝑘+, ®𝑘− ) , 𝑥1
1𝑥

3
2𝑦

1
1𝑦

3
2) =

1
48
,

Coefficient(𝑍𝐺 ( ®𝑘+, ®𝑘− ) , 𝑥1
1𝑥

1
2𝑥

1
4𝑦

1
1𝑦

1
2𝑦4) =

1
16
. (D.39)

We find

𝑁 ( ®𝑘+, ®𝑘−) = 1
1728

7!+ 5
288

5!2+ 1
216

4!3+ 7
192

3!2!22+ 1
36

2!2·3+ 1
48

3!23+ 1
16

2·4 = 11. (D.40)

In this section we have discussed three ways of counting observables, with increasing level of
refinement. Because the double coset counting is the most granular of the three, we expect
appropriate sums over 𝑁 ( ®𝑘+, ®𝑘−) to reproduce previous counting formulae. For example, by
Proposition 28 the number of graphs with 𝑘 edges and exactly 𝑙 vertices is given by the difference��G𝑘,𝑙 �� − ��G𝑘,𝑙−1

�� = dim [𝑉⊗2𝑘
𝑙
]𝑆𝑙×𝑆𝑘 − dim [𝑉⊗2𝑘

𝑙−1 ]
𝑆𝑙−1×𝑆𝑘 (D.41)

It is also given by a sum over those vector partitions which have exactly 𝑙 parts,��G𝑘,𝑙 �� − ��G𝑘,𝑙−1
�� = ∑︁
( ®𝑘+, ®𝑘− )⊢(𝑘,𝑘 )

with 𝑙 parts.

𝑁 ( ®𝑘+, ®𝑘−)

=
∑︁

( ®𝑘+, ®𝑘− )⊢(𝑘,𝑘 )
with 𝑙 parts.

1
|𝐺 ( ®𝑘+, ®𝑘−) |

∑︁
𝑝⊢𝑘

𝑍
𝐺 ( ®𝑘+, ®𝑘− )
𝑝,𝑝 Sym(𝑝).
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k # graphs 𝑙 = 1, 2, . . . , 2𝑘
1 2 1,1
2 11 1,5,4,1
3 52 1, 9, 21, 16, 4, 1
4 296 1, 18, 71, 108, 71, 22, 4, 1
5 1724 1, 27, 194, 491, 557, 326, 101, 22, 4, 1
6 11060 1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1

This is a refinement of the counting in Section 4.2 (Table 4.1), as can be seen from Table D.1.

D.1 Cycle index code

SageMath [122] has several tools for computing cycle indices. The code below can be found at
Link to GitHub Repository. For example, the following cell computes the cycle index for 𝑆2.

[1]: k = 2

Z_k = SymmetricGroup(k).cycle_index()

Z_k

[1]: 1/2*p[1, 1] + 1/2*p[2]

Note that SageMath computes cycle indices in terms of partitions/symmetric functions. To
convert it into a polynomial we define a polynomial ring Q[𝑥1, 𝑥2] (note that by default Sage
includes 𝑥0 in the polynomial ring)

[2]: QX = PolynomialRing(QQ, k+1, 'x')

[3]: QX.gens()

[3]: (x0, x1, x2)

To compute the polynomial corresponding to the cycle index Z k we simply replace every
instance of 1 in a partition by 𝑥1, every 2 with 𝑥2 and so on.

[4]: sum(z[1]*prod(QX.gens()[i] for i in z[0]) for z in Z_k)

[4]: 1/2*x1ˆ2 + 1/2*x2

We turn this procedure into a function that takes a polynomial ring and a cycle index.

[5]: def CycleIndexPolynomial(PolynomialRing, CycleIndex):

return sum(z[1]*prod(PolynomialRing.gens()[i] for i in z[0]) for z in

↩→CycleIndex)

We can check that this returns the expected polynomial for 𝑆2

https://github.com/adrianpadellaro/PhD-Thesis
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[6]: CycleIndexPolynomial(QX,Z_k)

[6]: 1/2*x1ˆ2 + 1/2*x2

The next step is to compute the shifted cycle indices 𝑍𝑆𝑘
𝑖

. For this we need a polynomial ring
QXX that includes 𝑥1·𝑖 , . . . , 𝑥𝑘 ·𝑖 . We get the shifted cycle index polynomial by replacing every
1 in the partitions of Z k by 𝑥𝑖 , every 2 by 𝑥2𝑖 and so on.

[7]: i = 3

QXX = PolynomialRing(QQ, i*k+1, 'x')

sum(z[1]*prod(QXX.gens()[p*i] for p in z[0]) for z in Z_k)

[7]: 1/2*x3ˆ2 + 1/2*x6

Again, we turn this procedure into a function that takes a polynomial ring, a cycle index to be
shifted and an integer (Shift) to shift by.

[8]: def ShiftedCycleIndexPolynomial(PolynomialRing, CycleIndex, Shift):

return sum(z[1]*prod(PolynomialRing.gens()[p*Shift] for p in z[0]) for z

↩→in CycleIndex)

We can confirm that this gives the expected result.

[9]: ShiftedCycleIndexPolynomial(QXX, Z_k, 3)

[9]: 1/2*x3ˆ2 + 1/2*x6

The next step is to compute the cycle index 𝑍𝑆𝑙 [𝑆𝑘 ] (x) (we will generalize in to 𝑍𝑆𝑙 [𝑆𝑘1×𝑆𝑘2 ] (x, y)
in a minute). For this we compute the cycle index Z l and replace every instance of 1 with the
shifted Z k cycle index with shift 1, every 2 with a shift by 2 and so on. The largest unknown
that can appear in this cycle index is 𝑥𝑙 ·𝑘 , therefore we need a polynomial ring QXX containing
this variable.

[10]: l = 3

Z_l = SymmetricGroup(l).cycle_index()

QXX = PolynomialRing(QQ, l*k+1, 'x')

sum(z[1]*prod(ShiftedCycleIndexPolynomial(QXX, Z_k, i) for i in z[0]) for z

↩→in Z_l)

[10]: 1/48*x1ˆ6 + 1/16*x1ˆ4*x2 + 3/16*x1ˆ2*x2ˆ2 + 7/48*x2ˆ3 + 1/8*x1ˆ2*x4 + 1/

↩→6*x3ˆ2 +

1/8*x2*x4 + 1/6*x6

Below we generalize to 𝑍𝑆𝑙 [𝑆𝑘1×𝑆𝑘2 ] (x, y) with 𝑘1 = 𝑘2. For this we need a polynomial ring
QYY containing 𝑦1, . . . , 𝑦𝑙 ·𝑘 . We will also need a polynomial ring QXY containing all these
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unknowns. To compute the just mentioned cycle index, we replace every instance of 1 in the
partitions of Z l by the product of shifted cycle indices, as in (D.27).

[11]: QYY = PolynomialRing(QQ, l*k+1, 'y')

QXY = PolynomialRing(QQ, l*k+1, var_array=['x','y'])

sum(z[1]*prod(QXY.coerce(ShiftedCycleIndexPolynomial(QXX, Z_k, i))*QXY.

↩→coerce(ShiftedCycleIndexPolynomial(QYY, Z_k, i)) for i in z[0]) for z

↩→in Z_l)

This produces the following polynomial.

[11]: 1/384*x1ˆ6*y1ˆ6 + 1/128*x1ˆ4*y1ˆ6*x2 + 1/128*x1ˆ6*y1ˆ4*y2 + 1/

↩→128*x1ˆ2*y1ˆ6*x2ˆ2

+ 3/128*x1ˆ4*y1ˆ4*x2*y2 + 1/128*x1ˆ6*y1ˆ2*y2ˆ2 + 1/384*y1ˆ6*x2ˆ3 +

3/128*x1ˆ2*y1ˆ4*x2ˆ2*y2 + 3/128*x1ˆ4*y1ˆ2*x2*y2ˆ2 + 1/384*x1ˆ6*y2ˆ3 +

1/128*y1ˆ4*x2ˆ3*y2 + 7/128*x1ˆ2*y1ˆ2*x2ˆ2*y2ˆ2 + 1/128*x1ˆ4*x2*y2ˆ3 +

5/128*y1ˆ2*x2ˆ3*y2ˆ2 + 5/128*x1ˆ2*x2ˆ2*y2ˆ3 + 1/32*x1ˆ2*y1ˆ2*y2ˆ2*x4 +

1/32*x1ˆ2*y1ˆ2*x2ˆ2*y4 + 13/384*x2ˆ3*y2ˆ3 + 1/32*y1ˆ2*x2*y2ˆ2*x4 +

1/32*x1ˆ2*y2ˆ3*x4 + 1/32*y1ˆ2*x2ˆ3*y4 + 1/32*x1ˆ2*x2ˆ2*y2*y4 +

1/32*x1ˆ2*y1ˆ2*x4*y4 + 1/32*x2*y2ˆ3*x4 + 1/32*x2ˆ3*y2*y4 + 1/

↩→32*y1ˆ2*x2*x4*y4 +

1/32*x1ˆ2*y2*x4*y4 + 1/12*x3ˆ2*y3ˆ2 + 1/32*x2*y2*x4*y4 + 1/12*y3ˆ2*x6 +

1/12*x3ˆ2*y6 + 1/12*x6*y6

We put this procedure into a function and generalize to 𝑘1 ≠ 𝑘2 (in the code these corre-
spond to k plus and k minus). The function takes in three integers and gives the polynomial
𝑍𝑆𝑙 [𝑆𝑘1×𝑆𝑘2 ] (x, y).

[12]: def WreathProductCycleIndexPolynomial(l,k_plus, k_minus):

QXX = PolynomialRing(QQ, l*k_plus+1, 'x')

QYY = PolynomialRing(QQ, l*k_minus+1, 'y')

QXY = PolynomialRing(QQ, l*max(k_plus,k_minus)+1, var_array=['x','y'])

Z_l = SymmetricGroup(l).cycle_index()

Z_kplus = SymmetricGroup(k_plus).cycle_index()

Z_kminus = SymmetricGroup(k_minus).cycle_index()

return sum(z[1]*prod(QXY.coerce(ShiftedCycleIndexPolynomial(QXX,

↩→Z_kplus, i))*QXY.coerce(ShiftedCycleIndexPolynomial(QYY, Z_kminus, i))

↩→for i in z[0]) for z in Z_l)

We can check that this gives the correct answer for 𝑙 = 3, 𝑘1 = 𝑘2 = 2.

[13]: WreathProductCycleIndexPolynomial(3,2,1)

[13]: 1/384*x1ˆ6*y1ˆ6 + 1/128*x1ˆ4*y1ˆ6*x2 + 1/128*x1ˆ6*y1ˆ4*y2 + 1/

↩→128*x1ˆ2*y1ˆ6*x2ˆ2
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+ 3/128*x1ˆ4*y1ˆ4*x2*y2 + 1/128*x1ˆ6*y1ˆ2*y2ˆ2 + 1/384*y1ˆ6*x2ˆ3 +

3/128*x1ˆ2*y1ˆ4*x2ˆ2*y2 + 3/128*x1ˆ4*y1ˆ2*x2*y2ˆ2 + 1/384*x1ˆ6*y2ˆ3 +

1/128*y1ˆ4*x2ˆ3*y2 + 7/128*x1ˆ2*y1ˆ2*x2ˆ2*y2ˆ2 + 1/128*x1ˆ4*x2*y2ˆ3 +

5/128*y1ˆ2*x2ˆ3*y2ˆ2 + 5/128*x1ˆ2*x2ˆ2*y2ˆ3 + 1/32*x1ˆ2*y1ˆ2*y2ˆ2*x4 +

1/32*x1ˆ2*y1ˆ2*x2ˆ2*y4 + 13/384*x2ˆ3*y2ˆ3 + 1/32*y1ˆ2*x2*y2ˆ2*x4 +

1/32*x1ˆ2*y2ˆ3*x4 + 1/32*y1ˆ2*x2ˆ3*y4 + 1/32*x1ˆ2*x2ˆ2*y2*y4 +

1/32*x1ˆ2*y1ˆ2*x4*y4 + 1/32*x2*y2ˆ3*x4 + 1/32*x2ˆ3*y2*y4 + 1/

↩→32*y1ˆ2*x2*x4*y4 +

1/32*x1ˆ2*y2*x4*y4 + 1/12*x3ˆ2*y3ˆ2 + 1/32*x2*y2*x4*y4 + 1/12*y3ˆ2*x6 +

1/12*x3ˆ2*y6 + 1/12*x6*y6

We want to take products of such cycle indices, as dictated by a vector partition. For this we
define a function that takes a vector partition and returns it in exponential form.

[14]: def vectorpartition_exponential(vector_partition):

j = 0

exp_vec_partition = []

exp_vec_partition = exp_vec_partition + [[1, vector_partition[j]]]

for i in range(1,len(vector_partition)):

if vector_partition[i-1] == vector_partition[i]:

exp_vec_partition[j][0] = exp_vec_partition[j][0]+1

else:

j = j+1

exp_vec_partition = exp_vec_partition + [[1,

↩→vector_partition[i]]]

return exp_vec_partition

As an example, we get

[15]: vectorpartition_exp =

↩→vectorpartition_exponential(VectorPartition([[3,2],[3,2],[1,3]]))

vectorpartition_exp

[15]: [[1, [1, 3]], [2, [3, 2]]]

To compute (D.32) we take a product over the vector partition.

[16]: Z_G = prod(WreathProductCycleIndexPolynomial(v[0],v[1][0], v[1][1]) for v in

↩→vectorpartition_exp)

Z_G

[16]: 1/1728*x1ˆ7*y1ˆ7 + 1/288*x1ˆ5*y1ˆ7*x2 + 5/1728*x1ˆ7*y1ˆ5*y2 +

1/192*x1ˆ3*y1ˆ7*x2ˆ2 + 5/288*x1ˆ5*y1ˆ5*x2*y2 + 7/1728*x1ˆ7*y1ˆ3*y2ˆ2 +

1/432*x1ˆ4*y1ˆ7*x3 + 1/864*x1ˆ7*y1ˆ4*y3 + 5/192*x1ˆ3*y1ˆ5*x2ˆ2*y2 +

7/288*x1ˆ5*y1ˆ3*x2*y2ˆ2 + 1/576*x1ˆ7*y1*y2ˆ3 + 1/144*x1ˆ2*y1ˆ7*x2*x3 +
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5/432*x1ˆ4*y1ˆ5*y2*x3 + 1/144*x1ˆ5*y1ˆ4*x2*y3 + 1/432*x1ˆ7*y1ˆ2*y2*y3 +

7/192*x1ˆ3*y1ˆ3*x2ˆ2*y2ˆ2 + 1/96*x1ˆ5*y1*x2*y2ˆ3 + 5/144*x1ˆ2*y1ˆ5*x2*y2*x3 +

7/432*x1ˆ4*y1ˆ3*y2ˆ2*x3 + 1/432*x1*y1ˆ7*x3ˆ2 + 1/96*x1ˆ3*y1ˆ4*x2ˆ2*y3 +

1/72*x1ˆ5*y1ˆ2*x2*y2*y3 + 1/864*x1ˆ7*y2ˆ2*y3 + 1/216*x1ˆ4*y1ˆ4*x3*y3 +

1/144*x1*y1ˆ3*x2ˆ3*y2ˆ2 + 1/64*x1ˆ3*y1*x2ˆ2*y2ˆ3 + 7/

↩→144*x1ˆ2*y1ˆ3*x2*y2ˆ2*x3 +

1/144*x1ˆ4*y1*y2ˆ3*x3 + 5/432*x1*y1ˆ5*y2*x3ˆ2 + 1/48*x1ˆ3*y1ˆ2*x2ˆ2*y2*y3 +

1/144*x1ˆ5*x2*y2ˆ2*y3 + 1/72*x1ˆ2*y1ˆ4*x2*x3*y3 + 1/108*x1ˆ4*y1ˆ2*y2*x3*y3 +

1/48*x1*y1*x2ˆ3*y2ˆ3 + 1/48*x1ˆ2*y1*x2*y2ˆ3*x3 + 7/432*x1*y1ˆ3*y2ˆ2*x3ˆ2 +

1/96*x1ˆ3*x2ˆ2*y2ˆ2*y3 + 1/36*x1ˆ2*y1ˆ2*x2*y2*x3*y3 + 1/216*x1ˆ4*y2ˆ2*x3*y3 +

1/216*x1*y1ˆ4*x3ˆ2*y3 + 1/48*x1*y1ˆ3*x2*y2ˆ2*x4 + 1/144*x1*y1ˆ3*x2ˆ3*y4 +

1/144*x1*y1*y2ˆ3*x3ˆ2 + 1/72*x1*x2ˆ3*y2ˆ2*y3 + 1/72*x1ˆ2*x2*y2ˆ2*x3*y3 +

1/108*x1*y1ˆ2*y2*x3ˆ2*y3 + 1/16*x1*y1*x2*y2ˆ3*x4 + 1/48*x1*y1*x2ˆ3*y2*y4 +

1/48*x1*y1ˆ3*x2*x4*y4 + 1/72*x1*y1ˆ3*y2ˆ2*x6 + 1/216*x1*y2ˆ2*x3ˆ2*y3 +

1/24*x1*x2*y2ˆ2*y3*x4 + 1/72*x1*x2ˆ3*y3*y4 + 1/16*x1*y1*x2*y2*x4*y4 +

1/24*x1*y1*y2ˆ3*x6 + 1/72*x1*y1ˆ3*y4*x6 + 1/24*x1*x2*y3*x4*y4 +

1/36*x1*y2ˆ2*y3*x6 + 1/24*x1*y1*y2*y4*x6 + 1/36*x1*y3*y4*x6

All that remains is to pick out the coefficients of monomials x𝑝y𝑝 for some partition 𝑝 ⊢ 𝑘 .
Below, we have a function that take a vector partition, construct the corresponding cycle index
and extracts the coefficient of the monomial x𝑝y𝑝 for a partition 𝑝.

[17]: def monomial_coefficient_of_ZG(vectorpartition, partition):

vectorpartition_exp = vectorpartition_exponential(vectorpartition)

k_plus = vectorpartition.sum()[0]

k_minus = vectorpartition.sum()[1]

QXX = PolynomialRing(QQ, 2*k_plus+1, 'x')

QYY = PolynomialRing(QQ, 2*k_minus+1, 'y')

QXY = PolynomialRing(QQ, 2*max(k_plus,k_minus)+1, var_array=['x','y'])

X_monomial = prod(QXX.gens()[i] for i in partition)

Y_monomial = prod(QYY.gens()[i] for i in partition)

XY_monomial = QXY.coerce(X_monomial)*QXY.coerce(Y_monomial)

Z_G = QXY.coerce(prod(WreathProductCycleIndexPolynomial(v[0],v[1][0],

↩→v[1][1]) for v in vectorpartition_exp))

return Z_G.monomial_coefficient(XY_monomial)

We can compare our code to Example 40.

[18]: monomial_coefficient_of_ZG(VectorPartition([[3,2],[3,2],[1,3]]),

↩→Partition([1,1,1,1,1,1,1]))

[18]: 1/1728
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[19]: monomial_coefficient_of_ZG(VectorPartition([[3,2],[3,2],[1,3]]),

↩→Partition([2,1,1,1,1,1]))

[19]: 5/288

We compute the total number of double cosets by summing over all partitions 𝑝 ⊢ 7, extracting
the coefficient of the corresponding monomial and multiplying by Sym(𝑝) (this is called p.aut()
in the code).

[20]: sum(partition.

↩→aut()*monomial_coefficient_of_ZG(VectorPartition([[3,2],[3,2],[1,3]]),

↩→partition) for partition in Partitions(7))

[20]: 11

We collect this procedure as a function – it takes a vector partition and computes the number of
double cosets 𝑁 ( ®𝑘+, ®𝑘−).

[21]: def number_of_double_cosets(vectorpartition, k):

return sum(partition.aut()*monomial_coefficient_of_ZG(vectorpartition,

↩→partition) for partition in Partitions(k))

Lastly, we can compute the refinement by number of vertices as in Table D.1 for 𝑘 = 4 edges.

[22]: k = 4

list(sum(number_of_double_cosets(v)for v in VectorPartitions([k,k]) if

↩→len(v) == l) for l in [1..2*k])

[22]: [1, 18, 71, 108, 71, 22, 4, 1]

This code/notebook can be found at Link to GitHub Repository.

https://github.com/adrianpadellaro/PhD-Thesis
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