
Approximation Algorithms for Independence Systems

Theophile François THIERY

August 21, 2023
Version: Double Spacing Submission

Queen Mary University of London

School of Mathematical Sciences

Combinatorics Group

Approximation Algorithms for Independence
Systems

Theophile François THIERY

1. Reviewer Dr. Viresh Patel
School of Mathematical Sciences
Queen Mary University of London

2. Reviewer Dr. Piotr Krysta
Department of Computer Science
University of Liverpool

Supervisors Dr. Justin Ward and Dr. Mark Jerrum

August 21, 2023

Theophile François THIERY
Approximation Algorithms for Independence Systems
, August 21, 2023
Reviewers: Dr. Viresh Patel and Dr. Piotr Krysta
Supervisors: Dr. Justin Ward and Dr. Mark Jerrum

Queen Mary University of London
Combinatorics Group

School of Mathematical Sciences
Mile End Road
E1 4NS and London

Declaration

I, Theophile F. Thiery, confirm that the research included within this thesis is my own work
or that where it has been carried out in collaboration with, or supported by others, that this
is duly acknowledged below and my contribution indicated. Previously published material
is also acknowledged below. I attest that I have exercised reasonable care to ensure that
the work is original, and does not to the best of my knowledge break any UK law, infringe
any third party’s copyright or other Intellectual Property Right, or contain any confidential
material.

I accept that the College has the right to use plagiarism detection software to check the
electronic version of the thesis. I confirm that this thesis has not been previously submitted
for the award of a degree by this or any other university. The copyright of this thesis rests
with the author and no quotation from it or information derived from it may be published
without the prior written consent of the author.

Details of collaboration and publications: The work in Chapter 2 and 5 was conducted in
collaboration with Dr. Justin Ward. The work in Chapter 4 was conducted in collaboration
with Dr. Chien-Chung Huang and Dr. Justin Ward. The results were published as follows:

• Chapter 2 is based on [TW23]: "An Improved Approximation for Maximum Weighted
k-Set Packing", co-authored with Justin Ward. It has appeared in Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023.

• Chapter 4 is based on [HTW20]: "Improved Multi-Pass Streaming Algorithms for Sub-
modular Maximization with Matroid Constraints", co-authored with Chien-Chung Huang
and Justin Ward. It has appeared in Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020,
Virtual Conference.

• Chapter 5 is based on [TW22]: "Two-Sided Weak Submodularity for Matroid Con-
strained Optimization and Regression", co-authored with Justin Ward. It has appeared
in Conference on Learning Theory, COLT, 2-5 July 2022, London, UK.

London, August 21, 2023

Theophile François THIERY

Abstract

In this thesis, we study three maximization problems over independence systems.

• Chapter 2 – Weighted k-Set Packing is a fundamental combinatorial optimization
problem that captures matching problems in graphs and hypergraphs. For over 20

years Berman’s algorithm stood as the state-of-the-art approximation algorithm for this
problem, until Neuwohner’s recent improvements. Our focus is on the value k = 3 which
is well motivated from theory and practice, and for which improvements are arguably
the hardest. We largely improve upon her approximation, by giving an algorithm that
yields state-of-the-art results. Our techniques are simple and naturally expand upon
Berman’s analysis. Our analysis holds for any value of k with greater improvements
over Berman’s result as k grows.

• Chapter 3 – We continue the study of the weighted k-set packing problem. Building
on Chapter 2, we reach the tightest approximation factor possible for k = 3, and k ≥ 7

using our techniques. As a consequence, we improve over all the results in Chapter 2.
In particular, we obtain

√
3, and k

2 -approximation for k = 3 and k ≥ 7 respectively. Our
result for k ≥ 7 is in fact analogous to that of Hurkens and Schrijver who obtained the
same approximation factor for the unweighted problem.

• Chapter 4 – We present improved multipass streaming algorithms for maximizing
monotone and arbitrary submodular functions over independence systems. Our result
demonstrates that the simple local-search algorithm for maximizing a monotone sub-
modular function can be efficiently simulated using a few passes over the dataset. Our
results improve the number of passes needed compared to the state-of-the-art.

• Chapter 5 – We conclude the thesis by presenting improved approximation algorithms
for Sparse Least-Square Estimation, Bayesian A-optimal Design, and Column Subset
Selection over a matroid constraint. At the heart of this chapter is the demonstration of
a new property that considered applications satisfy. We call it: β-weak submodularity.
We leverage this property to derive new algorithms with strengthened guarantees. The
notion of β-weak submodularity is of independent interest and we believe that it will
have further use in machine learning and statistics.

v

Acknowledgement

First and foremost, I would like to thank Justin for making my Ph.D. journey so enjoyable. It
was! You have been a great advisor from a personal and professional standpoint, providing
constant support, great laughs, and guidance. Working with you was an immense pleasure.
You always took the time to sit through our meetings and listen to strange ideas, complaints,
and more. Above else, you trusted me. Thank you!

I thank my thesis examiners, Piotr and Viresh, for their time and for providing useful sug-
gestions and observations. I also thank Mark and Felix for agreeing to be my annual review
supervisors, and for always keeping their door open.

During my time at QMUL, I spent a month abroad in Bremen. I would like to thank Nicole for
her guidance, sound advice, and for hosting me. Although things didn’t go as planned, I hope
we can continue to work together. Thanks to Alex, Jens, Felix, and Mohit for taking the time
to integrate me into their group.

I would like to thank my companion and friend in this Ph.D. adventure, Louis. It would
definitely not have been the same without you. I have really enjoyed our time together. I also
thank the Argag group, Asier, David, Gerardo, Konrad, for our games of Hanabi, our food
adventures, and for being yourselves. I will miss spending time with you more than London.
Finally, I thank the Maths’ Ph.D. cohort for providing camaraderie and empathy.1

Je voudrais remercier mes parents pour m’avoir toujours laissé la
liberté d’entreprendre ce qu’il me plaisait et pour être là même
dans les moments plus difficiles. Je remercie aussi mes frères,
Gaspard et Ulysse, dont je suis extrêmement fier, de tolérer mes
visites de dernières minutes à Paris. Je vous aime. Un grand merci
à mes amis de la Ludique en ligne pour ces moments partagés
autour d’un écran. J’espère qu’on trouvera le temps de se réunir.
Merci à Cédric, Moritz, et Maurice. Je suis heureux d’être votre
ami. Merci à mes amis de toujours, Vincent et Shao. Même si nos
chemins sont bien différents, je n’en serai pas là sans vous.

Par dessus tout, je veux remercier Diem-Ha pour avoir la chance
d’être à tes côtés, pour être compréhensive, pour apporter de la
stabilité, de la légèreté et me rappeler qu’il y a un moment pour
tout.

1 Tulipe by Sophie Guerrive. Permission of the author was given.

vi

Contents

1 General Introduction 1
1.1 Weighted p-Set Packing . 1

1.1.1 Overview of the contributions . 4
1.2 Streaming Algorithms subject to Independence Systems 5

1.2.1 Independence Systems . 5
1.2.2 Submodular Functions . 7
1.2.3 Streaming Algorithms . 9
1.2.4 Overview of the contributions . 10

1.3 Independence Systems in Machine Learning 11
1.3.1 Overview of the contributions . 13

Appendices 14
1.A State-of-the-art results . 14
1.B Basic Results from linear algebra, calculus, and more 14

2 Improved Approximation for Weighted k-Set Packing 17
2.1 Introduction . 17
2.2 Preliminaries . 22
2.3 A simple proof of Berman’s algorithm . 23
2.4 An Improved Algorithm Using Larger Exchanges 26

2.4.1 Removing parallel arcs, triangles and more 27
2.4.2 Bounding the slack for non-isolated vertices 28
2.4.3 Bounding the slack for isolated claws 33
2.4.4 Combining the Bounds . 35
2.4.5 A matching lower bound . 37

2.5 Further improving the bound . 38
2.5.1 Large connected components . 41
2.5.2 Numerical results for small values . 44
2.5.3 Bounding on the number of swaps performed by Algorithm 1 45
2.5.4 Removing small cycles . 46
2.5.5 Technical lemmas to build the exchanges 47

3 A
√

3-approximation for Weighted 3-Set Packing 50
3.1 Recap from Chapter 2 . 50
3.2 Definitions, notations and structural properties 52

vii

3.2.1 Exchanges . 53
3.2.2 High-level construction of the set of exchanges 54
3.2.3 Formal Decomposition . 55
3.2.4 Numerical properties of the decomposition 58

3.3 Efficient charging argument . 59
3.4 Slack for Large Trees . 60

3.4.1 Slack from Large Exchanges . 60
3.4.2 Exterior Slack . 61
3.4.3 Interior Slack . 66
3.4.4 Final Expression of the Slack . 66

3.5 Root Tree . 68
3.6 Pendant Tree . 69
3.7 Final Results and Conclusion . 72

3.7.1 Exact and asymptotic approximation ratio 74
3.8 Reaching the local-gap instance . 77
3.9 Conclusion and Open Questions . 80

4 Improved Multipass Algorithms for Submodular Maximization with Independence Con-
straints 82
4.1 Introduction . 82

4.1.1 Our Results . 83
4.1.2 Additional Related Work . 84

4.2 Single Pass Algorithm . 86
4.2.1 Tight Example for Algorithm 2 . 88

4.3 The main multipass streaming algorithm . 91
4.4 Analysis for monotone submodular functions 95
4.5 Multipass algorithm for general submodular functions 97
4.6 Analysis for non-monotone submodular functions 100
4.7 Regularized Monotone Submodular Maximization 102

4.7.1 Analysis for regularized monotone submodular functions 103
4.8 Conclusion and Open Questions . 108

Appendices 109
4.A Detailed computations for Section 4.3 and 4.6 109

4.A.1 Analysis of Chekuri et al.’s algorithm 109
4.A.2 Missing computations in Theorem 4.4.3 112
4.A.3 Approximately guessing the value of the optimal solution 113

5 Sparse Subset Selection Problems under Matroid Constraint 114
5.1 Introduction . 114

5.1.1 Main Results . 115
5.1.2 Weak Submodularity and Related Definitions 117

5.2 Sparse Least Square Estimator . 118
5.3 Improved Analysis of RESIDUALRANDOMGREEDY 122

viii

5.4 Distorted Local Search . 124
5.4.1 Properties of the coefficients m(φ)

a,b . 128
5.5 A randomized, polynomial time distorted local-search algorithm 130

5.5.1 Initialization . 130
5.5.2 In-depth discussion of the proof strategy 130
5.5.3 The algorithm and its analysis . 132
5.5.4 Warm starting the search using the previous solution 135
5.5.5 Restricted Range of guesses . 136
5.5.6 Efficient estimation of the potential via sampling 137
5.5.7 Proof of Lemma 5.5.4 . 137

5.6 A-optimal design for Bayesian linear regression 139
5.7 The Column Subset Selection Problem . 141

5.7.1 Decomposition Properties . 142
5.7.2 Proof of Theorem 5.7.1 . 143

5.8 How large is the upper submodularity ratio 147
5.9 Conclusion and Open Questions . 149

Bibliography 151

ix

1General Introduction

In this thesis, we consider some classical combinatorial optimization problems, which we
will refer to as maximization problems over independence systems. We are given a set function
f : 2X → R≥0 over a ground set of elements and aim to find a solution S of maximum value
subject to some combinatorial constraint I. More precisely, we solve the following abstract
problem

arg max f(S) such that S ∈ I, (1.1)

The problems studied in Chapter 2 to Chapter 5 can be cast as (1.1), as detailed next.

1.1 Weighted p-Set Packing
The first and arguably the most important contribution of this thesis regards the weighted
p-Set Packing problem.

The p-set packing problem is commonly used as a generalization of matching problems in
graphs. Matching problems are a fundamental area of research in graph theory and combina-
torial optimization, with numerous applications in computer science, and operations research.
Due to the wide range of practical applications that they encompass, they play a crucial role in
the design and analysis of algorithms. For instance, AdWords, an online advertising platform
developed by Google, uses matching algorithms to match ads with relevant search queries.
More generally, they have been used in the development of recommendation systems, online
dating platforms, and social networks.

In the standard graph matching problem, we are given a graph G = (V,E), where V denotes
the vertex set and E is the edge set. The set E ⊆ {(u, v) : u, v ∈ V and u 6= v} contains
unordered pairs of vertices. Two vertices that share an edge are adjacent or neighbors. As an
example, one can think of G as a social network, where V is the set of users with an edge
between two users if they know each other. The objective is to find the most valuable subset
of edges M ⊆ E that do not share any common endpoints. Such a subset of edges is called
a matching. The value of a matching is measured using a set function which is a discrete
function f : 2E → R≥0 that for any subset of edges S ⊆ E outputs its value f(S). The most
natural class of set functions that graph matching problems consider are weighted functions,
also called linear or modular functions.

1

Definition 1.1.1 (Weight Function). A set function f : 2E → R≥0 is a weighted function if for
any set S ⊆ E the value of S is equal to the sum of the values of the elements contained in
that set. Thus, it satisfies

f(S) ,
∑
e∈S

f(e).

If all the elements have the same weight we say that the function is unweighted.

The p-set packing problem is an extremely simple generalization of Graph Matching, in which
each edge now contain up to p distinct vertices. More formally, we are given a p-hypergraph
H = (V,E) with vertex set V , and hyperedge set E, such that each hyperedge e ∈ E contains
at most p vertices. A p-hypergraph is uniform if each hyperedge has precisely p vertices. The
weighted p-set packing problem should now be clear.

Definition 1.1.2 (Weighted p-Set Packing). Given p-hypergraph H = (V,E) and a weighted
set function f : 2E → R≥0, the goal is to find a maximum weight sub-collection M ⊆ E such
that the hyperedges in M are pairwise non-intersecting.

Thus, the graph matching problem is in fact a special case of the 2-set packing problem
in which the underlying graph is uniform. Another important special case of the above
problem is the 3-dimensional matching problem. It belongs to Karp’s list of 21 NP-complete
Problems [Kar72], which became a historically significant list of problems for evaluating
the performance of algorithms and approximation techniques. 3-Dimensional Matching is a
special instance of 3-Set Packing in which the hypergraph is 3-partite. A p-partite hypergraph
is a p-uniform hypergraph in which the vertices can be partitioned into p disjoint parts and
each hyperedge contains exactly one vertex from each part. A bipartite graph is a 2-partite
hypergraph.

A problem of immediate generality is the weighted independent set in (p+ 1)-claw free graph.
Given a graph G = (V,E), an independent set is a subset of vertices U ⊆ V such that no two
vertices in U are adjacent in G. A d-claw is a graph that consists of a central vertex v called
the center and d adjacent vertices to v that form an independent set. The d neighbors of v are
called the talons. A (p+ 1)-claw free graph is a graph that doesn’t contain a (p+ 1)-claw as an
induced subgraph. Given a subset of vertices S ⊆ V of G, the induced subgraph on S, which
we denote G[S], is the graph whose vertex set is S and the edge set retains all edges from G

between those vertices. Given a p-hypergraph H = (V,E), we can construct a (p+ 1)-claw
free graph G with a correspondence between the independent sets in G and the matchings in
H. Indeed, by contracting each hyperedge to a single node and drawing an edge between
two vertices if the corresponding hyperedges intersect, we obtain a (p+ 1)-claw free graph. It
is easy to verify that G is (p+ 1)-claw free, and that finding the maximum weight matching
in H corresponds to a maximum weight independent set in G. The construction is shown in
Figure 1.1

As a consequence of the widely believed computational complexity assumption that P 6= NP,
there is no exact algorithm to solve the p-set packing problem that runs in polynomial time in

1.1 Weighted p-Set Packing 2

Fig. 1.1: Turning a 3-hypergraph (left) into a 4-claw free graph (right). Observe that the green, grey,
blue, and red vertices form a 3-claw with the green vertex as the center.

the size of the input for p ≥ 3[HSS06]. This motivates the design of approximation algorithms
that obtain approximate solutions close to the optimal one in polynomial time.

Definition 1.1.3 (Informal). Consider a maximization problem Π as in (1.1). An algorithm
ALG for Π is an α-approximation algorithm for α ≥ 1 if for any input instance I ∈ Π, Algorithm
ALG runs in polynomial time in the instance size and

ALG(I) ≤ OPT(I) ≤ α · ALG(I),

where OPT(I),ALG(I) is the value of the problem’s objective function evaluated on the
optimal solution and the algorithm solution to input I, respectively. We say that α is the
approximation factor of algorithm ALG.

An algorithm with α = 1 is an exact approximation algorithm, and thus always finds an
optimal solution. Among the problems that do not admit an exact approximation algorithm,
some admit approximation algorithms up to any desirable accuracy degree. In short, there
are problems, such that for any ε > 0, there exists a (1 + ε)-approximation algorithm. Such
algorithms are known as polynomial time approximation schemes (PTAS). On the other hand,
there are problems for which there is a value ᾱ such that no α-approximation algorithm can
exist for α ≤ ᾱ, assuming that P 6= NP. We refer to the class APX as problems for which an
α-approximation algorithm exists, where α is a constant. The classes satisfy PTAS ⊂ APX,
and if P 6= NP then the inclusion is strict.

Unweighted p-Set Packing falls into the class of APX-Hard problems. Hazan et al. showed
that the p-set packing problem is hard to approximate within a factor Ω

(
p

log(p)

)
for p ≥ 3

[HSS06]. For small values of p, the unweighted p-partite hypergraph matching is NP-hard to
approximate beyond a factor 98/97, 54/53, 30/29 and 23/22 for p = 3, 4, 5 and 6, respectively
[BK03a]. In comparison, Graph Matching is solvable exactly in polynomial time as shown in
the seminal works of Kuhn [Kuh55] and Edmonds [Edm65] in the bipartite and non-bipartite
case, respectively. From an approximation perspective, there is a gap in our understanding
between the weighted and the unweighted p-Set Packing problem. After a series of im-
provements [HS89; Hal95; CGM13; SW13], Cygan [Cyg13] obtained a p+1+ε

3 -approximation
algorithm for any ε > 0 for the unweighted problem. On the other hand, Neuwohner gave

1.1 Weighted p-Set Packing 3

new approximation algorithms for the weighted problem, which were the first to break the
p+1

2 barrier. After a series of papers [Neu21; Neu22; Neu23], her work culminates today in
an approximation factor equal to min{0.5(p+ 1)− 0.0002, 0.4986(p+ 1) + 0.0208} for p ≥ 4

and 1.99999998 for p = 3.

We refer the reader to Chapter 2 for a detailed literature review of the p-set packing problem
and improvements over these factors.

1.1.1 Overview of the contributions
In Chapter 2 and 3, we study the weighted p-set packing problem. All state-of-the-art
algorithms for the p-set packing problem use local-search methods, where the algorithm
attempts to improve the solution quality by making small changes to the current solution.
Two crucial parameters dictate the guarantee of the final solution. First, the magnitude of
the small changes dictates both the approximation guarantee and the running time of the
algorithm. Making greater modification to the solution can be time-consuming but usually
yields improved guarantees. Secondly, deciding whether a change improves the solution
quality imposes a measure to be able to compare two solutions. While it is standard to use
the objective function of the problem to compare solutions’ quality, other measures that favor
certain algorithmic behaviors can be preferred.

In Chapter 2, we give an algorithm attaining an approximation factor of 1.761 for weighted
3-set packing, improving on the recent best result of 2− 1

63′700′992 due to Neuwohner [Neu21].
Our algorithm is based on the local-search procedure of Berman that attempts to improve
the sum of squared weights rather than the problem’s objective. Berman’s algorithm attains
an approximation factor of p+1

2 [Ber00] using exchanges of size p. Using larger exchanges
of size O(p3), we provide a relatively simple analysis to obtain an approximation factor of
1.811 when p = 3. We then show that the tools we develop can be adapted to attain an
approximation factor of 1.761 using exchanges of size O(pO(1/ε)). This results in an algorithm
with running time equal O(np

O(1/ε)
). Although our primary focus is on the case p = 3 due

its connection with the 3-dimensional matching problem, our approach in fact gives slightly
stronger improvements on the factor p+1

2 for all p > 3. In particular, as p increases the
approximation factor asymptotically converges to p

2 .

Expanding our work, we give an algorithm with approximation factor
√

3 for p = 3, and
p
2 for all p ≥ 7 in Chapter 3. Our method builds on Chapter 2, but requires extending the
analysis significantly. Our guarantees are tight with respect to the algorithm we consider.
For p = 3, our local-search algorithm with bounded exchange size matches the performance
guarantees of the same local-search algorithm with unbounded exchange size. Therefore,
this result reaches and sets a new barrier for approximation algorithm to improve upon.
Improving over the factor

√
3 demands novel optimization methods which we leave as an

open question. For p ≥ 7, our approximation factor improves over Neuwohner’s result and
Chapter 2 [Neu22]. Neuwohner obtained an asymptotic ratio equal to p

2 using exchanges of
size O(log(n)), whereas we use exchanges of size O(pO(1/ε)) in Chapter 2. In contrast to both
analyses, we prove that the factor p

2 is attainable in the non-asymptotic regime, i.e. for all

1.1 Weighted p-Set Packing 4

p ≥ 7. To prove this result we need to consider exchanges of size at most O((p/ε)O(1/ε)). This
results in an algorithm that runs in time O(nO(p/ε)O(1/ε)

). This result is again the best possible
with respect to the algorithm that we consider. In fact, Neuwohner [Neu22] proves that even
with exchanges of size O(log(n)), it is impossible to get past this factor simply by running
the squared weighted local-search. Our analysis also gives improvements over Chapter 2 for
p = 4, 5, 6 and holds for the more general problem of finding a maximum weight independent
set in a (p+ 1)-claw free graph.

Both chapters are based on joint work with Justin Ward. Some results in the first chapter
appear in [TW23].

1.2 Streaming Algorithms subject to Independence
Systems

Combinatorial optimization phrases problems in economics, and operations research in a
mathematical language amenable to optimization, and defines combinatorial objects that
capture properties displayed by real-world applications. Due to the growth of computational
resources that goes in pair with an increase in datasets size, designed algorithms must now
incorporate new requirements, so they can extract information efficiently. In this section,
we introduce the problem of maximizing submodular functions over independence system
in the streaming setting. Maximizing a submodular function over an independence system
encompasses the p-set packing problem and represents a broad class of combinatorial problems
present in many real-world situations. It offers a versatile framework capturing specialized
applications, where matching constraints and/or linear objectives aren’t suited. Our interest
is mostly directed towards fast approximation algorithms. In fact, we study algorithms that
process the dataset on the fly. We are interested in the trade-off between the approximation
guarantee and the number of passes through the dataset.

1.2.1 Independence Systems
We begin this section by presenting independence systems. Introduced by Jenkyns [Jen75] in
his Ph.D. thesis, an independence system on a ground set X is a combinatorial constraint that
shapes the set of feasible solutions I.

Definition 1.2.1 (Independence System). An independence system is a pair (X, I) where
X ,{e1, . . . , en} is an arbitrary finite set of size n and I ⊆ 2X is a collection of subsets of X
such that

A ⊆ B ∈ I =⇒ A ∈ I.

The variables e1, . . . , en are the elements of the ground set. In concrete applications, the set X
is the dataset, and I is the set of feasible solutions. A solution S ∈ I is said to be independent.

1.2 Streaming Algorithms subject to Independence Systems 5

Independence systems require the set of feasible solutions to be closed under inclusion, so
any subset of a feasible solution remains feasible. This motivates the definition of bases.

Definition 1.2.2 (Base of an independence system). A base B of an independence system
(X, I) is a maximal (inclusion-wise) independent set in I. The rank of an independence
system is the maximum size of a base. We denote it by rank(X).

Independence systems are, unfortunately, too general. Most concrete applications in fact
satisfy stronger properties than downward closeness. By imposing additional constraints inde-
pendence systems can be decomposed further into smaller classes to capture key properties
that applications exhibit. So far, many interesting classes have been introduced and in this
thesis, we will consider the following classes: Matroid, p-Matroid-Intersection, p-Hypergraph
Matching , and p-Matchoid . We refer the reader to [War12b] for an overview of broader
classes than those considered here, including weak/strong p-exchange, p-parity, p-extendible,
p-system. We will use this sans-serif font to denote the different classes of independence
systems. Axiomatized before the notion of independence systems, Matroid is perhaps the most
central class in this thesis. It is independence system class equipped with an augmentation
property.

Definition 1.2.3 (Matroid). A matroidM = (X, I) is an independence system such that for
every A,B ∈ I with |A| < |B|, there exists an element e ∈ B −A such that A+ e ∈ I.

Here and throughout the thesis, we define A+B and A−B as A ∪B and A \B, to be the
union and the removal of set B with respect to the set A, respectively. For simplicity, we also
write A+ e instead of A+ {e}. Additionally, given a set A ⊆ X, we let |A| be the number of
elements in A. Matroids generalize the notion of linear independence in vector spaces. In
fact, standard combinatorial results prove that all bases must have the same size (equal to the
rank) ifM is a matroid; this coincides with the fact that all bases of a vector space must have
the same cardinality [Sch+03]. An important special case is when I , {S ⊆ X : |S| ≤ k}
for k ∈ N is the set of all subsets of size at most k. We say that M is a uniform matroid.
Similarly, a partition matroid is when I , {S ⊆ X : |S ∩Xi| ≤ ki, ∀i = 1, . . . , `} where X is
partitioned in disjoint sets X1 tX2 t . . . tX` and ki ∈ N. We will use t to denote the union
of disjoint sets in this thesis. Generalizing matroids, we introduce p-Matroid-Intersection.

Definition 1.2.4 (p-Matroid-Intersection). Given p matroids{(X, Ii)}pi=1, each defined on the
same ground set X, a p-matroid intersection is an independence systemM = (X, I) such
that I ,

⋂p
i=1 Ii.

Therefore, given a p-matroid intersection M = (X, I), a set A ∈ I is independent if it is
independent in each of the p matroids. Various combinatorial objects can be encoded as
a p-matroid intersection including bipartite matchings, and Hamiltonian paths. The next
paragraph will describe the reduction of the first problem carefully. A constraint of immediate
generality is p-Matchoid, which was defined for p = 2 by Edmonds [Edm71] and studied by
Jenkyns [Jen75]. One can intuitively think of a p-matchoid as a collection of matroids in
which each element “participates” in at most p of the matroid constraints.

1.2 Streaming Algorithms subject to Independence Systems 6

Definition 1.2.5 (p-Matchoid). Given a collection of matroids {(Xi, Ii)}mi=1, a p-matchoid
M = (X, I) is an independence system defined over X =

⋃m
i=1Xi such that every element

e ∈ X appears in the ground set of at most p of these matroids and I , {S ⊆ X : S ∩Xi ∈
Ii,∀i = 1, . . . ,m}.

Since I does not necessarily have a succinct representation, we assume access to an indepen-
dence oracle. For a given set S, querying the oracle will answer whether S is independent, i.e.,
S ∈ I .

Matching constraints as Independence Systems

The two latter constraints might seem overwhelming. However, we show that p-partite hyper-
graph matchings and p-hypergraph matchings can be expressed as a p-matroid intersection
and a p-matchoid, respectively.

Given a p-partite hypergraphH = (V,E) with partition V = V1t. . .tVp, we define a collection
of matroids {Mj = (E, Ij)}pj=1. The ground set of each matroid is the set of hyperedges. For
each j = 1, . . . , p, we define the set Ij , {S ⊆ E : |S ∩ δ(v)| ≤ 1, for all v ∈ Vj}, where δ(v)

is the set of hyperedges that contain v. The constraint defining Ij implies that each vertex
in the jth partition is incident to at most 1 hyperedge in the current solution. Therefore, an
independent set in I ,

⋂p
j=1 Ij is a p-partite hypergraph matching.

More generally, given a p-hypergraph H = (V,E), we can define a collection of matroids
{Mv = (δ(v), Iv)}v∈V , and Iv , {S ⊆ δ(v) : |S| ≤ 1}. Since each edge contains at most p
vertices, each edge participates in at most p matroids. The collection {Mv}v∈V defines a
p-matchoid whose objects are matchings in H.

An identical construction shows that a p-partite b-matching and a p-hypergraph b-matching
can be expressed as p-matroid and a p-matchoid, respectively. A b-matching is a subset of
hyperedges such that the number of hyperedges containing a given vertex v is at most bv,
where bv is some given integer, and b = (bv)v∈V . A hypergraph matching is a hypergraph
b-matching, where bv = 1 for all v ∈ V .

1.2.2 Submodular Functions
In the second part of the thesis, we will be mostly interested in a relaxation of weighted
functions, known as submodular functions. Briefly, submodular functions have a fundamental
role in combinatorial optimization due to their property of diminishing returns, which makes
them useful in a wide range of fields, including machine learning, social network analysis,
and economics [LB10; KKT03].

Definition 1.2.6 (Submodular Function). A set function f : 2X → R≥0 is submodular if for
all sets A,B ⊆ X the following inequality holds:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

1.2 Streaming Algorithms subject to Independence Systems 7

p-Matchoid

p-Matroid-Intersectionp-Hypergraph b-Matching

p-Partite b-Matching Matroid

Uniform Matroid

Fig. 1.2: Hierarchical visualization of independence system classes considered in this thesis. There is
an arrow A→ B if the class A is included in the class B.

For any set function, we will write f(e | A) , f(A + e) − f(A) to denote the marginal
increase in f when adding and element e ∈ X to a set A. More generally, we will write
f(B | A) , f(A∪B)− f(A) for any set A,B ⊆ X. Fischer, Nemhauser, and Wolsey [NWF78;
FNW78] show the following equivalent statements.

Proposition 1.2.7 (Alternative characterizations). Given a set function f : 2X → R≥0, the
following statements are equivalent:

• f is a submodular function.

• For all A ⊆ B ⊆ X and all e ∈ X \A, then f(e | A) ≥ f(e | B).

• For all A,B ⊆ X, the following holds:
∑

e∈B\A f(e | A) ≥ f(A ∪B)− f(A).

• For all A,B ⊆ X, the following holds:
∑

e∈B\A f(e | A ∪B − e) ≤ f(B ∪A)− f(A).

The second bullet point is perhaps the most intuitive definition of submodular functions. It
tells that the marginal contribution of an element decreases as the size of the underlying set
increases. We observe that submodular functions are not necessarily increasing. We say that
an increasing submodular function is monotone.

Definition 1.2.8 (Monotone Set Function). A set function f : 2X → R≥0 is monotone if for
all sets A ⊆ B ⊆ X, we have f(A) ≤ f(B).

1.2 Streaming Algorithms subject to Independence Systems 8

Since f does not necessarily have a succinct representation, we assume access to a value
oracle. For a given set S, querying the oracle will return the value of the set f(S).

1.2.3 Streaming Algorithms
As stated in Definition 1.1.3, approximation algorithms for an independence system (X, I) do
not have any constraint concerning the accessibility of the ground set X. We call an algorithm:
offline, if it assumes that X is available at all times. Given the growth of modern datasets, we
focus on streaming algorithms, which process the dataset on the fly, i.e. element by element.
They are designed to operate with limited memory and often produce approximate answers
based on a sketch of the data stream.

For the next definition, let Xσ , (xσ(1), xσ(2), . . . , xσ(n)) be a permutation of the ground set,
where σ is a permutation of the set {1, 2, . . . , n}, and n is the size of X. For any t ≥ 1, let
X

(t)
σ , (xσ(1), xσ(2) . . . , xσ(t)) be the first t elements of the ground set w.r.t σ.

Definition 1.2.9 (Streaming Algorithm for Independence Systems). Given a maximization
problem Π in the form (1.1) whose instances I = ((X, I), f) ∈ Π are independence systems
on a ground set of size n, a streaming algorithm ALG is a procedure that, for any permutation
σ, defines a sequence of sets {M (t)

σ }nt=1, with M (t)
σ ⊆ X(t)

σ such that for all t:

• Given M (t)
σ ∪ {xσ(t+1)} as an input to ALG, it finds in polynomial time a subset U (t)

σ that

satisfies M (t+1)
σ , (M

(t)
σ ∪ {xσ(t+1)}) \ U

(t)
σ ,

•
∣∣∣M (t)

σ

∣∣∣ ≤ o(n).

It is an α-approximation algorithm if for any instance I = ((X, I), f) ∈ Π and permutation σ:

ALG(M (n)
σ) ≤ OPT(I) ≤ α · ALG(M (n)

σ),

where OPT(I) is the value of the problem’s objective function evaluated on the optimal
solution, and ALG(M

(n)
σ) is the value of the solution output by ALG on the input M (n)

σ .

Remark 1.2.10. We point out some subtleties in Definition 1.2.9. In the second bullet point, we
only require that the streaming algorithm isn’t able to store the entire ground set. The exact
memory requirement for streaming algorithms is not uniform across the field of theoretical
computer science. Strictly speaking, streaming algorithms enforce a memory size equal to
O(log(n)). The definition that we give refers to semi-streaming algorithms. For the problems
that we consider in this thesis, the o(n) term is replaced by O(k POLYLOG(k)) where k is the
rank of the independence system. The reason we don’t consider algorithms with memory
O(POLYLOG(k)) is that they can’t store enough information to achieve any approximation
guarantee [Fei+05] (ex: for storing a maximum matching of a graph).

Given that the approximation factor is computed with respect to any ordering σ of the ground
set, which can be chosen in an adversarial way, streaming algorithms perform worse than their
offline counterparts. Streaming algorithms are thus given a sequence of elements {xσ(t)}nt=1

1.2 Streaming Algorithms subject to Independence Systems 9

presented one at a time. At each time step, their memory M (t)
σ is bounded. Given the set of

elements stored in memory and a newly presented element, they must decide whether to
include this element in the memory and potentially discard some set of elements U (t)

σ . The
decision to discard elements is irrevocable. At the end of the stream, the algorithm outputs a
solution from M

(n)
σ .

For a reader familiar with online algorithms, there are a couple of differences that distinguish
streaming algorithms from online algorithms. In both settings, the elements arrive on the
fly. However, instead of maintaining a small memory footprint, online algorithms maintain a
valid solution. When an element arrives, an online algorithm decides to either put it in the
solution forever or discard it, in which case it will never be part of the solution. Both decisions
are irrevocable. The decision at time t is computed with respect to entire past history X(t−1)

σ

and the new element xσ(t). Sometimes, we allow unbounded computational power. On the
other hand, streaming algorithms output the final solution at the end of the stream and discard
forever elements that become useless. The decisions of the streaming algorithm at a time step
t are solely based on its current memory M (t−1)

σ and the new element xσ(t).

Multipass algorithms are streaming algorithms that perform several passes over the dataset.

Definition 1.2.11 (m-pass algorithm). Given a maximization problem Π as in (1.1) and an
independence system instance I = ((X, I), f) ∈ Π, a m-pass streaming algorithm ALG is a
streaming algorithm on the input sequence of elements (Xσ1 , Xσ2 , . . . , Xσm) where σ1, . . . , σm
are arbitrary permutations of X.

There is a slight subtlety in that elements in the memory after processing Xσ1 reappear in Xσ2

and thus must be duplicated. In general, we can simply assume that elements in the current
memory M (n)

σq after processing Xσq are not reintroduced in Xσq+1 .

1.2.4 Overview of the contributions
In Chapter 4, we give improved multipass streaming algorithms for the problem of maximizing
a monotone or arbitrary non-negative submodular function subject to a general p-matchoid
constraint.

For monotone submodular functions, our algorithm attains a guarantee of p + 1 + ε using
O(p/ε)-passes and requires storing only O(k) elements, where k is the rank of the p-matchoid.
This immediately gives an O(1/ε)-pass (2 + ε)-approximation algorithm for monotone sub-
modular maximization in a matroid and (3 + ε)-approximation for monotone submodular
matching.

To put it into perspective, the best approximation algorithms for maximizing a monotone
submodular function over Matroid, p-Matroid-Intersection and p-Matchoid have approximation
ratio equal to e

e−1 , p+ ε and p+ 1, respectively [Cal+11; FW14; LSV10]. While our results
do not match the state-of-the-art (except for p-Matchoid), the approximation ratio that our
algorithm achieves is in fact equal to that of the standard local-search algorithm. Local-search

1.2 Streaming Algorithms subject to Independence Systems 10

has an approximation factor equal to p+ 1 for maximizing a monotone submodular function
subject to a p-matchoid constraint.

The local-search procedure improves the current solution by finding small exchanges and
requires access to the entire dataset at all times. Our result demonstrates that this assumption
is not necessary. Our algorithm is effectively a streaming local-search procedure that simulates
its offline counterpart. It shows that O(p/ε)-passes over the ground set is sufficient to obtain
guarantees that are at most 1 + ε times worse than the local-search algorithm.

Our techniques build on the work of Chakrabarti et al. and Chekuri et al. [CK15; CK15].
Subject to a p-matchoid constraint, they design a single pass streaming algorithm with an
approximation factor equal to 4p. Chakrabarti et al. improves this ratio to p + 1 + ε in
O(p

4 log(p)
ε3

)-passes. We adapt the algorithm of Chekuri et al. [CGQ15] to the multipass
setting. Using a clever parametrization of each pass, we obtain a rapid convergence in
O(p/ε)-passes.

We extend our techniques to obtain the first multipass streaming algorithm for general, non-
negative submodular functions subject to a p-matchoid constraint with a number of passes
independent of the size of the ground set and k. We show that a randomized O(p/ε)-pass
algorithm storing O(p3k log(k)/ε3) elements gives a (p+ 1 + γ̄off + ε)-approximation, where
γ̄off is the guarantee of the best-known offline algorithm for the same problem. The chapter
finishes with the design of the first multipass streaming algorithm for maximizing a regularized
monotone submodular function under a uniform matroid.

This chapter is based on joint work with Chien-Chung Huang and Justin Ward, appearing in
[HTW20].

1.3 Independence Systems in Machine Learning
In Chapter 5, we focus on important problems in machine learning that have a connection
with submodular functions and independence systems. More precisely, we focus on some
subset selection problems subject to a matroid constraint.

Subset selection problems are ubiquitous in statistics and machine-learning as they provide
interpretability of high-dimensional models via the selection of a few features of interest. In
most subset selection problems, we are given an independence system (X , I) where X is the
entire set of features. Since X can be large, we require selecting a few variables from X to
explain some quantity of interest. Intuitively, it might be helpful for the reader to imagine a
socio-economical study, where we are interested in finding the main factors that influence a
certain decision or behavior.

In many applications, the independent set I considered is a uniform matroid. Thus, we
require selecting at most k features from X , where k is given as an input. However, in
some applications, observations are mutually exclusive, or it might be desirable to spread

1.3 Independence Systems in Machine Learning 11

observations amongst multiple different classes. Uniform matroids do not capture such
combinatorial constraints which requires using general matroids such as partition matroids.

The task of finding representative features is intimately related to that of a summarizing
procedure. We want to select variables that collectively express as much information as
possible. Given that submodular functions have applications in document summarization
[LB10; Bai+15], it is not surprising that subset selection problems display submodular-like
properties. This connection was observed by Das and Kempe [DK08; DK11]. Focusing on
the sparse least-square estimator problem, they showed that under certain assumptions on
X the least-square objective function was submodular [DK08]. They further reinforce this
connection by showing that the objective function is weakly submodular [DK11].

Definition 1.3.1 (γ-Weakly Submodular Functions). Given γ > 0, a monotone set function
f : 2X → R≥0 is γ-weakly submodular1 if for all sets A ⊆ B ⊆ X the following inequality
holds:

γ · (f(B)− f(A)) ≤
∑

e∈B\A

f(e | A) . (1.2)

The parameter γ is called the (lower) submodularity ratio of f . The definition relaxes the third
bullet point of Proposition 1.2.7. Observe that, a monotone set function f is submodular if and
only if it has a submodularity ratio of at least 1. Since then, there have been other approaches
that consider other variants of weakly submodular functions [BZC18; Kuh+18; Qia+18].
Unlike Proposition 1.2.7, alternative characterizations are not equivalent. In Section 5.1.2,
we give a detailed comparison between the different definitions.

For the least-square regression problem, Das and Kempe showed that the deviation from
submodularity γ is controlled by a spectral parameter that depends on the covariance matrix
between observations in X [DK11]. More importantly, they connect the weak submodularity
property to the efficiency of the greedy algorithm. They prove that the greedy algorithm,
which in each iteration adds the element with the largest marginal contribution, has a
guarantee equal to eγ

eγ−1 for maximizing a γ-weakly submodular function subject to a uniform
matroid. While this result is optimal [Har+19] under the assumption that a subexponential
number of queries are used, the problem of maximizing a weakly submodular function under
a matroid constraint isn’t settled. Chen et al. [CFK18] give a (1 + 1/γ)2-approximation
algorithm that remains the state-of-the-art.

The downside of Definition 1.3.1 is that it only bounds the value of a set when elements
are added. It tells nothing about the decrease in value of that set when elements are
removed. Thus, Definition 1.3.1 enforces algorithms to use a greedy-type of strategy to bound
their performance guarantees while state-of-the-art algorithms for maximizing submodular
functions use local-search. Thus, it is natural to ask whether subset selection problems satisfy
stronger forms of submodularity that can be leveraged to obtain improved guarantees. We
answer this question positively.

1We note that the definition given here, which is also used in [Bia+17; CFK18; Ele+17; Har+19; SY20], is
slightly adapted from the original definition given in [DK11].

1.3 Independence Systems in Machine Learning 12

1.3.1 Overview of the contributions
In Chapter 5 we consider 3 widely studied subset selection problems subject to a matroid
constraint. We consider: Sparse Least-Square Regression, Bayesian A-Optimal Design, and
Column Subset Selection [DK08; DK11; Har+19; KSG08; Alt+16; Far+15].

Our first contribution is a refinement of the definition of weak submodularity by Das and
Kempe. We introduce the notion of an upper submodularity ratio β, that considers the
effect of the removal of elements. Effectively, our definition is analogous to that of Das and
Kempe and relaxes the fourth bullet point of Proposition 1.2.7. We demonstrate that the
upper submodularity ratio is bounded by spectral quantities linked to the input data for each
application that we consider. Surprisingly, the attained spectral bounds imply that β ≤ 1

γ .

More generally, we reduce all the above problems to the question of maximizing a set function
f with lower and upper submodularity ratio γ and β over a matroid constraint. It captures
the subset selection problems that we study by setting β = 1/γ. Using our refined definition,
we derive new, strengthened approximation guarantees. Improving the analysis of Chen et
al.’s algorithm [CFK18], we obtain an enhanced guarantee equal to 1 + γ−2 when β = 1/γ.
As the deviation of the set function from submodularity reduces, the approximation guarantee
converges to 1/2.

Our last contribution is the design of a novel approximation algorithm that achieves an
optimal asymptotic approximation factor equal to e

e−1 as both submodularity ratios tend to
1. In other words, the performance of our algorithm increases as the function is closer to
being submodular, i.e. when γ, β tends to 1. It achieves an optimal approximation under
the assumption that P 6= NP as β = γ = 1. Our algorithm proceeds in a local-search fashion
demonstrating the versatility of our refinement. It is inspired by the work of Filmus and Ward
[FW14] and is the first algorithm that asymptotically matches this factor.

This chapter is based on joint work with Justin Ward, appearing in [TW22].

1.3 Independence Systems in Machine Learning 13

Appendix

1.A State-of-the-art results
For completeness, we detail the state-of-the-art results for maximizing a weighted and
monotone submodular function over the set of independence systems that we consider in this
thesis. For compactness, we give the results in the form of a table (see Table 1.1 and 1.2). As
notations, we use − for a given cell to indicate that the best approximation/hardness result
can be derived from another appropriate cell of the table by copying the result.

Although this thesis focuses mostly on maximizing monotone set functions, we point out that
maximizing an arbitrary submodular function, even, subject to a uniform matroid is poorly
understood. Buchbinder et al. [BF19] give a 2.5975-approximation algorithm whereas the
best hardness result is 2.0366 by Gharan and Vondrák [GV11]. Improving either of these
factors is an extremely important question in this area.

Offline
Unweighted Weighted

Refs
APX Hardness APX Hardness

Matroid 1 1 1 1 [Sch+03]
Matching 1 1 1 1 [Edm65]

p-Hypergraph p+1
3 Ω

(
p

log(p)

)
τp Ω

(
p

log(p)

)
[Cyg13; HSS06; TW23; Neu23]

p-intersection p
2 − p− 1 − [LSV10; LSV13]

p-matchoid p
2 − p − [LSV13; KH78]

Tab. 1.1: State-of-the-art approximation factors for maximizing linear objective functions over various
independence systems. Here τp follows from Table 3.1 for p ≤ 361 and τp = 0.4986(p+ 1) +
0.0208 for p ≥ 361.

1.B Basic Results from linear algebra, calculus, and
more

We close this appendix with basic results from linear algebra, analysis, and matroid theory.
Theorems can be found in graduate textbooks (see [RW05, Section A.3], [AS16], [Sch+03],
[Ste04]). We start with the formula to compute the inverse of a block matrix.

14

Offline
Monotone Submodular

Refs
APX Hardness

Matroid e
e−1

e
e−1 [Cal+11; FW14; Fei98]

Bip. Matching 2 − [LSV10]

p-Hypergraph min
{
p; p+3

2

}
Ω
(

p
log(p)

)
[War12a; HSS06]

p-intersection p − [LSV10]
p-matchoid p+ 1 − [CVZ14]

Tab. 1.2: State-of-the-art approximation factor for maximizing a monotone submodular objective
function over various independence systems.

Lemma 1.B.1 (Block Matrix Inverse). Let B, A, U , V be matrices of conformable size. Then,B U

V A

−1

=

B−1 +B−1USV B−1 −B−1US

−SV B−1 S

 .

where S = (A− V B−1U)−1 is the Schur complement of B.

A somewhat related theorem is Sherman-Morrisson-Woodbury formula that computes the
inverse of a matrix A after being updated by the matrix UCV .

Lemma 1.B.2 (Sherman-Morrisson-Woodbury formula). Let A,U,C, V be matrices of con-
formable sizes. Then,

(A+ UCV)−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1.

We will also use Cauchy-Schwarz, Young’s inequality [Ste04] and Chernoff bound [AS16,
Theorem A.1.16].

Theorem 1.B.3 (Cauchy-Schwarz). Given real numbers a1, . . . , an, and b1, . . . , bn, the following
inequality is true:

(a1b1 + . . .+ anbn)2 ≤
(
a2

1 + . . .+ a2
n

)(
b21 + . . .+ b2n

)
.

Theorem 1.B.4 (Young’s inequality). Given two non-negative real numbers a, b ∈ R≥0 and two
conjugate real numbers p, q > 1 such that 1

p + 1
q = 1, then

ab ≤ ap

p
+
bq

q
.

Lemma 1.B.5 (Chernoff Bound). Let Xi, 1 ≤ i ≤ n be mutually independent random variables
with E[Xi] = 0 and |Xi| ≤ 1 for all i. Set S = X1 + · · ·+Xn. Then for any a,

Pr[S > a] < e−a
2/2n.

1.B Basic Results from linear algebra, calculus, and more 15

The final result of this section is related to matroids. Proposition 1.B.6 is a fundamental
theorem in matroid theory. It defines a bijection between the elements of any two bases such
that elements in bijection are interchangeable, i.e., swapping them preserves the independence
of the bases.

Proposition 1.B.6 ([Sch+03]). LetM = (X, I) be a matroid. Then for any pair of bases A,B
ofM, there exists a bijection π : A→ B so that A− a+ π(a) ∈ I for all a ∈ A.

1.B Basic Results from linear algebra, calculus, and more 16

2Improved Approximation for Weighted
k-Set Packing

A portion of this chapter is part of a publication which appeared in SODA’23 [TW23]. Nonethe-
less, the presentation of the results is specific to the thesis. In particular, Section 2.5.1 differs
from [TW23] which enables us to obtain strengthened results.

2.1 Introduction
In this chapter, we consider the weighted k-set packing problem. Given a weighted collection
of n sets, each containing at most k elements from some universe U , the goal is to return
a collection of disjoint sets of maximum total weight. The weighted k-set packing problem
generalizes many practical and theoretical problems. When k = 2, it encompasses the
maximum weight matching problem. For k = 3, it generalizes the 3-dimensional matching
problem, figuring in Karp’s list of "21st NP-complete problems" [Kar72] which involves finding
a maximum matching in a 3-partite hypergraph. In accordance with the title of this thesis,
the combinatorial constraint underlying the k-set packing problem is a k-matchoid 1.1. While
there is an exact algorithm for the maximum weight matching problem [Edm65], the 3-
dimensional matching problem is NP-hard even in the unweighted case [Kar72]. For low
values of k, unweighted k-dimensional matching is in fact NP-hard even to approximate
beyond a factor of 98/97, 54/53, 30/29 and 23/22 for k = 3, 4, 5, and 6, respectively [BK03a;
HSS06], and Ω(k/ ln(k)) for general k [HSS06].

In contrast, the best approximation algorithm for the unweighted problem is a k+1+ε
3 -

approximation due to Cygan [Cyg13] with subsequent improvements by Fürer and Yu [FY14]
to the running time dependence on ε. It is instructive to observe that all of the best known
algorithms in the unweighted regime use local-search procedures, which repeatedly improve a
solution S by adding some small number of sets not currently in S and removing intersecting
sets from S. If each such swap attempts to add only one set at a time, then this leads to a
k-approximation. Hurkens and Schrijver [HS89] showed that for any ε > 0, an algorithm
performing swaps of size O(ε−1) gives a k+ε

2 -approximation, and subsequent improvements to
k+1+ε

3 [Cyg13; FY14] have been obtained by increasing the swap size further to Ω(log(n)).

Surprisingly, in the case of weighted k-set packing, using swaps of size O(ε−1) with respect
to the original weight function leads to an approximation factor of only k − 1 + ε [AH98].
However, Berman [Ber00] showed that by squaring the weight of each set and using swaps
of size k to find a local optimum of the resulting instance results in a k+1+ε

2 -approximation
with respect to the original weight function (where here the ε is due to a further rescaling
procedure to ensure the algorithm terminates in polynomial time).

17

Berman’s algorithm in fact applies to the more general problem of finding a maximum weight
independent set of vertices in a (k + 1)-claw free graph. Recall from Section 1.1 that a d-claw is
an induced subgraph of G comprising a single vertex (called the center of the claw) adjacent
to a set of d pairwise non-adjacent vertices (called the talons of the claw). A graph is then
(k+ 1)-claw free if it contains no induced (k+ 1)-claw. By creating a graph containing a vertex
for each set in a k-set packing instance and an edge between sets that are non-disjoint, we
can convert the (weighted) set packing problem to a (weighted) independent set problem,
and if each set has size at most k, then the maximum size of a claw in the resulting graph
is also k (see Figure 1.1). We call the graph G obtained in this way the conflict graph for
the underlying set packing instance. For simplicity, we will henceforth consider the general
problem of finding a maximum weight independent set in some vertex weighted (k + 1)-claw
free graph and adopt the associated vocabulary.

In this vocabulary, Berman’s local search algorithm squares the weight of all vertices of the
graph and then considers a restricted set of “claw swaps.” For each vertex a in some current
solution A, the algorithm searches for a claw of G centered at a. It adds the talons of this
claw to A and discards any conflicting vertices from A as long as this increases the total (now
squared) weight of A. The key difficulty in the analysis of the algorithm is in translating
local optimality with respect to the squared weighting function w2 into a guarantee in terms
of the original weight function w. To accomplish this, Berman employs a 2-round charging
argument, whereby vertices in the optimal solution distribute their weight among neighboring
vertices in the locally optimal solution A produced by the algorithm.

For over 20 years, Berman’s algorithm has remained the state-of-the-art approximation result
for both Weighted k-Set Packing and Maximum Weight Independent Set in (k + 1)-Claw
Free Graphs. In a recent breakthrough result, Neuwohner [Neu21] broke the barrier of k+1

2

and obtained a slightly improved approximation ratio equal to k+1+ε
2 − 1

63,700,992 by squaring
the weights and then considering larger exchanges than in Berman’s algorithm. The key
observation behind her analysis is that the charging argument employed by Berman is only
tight when the weights of vertices in A and O are nearly identical, where here and throughout
the text O refers to the optimal solution. Neuwohner’s analysis leverages this observation to
create a more complex charging scheme that considers several different classes of vertices.
She then argues that in any solution A that is locally optimal under swaps of size O(k2),
there must exist some set of vertices with weight constituting a significant fraction of the
weight A, which receive less than k+1

2 times their weight under the new charging scheme. In
a follow-up paper, Neuwohner [Neu22] showed that any local-search algorithm that works by
improving some power wα of the weights cannot improve on the factor k

2 even using swaps
of size O(log n). However, Neuwohner manages to attain the factor k

2 asymptotically using
swaps of size O(log n). She proves that for any δ > 0, there is a kδ such that for any k ≥ kδ,
considering swaps of size O(log n) with the squared weighting has approximation ratio k+δ

2 .
The threshold is equal to kδ = 200,000

δ3
. As the rate of convergence to k

2 is relatively slow,
for k = 3, where the potential for improvement in the ratio is the largest, the best factor
remains k+1+ε

2 − 1
63,700,992 . In further work, Neuwohner [Neu23] has recently shown that

the barrier of k
2 can in fact be surpassed by running the unweighted local search algorithm

2.1 Introduction 18

on appropriate sub-instances of a given instance. The techniques she employs require that
k ≥ 4. When k = 4, she obtains an improvement of 0.002 over the factor of 4+1

2 . As with
previous results, the improvement over the factor k+1

2 grows with k to 0.0115 when k = 13,
and 0.4986(k + 1) + 0.0208 for all k ≥ 14.

Running Time: We emphasize that the algorithms considered here have a running time that
is roughly O(ns) where s is swap size. Thus, the algorithms by Berman and Neuwohner
[Ber00; Neu21; Neu22; Neu23] are polynomial time algorithm if k is constant. Additionally,
known algorithms that use swap of size O(log(n)) [Cyg13; Neu22; Neu23] can be turned into
polynomial time algorithms by means of color coding which doesn’t apply to the problem of
finding a maximum independent set in a (k + 1)-claw free graph. We point out that [BK03b]
is state-of-the-art approximation when k is a function of n.

Our Results
Given this stream of recent progress in the asymptotic approximability of the weighted k-set
packing for large k, it is natural to ask whether it is possible to obtain significant improvements
in approximation specifically in the case of small k. In this chapter, we answer this question
affirmatively, by giving two new approximation guarantees for the weighted k-set packing
problem by using a variant of Berman’s squared-weight local search with larger exchanges.
We first present a relatively simple analysis showing that exchanges adding up to k2(k−1) +k

sets is sufficient to obtain a factor 1.811 for Weighted 3-Set Packing, improving on the factor
k+1

2 = 2 by 0.189. We then show that by refining our basic analysis, it is possible to attain
a 1.761-approximation using swaps of size kO(1/ε). Our results imply better improvements
for k > 3, and we show that our algorithms’ guarantees improve asymptotically to (k + 1

2)/2

and k/2, respectively, as k grows. The latter result matches Neuwohner’s asymptotic result
[Neu22] using a smaller swap size equal to kO(1/ε) instead of O(log(n)). We summarize our
results in the following theorem1.

Theorem
A squared-weight local search algorithm performing exchanges of size kO(1/ε) is a
polynomial time k+1−τk

2 -approximation for the weighted k-set packing problem, where
τk ≥ τ3 = 0.239 and limk→∞ τk = 1. The same algorithm with exchanges of size
k2(k − 1) + k, is a k+1−τ ′k

2 -approximation with τ ′k ≥ τ ′3 = 0.189 and limk→∞ τ
′
k = 1/2.

The exact statement of the above theorem is given in Theorem 2.4.9 and Theorem 2.5.5.
Further specific values for our approximation guarantee, as well as the improvement τk/2,
τ ′k/2 that we make over k+1

2 are given in Table 2.1. The precise value of τk depends on
considering and balancing the worst of several quantities. To provide a brief overview, here
we have simply listed the final results that follow from our techniques. After performing
our main analysis, we provide and prove a more detailed version of the above theorem that
explains how the numerical quantities in Table 2.1 are obtained.

1The results presented in [TW23] are weaker than the one presented here. There, in the best case, we obtained
an asymptotic behavior equal to limk→∞ τk = 2/3

2.1 Introduction 19

While our results are also based on considering larger exchanges in the squared-weight local
search algorithm introduced by Berman [Ber00], we adopt a different approach than that
employed by Neuwohner [Neu22]. In Section 2.3, we give a compact proof of Berman’s
guarantee that avoids an explicit charging argument. This allows us to make explicit the slack
present in the technical inequalities used to relate w2 to w using local optimality. For each
vertex a in a locally optimal solution A, we consider two different types of slack. The first,
which we denote by ∆a, captures the tightness of the claw swap centered at a (i.e. how much
the total squared weight of A would decrease after performing the claw-swap centered at
a). The second term, which we denote as Ψa, measures the slack in the remaining argument
due to the deviation of the weight of the talons and of the neighbors of the talons from the
weight of a. More precisely, Ψa captures the slack in two technical inequalities applied to
vertex weights: xy ≤ 1

2x
2 + 1

2y
2 and

∑
i z

2
i ≤ (maxi zi)

∑
i zi, where all zi > 0. Both of these

inequalities are tight only when x = y and all zi are equal, respectively.

Our simpler analysis then works by considering exchanges of size O(k3) and bounding the
sum of ∆a and Ψa away from 0 in two cases. In the first case, suppose that a vertex a ∈ A
has some vertex b of similar weight that would be removed by the claw swap centered at a.
Then, we show that the swaps centered at a and b cannot both be tight, since otherwise the
swap which brings the sets of talons of a and b together would be improving. Hence, for any
vertex a with a “close” vertex b of this sort, ∆a + ∆b must be bounded away from 0, where
the exact amount depends on the similarity between a’s weight and b’s weight. In order to
exploit this in our analysis, we construct an auxiliary graph containing such “close” vertices,
which we use to group individual claw swaps into larger exchanges involving O(k2) claws.
We then show that the total slack we gain across all such large exchanges is a significant
fraction of the weight of all the vertices of A whose claws participate in the exchange. For the
remaining vertices a that have no “close” vertex b, we show that Ψa is large. To gain some
further intuition in this case, one can consider the example shown in Figure 2.1, which is
the worst case when applying Berman’s algorithm to a single, isolated claw. Here the locality
gap is only

√
3 < 3+1

2 , which we show can be attributed to the slack Ψa. We show that even
when a claw is not strictly isolated, as long as all of the other vertices in its neighborhood
have significantly smaller weight than that of its center vertex, there is still a relatively large
amount of slack Ψa that can be exploited.

By balancing these two cases, we are able to save over Berman’s charging scheme for all
vertices in A, rather than only a subset of constant weight. This is enough to obtain a 1.811-
approximation for Weighted 3-Set Packing, which we present in Section 2.4. In Section 2.5
we show that by considering swaps of size kO(1/ε), it is possible to handle separately a key
bottleneck case in our analysis and thus improve the ratio further to 1.761 (when k = 3).
Note that when k = 3, the small example in Figure 2.1 shows that we cannot attain an
approximation factor smaller than

√
3 ≈ 1.732 > 3/2. Intuitively, our improvements increase

because the gap between k+1
2 and the bound of

√
k for an isolated single claw (as shown for

k = 3 in Figure 2.1) grows larger as k increases.

2.1 Introduction 20

Swap Size: k2(k − 1) + k kO(1/ε)

k τ ′k/2 APX τk/2 APX
3 0.189 1.811 0.239 1.761
4 0.210 2.290 0.302 2.199
5 0.219 2.781 0.337 2.663
6 0.225 3.275 0.361 3.139
7 0.229 3.771 0.378 3.622
8 0.232 4.268 0.392 4.108
9 0.234 4.766 0.401 4.598

10 0.236 5.264 0.411 5.089

Tab. 2.1: Approximation ratio for different values of
k and our improvements over k+1

2 . In the
last column, we removed an additional O(ε)
term to the approximation.

√
3

111

A :

O :

Fig. 2.1: An isolated bad example for the
weight-squared local search.

Further related work
Nearly all algorithmic results for both the k-set packing problem and the maximum inde-
pendent set problem in (k + 1)-claw free graphs are based on variants of local search and
greedy algorithms. In the unweighted setting, a simple local-search attempting to swap at
most 2 vertices into the current solution yields a k+1+ε

2 -approximation. Hurkens and Schrijver
[HS89] showed that by considering swaps that add O(ε−1) vertices gives a k+ε

2 -approximation.
They also show that their analysis is tight, in the sense that any local-search which swaps a
constant number of vertices has approximation factor at least equal to k+ε

2 [HS89]. In contrast,
Halldórson [Hal95] proved that a pure local search algorithm performing non-constant size
swaps Ω(log n) achieves a k+2+ε

3 -approximation. This analysis was refined by Cygan et al.
[CGM13] to obtain a ratio equal to k+1+ε

3 . Due to the large swap sizes, the previous two
results yield quasi-polynomial time algorithms. Sviridenko and Ward [SW13] and Cygan
[Cyg13] designed polynomial-time local search algorithms with approximation factors of
k+2+ε

3 and k+1+ε
3 , respectively, by using techniques from fixed-parameter tractability. Fürer

and Yu [FY14] gave a k+1+ε
3 approximation algorithm with improved dependence on ε and

also gave an instance with locality gap k+1
3 for any algorithm using swaps of size O(n1/5). All

algorithms considering swaps of size O(log n) rely on the underlying structure specific to the
k-set packing problem to find swaps in polynomial time, and thus do not generalize to the
maximum independent set problem in (k + 1)-claw free graphs.

In the weighted setting, Arkin and Hassin showed that the standard weighted local-search
algorithm performing swaps of size O(ε−1) yields only a k − 1 + ε approximation [AH98].
Chandra and Halldórson [CH01] showed that the associated locality gap could be circum-
vented by combining a greedy algorithm followed by a local-improvement strategy that always
selects the best improvement at each stage, yielding a 2(k+1)+ε

3 -approximation. As we have
already noted, Berman [Ber00] obtained a k+1

2 approximation by considering a local search
guided by the squared weights and swaps of size k. For smaller swaps of size 2, Berman
and Krysta [BK03b] showed that a local search guided by wα, for an appropriately chosen

2.1 Introduction 21

1 < α < 2 has an approximation factor of 0.667k, 0.651k, and 0.646k for k = 3, k = 4, and
k > 4, respectively.

The k-set packing problem has also been studied via linear programming hierarchies. In
this context, Chan and Lau [CL12] give an LP-rounding algorithm with approximation ratio
k − 1 + 1

k for k-set packing and k − 1 for k-dimensional matching. They also show that even
after the linear program is strengthened by a linear number of rounds of the Sherali-Adams
lifting procedure, its integrality gap remains at least k − 2. In contrast, they show that by
including a polynomial number of extra constraints, the integrality gap can be reduced to k+1

2 .
Singh and Talwar [ST10] showed that the same integrality gap of k+1

2 can be achieved by
applying O(k2) rounds of Chvátal-Gomory cuts to natural LP for the k-set packing problem.

2.2 Preliminaries
In this section, we fix the notations used throughout Chapter 2 and 3. We consider the general
setting in which we are given a vertex-weighted (k + 1)-claw free graph G = (V,E) and seek
an independent set of maximum weight. For each v ∈ V , we let wv ∈ R+ denote the given
weight of v and for any A ⊆ V we let w(A) denote the total weight

∑
v∈Awv of all vertices in

A.

For any two subsets A,B of vertices in V we define the neighbourhood of A in B, written
N(A,B), as N(A,B) , {b ∈ B : (a, b) ∈ E(G) for some a ∈ A} ∪ (A ∩ B). To simplify
notation, we will write N(o,A) instead of N({o}, A) for a vertex o ∈ V , and additionally
use the shorthand A − a for A \ {a}. Because G is (k + 1)-claw free, the neighborhood
N(v, V) of any v ∈ V contains at most k pairwise non-adjacent vertices. In particular, if A
is an independent set of vertices, then |N(v,A)| ≤ k for all v ∈ V and N(v,A) = {v} for all
v ∈ A.

The general local search procedure that we analyze is shown in Algorithm 1. The procedure
maintains a current solution S, which we initialize using the standard greedy algorithm. We
let s ≥ 1 be a parameter governing the size of the exchanges performed by the algorithm. The
algorithm repeatedly searches for an independent set of at most sk vertices C ⊆ V \ S with
total squared weights larger than the total squared weight of the conflicting vertices N(C, S)

in S. Whenever such a set is found, the algorithm adds C to S and removes N(C, S) from
S. Formally, for any A ⊆ V , we let w2(A) ,

∑
v∈Aw

2
v. Then, Algorithm 1 exchanges a set

C ⊆ V \ S for N(C, S) only if w2(C) > w2(N(C, S)). We can implement the search for each
improvement in time O(nsk) via simple enumeration. By using a pre-processing procedure to
rescale and round the input weights, it can be ensured that the algorithm converges to an
a local optimum in polynomial time while suffering a slight loss of approximation [Ber00].
In fact, because this results in only a small, polynomial dependence on this loss factor, a
simple partial enumeration procedure can be used to remove the loss entirely, as we show in
Section 2.5.3.

2.2 Preliminaries 22

Algorithm 1: Squared Weight Local Search with s-Exchanges

S ← the output of the standard greedy algorithm applied to G and w;
repeat

S′ ← S;
foreach C ⊆ V \ S of containing at most sk vertices do

if C is an independent set and w2(C) > w2(N(C, S)) then
S′ ← S ∪ C \N(C, S);
break;

until S = S′;
return S

Thus, in all of our remaining analysis, we will suppose that the algorithm has terminated
and produced a locally optimal solution A for our instance. We let O denote the optimal
solution of this same instance. Note that both A and O are independent sets of G, and since
G contains no (k + 1)-claw, the maximum degree in the subgraph of G induced by A ∪O is at
most k.

In order to define a set of claw swaps, Berman [Ber00] makes a mapping π : O → A by
π(o) = arg max{wx : x ∈ N(o,A)}, breaking ties in an arbitrary, consistent manner. Note
that π(o) is the neighbour of o in A of maximum weight. Using π, we define a collection of
sets C = {Ca}a∈A, where Ca , {o : π(o) = a}. Then, each vertex o ∈ O appears in exactly
one set Ca ∈ C. We observe each set Ca forms the talons of a claw of G centered at vertex
a ∈ A. Thus |Ca| ≤ k for all a ∈ A. Moreover for each a ∈ A, we have wa ≥ wv for all
v ∈ N(Ca, A).

For each a ∈ A, we define N+
a , {a} ∪

⋃
o∈Ca N(o,A − a). Note that if Ca 6= ∅ then

N+
a = N(Ca, A) and if Ca = ∅ then N+

a = {a}. For each a ∈ A, we consider in our analysis a
local operation that adds Ca to A and removes N+

a from A. We call each such operation a
1-exchange, since it involves the talons of one claw Ca. Local optimality with respect to these
1-exchanges then implies that for any a ∈ A,

w2(Ca) ≤ w2(N+
a) ≤ w2

a +
∑
o∈Ca

w2(N(o,A− a)), (2.1)

where the final inequality follows since a ∈ N(o,A) for all o ∈ Ca. Note that for empty claws
with Ca = ∅, the above inequality follows immediately from N+

a = {a}. In this case, observe
that the corresponding 1 exchange simply removes a from the solution A.

2.3 A simple proof of Berman’s algorithm
We review the argument from the analysis of Berman [Ber00], which shows that the absence
of improving 1-exchanges for w2 implies that w(O) ≤ k+1

2 w(A). Berman’s proof uses a 2-stage
charging argument and shows that each vertex in the current solution A receives less than

2.3 A simple proof of Berman’s algorithm 23

(k + 1)/2 times its weight. Here we present a (arguably) simpler proof without charging
argument, in which we make explicit the slack in several inequalities that are key in the
analysis of [Ber00]. For each a ∈ A, and o ∈ Ca, we define the following quantities to
measure this slack:

ψa,o , (wo − wa)2 + waw(N(o,A− a))− w2(N(o,A− a)),

Ψa ,
∑
o∈Ca

ψa,o,

∆a , w2(N+
a)− w2(Ca).

It is important for the reader to become familiar with these notations as they will crucially
be used in Chapter 2 and 3. Consider first Ψa and note that for each a ∈ A and o ∈ Ca,
(wo − wa)

2 ≥ 0 and by construction of Ca, we have wv ≤ wa for all v ∈ N(o,A). Thus,
w2(N(o,A−a)) =

∑
v∈N(o,A−a)w

2
v ≤ wa

∑
v∈N(o,A−a)wv = waw(N(o,A−a)) and so ψa,o ≥ 0

for all o ∈ Ca. It then follows that Ψa ≥ 0 for all a ∈ A. Next, note that since |Ca| ≤ k for
each a, local optimality with respect 1-exchanges (2.1) implies that ∆a ≥ 0 for all a ∈ A.
We now show that the values Ψa and ∆a can indeed be treated as slack in the analysis of
Berman’s algorithm:

Lemma 2.3.1. Suppose A is locally optimal with respect to 1-exchanges. Then,

2w(O) ≤ w(A) +
∑
o∈O

w(N(o,A))−
∑
a∈A

[
∆a

wa
+

Ψa

wa

]
.

Proof of Lemma 2.3.1. Fix a single claw Ca and o ∈ Ca. Then,

2wowa = w2
o + w2

a − (wo − wa)2 (2.2)

= w2
o + w2

a − (wo − wa)2 − w2(N(o,A− a)) + w2(N(o,A− a))

− waw(N(o,A− a)) + waw(N(o,A− a))

= w2
o + w2

a − w2(N(o,A− a)) + waw(N(o,A− a))− ψa,o.

Equation (2.2) holds for every o ∈ Ca. Summing over all o ∈ Ca then gives:

2waw(Ca) = |Ca|w2
a + w2(Ca)−

∑
o∈Ca

w2(N(o,A− a)) + wa
∑
o∈Ca

w(N(o,A− a))−Ψa

≤ (|Ca|+ 1)w2
a + w2(Ca)− w2(N+

a) + wa
∑
o∈Ca

w(N(o,A− a))−Ψa

= (|Ca|+ 1)w2
a −∆a + wa

∑
o∈Ca

w(N(o,A− a))−Ψa

= w2
a −∆a + wa

∑
o∈Ca

w(N(o,A))−Ψa,

2.3 A simple proof of Berman’s algorithm 24

where the inequality follows from the second inequality in (2.1), and the final equation from
the fact that a ∈ N(o,A) for all o ∈ Ca by construction, and so w2

a + waw(N(o,A − a)) =

waw(N(o,A)) for each o ∈ Ca. Dividing both sides by wa gives

2w(Ca) ≤ wa +
∑
o∈Ca

w(N(o,A))−
[

∆a

wa
+

Ψa

wa

]
, (2.3)

which holds for each a ∈ A. Summing (2.3) over all a ∈ A and recalling that each o ∈ O
appears in exactly one set Ca ∈ C then completes the proof.

As an immediate corollary, we recover the standard approximation result of Berman [Ber00].

Corollary 2.3.2. For any A that is locally optimal with respect to 1-exchanges,

w(O) ≤ k + 1

2
w(A).

Proof of Corollary 2.3.2. As we have noted above, we have Ψa ≥ 0 for all a ∈ A and since
A is locally optimal with respect to 1-exchanges, ∆a ≥ 0 for all a ∈ A. Thus, Lemma 2.3.1
implies that

2w(O) ≤ w(A) +
∑
o∈O

w(N(o,A)).

Now, we note that since O is an independent set and G is (k + 1)-claw free, each a ∈ A

appears in N(o,A) for at most k distinct o ∈ O. Thus,
∑

o∈O w(N(o,A)) ≤ kw(A). Using this
in the inequality above and dividing through by 2 then completes the proof.

A remarkable fact about the proof of Lemma 2.3.1 is that it can be easily modified to powers
other than 2. We believe that this fact could be helpful to understand the surprising power of
the squared weighting for the k-set packing problem. Unfortunately, we haven’t been able to
exploit it yet.

Lemma 2.3.3. Suppose that A is locally optimal with respect to 1-exchanges and wα, with α > 1.
Then,

αw(Ca) ≤ wa +(α− 2) |Ca|wa +
∑
o∈Ca

w(N(o,A))−

[
∆

(α)
a + Ψ

(α)
a

wα−1
a

]
,

where ∆
(α)
a ,Ψ

(α)
a ≥ 0 and

• ∆
(α)
a ,wα(N+

a)− wα(Ca),

• Ψ
(α)
a ,

∑
o∈Ca

[
(wαo +(α− 1)wαa − αwowα−1

a) + wα−1
a w(N(o,A− a))− wα(N(o,A− a))

]
.

2.3 A simple proof of Berman’s algorithm 25

Proof of Lemma 2.3.3. The proof is identical to that of Lemma 2.3.1. Fixing a single claw Ca
and o ∈ Ca, we begin with the term αwow

α−1
a to which we add and subtract wαo +(α− 1)wαa .

αwow
α−1
a = wαo +(α− 1)wαa −

(
(wαo +(α− 1)wαa)− αwowα−1

a

)
Letting ψ(α)

a,o ,(wαo +(α− 1)wαa)− αwowα−1
a + wα−1

a w(N(o,A− a))− wα(N(o,A− a)), and
adding and subtracting wα(N(o,A− a)) and wα−1

a w(N(o,A− a)), we get

αwow
α−1
a = wαo +(α− 1)wαa − wα(N(o,A− a)) + wα−1

a w(N(o,A− a))− ψ(α)
a,o .

Summing over all o ∈ Ca, we obtain the following equation

αw(Ca)w
α−1
a = wα(Ca) + |Ca|(α− 1)wαa +

∑
o∈Ca

[
wα−1
a w(N(o,A− a))− wα(N(o,A− a))

]
−Ψ(α)

a .

Substituting the first second inequality in Equation (2.1) which now holds with respect to the
power α, we have

αw(Ca)w
α−1
a ≤wα(Ca) +(|Ca|(α− 1) + 1)wαa − wα(N+

a) +
∑
o∈Ca

wα−1
a w(N(o,A− a))−Ψ(α)

a ,

= wαa + |Ca|(α− 1)wαa +
∑
o∈Ca

wα−1
a w(N(o,A− a))−∆(α)

a −Ψ(α)
a ,

= wαa + |Ca|(α− 2)wαa +
∑
o∈Ca

wα−1
a w(N(o,A))−∆(α)

a −Ψ(α)
a .

Dividing through by wα−1 yields the desired result. The positivity of ∆
(α)
a is by the absence of

improving claw-swaps. The positivity of Ψ
(α)
a follows from Young’s inequality (Theorem 1.B.4,

with conjugated exponent equal to p = α and q = α/(α− 1)).

2.4 An Improved Algorithm Using Larger Exchanges
We now show that when A is locally optimal with respect to larger exchanges, we can obtain
a better approximation ratio. Our proof will proceed by obtaining a lower bound on the
total slack ∆a and Ψa for all vertices in Lemma 2.3.1. Before going further we give some
high-level intuition for our approach. From the proof of Corollary 2.3.2, we see that the
approximation ratio of Algorithm 1 is close to k+1

2 , only when both Ψa and ∆a are close to
0. For a given vertex a ∈ A, ∆a measures the tightness of the 1-exchanges centered at a,
in the sense that having ∆a equal to 0 means that the 1-exchanges centered at a satisfies
w2(Ca) = w2(N+

a). Suppose that there are two vertices a, b such that b ∈ N+
a \{a}, and

consider an exchange which attempts to add Ca ∪ Cb and removes N+
a ∪N+

b . If this larger
exchange is non-improving, we will show that we cannot have both ∆a = 0 and ∆b = 0.
Intuitively, this follows since b is counted once in N+

a ∪ N+
b but once in both N+

a and N+
b .

Assuming that b has a large weight compared to a yields a substantial improvement. On the

2.4 An Improved Algorithm Using Larger Exchanges 26

a b c d e
A :

O :

(a) Conflict graph

a b c d e

(b) Exchange graph Hε

Fig. 2.2: In this picture, we show the exchange graph H1/4 (Figure 3.2), coming from the conflict
graph G[A ∪O] in Figure 2.2a. We assume that wa = wb = wc = 1, wd = 4/5, and we = 1/2.
In Figure 2.2a, we label the edge from each vertex of o to π(o) with an arrow and assume
that ties are broken by ordering vertices by label.

other hand, if all the vertices in N+
a \{a} have low weight compared to a, then we show that

we can bound the slack term Ψa away from 0 well.

Our general approach will consider a set of s-exchanges bringing the talons of s > 1 claws
into A simultaneously. In order to define it, we make use of the following auxiliary graph.

Definition 2.4.1 (Exchange Graph Hε). Fix 0 ≤ ε ≤ 1. We define the exchange graph Hε to
be a directed graph with V (Hε) = A and arcs (a, b) ∈ E(Hε) from a to b with b 6= a for every
o ∈ Cb such that: a ∈ N(o,A− b) and wa ≥ (1− ε)wb.

In the later analysis, we use that endpoints of a given arc (a, b) ∈ Hε can’t both have tight claw-
swaps, i.e., ∆a = ∆b = 0. Note that for any arc (a, b) ∈ E(Hε), we have (1− ε)wb ≤ wa ≤ wb.
Additionally, observe that the exchange graph may contain parallel arcs (we will later remove
this assumption). In Figure 2.2 we show an example of a graph G and the corresponding
exchange graph Hε. Note that the first condition of Definition 2.4.1 implies that in Hε contains
an arc (x, y) or (y, x) only if x ∈ A and y ∈ A are joined by a path of length 2 in G[A ∪ O].
Since the maximum degree in G[A∪O] is k, there are at most k(k−1) paths of length 2 ending
at any vertex x ∈ A, and so the maximum degree of any vertex x ∈ V (Hε) is k(k − 1).

We will refer to vertices of degree 0 in Hε as isolated vertices and let I denote the set of all
isolated vertices. We call the remaining vertices D , A \ I non-isolated vertices. We consider
each type of vertex separately, and show that the total value of the slack term is large in both
cases.

2.4.1 Removing parallel arcs, triangles and more
We will further assume that the conflict graph G[A ∪O] doesn’t contain cycles of small length.
This assumption is not necessary but will greatly simplify later discussions. We show how to
remove this assumption in Section 2.5.4. More precisely, we assume Reduction 1.

2.4 An Improved Algorithm Using Larger Exchanges 27

Reduction 1. Assume that the conflict graph doesn’t contain a cycle of length 4m where m is
a constant.

A consequence of Reduction 1 with m = 1 is the absence of 4-cycles in the conflict graph,
which in particular excludes the presence of parallel arcs. Similarly, the absence of 6-cycles
excludes the presence of triangles in the exchange graph, ... etc. The main use of the reduction
is to partition the exchange graph into vertex disjoint trees, instead of arbitrary graphs. Lemma
2.4.2 summarizes it. The proof is present in Section 2.5.4.

Lemma 2.4.2. Assuming that Reduction 1 holds for some constant m, then any connected
induced subgraph F ⊆ H of the exchange graph H with longest path of length at most 2m− 2 is
a tree.

2.4.2 Bounding the slack for non-isolated vertices
The goal of this section is to prove Lemma 2.4.4. It bounds away the slack for non-isolated
vertices by considering an s-exchange in which s > 1 claws Ca are added together to A. Recall
that D is exactly the set of non-isolated vertices in Hε and I = A \D.

Definition 2.4.3 (Locally optimal). A tree T is said to be locally optimal if w2(N+
T)−w2(CT) ≥

0, where N+
T ,

⋃
v∈T N

+
v and CT ,

⋃
v∈T Cv.

Using exchanges of size s ≤ 1 + k(k − 1), which will imply the local optimality of trees of size
|V (T)| ≤ s we prove the following lemma.

Lemma 2.4.4. Let 0 ≤ ε ≤ 1/2 and suppose that A is locally optimal under s-exchanges for
s ≤ 1 + k(k − 1). Then,

∑
a∈D

[
∆a + Ψa

wa

]
≥ 1− ε

2− ε
w(D) +

∑
a∈D

∑
o∈Ca

εw(N(o, I)).

Lemma 2.4.4 implies that we save almost half of the total weight of the vertices in D, i.e.,
(1 − ε)/(2 − ε). This contrasts with the proof of Berman’s algorithm where we had only∑

a∈A
∆a+Ψa
wa

≥ 0. Intuitively, the term εw(N(o, I)) shows that an ε-fraction of the weight of
each isolated neighbor of a non-isolated vertex is saved.

High-level Intuition: Proving this Lemma requires proving Lemma 2.4.5, Lemma 2.4.6 and
Lemma 2.4.7. Lemma 2.4.5 formalizes our intuition that the claw-swaps centered at endpoints
of an arc (b, a) ∈ Hε can’t be tight (assuming the absence of large improving exchange). Thus,
∆a
wa

+ ∆b
wb
≥ w2

b
wa

. In Lemma 2.4.6 we observe that Ψa captures the difference of weight between
wb and wa which further augments the slack from w2

b/wa to wb. Lemma 2.4.7 finalizes the
proof by sending the slack wb to both a and b.

Constructing exchanges: We start by constructing an appropriate set of s-exchanges for
s = 1 + k(k − 1). To do this, we partition the vertices of D as follows. Let T initially

2.4 An Improved Algorithm Using Larger Exchanges 28

be a collection of arcs from Hε constituting an arbitrary undirected spanning tree in each
connected component of Hε (note that here we will ignore the direction of each arc). As long
as T contains an undirected path of length at least three, we remove one of the middle arcs
(i.e. an arc incident on 2 vertices of degree at least 2) of this path from T . Observe that each
such alteration decreases the number of arcs in T , and so this procedure terminates. At the
end of the procedure, our final set of arcs T is a collection of disjoint trees, each containing no
path of length 3. This implies that each connected component of T must be a star. Moreover,
at the end of the procedure all vertices of D have degree at least one in T , since we never
remove an arc incident on a vertex of degree less than two. When the process terminates, it
follows that T is a disjoint collection of stars T1, . . . , T` contained in Hε, with each vertex of
D appearing in exactly 1 star. Since the maximum degree of a vertex in Hε is at most k(k− 1),
we have |V (Ti)| ≤ 1 + k(k − 1) for all i = 1, . . . , ` and |Ca| ≤ k for each a ∈ V (Ti). Thus,
each such swap (that altogether brings the set of talons centered at all vertices in V (Ti) for
some i = 1, . . . , `) is an s-exchange adding an independent set of at most sk vertices to A and
so will be considered by Algorithm 1 when s = 1 + k(k − 1).2

Lemma 2.4.5 is essential in the forthcoming proofs. Given a tree T that is locally optimal w.r.t
w2, it measures the effect of large exchanges. It proves that the gain is related to the weights
of the endpoints of the arcs in the tree. The gain is greater when the weights of endpoints do
not differ too much and thus motivates the definition of the set D.

Lemma 2.4.5. Let T be a tree in the exchange graph H that is locally optimal with respect to
w2. Then,

∑
v∈V (T)

∆v

wv
≥

∑
(u,v)∈E(T)

w2
u

wv
.

Proof of Lemma 2.4.5. Recall that for each vertex v we define ∆v , w2(N+
v) − w2(Cv). For

any subset X ⊆ A, we similarly define ∆X , w2
(⋃

v∈X N
+
v

)
− w2

(⋃
v∈X Cv

)
. We first prove

by induction on the size of V (T) that:

0 ≤ ∆V (T) ≤

 ∑
v∈V (T)

∆v

wv
−

∑
(a,b)∈E(T)

w2
a

wb

wv̂, (2.4)

where v̂ = arg maxv∈V (T)wv. For the case in which |V (T)| = 1, we must have V (T) = {v̂},
and E(T) = ∅. Thus, ∑

v∈V (T)

∆v

wv
−

∑
(a,b)∈E(T)

w2
a

wb

wv̂ =
∆v̂

wv̂
· wv̂ = ∆v̂ ≥ 0,

2We briefly note that each claw except for the claw Cv associated with central vertex of a star Ti shares an
element of O with Cv. Thus one can in fact reduce the size of exchanges required by our algorithm from
k2(k− 1)+k to k(k− 1)2 +k. To avoid introducing further details, we have used a simpler bound throughout.

2.4 An Improved Algorithm Using Larger Exchanges 29

as required, where the final inequality follows from local optimality with respect to 1-
exchanges. Suppose now that (2.4) holds for all trees T with |V (T)| ≤ t < s and consider
some tree T with |V (T)| = t+ 1. As above, let v̂ be a vertex of V (T) with maximum weight
and now let T1, . . . , Tc be the connected components of T [V (T)− v̂] obtained by removing
v̂. Then, each Ti is a tree with |V (Ti)| ≤ t and the arcs incident to v̂ in T are of the form
(t1, v̂), . . . , (tc, v̂), with ti ∈ V (Ti) for each i = 1, . . . , c, (where the orientation of each arc
follows from the fact that wv̂ is the largest weight in V (T)). Further let v̂i = arg maxv∈V (Ti)wv.
Then, local optimality with respect to s-exchanges implies that:

0 ≤ ∆V (T) = w2
(⋃

v∈V (T)N
+
v

)
− w2

(⋃
v∈V (T)Cv

)
≤

c∑
i=1

[
w2
(⋃

v∈V (Ti)
N+
v

)
− w2

(⋃
v∈V (Ti)

Cv

)]
+ w2(N+

v̂)− w2(Cv̂)−
c∑
i=1

w2
ti

=

c∑
i=1

[∆Ti] + ∆v̂ −
c∑
i=1

w2
ti

≤
c∑
i=1

 ∑
v∈V (Ti)

∆v

wv
−

∑
(a,b)∈E(Ti)

w2
a

wb

wv̂i

+ ∆v̂ −
c∑
i=1

w2
ti

≤
c∑
i=1

 ∑
v∈V (Ti)

∆v

wv
−

∑
(a,b)∈E(Ti)

w2
a

wb

wv̂

+
∆v̂

wv̂
· wv̂ −

c∑
i=1

w2
ti

wv̂
· wv̂

=

 ∑
v∈V (T)

∆v

wv
−

∑
(a,b)∈E(T)

w2
a

wb

wv̂.

Here, the second inequality follows from the fact that for each arc ei = (ti, v̂) between Ti and
v̂, we have ti ∈ N+

v̂ and ti ∈ N+
ti

. Thus, w2
ti is counted in both

⋃
v∈V (Ti)

w2(N+
v) and w2(N+

v̂)

but only once in
⋃
v∈V (T)N

+
v . Moreover, each element of O appears in at most 1 of the sets

Cv and so w2
(⋃

v∈V (T)Cv

)
= w2(Cv̂) +

∑c
i=1w

2
(⋃

v∈V (Ti)
Cv

)
. The third inequality follows

from the second inequality of the induction hypothesis (2.4). The fourth inequality follows
again from the first inequality of the induction hypothesis (2.4) and wv̂ ≥ wvi for all i. This
completes the induction step for the proof of (2.4). Rearranging (2.4), for any V (T) with
|V (T)| ≤ s we have: ∑

v∈V (T)

∆v

wv
≥

∑
(a,b)∈E(T)

w2
a

wb
. (2.5)

Lemma 2.4.6 further refines Lemma 2.4.5. Given a tree V (T) ⊆ D, by adding the term Ψ for
each vertex it proves that the gain can be improved. Compared to Lemma 2.4.5, the saving
on edges of the tree now only depends on the weight of the smallest endpoint.

2.4 An Improved Algorithm Using Larger Exchanges 30

Lemma 2.4.6. Let ε ≥ 0 and suppose that T is a locally optimal tree in Hε with |V (T)| ≤ s.
Let B ⊆ A be any set of vertices such that Hε contains no arc (u, v) or (v, u) between any u ∈ B
and any v ∈ V (T). Then,

∑
v∈V (T)

[
∆v + Ψv

wv

]
≥

∑
(a,b)∈E(T)

wa +
∑

v∈V (T)

∑
o∈Cv

εw(N(o,B)).

Proof of Lemma 2.4.6. Recall that for all v ∈ V (T), we have

Ψv ,
∑
o∈Cv

(wo − wv)2 + wvw(N(o,A− v))− w2(N(o,A− v))

≥
∑
o∈Cv

[
wvw(N(o, T − v))− w2(N(o, T − v)) + wvw(N(o,A \ T))− w2(N(o,A \ T))

]
≥
∑
o∈Cv

[
wvw(N(o, T − v))− w2(N(o, T − v)) + wvw(N(o,B))− w2(N(o,B))

]
≥
∑
o∈Cv

[
wvw(N(o, T − v))− w2(N(o, T − v)) + εwvw(N(o,B))

]
.

The second line follows by distinguishing the neighbors of v into those that belong to T

(where v ∈ T) and those that don’t (where v ∈ A \ T). The third line is by positivity of
the term: wvw(N(o,A \ T)) − w2(N(o,A \ T)), since for any o ∈ Cv we have that wa ≤ wv
for all a ∈ N(o,A − v). Finally, the last line is by definition of the set B. In particular,
for any a ∈ N(o,B) ⊆ N(o,A − v) for some o ∈ Cv, we must have wa < (1 − ε)wv since
otherwise an arc (a, v) would be present in Hε. Thus, for all a ∈ N(o,B), wawv − w2

a ≥
wvwa − (1− ε)wvwa = εwvwa.

On the other hand, we observe that∑
o∈Cv

[
wvw(N(o, T − v))− w2(N(o, T − v))

]
≥

∑
u:(u,v)∈E(T)

wvwu − w2
u.

Dividing through by wv and summing over the vertices in the tree, we obtain that:

∑
v∈V (T)

Ψv

wv
≥

∑
(u,v)∈E(T)

[
wu −

w2
u

wv

]
+ ε

∑
v∈V (T)

∑
o∈Cv

w(N(o,B)).

The claimed result then follows by combining the previous equation and Lemma 2.4.5.

In Lemma 2.4.6, the slack from the s-exchanges is expressed using the arcs of the tree T . We
show that this can in turn be bounded with respect to the total weight of all vertices of T by
spreading the slack uniformly across the vertices.

2.4 An Improved Algorithm Using Larger Exchanges 31

Lemma 2.4.7. Given a directed tree T of size t > 2 such that for any (b, a) ∈ E(T) then
wb ≥ (1− ε)wa. Then, for any 1/2 ≥ ε > 0, we have

∑
(a,b)∈E(T)

wa ≥
(t− 1)(1− ε)

t− ε
w(T). (2.6)

A weaker estimate holds for any ε > 0. Let χ(t)
ε , (t−1)

t (1− ε), then under the same conditions
and any ε ∈ (0, 1) the following holds:∑

(a,b)∈E(T)

wa ≥ χ(t)
ε w(T). (2.7)

Proof of Lemma 2.4.7. We begin with the simpler proof of Equation (2.7). Let r be the vertex
of minimum weight in T and set r as the root. Forgetting about the orientation of the arcs,
we create a mapping σ : E → V that maps each arc to the children node contained in this
arc. In this way, every vertex gets assigned an arc except the root. Using that for each arc
(a, b) ∈ E(T), we have that wa ≥ (1− ε)wb and summing over all arcs, we get

∑
(a,b)∈E(T)

wa ≥ (1− ε)
∑

(a,b)∈E(T)

wσ((a,b)) = (1− ε)

[∑
v∈T

wv − wr

]
.

Since wr has minimum weight, we have that wr ≤ 1
t

∑
v∈T wv which yields the desired

inequality.

We now prove Equation (2.6). Let r be a vertex of T with minimum weight, and fix some edge
(r, x) ∈ E(T). For each remaining arc (a, b) ∈ E(T)− (r, x), consider the unique undirected
path from r ending with (a, b), and let v ∈ {a, b} be the vertex at the end of this path. Note
that every vertex of V (T) \ {r, x} serves as v for exactly one edge (a, b) ∈ E(T) − (r, x).
Moreover, if v = a, then wa = wv, and if v = b, then wa ≥ (1 − ε)wb = (1 − ε)wv.
Let z ,

∑
(a,b)∈E(T)−(r,x)wa. Then, by the above discussion, z ≥ (1 − ε)

∑
v∈V (T)\{r,x}wv.

Consider the function:

f(z) =
wr + z

wr + wx + (1− ε)−1z
≤
∑

(a,b)∈E(T)wa∑
v∈V (T)wv

.

To complete the proof it suffices to show that f(z) ≥ (t−1)(1−ε)
t−ε . Observe that since (r, x) ∈

E(T), (1− ε)wx ≤ wr ≤ wx, and so wr
wr+wx

≤ 1
2 . Thus, for ε ≤ 1/2, f(z) is a non-decreasing

function of z. Moreover, since wr is the smallest weight of any vertex in T , z ≥ |E(T) −
(r, x)|wr = (t− 2)wr. Thus,

f(z) ≥ wr + (t− 2)wr
wr + wx + (1− ε)−1(t− 2)wr

≥ (t− 1)wr
wr + (1− ε)−1wr + (1− ε)−1(t− 2)wr

=
(t− 1)(1− ε)

t− ε
,

2.4 An Improved Algorithm Using Larger Exchanges 32

where the second inequality follows again from wr ≥ (1− ε)wx.

The proof of Lemma 2.4.4 directly follows by combining Lemma 2.4.6 and 2.4.7. We restate it
here for simplicity,

Lemma 2.4.4. Let 0 ≤ ε ≤ 1/2 and suppose that A is locally optimal under s-exchanges for
s ≤ 1 + k(k − 1). Then,

∑
a∈D

[
∆a + Ψa

wa

]
≥ 1− ε

2− ε
w(D) +

∑
a∈D

∑
o∈Ca

εw(N(o, I)).

Proof of Lemma 2.4.4. Recall that the collection of stars T1, . . . , T` has the property that each
a ∈ D appears in exactly one Ti and 2 ≤ |V (Ti)| ≤ k(k − 1) + 1 ≤ s. For each Ti, since A is
locally optimal with respect to s-exchanges, Lemma 2.4.6 (with B = I) and Lemma 2.4.7,
respectively, imply

∑
a∈V (Ti)

[
∆a

wa
+

Ψa

wa

]
≥

∑
(a,b)∈E(Ti)

wa +
∑

a∈V (Ti)

∑
o∈Ca

εw(N(o, I))

≥ 1− ε
2− ε

w(Ti) +
∑

a∈V (Ti)

∑
o∈Ca

εw(N(o, I)).

Summing the resulting inequalities for each i = 1, . . . , ` then gives the stated result. Note that
the final inequality is tight only when |V (Ti)| = 2 for all Ti.

2.4.3 Bounding the slack for isolated claws
Throughout the remainder of this chapter and the next one, it is helpful to consider the
following quantity. For any t ≥ 0 and δ ∈ (0, 1), we set the parameter:

ρt,δ , tδ − δ

1− δ
. (2.8)

In particular, for all 0 ≤ t ≤ k, ρt,δ − tδ = ρk,δ − kδ. The parameter ρk,δ will be the amount of
slack received by isolated vertices.

We now consider those claws Ca where a ∈ I is an isolated vertex. Observe that for all such
claws, we must have wv ≤ (1− ε)wa for every v ∈

⋃
o∈Ca N(o,A− a), since otherwise there

would be an edge (v, a) in Hε. It follows that for all a ∈ I, and o ∈ Ca,

w2(N(o,A− a)) ≤ (1− ε)waw(N(o,A− a)). (2.9)

In Lemma 2.4.8, we derive a bound for the slack of isolated claws.

2.4 An Improved Algorithm Using Larger Exchanges 33

Lemma 2.4.8. Suppose that A is locally optimal with respect to 1-exchanges. Let δ , 1 −√
1− ε ≥ 0. Then, for any a ∈ I,

Ψa

wa
≥(ρk,δ − kδ)wa + δ

∑
o∈Ca

w(N(o,A)).

The crucial observation that Lemma 2.4.8 captures is that the slack ρk,δ for isolated vertices
is non-trivial. The proof later shows that the term −kδ cancels out. While this observation
may seem obvious, we point out a subtle difficulty in handling it. Suppose that we are given
a, b, c ∈ A and assume that a is isolated, and b ∈ N+

a and a ∈ N+
c . By assumption, we have

that Ψc/wc ≥ εwa. Intuitively, it means that we save an ε-fraction of a’s weight for each such
c. The issue is that the number of such c is equal to |N(a,O\Ca)| (using Reduction 1) and
can be arbitrarily small. To handle this situation, we use that b’s weight is greatly smaller than
a’s weight. Thus, vertex a will keep a fraction of the overall slack equal to ρk,δwa, leaving a
smaller saving equal to δwb for vertices in b ∈ N+

a \{a}, where δ ≤ ε. The parameter δ can be
thought of as a way of dividing the slack from Ψa into one portion that pays for a and another
that will pay for the neighbors.

Proof of Lemma 2.4.8. Fix a ∈ I. Since a ∈ I, Equation (2.9) implies that

ψa,o = (wa−wo)2 +waw(N(o,A− a))−w2(N(o,A− a)) ≥ (wa−wo)2 + εwaw(N(o,A− a))

for every o ∈ Ca and so

Ψa ≥
∑
o∈Ca

(wa − wo)2 + εwa
∑
o∈Ca

w(N(o,A− a)).

Define αo , wo/wa and β ,
∑

o∈Ca w(N(o,A− a))/wa. Then we can reformulate the above
inequality as

Ψa ≥
∑
o∈Ca

(wa − αowa)2 + εβw2
a = w2

a

(∑
o∈Ca

(1− αo)2 + εβ

)
(2.10)

= w2
a

(∑
o∈Ca

(1− αo)2 + (δ − δ2)β

)
+ w2

aδβ.

The second equation follows from the identity ε = 2δ − δ2, which follows from our choice of
δ. We now lower bound the bracketed expression on the right. Since A is locally optimal with
respect to 1-exchanges, Equation (2.1) and (2.9) imply that∑
o∈Ca

w2
o = w2(Ca) ≤ w2(N+

a) ≤ w2
a+
∑
o∈Ca

w2(N(o,A−a)) ≤ w2
a+
∑
o∈Ca

wa(1−ε)w(N(o,A−a)).

2.4 An Improved Algorithm Using Larger Exchanges 34

Reformulating this inequality in terms of the values αo and β, gives us the following constraint:∑
o∈Ca

α2
ow

2
a ≤ w2

a + (1− ε)w2
aβ = w2

a + (1− δ)2w2
aβ.

Dividing through by w2
a and then rearranging, we obtain β ≥ (

∑
o∈Ca α

2
o)−1

(1−δ)2 . Then,

∑
o∈Ca

(1− αo)2 + (δ − δ2)β ≥
∑
o∈Ca

(1− αo)2 +
δ

1− δ

((∑
o∈Ca

α2
o

)
− 1

)

= |Ca| − 2
∑
o∈Ca

αo +
∑
o∈Ca

α2
o +

δ

1− δ

((∑
o∈Ca

α2
o

)
− 1

)

= |Ca| − 2
∑
o∈Ca

αo +
1

1− δ
∑
o∈Ca

α2
o −

δ

1− δ

≥ |Ca| − 2
∑
o∈Ca

αo +
1

1− δ
· 1

|Ca|

(∑
o∈Ca

αo

)2

− δ

1− δ
, (2.11)

where the last inequality follows from Cauchy-Schwarz (Theorem 1.B.3). We can express the
above lower bound as f(x) where f(x) = 1

|Ca|(1−δ)x
2 − 2x + |Ca| − δ

1−δ and x =
∑

o∈Ca αo.

Then, note that d2f
dx2

= 2
|Ca|(1−δ) > 0, so f is convex in x, and when x = |Ca|(1− δ), we have

df
dx = 0. Thus,

|Ca| − 2
∑
o∈Ca

αo +
1

1− δ
· 1

|Ca|

(∑
o∈Ca

αo

)2

− δ

1− δ

= f

(∑
o∈Ca

αo

)
≥ f (|Ca|(1− δ)) = |Ca| δ −

δ

1− δ
= ρ|Ca|,δ. (2.12)

Combining the inequalities (2.10), (2.11), and (2.12) we finally have

Ψa

wa
≥
ρ|Ca|,δw

2
a + δβw2

a

wa
= ρ|Ca|,δwa + δ

∑
o∈Ca

w(N(o,A− a)).

The last step of the proof is by observing that
∑

o∈Ca w(N(o,A− a)) =
∑

o∈Ca w(N(o,A))−
|Ca|, and that ρt,δ − tδ = ρk,δ − kδ for all 0 ≤ t ≤ k, c.f. Equation (2.8).

2.4.4 Combining the Bounds
We now combine the bounds on the slack for isolated and non-isolated claws given by
Lemmas 2.4.7 and 2.4.8 with Lemma 2.3.1 to obtain a guarantee for Algorithm 1. Theorem
2.4.9 proves that the approximation factor is a trade-off between the slack that isolated and
non-isolated claws receive.

2.4 An Improved Algorithm Using Larger Exchanges 35

Theorem 2.4.9. For any 0 ≤ ε ≤ 1/2 and δ = 1 −
√

1− ε, if A is locally optimal under
s-exchanges for s ≥ 1 + k(k − 1) then,

2w(O) ≤
[
k + 1−min

{
1− ε
2− ε

, ρk,δ

}]
w(A).

Proof of Theorem 2.4.9. Observe that δ ≤ ε. Then, by Lemma 2.4.4,

∑
a∈D

[
∆a + Ψa

wa

]
≥ 1− ε

2− ε
w(D) +

∑
a∈D

∑
o∈Ca

εw(N(o, I)) ≥ 1− ε
2− ε

w(D) +
∑
a∈D

∑
o∈Ca

δw(N(o, I))

By Lemma 2.4.8, and since ∆a ≥ 0 for all vertices, we have

∑
a∈I

[
∆a + Ψa

wa

]
≥(ρk,δ − kδ)w(I) + δ

∑
a∈I

∑
o∈Ca

w(N(o,A)).

Combining the 2 bounds above and recalling that the sets D, I partition A, and that every
o ∈ O appears in Ca for exactly one a ∈ A, we obtain

∑
a∈A

[
∆a + Ψa

wa

]
≥ 1− ε

2− ε
w(D) +(ρk,δ − kδ)w(I) +

∑
a∈A

∑
o∈Ca

δw(N(o, I))

=
1− ε
2− ε

w(D) + (ρk,δ − kδ)w(I) +
∑
o∈O

δw(N(o, I)).

Substituting the above expression in Berman’s final guarantee (Lemma 2.3.1) we then have:

2w(O) ≤ w(A) +
∑
o∈O

w(N(o,A))− 1− ε
2− ε

w(D)− (ρk,δ − kδ)w(I)−
∑
o∈O

δw(N(o, I))

= w(A) +
∑
o∈O

w(N(o,D)) + (1− δ)
∑
o∈O

w(N(o, I))− 1− ε
2− ε

w(D)− (ρk,δ − kδ)w(I)

≤ w(A) + kw(D) + k(1− δ)w(I)− 1− ε
2− ε

w(D)− (ρk,δ − kδ)w(I)

= (k + 1)w(A)− 1− ε
2− ε

w(D)− ρkw(I) ≤ (k + 1)w(A)−min

{
1− ε
2− ε

, ρk,δ

}
w(A).

The second inequality is by (k + 1)-claw freeness of the conflict graph. Thus, each vertex in
the current solution conflicts with at most k vertices of O.

We conclude this section with Theorem 2.4.10 that states the exact approximation factor.

Theorem 2.4.10. Algorithm 1 with exchanges of size s ≤ k(k − 1) + 1 has approximation ratio
k+1−τk

2 where τk = minε∈(0,1/2)

{
1−ε
2−ε , kδ −

δ
1−δ

}
where δ = 1−

√
1− ε. For k = 3, it yields an

approximation factor of 1.811. As k increases, τk increases and limk→∞ τk = 1/2.

2.4 An Improved Algorithm Using Larger Exchanges 36

1 1− ε (1− ε)2 (1− ε)`

√
1+2(1−ε)2

3
(1− ε)

√
1+(1−ε)2

2 (1− ε)2
√

1+(1−ε)2
2

(1−ε)`√
2

(1− ε)(1− ε)2(1− ε)`

(1− ε)
√

1+(1−ε)2
2(1− ε)2

√
1+(1−ε)2

2

(1−ε)`√
2

Fig. 2.3: Almost tight example for our analysis, where the vertices at the top are the vertices in the
current solution, and vertices at the bottom are the vertices in the optimal solution. The
values written are for individual vertices.

Proof of Theorem 2.4.10. The approximation factor is a straightforward consequence of The-
orem 2.4.9. For k = 3, setting ε = 0.3918, we have 2 − 1

2 ·
1−ε
2−ε ≤ 1.81092, whereas

2 − 1
2 · ρ3,1−

√
1−ε ≤ 1.81095. The increase in τk directly follows from the definition of

ρk,δ which is an increasing function of k for a fixed value of δ.

To prove the asymptotic convergence for large k, we can simply set ε = 1 −
(
k−1
k

)2
and

δ = 1−
√

1− ε = 1/k. On the one hand, we observe that: 1−ε
2−ε ≤ 1/2, whereas

ρk,1/k = k · 1

k
−

1
k

1− 1
k

= 1− 1

k − 1
→k→∞ 1.

Thus, for large values of k, the first term 1−ε
2−ε is the bottleneck and the approximation ratio

converges to k+1−1/2
2 .

2.4.5 A matching lower bound
Here we give a small example to show that novel ideas have to be incorporated in order to
improve our analysis from Section 2.4. This analysis leads to a factor of 1.81 when k = 3,
by balancing the improvement 1−ε

2−ε obtained for non-isolated vertices with the improvement
ρ3,1−

√
1−ε obtained for isolated vertices. This leads to a value ε ≈ 0.3918 (see Table 2.2).

The example shown in Figure 2.3 provides an almost tight example of our analysis, up to an
error of 0.02 in the approximation. The example consists of a central vertex with 3 vertices of
O mapped to it by π. We connect this central vertex by two paths of vertices all of which are
connected to 2 vertices of O in the mapping π. The weights of the vertices are set so each
vertex in A is isolated in Hε′ for some ε′ infinitesimally larger than ε. Thus, in our analysis,
we will consider each claw as a single swap. The weights of the vertices in OPT are fixed so
that ∆a = 0 for all a ∈ A. Note that our example is not a tight example for Algorithm 1 since
there is an improving 2-exchange. However, as we will show this example implies that to
make further progress we need to either consider larger swaps involving isolated vertices,
or improve on the bound 1−ε

2−ε for non-isolated vertices, allowing us to increase ε in our final
analysis. The approximation ratio of Figure 2.3 is equal to:

2.4 An Improved Algorithm Using Larger Exchanges 37

w(O)

w(A)
=

3

√
1+2(1−ε)2

3 + 4

√
1+(1−ε)2

2

∑`−1
i=1(1− ε)i + 4 (1−ε)`√

2

1 + 2
∑`

i=1(1− ε)i
,

→
`→∞

3

√
1+2(1−ε)2

3 + 4

√
1+(1−ε)2

2 (ε−1 − 1)

2ε−1 − 1
.

For ε = 0.3918, the value of the previous ratio is equal to ' 1.80857. In contrast, for the same
value of ε, the bound obtained for non-isolated vertices is equal to 2− 1−ε

2(2−ε) = 1.81091.

Figure 2.3 demonstrates that minor modifications of our current analysis cannot beat a factor
of 1.8. This example captures the tension that the variable ε faces. On the one hand, the
approximation factor of Figure 2.3 decreases as ε increases. But, as ε increases the bound for
the exchange, i.e., 1−ε

2−ε , decreases. This suggests that to surpass the 1.8 factor, we must either
improve our bound for non-isolated vertices, or extend our techniques to combine isolated
vertices into multiple swaps. We adopt the first approach in the next section, and the latter
approach in Chapter 3

2.5 Further improving the bound
An important bottleneck in our analysis of non-isolated claws occurs when |V (Ti)| = 2

for all Ti. In this case, each star is simply an isolated edge. Lemma 2.4.7 implies that if
we could ensure a partition of the Hε into larger connected components of size at least
|V (Ti)| ≥ ` for all Ti, then we could improve the gain of 1−ε

2−ε we obtain for non-isolated
claws to `−1

` (1− ε)→`→∞ (1− ε). However, this is not possible when Hε contains maximal
connected components of size 2. Formally, we define an isolated component as follows:

Definition 2.5.1. An isolated component of size t is a maximal connected component in Hε of
size t, where the connectivity is taken forgetting about the orientation of the arcs.

Observe that an isolated component of size 1 is an isolated vertex and agrees with the definition
from Section 2.4. An isolated component C has the property that arcs leaving or entering C
have the ratio of the weight of the endpoints bounded away from 1.

Proposition 2.5.2. Let C be an isolated component of size t. Given a ∈ C and b, c /∈ C such
that b ∈ N+

a and a ∈ N+
c , we have that wb < (1− ε)wa and wa < (1− ε)wc.

We will combine the basic techniques from the previous section to show that the total slack
received by vertices inside such component is at least as large as the slack received by isolated
vertices. Using larger swaps, we will ensure that the remaining non-isolated vertices of Hε can
be partitioned into trees Ti of size at least `. Lemma 2.5.3 computes the slack in an isolated
component.

Lemma 2.5.3. Let T be an isolated component of size t, where t is some constant. Then,

∑
v∈T

[
∆v + Ψv

wv

]
≥
(
ρk,δ − kδ +

t− 1

t
(1− δ)5

)
w(T) + δ

∑
v∈T

∑
o∈Cv

w(N(o,A)).

2.5 Further improving the bound 38

Observe that the slack increases as the size of the connected component increases and matches
that of isolated vertices for t = 1. We advise the reader to jump directly to Section 2.5.1 for
an application of the lemma. For the proof of Lemma 2.5.3, we introduce two variables which
we denote θa,o and Θa, respectively. For each a ∈ A, and o ∈ Ca, we let

θa,o , waw(N(o,A− a))− w2(N(o,A− a)), and Θa ,
∑
o∈Ca

θa,o.

The variable Θa is the slack induced by the difference of weights between endpoints of
arcs that have a as head. We will use these notations in Chapter 3 as well. Therefore,
Ψa ,

∑
o∈Ca

[
(wo − wa)2 + θa,o

]
=
∑

o∈Ca(wo − wa)2 + Θa. Moreover, for a subset Y ⊆ A, we

let θa,o(Y) , waw(N(o, Y − a))− w2(N(o, Y − a)), and Θv(Y) ,
∑

o∈Cv θv,o(Y).

Proof of Lemma 2.5.3. Lemma 2.5.3 is an extension of Lemma 2.4.8. The proof follows the
same ideas. We are given an isolated component T of size t, which we may assume to be a
tree by Lemma 2.4.2/Reduction 1. By Proposition 2.5.2, we know that for any v ∈ T and u ∈
N+
v \T , we have that wuwv ≤ 1−ε. For each vertex, we decompose θv,o(A) , θv,o(T)+θv,o(A\T)

into the slack induced by arcs inside the tree and arcs entering the tree that have v as head.
The proof splits θv,o(A \ T) into two parts. Some amount is kept at v, whereas some amount
is distributed to N+

v \ T . More precisely, we let βv,o = w(N(o,A \ T)) for o ∈ Cv, and define
β ,

∑
v∈T

∑
o∈Cv βv,o. From Proposition 2.5.2, we get that:

θv,o(A \ T)

wv
= w(N(o,A \ T))− w2(N(o,A \ T))

wv
,

≥ εw(N(o,A \ T))

= δ(1− δ)βv,o + δβv,o,

where the third line follows from the definition of ε = 2δ − δ2. Summing over the all o ∈ Cv
and v ∈ T , we get that:

∑
v∈T

∑
o∈Cv

θv,o(A \ T)

wv
≥ δ(1− δ)β + δβ. (2.13)

Focusing on the quantity θv,o(T), we get:

∑
v∈T

∑
o∈Cv

θv,o(T)

wv
=
∑
v∈T

∑
o∈Cv

[
w(N(o, T − v))− w2(N(o, T − v))

wv

]
≥

∑
(u,v)∈E(T)

[
wu −

w2
u

wv

]
.

(2.14)

The inequality is by positivity of each squared bracket term since each vertex in N(o, T−v) has
weight smaller than v. In the remaining of the computation, we want to bound

∑
v∈T Ψv/wv.

This is done as in Theorem 2.4.8. In particular, since T is an isolated component of size t,

2.5 Further improving the bound 39

we obtain a lower estimate of the weight of its neighborhood (i.e., β) given that T is locally
optimal with respect to w2. Thus,

w2(N+
v \ T) ≤ (1− ε)wvw(N+

v \ T) ≤ (1− δ)2wv
∑
o∈Cv

βv,o.

On the other hand, w2(N+
v ∩T) = w2

v +
∑

u:(u,v)∈E(T)w
2
u, where the equality holds by Lemma

2.4.2, since the induced subgraph T ⊆ H is a tree. Substituting both expressions, we obtain

∑
v∈T

∆v

wv
=
∑
v∈T

w2(N+
v)− w2(Cv)

wv

=
∑
v∈T

w2(N+
v ∩ T)

wv
+
w2(N+

v \ T)

wv
− w2(Cv)

wv

≤ (1− δ)2β +
∑

(u,v)∈E(T)

w2
u

wv
+
∑
v∈T

[
wv −

w2(Cv)

wv

]
.

Lemma 2.4.5 states that
∑

v∈T
∆v
wv
≥
∑

(u,v)∈E(T)
w2
u

wv
. By applying it on the left-hand side, we

get that

β ≥ 1

(1− δ)2

∑
v∈T

[
w2(Cv)

wv
− wv

]
. (2.15)

The previous computation gives us a lower bound on β which will be helpful to bound Ψv

away from 0 for vertices in the tree. We focus on the amount of slack induced by arcs that
have one endpoint of the tree as head and the tail outside T . We introduce the variables
αv,o ,

wo
wv

that are normalized weights for the set of talons, and let αv =
∑

o∈Cv αv,o. Applying
Equation (2.13) and (2.15) we have

∑
v∈T

∑
o∈Cv

[
1

wv
(wv − wo)2 +

θv,o(A \ T)

wv

]

=
∑
v∈T

(
w2(Cv)

wv
− 2w(Cv) + |Cv|wv

)
+ δ(1− δ)β + δβ

≥
∑
v∈T

(
w2(Cv)

wv
− 2w(Cv) + |Cv|wv

)
+

δ

1− δ
∑
v∈T

[
w2(Cv)

wv
− wv

]
+ δβ

=
∑
v∈T

wv

(
1

1− δ
∑
o∈Cv

α2
v,o − 2

∑
o∈Cv

αv,o + |Cv| −
δ

1− δ

)
+ δβ

≥
∑
v∈T

wv

(
1

(1− δ) |Cv|
α2
v − 2αv + |Cv| −

δ

1− δ

)
+ δβ.

The last inequality follows from Cauchy-Schwarz (Theorem 1.B.3). We bound each bracketed
expression for each vertex in the tree. Each bracketed expression is a function of αv that

2.5 Further improving the bound 40

attains it minimum at α∗v = (1− δ) |Cv|. Substituting each αv by the corresponding minimum
value implies that

∑
v∈T

∑
o∈Cv

[
1

wv
(wv − wo)2 +

θv,o(A \ T)

wv

]
≥
∑
v∈T

ρ|Cv |,δwv + δβ (2.16)

Next, we unwind the definition of β. We use the following observation in the following
computations: Given a vertex u ∈ N+

v \ T , the number of vertices v ∈ T such that u ∈ N+
v is

exactly 1. Otherwise, it induces a cycle of length at most 2t+ 2 in the conflict graph G[A ∪O]

which is a contradiction to Reduction 1. Thus,

β =
∑
v∈T

∑
o∈Cv

w(N(o,A \ T)) =
∑
v∈T

∑
o∈Cv

w(N(o,A))− |Cv|wv −
∑

(u,v)∈E(T)

wu.

Substituting it into Equation (2.16), and using that ρm,δ −mδ = ρk,δ − kδ, for any 0 ≤ m ≤ k,
we get

∑
v∈T

∑
o∈Cv

[
1

wv
(wv − wo)2 +

θv,o(A \ T)

wv

]
≥
∑
v∈T

(ρk,δ − kδ)wv − δ
∑

(u,v)∈E(T)

wu + δ
∑
v∈T

∑
o∈Cv

w(N(o,A)). (2.17)

Finally, we consider the slack induced by the ∆’s and the arcs inside the tree equal to:∑
v∈T

[
∆v+Θv(T)

wv

]
. By Lemma 2.4.5 and Equation (2.14), we get that

∑
v∈T

[
∆v + Θv(T)

wv

]
≥

∑
(u,v)∈E(T)

w2
u

wv
+

∑
(u,v)∈E(T)

[
wu −

w2
u

wv

]
=

∑
(u,v)∈E(T)

wu. (2.18)

Adding both Equation (2.17) and (2.18), we get that

∑
v∈T

[
∆v + Ψv

wv

]
≥(ρk,δ − kδ)w(T) + (1− δ)

∑
(u,v)∈E(T)

wu + δ
∑
v∈T

∑
o∈Cv

w(N(o,A)).

The result then follows by applying Lemma 2.4.7 to the second term and using that (1− ε) =

(1− δ)2.

2.5.1 Large connected components
In the previous section, we computed the slack for maximal connected components in Hε of
size t. For an isolated component of size up to ` − 1, we will apply Lemma 2.5.3. We now
denote by I the set of vertices that belong to some isolated component of size up to `− 1. Let
D , A \ I be the set of vertices that belong to maximal connected component of size at least
`. We partition D into vertex disjoint trees of size at least ` that are locally optimal w.r.t w2:

2.5 Further improving the bound 41

Constructing exchanges: Take the graph G[D] = (V (D), E(D)) ⊆ Hε. We proceed as
follows: if there is a path of length 2` − 1, then we remove the `th edge of this path. We
continue this procedure in the graph with an edge remove. The procedure terminates when
no path of length 2`− 1 is present. Observe that the removal of an edge potentially creates
two connected components with at least ` connected vertices on each side. Since there is a
finite number of edges, the procedure must terminate and results in a collection of vertex
disjoint connected components of size at least `. We prove that the number of vertices in each
connected component is a tree of bounded size. Let T be a set obtained using this procedure.
Then, the longest path in T has size 2`− 2. By Lemma 2.4.2 which follows from Reduction 1
applied with m = `, the set T must be a tree. Each vertex in T has degree at most k2, thus
|T | ≤

∑2`−2
n=0 k

2n. In Algorithm 1, we will consider exchanges of size s = k2` ≥
∑2`−2

n=0 k
2n.

Applying the above procedure, we partition D into bounded size vertex disjoint trees with at
least ` vertices that are locally optimal with respect to s-exchanges.

A straightforward corollary of Lemma 2.4.6 together with Lemma 2.4.7 yields the following
result.

Lemma 2.5.4. Let T be a connected component of size at least ` in Hε that is locally optimal.
Let B ⊆ A be any set of vertices such that Hε contains no arc (u, v) or (v, u) between any u ∈ B
and any v ∈ T ∑

v∈T

∆v + Ψv

wv
≥ χ(`)

ε w(T) + ε
∑
v∈T

∑
o∈Cv

w(N(o,B)),

where we recall that χ(`)
ε , `−1

` (1− ε).

The main difference with Lemma 2.4.4 is the improvement in the factor 1−ε
2−ε which is now

`−1
` (1 − ε) and asymptotically approaches (1 − ε) as ` tends to ∞. Together Lemma 2.5.3

and 2.5.4 are sufficient to obtain an improvement for all values of k when considering larger
swaps. Theorem 2.5.5 proves that the approximation ratio is a trade-off between the slack
that isolated vertices and large connected components receive.

Theorem 2.5.5. Set ε = 2δ − δ2. If A is locally optimal under s-exchanges for s ≥ k2` then,

2w(O) ≤
[
k + 1−min

{
χ(`)
ε , ρk,δ

}]
w(A).

Proof of Theorem 2.5.5. By definition of ε, we have that δ ∈ (0, 1) and δ ≤ ε. We partitioned
the set of vertices into "non-isolated components" of size at least `, and isolated connected
components of size t = 1, . . . , ` − 1. Recall that I is the set of vertices which belong to an

2.5 Further improving the bound 42

isolated component of size at most `− 1. Given an isolated component T of size t, we apply
Lemma 2.5.3 and obtain that:∑

v∈T

[
∆v + Ψv

wv

]
≥
(
ρk,δ − kδ +

t− 1

t
(1− δ)5

)
w(T) + δ

∑
v∈T

∑
o∈Cv

w(N(o,A))

≥(ρk,δ − kδ)w(T) + δ
∑
v∈T

∑
o∈Cv

w(N(o, I)).

The inequality uses that t−1
t (1− δ)5 is an increasing function of t ≥ 1 and that I ⊆ A. Now,

given a connected component T ⊆ D from the decomposition of size at least `, we apply
Lemma 2.5.4 with B = I and get that∑

v∈T

∆v + Ψv

wv
≥ χ(`)

ε w(T) + ε
∑
v∈T

∑
o∈Cv

w(N(o, I))

≥ χ(`)
ε w(T) + δ

∑
v∈T

∑
o∈Cv

w(N(o, I)),

where the second inequality uses that δ ≤ ε. Summing over all isolated components and all
connected components of size at least ` which altogether partition A, we have that

∑
v∈A

[
∆v + Ψv

wv

]
≥(ρk,δ − kδ)w(I) + χ(`)

ε w(D) + δ
∑
v∈A

∑
o∈Cv

w(N(o, I))

=(ρk,δ − kδ)w(I) + χ(`)
ε w(D) + δ

∑
o∈O

w(N(o, I))

The second equation is because {Cv}v∈A partition the optimal solution. Using this bound in
Lemma 2.3.1 we finally obtain:

2w(O) ≤ w(A) +
∑
o∈O

w(N(o,A))−(ρk,δ − kδ)w(I)− χ(`)
ε w(D)− δ

∑
o∈O

w(N(o, I))

= w(A) +
∑
o∈O

w(N(o,D)) + (1− δ)
∑
o∈O

w(N(o, I))

− χ(`)
ε w(D)−(ρk,δ − kδ)w(I).

Using the fact that for any B ⊆ A, each a ∈ B appears in N(o,B) for at most k distinct values
of o, we get that:

∑
o∈O w(N(o,D)) ≤ kw(D) and

∑
o∈O w(N(o, I)) ≤ kw(I). Replacing the

above bounds in the previous computation, we obtain the desired result

2w(O) ≤ w(A) + kw(D) + k(1− δ)w(I)− χ(`)
ε w(D)−(ρk,δ − kδ)w(I)

= w(A) + kw(A)− χ(`)
ε w(D)− ρk,δw(I)

≤ (k + 1)w(A)−min
{
χ(`)
ε , ρk,δ

}
w(A).

We conclude this section with Theorem 2.5.6 that states the exact approximation for Algorithm
1 using large exchanges.

2.5 Further improving the bound 43

Theorem 2.5.6. Algorithm 1 with exchanges of size s = k2` has approximation ratio k+1−τk
2

where τk = minε∈(0,1)

{
χ

(`)
ε , kδ − δ

1−δ

}
, where ε = 2δ − δ2. For k = 3, we obtain an approx-

imation factor of 1.761 + ε′, for ` = O(1/ε′) with ε′ > 0. As k increases, τk increases and
limk→∞ τk = 1− ε′.

Proof of Theorem 2.5.6. The first part of the theorem follows from Theorem 2.5.5 using
that ε = 2δ − δ2. For k = 3, setting ε = 0.5208, we have χ

(`)
ε , 2 − 1

2 ·
`−1
` (1 − ε) =

2 − 1
2 · (1 − O(ε′))(1 − ε) = 2 − 0.2396(1 − O(ε′)) = 1.7604 + O(ε′). The proof then follows

with an appropriate rescaling of ε′. The second term in the bracketed expression is equal to
ρ3,1−

√
1−0.5208 ≤ 0.4787, where δ , 1 −

√
1− ε. In this case, the approximation factor is at

most 1.7607.

To prove the asymptotic convergence for large k, we can simply set δ = 1/k. We observe that
χ

(`)
ε , `−1

` (1− δ)2 = (1−O(ε′))
(
1− 1

k

)2 whose value tends to 1−O(ε′) as k tends to infinity.
On the other hand,

ρk,1/k = k · 1

k
−

1
k

1− 1
k

= 1− 1

k − 1
→k→∞ 1.

Thus, for large values of k and an appropriate rescaling of ε′, the approximation ratio
converges to k+1−(1−ε′)

2 = k+ε′

2 .

2.5.2 Numerical results for small values
In the previous sections, we have shown how to translate local optimality with respect
s-exchanges into guarantees depending on a given parameter ε. Here, we give concrete
guarantees for various values of k. The asymptotic behavior is quantified in Theorem 2.4.10
and 2.5.6 respectively. The exact numbers for the value of ε and the improvement over the
factor k+1

2 are displayed in Table 2.2.

Swap Size: k2(k − 1) + 1 kO(1/ε′)

k τk/2 APX ε τk/2 APX ε

3 0.189 1.811 0.3918 0.239 1.761 + ε′ 0.5208
4 0.210 2.290 0.2753 0.302 2.199 + ε′ 0.3955
5 0.219 2.781 0.2144 0.337 2.663 + ε′ 0.3249
6 0.225 3.275 0.1759 0.361 3.139 + ε′ 0.2771
7 0.229 3.771 0.1494 0.378 3.622 + ε′ 0.2421
8 0.232 4.268 0.1298 0.392 4.108 + ε′ 0.2152
9 0.234 4.766 0.1148 0.401 4.598 + ε′ 0.1939

10 0.236 5.264 0.1029 0.411 5.089 + ε′ 0.1764

Tab. 2.2: Optimal settings for ε and approximation ratio for different values of k. Here, τk/2, measures
the improvement over k+1

2 . We recall that ` = O(1/ε′) controls the size of the swaps we
consider.

2.5 Further improving the bound 44

2.5.3 Bounding on the number of swaps performed by Algorithm 1
In all of our preceding analysis, we have relied only on local optimality of the set A produced
by Algorithm 1, without considering the time required to converge to such a local optimum.
Here, we show that the weight-scaling argument used by Berman [Ber00], together with one
round of partial enumeration, can be combined with our results to obtain a polynomial time
algorithm. We first briefly review the general weight-scaling approach used in [Ber00].

Suppose that any A that is locally optimal with respect to the improvements considered by
Algorithm 1 for a weight function w satisfies αw(A) ≥ w(O) for some approximation factor
α ≥ 1. Let G = (V,E) be a given (k + 1)-claw free graph with weights wv for v ∈ V , and
let O ⊆ V be an independent set of G with maximum weight. We run the standard greedy
algorithm to construct a solution S0 and then set d , n

εw(S0) . We then define a new instance of

the problem using the weight function w̃v , bdwvc for all v ∈ V and apply Algorithm 1 to this
new instance, starting from the solution S0. Then, for all sets S maintained by Algorithm 1,
we have w̃(S) ≤ dw(S) ≤ dw(O) and since the weights w̃v are integral, the algorithm can
thus make at most

w̃2(O)− w̃2(S0) ≤ w̃2(O) ≤ kw̃2(S0) ≤ kw̃(S0)2 ≤ k (dw(S0))2 = kn2ε−2

improvements before arriving at a locally optimal set A. For the second inequality, note that
whenever wa ≤ wb, w̃2

a ≤ w̃2
b as well, and so any greedy solution for weight function w is

also greedy solution for weight function w̃2. The inequality then follows since the greedy
algorithm has an approximation factor of at most k for the maximum weighted independent
set problem in (k + 1)-claw free graphs.

Let A be the locally optimal solution produced by applying Algorithm 1 to G with weight
function w̃. Then, αw̃(A) ≥ w̃(O) and so

αdw(A) ≥ αw̃(A) ≥ w̃(O) ≥ dw(O)− |O|,

which in turn implies

αw(A) ≥ w(O)− εw(S0)

n
|O| ≥ w(O)− εw(S0) ≥ w(O)− εw(O).

Altogether, then applying Algorithm 1 to w̃ gives us an approximation factor of α/(1− ε) by
using at most kn2ε−2 improvements.

We now show that in fact this loss of ε can be removed entirely. For each v ∈ V , we construct
a residual instance G′(V ′, E′) = G[V \N(v, V)]. We then run the above local search routine
on G′ with ε = (α − 1)n−1 = Ω(n−1) and return the best solution obtained across all n
instances. Note that for any independent set I in G′, I ∪ {v} is an independent set in G. Let
v̂ = arg maxa∈O wa be the heaviest vertex in the optimal solution and consider the residual

2.5 Further improving the bound 45

instance in which v = v̂. Let A′ be the solution produced by our algorithm on this instance
and let O′ , O − v̂. Then, A = A′ ∪ {v̂} is an independent set in G and

αw(A) = αwv̂+αw(A′) ≥ αwv̂+w(O′)−εw(O′) = w(O)+(α−1)wv̂−
α− 1

n
w(O′) ≥ w(O),

where the last inequality follows from wv̂ = maxv∈O wv ≥ 1
|O|w(O) ≥ 1

nw(O) ≥ 1
nw(O′).

Altogether then, considering the best of all n solutions produced by the algorithm gives us a
solution of weight at least w(A) and so we obtain a factor α approximation. Moreover, the
final algorithm performs at most n3kε−2 = O(n4k) improvements across all n iterations of
the algorithm.

2.5.4 Removing small cycles
Using Reduction 1 we assume that no cycle of constant length in the conflict graph exist. The
reduction is due to Arkin and Hassin [AH98]. In particular, they transform an arbitrary locally
optimal instance with respect to w into a solution that doesn’t contain small cycle. They
perform crossing operations that are described in the proof. Reduction 1 is a consequence of
Lemma 2.5.7 which tells that it is sufficient to consider instances whose conflict graph has a
large girth.

Lemma 2.5.7 (Lemma 7 [AH98]). Let γ be a given constant. Consider a locally optimal solution
A with respect to s-exchanges such that the conflict graph G[A ∪O] satisfies w(O)

w(A) = α for some

α. Then, there exists an instance G[A′ ∪O′] such that w(O′)
w(A′) = α. Additionally, the conflict graph

G[A′ ∪O′] has girth at least γ, and A′ is locally optimal with respect to s-exchanges.

Proof of Lemma 2.5.7. We show how to transform the original instance into one whose conflict
graph has girth increased by an additive factor of 2. Consider the conflict graph G[A∪O] with
node weights w, we perform crossing operations. Given an edge e = (a, o), the crossing of e
can be described in the following way: we create a copy G[A′ ∪O′] of G[A ∪O] with identical
weights. Thus, wv = wv′ if v′ is the copy of v. Then, we replace the edges e and its copy e′ by
the edges (a, o′) and (a′, o). Clearly, this operation ensures the (k + 1)-claw freeness of the
graph G[A∪A′∪O∪O′] after the crossing. Secondly, the solution A∪A′ is still locally optimal
with respect to w2. Consider a potential s-exchange R ⊆ O ∪O′ in the duplicated instance
before the crossing. Clearly, in this instance this swap is non-improving. Once the crossing
performed the neighborhood of the vertices in R doesn’t change apart for the vertices o, o′.
The crossing has only enlarged the neighborhood of R in a consistent way since wa = wa′ .

To remove a cycle C of minimal length, we select an arbitrary edge e = (a, o) ∈ C from it and
perform a crossing operation. The only thing to show is that the crossing did not create a
new cycle of minimal length which is not a duplicate of a minimal length cycle in the original
graph. Suppose by contradiction that it is the case. Then, this cycle must use the edges
(o, a′), (o′, a). Otherwise, it is mapped to a cycle in the original graph before the duplication.
Let the original graph be G and the copy be G′. Denote this cycle by C ′′ = S1(o, a′)S′1(o′, a),
where S1 is the path from a to o contained in G and S′1 the path from a′ to o′ contained in G′.

2.5 Further improving the bound 46

Then, if C ′′ has minimal length then either S1(o, a) or S′1(o, a) can be mapped to a cycle of
length smaller than C in the original graph, a contradiction. Hence, all the cycles of minimal
length after the crossing operation are copies of some minimal length cycle in the original
graph.

A slight issue with this operation is the potential duplication of other minimal length cycles.
The procedure is then the following. Enumerate all the minimal length cycles {Ci} in the
original graph G. Denote by Ci,j the jth copy of Ci. To ensure efficient removal of all minimal
length cycles, we remove all the Ci,j ’s at the ith step. In particular, suppose that we want
to cancel Ci and all its copies. Then, we identify an edge e ∈ Ci and its copy ej ∈ Ci,j
for all j. Then, we duplicate the instance and perform the crossing operation of e and ej ’s
altogether. Cross e with e′ and ej with e′j . This procedure again doesn’t create new small
length cycles other than duplicates of an original cycle Ck and is still locally optimal. When
all crossing operations are done, we end up with a conflict graph of girth increased by 2. Thus,
by repeating this procedure, we may assume that the girth of the conflict graph is at least
some given constant γ.

As a corollary of Lemma 2.5.7 (applied with γ = 4m), we suppose the following reduction

Reduction 1. Assume that the conflict graph doesn’t contain a cycle of length 4m where m is
a constant.

2.5.5 Technical lemmas to build the exchanges
Using that Reduction 1 holds, we obtain structural properties about the exchange graph H.
They allow us to assume that the large exchanges that we consider are in fact vertex disjoint
trees. In this first lemma, we argue that, if the graph that we consider doesn’t contain long
path, then it must be a tree. We recall that a path P = v1 . . . vt between t vertices has size
t− 1.

Lemma 2.5.8. Suppose Reduction 1 holds for a constant 4m+ 2. Then, any connected induced
subgraph F ⊆ H with longest path in F of length at most 2m is a tree.

Proof of Lemma 2.5.8. By contradiction, we assume that there is cycle Σ = v1v2 . . . vtv1 of
length t ≤ 2m + 1. By definition of H, the edge (vi, vi+1) exists if either vi+1 ∈ N+

vi − vi or
vi ∈ N+

vi+1
− vi+1. Without loss of generality, we assume that the first case happens. Thus,

there exists one vertex of oi ∈ Cvi such that vi+1 ∈ N(oi, A − vi). Applying the previous
argument for each edge (vi, vi+1) yields a cycle Σ′ = v1o1v2o2v3 . . . vtotv1 in G of length
2(t) ≤ 4m+ 2, which is a contradiction.

Lemma 2.5.9 is a technical lemma about the structure of long paths in trees.

Lemma 2.5.9. Let T be a tree with longest path of length equal to j for some j ≥ 1. Then, all
longest paths P = v1 . . . vj+1 of length j in T must cross at a vd(j+2)/2e.

2.5 Further improving the bound 47

Proof of Lemma 2.5.9. Let P = v1 . . . vj+1, and P ′ = v′1 . . . v
′
j+1 be two vertex disjoint longest

paths. Consider the path P1 = v1 . . . v
′
j+1 joining v1 to v′j+1. Because T is a tree the path

P1 exists and is unique. In particular P1 = P̄QP̄ ′ where P̄ ⊆ P is a sub-path of P that
contains v1. Similarly, P̄ ′ ⊆ P ′ is a sub-path of P ′ containing v′j+1. The path Q starts
with some vertex vi ∈ P for some i and v′l ∈ P ′ for some l. Since P and P ′ are vertex
disjoint we have vi 6= v′l, thus one of the following paths must have a greater length than
j:
{
P1; P̄Qv′l . . . v

′
1; vj+1 . . . viQP̄ ′; vj+1 . . . viQv

′
l . . . v

′
1

}
. Hence, two longest paths must inter-

sect.

Given that P and P ′ intersect, let I , {i : vi ∈ P ∩ P ′} be the set of indices of the vertices in
the intersection of the two paths. Since T is a tree, given three integers i ≤ p ≤ l such that
i and l belong to I, then p ∈ I otherwise it would create a cycle. Let i∗ and l∗ be the two
integers such that [i∗, l∗] ∩ N = I.

Suppose by contradiction that vd(j+2)/2e does not belong to the intersection of P and P ′.
Then, either both integers i∗ and l∗ are strictly smaller than d(j + 2)/2e or both of them
are strictly bigger. In the second case, either v1 . . . vi∗ . . . v

′
j+1 or v1 . . . vi∗ . . . v

′
1 is a path

strictly longer than j. The first case is by an identical observation where we argue that either
vj . . . vl∗ . . . v

′
j+1 or vj . . . vl∗ . . . v′1 has greater length.

Lemma 2.5.10 gives an upper bound on the number of vertices that a tree with bounded
degree and no long path can have. The bound obtained in this lemma is not sharp.

Lemma 2.5.10. Let T be a tree that doesn’t contain a path of length m and each vertex v ∈ T
has degree at most d ≥ 1. Then, |V (T)| ≤

∑m−1
s=0 ds.

Proof of Lemma 2.5.10. We prove the lemma by induction of the length of the longest path in
T . If m = 2, then the longest path has size at most 1. Thus, T is either an edge or a single
vertex. Thus, we have |V (T)| ≤ 2 ≤ 1 + d =

∑1
s=0 d

s.

Let T be a tree with longest path size equal to j. Take a path P = v1 . . . vj+1 be a path
of length j. By Lemma 2.5.9, all maximum longest paths must cross at vd(j+2)/2e. Thus
removing, vd(j+2)/2e from T creates at most d disjoint trees each, where each path in the
subtrees has maximum length at most ≤ j − 1. Applying the induction hypothesis we get that
|V (T)| ≤ 1 + d ·(#vertices in subtrees) ≤ 1 + d ·

∑j−2
s=0 d

s =
∑j−1

s=0 d
s.

Finally, Lemma 2.5.11 partitions any large connected component in few vertex disjoint trees
of bounded size.

Lemma 2.5.11. Assume that Reduction 1 holds for some constant 4m. Let C be some connected
component of size greater or equal to m, then there is a decomposition of C into vertex disjoint
trees T such that |V (T)| ∈

[
m,
∑2m−2

s=0 k2s
]
. Moreover, the length of the longest path is at most

2m− 2.

2.5 Further improving the bound 48

Proof of Lemma 2.5.11. Given C ⊆ H, we proceed as follows: for each path of length 2m− 1

(using 2m − 1 edges) delete the dm2 e edge. Continue until no more path of length 2m − 1

can be found. The procedure terminates as there is a finite number of edges. Then, each
formed connected component, say T , has the length of their longest path at most 2m− 2 by
construction. By Lemma 2.5.8, the induced subgraph on T is a tree. It remains to bound the
size of T . Every time an edge is deleted, which potentially creates two disjoint connected
components, each side of the path contains m vertices3. Thus, for every connected component
T obtained when the procedure terminates we have |V (T)| ≥ m. The upper bound on the
size of T follows from Lemma 2.5.10 since each connected component has the length of their
longest path at most 2m− 2 and the degree of each vertex in H is at most k2.

3A path of length 2m− 1 has 2m− 1 edges and hence has 2m vertices

2.5 Further improving the bound 49

3A
√
3-approximation for Weighted

3-Set Packing

The work in this Chapter is specific to this thesis and builds on Chapter 2.

3.1 Recap from Chapter 2
We continue the study of the maximum weight independent set problem in a (k + 1)-claw
free graph that generalizes the weighted k-set packing problem. Given a vertex weighted
(k + 1)-claw free graph, we seek to find an independent set of maximum weight. More
precisely, we build on our previous work in Chapter 2 to design an improved approximation
algorithm that greatly improves over our previous results. We recommend the reader to read
Chapter 2 before going further in our analysis. In fact, we borrow all the notations introduced
in the previous chapter and largely expand upon the previous proofs. We will for instance
refer to the parameters ∆a,Ψa,Θa, θa and ρk,δ.

Our main result in this chapter is to give a
√

3-approximation for Maximum Weight Indepen-
dent Set in 4-claw free graphs. It implies a

√
3-approximation for the weighted 3-dimensional

matching problem, and improves over Theorem 2.5.6 and thus over [Neu21]. Since our
analysis is based on extending Berman’s algorithm with a greater swap size, our result is
tight for k = 3. Indeed, the locality gap with unbounded swap size of Berman’s algorithm is√
k as shown in Figure 2.1. Perhaps surprisingly, our proof shows that Figure 2.1 is in fact

the only instance that yields a ratio of
√

3. All other structures in the conflict graph yield an
improvement over the factor

√
3.

Neuwohner [Neu22] shows that Berman’s algorithm restricted to swaps of size at most
O(log(n)) (where n is the number of vertices) cannot give a better approximation factor
than k

2 . For all k ≥ 7, our second result is to match this result using smaller swaps of size
O((k/ε)O(1/ε)) independent of n. For k ≥ 7 and any ε > 0, we obtain a k+ε

2 -approximation
algorithm. Not only is our result tight, but it improves over [Neu22] who designed an
algorithm with asymptotic approximation factor equal to k

2 . Here, asymptotic means that for
any ε > 0, there is a kε such that for all k ≥ kε, there is an approximation algorithm with
guarantee at least k+ε

2 . The proof requires kε ≥ 200′000
ε3

and uses swaps of size O(log(n)). Our
proof naturally extends to the regime k = 4, 5, 6, and we obtain state-of-the-art results that
almost match the factor k

2 . We believe that our proof can be modified to obtain a ratio of k+ε
2

for all k ≥ 4 and ε > 0. The exact statement of the theorem below is found in Section 3.7.1.

50

Theorem
For k ≥ 3, Berman’s algorithm (Algorithm 1) with s-exchanges, with s = O

(
(k/ε)O(1/ε)

)
has approximation equal to k+1−τk

2 , where τ3 = 4 − 2
√

3, τ4 = 0.8204, τ5 = 0.9282,
τ6 = 0.9836, and τk = 1− ε for any k ≥ 7, and ε > 0.

Bottleneck case in Chapter 2
We start by recalling the main obstacle to improve over Theorem 2.5.6. There, the approxima-
tion ratio is a trade-off between two sub-instances that may appear in the exchange graph Hε.
The tight cases are either the large connected components of size at least `, or the isolated
vertices in the exchange graph. All others cases induce a greater slack. In the first case, the
slack is equal to χ(`) , `−1

` (1− δ)2, whereas in the second it is equal to ρk,δ , kδ − δ
1−δ . The

final approximation ratio requires balancing these two quantities.

The crucial observation is that we did not use the absence of large improving swaps for
isolated vertices. In the proof, we have solely used that the ratio between the weights of
the endpoints of arcs in H that contain at least one isolated vertex is bounded away from 1.
Using that isolated vertices also belong to large non-improving swaps we will improve the
approximation factor.

Using large swaps for isolated vertices
Our main objective when extending our proof is the following: In order to get arbitrarily close
to a k

2 approximation, we would like to set χ(`) arbitrarily close to 1, which, as ` tends to
infinity, requires setting δ to a tiny constant with a desirable accuracy. However, as δ tends to
0, the parameter ρk,δ tends to 0.

To compensate the loss induced from setting δ to a lower value, we refine the exchange graph
by adding new arcs with a greater difference of weight between the corresponding endpoints.
We look at the effect of large exchanges on formerly isolated vertices. More precisely, let Hε

be the exchange graph defined as in Definition 2.4.1. Let’s call the novel graph H ′ after the
inclusion of new arcs. Essentially, we want to refine the former decomposition of A into vertex
disjoint trees to incorporate the arcs H ′ \Hε. Importantly, we preserve the decomposition
that was obtained in Hε. As invariant, we make sure that vertices receiving an appropriate
amount of slack in Hε still receive the same amount after the refinement.

The main effect is on isolated vertices in Hε. Given an isolated vertex v in Hε (c.f. Chapter 2),
either v is no longer isolated in H ′ or v is still isolated in H ′. In the first case, we can use the
existence of arcs in H ′ \Hε that connect v to bound the parameter ∆v due to the absence of
large improving swaps. In the second case, the vertex v is very isolated in the sense that the
weight of the neighbors of v are in fact much further away from wv than expected. Thus, the
parameter ρk,δ can be strengthened to ρk,δ′ where δ′ ≥ δ. This procedure enables us to reduce
δ. However, refining the exchange graph once isn’t enough to reduce the approximation factor
to k

2 . Thus, we will refine the exchange graph up to L times.

3.1 Recap from Chapter 2 51

The overall argument is the following: We create an iterative refinement of the exchange
graph{Hi}L+1

i=1 with L+1 layers, where H1 , Hε (c.f. Definition 2.4.1). Similarly to Definition
2.4.1, each layer is defined with a prescribed threshold εi, where εi+1 , 2εi − ε2

i ≥ εi. In
the exchange graph H≤i ,

⋃i
j=1Hj , we have a partition of A = (A \ Ii) t Ii, where Ii is the

set of isolated components of size less than `. For simplicity, we can think of Ii as isolated
vertices in H≤i, as small maximal connected components are handled similarly. To H≤i, we
add arcs from Hi+1. We refine the partition Ii , Di+1 t Pi+1 t Ii+1. Given a vertex v ∈ Ii, if
v is still isolated in H≤i+1, then v ∈ Ii+1. The vertices in Ii+1 will receive an amount of slack
of at least ρk,εi . Otherwise, v ∈ Di+1 t Pi+1, meaning that v belongs to a large connected
component in H≤i+1. We distinguish two cases: either v ∈ Di+1 in which case v belongs to a
large connected component contained solely in H≤i+1[Ii], or v ∈ Pi+1 where we will need
to expand some large exchange in A \ Ii by adding the connected component containing v
to it. The set Pi+1 is thus named pendant vertices. The vertices in Di+1, Pi+1 will receive
an amount of slack equal to χ(`)

i−1 , `−1
` (1− εi−1)5 + ρk,εi−1

, and νi−1 ' (1− εi−1)6 + ρk,εi−1

respectively.

3.2 Definitions, notations and structural properties
We continue to expand the results of the previous section and keep the same notations (c.f.
∆a,Ψa,Θa, θa and ρk,δ.). We fix A to be the locally optimal solution of Algorithm 1, and
denote O the optimal solution. Let L ∈ N be some integer fixed throughout the remainder
of this chapter which defines the number of layers of the exchange graph. Additionally, we
define the following sequence of variables ε−1 ≤ ε0 ≤ ε1 ≤ ε2 ≤ . . . ≤ εL, where ε1 ∈ (0, 1) is
a value fixed in advance, and ε−1 = 0, ε0 , 1−

√
1− ε1 and εi , 2εi−1− ε2

i−1 for i = 2, . . . , L.
Observe that for i ≥ 1, we have

(1− εi) = (1− 2εi−1 + ε2
i−1) = (1− εi−1)2 = . . . = (1− ε1)2i−1

.

The variables ε0, ε1 play the role of δ, ε in Chapter 2 respectively.

Recall, the following mapping π : O → A by π(o) = arg max{wx : x ∈ N(o,A)} which defines
the collection of disjoint claws that partitions the optimal solution C = {Ca}a∈A, where
Ca , {o : π(o) = a} is the claw centered at a.

Definition 3.2.1 (Exchange graph Hi). We define the exchange graph Hi = (A,E) at layer
i = 1, . . . , L+ 1, where the ground set A are the vertices in the current solution returned by
Algorithm 1, and there is an arc (b, a) ∈ E(Hi) from b to a for every o ∈ Ca such that:

• b ∈ N(o,A− a),

• wb
wa
∈

(1− ε1, 1− ε−1] if i = 1,

(1− εi, 1− εi−1] if i = 2, . . . , L,

[0, 1− εL] if i = L+ 1.

Remark 3.2.2. There is no arc that belongs to both Hi and Hj for i 6= j.

3.2 Definitions, notations and structural properties 52

Moreover, we define H≤i ,
⋃i
j=1Hj to be the union of the exchange graph for the first i

layers and let H ,
⋃L+1
j=1 Hj to be the graph that contains the entire set of arcs. Similarly, for

a sequence of sets S1, S2, . . . , St, we define S≤i ,
⋃i
j=1 Sj . Let ` ∈ N to be a fixed integer

throughout the remainder of the proof. It defines the largest size of the exchange which we
will consider in H1. This parameter is identical to the one used in Chapter 2 when handling
large connected components (Lemma 2.5.4). In the analysis, we will distinguish three types
of vertices per layer.

Definition 3.2.3 (Di, Pi, Ii). We create L layers of the exchange graph H that partitions the
vertex set A into different classes. The connectivity of a graph is taken irrespective of the
orientation of the arcs.

• At layer 1, we let A , D1 t I1, where D1 is the set of non-isolated vertices, i.e., they
belong to a connected component that has size at least ` in H1. The rest of the vertices
in A \D1 forms I1. Each vertex in I1 belongs to a maximal connected component of
size at most `− 1.

• For layer 2 ≤ j ≤ L, we refine Ij−1 such that Ij−1 , Dj t Pj t Ij . The set Dj is the set
of vertices that belong to a connected component of size at least ` in H≤j [Ij−1], which is
the induced subgraph of H≤j restricted to Ij−1. The set Pj is the set of pendant vertices.
It is the set of vertices that belong to a maximal connected component of size strictly
less than ` in H≤j [Ij−1], but belong to a maximal connected component of greater size
in H≤j . Finally, we have Ij = Ij−1 \ (Pj tDj) which corresponds to the vertex set of
the set of connected components of size strictly less than ` in H≤j .

Definition 3.2.4. It is convenient to define Si , Pi t Di for i = 1, . . . , L + 1 as the set of
non-isolated vertices at layer i where S1 = D1 and P1 = ∅, and SL+1 = IL

Remark 3.2.5. For every j = 1, . . . , L the sets Dj , Pj , Ij are well-defined.

Proof of Remark 3.2.5. For any j ≥ 1, we look at the graph H≤j [Ij−1], where here I0 = A. It is
composed of multiple maximal connected components. Take a maximal connected component
say C ⊆ H≤j [Ij−1]. Then, either it has size greater or equal to ` in which case all the vertices
in C belong to Dj or C has size strictly less than `. In the second case, we distinguish between
whether C is still a maximal connected component in the graph H≤j or if C is part of a larger
connected component in H≤j . In the former case, all the vertices in C belong to Ij , whereas
in the latter case they belong to Pj .

3.2.1 Exchanges
Like in Chapter 2, our analysis of the w2 local-search works by decomposing our current
solution A into vertex disjoint trees. Each built tree will be non-improving with respect to w2.
We describe the set of exchanges here, but before we proceed further, we give a high-level
intuition of the construction of the swaps. The construction is by induction on the number of
layers L (we will not be using HL+1).

3.2 Definitions, notations and structural properties 53

3.2.2 High-level construction of the set of exchanges
We start at layer 1 and compute a decomposition of A , D1 t I1 into vertex disjoint trees
contained in H1. In the first layer, the respective decomposition of D1 and I1 is in fact the
same as the one performed in Section 2.5.1 Chapter 2 where D1 = D and I1 = I. Then,
we contract each tree in a single node, which we label by the number of vertices present in
the original tree. Contracted vertices resulting from the contraction of greater or equal to `
vertices are set as roots. We add edges from H2 to the graph with contracted nodes, where
there is an arc (T, T ′) between two contracted trees if there exists two vertices u ∈ T, v ∈ T ′

such that (u, v) ∈ E(H2) (excluding self-loops). We look at the vertices in I1 , D2 t P2 t I2

that we decompose into vertex disjoint trees in H2 ∪ H1 (possibly containing contracted
vertices). Each such tree will exclusively contain vertices in D2 or P2 or I2. The partitioning
of D2 is identical to the one in Section 2.5.1 but performed in the contracted graph. The trees
spanning the vertices in P2 will be attached to roots. Again, we contract the trees in a single
node, and label them by the number of vertices of the ground set A that they contain. The
contracted trees which result from the contraction of at least ` vertices from A are set as roots.
In layer 2, the trees containing vertices of D≤2 and P2 are roots for the next iteration. In layer
i, we assume that we have a decomposition of(A \ Ii−1) t Ii−1 into vertex disjoint trees. We
further decompose Ii−1 into vertex disjoint trees using edges from Hi. The set of trees in
H≤i[Ii−1] containing at least ` vertices forms Di. The trees obtained from the decomposition
of A \ Ii−1 are expanded by attaching the trees spanning Pi. We contract each tree in a single
node, and continue the process by adding arcs from Hi+1. Figure 3.1 and 3.2 highlight a
decomposition up to the second layer.

A

B

C

D

E

F

G

H

I Set D1

Fig. 3.1: Exchange graph at level 1 with ` = 2. An arc (b, a) ∈ H1 is present if b ∈ N+
a , and wb

wa
is

between 1− ε1 and 1. The nodes B, D, I , G are in D1 and A, C, E, F, H are in I1

3.2 Definitions, notations and structural properties 54

A

B

C

D

E

F

G

H

I

Set D1

Set D2

Set P2

Set I2

Fig. 3.2: Exchange graph H≤2 at level 2 with ` = 2. The red arcs are in H2. The decomposition of A in
vertex disjoint trees is made of 4 trees: {B,D,A}, {I, G, H}, {C, F} and {E}.

3.2.3 Formal Decomposition
Using Reduction 1, we assume throughout this section that the conflict graph G[A∪O] doesn’t
contain cycles of length 4(`2 + `L + 2), where L, ` are constants independent of n and k

fixed in advance. In particular, by Lemma 2.5.8 any connected induced subgraph F ⊆ H

that doesn’t contain a path of length 2(`2 + `L+ 1) is a tree. Since H≤i ⊆ H, any connected
induced subgraph H≤i[F] without paths of length 2(`2 + `L + 1) is also tree. We start by
partitioning H1 into vertex disjoint trees.

Lemma 3.2.6. The set D1 can be partitioned into vertex disjoint trees such that each tree T ⊆ H1

and |T | ∈
[
`,
∑2`−2

s=0 k2s
]
. Additionally, there is a decomposition of I1 into vertex disjoint trees

T ⊆ H1 of size up to `− 1. In each tree, the length of the longest path is at most 2`− 2.

Proof of Lemma 3.2.6. By definition, the set I1 corresponds to maximal connected components
of size up to `− 1 in H1. Since the longest path in this component has length at most `− 2,
we apply Lemma 2.5.8 which shows that it must be a tree in H. For vertices in D1, we apply
Lemma 2.5.11 with m = `.

Lemma 3.2.6 is the base case of our decomposition. In Lemma 3.2.7, we expand the construc-
tion to the next layers. It gives a formal description of the set of exchanges that we consider.

Lemma 3.2.7. For any i = 1, . . . , L, there is a decomposition of A \ Ii into vertex disjoint trees
T with the following properties:

3.2 Definitions, notations and structural properties 55

• Each tree can be written as T , Tj ∪
(⋃i

p=j+1

⋃mp
m=1 Tp,m

)
, where Tj ⊆ Dj for some

1 ≤ j ≤ i and each Tp,m ⊆ Pp, and mp is a bounded integer independent of n and k. The
sets Tj and Tp,m are trees. The longest path in T has length at most 2`2 + 2`i.

• Given a vertex a ∈ Ip−1 ∩ Tp,m for some p,m, let C be the maximal connected component
containing a in H≤p−1[Ip−1], then C ⊆ Tp,m. Similarly, for j ≥ 2 and a ∈ Ij−1 ∩ Tj , the
maximal connected component C containing a in H≤j−1[Ij−1] satisfies C ⊆ Tj .

• A tree Tp,m ⊆ Pp is connected to Tj ∪
(⋃p−1

q=j+1

⋃mq
m=1 Tq,m

)
using an arc from Hp.

• The size of T is at most |T | ≤ (k2`)i−1 ·
∑2`−2

s=0 (k`)2s and |Tj | ≥ `.

The main interest of the following Lemma is that it allows to partition the ground set in
vertex disjoint trees of bounded size. It ensures that Algorithm 1 runs in polynomial time.
The second bullet point is slightly more mysterious. It will be crucially used in Lemma 3.2.10
and 3.2.11. The advantage is that all arcs that are incoming or leaving a subtree Tp,m ∈ T
(Tj ∈ T) belong to H≥p (H≥j , respectively).

Proof of Lemma 3.2.7. The proof follows by induction on i. The base case i = 1, holds by
applying Lemma 3.2.6. Assume by induction that the above properties hold until layer i− 1.
The entirety of the proof concentrates on the set Di t Pi ⊆ Ii−1 after the addition of the arcs
from Hi to the exchange graph H≤i−1. The goal is to expand T and incorporate the sets Di

and Pi to the decomposition.

We proceed as follows: by the induction hypothesis, we consider the current decomposition of
A \ Ii−1 into trees {T } and the maximal connected components in H≤i−1[Ii−1]. We contract
each connected component and each tree in a single node. In this graph, we add arcs between
two contracted nodes if there exists two vertices contained in these contracted nodes which
share an arc in Hi. Let G′ be the contracted graph. We focus on G′ restricted to the nodes
arising from the contraction of the maximal connected components partitioning Ii−1, which
we denote by G′

∣∣
Ii−1 . Consider a maximal connected component C in G′

∣∣
Ii−1 . Then, either

• Case Di: C contains ` or more vertices in the uncontracted graph.

• Case Pi: C contains `− 1 or less vertices in the uncontracted graph and it is not maximal
in G′.

• Case Ii: C contains `− 1 or less vertices in the uncontracted graph and it is maximal in
G′.

In the first case, the following procedure yields a decomposition of Di with the desirable
properties. For each path of length exactly 2` − 1 in C, delete the `-the edge. Thus, each
connected component formed by the above heuristic has longest path of length at most 2`− 2,
and contains at least ` vertices because both sides of the divided path have length at least
`. Each component formed by the procedure is a tree and is added to the collection {T }.
When the procedure terminates, the longest path in each formed component has length at

3.2 Definitions, notations and structural properties 56

most the length of the longest path in the G′ plus the length of the longest path in each
contracted vertex. Here, we note that contracted vertices are maximal connected components
in H≤i−1[Ii−1] which by definition have size up to ` − 1 so their longest path has length at
most `− 1. Therefore, the partitioning of C creates connected components each of which has
longest path length at most 2`− 2 + (2`− 1)(`− 1) = (2`− 1)`− 1 ≤ 2`2.

By Lemma 2.5.8, assuming G[A ∪ O] doesn’t contain cycles of length 4`2 + 4 we have that
each constructed connected component is a tree. The degree of a vertex in G′ is at most
k2(` − 1) since each contracted node contains at most ` − 1 vertices each with degree at
most k2 in H. By Lemma 2.5.10, the maximum size of a tree that doesn’t a contain path of
length 2` − 1 and with degree at most k2(` − 1) is at most

∑2`−2
s=0 (k2(` − 1))s. Since each

contracted vertex contains at most `− 1 vertices, the size of the constructed subgraph in H is
at most (`− 1) ·

∑2`−2
s=0 (k2(`− 1))s ≤

∑2`−2
s=0 (k`)2s. Finally, the second bullet point is verified

by construction of G′ and the path splitting argument since the nodes in G′ are exactly the
maximal connected components in H≤i−1[Ii−1].

In the second case, we consider C that we attach to some tree T ⊆ A \ Ii−1 with an arc
from Hi. In the decomposition, we replace T by T t C. The existence of an edge between
C and T is by definition of Pi. We perform this operation for all such C and uncontract G′.
By induction, the size of a tree T contained in A \ Ii−1 is at most (k2`)(i−1)−1 ·

∑2`−2
s=0 (k`)2s.

Each vertex in T has degree at most k2 in H. To each vertex in T , we may attach a tree of
size at most |C| ≤ `− 1 ≤ `. Thus, each such expanded tree T ′ ⊆(A \ Ii−1) ∪ Pi has size at
most:

(
(k2`)(i−1)−1 ·

∑2`−2
s=0 (k`)2s

)
· k2` = (k2`)i−1 ·

∑2`−2
s=0 (k`)2s. It remains to prove that the

above construction is a tree. The length of the longest path in T ′ is at most the length of the
longest path in T plus twice the longest path in a connected component attached to it. Hence,
it is at most 2`2 + 2`(i− 1) + 2(`− 2) ≤ 2`2 + 2`i. Since the graph G[A ∪O] doesn’t contain
cycle of length 4(`2 + `i + 1), we apply Lemma 2.5.8 and get that the extended graph is a
tree. The second bullet point follows again from the definition of G′.

From Lemma 3.2.7, we obtain a decomposition of the ground set of the exchange graph into
vertex disjoint trees.

Corollary 3.2.8. There is a decomposition of A into vertex disjoint trees {T } with the following
properties:

• Each tree can be written as T , Tj ∪
(⋃L

p=j+1

⋃mp
m=1 Tp,m

)
, where Tj ⊆ Dj for some

j ∈ [1, L+1], where DL+1 = IL, each Tp,m ⊆ Pp, and mp is a bounded integer independent
of n and k.

• The induced subgraph H[T] on T is a tree.

• Given a vertex a ∈ Ip−1 ∩ Tp,m for some p,m, let C be the maximal connected component
containing a in H≤p−1[Ip−1], then C ⊆ Tp,m. Similarly, for j ≥ 2 and a ∈ Ij−1 ∩ Tj , the
maximal connected component C containing a in H≤j−1[Ij−1] satisfies C ⊆ Tj .

• A tree Tp,m ⊆ Pp is connected to Tj ∪
(⋃p−1

q=j+1

⋃mq
m=1 Tq,m

)
using an arc from Hp.

3.2 Definitions, notations and structural properties 57

• The size of T is at most |T | ≤ (k2`)L−1 ·
∑2`−2

s=0 (k`)2s. Furthermore, |Tj | ≥ ` for j =

1, . . . , L.

Proof of Corollary 3.2.8. Lemma 3.2.7 gives a decomposition of the ground set A \ IL into
vertex disjoint trees {T } with desirable properties. The second bullet point follows from
Lemma 2.5.8 since the length of the longest path is bounded by a function of ` and L which
are constants independent of n, and k. It remains to show that IL can be partitioned as well.
Recall that IL is the set of maximal connected components of size at most `− 1 in the graph
H≤L. Since they have size at most `− 1 vertices, Lemma 2.5.8 implies that they must be trees.
Adding them to {T } satisfies all the properties. The third bullet point follows from the same
graph contraction argument as in Lemma 3.2.7.

Given Corollary 3.2.8, we introduce the following definitions

Definition 3.2.9 (Root/Pendant Tree, Bridge Arc). Given a tree T , Tj∪
(⋃L

p=j+1

⋃mp
m=1 Tp,m

)
as in Corollary 3.2.8 for j ∈ [1, L+ 1], we say that Tj is the root tree and that Tp,m are pendant
trees. Additionally, the arc that satisfies the fourth bullet point is called the bridge arc.

3.2.4 Numerical properties of the decomposition
Via the decomposition from Corollary 3.2.8 we obtain an important property which will be
used throughout the proof. It is similar to Property 2.5.2, but generalized to multiple layers.

Lemma 3.2.10. For i ≥ 1, let a ∈ Ii and let C ⊆ Ii be the maximal connected component
containing a in H≤i. For b ∈ N+

a \ C and c /∈ C such that a ∈ N+
c − c, we have:

wb
wa
≤ 1− εi and

wa
wc
≤ 1− εi.

Proof of Proposition 3.2.10. By definition of Ii, the connected component C ⊆ Ii is isolated
in the graph H≤i and has size up to `− 1. Thus, for every potential arc (b, a) or (a, c) as in
the proposition with b, c /∈ C, we have that (b, a), (a, c) /∈ H≤i which implies that the ratio
between the weight of the tail and the weight of the head is bounded by 1− εi.

Lemma 3.2.11. Let T be a pendant or root tree such that T ⊆ Sj . Let a ∈ T , then for every
adjacent vertex b ∈ (N+

a \ T) ∩ Si of a not in the tree, we have:

wb
wa
≤

{
1 if i = j = 1,

1− εmax{i,j}−1 else.

Proof of Lemma 3.2.11. There is nothing to prove if i = j = 1. For j ≥ 2, let C ⊆ Ij−1 be the
maximal connected component in H≤j−1[Ij−1] that contains a. For i ≥ 2, let C ′ ⊆ Ii−1 be the
maximal connected component in H≤i−1[Ii−1] that contains b. Since b doesn’t belong to T ,
we use the second property of Lemma 3.2.7 for i ≥ 2 which implies that b /∈ C. Similarly, we

3.2 Definitions, notations and structural properties 58

have that a /∈ C ′ for j ≥ 2. Applying Lemma 3.2.10 to the set of indices i, j that are greater
than 2 yields the desired result.

3.3 Efficient charging argument
Let’s recall the analysis in Chapter 2. There, we distinguished between two sets of vertices D1

and I1. For vertices in D1 we used the effect of large exchanges so that vertices in D1 have
their slack term ∆v/wv bounded away from 0. For vertices in I1 we used that the weight of
their neighbors differ largely from their weight. In particular, by balancing ε = ε1 and δ = ε0,
we proved that each vertex in I1 receives (1− δ) times their weight from each adjacent vertex
in H. Extending the proof to handle multiple layers is more delicate. We demonstrate that
each vertex in Si+1 for i ≥ 1 receives 1 − εi−1 times their weight from adjacent vertices in
H.

Recall the definition of θa,o and Θa. For a ∈ A and o ∈ Ca, we let θa,o , waw(N(o,A −
a)) − w2(N(o,A − a)), and let Θa ,

∑
o∈Ca θa,o. Moreover, for a subset Y ⊆ A, we let

θa,o(Y) , waw(N(o, Y −a))−w2(N(o, Y −a)) to be the restriction of θa,o to adjacent vertices
in Y . Similarly, we let Θa(Y) ,

∑
o∈Ca θa,o(Y). In short, Θa roughly captures the difference

of weights between the endpoints of the arcs that are pointing towards a. Lemma 3.3.1 deals
with θa,o(A \ Y). It shows the effect of the layering by having a greater bound for vertices in
higher layers. This will be helpful in future computations to ensure that each vertex receives
an appropriate amount of slack.

Lemma 3.3.1. Let T ⊆ Sj with j ≥ 1 be a pendant or root tree (Definition 3.2.9), let X be a
set of vertices containing T ⊆ X. Denote by X+ , {x ∈ X : x ∈ N+

v − v for some v ∈ T} the
set of vertices in X in the neighborhood of T . For any a ∈ T and o ∈ Ca, we have

θa,o(A \X)

wa
≥ 1[j≥2] · εj−1w(N(o, S≤j \X+)) +

L+1∑
i=j+1

εi−1w(N(o, Si \X+)),

where 1[j≥2] is the characteristic vector of the event j ≥ 2 and SL+1 = IL.

Observe that the lower bound on θa,o(A \X) depends exclusively on X+. This is expected as
Θa captures the slack induced by the arcs pointing towards a.

Proof of Lemma 3.3.1. Since T ⊆ X, we have θa,o(A \X) = waw(N(o,A \X))−w2(N(o,A \
X)). Given a ∈ T and o ∈ Ca, observe that the set N(o,A \X) = N(o,A \X+) since X \X+

is exactly the sets of vertices of X that do not appear in the neighborhood of T . Thus, we

3.3 Efficient charging argument 59

have θa,o(A \X) = θa,o(A \X+) for all a ∈ T and o ∈ Ca. Moreover, since the sets {Si}L+1
i=1

form a partition of A we can write

θa,o(A \X) = waw(N(o,A \X+))− w2(N(o,A \X+))

=
L+1∑
i=1

[
waw(N(o, Si \X+))− w2(N(o, Si \X+))

]
.

We apply Lemma 3.2.11 to every adjacent vertex of a in A \X+ ⊆ A \ T . It implies that

L+1∑
i=1

w2(N(o, Si \X+)) ≤ wa
L+1∑
i=1

(1− 1[i≥2∨j≥2]εmax{i,j}−1)w(N(o, Si \X+))

≤ wa(1− 1[j≥2]εj−1)w(N(o, S≤j \X+))

+ wa

L+1∑
i=j+1

(1− εi−1)w(N(o, Si \X+)).

Substituting the previous bound into θa,o(A \ X+) and dividing by wa yields the desired
result.

3.4 Slack for Large Trees
Our proof focuses on bounding the slack for large trees defined in Corollary 3.2.8. More
precisely, we let

T , Tj+1 ∪
L⋃

p=j+2

mp⋃
m=1

Tp,m, (3.1)

be a tree as in Corollary 3.2.8 where Tj+1 ⊆ Dj+1 and Tp,m ⊆ Pp for each p = j + 2, . . . , L,
and j = 0, . . . , L, where we define DL+1 = IL. Recall that Tp,m ⊆ T is a pendant tree which
is attached to Tj+1 ∪

⋃p−1
q=j+2

⋃rq
r=1 Tq,r using a bridge arc, denoted ep,m.

In the rest of Section 3.4, we capture the slack present in several key quantities. The lemmas
are stated in a general form. In Section 3.6, we employ them to analyze the slack that vertices
in root trees and pendant trees receive.

3.4.1 Slack from Large Exchanges
We start by analyzing the slack induced by the absence of improving exchanges in T .

Definition 3.4.1 (Locally optimal). A tree T is said to be locally optimal if w2(N+
T)−w2(CT) ≥

0, where N+
T ,

⋃
v∈T N

+
v and CT ,

⋃
v∈T Cv.

In the rest of the analysis, we assume that Algorithm 1 terminates and that each T is locally
optimal. The exact value of s given as input to Algorithm 1 will be given later. Since

3.4 Slack for Large Trees 60

Algorithm 1 checks all possible subsets of size at most sk, all subsets of T are also locally
optimal. In particular, each root tree and pendant tree is locally optimal.

Assuming that T is locally optimal, we use Lemma 2.4.5 to derive the gain by performing large
exchanges. For simplicity, we define ΓE ,

∑
(u,v)∈E

w2
u

wv
for a subset of edges E. Lemma 3.4.2

shows that the amount of slack available is bounded a function of the arcs in T which is
exactly ΓE(T).

Lemma 3.4.2. Given a locally optimal tree T as in Equation (3.1). Let E′p,m = E(Tp,m) + ep,m
be the set of edges in the pendant tree Tp,m with the bridge edge ep,m. Then,

∑
v∈T

∆v

wv
≥ ΓE(Tj+1) +

∑
p,m

ΓE′p,m .

Proof of Lemma 3.4.2. The proof is a straightforward application of Lemma 2.4.5 applied to
T . Indeed,

∑
v∈T

∆v

wv
≥

∑
(u,v)∈E(T)

w2
u

wv
= ΓE(T) = ΓE(Tj+1) +

∑
p,m

ΓE′p,m .

Lemma 3.4.2 simply partitions the slack induced by arcs of T into those that belong to the
root tree and to the pendant trees respectively. Bridge arcs are assigned to pendant trees.
Importantly, ΓE′p,m contains as many terms as number of vertices |Tp,m|. We will use this fact
for pendant trees to map each arc to a vertex in Section 3.6.

3.4.2 Exterior Slack
In the next lemma, we bound the quantity

∑
a∈T Θa(A \ T) away from 0 for some tree T .

Recall that, Θa(A \ T) roughly captures the difference of weights between endpoints of arcs
from A \ T to T . If the difference is large, it means that the neighborhood N+

T \ T has a
small weight compared to T , which we leverage in the proof to bound the weight of the set of
talons of each claw centered at v ∈ T . The lemma is stated in a slightly more general form by
considering an additional set Y ⊆ N+

T \ T .

Lemma 3.4.3. Let j ∈ [1, L] and let T ⊆ Sj+1 be a root or pendant tree in T (see Equation
3.1) where DL+1 = IL. Consider a subset Y ⊆ S≤j+1 \ T disjoint from T and denote by
F , {(y, v) ∈ H : y ∈ Y, v ∈ T} the set arcs from Y to T . Then,

∑
v∈T

∑
o∈Cv

(wv − wo)2 + θv,o(A \ (T ∪ Y))

wv
≥
(
ρk,εj−1

− kεj−1

)
w(T)− εj−1

1− εj−1

∑
(y,x)∈F

w2
y

wx
+ ξ,

where

ξ ≥
∑
v∈T

∑
o∈Cv

L∑
i=1

εi−1w(N(o, Si+1))− εj−1

∑
(u,v)∈E(T)

wu − εj−1

∑
(y,v)∈F

wy.

3.4 Slack for Large Trees 61

To simplify the explanation, we set Y = ∅ and F = ∅. In this case, we see that every vertex
v ∈ T receives a slack of ρk,εj−1

which coincides with the fact that v ∈ Ij . We also notice that
for o ∈ Cv, each vertex in N(o, Si+1) receives εi−1 times its weight from v. The subtlety is the
slight loss equal to εj−1

∑
(u,v)∈E(T)wu.

The next lemma is analogous to Lemma 3.4.3 above, except that it deals with the case j = 0.
It is an identical statement where we set Y = ∅. It is stated in this form because we will not
need to consider the set Y when dealing with root trees in S1.

Lemma 3.4.4. Let T ⊆ S1 be a root tree in T (see Equation 3.1). Then,

∑
v∈T

∑
o∈Cv

(wv − wo)2 + θv,o(A \ T)

wv
≥
∑
v∈T

∑
o∈Cv

L∑
i=1

εi−1w(N(o, Si+1)).

Proof of Lemma 3.4.3. Let j ≥ 1, and let v ∈ T ⊆ Sj+1 be a vertex in the tree. Consider a
neighbor u ∈ (N+

v \T)∩Si+1 that doesn’t belong to the tree. By Lemma 3.2.11, we have that:

wu
wv
≤ 1− εmax{i,j}.

Let Y + , {y ∈ Y : (y, v) ∈ F} be the set of vertices from Y that have an arc to some vertex in
T . Additionally, let X = T ∪ Y and X+ = T ∪ Y +. We express θv,o(A \X) as a function of
ηv,o and βv,o. Intuitively, given v ∈ T , an amount

∑
o∈Cv ηv,o is distributed to the neighbors of

v outside X+, whereas an amount
∑

o∈Cv βv,o is kept at vertex v. Formally for each vertex
v ∈ T and o ∈ Cv we let:

• ηv,o , εj−1w(N(o, S≤j+1 \X+)) +
∑L

i=j+1 εi−1w(N(o, Si+1 \X+))

• βv,o ,
[
(1− εj−1)w(N(o, S≤j+1 \X+)) +

∑L
i=j+1(1− εi−1)w(N(o, Si+1 \X+))

]
We also define η ,

∑
v∈T

∑
o∈Cv

ηv,o and β ,
∑
v∈T

∑
o∈Cv

βv,o. Observe that both sums are over

vertices in T = X \ Y . The variables ηy,o, βy,o for y ∈ Y are not defined. For v ∈ T ,
Lemma 3.3.1 implies

θv,o(A\X)

wv
≥ εjw(N(o, S≤j+1\X+)) +

L∑
i=j+1

εiw(N(o, Si+1\X+))

= (2εj−1 − ε2
j−1)w(N(o, S≤j+1\X+)) +

L∑
i=j+1

(2εi−1 − ε2
i−1)w(N(o, Si+1\X+))

= εj−1(1−εj−1)w(N(o, S≤j+1\X+)) +
L∑

i=j+1

εi−1(1−εi−1)w(N(o, Si+1\X+))+ηv,o

≥ εj−1βv,o + ηv,o,

3.4 Slack for Large Trees 62

where in the second line we used the definition of εi = 2εi−1− ε2
i−1 for i = 1, . . . , L. The final

inequality follows from the fact that εi−1 ≥ εj−1 for every i = j + 1, . . . , L. Summing over all
the vertices in T and the vertices of O in the claw centered at them, we have∑

v∈T

∑
o∈Cv

θv,o(A \X)

wv
≥ εj−1β + η. (3.2)

Next, we give a lower bound on β. It is obtained using that the tree T is locally optimal
(Definition 3.4.1), and using Lemma 2.4.5. Since the tree T ⊆ Sj+1 we can apply Lemma
3.2.11 to the neighbors u ∈ (N+

v \ X+) ∩ Si+1 ⊆ (N+
v \ T) ∩ Si+1 outside X+. Because

{Si}L+1
i=1 forms a partition of A, we have

w2(N+
v \X+) = w2

((
N+
v ∩ S≤j+1

)
\X+

)
+

L∑
i=j+1

w2
((
N+
v ∩ Si+1

)
\X+

)

≤ wv

(1− εj)w
((
N+
v ∩ S≤j+1

)
\X+

)
+

L∑
i=j+1

(1− εi)w
((
N+
v ∩ Si+1

)
\X+

).
By definition of the sequence of ε, we know that 1− εj = (1− εj−1)2 for j = 1, . . . , L and that
1− εi = (1− εi−1)2 ≤ (1− εi−1)(1− εj−1) for i ≥ j ≥ 1. Applying these two observations and
factoring by (1− εj−1), we obtain

w2(N+
v \X+)

wv
≤(1−εj−1)

(1−εj−1)w
((
N+
v ∩S≤j+1

)
\X+

)
+

L∑
i=j+1

(1−εi−1)w
((
N+
v ∩Si+1

)
\X+

)
≤ (1−εj−1)

∑
o∈Cv

βv,o.

In the last inequality we have simply applied a union bound over the neighbors N+
v \ X+

since N+
v \X+ is the union of the sets N(o,A \X+) for all o ∈ Cv. On the other hand, we

have w2(N+
v ∩X+) = w2

v +
∑

u:(u,v)∈E(T)w
2
u +

∑
u:(u,v)∈F w

2
u for all v ∈ T where the equality

holds since X+ is a tree. Indeed, the length of the longest path in the induced subgraph
H[X+] is at most the length of the longest path in T plus 2 (since Y + ⊆ N+

T \ T). Thus, the
length of the longest path in X+ is bounded by a constant. Using Lemma 2.4.2, we conclude
that the induced subgraph H[X+] must be a tree. Substituting both expressions, we obtain

∑
v∈T

∆v

wv
=
∑
v∈T

w2(N+
v)− w2(Cv)

wv

=
∑
v∈T

w2(N+
v \X+)

wv
+
w2(N+

v ∩X+)

wv
− w2(Cv)

wv

≤ (1− εj−1)β +
∑

(u,v)∈E(T)

w2
u

wv
+
∑
v∈T

[
wv −

w2(Cv)

wv

]
+

∑
(u,v)∈F

w2
u

wv
.

3.4 Slack for Large Trees 63

Since T is locally optimal, Lemma 2.4.5 shows that
∑
v∈T

∆v
wv
≥

∑
(u,v)∈E(T)

w2
u

wv
. Substituting this

expression to bound the left-hand side of the previous equation yields the following lower
estimate on β,

β ≥ 1

1− εj−1

∑
v∈T

[
w2(Cv)

wv
− wv

]
− 1

1− εj−1

∑
(u,v)∈F

w2
u

wv
. (3.3)

The next step of the proof consists of using Equation (3.3) and Equation (3.2) to bound the
left-hand side of Lemma 3.4.3. But before doing so we introduce the variables αv,o , wo/wv
for v ∈ T, o ∈ Cv, and αv ,

∑
o∈Cv αv,o. Substituting Equation (3.2) and (3.3) into the

following computation we get that,

∑
v∈T

1

wv

∑
o∈Cv

(wo − wv)2 +
∑
v∈T

∑
o∈Cv

θv,o(A \X)

wv

≥
∑
v∈T

(
w2(Cv)

wv
− 2w(Cv) + |Cv|wv

)
+ εj−1β + η

=
∑
v∈T

wv

(
1

1− εj−1

∑
o∈Cv

α2
v,o − 2

∑
o∈Cv

αv,o + |Cv| −
εj−1

1− εj−1

)
− εj−1

1− εj−1

∑
(u,v)∈F

[
w2
u

wv

]
+ η

≥
∑
v∈T

wv

(
α2
v

(1− εj−1) |Cv|
− 2αv + |Cv| −

εj−1

1− εj−1

)
− εj−1

1− εj−1

∑
(u,v)∈F

[
w2
u

wv

]
+ η.

The last inequality follows from Cauchy-Schwarz (Theorem 1.B.3). Giving a lower bound on
the previous expression requires minimizing each round bracketed expression. Each of them
is a function of αv, which attains its minimum at α∗v = (1− εj−1) |Cv|. Replacing each αv by
the minimum value yields,

∑
v∈T

∑
o∈Cv

(wo − wv)2 + θv,o(A \X)

wv
≥
∑
v∈T

ρ|Cv |,εj−1
wv −

εj−1

1− εj−1

∑
(u,v)∈F

[
w2
u

wv

]
+ η. (3.4)

It remains to expand η. We fix o ∈ Cv for some v ∈ T . By assumption the set X+ lies in
S≤j+1, and the sets Si are disjoint. Thus, X+ ∩ Si+1 = ∅ for all i ≥ j and hence,

εj−1w(N(o,S≤j+1∩X+))+

L∑
i=j+1

εi−1w(N(o,Si+1∩X+))= εj−1

(
w(N(o, T))+w(N(o, Y +))

)
,

(3.5)

where the equality is by disjointness of T and Y +. Summing the first term on the right-hand
side over all v ∈ T and o ∈ Cv, we get that∑

v∈T

∑
o∈Cv

w(N(o, T)) =
∑
v∈T
|Cv|wv +

∑
(u,v)∈E(H[T])

wu =
∑
v∈T
|Cv|wv +

∑
(u,v)∈E(T)

wu. (3.6)

3.4 Slack for Large Trees 64

The set E(H[T]) is the edge set of the induced subgraph of the exchange graph on T , which
by the second bullet point of Corollary 3.2.8 is exactly equal to E(H[T]) = E(T). Similarly,
summing the second term over all v ∈ T and o ∈ Cv, we get that∑

v∈T

∑
o∈Cv

w(N(o, Y +)) =
∑

(y,v)∈F

wy. (3.7)

By combining Equation (3.5), (3.6) and (3.7) we obtain the following

ζ ,
∑
v∈T

∑
o∈Cv

εj−1w(N(o, S≤j+1 ∩X+)) +
L∑

i=j+1

εi−1w(N(o, Si+1 ∩X+))

= εj−1

∑
v∈T
|Cv|wv +

∑
(u,v)∈E(T)

wu +
∑

(y,v)∈F

wy

 .

Observe that the weight of N(o, Si+1 ∩X+) for v ∈ T and o ∈ Cv is captured by ζ, and that η
captures the weight of the complementary set N(o, Si+1 \X+). Therefore,

η = η + ζ − ζ

=
∑
v∈T

∑
o∈Cv

εj−1w(N(o,S≤j+1))+
L∑

i=j+1

εi−1w(N(o,Si+1))

− ζ
≥
∑
v∈T

∑
o∈Cv

L∑
i=1

εi−1w(N(o, Si+1))− ζ

=
∑
v∈T

∑
o∈Cv

L∑
i=1

εi−1w(N(o, Si+1))− εj−1

∑
v∈T
|Cv|wv +

∑
(u,v)∈E(T)

wu +
∑

(y,v)∈F

wy

 .

The inequality is by the monotonicity of the sequence of ε′is. After substituting the above
bound on η in Equation (3.4), Lemma 3.4.6 then follows by recalling that ρt,ε− tε = ρk,ε− kε
for any 0 ≤ t ≤ k and ε ≥ 0.

Proof of Lemma 3.4.4. Let T ⊆ S1 be a root tree. By Lemma 3.3.1 and since T ⊆ S1 the
following holds for any v ∈ T and o ∈ Cv,

θv,o(A \ T)

wv
≥

L+1∑
i=2

εi−1w(N(o, Si \ T)) =
L+1∑
i=2

εi−1w(N(o, Si)) ≥
L∑
i=1

εi−1w(N(o, Si+1)),

where in the second equality we used that T ∩ Si = ∅ for any i = 2, . . . , L + 1. The last
inequality is by the identity εi ≥ εi−1 for all i. Summing over all v ∈ T and o ∈ Cv and using
that (wv − wo)2 ≥ 0, we get the desired inequality.

3.4 Slack for Large Trees 65

3.4.3 Interior Slack
In the previous section, we were given a tree T , and we measured the slack arising from arcs
that are incoming into T . In this section, we analyze the slack arising from arcs between
vertices in T . More precisely, we consider the quantity Θa(T) for some tree T and a ∈ T .
This section complements Section 3.4.2 which focused on bounding Θa(A \ T). We prove a
slightly more general lemma than described above by considering Θa(T ∪ Y) for some set Y
and a ∈ T .

Lemma 3.4.5. Let T, Y be two sets such that Y ⊆ A \ T . Denote by F , {(y, v) ∈ H : y ∈
Y, v ∈ T} the set arcs from Y to T and F̄ , {(v, y) ∈ H : v ∈ T, y ∈ Y } the set of arcs from T

to Y . Then,

ΓE(T)∪F∪F̄ +
∑
v∈T

Θv(T ∪ Y)

wv
≥

∑
(u,v)∈E(T)

wu +
∑

(y,v)∈F

wy +
∑

(x,y)∈F̄

w2
x

wy
.

Proof of Lemma 3.4.5. For simplicity, let X = T ∪ Y . We expand the parameter Θv(X).

∑
v∈T

Θv(X)

wv
,
∑
v∈T

∑
o∈Cv

[
w(N(o,X − v))− w2(N(o,X − v))

wv

]

=
∑

(u,v)∈E(H[T])∪F

[
wu −

w2
u

wv

]

=
∑

(u,v)∈E(T)∪F

[
wu −

w2
u

wv

]
,

where E(H[T]) is the edge set of the induced subgraph of the exchange graph on T . The
last equality follows from the second bullet point of Corollary 3.2.8. We combine the
above computation with ΓE(T)∪F∪F̄ to obtain the desired result. Recall that ΓE(T)∪F∪F̄ =∑

(u,v)∈E(T)∪F∪F̄
w2
u

wv
. Thus,

ΓE(T)∪F∪F̄ +
∑
v∈T

Θv(X)

wv
=

∑
(u,v)∈E(T)∪F∪F̄

w2
u

wv
+

∑
(u,v)∈E(T)∪F

[
wu −

w2
u

wv

]

=
∑

(u,v)∈E(T)∪F

wu +
∑

(u,v)∈F̄

w2
u

wv
.

3.4.4 Final Expression of the Slack
We conclude Section 3.4 by deriving a general estimate for the slack induced by vertices in
a locally optimal tree T . The result follows by combining the results from the previous two
subsections.

Lemma 3.4.6. Let j ∈ [1, L] and let T ⊆ Sj+1 be a root or pendant tree in T (see Equation 3.1)
where DL+1 = IL. Consider a subset Y ⊆ S≤j+1 \ T and denote by F , {(y, t) ∈ H : y ∈ Y, t ∈

3.4 Slack for Large Trees 66

T} the set arcs from Y to T and F̄ , {(v, y) ∈ H : v ∈ T, y ∈ Y } the set of arcs from T to Y .
Then,

ΓE(T)∪F∪F̄ +
∑
v∈T

Ψv

wv
≥
(
ρk,εj−1

− kεj−1

)
w(T) +(1− εj−1)

∑
(u,v)∈E(T)

wu+
∑
v∈T

∑
o∈Cv

L∑
i=1

w(N(o, Si+1))

+
∑

(u,v)∈F

wu

(
1− εj−1 −

wu
wv

εj−1

1− εj−1

)
+

∑
(u,v)∈F̄

w2
u

wv
.

Proof of Lemma 3.4.6. The proof combines Lemma 3.4.3 and Lemma 3.4.5. For simplicity, let
LHS , ΓE(T)∪F∪F̄ +

∑
v∈T

Ψv
wv

be the left-hand side of the equation in Lemma 3.4.6 and let
X , T ∪ Y . By definition of Ψ and Γ, we recall that

LHS =

[
ΓE(T)∪F∪F̄ +

∑
v∈T

Θv(X)

wv

]
+

[∑
v∈T

∑
o∈Cv

(wv − wo)2 + θv,o(A \X)

wv

]
.

We apply Lemma 3.4.5 to the first bracketed term and Lemma 3.4.3 to the second term. Thus,

LHS ≥
∑

(u,v)∈E(T)∪F

wu +
∑

(u,v)∈F̄

w2
u

wv
+
(
ρk,εj−1

− kεj−1

)
w(T)− εj−1

1− εj−1

∑
(y,x)∈F

w2
y

wx

+
∑
v∈T

∑
o∈Cv

L∑
i=1

εi−1w(N(o, Si+1))− εj−1

∑
(u,v)∈E(T)∪F

wu,

The inequality then follows by grouping the sums over the same sets.

In the next lemma, we provide a complement to Lemma 3.4.6 when j = 0.

Lemma 3.4.7. Let T ⊆ S1 be a root tree in T (see Equation 3.1). Then,

ΓE(T) +
∑
v∈T

Ψv

wv
≥

∑
(u,v)∈E(T)

wu +
∑
v∈T

∑
o∈Cv

L∑
i=1

εi−1w(N(o, Si+1)).

Proof of Lemma 3.4.7. The proof combines Lemma 3.4.4 and Lemma 3.4.5. By definition of
Ψ and Γ, we recall that

ΓE(T) +
∑
v∈T

Ψv

wv
=

[
ΓE(T) +

∑
v∈T

Θv(T)

wv

]
+

[∑
v∈T

∑
o∈Cv

(wv − wo)2 + θv,o(A \ T)

wv

]

We apply Lemma 3.4.5 to the first bracketed term (with Y = ∅) and Lemma 3.4.4 to the
second term to obtain

ΓE(T) +
∑
v∈T

Ψv

wv
≥

∑
(u,v)∈E(T)

wu +
∑
v∈T

∑
o∈Cv

L∑
i=1

εi−1w(N(o, Si+1)).

3.4 Slack for Large Trees 67

3.5 Root Tree
The goal of this section is to prove that the vertices in a root tree T ⊆ Dj of size t receives an
amount of slack equal to χ(t)

j−1 , t−1
t (1 − εj−1)5 + ρk,εj−1

for j ≥ 2 and χ(t)
−1 , t−1

t (1 − ε0)2

for j = 1. Lemma 3.5.1 deals with the case j ≥ 2.

Lemma 3.5.1. Let j ∈ [1, L] and let T , Tj+1 ⊆ Dj+1 be the root tree in T (see Equation
(3.1)), where DL+1 = IL. Suppose that T has size t. Then,

ΓE(T) +
∑
v∈T

Ψv

wv
≥
(
χ

(t)
j−1 − εj−1k

)
w(T) +

∑
v∈T

∑
o∈Cv

[
L∑
i=1

εi−1w(N(o, Si+1))

]
,

where χ(t)
j−1 , t−1

t (1− εj−1)5 + ρk,εj−1
.

In short, Lemma 3.5.1 shows that the improvement over the factor k+1
2 for vertices in a

root tree is equal to χ(t)
j−1. In fact, the term kεj−1 will cancel out in the final analysis. The

parameter χ(t)
j−1 is made of two terms: t−1

t (1 − εj−1)5 and ρk,εj−1
. The first term is due to

the absence of improving swaps in a tree of size t. Recall that the ratio of the weight of two
endpoints of an arc in T is at least 1− εj . The second term ρk,εj−1

simply follows from the
fact T ⊆ Ij−1 is isolated in the previous layer.

Proof of Lemma 3.5.1. The proof of Lemma 3.5.1 is obtained by giving a lower bound on the
expression after using Lemma 3.4.6. For simplicity, we denote LHS , ΓE(T) +

∑
v∈T

Ψv
wv

. We
use Lemma 3.4.6 (with Y = ∅) which results in the following bound

LHS ≥
(
ρk,εj−1

− kεj−1

)
w(T) + (1− εj−1)

∑
(u,v)∈E(T)

wu +
∑
v∈T

∑
o∈Cv

L∑
i=1

εi−1w(N(o, Si+1)).

The final step is show that
∑

(u,v)∈E(T)wu ≥
t−1
t (1−εj+1)w(T) which follows from Lemma 2.4.7

(Chapter 2) since wu ≥ (1− εj+1)wv for every arc (u, v) in E(T) ⊆ H≤j+1. Therefore, we get

LHS ≥
(
t− 1

t
(1− εj−1)(1− εj+1) + ρk,εj−1

− kεj−1

)
w(T) +

∑
v∈T

∑
o∈Cv

L∑
i=1

w(N(o, Si+1))

=
(
χ

(t)
j−1 − kεj−1

)
w(T) +

∑
v∈T

∑
o∈Cv

L∑
i=1

w(N(o, Si+1)),

where in the second equation we used that εj+1 = (1− εj−1)4 for all j ≥ 1.

Lemma 3.5.1 holds for rooted trees T ⊆ Dj+1 for j ≥ 1. The next lemma deals with the
rooted trees in D1.

3.5 Root Tree 68

Lemma 3.5.2. Let T , T1 ⊆ D1 be the root tree in T from Equation (3.1) of size |T | = t.
Define χ(t)

−1 , t−1
t (1− ε0)2. Then,

ΓE(T) +
∑
v∈T

Ψv

wv
≥ χ(t)

−1w(T) +
∑
v∈T

∑
o∈Cv

[
L∑
i=1

εi−1w(N(o, Si+1))

]
,

Proof of Lemma 3.5.2. The proof of Lemma 3.5.2 is obtained by giving a lower bound on the
expression after using Lemma 3.4.7. For simplicity, we denote LHS , ΓE(T) +

∑
v∈T

Ψv
wv

. We
use Lemma 3.4.7 which gives the following bound

LHS ≥
∑

(u,v)∈E(T)

wu +
∑
v∈T

∑
o∈Cv

L∑
i=1

w(N(o, Si+1)). (3.8)

It remains to bound the first term of the right-hand side. Since wu ≥ (1− ε0)2wv for all arcs
(u, v) in E(T) ⊆ H1, we can apply Lemma 2.4.7 to the tree T of size t to get that∑

(u,v)∈E(T)

wu ≥
t− 1

t
(1− ε0)2w(T).

The lemma then finishes by substituting the above expression into Equation (3.8).

3.6 Pendant Tree
In this section we analyze the slack that vertices in pendant trees receive. We consider
a pendant tree Tp,m ⊆ Pp that belongs to T (see Equation (3.1)) which is attached to
Tj+1 ∪

⋃p−1
q=j+2

⋃rq
r=1 Tq,r using a bridge arc ep,m = (t, s). To ease the notation, we will let

T = Tp,m be the pendant tree in this section.

Lemma 3.6.1 is equivalent to Lemma 3.5.1 for pendant trees. Brief modifications of Lemma
3.5.1 could be used to handle the pendant trees. However, obtained numerical results would
be worse than the one claimed in the introduction especially for low values of k. To obtain the
desired results, we adopt a more intricate approach. More precisely, we will use Lemma 3.4.6
with a carefully chosen set Y that includes the endpoint of the bridge arc that lies outside T .

Lemma 3.6.1. Let T ⊆ Pj+1 be a pendant tree of some tree T from Equation (3.1). Denote
E′T = E(T) + (t, s), where e = (t, s) is the bridge arc. Then,

ΓE′T +
∑
v∈T

Ψv

wv
≥(νj−1 − kεj−1)w(T) +

∑
v∈T

∑
o∈Cv

[
L∑
i=1

εi−1w(N(o, Si+1))

]
,

where νj−1 , ρk,εj−1
+ (1− εj−1)5

(
1− (1− εj−1)2εj−1

)
.

3.6 Pendant Tree 69

In short, Lemma 3.6.1 shows that the improvement over the factor k+1
2 for vertices in a

pendant tree in Sj+1 is at least equal to νj−1. The proof in fact demonstrates that the lemma
is tight when the pendant tree consists of a single vertex.

Proof of Lemma 3.6.1. The proof again crucially rely on Lemma 3.4.6, where we set Y as
the endpoint of the bridge arc that is outside T . More formally, we distinguish two cases
depending on the orientation of the bridge arc.
Case 1: Suppose that s ∈ T and t ∈ A \ T . The orientation of the arc implies that ws ≥ wt.
Let Y = {t}. We define F , {(t, v) ∈ H : v ∈ T}, and F̄ , {(v, t) ∈ H : v ∈ T} to be set arcs
between T and Y . By the second bullet point of Corollary 3.2.8, and since T ∪ Y ⊆ T , it
implies that the induced subgraph H[T ∪ Y] is a tree and thus F = {(t, s)} and F̄ = ∅. We
apply Lemma 3.4.6 with Y , F , F̄ defined previously and get that

ΓE′T +
∑
v∈T

Ψv

wv
≥
(
ρk,εj−1

− kεj−1

)
w(T) +(1− εj−1)

∑
(u,v)∈E(T)

wu +
∑
v∈T

∑
o∈Cv

L∑
i=1

w(N(o, Si+1))

+ wt

(
1− εj−1 −

wt
ws

εj−1

1− εj−1

)
.

We claim the following two identities which we will prove separately.

Claim 3.6.2. If wt ∈
[
(1− εj−1)4; (1− εj−1)2

]
ws, we have that wt

(
1− εj−1 − wt

ws

εj−1

1−εj−1

)
+

ρk,εj−1
ws ≥ νj−1ws.

Claim 3.6.3. For any tree T ⊆ S≤j+1 and s ∈ T , the following inequality holds ρk,εj−1
w(T − s)+

(1− εj−1)
∑

(u,v)∈E(T)wu ≥ νj−1w(T − s).

Therefore, substituting both Claim 3.6.2 (using that the bridge arc lies in Hj+1 for j ≥ 1) and
Claim 3.6.3 into the previous equation finishes the proof of the first case.
Case 2: Suppose now that s ∈ A \ T and t ∈ T . Again, we let Y = {s} and define
F , {(s, v) ∈ H : v ∈ T}, and F̄ , {(v, s) ∈ H : v ∈ T}. By the second bullet point of
Corollary 3.2.8, and since T ∪ Y ⊆ T , it implies that the induced subgraph H[T ∪ Y] is a tree
and thus F = ∅ and F̄ = {(t, s)}. We apply Lemma 3.4.6 with Y , F , F̄ defined previously to
obtain that

ΓE′T +
∑
v∈T

Ψv

wv
≥
(
ρk,εj−1

− kεj−1

)
w(T) +(1− εj−1)

∑
(u,v)∈E(T)

wu+
∑
v∈T

∑
o∈Cv

L∑
i=1

w(N(o, Si+1))+
w2
t

ws
.

(3.9)

3.6 Pendant Tree 70

The bridge arc (t, s) lies in Hj+1, which implies for j ≥ 1 that wt ≥ (1 − εj+1)ws = (1 −
εj−1)4ws. Thus,

ρk,εj−1
w(T) +(1− εj−1)

∑
(u,v)∈E(T)

wu+
w2
t

ws

≥
[(
ρk,εj−1

+ (1− εj−1)4
)
wt
]

+

ρk,εj−1
w(T − t) +(1− εj−1)

∑
(u,v)∈E(T)

wu

≥νj−1w(T),

where the last inequality follows by observing that ρk,εj−1
+ (1 − εj−1)4 ≥ νj−1 in the first

square bracketed expression and by using Claim 3.6.3 in the second. Replacing the above
computation in Equation (3.9) concludes the proof.

We conclude this section with the proofs of Claim 3.6.2 and Claim 3.6.3.

Proof of Claim 3.6.2. For clarity, we will let εj−1 = ε, and let x = wt
ws

be the ratio between
the weight of the endpoints of the bridge arc. The parameter x takes value in the interval
[(1− ε)4, (1− ε)2]. To prove the claim, it is sufficient to show that g(x) , x(1− ε− x ε

1−ε) is a
decreasing function of x for x ∈ [(1− ε)4, (1− ε)2]. Note that g is a quadratic function with a
global maximum at x∗ = (1−ε)2

2ε monotically increasing until reaching x∗ and then monotically
decreasing. In particular, if ε ≤ 1/2, then (1− ε)2 ≤ x∗. It implies that when ε ≤ 1/2, then
minimum is attained at x = (1− ε)4. On the other hand, if ε ≥ 1/2, then the minimum is at
either limit of the interval [(1− ε)4, (1− ε)2]. We show that the difference between g((1− ε)2)

and g((1− ε)4) is positive meaning that the minimum is reached when x = (1− ε)4.

g((1− ε)2)− g((1− ε)4) = (1− ε)2(1− ε− ε(1− ε))− (1− ε)4(1− ε− ε(1− ε)3)

= (1− ε)4 − (1− ε)4(1− ε− ε(1− ε)3) ≥ 0,

where the last inequality follows from the fact that (1− ε− ε(1− ε)3) ≤ 1.

Proof of Claim 3.6.3. To see that the equation holds, take the tree T and set s as the root of
the tree. In this proof, we forget about the orientation of the arcs and treat them as edges.
We create a mapping σ : E → T − s that maps each edge to a vertex. Given (u, v) ∈ E(T)

such that u = child(v), we assign σ((u, v)) = u. In this way, each vertex except s has an edge
assigned to it. Therefore,

(1− εj−1)
∑

(u,v)∈E(T)

wu ≥ (1− εj−1)5
∑

(u,v)∈E(T)

wσ((u,v)) = (1− εj−1)5w(T − s),

3.6 Pendant Tree 71

where in the second inequality, we used that T ⊆ Sj+1 with j ≥ 1, so the ratio between the
weight of the two endpoints is at least 1− εj+1 = (1− εj−1)4. The proof finishes by noting
that (1− εj−1)5 ≥ (1− εj−1)5(1− εj−1 − εj−1(1− εj−1)2), so

ρk,εj−1
w(T − s) + (1− εj−1)

∑
(u,v)∈E(T)

wu ≥ νj−1w(T − s).

3.7 Final Results and Conclusion
We finally prove the main result of this chapter. Theorem 3.7.1 states that the final ap-
proximation ratio is equal to k+1

2 from which we deduct the slack that each vertex receives.

Theorem 3.7.1. Let A be a locally optimal solution of Algorithm 1 with respect to s-exchanges
where s ≥ (k2`)L

∑2`−2
s=0 (k`)2s. Then,

w(O) ≤ 1

2

[
k + 1−min

{
{χ(`)

i−1}
L−1
i=0 , {νi−1}L−1

i=1 , ρk,εL−1

}]
w(A).

Proof of Theorem 3.7.1. Corollary 3.2.8 partitions A into vertex disjoint trees T . We use
Lemma 3.5.1 and Lemma 3.6.1 to bound the slack that vertices in T receive. Given j ∈ [0, L],
the vertices in A are covered by vertex disjoint trees of the form:

T , Tj+1 ∪
L⋃

p=j+2

mp⋃
m=1

Tp,m, (3.10)

where Tj+1 ⊆ Dj+1 and Tp,m ⊆ Pp, respectively. Throughout the proof we let DL+1 = IL.
Let Ep,m , E(Tp,m) + ep,m where ep,m is the bridge edge of the pendant tree Tp,m. Applying
Corollary 3.4.2, we get:

∑
v∈T

[
∆v

wv
+

Ψv

wv

]
≥

ΓE(Tj+1) +
∑

v∈Tj+1

Ψv

wv

+
∑
p,m

ΓEp,m +
∑

v∈Tp,m

Ψv

wv

 .
Assume first that j 6= L, in which case by Corollary 3.2.8, the tree Tj+1 has size at least `.
We apply Lemma 3.5.1 (or 3.5.2 if j = 0), and Lemma 3.6.1 to the first and second squared
bracket expression respectively. We obtain

∑
v∈T

[
∆v

wv
+

Ψv

wv

]
≥
(
χ

(`)
j−1 − εj−1k

)
w(Tj+1) +

L−1∑
p=j+1

mp∑
m=1

(νp−1 − εp−1k)w(Tp+1,m)

+
∑
v∈T

∑
o∈Cv

[
L∑
i=1

εi−1w(N(o, Si+1))

]
, (3.11)

3.7 Final Results and Conclusion 72

where we used the monotonicity of χ(t)
j−1 with respect to t. Thus, χ(|Tj |)

j−1 ≥ χ
(`)
j−1 since |Tj | ≥ `.

In the case j = L, the expression of T simplifies to T = T for some tree T ⊆ DL+1 = IL of
size at most `− 1. Applying Lemma 3.5.1 and using that |T | ≥ 1, we get that

∑
v∈T

[
∆v

wv
+

Ψv

wv

]
≥ ΓE(T) +

∑
v∈T

Ψv

wv

≥
(
χ

(1)
L−1 − εL−1k

)
w(T) +

∑
v∈T

∑
o∈Cv

[
L∑
i=1

εi−1w(N(o, Si+1))

]

=
(
ρk,εL−1

− εL−1k
)
w(T) +

∑
v∈T

∑
o∈Cv

[
L∑
i=1

εi−1w(N(o, Si+1))

]
, (3.12)

where the second inequality follows from the monotonicity of χ(t)
j−1. Since {Si}L+1

i=1 partitions
the vertex set A, where we recall that SL+1 = IL, Berman’s analysis 2.3.1 shows:

2w(O) ≤ w(A) +
∑
o∈O

w(N(o,A))−
∑
v∈A

[
∆v

wv
+

Ψv

wv

]

= w(A) +
∑
o∈O

L∑
i=0

w(N(o, Si+1))−
∑
v∈A

[
∆v

wv
+

Ψv

wv

]
.

By Corollary 3.2.8 the set {T } partitions A into vertex disjoint trees. Additionally, the set
of talons {Ca}a∈A forms a partition of O. Substituting Equation (3.11) and (3.12) into the
previous computation, we get that

2w(O) ≤ w(A) +
∑
o∈O

L∑
i=1

(1− εi−1)w(N(o, Si+1)) +
∑
o∈O

w(N(o, S1))

− χ(`)
−1w(D1)−

L−1∑
i=1

(
χ

(`)
i−1 − kεi−1

)
w(Di+1)−

L−1∑
i=1

(νi−1 − kεi−1)w(Pi+1)

−
(
ρk,εL−1

− εL−1k
)
w(IL).

Since the conflict graph G[A ∪O] is (k + 1)-claw free, each vertex a ∈ Si+1 for some i has at
most k neighbors in O. Thus,

∑
o∈O w(N(o, Si+1)) ≤ kw(Si+1). Moreover, by definition of Si

we know that Si = Di t Pi, and SL+1 = IL and
⊔L+1
i=1 Si = A. Thus,

2w(O) ≤ (k + 1)w(A)−
L−1∑
i=0

χ
(`)
i−1w(Di+1)−

L−1∑
i=1

νi−1w(Pi+1)− ρk,εL−1
w(IL)

≤ (k + 1)w(A)−min
{
{χ(`)

i−1}
L−1
i=0 , {νi−1}L−1

i=1 , ρk,εL−1

}
w(A),

where the last inequality follows by using that A =
⊔L
i=1Di t

⊔L
i=2 Pi t IL and by taking the

minimum over all the terms.

3.7 Final Results and Conclusion 73

3.7.1 Exact and asymptotic approximation ratio
We close this chapter with the exact approximation ratio attained by Algorithm 1 for all values
of k. The swap size used by Algorithm 1 is equal to swap size s = O((k`)O(POLY(L,`))), which
is the upper bound on the size of a tree found in Corollary 3.2.8. For k = 3, Theorem 3.7.7
will prove a tight approximation factor of

√
3. For k ≥ 7, Theorem 3.7.6 will prove a tight

approximation factor of k+δ
2 for any δ ≥ 0. It matches the result of Neuwohner [Neu22]

who proves that even with s = O(log(n)) where n is the number of sets, Algorithm 1 has
approximation ratio at most k

2 . For k = 4, 5, 6, Theorem 3.7.8 yields an approximation factor
of 2.0898, 2.5359, 3.0082, respectively. Table 3.1 summarizes these theorems.

k APX τk ε ` L
3

√
3 2−

√
3 1− 1/

√
3 4 3

4 2.0898 0.4102 1/2 O(1/ε′) 4
5 2.5359 0.4641 0.253609 O(1/ε′) 4
6 3.0082 0.4918 0.207662 O(1/ε′) 6
≥ 7 k+ε′

2
(1−ε′)

2 1/2 2/ε′ O(log2(log2(1/ε′)))

Tab. 3.1: Summary of the results for different values of k. The parameter τk, measures the improve-
ment over k+1

2 , i.e. τk = k+1
2 − APX. Here, ` bounds the size of components in Dj , L is the

number of layers and ε = εL−1 is the value of εL−1 that we need to set.

Remark 3.7.2. The values chosen in the Table 3.1 might seem a bit arbitrary for k = 4, 5, 6.
Numerical experiments indicate that the approximation ratio is bounded away from 3.0081,
2.5358, 2.0844 for k = 6, 5, 4 when ` and L are arbitrarily large.

The approximation ratio of Algorithm 1 depends on key quantities denoted by χ(`)
j−1, νj−1 and

ρk,εL−1
. Let’s recall the exact values of the parameters:

• ρk,εL−1
, kεL−1 − εL−1

1−εL−1
.

• χ
(`)
j−1 , `−1

` (1− εj−1)5 + ρk,εj−1
for j = 1, . . . , L− 1

• νj−1 , ρk,εj−1
+ (1− εj−1)5(1− (1− εj−1)2εj−1) for j = 1, . . . , L− 1.

• χ
(`)
−1 , `−1

` (1− ε0)2 = `−1
` (1− ε1) = `−1

` (1− εL−1)
1

2L−1 .

Additionally, the parameters εi are set so that ε−1 = 0, and εi = 2εi−1−ε2
i−1 for i = 1, . . . , L.

Matching Hurkens and Schrijver’s result for large values of k

When k ≥ 7, we show that the parameters χ(`)
j−1 and νj−1 are greater than 1 for j = 1, . . . , L−1,

and as ` tends to∞. Therefore, the vertices receiving these terms as slack already improve
over the factor k

2 . We will use the following three claims that we prove later in this section.

Claim 3.7.3. For a fixed value of k, the function ρk,x , kx− x
1−x is an increasing function in

the interval x ∈ [0, 1− 1√
k
].

3.7 Final Results and Conclusion 74

Claim 3.7.4. For k ≥ 6, the function χk(x) , (1−x)5 +ρk,x is greater than 1 for x ∈ [0, 1− 1√
k
].

Claim 3.7.5. For k ≥ 7, the function νk(x) , (1− x)5(1− (1− x)2x) + ρk,x is greater than 1

for x ∈ [0, 1− 1√
k
].

Equipped with the above claims, we prove Theorem 3.7.6. It improves upon the result of
Neuwohner [Neu22] who obtained similar guarantees but only as k →∞. Given Neuwohner’s
[Neu23] recent result, it yields an improvement for all values of k ≤ 371. Indeed, for large
values of k, the approximation factor is equal to 0.4986(k+1)+0.0208 which is asymptotically
better than our approximation factor.

Theorem 3.7.6. Given any δ ∈ (0, 1/2), and any k ≥ 7, Algorithm 1 performing s-exchanges
for s ≥ (k2`)L

∑2`−2
s=0 (k`)2s with ` = 2/δ and L = O(log2(log2(1/δ))) has approximation ratio

equal to:

w(O) ≤ k + δ

2
w(A). (3.13)

Proof of Theorem 3.7.6. Let ε′ , δ/2 = 1/`. To compute the exact approximation ratio from
Theorem 3.7.1, it is sufficient to bound the term:

min
{
{χ(`)

i−1}
L−1
i=0 , {νi−1}L−1

i=1 , ρk,εL−1

}
. (3.14)

When k ≥ 7, this term simplifies. In fact, by Claim 3.7.5, all the terms in the sequence
{νi−1}L−1

i=1 are greater than 1, whereas χ(`)
−1 = `−1

` (1 − ε0)2 ≤ 1. Thus, it is sufficient to
compute

min
{
{χ(`)

i−1}
L−1
i=0 , ρk,εL−1

}
.

Using Claim 3.7.4 for k ≥ 6, and i = 1, . . . , L−1, we get that: χ(`)
i−1 , `−1

` (1−εi−1)5+ρk,εi−1
≥

1 − 1
` (1 − εi−1) ≥ 1 − 1

` = 1 − ε′, where the last inequality is because εi−1 ∈ [0, 1]. Setting
εL−1 = 1/2 for all values of k, we get that ρk,εL−1

≥ ρ7,1/2 = 5/2. Substituting both terms
into (3.14), it is sufficient to bound

min
{
χ

(`)
−1, 1− ε

′
}
.

Recall that χ(`)
−1 , `−1

` (1 − ε0)2. There, we will use the fact that the number of layers L is
large to reduce ε0. Recall that (1− ε0)2L = (1− εL−1) = 1/2 since we set εL−1 = 1/2. Hence,
ε0 = 1 − (1/2)1/2L . Setting, L , 1 − log2(log2((1 − ε′)−1)) = O(log2(log2(1/ε′))) where the
second equality holds for ε′ ∈ (0, 1/2), we have that

(1− ε0)2 = (1− εL−1)1/2L−1
= (1/2)1/21−log2(log2((1−ε

′)−1))−1
= 1− ε′.

Therefore, we have that: χ(`)
−1 , `−1

` (1− ε0)2 = `−1
` (1− ε′) ≥ 1− ε′ − 1

` = 1− 2ε′.

3.7 Final Results and Conclusion 75

Proof of Claim 3.7.3. The derivative of ρk,x with respect to x is equal to k(x−1)2−1
(1−x)2

. The

derivative is equal to 0 at the point x∗ = 1 − 1√
k

and is greater than 0 for x ∈ [0, x∗]. The

second-order derivative with respect to x is equal to 2
(x−1)3

and is negative for x ∈ [0, 1], thus
ρk,x is maximized at x∗.

Proof of Claim 3.7.4. The derivative of χk(x) with respect to x is equal to k(x−1)2−5(x−1)6−1
(1−x)2

.
We show that the numerator k(x− 1)2 − 5(x− 1)6 − 1 is greater than 0. Since χk(0) = 1, it
will show that the derivative is greater than 0 in the interval [0, 1 − 1/

√
k], which in turns

implies that χk(x) is always at least 1. Observe that k(x− 1)2 − 5(x− 1)6 = (1− x)2(k − 5 +

5(1− (1− x)4)) ≥ (1− x)2(1 + 5(1 − (1− x)4)), where we use that k ≥ 6. The polynomial
(1−x)2(1+5(1− (1−x)4))−1 = −x(x−2)(5x4−20x3 +35x2−30x+9) has 4 real roots 0, 2,
1
2

(
2−

√
6√
5
− 2
)
' 0.586, and 1

2

(
2 +

√
6√
5
− 2
)
' 1.413. It is positive between 0 and 0.586,

and 1.413 and 2. Therefore, the derivative is greater than 0 for all values of x ∈ [0, 0.586]. For
values of x ∈ (0.586, 1− 1/

√
k], we observe that ρ6,0.586 ≥ 1 and ρk,x is an increasing function

of k, and x in the interval x ∈ [0, 1− 1√
k
] (Claim 3.7.3).

Proof of Claim 3.7.5. Note that for any x ∈ [0, 1], we have (1 − x(1 − x)2) ≥ (1 − x) thus,
we have that νk(x) ≥ (1 − x)6 + ρk,x. The derivative of the right-hand side is equal to
k(1−x)2−6(1−x)7−1

(1−x)2
. We show that the numerator is greater than 0. Since νk(0) = 1, it will prove

that the derivative is greater than 0 in the interval [0, 1− 1/
√
k], which in turns implies that

νk(x) is always at least 1. We write k(1−x)2−6(1−x)7−1 = (1−x)2(k−6+6(1−(1−x)5))−1 ≥
(1 − x)2(1 + 6(1 − (1 − x)5)) − 1, where we used that k ≥ 7. The polynomial is positive
between 0 and 0.62. It implies that νk(x) is increasing in the interval x ∈ [0, 0.62]. For values
of x ∈ (0.62, 1 − 1/

√
k], we note that νk(x) ≥ ρk,x ≥ ρ7,0.62 ≥ 1 for all x ∈ (0.62, 1 − 1/

√
k]

where we used that ρk,x is an increasing function of x and k in the described interval (Claim
3.7.3).

Small values of k

For lower values of k, computing the exact approximation ratio simply requires optimizing
over ε, `, and L. The approximation factor increases as L, and ` increases. However, unlike
Theorem 3.7.6, we will fix L as a small constant.

Theorem 3.7.7. For k = 3, Algorithm 1 running s-exchanges for s ≥ (k2`)L
∑2`−2

s=0 (k`)2s with
` = 4 and L = 3 has approximation ratio equal to:

w(O) ≤
√

3w(A). (3.15)

Theorem 3.7.7 is tight, in the sense that the w2 local-search has a local gap of at least
√
k

even with unbounded swap size. To facilitate the computations, we chose to set ` = 4. Setting
` = O(ε−1) yields the same guarantee but increases the slack for some vertices.

3.7 Final Results and Conclusion 76

Proof of Theorem 3.7.7. For k = 3, we compute each term in the min{·}-term of Theorem
3.7.1 independently. Observe that we only need three layers, and ` = 4. We set ε3 = 2/3,
thus ε2 = 1 −

√
1− ε3 = 1 − 1/

√
3. We also have ε1 = 1 − 1/ 4

√
3 and ε0 = 1 − 1/ 8

√
3.

Start by observing that ρ3,εL−1 = ρ3,1−1/
√

3 = 4 − 2
√

3 ≥ 0.5358. Secondly, straightforward

computations show that ν0 ≥ 0.6764, ν1 ≥ 0.5968, and χ
(4)
−1 ≥ 0.5698 χ

(4)
0 ≥ 0.6151, χ(4)

1 ≥
0.5943. All these terms are strictly greater than ρ3,1−1/

√
3. Substituting each term in Theorem

3.7.1 yields the desired result.

Theorem 3.7.8. Algorithm 1 has approximation ratio 2.0898, 2.5359, 3.0082 for k = 4, 5, 6

respectively

The reason behind the constant gap between our approximation ratio and the value k/2 is
that the following functions: χk(x) , (1−x)5 +ρk,x and νk(x) , (1−x)5(1− (1−x)2x)+ρk,x
are not strictly greater than 1. In particular, χ4(0.1439) = 0.867369, χ5(0.0625) = 0.97003,
and ν4(0.143) = 0.818866, ν5(0.08) = 0.927497, ν6(0.03) = 0.983567.

Proof of Theorem 3.7.8. Case k = 4: We set ` = 1/ε′, L = 4, and εL = 0.75. Computations
show that ρ4,εL−1 = 1, and χ

(`)
−1 ≥ 0.8408, χ(`)

0 ≥ 0.8898, χ(`)
1 ≥ 0.8676, χ(`)

2 ≥ 0.9341 as
`→∞. Alternatively, we could express each term with an additive loss of O(ε′). Then, we
proceed by computing ν ’s: ν0 ≥ 0.8446, ν1 ≥ 0.8203, ν2 ≥ 0.9082. The minimum of all these
term is ν1. Thus, the approximation ratio is at least (5− ν1)/2 = 2.08985.

Case k = 5: We set ` = 1/ε′, L = 4, and εL = 0.4429. Computations show that ρ5,εL−1 =

0.9282, and χ(`)
−1 ≥ 0.9294, χ(`)

0 ≥ 0.9751, χ(`)
1 ≥ 0.9704, χ(`)

2 ≥ 1.0041 as `→∞. Alternatively,
we could express each term with an additive loss of O(ε′). Then, we proceed by computing
ν ’s: ν0 ≥ 0.9474, ν1 ≥ 0.9282, ν2 ≥ 0.9552. The minimum of all these term is ν1 = ρ5,εL−1 .
Thus, the approximation ratio is at least (6− ν1)/2 = 2.5359.

Case k = 6: We set ` = 1/ε′, L = 6, and εL = 0.3722. Computations show that ρ6,εL−1 =

0.9838, and χ
(`)
−1 ≥ 0.9855, χ(`)

j−1 ≥ 1.0004 for all j = 1, . . . , L − 1 as ` → ∞. Alternatively,
we could lower bound each term with an additive loss of O(ε′). Then, we proceed by
computing ν ’s: νj−1 ≥ 0.9837 for all j = 1, . . . , L− 1 Thus, the approximation ratio is at least
(7− 0.9837)/2 = 3.0082.

3.8 Reaching the local-gap instance
Theorem 3.7.7 already proves that the approximation factor is

√
3. However, it is still not

clear that Figure 2.1 is indeed the worst-case instance. Theorem 3.7.7 demonstrates that
the worst-case is when the slack that vertices receive is equal to ρ3,1−1/

√
3 = 4 − 2

√
3. It

only happens for vertices in IL. The set IL is made of maximal connected components of
size at most `− 1 in H≤L. Using Lemma 3.5.1, we observe that the vertices having a slack

3.8 Reaching the local-gap instance 77

term exactly equal to ρ3,1−1/
√

3 are maximal connected component of size precisely 1 (thus,
isolated vertices in H≤L). In Lemma 3.8.1, we deal with isolated vertices in H≤L. We show
that only vertices v ∈ IL such that |Cv| = 3 have a slack equal to ρ3,1−1/

√
3. Thus, it matches

the instance in Figure 2.1.

Lemma 3.8.1. Let {v} ⊆ IL be an isolated connected component of size 1 in H≤L. If |Cv| ≥ 1,
then

Ψv

wv
≥ εL−1

∑
o∈Cv

w(N(o,A)) + wv

ρk,εL−1
− εL−1k if εL−1 ≤ 1− 1√

|Cv |(√
|Cv|− 1

)2
− εL−1 |Cv| else

If |Cv| = 0, then Ψv/wv ≥ 0.

Proof of Lemma 3.8.1. Throughout the proof let εL , ε and δ , εL−1. We start by observing
that there is nothing to prove if |Cv| = 0, as Ψv/wv is at least 0 by definition of Ψv. By Lemma
3.2.11, for any u ∈ N+

v \ {v} ∩ Sj+1 for some j ∈ N, we have

wu
wv
≤ 1− εmax{L,j} = 1− ε.

For simplicity, we let η , δ
∑

o∈Cv w(N(o,A− v)) and β ,
∑

o∈Cv w(N(o,A− v)). Applying
Lemma 3.3.1 with {v} = T , we get that

∑
o∈Cv

θv,o
wv
≥
∑
o∈Cv

εw(N(o,A− v)) = (δ − δ2)β + η.

Next, we derive a lower bound on the value of β. For each o ∈ Cv, let αo = wo/wv. Using
that the claw-swap centered at v is non-improving, we have that:

w2
v

∑
o∈Cv

α2
o ≤ w2

v +
∑
o∈Cv

w2(N(o,A− v))

≤ w2
v + wv(1− ε)

∑
o∈Cv

w(N(o,A− v))

= w2
v + wv(1− δ)2β.

The last equality is since (1− ε) = (1− δ)2. From the previous computation, we obtain that
β
wv
≥ (1 − δ)−2

(∑
o∈Cv α

2
o − 1

)
. Let x ,

∑
o∈Cv αo. Applying Cauchy-Schwarz (Theorem

1.B.3), we get that

β

wv
≥ max

{
0;

1

(1− δ)2

(
1

|Cv|
x2 − 1

)}
, (3.16)

3.8 Reaching the local-gap instance 78

where the max{·} is by noting that β ,
∑

o∈Cv w(N(o,A − v)) ≥ 0. We use the previous
computation to lower bound the slack induced by Ψv. Indeed, substituting the bound on Θv,
we get that

Ψv

wv
≥
∑
o∈Cv

1

wv
(wo − wv)2 +

Θv

wv
≥ wv

[∑
o∈Cv

(αo − 1)2 + (δ − δ2)
β

wv

]
+ η. (3.17)

The next computation will proceed by lower bounding the squared bracket expression subject
to Constraint (3.16). Due to Constraint (3.16) we distinguish two cases depending on which
of the two terms is greater. Using Cauchy-Schwarz (Theorem 1.B.3), we bound the bracketed
expression by ∑

o∈Cv

(αo − 1)2 + (δ − δ2)
β

wv
≥ 1

|Cv|
x2 − 2x+ |Cv|+ (δ − δ2)

β

wv
(3.18)

We make the following branching depending on whether x ≤
√
|Cv| or not.

Case 1: We suppose that x ≤
√
|Cv|. Under this condition we substitute β ≥ 0 in Equation

(3.18) to get,

1

|Cv|
x2 − 2x+ |Cv|+ (δ − δ2)

β

wv
≥ 1

|Cv|
x2 − 2x+ |Cv| ,

The minimum is attained at x∗ = |Cv|. However, here x ≤
√
|Cv|. Hence, in this case we get

that the previous expression is bounded by:

1

|Cv|
x2 − 2x+ |Cv|+

(
δ − δ2

) β
wv
≥ 1

|Cv|

(√
|Cv|

)2
− 2
√
|Cv|+ |Cv| =

(√
|Cv| − 1

)2
.

Case 2: We now suppose that x ≥
√
|Cv|. Then, substituting β/wv by the second term in

Constraint (3.16) and simplifying, we get that

1

|Cv|
x2 − 2x+ |Cv|+ (δ − δ2)

β

wv
≥ 1

|Cv| (1− δ)
x2 − 2x+ |Cv| −

δ

1− δ

The minimum of the previous expression is attained at x∗ = |Cv| (1− δ). Nevertheless, we
need to make sure that x∗ ≥

√
|Cv|. A simple computation shows that x∗ ≥

√
|Cv| if and only

if δ ≤ 1− 1/
√
|Cv|. Hence, the minimum of the previous objective is attained at:

x∗ =

|Cv| (1− δ) if δ ≤ 1− 1√
Cv√

|Cv| else.

3.8 Reaching the local-gap instance 79

Replacing each case in objective value, we get that

1

|Cv| (1− δ)
x2 − 2x+ |Cv| −

δ

1− δ
=

ρ|Cv |,δ if δ ≤ 1− 1√
Cv(√

|Cv| − 1
)2

else.
(3.19)

The rest of the proof then follows by unwinding the notation η and expanding it in Equation
(3.17). Indeed,

η = δ
∑
o∈Cv

w(N(o,A− v)) = δ
∑
o∈Cv

w(N(o,A))− δ |Cv|wv

The second equation is because v belongs to N(o,A) for each o ∈ Cv (hence the term |Cv|).
By substituting the previous equation and Equation (3.19) in Equation (3.17), we obtain the
desired result.

Using Lemma 3.8.1, we can prove that the only tight example is given by Figure 2.1. Define
Bi , {v ∈ A : |Cv| = i}. Observe that in the proof of Theorem 3.7.1 we use that (1 −
εL−1)

∑
o∈O w(N(o, IL)) ≤ k(1 − εL−1)w(IL). Intuitively, each vertex v ∈ IL receives k(1 −

εL−1) times its weight. By adding kεL−1 to the RHS of Lemma 3.8.1, we get the slack that
each isolated vertex in H≤L receives. Exact values are written in Remark 3.8.2.

Remark 3.8.2. To obtain a tight
√

3 approximation ratio, we have set εL−1 = 1− 1√
3
. Hence,

for vertices in v ∈ Bi the amount of slack that each vertex receives is equal to:
ρ3,1− 1√

3
= 4− 2

√
3 ≥ 0.5358 if i = 3,(√

i− 1
)2 − (k − i)

(
1− 1√

3

)
≥ 0.5942 if i = 1, 2

3
(

1− 1√
3

)
≥ 1.2679 if i = 0.

(3.20)

Substituting εL−1 = 1− 1√
3

in the proof of Lemma 3.8.1 in the case |Cv| = 3, we obtain that

x∗ = |Cv| (1− εL−1) =
√

3. Given this value of x∗, it implies that β = 0. This demonstrates
that the only tight case in our analysis for k = 3 happens when a vertex v has weight 1 and
has 3 talons all of which have weight

√
3
−1

(as shown in Figure 2.1).

3.9 Conclusion and Open Questions
Together Chapter 2 and 3 almost close the analysis of Berman’s algorithm when large swaps
are used. In particular, we achieve tight guarantees for all values of k ≥ 3 except when
k = 4, 5, 6. For k = 3, we obtain an approximation factor equal to

√
3 that improves upon

Neuwohner’s approximation [Neu21] of k+1
2 −

1
63′700′992 . For k ≥ 7, we obtain a tight k+δ

2 -
approximation ratio, previously attained in the asymptotic regime [Neu22]. Finally, our
algorithm yields state-of-the-art guarantees for all values of k (including 4, 5, 6) up to k ≤ 371

[Neu23].

3.9 Conclusion and Open Questions 80

We believe our analysis can be improved to obtain a ratio of k/2 for all values of k ≥ 4. When
k = 6, it seems that selecting the bridging arc that minimizes the ratio between the weights of
endpoints leads to an approximation ratio of k/2. However, it is not enough for k = 4, 5.

There are many directions of great interest to obtain even stronger approximation. We list a
couple of interesting open questions. All problems have stars ? denoting a combination of
their difficulty and interest.

• (?) Since we reach a local-gap instance in the case
√

3, can we escape it by running
another algorithm once Berman’s algorithm finishes? Running a local-search algorithm
with respect to the original weight function seems a promising direction. (??) Getting a
3/2-approximation for k = 3, would be extremely interesting.

• (?) For k ≥ 7, can we use structural results about our instance to improve upon
Neuwohner’s result [Neu23]. Her analysis goes beyond the factor 1/2 by employing an
unweighted local-search. Can it further be improved? (? ? ?) up to the factor k+1

3 ?

• (? ? ?) Can we design smarter local-search algorithms for this problem. In particular,
can we smoothly reduce the exponent in the search to converge to the original w while
maintaining good guarantees?

• (? ? ?) What is the integrality gap the hypergraph matching polytope after few rounds of
Lasserre hierarchy? Chan and Lau prove an integrality gap of at most k+1

2 after 1 round.

• (?) In the spirit of Chapter 4, can we obtain good approximation guarantees for the
(weighted) hypergraph matching problem in the multipass streaming setting.

• (????) Is it possible to get past the factor k+1
3 for the unweighted k-Set Packing Problem

[Cyg13] or improve upon the hardness result [HSS06]?

3.9 Conclusion and Open Questions 81

4Improved Multipass Algorithms for
Submodular Maximization with
Independence Constraints

A large portion of the material in this chapter was part of a publication in APPROX/RAN-
DOM’20 [HTW20]. Nonetheless, the presentation of the results is specific to this thesis and
some additional results are included. Section 4.7 did not appear in [HTW20].

4.1 Introduction
In this chapter, we consider the problem of maximizing both monotone and arbitrary submod-
ular functions over the p-Matchoid class. The resulting family of constraints is quite general
and captures both the classes: p-Matroid-Intersection and p-Hypergraph Matching (see Figure
1.2).

In many applications of submodular optimization, such as summarization tasks [Bad+14;
LB10; Mir+15; MBK16], we must process datasets so large that they cannot be stored
in memory. Thus, there has been recent interest in streaming algorithms for submodular
optimization problems. In this context, we suppose the ground set X is initially unknown and
elements arrive one-by-one in a stream. We suppose that the algorithm has an efficient oracle
for evaluating the submodular function f on any given subset of X, but has only enough
memory to store a small number of elements from the stream. Variants of standard greedy
and local search algorithms have been developed that obtain a constant-factor approximation
in this setting, but their approximation guarantees are considerably worse than that of their
simple, offline counterparts.

Given a p-matchoidM = (X, I), we consider the multipass setting in which the designed
algorithm is allowed to perform several passes over a stream. In each pass all of X arrives in
some order, and the algorithm is still only allowed to store a small number of elements. In the
offline setting, simple variants of greedy [FNW78] or local search [Fel+11; LSV10] algorithms
give the best-known approximation guarantees for maximizing submodular functions over p-
Matroid-Intersection or p-Matchoid. However, these algorithms potentially require considering
all elements in X each time a choice is made. It is natural to ask whether this is truly necessary,
or whether we could instead recover an approximation ratio nearly equal to these offline
algorithms by using only a constant number of passes through the data stream.

82

4.1.1 Our Results
The main result of this chapter is to give a positive answer to the previous question. We
demonstrate that the standard local-search algorithm for maximizing a submodular function
in a stream can be efficiently simulated. In particular, for monotone submodular functions,
we show that O(1/ε)-passes suffice to obtain guarantees only (1 + ε) times worse than those
guaranteed by the standard offline local search algorithm. More generally, we give an O(p/ε)-
pass streaming algorithm that gives a p+ 1 + ε approximation for maximizing a monotone
submodular function subject to an arbitrary p-matchoid constraint. It immediately gives us an
O(1/ε)-pass streaming algorithm attaining a 2 + ε approximation subject to a single matroid
constraint and a 3 + ε approximation for a matching constraint in a graph.

Theorem
Over the p-Matchoid class, there is a multipass algorithm for maximizing a monotone
submodular function f with approximation factor of p+ 1 + ε in O(p/ε)-passes.

The formal statement of the above theorem can be found in Theorem 4.4.3. Each pass of
our algorithm is equivalent to a single pass of the streaming local search algorithm described
by Chakrabarti and Kale [CK15] and Chekuri, Gupta, and Quanrud [CGQ15]. However,
obtaining a rapid convergence to a p+ 1 + ε approximation requires some new insights. We
show that if a pass makes either large or small progress in the value of f , then the guarantee
obtained at the end of this pass can be improved. Balancing these two effects then leads to a
carefully chosen sequence of parameters for each pass. Our general approach is similar to
that of Chakrabarti and Kale [CK15], but our algorithm is oblivious to the choice of ε. This
allows us to give a uniform bound on the convergence of the approximation factor obtained
after some number d of passes. This bound is actually available to the algorithm, and so
we can certify the quality of the current solution after each pass. In practice, this allows for
terminating the algorithm early if a sufficient guarantee has already been obtained. Even
in the worst case, however, we improve on the number of passes by a factor of O(ε−2). Our
algorithm only stores O(k) elements, where k is the rank of the given p-matchoid, defined as
the size of the largest independent set of elements.

Building on these ideas, we also give a randomized, multipass algorithm that uses O(p/ε)-
passes and attains a p+ 1 + γ̄off + ε approximation for maximizing an arbitrary submodular
function subject to a p-matchoid constraint, where γ̄off is the approximation ratio attained by
best-known offline algorithm for the same problem. To the best of our knowledge, ours is
the first multipass algorithm when the function is non-monotone with a number of passes
independent of n and k, where n is the size of the ground set. In this case, our algorithm
requires storing O(p3k log k/ε3) elements. We note that if one states approximation factor
in the form 1/α less than 1, then our results lead to 1/α − ε approximations in which all
dependence on p can be eliminated (by setting simply some ε′ = pε)1.

1Indeed for α = O(p), in O(1/ε) passes we obtain a solution such that f(S) ≥ 1
α+O(pε)

f(OPT) = 1
α

·
1

1+O(ε)
f(OPT) = 1

α
(1−O(ε))f(OPT)

4.1 Introduction 83

Constraint APX
#-passes

Previous Ours
Matroid 2 + ε O(1/ε3) [CK15] O(1/ε)

p-Hyp.Matching p+ 1 + ε O(p4 log(p)/ε3)[CK15] O(p/ε)
p-Mat.Inter. p+ 1 + ε O(p4 log(p)/ε3)[CK15] O(p/ε)
p-Matchoid p+ 1 + ε O(p/ε)

Tab. 4.1: Improvements over the state-of-the-art results (at the time of publication) for monotone
submodular functions

Constraint APX #-passes
Matroid 4.589 + ε O(1/ε)

p-Hyp.Matching p+ 1 + p2

p−1 + ε O(p/ε)

p-Mat.Inter. p+ 1 + p2

p−1 + ε O(p/ε)

p-Matchoid p+ 1 + ep
(1−ε)(2−o(1)) + ε O(p/ε)

Tab. 4.2: Multipass streaming algorithm results for non-monotone submodular function maximization

Theorem
Over the p-Matchoid class, there is a multipass algorithm maximizing a general sub-
modular function f with approximation factor p+ 1 + γ̄off + ε in O(p/ε)-passes where
γ̄off is the best approximation factor for maximizing f over this class. See exact values
in Table 4.2.

The formal statement of the above theorem can be found in Theorem 4.5.2. Table 4.1 and
4.2 offer an overview of our contributions at the time of the submission. From Table 4.1, we
observe a great improvement in the number of passes while matching the results of [CK15]
and an extension of the results to handle p-matchoid constraints. Our approach is versatile
and applies to general submodular functions as shown in Table 4.2.

In this chapter, we also provide a novel multipass algorithm for maximizing regularized
monotone submodular functions subject to a cardinality constraint. A regularized monotone
submodular function is a set function f = g − l where g is a monotone submodular function
and l is a positive linear function. Our approach builds on the work of [Kaz+21] who obtained
a 0.382g(OPT)− l(OPT) approximation in a single pass. Extending their approach we derive
a multipass guarantee equal to 0.4659g(OPT) − l(OPT) in O(ε−1)-passes. Our approach is
inspired by the distorted greedy algorithm of Harshaw et al. [Har+19] which penalizes the
linear term l in a decreasing fashion.

4.1.2 Additional Related Work
Due to the large volume of data in modern applications, there has been a line of research
focused on developing fast algorithms for weighted and submodular function maximization
subject to independence systems. Although our results in this chapter focus on submodular
function maximization, we cite, for the purpose of this thesis, related work for maximizing

4.1 Introduction 84

weighted functions in a stream. All the results which we present here assume an adversarial
ordering of the ground set.

First, maximizing a weighted function over a matroid can be done exactly. Thus, current
research focuses on maximizing submodular functions or considers harder constraints. Given a
monotone submodular function, there is a single pass streaming algorithm with approximation
factor equal to 2 subject to a uniform matroid [Bad+14; Kaz+19]. The algorithm is fairly
simple. A solution is constructed by greedily adding elements if their marginal at the time of
arrival is above a certain threshold. The threshold is an approximate guess of the value of
OPT. The approximation factor decreases as the number of passes increases. In O(1/ε)-passes,
Norouzi-Fard et al. [Nor+18] obtained e

e−1 + ε approximation algorithm. In some sense it
is a fast greedy algorithm since it sees the dataset only a few times. For a general matroid
constraint, there is a single pass 3.1467-approximation and e

e−1 +ε inO(ε−3)-passes [Fel+22]2.
No single pass streaming algorithm for monotone submodular function maximization can
beat the factor 2 even subject a cardinality constraint unless its memory is proportional to
the size of the ground set [Fel+20]. We point also point out that no constant guarantee for
maximizing a weakly submodular function in a single pass is possible unless, again, we use a
memory of size Ω(n) [Ele+17].

Beyond the Matroid class, maximizing a linear function subject to a matching constraint is
a popular problem in the streaming literature. However, beating the factor 2 in a single
pass is still open. The best hardness result is 1 + ln(2) by Kapralov [Kap21]. Recently, Paz
and Schwartzmann obtained a 2 + ε-approximation for weighted functions [PS18]. Their
result extends to the weighted p-hypergraph matching problem, where the approximation
ratio is p+ ε. The weighted b-matching problem can be approximated within a factor 2 + ε

[HS21]. Currently, the best approximation results for maximizing a weighted function subject
to the p-Matroid-Intersection class in a single pass is 2p+

√
p(p− 1)− 1 and p2 [CK15; CS14].

Numerous multipass streaming algorithms for the unweighted matching problem have been
designed. There are various 1 + ε approximation algorithms that run in O(POLY(1/ε))-passes,
and research has focused on optimizing the number of passes needed to obtain the desired
approximation [AG13; Ass+22; ALT21; FMU22]. To the best of our knowledge, no 1 + ε

approximation in O(POLY(1/ε)) is known in the weighted setting.

Subject to b-Matching/2-Matroid-Intersection, there is a single pass streaming algorithm for
maximizing a monotone submodular function with approximation factor equal to 3 + 2

√
2

[LW20; HS21; GJS22]. Subject to p-Matchoid , there is a single pass 4p-approximation
algorithm [CGQ15]. The approximation ratio decreases to p + 1 + ε using O(p4 log(p)/ε3)-
passes for the p-Matroid-Intersection 3. Table 4.3 and 4.4 give an overview of the state-of-the-art
results. In the table, results in red highlight our improvements. The dash − symbol means
that, to the best of our knowledge, no dedicated results for the given cell are known. Each −
can be replaced by an appropriate value using the hierarchy from Figure 1.2.

2This result appeared after the publication of our result.
3In [CK15] a bound of O(log p/ε3) is stated. We note that there appears to be a small oversight in their analysis,

arising from the fact that their convergence parameter κ in this case is O(ε3/p4). Sagar Kale confirmed it in
personal communication

4.1 Introduction 85

Streaming
Single Pass Multipass

Refs
APX Hardness APX |passes|

Matroid 1 1 − −
Matching 2 1 + ln(2) 3

2 + ε O
(

log(ε−1)
ε2

)
[PS18; Kap21; AG13]

p-Hyp.Matching p − − − [PS18]

p-Mat.Inter. min
{
p2; 4p− 2

}
− p+ ε O

(
p4 log(p)

ε3

)
[CK15; CS14]

p-Matchoid 4p − − − [CGQ15]

Tab. 4.3: State-of-the-art approximation factors for maximizing weighted linear objective functions
over various independence systems in the streaming setting.

Streaming
Single Pass Multipass

Refs
APX Hardness APX |passes|

Unif.Mat 2 2 e
e−1 + ε O(ε−1) [Bad+14; Nor+18]

Matroid 3.1467 2 e
e−1 + ε O(ε−3) [Fel+22; Fel+20]

Matching 3 + 2
√

2 2.69 p+ 1 + ε O
(
ε−1
)

[LW20; Fel+22; HTW20]
p-Hyp.Matching − − − −
p-Mat.Inter. 4p − p+ 1 + ε O(p/ε) [CK15; HTW20]
p-Matchoid 4p − p+ 1 + ε O(p/ε) [CGQ15; LSV10; HTW20]

Tab. 4.4: State-of-the-art approximation factors for maximizing monotone submodular objective func-
tions over various independence systems in the streaming setting.

4.2 Single Pass Algorithm
We suppose that we are given a submodular function f : 2X → R≥0 and a p-matchoid
constraint M = (X, I) on X given as a collection of matroids {Mi = (Xi, Ii)} (Def-
inition 1.2.5). Our procedure runs for d passes, each of which uses a modification of
Chekuri, Gupta and Quanrud’s algorithm [CGQ15]. We begin this section by introducing it.
STREAMINGLOCALSEARCH maintains a current solution S, which is initially set to some Sinit.

Algorithm 2: Streaming Local Search Algorithm by Chekuri et al. [CGQ15]

procedure STREAMINGLOCALSEARCH(α, β, Sinit)
S ← Sinit;
foreach x in the stream do

if x ∈ Sinit then discard x;
Cx ← EXCHANGE(x, S);
if f(x|S) ≥ α+ (1 + β)

∑
c∈Cx ν(c, S) then

S ← S \ Cx + x;

return S;

Whenever an element x /∈ Sinit arrives, the procedure invokes a helper procedure EXCHANGE,
given formally in Algorithm 3, to find an appropriate set Cx ⊆ S of up to p elements so that

4.2 Single Pass Algorithm 86

Algorithm 3: The procedure EXCHANGE(x, S)

procedure EXCHANGE(x, S)
Cx ← ∅;
foreachM` = (X`, I`) with x ∈ X` do

S` ← S ∩X`;
if S` + x 6∈ I then

T` ← {y ∈ S` : S` − y + x ∈ I`};
Cx ← Cx + arg mint∈T` ν(t, S);

return Cx;

the solution remains independent, i.e., S \ Cx + x ∈ I. It then exchanges x with Cx if it gives
a significantly improved solution.

The improvement is measured with respect to a set of auxiliary weights ν(x, S) maintained by
the algorithm. For u, v ∈ X, let u ≺ v denote that “element u arrives before v” in the stream.
Then, we define the incremental value of an element e with respect to a set T as the marginal
contribution of e with respect to the set of elements from T that arrives before e. Formally,

ν(e, T) , f(e | {t′ ∈ T : t′ ≺ e}).

Using these incremental values, STREAMINGLOCALSEARCH proceeds as follows. When an
element x 6∈ Sinit arrives, it computes a set of elements Cx ⊆ S that can be exchanged for x.
STREAMINGLOCALSEARCH replaces Cx with x if and only if the marginal value f(x | S) with
respect to S is at least (1 + β) times larger than the sum of the current incremental values
ν(c, S) of all elements c ∈ Cx plus some threshold α, where α, β ≥ 0 are given as parameters.
In this case, we say that the element x is accepted. Otherwise, we say that x is rejected. An
element x ∈ S that has been accepted may later be removed from S if x ∈ Cy for some later
element y that arrives in the stream. In this case we say that x is evicted.

The approximation ratio obtained by STREAMINGLOCALSEARCH depends on the parameter
β in two ways, which can be intuitively understood in terms of the standard analysis of the
offline local search algorithm for the problem. Intuitively, if β is chosen to be too large, more
valuable elements will be rejected upon arrival and so, in the offline setting, our solution
would be only approximately locally optimal, leading to a deterioration of the guarantee
by a factor of (1 + β). However, in the streaming setting, the algorithm only attempts to
exchange an element upon its arrival, and so the final solution will not necessarily be even
(1 + β)-approximately locally optimal. In fact, an element x may be rejected because f(x | S)

is small when it arrives, but the processing of later elements in the stream can evict some
elements of S. After these evictions, we could have f(x | S) larger. The key observation in the
analyses of [CK15; CGQ15] is that the marginal value of rejected elements can be carefully
bounded by O(1

β) times the final value of f(S) at the end of the algorithm. Intuitively, if β
is chosen to be too small, the algorithm will make more exchanges, evicting more elements,
which may result in rejected elements being much more valuable with respect to the final

4.2 Single Pass Algorithm 87

solution. Selecting the optimal value of β thus requires balancing these two effects. The
papers [CGQ15; CK15] prove the following result:

Theorem 4.2.1 ([CGQ15; CK15]). There is a near-linear space streaming algorithm with
approximation 4p for maximizing a submodular function subject to a p-matchoid constraint.4

4.2.1 Tight Example for Algorithm 2

Arrival order

O
(1)
1

4/27

O
(2)
1

O
(2)
2

8/27

5/9

5/9

1/3 2/3 O
(3)
1

1/3 2/3 O
(3)
2

1/3 2/3 O
(3)
3

1/3 2/3 O
(3)
4

1/9 1/9 1/12 1/12 1/12 1/12

2/9 2/9 1/6

1/6 1/6

1/6

· · ·

· · ·

Final solution

23/27 O
(1)
1

4/27

O
(2)
1

O
(2)
2

2/9 8/9

2/9 8/9

1/3 2/3 O
(3)
1

1/3 2/3 O
(3)
2

1/3 2/3 O
(3)
3

1/3 2/3 O
(3)
4

1

1

1

1

1

Fig. 4.1: Example when k = 7. There is a dotted arrow from e to e′ if e arrives before e′. The first 7

sets are covered by O(1)
1 as shown in the top right. When O(1)

1 arrives, it is discarded. The
next 6 sets are added to the solution and are covered by O(2)

1 , O
(2)
2 as shown on the top right.

When O(2)
1 ,O(2)

2 arrive, they are discarded. The algorithm’s output is on the bottom right and
has value f(S) = 4/27 + 4/9 + 4/3 = 52/27. The optimal solution has value f(OPT) = 7. The
approximation factor is f(OPT) /f(S) = 189/52 = 3.6246

We prove that Algorithm 2 is tight for a single pass. Our construction uses a coverage function.

Definition 4.2.2 (Coverage Function). Given a universe Ω, and sets A1, . . . , Am ⊆ Ω, the
coverage of a collection of sets T ⊆ {0, . . . ,m} is the number of elements in the union

⋃
i∈T Ai.

More generally, each element i ∈ Ω has weight wi ≥ 0, inducing the function

f(T) , w

(⋃
i∈T

wi

)
for all T ⊆ {0, . . . ,m}.

4[CK15] only prove this for p-Matroid-Intersection

4.2 Single Pass Algorithm 88

A coverage function is a monotone submodular function. We prove the following result.

Lemma 4.2.3. There is a converage function subject to a partition matroid for which Algorithm
2 (with α = 0 and β = 1) has approximation factor equal to 4.

Function Description: Let ` be the number of partitions of our partition matroid. The
elements of the universe are denoted using 4 indices: i, j, k and m. The range of the indices
is the following: For a value k between 1 and `, the index i ranges from k to ` and the index
m ranges from 1 to 2k−1. Given k and i, the index j takes values between 1 and 2i−1. There
are two types of elements: a(k)

i,j and o(k)
m and two types of sets: A(k)

i,j , {a(k)
i,j } and O(k)

m . The

parameter k denotes the phase of arrival. The sets A(k)
i,j have color i and the sets O(k)

m have
color k. The upper index (k) denotes in which phase the corresponding set arrives. For the
set O(k)

m , the index k denotes the color of the set as well.

The optimal solution consists of all the sets O(k)
m . To describe them, we introduce the buckets:

B
(k)
i,m. Fixing k, i and m we define B

(k)
i,m , {A(k)

i,j : j ∈ [1 + (m − 1)2i−k;m2(i−k)] for j =

1, . . . , 2i−1}. Fixing k and i, the B(k)
i,m’s partition the sets of color i arriving in the kth phase

into groups of 2i−k sets. Then, we define O(k)
m ,

(⋃`
i=k

⋃
a∈A : A∈B(k)

i,m

{a}
)
∪{o(k)

m } that covers

all the elements that
⋃`
i=k B

(k)
i,m covers plus the element o(k)

m .

Constraint: A independent solution in our partition matroid selects at most 2k−1 sets of color
k for each k = 1, . . . , `.

Arrival Order: The upper index (k) denotes in which phase the corresponding set arrives. In
the first phase the sets A(1)

i,j arrive first for i = 1, . . . , ` and j = 1, . . . , 2i−1. It is followed by

the set O(1)
1 . As we will see later, the sets A(1)

i,j will get accepted while O(1)
1 will get rejected.

In the kth-phase, the set A(k)
i,j arrive first for i = k, . . . , ` and j = 1, . . . , 2i−1 followed by the

sets O(k)
m for m = 1, . . . , 2k−1. As we will see later, the sets A(1)

i,j will get accepted whereas

O
(k)
m will get rejected. Observe that after the kth phase, no more set of color k arrives. It is an

invariant that we maintain throughout the stream. We will also prove that our final solution
will consists of the sets A(k)

k,j for k = 1, . . . , ` and j = 1, . . . , 2k−1 and that the optimal solution

is the union of the O(k)
m . The final ordering is the concatenation each phase, i.e. first phase,

then second phase etc... .

Weight/Marginal Value The weight of a(k)
i,j is equal to:

w
(
a

(k)
i,j

)
=

2`−2i+k

3`−i+1
.

Observe that the weight of a(k)
i,j is independent of j. Thus, every set in a bucket has the

same weight. Note that the A(k)
i,j ’s are disjoint, thus the objective is additive with respect to

the A(k)
i,j ’s. The weight of o(k)

m is equal to w
(
o

(k)
m

)
= 1 −

∑`
i=k

∑
a∈B(k)

i,m

w(a). Observe that

w
(
O

(k)
m

)
= 1.

4.2 Single Pass Algorithm 89

The next Lemma will be useful to bound the value of the solution after each phase.

Lemma 4.2.4. At the end of the kth phase, the value of the sets in the current solution is equal
to:

f(A) =

{
2`−i

3`−i+1 A has color i and i ≤ k,
2`−2i+k

3`−i+1 A has color i and i ≥ k.

Proof of Lemma 4.2.3. Using Lemma 4.2.4 after the `th phase, we obtain the desired approxi-
mation ratio. Let S̃ denote the final solution of Algorithm 2 with β = 1 and α = 0. The final
solution contains the set A(k)

k,j for k = 1, . . . , ` and j = 1, . . . , 2k−1. Their weight is equal to

f
(
A

(k)
k,j

)
= 2`−k

3`−k+1 . Since all the sets are disjoint, we have

f(S̃) =
∑̀
k=1

2k−1∑
j=1

f
(
A

(k)
k,j

)
=
∑̀
k=1

2k−1 · 2`−k

3`−k+1
= 2`−1

∑̀
k=1

(
1

3

)k
= 2`−1

(
3

2
(1− (1/3)`+1)− 1

)
.

The optimal solution is equal to O =
⋃`
k=1

⋃2k−1

m=1O
(k)
m and has weight f(O) = 2` − 1. Hence,

the approximation ratio is equal to:

f(S̃)

f(O)
=

2`−1

2` − 1
·
(

3

2
(1− (1/3)`+1)− 1

)
−→
`→∞

1/4.

Recall that in Algorithm 4, a set A of color i enters the solution S if and only if there is a set
A′ of the same color such that:

f(A | S) ≥(1 + β) · ν
(
A′, S

)
,

where ν(A′, S) is the incremental value of A′ w.r.t S. In our example, we will not need this
notation because all the sets that enter our solution, i.e. the A(k)

i,j ’s, are disjoint from each
other. So ν(e′, S) can be replaced by f(A′) = w(a′).

Proof of Lemma 4.2.4. We prove the lemma by induction of the number of phases. In the first
phase, we have ki = 2i−1 disjoint sets of color i arriving of weight w

(
A

(1)
i,j

)
= 2`−2i+1

3`−i+1 where
i = 1, . . . , `. Since we started with an empty solution, all the sets are accepted. Since the sets
in the current solution are disjoint, then, before O(1)

1 arrives, the value of the current solution
is equal to:

∑̀
i=1

ki ·
2`−2i+1

3`−i+1
=
∑̀
i=1

2i−1 · 2`−2i+1

3`−i+1
=

1

2

∑̀
i=1

(
2

3

)`−i+1

=
1

2

(
3(1− (2/3)`+1)− 1

)
.

4.2 Single Pass Algorithm 90

When O(1)
1 arrives (recall that it has color 1), there is only one bucket B(1)

1,1 that contains all
the sets that arrived so far. Thus, its marginal contribution is equal to:

f
(
O

(1)
1 | S

)
= w

(
o

(1)
1

)
= 1− 1

2
·
(

3 · (1− (2/3)`+1)− 1
)

=

(
2

3

)`
= (1 + β) · 2`−2·1+1

3`−1+1
,

where β = 1 and the rightmost term is the incremental value of a set of color 1 can be
swapped with O(1)

1 , i.e. A(1)
1,1. The first equality is because o(1)

1 is the only element covered by

O
(1)
1 and not by the current solution. Breaking ties arbitrarily, the algorithm decides to reject

O
(1)
1 . Since no set of color 1 will appear in later phase, then a set of color 1 has final weight

2`−1

3`
.

More generally, we focus on the kth phase, in which we will reject all O(k)
m for m = 1, . . . , 2k−1.

All sets A(k)
i,j for i = k, . . . , ` and j = 1, . . . , 2i−1 arrive before O(k)

m . Their marginal contri-

bution/weight is equal to f(A
(k)
i,j) = 2`−2i+k

3`−i+1 . By the induction hypothesis and breaking ties

accordingly, each such A
(k)
i,j will be accepted in the current solution because its marginal

contribution is twice, i.e., (1 + β), as much as the set of the same color it is swapped with.
Right before the arrival O(k)

m , the weight of each bucket B(k)
i,m is equal to:

∑̀
i=k

2i−k · 2`−2i+k

3`−i+1
=
∑̀
i=k

2`−i

3`−i+1
=

1

3

∑̀
i=k

(
2

3

)`−i
= 1− (2/3)`−k+1.

Indeed, by construction the buckets have identical weight, and each contains 2i−k sets of
color i. Take the set O(k)

m associated with the bucket B(k)
i,m. Recall that O(k)

m has color k, and

that sets of color k in the current solution have incremental value equal to 2`−k

3`−k+1 . Each such

set of color k in the current solution is a candidate set to be exchanged with O(k)
m . Since o(k)

m is
the only element that is not covered by the bucket B(k)

i,m the marginal contribution f(O
(k)
m | S)

is equal to w(o
(k)
m). Thus,

f
(
O(k)
m | S

)
= 1−

(
1− (2/3)`−k+1

)
=

(
2

3

)`−k+1

= (1 + β)
2`−k

3`−k+1
= (1 + β)w

(
A

(k)
k,j

)
.

Thus, breaking ties arbitrarily, the set O(k)
m will be rejected because its marginal contribution

at the time of arrival 1 + β times less than any set it is exchangeable with.

Remark 4.2.5. It is worth noting that the sets in the optimal solution are rejected upon arrival.
Hence, even if we remembered all sets being ever added to our solution, we still couldn’t
produce a better solution.

4.3 The main multipass streaming algorithm
We can now describe our improved multipass algorithm. For monotone functions, our main
multipass algorithm is given by the procedure MULTIPASSLOCALSEARCH in Algorithm 4.

4.3 The main multipass streaming algorithm 91

Algorithm 4: Multipass algorithm for monotone submodular functions

procedure MULTIPASSLOCALSEARCH(α, β1, . . . , βd)
S0 ← ∅;
for i = 1 to d do

Let S̃ be the output of STREAMINGLOCALSEARCH(α, βi, Si−1);
Si ← S̃;

return Sd;

Our procedure essentially runs d passes of STREAMINGLOCALSEARCH with the following
modifications: the initial solution Sinit used in pass i is the final solution of the previous pass.
Secondly, the threshold β is not static. It is set at the beginning of each pass. The crucial
property for our improvements is the observation that the marginal contribution of rejected
elements depends only on the total value of those elements that were accepted after they
arrive. This effect is bounded by the total value of evicted elements which in turns is bounded
by O(1

β) times the difference between the final and the starting solution.

To use this observation, we measure the ratio δ = f(Sinit)/f(S̃) between the value of the initial
solution Sinit of some pass of STREAMINGLOCALSEARCH and the final solution S̃ produced by
this pass. If δ is relatively small—and so one pass makes a lot of progress—then this pass
gives us an improvement of δ−1 over the ratio already guaranteed by the previous pass since
f(S̃) = δ−1f(Sinit). On the other hand, if δ is relatively large—and so one pass does not make
much progress—then the total increase in the value of our rejected elements can be bounded
by 1−δ

β f(S̃), and so the potential loss due to only testing these elements at arrival is relatively
small. Balancing these two effects allows us to set β smaller in each subsequent passes and
obtain an improved guarantee.

Guarantees at the end of a pass
We now turn to the analysis of Algorithm 4. Here we focus on a single pass of STREAMIN-
GLOCALSEARCH. Throughout the rest of the section, we use S to denote the current solution
maintained by this pass (initially, S = Sinit). The following key properties of incremental
values will be useful in our analysis. For completeness, they are proved in Appendix 4.A.1 at
the end of this chapter.

Lemma 4.3.1. Given T,U ⊆ X such that T ⊆ U , the following properties hold:

1.
∑

e∈T ν(e, T) = f(T)− f(∅).

2. ν(e, U) ≤ ν(e, T) for all e ∈ T .

3. f(T | U \ T) ≤
∑

t∈T ν(t, U).

4. At all times during the execution of STREAMINGLOCALSEARCH, ν(e, S) ≥ α for all e ∈ S,
where S is the solution maintained during this pass.

4.3 The main multipass streaming algorithm 92

Let A denote the set of elements accepted during the present pass. These are the elements
which were present in the solution S at some previous time during the execution of this pass.
Initially we have A = S = Sinit and whenever an element is added to S, during this pass we
also add this element to A. Let Ã and S̃ denote the sets of elements A and S at the end of
this pass. Note that we regard all elements of Sinit as having been accepted at the start of the
pass.

Each element e ∈ Ã \ S̃ was accepted but later evicted by the algorithm. For any evicted
element, we let χ(e) denote the value of ν(e, S) at the moment that e was removed from S.
More formally, let x be an element that arrives in the stream and let S be the current solution.
Suppose that x is accepted, then

χ(e) , ν(e, S) for all e ∈ EXCHANGE(x, S).

To derive guarantees for the ith pass, the proof can be loosely split into 2 parts. Like many
standard submodular optimization proofs, we require knowing the marginal contribution of
the vertices of OPT at the end of the algorithm, which is derived in the Lemmas 4.3.2 and
4.3.3. Equivalent statement of these lemmas can be found in [CGQ15]. For completeness,
their proof is presented in Section 4.A.1.

Lemma 4.3.2. At the end of STREAMINGLOCALSEARCH, the contribution of elements of OPT
with respect to Ã is at most:

f(OPT ∪ Ã)− f(Ã) ≤ (1 + β)

(p− 1)
∑
e∈Ã\S̃

χ(e) + pf(S̃)

+ kα.

The second part of the proof consists in bounding the value of the set Ã with respect to the
set S̃,

Lemma 4.3.3. Let f : 2X → R≥0 be a submodular function. Suppose S̃ is the solution produced
at the end of one pass of STREAMINGLOCALSEARCH and Ã be the set of all elements accepted
during this pass. Then,

f(Ã) ≤ f(S̃) +
∑
e∈Ã\S̃

χ(e).

By combining both Lemma 4.3.2 and Lemma 4.3.3, we get that the value of elements in OPT
is bounded by a function of f(S̃) and of the exit values: χ(·). In particular,

Corollary 4.3.4. At the end of one pass of STREAMINGLOCALSEARCH, we have

f(OPT ∪ Ã) ≤ (p+ βp− β)
∑
e∈Ã\S̃

χ(e) + (p+ βp+ 1)f(S̃) + kα.

4.3 The main multipass streaming algorithm 93

We now derive a bound for the summation
∑

e∈Ã\S̃ χ(e) (representing the value of evicted

elements) in terms of the total gain f(S̃) − f(Sinit) made by the pass, and also bound the
total number of accepted elements in terms of f(OPT).

Lemma 4.3.5. Let f : 2X → R≥0 be a submodular function. Suppose that S̃ is the solution
produced at the end of one pass of STREAMINGLOCALSEARCH and Ã is the set of all elements
accepted during this pass. Then, |Ã| ≤ f(OPT)/α and∑

e∈Ã\S̃

χ(e) ≤ 1

β

(
f(S̃)− f(Sinit)

)
.

Proof of Lemma 4.3.5. We consider the quantity Φ(A) ,
∑

e∈A\S χ(e). Suppose some element
a with Ca 6= ∅ is added to S by the algorithm, evicting the elements of Ca. Then, as each
element can be evicted only once, the quantity Φ(A) increases by precisely ∆ ,

∑
e∈Ca χ(e).

Let S−a , S
+
a and A−a , A

+
a be the sets S and A, respectively, immediately before and after a is

accepted. Let δa , f(S+
a)− f(S−a) be the change in the objective function after the exchange

between a and Ca. Since a is accepted, we must have f(a | S−a) ≥ α+ (1 +β)
∑

e∈Ca ν(e, S−a).
Then,

δa = f(S−a \ Ca + a)− f(S−a),

= f(a | S−a \ Ca)− f(Ca | S−a \ Ca),
≥ f(a | S−a)− f(Ca | S−a \ Ca), (by submodularity)

≥ f(a | S−a)−
∑
e∈Ca

ν(e, S−a), (by Lemma 4.3.1 (3))

≥ α+ (1 + β)
∑
e∈Ca

ν(e, S−a)−
∑
e∈Ca

ν(e, S−a), (since a is accepted)

= α+ β
∑
e∈Ca

χ(e) (Definition of χ(e))

= α+ β∆.

It follows that whenever Φ(A) increases by ∆, f(S) must increase by at least β∆. Initially,
Φ(A) = 0 and f(S) = f(Sinit) and at the end of the algorithm, Φ(A) =

∑
e∈Ã\S̃ χ(e) and

f(S) = f(S̃). Since α ≥ 0, we obtain that β
∑

e∈Ã\S̃ χ(e) ≤ [f(S̃)− f(Sinit)].

It remains to show that |Ã| ≤ f(OPT)/α. For this, we note that the above chain of inequalities
also implies that every time an element is accepted (and so |A| increases by one), f(S) also
increases by at least α. Thus, we have f(OPT) ≥ f(S̃) ≥ α|Ã|.

Using Lemma 4.3.5 to bound the sum of exit values in Lemma 4.3.4 then immediately gives
us the following guarantee for each pass performed in MULTIPASSLOCALSEARCH. In the ith

such pass, we will have Sinit = Si−1, S̃ = Si, and β = βi. We let Ai denote the set of Ã of all
elements accepted during this particular pass.

4.3 The main multipass streaming algorithm 94

Lemma 4.3.6. Consider the ith pass of STREAMINGLOCALSEARCH performed by MULTIPASSLO-
CALSEARCH. The set Ai of accepted elements in this pass satisfies |Ai| ≤ f(OPT)/α and

f(OPT ∪Ai) ≤ (p/βi + p− 1) [f(Si)− f(Si−1)] + (p+ pβi + 1)f(Si) + kα .

4.4 Analysis for monotone submodular functions
We now show how to use Lemma 4.3.6 together with a careful selection of parameters α
and β1, . . . , βd to derive guarantees for the solution f(Si) produced after the ith pass made
in MULTIPASSLOCALSEARCH. Here, we consider the case that f is a monotone submodular
function. In this case, we have f(OPT) ≤ f(OPT ∪Ai) for all i. We set α = 0 in each pass. In
the first pass, we will set β1 = 1. Then, since f(S0) = f(∅) ≥ 0, Lemma 4.3.6 immediately
gives:

f(OPT) ≤ f(OPT ∪A1) ≤ (2p− 1) [f(S1)− f(∅)] + (2p+ 1)f(S1) ≤ 4pf(S1), (4.1)

which is tight by Lemma 4.2.3. For subsequent passes, we use the following theorem that
relates the approximation guarantee obtained in the current pass to that from the previous
pass.

Theorem 4.4.1. For i > 1, suppose that f(OPT) ≤ γi−1 · f(Si−1) and define δi = f(Si−1)
f(Si)

as the
ratio between the current and the previous pass. Then,

f(OPT) ≤ min
{
γi−1δi, (

p
βi

+ p− 1)(1− δi) + p+ βip+ 1
}
· f(Si) .

Proof of Theorem 4.4.1. From the definition of γi−1 and δi, we have:

f(OPT) ≤ γi−1f(Si−1) = γi−1δif(Si) .

On the other hand, f(Si)− f(Si−1) = (1− δi)f(Si). Thus, Lemma 4.3.6 with α = 0 gives:

f(OPT) ≤ [(p/βi + p− 1) (1− δi) + p+ βip+ 1] f(Si).

Equipped with Theorem 4.4.1, we derive exact parameters for δi and βi ensuring a fast
convergence with the appropriate approximation guarantees. First, we observe that for
any fixed guarantee γi−1 from the previous pass, γi−1δi is an increasing function of δi and
(p/βi + p − 1)(1 − δi) + p + βip + 1 is a decreasing function of δi. Thus, the guarantee we
obtain in Theorem 4.4.1 is always at least as good as that obtained when these two values are
equal. Setting:

γi−1δi = (pβi + p− 1)(1− δi) + p+ βip+ 1,

and solving for δi gives us:

δi =
p(1 + βi)

2

p+ βi(γi−1 − 1 + p)
. (4.2)

4.4 Analysis for monotone submodular functions 95

In the following analysis, we consider this value of δi since the guarantee given by Theo-
rem 4.4.1 will always be no worse than that given by this value. The analysis for a single
matroid constraint follows from our results for p-matchoid constraints, but the analysis and
parameter values obtained are much simpler, so we present it separately, first.

Theorem 4.4.2. Suppose we run Algorithm 4 for an arbitrary matroid constraint and monotone
submodular function f , with βi = 1

i . Then 2(1 + 1
i)f(Si) ≥ f(OPT) for all i > 0. In particular,

after i = 2
ε passes, (2 + ε)f(Si) ≥ f(OPT).

Proof of Theorem 4.4.2. Let γi be the guarantee for our algorithm after i passes. Additionally,
we introduce the variables γ̄i ,

2(i+1)
i that is the worst-case approximation factor at the ith

pass. We show by induction on i, that γi ≤ 2(i+1)
i = γ̄i. For i = 1, we have β1 = 1 and so from

Equation (4.1) we have γ1 = 4, as required. For i > 1, suppose by induction that γi−1 ≤ 2i
i−1 ,

and distinguish two cases depending on whether δi ≤ p(1+βi)
2

p+βi(γ̄i−1−1+p) or δi >
p(1+βi)

2

p+βi(γ̄i−1−1+p) .

Since p = 1, βi = 1/i, and γ̄i−1 = 2i
i−1 , the threshold for the case distinction δi simplifies to:

p(1 + βi)
2

p+ βi(γ̄i−1 − 1 + p)
=

(1 + 1
i)

2

1 + 1
i (

2i
i−1)

=

(i+1)2

i2

(i−1)+2
i−1

=
(i− 1)(i+ 1)

i2
.

Case 1: Suppose δi ≤ (i−1)(i+1)
i2

. Thus, by Theorem 4.4.1 and the induction hypothesis applied
to γi−1, the ith pass of our algorithm has guarantee γi satisfying:

γi ≤ γi−1δi ≤
2i

i− 1

(i− 1)(i+ 1)

i2
=

2(i+ 1)

i
.

Case 2: Suppose now that δi >
(i−1)(i+1)

i2
. Then, by Theorem 4.4.1 with p = 1, the ith pass of

our algorithm has guarantee γi satisfying:

γi ≤
(
p

βi
+ p− 1

)
(1− δi) + p+ pβi + 1 ≤ i

(
1− (i− 1)(i+ 1)

i2

)
+ 2 +

1

i
= 2

(
1 +

1

i

)
.

The next theorem generalizes the computation and, in fact, proves Theorem 4.4.1 claimed in
the introduction of the chapter. The proof is essentially identical but requires a slightly more
delicate analysis.

Theorem 4.4.3. Suppose we run MULTIPASSLOCALSEARCH for an arbitrary p-matchoid con-
straint and monotone submodular function f with βi set in each pass as:

βi ,
γi−1 − 1− p
γi−1 − 1 + p

where γi , 4p
γi−1(γi−1 − 1)

(γi−1 − 1 + p)2

for i > 1, and β1 = 1 where γ1 = 4p. Then
(
p+ 1 + 4p

i

)
f(Si) ≥ f(OPT) for all i > 0. In

particular, after i = 4p
ε passes the approximation is (p+ 1 + ε)f(Si) ≥ f(OPT).

4.4 Analysis for monotone submodular functions 96

Proof of Theorem 4.4.3. We first show that approximation guarantee of our algorithm after i
passes is given by γi. Setting β1 = 1, we obtain γ1 = 4p from Equation (4.1), agreeing with
our definition.

For subsequent passes with βi = γi−1−1−p
γi−1−1+p , Theorem 4.4.1 implies that the guarantee for ith

pass will be at most δiγi−1, where δi is chosen to satisfy Equation (4.2). Specifically, if we set

δi =
p
(

1 + γi−1−1−p
γi−1−1+p

)2

p+ γi−1−1−p
γi−1−1+p(γi−1 − 1 + p)

=
p
(

2(γi−1−1)
γi−1−1+p

)2

γi−1 − 1
=

4p(γi−1 − 1)

(γi−1 − 1 + p)2
,

then we have δiγi−1 = γi.

We now show by induction on i that γi ≤ p+ 1 + 4p
i . In the case i = 1, we have γ1 = 4p and

the claim follows immediately from p ≥ 1. In the general case we may assume without loss
of generality that γi−1 ≥ 1. Otherwise, the theorem holds immediately, as each subsequent
pass can only increase the value of the solution. Then, we observe that γi is an increasing
function of γi−1, for p ≥ 1 and γi−1 ≥ 1 (shown in Section 4.A.2). By the induction hypothesis,
γi−1 ≤ p+ 1 + 4p

i−1 . Therefore:

γi ≤
4p
(
p+ 1 + 4p

i−1

)(
p+ 4p

i−1

)
(

2p+ 4p
i−1

)2 ≤ p+ 1 + 4p
i ,

as required. The last inequality above follows from straightforward but tedious algebraic
manipulations, which can be found in Section 4.A.2.

4.5 Multipass algorithm for general submodular
functions

In this section, we show that the guarantees for monotone submodular maximization can
be extended to non-monotone submodular maximization even when dealing with multiple
passes. Our main algorithm is given by procedure MULTIPASSRANDOMIZEDLOCALSEARCH

in Algorithm 5. In each pass, it calls a procedure RANDOMIZEDLOCALSEARCH, which is an
adaptation of STREAMINGLOCALSEARCH, to process the stream. Each such pass produces a
pair of feasible solutions S and S′, which we now maintain throughout MULTIPASSRANDOM-
IZEDLOCALSEARCH. The set S is maintained similarly as before and gradually improves by
exchanging “good” elements into a solution throughout the pass. The set S′ will be maintained
by considering the best output of an offline algorithm that we run after each pass as described
in more detail below.

To deal with non-monotone submodular functions, we will limit the probability of elements
being added to S. Instead of exchanging good elements on arrival, we store them in a buffer
B of size m. When the buffer becomes full, an element is chosen uniformly at random from

4.5 Multipass algorithm for general submodular functions 97

Algorithm 5: The randomized multipass streaming algorithm

procedure MULTIPASSRANDOMIZEDLOCALSEARCH(α, β1, . . . , βd,m)
S0 ← ∅, S′0 ← ∅;
for i = 1 to d do

Let (S̃, S′) be the output of RANDOMIZEDLOCALSEARCH(Si−1, α, βi,m);
Si ← S̃, S′i ← arg max{f(S′i−1), f(S′)};

return S̄ = arg max{f(Sd), f(S′d)};

procedure RANDOMIZEDLOCALSEARCH(Sinit, α, β,m)
S ← Sinit; B ← ∅;
foreach x in the stream do

if f(x | S) ≥ α+ (1 + β)
∑

e∈Cx ν(e, S) then
B ← B + x;

if |B| = m then
x← uniformly random element from B;
Cx ← EXCHANGE(x, S);
B ← B − x; S ← S + x− Cx;
foreach x′ in B do

Cx′ ← EXCHANGE(x′, S);
if f(x′ | S) < α+ (1 + β)

∑
e∈Cx′

ν(e, S) then
B ← B − x′;

S′ ← OFFLINE(B);
return (S, S′);

the buffer and added to S. Adding a new element to the current solution may affect the
quality of the remaining elements in the buffer. Thus, we need to re-evaluate them and
remove the elements that are no longer good.

As before, we let A denote the set of elements that were previously added to S during the
current pass of the algorithm. Note that we do not consider an element to be accepted until
it has actually been added to S from the buffer. For any fixed set of random choices, the
execution of RANDOMIZEDLOCALSEARCH can be considered as the execution of STREAMIN-
GLOCALSEARCH on the following stream: we suppose that an element x arrives whenever
it is selected from the buffer and accepted into S. All elements that are discarded from the
buffer after accepting x then arrive, and will also be rejected by STREAMINGLOCALSEARCH.
Any element remaining in the buffer after the execution of the algorithm does not arrive in
the stream. Applying Lemma 4.3.6 with respect to this pretend stream ordering allows us to
bound f(S̃) with respect to f(OPT \ B) (that is, the value of the part of OPT that does not
remain in the buffer B) after a single pass of RANDOMIZEDLOCALSEARCH. Formally, let B̃i

4.5 Multipass algorithm for general submodular functions 98

be the value of the elements in the buffer after the ith pass of our algorithm. Then, applying
Lemma 4.3.6 to the set OPT \ B̃i, and taking expectation, gives:

E[f(Ai ∪ (OPT \ B̃i))] ≤(p/β + p− 1) (E[f(Si)]− E[f(Si−1)])

+ (p+ βp+ 1)E[f(Si)] + αk . (4.3)

In order to bound the value of the elements in B̃i, we apply any offline γ̄off -approximation
algorithm OFFLINE to the buffer at the end of the pass to obtain a solution S′. In MULTIPASS-
RANDOMIZEDLOCALSEARCH, we then remember the best such offline solution S′i computed
across the first i passes. Then, in the ith pass, we have

E[f(OPT ∩ B̃i)] ≤ γ̄off E[f(S′)] ≤ γ̄off E[f(S′i)] . (4.4)

From the submodularity of f and Ai ∩ B̃i = ∅, we have f(Ai ∪ OPT) ≤ f(Ai ∪ (OPT \ B̃i)) +

f(OPT ∩ B̃i). Thus, combining Equation (4.3) and Equation (4.4) we have:

E[f(Ai ∪ OPT)] ≤ (p/β + p− 1) (E[f(Si)]− E[f(Si−1)])

+ (p+ βp+ 1)E[f(Si)] + γ̄off E[f(S′i)] + αk . (4.5)

To relate the left-hand side to f(OPT) we use the following result from Buchbinder et
al. [Buc+14]:

Lemma 4.5.1 (Lemma 2.2 in [Buc+14]). Let f : 2X → R≥0 be a non-negative submodular
function. Suppose that A is a random set where no element e ∈ X appears in A with probability
more than p. Then, E[f(A)] ≥ (1− p) f(∅). Moreover, for any set Y ⊆ X, it follows that
E[f(Y ∪A)] ≥ (1− p)f(Y).

We remark that a similar theorem also appeared earlier in Feige et al. [FMV11] for a random
set that contains each element independently with probability exactly p. Here, the probability
that an element occurs in Ai is delicate to handle because such an element may either
originate from the starting solution Si−1 or be added during the pass. Thus, we use a rougher
estimate and bound the probability of an element ever appearing in A1 ∪ . . . Ai. Since the first
event is contained in the other, Pr[e ∈ Ai] ≤ Pr[e ∈ Ai ∪ . . . ∪A1]. The number of selections
during the jth pass is at most |Aj | and by Lemma 4.3.6 (applied to the set OPT \ B̃j due
to our pretend stream ordering in each pass j), |Aj | ≤ f(OPT \ B̃j)/α ≤ f(OPT)/α in any
pass. Here, the second inequality follows from the optimality of OPT, and the fact that
any subset of the feasible solution OPT is also feasible for our p-matchoid constraint. Thus,
the total number of selections in the first i passes at most

∑i
j=1 |Aj | ≤ i · f(OPT)/α. We

select an element only when the buffer is full, and each selection is made independently
and uniformly at random from the buffer. Thus, the probability that any given element
is selected when the algorithm makes a selection is at most 1/m and by a union bound,
Pr[e ∈ Ai ∪ . . . ∪A1] ≤ i · f(OPT)/(mα). Let d be the number of passes that the algorithm
makes and suppose we set α = εf(OPT)/2k (in Appendix 4.A.3 we show that this can be
accomplished approximately by guessing f(OPT), which can be done at the expense of an

4.5 Multipass algorithm for general submodular functions 99

extra factor O(log k) space). Finally, let m = 4dk/ε2. Then, applying Lemma 4.5.1, after i ≤ d
passes we have:

E[f(Ai ∪ OPT)] ≥(1− d · f(OPT)/(mα)) f(OPT) ≥(1− ε/2) f(OPT) . (4.6)

Our definition of α also implies that αk ≤ ε/2f(OPT). Using this and Equation (4.6) in (4.5),
we obtain:

(1− ε)f(OPT)

≤ (p/β + p− 1)(E[f(Si)]− E[f(Si−1)]) + (p+ βp+ 1)E[f(Si)] + γ̄off E[f(S′i)] . (4.7)

As we show in Section 4.6, the rest of the analysis then follows similarly to that in Section 4.4,
using the fact that f(S̄) = max{f(Sd), f(S′d)}. It yields the following theorem

Theorem 4.5.2. Given a p-matchoidM =(X, I) of rank k, a submodular function f : 2X →
R≥0, and an algorithm for the offline instance of the problem with approximation factor γ̄off .
Then, for any ε > 0, RANDOMIZEDLOCALSEARCH returns a solution S̄ ∈ I such that

f(OPT) ≤(p+ 1 + γ̄off + ε)E[f(S̄)],

using a total space of O
(
p3k log2 k

ε3

)
and O

(p
ε

)
-passes.

4.6 Analysis for non-monotone submodular functions
In this section we give a full proof of Theorem 4.5.2 from Section 4.5. The proof essentially
reduces to that of the monotone case of Section 4.3. In particular, we prove that the single
pass approximation factor equal to 4p+ γ̄off improves to p+ 1 + γ̄off + ε using O(p/ε)-passes.

Theorem 4.6.1. Given a submodular function f , suppose the (i− 1)th pass of MULTIPASSRAN-
DOMIZEDLOCALSEARCH produces a solution (1− ε)f(OPT)≤γi−1 E[f(Si−1)] + γ̄off E[f(S′i−1)]

with a buffer of size m = 4dk/ε2, and threshold α ≤ εf(OPT)/2k, then the ith pass satisfies,

(1− ε)f(OPT) ≤ min

{
γi−1δi,

(
p

βi
+ p− 1

)
(1− δi) + p+ βip+ 1

}
· E[f(Si)] + γ̄off E[f(S′i)],

where δi = E[f(Si−1)]
E[f(Si)]

.

Proof of Theorem 4.6.1. From the definition of γi−1 and δi, it follows that,

(1− ε)f(OPT) ≤ γi−1 E[f(Si−1)] + γ̄off E[f(S′i−1)] ≤ γi−1δi E[f(Si)] + γ̄off E[f(S′i)] (4.8)

4.6 Analysis for non-monotone submodular functions 100

where in the last inequality we have used the definition of δi and the fact that f(S′i) ≥
f(S′i−1), which follows from the way S′i is defined in Algorithm 5. On the other hand,
E[f(Si)]− E[f(Si−1)] = (1− δi)E[f(Si)]. Thus, by Equation (4.7) we also have:

(1− ε)f(OPT) ≤
(
p
βi

+ p− 1
)

(E[f(Si)]− E[f(Si−1)])+(p+ βp+ 1)E[f(Si)] + γ̄off E[f(S′i)]

=
((

p
βi

+ p− 1
)

(1− δi) + p+ βip+ 1
)
E[f(Si)] + γ̄off E[f(S′i)] . (4.9)

Since the right-hand side of Equation (4.8) is an increasing function of δi and the right-hand
side of Equation (4.9) is a decreasing function of δi, the guarantee we obtain is always at
least as good as that obtained when these two values are equal.

As in the monotone case, the lemma enables us to derive values of β so as to minimize the
value of the approximation ratio. The following theorem is by the same calculations as in
Section 4.4 and the follow-up computations in Section 4.A.2.

Theorem 4.6.2. The ith pass of MULTIPASSRANDOMIZEDLOCALSEARCH with a buffer of size
m = 4dk/ε2, α ≤ εf(OPT)/2k, and previous passes initialized with β1 = 1 and βi = γi−1−1−p

γi−1−1+p

where γi is given by the recurrence, γ1 = 4p and γi = 4pγi−1(γi−1−1)
(γi−1−1+p)2

, has guarantee

(1− ε)f(OPT) ≤
(
p+ 1 +

4p

i

)
E[f(S̃i)] + γ̄off E[f(S′i)].

In particular after d = 4p
ε passes, we get (1− ε)f(OPT) ≤(p+ 1 + γ̄off + ε)E[f(S̄d)] where γ̄off

is the approximation ratio of the best offline algorithm for maximizing f under I.

Corollary 4.6.3. Using d = O(ε−1) passes with βi = 1
i , Algorithm 6 has guarantee equal to:

f(OPT) ≤ (4.5975 + ε)E[f(S̄d)], where we use that γ̄off = 2.5975 [BF19] for maximizing a
submodular function over the Matroid class.

For others classes such as: p-Hyp.Matching , p-Matroid-Intersection , and p-Matchoid , we recall
that γ̄off = p2+ε

p−1 ,
p2+(p−1)ε

p−1 , e(p+1)
2 , respectively [Fel+11; LSV10; CVZ14]. We conclude the

section with the proof of Theorem 4.5.2.

Proof of Theorem 4.5.2. We assume that we know the value of f(OPT) beforehand. We show
how to remove this assumption completely in Section 4.A.3. Let ε′ = ε/p with 1/2 ≥ ε′ > 0

and let α = ε′f(OPT)/2k. We want to obtain an additive error term instead of a multiplicative
error term as stated in Theorem 4.6.2. By Theorem 4.6.2,

(1− ε′)f(OPT) ≤
(
p+ 1 + γ̄off +

4p

d

)
E[f(S̄d)]

Using the fact that (1− ε′)−1 ≤ 1 + 2ε′ for ε′ ∈ (0, 1/2], we get that,

f(OPT) ≤
(
p+ 1 + γ̄off +

4p

d

)(
1 + 2ε′

)
E[f(S̄d)] . (4.10)

4.6 Analysis for non-monotone submodular functions 101

Since ε′ = ε/p, setting d = O(p/ε) we finally obtain the desired result:

f(OPT) ≤(p+ 1 + γ̄off +O(ε))(1 + 2ε/p)E[f(S̄d)]

≤(p+ 1 + γ̄off +O(ε/p)(p+ 1 + γ̄off +O(ε)))E[f(S̄d)]

≤(p+ 1 + γ̄off +O(ε))E[f(S̄d)]

where in the final inequality we assume that the approximation factor γ̄off is linear in p subject
to a p-matchoid constraint [CVZ14]. The proof terminates with an appropriate rescaling of ε.

Regarding space complexity, we observe that MULTIPASSRANDOMIZEDLOCALSEARCH stores
the buffer B and maintains two past solutions Si, S′i ∈ I, together with the current solution
S ∈ I. Hence, the total space needed is equal to O(|B|+ |S′i|+ |Si|+ |S|) = O(m+ 3k) =

O
(
p3kε−3

)
, times an additional factor of O(log k) for guessing f(OPT) (see Section 4.A.3).

The number of passes is d = O(p/ε).

4.7 Regularized Monotone Submodular Maximization
In this section, we switch gear and focus on multipass streaming algorithms for maximizing
regularized monotone submodular functions subject to uniform matroid constraint. The
results in this section do not appear in [HTW20].

Definition 4.7.1 (Regularized Submodular Function). We call a regularized monotone sub-
modular function a set function f that can be written as f = g − l, where g : 2X → R≥0 is a
monotone submodular function and l is a linear function.

Our aim is to maximize f subject to a uniform matroid constraint I ={S ⊆ X : |S| ≤ k}.

Remark 4.7.2. The performance of a given algorithm is measured via a bicriteria. In
particular, we aim at designing an algorithm that returns a solution S such that f(S) ≥
αg(OPT)− βl(OPT), where α, β ∈ [0, 1]. Note the difference with Definition 1.1.3 where the
approximation is greater than 1.

To optimize f , we assume that we have access to the decomposition of f . In particular,
we suppose that we have a value oracle for g and for l. Sviridenko et al. [SVW15] give
an algorithm that returns a solution S such that f(S) ≥ (1 − e−1)g(OPT) − l(OPT) for any
monotone submodular function g and any linear (possibly negative) function l. Their result
implies an optimal approximation for g and for l, respectively and holds even subject to a
matroid constraint. Perhaps surprisingly, greedy approaches yield state-of-the-art results only
in a restricted setting where l is non-negative and I is a uniform matroid [Har+19]. The
special case of non-negative l is important in its own right as the function f is no longer
strictly positive. This setting was subsequently studied in [Kaz+21; BF22]. In the setting that
we consider here, the state-of-the-art streaming algorithm is due to Kazemi et al. [Kaz+21].
They get a solution S such that f(S) ≥ 3−

√
5

2 g(OPT)− l(OPT). Our main result is a multipass
streaming algorithm for maximizing f that extends Kazemi et al.’s algorithm.

4.7 Regularized Monotone Submodular Maximization 102

Algorithm
The main idea of Algorithm 6 is to mimic the behavior of the distorted greedy algorithm
introduced in [Har+19] which gradually decreases the penalty on the linear term l. Thus,
elements with small linear cost are added first. Our algorithm maintains a current solution S
throughout each pass. Each pass is initialized with the solution of the previous pass. During
the ith pass, a new element is added whenever its distorted weighted marginal contribution is
above a fixed threshold τ . More precisely, the algorithm checks whether,

g(e | S)− αile ≥ τ,

where αi ≥ 1 is some penalty weight. The penalty of the linear term decreases in each
pass so that elements which were rejected may be accepted in a later pass. Kazemi et
al. [Kaz+21] is a special instantiation of this algorithm, where they set α1 = 3+

√
5

2 and

τk = 3−
√

5
2 g(OPT)− l(OPT) to obtain an approximation guarantee of 0.382g(OPT)− l(OPT)

in a single pass.

Algorithm 6: Multipass streaming algorithm for regularized monotone submodular functions
Procedure: REGULARIZEDMULTIPASS:τ , Penalties: (α1, . . . , αd)
S ← ∅
for(i← 1; i ≤ d; i← i+ 1) do

for e ∈ X do
if g(e | S)− αile ≥ τ and |S| < k then

S ← S + e.

return Return S

Compared to MULTIPASSLOCALSEARCH, here, we fix the number of passes in advance to fix the
sequence (α1, . . . , αd). Before diving into the analysis, let d be the number of passes, let x∗ be
the solution of the equation ex(x − 2) + 1 = 0, and define τ , 1

k

(
ex
∗−1

2ex∗−1
g(OPT)− l(OPT)

)
.

Finally, we set αi ,
(
1 + x∗

d

)d+1−i
, and denote by Si the solution at the end of the ith pass.

4.7.1 Analysis for regularized monotone submodular functions
The main result of this section is the proof of Theorem 4.7.3. To the best of our knowledge, it
is the first multipass algorithm for maximizing a regularized monotone submodular function.

Theorem 4.7.3. For any ε > 0, MULTIPASS REGULARIZED (Algorithm 6) produces a solution S
of size at most k in O(ε−1)-passes such that,

g(S)− l(S) ≥(γ − ε) g(OPT)− (1 + ε)l(OPT) ,

where γ , ex
∗−1

2ex∗−1
≥ 0.4569 and x∗ is the solution of the equation ex(x− 2) + 1 = 0.

4.7 Regularized Monotone Submodular Maximization 103

The proof follows the same line as the proof of Kazemi et al. [Kaz+21]. It distinguishes
two cases: either the solution after a certain number of passes has size k in which case the
approximation ratio is at least kτ . Otherwise, we argue that vertices in OPT were rejected
and thus must have low marginal contribution. This implies that the value of g(Si) must
be large for the pass we consider. The next two lemmas deal with the first and second case
respectively.

Lemma 4.7.4. At the end of the ith pass, we have

Eq1
i : g(Si | Si−1)− αil(Si \ Si−1) ≥ τ |Si \ Si−1| .

Proof of Lemma 4.7.4. Sort the elements{e1, . . . , en} = Si \ Si−1 in the order of their arrival.
Recall that the ith pass starts with Si−1 as initial solution and that each element in Si \ Si−1

has marginal contribution larger than τ when it arrives. Thus,

g(Si | Si−1)− αil(Si \ Si−1) =
n∑
j=1

g(ej | Si−1 ∪ {e1, . . . , ej−1})− αilej ≥ τ |Si \ Si−1| .

Lemma 4.7.5. Suppose that at the end of the ith pass, we have |Si| < k, then

Eq2
i : g(Si) ≥ g(OPT)− αil(OPT)− τk.

Proof of Lemma 4.7.5. We look at the elements of OPT which are rejected in the ith pass.∑
e∈OPT\Si

g(e | Si)− αile < τ |OPT \ Si| ≤ kτ, (4.11)

where the inequality follows from the rejection property. The second inequality is true because
|OPT \ Si| ≤ |OPT| ≤ k. From submodularity we also get that,∑

e∈OPT\Si

g(e | Si)− αile ≥ g(OPT ∪ Si)− g(Si)− αil(OPT \ Si),

≥ g(OPT)− g(Si)− αil(OPT) , (4.12)

where the second inequality follows from the monotonicity and positivity of l. Rearranging
Equation (4.12) and Equation (4.11) gives the desired result.

In the following computations we will mention the equations stated in Lemma 4.7.4 and
4.7.5 with respect to their indices. We denote the equations in Lemma 4.7.4 and 4.7.5 at
the ith pass by Eq1

i and Eq2
i respectively. Lemma 4.7.4 holds for any pass but gives a bound

which depends on the value of Si−1. Lemma 4.7.5 holds only if |Si| < k and doesn’t take into
account the linear part of Si. The next lemma combines the two lemmas to obtain a bound
on f(Sd) with respect to OPT.

4.7 Regularized Monotone Submodular Maximization 104

Lemma 4.7.6. Suppose that at the end of the dth pass we have |Sd| = k then,

g(Sd)− l(Sd) ≥ τk.

Else if |Sd| < k then,

g(Sd)− l(Sd) ≥
(

1− 1

α1

)
(g(OPT)− τk)− l(OPT)

(
d∑
i=1

αi
αi+1

− d

)
.

Proof of Lemma 4.7.6. We start with the first case where we assume |Sd| = k. Let i ≤ d be the
pass number for which the current solution reaches its maximum size k, i.e., |Si| = k. Later
passes will not change the current solution and hence Sd = Si. We apply the lemma 4.7.4 for
all passes j = 1, . . . , i. By summing Eq1

j over j, we have

τk =

i∑
j=1

τ |Sj \ Sj−1| ≤
i∑

j=1

g(Sj | Sj−1)− αjl(Sj \ Sj−1) ≤ g(Si)− l(Si) = g(Sd)− l(Sd),

where the last inequality is by the fact that g(∅) ≥ 0 and that αj ≥ 1. Next we assume that
|Sd| < k. This means that we can apply both lemma 4.7.4 and 4.7.5 for each pass. We
combine the equations as follows,

∑d
i=1

[
αd
αi

Eq1
i + (αd

αi+1
− αd

αi
)Eq2

i

]
, where αd+1 = 1. The

right-hand side simplifies to:

d∑
i=1

[
αd
αi

(g(Si | Si−1)− αil(Si \ Si−1)) +

(
αd
αi+1

− αd
αi

)
g(Si)

]

=

d∑
i=1

[
αd
αi+1

g(Si)−
αd
αi
g(Si−1)

]
− αdl(Sd)

= αdg(Sd)−
αd
α1
g(∅)− αdl(Sd)

≤ αd(g(Sd)− l(Sd)) .

4.7 Regularized Monotone Submodular Maximization 105

The inequality follows from the positivity of g, i.e. g(∅) ≥ 0. Since αi ≥ αi+1 ≥ 1, the sign of
Eq2

i is preserved when multiplied by (αd
αi+1
− αd

αi
). Combining the previous computation with

the left-hand side of
∑d

i=1

[
αd
αi

Eq1
i + (αd

αi+1
− αd

αi
)Eq2

i

]
yields

αd(g(Sd)− l(Sd)) ≥ τ

(
|Sd \ Sd−1|+

d−1∑
i=1

αd
αi
|Si \ Si−1|

)

+

d∑
i=1

[(
αd
αi+1

− αd
αi

)
(g(OPT)− αil(OPT)− τk)

]

≥
d∑
i=1

(
αd
αi+1

− αd
αi

)
(g(OPT)− τk)− αdl(OPT)

d∑
i=1

[
αi

(
1

αi+1
− 1

αi

)]
,

= αd

(
1− 1

α1

)
(g(OPT)− τk)− αdl(OPT)

(
d∑
i=1

αi
αi+1

− d

)
.

We use the fact that τ ≥ 0 for the second inequality. Dividing both sides by αd yields the
desired result.

The previous lemma tells us that after the dth pass we obtain a solution Sd whose bicriteria
guarantee is at least min

{
τk;
(

1− 1
α1

)
(g(OPT)− τk)− l(OPT)

(∑d
i=1

αi
αi+1
− d
)}

. Observe
that the left-hand side of the bracketed expression is an increasing function of τ whereas the
right-hand side is a decreasing function w.r.t τ . By setting,

τk ,
α1 − 1

2α1 − 1
g(OPT)− l(OPT)

2− 1/α1

(
d∑
i=1

αi
αi+1

− d

)
, (4.13)

both sides of the bracketed expression are equal. Hence, if we set τk to be equal to the
right-hand side expression of Equation (4.13), we get that the bicriteria guarantee is at
least τk. Therefore, it is sufficient to obtain values for α′is to derive an approximation
guarantee for Algorithm 6. More precisely, we want to find the greatest value of α such
that τk ≥ αg(OPT)− l(OPT) (which is consistent with the guarantees in [SVW15; Har+19;
Kaz+21]). The problem of finding the best approximation guarantee is therefore equivalent
to the following non-linear program

maximize:
α1 − 1

2α1 − 1

subject to:
d∑
i=1

αi
αi+1

− d = 2− 1

α1
,

αi ≥ αi+1 ≥ 1, for i = 1, . . . , d, and αd+1 = 1

The next computation shows that the set of αi , (1 + x∗

d)d+1−i is an approximate feasible
solution to the above program. The set of αi’s is in fact exactly feasible as d tends to infinity.

4.7 Regularized Monotone Submodular Maximization 106

We will later show that d = O(ε−1) is sufficient to obtain Theorem 4.7.3. Substituting them,
the constraint can be written as d

(
1 + x∗

d

)d+1 − (d + 2)
(
1 + x∗

d

)d
+ 1 = 0. Simplifying the

left-hand side gives

d

(
1 +

x∗

d

)d+1

− (d+ 2)

(
1 +

x∗

d

)d
+ 1 =

(
1 +

x∗

d

)d(
d

(
1 +

x∗

d

)
− (d+ 2)

)
+ 1

=

(
1 +

x∗

d

)d
(x∗ − 2) + 1 −→

d→∞
ex
∗
(x∗ − 2) + 1 = 0,

where the last equality is by definition of x∗. Finally, it is easy to see that αi ≥ αi−1 and
αd+1 = 1. Finally, substituting α1 in the objective function yields the guarantee stated in
Theorem 4.7.3. It almost concludes this proof as we still need to show that O(ε−1) passes leads
to a deterioration of the approximation guarantee by a factor of at most (1 + ε). Additionally,
we need to prove that τ can be guessed accurately. The proof of the latter point can be found
in Appendix Section 4.A.3.

Convergence in few passes

Let d = O
(
ε−1
)

be the number of passes and let αi =
(
1 + x∗

d

)d+1−i
for i = 1, . . . , d, where

x∗ = 1.84141 is the root of the equation ex(x− 2) + 1 = 0. Focusing on the first constraint of
the non-linear program, we have

d
((

1 + x∗

d

)d+1 −
(
1 + x∗

d

)d)
2
(
1 + x∗

d

)d − 1
= d

((
1 +

x∗

d

)
− 1

) (
1 + x∗

d

)d
2
(
1 + x∗

d

)d − 1

= x∗
(
1 + x∗

d

)d
2
(
1 + x∗

d

)d − 1

≤ x∗ ex
∗

2ex∗
(

1− (x∗)2

d

)
− 1

≤ x∗ ex
∗

2ex∗ − 1−O(ε)

≤ 1−O(ε).

The first inequality is by using the following standard inequality: (1− x2

n)ex ≤ (1+x/n)n ≤ ex,
where the lower bounds holds for n > 1 and x < n. The second inequality is by recalling
that d = O(1/ε). Finally, the last inequality is from the observation that x∗ is a solution of
ex(x−2)+1 = 0. A similar computation bounds the objective value of the NLP. In particular,

α1 − 1

2α1 − 1
=

(1 + x∗/d)d − 1

2(1 + x∗/d)d − 1
≥
ex
∗
(1− x2∞

d)− 1

2ex∗ − 1
≥ ex

∗ − 1

2ex∗ − 1
−O(ε) ' 0.4569−O(ε) .

4.7 Regularized Monotone Submodular Maximization 107

Recall that we have set

τ ,
1

k

(
α1 − 1

2α1 − 1
g(OPT)− l(OPT)

2− 1/α1

(
d∑
i=1

αi
αi+1

− d

))

so that the approximation ratio of Algorithm 6 is equal to τk. Substituting the previous two
computations into τ with an appropriate rescaling of ε yields the desired result.

4.8 Conclusion and Open Questions
The main result of this chapter is the derivation of a streaming local-search algorithm.
For maximizing a monotone submodular function subject to a p-matchoid constraint, its
approximation guarantee is at most (1 + ε) times worse than its offline counterpart using only
O(p/ε) passes. Our approach is versatile and capable of handling non-monotone submodular
objectives. By doing so, we are the first to derive a multipass streaming algorithm for
maximizing general submodular functions with a number of passes independent of the size of
the ground set. In the last part of the chapter, we give a multipass streaming algorithm for
maximizing a monotone regularized submodular function subject to a cardinality constraint.
For this problem as well, we obtain further improvement compared to best single pass
streaming algorithm.

There are plenty of directions of great interest. We list a few of open questions. All problems
have stars ? denoting a combination of their difficulty and interest.

• (? ? ?) Is it possible to get a single pass 2-approximation for maximizing a monotone
submodular function subject to a matroid constraint? This is the best attainable fac-
tor [Fel+20], and the current best factor is equal 3.1467 [Fel+22]. A single pass
2-approximation exists subject to a cardinality constraint [Nor+18].

• (??) We obtain a p + 1 + ε approximation for maximizing a monotone submodular
function subject to a p-matroid intersection in O(p/ε)-passes. Can we improve this
approximation further to p+ ε to match the state-of-the-art result by [LSV10]?

• (??) Our algorithm assumes an adversarial arrival of the ground set. Recently, [Nor+18;
Liu+21; Fel+22] obtained improved guarantees/number of passes in the random-order
model. In the random-order arrival and subject to a matroid constraint, can we improve
over the factor 3.1467 in a single pass?

• (??) A slightly open-ended question is to investigate bad instances for multipass algo-
rithm. The situation is clear for single pass algorithm with hardness results [Fel+20].
What about 2-passes?

• (?) Is it possible to get a solution S such that f(S) ≥ (1−e−1)g(OPT)− l(OPT) in O(ε−1)

passes? What about streaming algorithms subject to a matroid constraint or even a
p-matchoid? To the best of our knowledge, no streaming algorithm for regularized
submodular function maximization beyond cardinality constraint is known.

4.8 Conclusion and Open Questions 108

Appendix

4.A Detailed computations for Section 4.3 and 4.6

4.A.1 Analysis of Chekuri et al.’s algorithm
Here, we give a self-contained analysis of the single-pass algorithm of Chekuri, Gupta, and
Quanrud [CGQ15] corresponding to Algorithm 4 initialized with Sinit = ∅. First, we prove
Lemma 4.3.1 about the properties of the incremental values.

Lemma 4.3.1. Given T,U ⊆ X such that T ⊆ U , the following properties hold:

1.
∑

e∈T ν(e, T) = f(T)− f(∅).

2. ν(e, U) ≤ ν(e, T) for all e ∈ T .

3. f(T | U \ T) ≤
∑

t∈T ν(t, U).

4. At all times during the execution of STREAMINGLOCALSEARCH, ν(e, S) ≥ α for all e ∈ S,
where S is the solution maintained during this pass.

Proof of Lemma 4.3.1. Property (1) follows directly from the telescoping summation∑
e∈T

ν(e, T) =
∑
e∈T

[f(e ∪ {t′ ∈ T : t′ ≺ e})− f({t′ ∈ T : t′ ≺ e}] = f(T)− f(∅).

Property (2) follows from submodularity since T ⊆ U implies that {t′ ∈ T : t′ ≺ e} ⊆ {t′ ∈
U : t′ ≺ e}. For property (3), we note that:

f(T | U \ T) =
∑
t∈T

f(t | U \ T ∪ {t′ ∈ T : t′ ≺ t})

≤
∑
t∈T

f(t | {u′ ∈ U : u′ ≺ t})

=
∑
t∈T

ν(t, U) ,

where the first equation follows from a telescoping summation, and the inequality follows
from submodularity, since {u′ ∈ U : u′ ≺ t} ⊆ U \ T ∪ {t′ ∈ T : t′ ≺ t}.

109

We prove property (4) by induction on the stream of elements arriving. Initially S = ∅. Thus,
the first time that any element x is accepted, we must have Cx = ∅ and so f(x | S) ≥ α ≥ 0.
After this element is accepted, we have ν(x, S) = ν(x, {x}) = f(x | ∅) ≥ α. Proceeding
inductively, then, let S−x and S+

x be the set of elements in S before and after some new
element x arrives and is processed by Algorithm 2. Suppose that ν(s, S−x) ≥ α for all s ∈ S−x .
Then, if x is rejected, we have S+

x = S−x and so ν(s, S+
x) = ν(s, S−x) ≥ α for all s ∈ S+

x . If x is
accepted, then S+

x = S \ Cx + x and f(x | S−x) ≥ α+ (1 + β)
∑

e∈Cx ν(e, S−x). Thus,

ν(x, S+
x) ≥ f(x | S+

x − x) ≥ f(x | S−x) ≥ α+ (1 + β)|Cx|α ≥ α ,

where the first inequality follows from property (2) of the lemma, the second from submodu-
larity, and the third from the induction hypothesis and the assumption that x is accepted. For
any other s ∈ S+

x , we have {t′ ∈ S \ Cx : t′ ≺ s} ⊆ {t′ ∈ S : t′ ≺ s} and so by property (3) of
the lemma, ν(s, S+

x) ≥ ν(s, S−x) ≥ α, as required.

Recall that we let Ã be the set of all elements that were accepted by this pass of STREAMIN-
GLOCALSEARCH (and so at some point appeared in S). For each element x ∈ X, we let S−x
be the current set S at the moment that x arrives and S+

x the set after x is processed. For
an element e that is accepted but later evicted from S, let χ(e) be the incremental value
ν(e, S) of e at the moment that e was evicted. The following structural lemma from Chekuri
et al. [CGQ15] gives a charging argument to bound the value of an evicted element e with
respect to the value of a subset of φ(e) ⊆ Ã, where each element t ∈ φ(e) appears in φ for a
small number of evicted elements.

Lemma 4.A.1 (Lemma 9 of [CGQ15]). Let T ∈ I be a feasible solution disjoint from Ã, and S̃
be the output of the streaming algorithm. There exists a mapping ϕ : T → 2Ã such that:

1. Every s ∈ S̃ appears in the set ϕ(t) for at most p choices of t ∈ T .

2. Every e ∈ Ã \ S̃ appears in the set ϕ(t) for at most p− 1 choices of t ∈ T .

3. For each t ∈ T : ∑
c∈Ct

ν(c, S−t) ≤
∑

e∈ϕ(t)\S̃

χ(e) +
∑

s∈ϕ(t)∩S̃

ν(s, S̃) .

Using this charging argument, we can now prove Lemma 4.3.2 and 4.3.3.

Lemma 4.3.2. At the end of STREAMINGLOCALSEARCH, the contribution of elements of OPT
with respect to Ã is at most:

f(OPT ∪ Ã)− f(Ã) ≤ (1 + β)

(p− 1)
∑
e∈Ã\S̃

χ(e) + pf(S̃)

+ kα.

4.A Detailed computations for Section 4.3 and 4.6 110

Proof of Lemma 4.3.2. Let R = OPT \ Ã and define S−r to be the current solution when
element r arrives. Since S−r ⊆ Ã for all r, the submodularity of f implies that

f(OPT ∪ Ã)− f(Ã) = f(R ∪ Ã)− f(Ã) ≤
∑
r∈R
≤ f(r | S−r) ≤

∑
r∈R

f(r | Ã). (4.14)

For any r ∈ R, since r was rejected upon arrival,

f(r | S−r) ≤ (1 + β)
∑
c∈Cr

ν(c, S−r) + α . (4.15)

Thus, applying Lemma 4.A.1 we obtain:∑
r∈R

f(r | S−r) ≤ (1 + β)
∑
r∈R

∑
c∈Cr

ν(c, S−r) + kα, ((4.15) and |R| ≤ k)

≤
∑
r∈R

(1 + β)

[∑
e∈ϕ(r)\S̃

χ(e) +
∑

s∈ϕ(r)∩S̃

ν(s, S̃)

]
+ kα, (Lemma 4.A.1 (3))

≤ (1 + β)

[
(p− 1)

∑
e∈Ã\S̃

χ(e) + p
∑
s∈S̃

ν(s, S̃)

]
+ kα, (Lemma 4.A.1 (1, 2))

where in the last inequality we have also used Lemma 4.3.1 (4), which implies that each χ(e)

and ν(s, S̃) is non-negative. Combining the above inequality with (4.14), we obtain

f(OPT ∪ Ã)− f(Ã) ≤ (1 + β)

(p− 1)
∑
e∈Ã\S̃

χ(e) + p
∑
s∈S̃

ν(s, S̃)

+ kα

≤ (1 + β)

(p− 1)
∑
e∈Ã\S̃

χ(e) + pf(S̃)

+ kα

where the second inequality is obtained by applying Lemma 4.3.1 (4) and using that f(∅) ≥
0.

Lemma 4.3.3. Let f : 2X → R≥0 be a submodular function. Suppose S̃ is the solution produced
at the end of one pass of STREAMINGLOCALSEARCH and Ã be the set of all elements accepted
during this pass. Then,

f(Ã) ≤ f(S̃) +
∑
e∈Ã\S̃

χ(e).

Proof of Lemma 4.3.3. We bound f(Ã) in terms of the values ν(s, S̃) and χ(e). Since S ⊆ Ã
at all times during the algorithm, and χ(e) = ν(e, S) at the moment e was evicted, we have
χ(e) ≥ ν(e, Ã) by Lemma 4.3.1 (2). Thus,

f(Ã)− f(∅) =
∑
a∈Ã

ν(a, Ã) =
∑
s∈S̃

ν(s, Ã) +
∑
e∈Ã\S̃

ν(e, Ã) ≤
∑
s∈S̃

ν(s, S̃) +
∑
e∈Ã\S̃

χ(e).

4.A Detailed computations for Section 4.3 and 4.6 111

where the first equation follows from Lemma 4.3.1 (1). The proof then follows by applying
Lemma 4.3.1 (1) to the term

∑
s∈S̃ ν(s, S̃) = f(S̃)− f(∅). Since f(∅) ≥ 0, we get the desired

result.

4.A.2 Missing computations in Theorem 4.4.3
There are two facts which are used in the proof of Theorem 4.4.3 which we prove here:

Claim 4.A.2. The function γi = 4pγi−1(γi−1−1)
(γi−1−1+p)2

is an increasing function of γi−1 for p ≥ 1.

Proof of Claim 4.A.2. A straightforward algebraic manipulation shows that

d

dγi−1
γi =

4p(γi−1 − 1) + 4pγi−1

(γi−1 − 1 + p)2
− 8pγi(γi−1 − 1)

(γi−1 − 1 + p)3

=
4p(γi−1 − 1)(γi−1 − 1 + p) + 4pγi−1(γi−1 − 1 + p)− 8pγi−1(γi−1 − 1)

(γi−1 − 1 + p)3

≥
4pγi−1(γi−1 − 1) + 4pγ2

i−1 − 8pγi−1(γi−1 − 1)

(γi−1 − 1 + p)3
≥ 0.

The third line follows from p ≥ 1 and the final inequality is by γi−1 ≥ 1.

Claim 4.A.3. For p, i ≥ 1, the following inequality holds:
4p(p+1+ 4p

i−1)(p+ 4p
i−1)

(2p+ 4p
i−1)

2 ≤ p+ 1 + 4p
i .

Proof of Claim 4.A.3. Rearranging both sides and placing over a common denominator gives:

4p
(
p+ 1 + 4p

i−1

)(
p+ 4p

i−1

)
(

2p+ 4p
i−1

)2 =
4p ((p+ 1)(i− 1) + 4p) (p(i− 1) + 4p)

(2p(i− 1) + 4p)2

=
4p ((p+ 1)(i− 1) + 4p) (p(i− 1) + 4p)

(2p(i+ 1))2

=
((i− 1)(p+ 1) + 4p) (i+ 3)

(i+ 1)2

=
(i− 1)(i+ 3)i(p+ 1) + i(i+ 3)4p

i(i+ 1)2

=

(
i2 + 2i− 3

)
i(p+ 1) + (i2 + 3i)4p

i(i+ 1)2
,

and

p+ 1 + 4p
i =

(p+ 1)i+ 4p

i

=
i(i+ 1)2(p+ 1) + (i+ 1)24p

i(i+ 1)2

=

(
i2 + 2i+ 1

)
i(p+ 1) +

(
i2 + 2i+ 1

)
4p

i(i+ 1)2
.

4.A Detailed computations for Section 4.3 and 4.6 112

Then, since p ≥ 1 and i ≥ 1,

(
p+ 1 + 4p

i

)
−

4p
(
p+ 1 + 4p

i−1

)(
p+ 4p

i−1

)
(

2p+ 4p
i−1

)2 =
4i(p+ 1)− 4(i− 1)p

i(i+ 1)2
≥ 0.

4.A.3 Approximately guessing the value of the optimal solution
A common assumption for the analysis of Algorithm 5 and 6 is the access to a threshold α and
τ equal to εf(OPT)

2k and 0.4569g(OPT) − l(OPT) respectively. We show how to remove those
assumptions.

Guessing the value of f(OPT) is a common technique in streaming submodular function
maximization. Badanidiyuru et al. [Bad+14] showed how to approximate f(OPT) within a
(1±ε)- factor using O(log(k)/ε) space in a single pass. To avoid further technicalities, we show
how to guess α and τ in two passes – which doesn’t change much since our algorithms run in
O(1/ε)-passes. Since we will only need to guess α within a factor 2, this operation incurs a
cost of O(log(k)) without dependence on ε. For τ , we will need guess 0.4569g(OPT)− l(OPT)

within a factor 1± ε which uses O(log(k)/ε) additional space.

Using one pass find ∆α , maxe∈X f(e) and ∆τ , maxe∈X 0.4659g(e)− le. We consider the
sets

Λα ,

{
2i :

∆α

k
≤ 2i ≤ ∆α, i ∈ N

}
and Λτ ,

{
(1 + ε)i :

∆τ

k
≤ (1 + ε)i ≤ ∆τ , i ∈ N

}
.

Case 1 – α: There exists a value λ ∈ Λα such that f(OPT)
2k ≤ λ ≤ f(OPT)

k . Setting α = ελ
2 , we get

that α ∈ [εf(OPT) /(4k); εf(OPT) /(2k)]. The defined range of α is sufficient for the analysis5.
While it is not possible to know which λ ∈ Λα satisfies the property, it suffices to run parallel
instantiations and output the best solution of all the copies. This procedure augments the
space by a factor O(log2(k)), and requires one additional pass through the dataset.

Case 2 – τ : By definition of Λτ , there is at least one value in τ ∈ Λ such that kτ ≤
0.4569g(OPT) − l(OPT) ≤ (1 + ε)kτ . Thus, if we run Algorithm 6 for each value of τ in
parallel then, for at least one copy, our guess of τ is an approximation of the correct threshold
value. It is then sufficient to return the best solution amongst all copies. Observe that the
number copies is equal to |Λτ | = log1+ε(k) = O(ε−1 log(k)). Hence, the space complexity
increases by a factor O(ε−1 log(k)) via this operation.

5Equation (4.6) and the bound αk ≤ εf(OPT) are where we need the exact value of α, using upper and lower
bounds for α yield the same result up to the hidden constant in the term O(ε).

4.A Detailed computations for Section 4.3 and 4.6 113

5Sparse Subset Selection Problems
under Matroid Constraint

A portion of this chapter is part of a publication which appeared in COLT’22 [TW22]. Nonethe-
less, the presentation of the results is specific to this thesis. The results in Section 5.7 did not
appear in the publication.

5.1 Introduction
Subset selection problems are ubiquitous in statistics and machine-learning since they provide
interpretability of high-dimensional models through the selection of a few features of interest.
Given a collection of features X , the goal is to find a small collection S ∈ I that best predict
a quantity of interest. Despite the low occurrence of the term independence system in the
machine learning literature, standard applications require I to be a set of at most k variables.
So, the pair (X , I) usually forms an independence system where I is a uniform matroid.
When exhaustive enumeration is impossible due to the size of X , FORWARD REGRESSION is
commonly employed as a heuristic. It constructs S iteratively, and at each step adds a feature
that greedily maximizes the objective.

To explain the success of this approach in practice, Das and Kempe [DK11] connected subset
selection problems with submodular optimization. They showed that set functions that are
γ-weakly submodular (Definition 1.3.1) can be efficiently optimized. The approximation
guarantee depends on the submodularity ratio γ which measures the deviation of the function
from submodularity when considering the aggregate effect of adding elements. By treating
FORWARD REGRESSION as a variant of the standard greedy algorithm, they showed that it has
an approximation guarantee of eγ

eγ−1 .

R2 Objective: As the main problem in their work, Das and Kempe [DK08; DK11] focus on
maximizing the squared multiple correlation objective, i.e. the R2 objective. Given a collection
X of predictor variables and a target random variable Z, as well as the covariance between
each pair of variables, the goal is to find a small subset S ⊆ X that gives the best linear
predictor for Z. They show that the R2 objective is submodular in the absence of suppressor
variables [DK08]. Intuitively, a random variable X ∈ X is a suppressor if there is some
other random variable Y ∈ X such that observing X increases the (conditional) correlation
between Y and the target variable Z. In [DK11], they extend this connection and further
show that even with suppressor variables the submodularity ratio γ is non-trivially bounded.
They proved that it is at least equal to the smallest 2k-sparse eigenvalue λmin(CX , 2k) of the
covariance matrix for X . The smallest 2k-sparse eigenvalue of CX is the minimum eigenvalue
of any 2k × 2k submatrix of CX .

114

In this chapter, we consider a natural generalization of subset selection problems in which
we must select a subset S that is independent in a general matroid M = (X , I). Such
constraints naturally capture settings in which some observations are mutually exclusive (for
example, sensors that may be placed in different configurations) or in which it is desirable or
necessary to spread observations amongst multiple different classes (for example by time or
location). In contrast to a cardinality constraint, the best known guarantee for maximizing
the R2 objective in a general matroid is a randomized (1 + γ−1)2-approximation via the
RESIDUALRANDOMGREEDY algorithm due to [CFK18].

However, as γ tends to 1 (i.e. as the function becomes closer to a submodular function) this
bound tends to only 4, while RESIDUALRANDOMGREEDY is known to provide a 2 approximation
for submodular objectives under a matroid constraint. Furthermore, we recall that the state-
of-the-art algorithm achieves a tight e

e−1 -approximation [Cal+11; FW14; NW78; Fei98]. A
key difficulty is that the definition of weak submodularity considers only the effect of adding
elements to the current solution. In contrast, the analysis of RESIDUALRANDOMGREEDY as well
other state-of-the art procedures for submodular optimization in a matroid require bounding
the losses when elements are removed or swapped from some solution1.

In this chapter, we overcome these challenges and show that subset selection problems
(including the R2 objective) satisfy a stronger notion than that of Das and Kempe. We define
it as (γ, β)-weak submodularity. This definition allows us to improve over the current analysis
of RESIDUALRANDOMGREEDY and devise an algorithm with asymptotic performance of e

e−1 .

5.1.1 Main Results
We give a natural extension of the submodularity ratio γ by considering an upper submodularity
ratio β > 0, that bounds how far a function deviates from submodularity when considering
the effect of removing elements.

Definition 5.1.1 (Upper Submodularity Ratio). Given a positive monotone set function
f : 2X → R≥0, the upper submodularity ratio β is the minimum value such that for any
A ⊆ B ⊆ X, the following holds:

β · (f(B)− f(A)) ≥
∑

e∈B\A

f(e | B − e). (5.1)

Moreover, if f has lower/upper submodularity ratio γ/β respectively (Definition 1.3.1), then
we say that f is (γ, β)-weakly submodular.

Intuitively, the parameter β compares the loss by removing an entire set to the aggregate
individual losses for each element. This parameter is a natural complement of Definition 1.3.1
and smoothly captures the deviation from submodularity. In particular, we have that β ≤ 1 if

1Stronger “element-wise” notions of weak submodularity have been proposed that allow the adaptation of such
algorithms but in general, these notions may give weaker bounds than those obtained when the submodularity
ratio γ can be utilized instead

5.1 Introduction 115

and only if f is a monotone submodular function. We show that, as with the submodularity
ratio γ, our β can be bounded by spectral quantities in the setting of regression. Specifically,
we show that

Theorem
The R2 objective function is (γ, 1/γ)-weakly submodular where γ ≥ λ−1

min(C), and C is
the covariance matrix between the variables in X .

The formal statement of the above theorem is Theorem 5.2.1. Since β is defined in terms of
removing elements from the solution, the proof requires a different spectral argument than
that used to bound γ in [DK18]. While their bound for γ follows directly by considering
an appropriate Rayleigh quotient, here we must relate the average value of the quadratic
forms obtained from the inverses of all rank k − 1 principle submatrices of a matrix C to that
obtained from C−1.

Spectral bounds on the upper submodularity are attainable for other subset selection problems.
In fact, we consider Bayesian A-optimal Design and Column Subset Selection [Alt+16;
Far+15]. The first problem has been previously studied via weak submodularity by [Bia+17;
Har+19; Has+19]. For both problems, we show in Section 5.6 and 5.7 that β can be bounded
by γ−1.

Using the connection between subset selection problems and submodular maximization, we
consider the more general problem of maximizing a (γ, β)-weakly submodular function under
a matroid constraint. We derive improved guarantees for the RESIDUALRANDOMGREEDY.

Theorem
Given a (γ, β)-weakly submodular function, RESIDUALRANDOMGREEDY has approxima-
tion factor 1 + β

γ .

The exact statement of the above theorem is Theorem 5.3.1. For all applications considered in
this paper, which are (γ, 1/γ)-weakly submodular, the approximation factor improves over the
state-of-the-art guarantee equal to (1 + γ−1)2 by Chen et al. [CFK18] for all values of γ. Our
guarantee approaches 2 as the function f becomes closer to submodular (i.e. as γ, β → 1). It
is natural to ask whether it is possible to obtain an algorithm with guarantee approaching
the optimal result of e

e−1 for monotone submodular functions. We answer this question
affirmatively by giving a local search algorithm guided by a distorted potential. We show
that it achieves a guarantee approaching (e

e−1 − ε) for (γ, β)-weakly submodular functions
as γ, β → 1, where ε > 0 is a constant parameter that can be chosen independently of γ and
β.

Theorem

There is a local-search algorithm with approximation factor φeφ

γ2(eφ−1)
for maximizing

(γ, β)-weakly submodular functions, where φ = γ2 + β(1− γ).

5.1 Introduction 116

The formal statement of the above theorem is given by Theorem 5.4.2. For all applications
considered in this paper, which are (γ, 1/γ)-weakly submodular, our approximation factor
improves over Theorem 5.3.1 (and thus the state-of-the-art) for all γ > 0.7217. Figure 5.1
displays the improvements. Our distorted local-search algorithm builds upon similar tech-
niques from the submodular case presented in [FW14]. There, the submodularity of f implies
the submodularity of the potential g, which is used to derive the bounds on g necessary for
convergence and sampling, as well the crucial bound linking the local optimality of g to the
value of f . Here, however, since f is only approximately submodular, these techniques will
not work, and so we require a more delicate analysis for each of these components. A further
complication in our setting is that the correct potential g depends on the values of γ and β,
which may not be known a priori. We give an approach that is based on guessing the value of
a joint parameter in γ and β. Each such guess gives a different distorted potential. Inspired
(broadly) by simulated annealing, we show that if each such new potential is initialized by
the local optimum of the previous potential, then the overall running time can be amortized
over all guesses. We present a simplified version of the algorithm and potential function in
Section 5.4, and defer the more technical details to Section 5.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Value of γ

In
ve

rs
e

A
pp

ro
xi

m
at

io
n

Fa
ct

orRESIDUALRANDOMGREEDY [CFK18]
RESIDUALRANDOMGREEDY (Section 5.3)
DISTORTEDLOCALSEARCH (Section 5.4)

Fig. 5.1: Guarantees for (γ, 1/γ)-weakly submodular function maximization under a matroid con-
straint.

Finally, given the relationship between γ and β in all problems we consider, it is natural to
conjecture that β may be bounded in terms of γ in some generic fashion for every set function
with lower submodularity ratio γ. However, we show that this is not the case by exhibiting
(in Section 5.8) a function on a ground set of size k for which β must be Ω

(
k1−γ).

5.1.2 Weak Submodularity and Related Definitions
The (lower) submodularity ratio γ (see Definition 1.3.1) and the corresponding notion of
weak submodularity was first introduced to analyze the forward regression and orthogonal
matching pursuit algorithms for linear regression [DK18]. It was later related to restricted

5.1 Introduction 117

strong convexity in [Ele+18] leading to similar guarantees for generalized linear model
(GLM) likelihood, graphical model learning objectives, or an arbitrary M-estimator. The
submodularity ratio has also been applied to the analysis of greedy algorithms in other
modes of computation [Kha+17b; Ele+17]. Together with related algorithmic techniques,
it also leads to algorithms for sensor placement problems [Has+20], experimental design
[Har+19; Bia+17], low rank optimization [Kha+17a], document summarization [CFK18],
and interpretation of neural networks [Ele+17].

Other variants of weak submodularity have been introduced. There have been various
approaches based on considering element-wise bounds on the deviation of a function from
submodularity [BZC18; Non+19; Gon+19] including generalizations to functions over the
integer lattice [Qia+18; Kuh+18]. These approaches all involve relaxing the notion of
decreasing marginal returns by requiring that a function f satisfy f(A ∪ {e}) − f(A) ≥
γe · (f(B ∪{e})− f(B)) for all e 6∈ B and A ⊆ B, where γe ∈ [0, 1] has been variously dubbed
the inverse curvature [BZC18], DR ratio [Kuh+18], or generic submodularity ratio [Non+19].
For such functions, it is easy to show that our parameters satisfy γ ≥ γe and β ≤ 1/γe.
Unfortunately, as we show in Section 5.2, the resulting inequalities may be very far from
tight in our setting. In particular, analyses relying on γe may fail to give any non-trivial
approximation bounds for regression problems, even in situations when λmin(CX) and the
submodularity ratio γ are positive. This observation motivates our consideration of the more
general parameter β, which allows spectral bounds to be utilized.

5.2 Sparse Least Square Estimator
We now turn to the sparse least-square estimator problem. Let Z be a target random variable
we wish to predict, and let X = {X1, . . . , Xn} be a set of n predictor variables (where here
and throughout this section we use calligraphic letters to denote sets of random variables
to avoid confusion). We suppose that Z and all Xi have been normalized to have mean 0
and variance 1, and let CX be the n× n covariance matrix for the variables Xi. Our goal is
to find a set S ⊆ X , that gives the best linear predictor for Z. We additionally require S to
be independent in some given matroidM = (X , I). In other words, we want to solve the
following optimization problem:

arg max
S∈I

R2
Z,S = arg max

S∈I

Var(Z)− E[(Z − ZS)2]

Var(Z)
, (5.2)

where R2 is a measure of fitness of the linear predictor using the squared multiple correlation,
and ZS =

∑
Xi∈S αiXi is the linear predictor over S which optimally minimizes the mean

square prediction error for Z. Thus, the R2 objective can be regarded as a measure of the
fraction of variance of Z that is explained by S. The coefficients of this best linear predictor
are given by α = C−1

S bZ,S , where CS is the principle submatrix of CX corresponding to
variables in S, and bZ,S is a vector of covariances between Z and each Xi ∈ S, i.e. (CS)i,j =

Cov(Xi, Xj) and (bZ,S)i = Cov(Xi, Z). Therefore, if we let XS denote the corresponding
vector of random variables in S, the best linear predictor can be written as: ZS = XT

SC
−1
S bZ,S .

5.2 Sparse Least Square Estimator 118

Because Z has unit variance, the objective simplifies toR2
Z,S = 1−E[(Z−ZS)2]. In addition, we

can define the residual of Z with respect to this predictor as the random variable Res(Z,S) =

Z − ZS = Z −XT
SC
−1
S bZ,S . Therefore,

R2
Z,S = 1−Var(Res(Z,S)) = bTZ,SC

−1
S bZ,S .

Our main result in this section is to prove an analogus result to that of Das and Kempe
[DK18]. They show that the R2 objective (5.2) satisfies Definition 1.2 for all A ⊆ B ⊆ X
with γ ≥ λmin(CX , |B|) ≥ λmin(CX), where λmin(CX) is the smallest eigenvalue of CX
and λmin(CX , |B|) is the smallest |B|-sparse eigenvalue of CX . In this section we derive the
complementary theorem

Theorem 5.2.1. TheR2 objective function is (γ, 1/γ)-weakly submodular where γ ≥ λmin(C, 2k),
and λ(C, 2k) is the smallest 2k-sparse eigenvalue of the covariance matrix C between the random
variables in X .

As a warm-up, we consider the following small example that illustrates that the element-wise
bounds on γe (inverse curvature, DR ratio, or generic submodularity ratio) are in general
not bounded by λmin(CX). In fact, it shows that we may have γe = 0 (and so approximation
bounds based on γe fail) even when λmin(CX) is bounded away from 0. It demonstrates that
the element-wise bound γe is not suited for the problem we consider and that the guarantees
that we obtain are in fact stronger than that if we were to replace γ by γe.

Example 5.2.2. Let Z,X1,X2 be random variables with unit variance and zero mean. Suppose
that X1 is uncorrelated with Z, and X2 = (Z + X1)/

√
2. Then, Cov(X1, Z) = 0 and

Cov(X1, X2) = Cov(X2, Z) = 1/
√

2. Let f(S) = R2
Z,S . Then, it can be verified that f(X1|∅) =

0 and f(X1|{X2}) = 1/2. Thus f(X1|∅) ≥ γe·f(X1|{X2}) is satisfied only for γe = 0. However,
λmin(C−1

X) = 1− 1/
√

2 and, in fact, explicitly computing γ gives γ = 1/2.

Next, we turn to the proof of Theorem 5.2.1. In order to prove our bounds, we will use the
following facts stated in [DK18]:

Lemma 5.2.3. Given two sets of random variables S = {X1, . . . , Xn}, and A, and a random
variable Z we have: Res(Z,A ∪ S) = Res(Res(Z,A), {Res(Xi,A)}Xi∈S).

Lemma 5.2.4. Given two sets of random variables S = {X1, . . . , Xn}, and A, and a random
variable Z we have: R2

Z,A∪S = R2
Z,A +R2

Z,{Res(Xi,A)}Xi∈S
.

We define the following quantities, which we use for the rest of the section. Let A,B be
some fixed sets of random variables with A ⊆ B. Let T = B \ A and suppose without loss of
generality that T = {X1, . . . , Xt}. For each Xi ∈ T , let X̂i = Res(Xi,A) and suppose further
that each X̂i has been renormalized to have unit variance. Finally, let T̂ = {X̂i, . . . , X̂t}, Ĉ
be the covariance matrix for T̂ , and b̂ to be the vector of covariances between Z and each
X̂i ∈ T̂ . We fix a single random variable Xi. For ease of notation, in the next two lemmas we
assume without loss of generality that Ĉ and b̂ have been permuted so that Xi corresponds to

5.2 Sparse Least Square Estimator 119

the last row and column of Ĉ. Then, we define T−i = T \ {Xi}, T̂−i = T̂ \ {X̂i}, and let X̂−i
denote the vector containing the variables of T̂−i (ordered as in Ĉ and b̂). Similarly, let Ĉ−i
be the principle submatrix of Ĉ obtained by excluding the row and column corresponding
to X̂i (i.e., the last row and column), and b̂−i be the vector obtained from b̂ by excluding
the entry for X̂i (i.e., the last entry). Finally, we let ui be the vector of covariances between
X̂i and each X̂j ∈ T̂−i. Note that ui corresponds to the last column of Ĉ with its last entry
(corresponding to Var(X̂i)) removed. We begin by computing the loss in R2

Z,B when removing
Xi from B:

Lemma 5.2.5. R2
Z,B − R2

Z,B\{Xi} = Cov(Z,Res(X̂i, T̂−i))2/Var(Res(X̂i, T̂−i)) = b̂THib̂/si,

where Hi =

(
Ĉ−1
−i uiu

T
i Ĉ
−1
−i −Ĉ−1

−i ui
−uTi Ĉ

−1
−i 1

)
and si = 1− uTi Ĉ

−1
−i ui.

Proof of Lemma 5.2.5. Note that B \ {Xi} = A ∪ T−i. Thus, by Lemma 5.2.4 and Lemma
5.2.3, respectively:

R2
Z,B −R2

Z,B\{Xi} = R2
Z,Res(Xi,A∪T−i) = R2

Z,Res(Res(Xi,A),{Res(Xj ,A)}Xj∈T−i)
. (5.3)

Recall that each X̂j is obtained from Res(Xj ,A) by renormalization and that T̂−i = T̂ \{X̂i} =

{X̂j}Xj∈T−i . Thus, Res(X̂i, T̂−i) is a rescaling of Res(Res(Xi,A), {Res(Xj ,A)}Xj∈T−i). Since
the R2 objective is invariant under scaling of the predictor variables, Equation (5.3) then
implies that

R2
Z,B −R2

Z,B\{Xi} = R2
Z,Res(X̂i,T̂−i)

= Cov(Z,Res(X̂i, T̂−i))2/Var(Res(X̂i, T̂−i)) , (5.4)

where the last line follows directly from the definition of the R2 objective applied to S that
consists of a single random variable. It remains to express (5.4) in terms of Ĉ, b̂ and u. By
definition, Res(X̂i, T̂−i) = X̂i − X̂T

−iĈ
−1
−i ui. Hence,

Var(Res(X̂i, T̂−i)) = Var(X̂i − X̂T
−iĈ

−1
−i ui)

= E[X̂2
i]− 2E[X̂iX̂

T
−i]Ĉ

−1
−i ui + uTi Ĉ

−1
−i E[X̂−iX̂

T
−i]Ĉ

−1
−i ui = 1− uTi Ĉ

−1
−i ui,

where the last equality follows from normalization of X̂i, E[X̂iX̂
T
−i] = uTi and E[X̂−iX̂

T
−i] =

Ĉ−i. Furthermore,

Cov(Z,Res(X̂i, T̂−i))2 = Cov(Z, X̂i − X̂T
−iĈ

−1
−i ui)

2 =
(

Cov(Z, X̂i)− Cov(Z, X̂T
−iĈ

−1
−i ui)

)2

=
(
b̂i − b̂T−iĈ

−1
−i ui

)2
= b̂T

(
Ĉ−1
−i uiu

T
i Ĉ
−1
−i −Ĉ−1

−i ui
−uTi Ĉ

−1
−i 1

)
b̂.

Substituting the above 2 expressions into Equation (5.4) completes the proof.

5.2 Sparse Least Square Estimator 120

Although the previous lemma has an intricate form, we show that it can be greatly simpli-
fied for eigenvectors of Ĉ−1. It will become helpful later to decompose b̂ with respect to
eigenvectors of Ĉ−1.

Lemma 5.2.6. Let (λ,v), (µ,w) be any 2 eigenpairs of Ĉ−1. Then, vTHiw = λµs2
i viwi, where

Hi and si are as defined in the statement of Lemma 5.2.5.

Proof of Lemma 5.2.6. Applying the formula for block matrix inversion (Lemma 1.B.1) to
Ĉ−1, we have

Ĉ−1 =

(
Ĉ−i ui
uTi 1

)−1

=

(
Ĉ−1
−i 0

0 0

)
+

1

1− uTi Ĉ
−1
−i ui

(
Ĉ−1
−i uiu

T
i Ĉ
−1
−i −Ĉ−1

−i ui
−uTi Ĉ

−1
−i 1

)
. (5.5)

Now, because (µ,w) is an eigenpair of Ĉ−1, we must have (Ĉ−1w)i = µwi. By (5.5), this is
equivalent to (−uTi Ĉ

−1
−iw−i+wi)/si = µwi (where, as usual, we let w−i be the vector obtained

from w by discarding its ith entry). Rearranging this equation gives uTi Ĉ
−1
−iw−i = wi(1− µsi).

Since Ĉ−1 is symmetric, the same argument implies that vT−iĈ
−1
−i ui = vi(1− λsi). Thus,

vTHiw = vT−iĈ
−1
−i uiu

T
i Ĉ
−1
−iw−i − wi(v

T
−iĈ

−1
−i ui)− vi(u

T
i Ĉ
−1
−iw−i) + viwi

= viwi(1− λsi)(1− µsi)− viwi(1− λsi)− viwi(1− µsi)+viwi

= viwi ((1− λsi)(1− µsi)− (1− λsi)− (1− µsi) + 1) = λµs2
i viwi ,

as claimed.

We can now complete the proof of our main result from this section (Theorem 5.2.1).

Proof of Theorem 5.2.1. Since Ĉ is a symmetric real matrix of size t, there is an eigenba-
sis {v1, . . . ,vt} of Ĉ−1 with corresponding real eigenvalues λ1, . . . , λt. Let V be a matrix
with columns given by these vi. Since Ĉ−1 is symmetric positive semidefinite, the matrix
V is orthonormal. Hence, we can write b̂ = V y for some vector y. By Lemma 5.2.5,
b̂THib̂ = Cov(Z,Res(X̂i, T̂−i))2 ≥ 0 and si = Var(Res(X̂i, T̂−i)) ≤ 1, for each i = 1, . . . , t

and R2
Z,B −R2

Z,B\{Xi} = b̂THib̂/si ≤ b̂THib̂/s
2
i = yTV THiV y/s2

i . Finally, by Lemma 5.2.6,
(V THiV)`,m = λ`λms

2
i (v`)i(vm)i. Thus, summing over all i we have:

t∑
i=1

R2
Z,B −R2

Z,B\{Xi} ≤
t∑
i=1

t∑
`,m=1

(y`ymλ`λm)(v`)i(vm)i .

=

t∑
`,m=1

(y`ymλ`λm)

t∑
i=1

(v`)i(vm)i =

t∑
i=1

y2
i λ

2
i ≤ λmax(Ĉ−1)

t∑
i=1

y2
i λi , (5.6)

where the last equation follows from the orthonormality of the eigenvectors vi. Moreover, by
Lemma 5.2.4

R2
Z,B −R2

Z,A = R2
Z,T̂ = b̂T Ĉ−1b̂ =

t∑
i=1

y2
i λi . (5.7)

5.2 Sparse Least Square Estimator 121

Combining (5.7) and (5.6), we have
∑

i∈S R
2
Z,B−R2

Z,B\{Xi} ≤ λmax(Ĉ−1)[R2
Z,B−R2

Z,A] and so

inequality (5.1) is satisfied for β = λmax(Ĉ−1) = 1/λmin(Ĉ). It remains to bound 1/λmin(Ĉ)

in terms of the eigenvalues of CX . Recall that Ĉ is a normalized covariance matrix for the
random variables {Res(Xi,B \ A)}Xi∈A. As shown in [DK18], the normalization and taking
the residual of increases the minimum eigenvalue.

Lemma 5.2.7 ([DK18]). Let L and S = {X1, X2, . . . , Xn} be two disjoint sets of zero-mean
random variables each of which has variance at most 1. Let C be the covariance matrix of
the set L ∪ S. Let Cρ be the covariance matrix of the set {Res(X1,L), . . . ,Res(Xn,L)} after
normalization of the random variables to have unit variance. Then λmin(Cρ) ≥ λmin(C).

This implies that λmin(Ĉ) ≥ λmin(C(B\A)∪A) ≥ λmin(CX , |B|) ≥ λmin(CX) for A ⊆ B. The
claimed bound on β then follows.

5.3 Improved Analysis of ResidualRandomGreedy
In this section, we derive stronger approximation guarantees for maximizing (γ, β)-weakly
submodular functions using RESIDUALRANDOMGREEDY considered in [Buc+14; CFK18]. Com-
bined with Theorem 5.2.1 from Section 5.2, this gives an improved approximation bound for
the sparse least square problem subject to a matroid constraintM. RESIDUALRANDOMGREEDY

(shown in Algorithm 7) proceeds over k iterations. In iteration i, it greedily extends the
current solution Si−1 to a base Si−1∪Mi ofM by selecting a set Mi of the k−|Si−1| = k−i+1

elements with the largest marginal contribution with respect to the Si−1. Then, it chooses an
element si uniformly at random from Mi which is added to Si−1 to obtain a new solution Si.
After k iterations, the final set Sk is returned.

Algorithm 7: The residual random greedy algorithm

procedure RESIDUALRANDOMGREEDY(M, X, f)

S0 ← ∅;
for i = 1, 2, . . . , k do

Mi ← arg max
{∑

e∈T f(e | S) : T ⊆ X,S ∪ T is a base ofM
}

;
si ← an element of Mi chosen uniformly at random;
Si ← Si−1 ∪ {si};

return Sk;

Theorem 5.3.1. Given a (γ, β)-weakly submodular function, RESIDUALRANDOMGREEDY has
approximation factor 1 + β

γ .

Applied to the sparse least square regression problem (Section 5.2), Theorem 5.3.1 attains an
approximation factor equal to 1 + γ−2, where γ ≥ λmin(CX , 2k).

Proof of Theorem 5.3.1. We begin by introducing some auxiliary sets used in the analysis. For
each i = 0, 1, . . . , k, we let OPTi to be a subset of OPT of size k − i such that Si ∪ OPTi is

5.3 Improved Analysis of ResidualRandomGreedy 122

a base ofM, as follows. Let OPT0 = OPT. For each i ≥ 1, suppose that Si−1 ∪ OPTi−1 is a
base and consider the bijection πi : Si−1 ∪Mi → Si−1 ∪ OPTi−1 guaranteed by Proposition
1.B.6. We set OPTi = OPTi−1 − πi(si). Then, Si ∪ OPTi = Si−1 ∪ OPTi−1 + si − πi(si) is a
base, as required. Moreover, note the choice of πi is independent of the random choice si,
which implies that πi(si) is an element of OPTi−1 chosen uniformly at random. Let E be the
event which fixes the random decisions of the algorithm up to iteration i− 1. Conditioned on
E , we have:

E[f(Si)− f(Si−1)] =
1

|Mi|
∑
e∈Mi

f(e | Si−1) =
1

k − i+ 1

∑
e∈Mi

f(e | Si−1)

≥ 1

k − i+ 1

∑
e∈OPTi−1

f(e | Si−1) ≥ γ

k − i+ 1
(f(OPTi−1 ∪ Si−1)− f(Si−1)) . (5.8)

Here, the third inequality follows the fact that Si−1 ∪ OPTi−1 is a base and so OPTi−1 is a
candidate forMi. The fourth inequality follows from (1.2) since f is (γ, β)-weakly submodular.
Similarly, (5.1) together with the fact that πi(si) is a uniformly random element of OPTi−1

implies

1

k − i+ 1
(f(OPTi−1 ∪ Si−1)− f(Si−1)) ≥ β−1

k − i+ 1

∑
e∈OPTi−1

f(e|OPTi−1 ∪ Si−1 − e),

= β−1 · E[f(πi(si)|OPTi−1 ∪ Si−1 − πi(si)]. (5.9)

We can bound the expected decrease in f(OPTi ∪ Si) in iteration i as:

E[f(OPTi ∪ Si)− f(OPTi−1 ∪ Si−1)]

= E[f(OPTi−1 ∪ Si−1 + si − πi(si))− f(OPTi−1 ∪ Si−1)]

= E[f(si|OPTi−1 ∪ Si−1 − πi(si))− f(πi(si)|OPTi−1 ∪ Si−1 − πi(si))]
≥ −E[f(πi(si)|OPTi−1 ∪ Si−1 − πi(si))], (5.10)

where the inequality follows by monotonicity of f . Thus

E[f(Si)− f(Si−1)] ≥ γ

β
E[f(πi(si)|OPTi−1 ∪ Si−1 − πi(si))]

≥ γ

β
E[f(OPTi−1 ∪ Si−1)− f(OPTi ∪ Si)], (5.11)

where the first inequality follows by combining (5.8) and (5.9) and the second by (5.10).

Removing the conditioning on E and summing the inequalities (5.11) for i = 1, · · · , k, gives
E[f(Sk)−f(S0)] ≥ γ

β E[f(S0∪OPT0)−f(Sk∪OPTk)]. The claim then follows by observing that

S0 = ∅, Sk = S, OPT0 ∪S0 = OPT and OPTk ∪Sk = Sk and so (1 + β
γ)E[f(S)] ≥ f(OPT).

5.3 Improved Analysis of ResidualRandomGreedy 123

Remark 5.3.2. We remark that the proof of Theorem 5.3.1 only requires a bound on γ, and β
for the following restricted set of elements

γ , min
i=0,...,k

min
S,O : O⊆OPT
|S|=i,|O|=k−i

∑
e∈O f(e | S)

f(O ∪ S)− f(S)
, and β , max

i=0,...,k
max

S,O : O⊆OPT
|S|=i,|O|=k−i

∑
e∈O f(e|S ∪O \ e)
f(O ∪ S)− f(S)

,

which gives stronger results for the sparse least square regression problem.

5.4 Distorted Local Search
Here, we present an algorithm for maximizing (γ, β)-weakly submodular functions with a
guarantee that smoothly approaches the optimal value of e/(e− 1) as γ, β → 1. Algorithm 8
is a local search routine that attempts to swap a single element into the current solution if
and only if it improves the following auxiliary potential function parameterized by φ ∈ R≥0,
which we will set appropriately depending on γ and β:

gφ(A) ,
∫ 1

0

φeφp

eφ − 1

∑
B⊆A

p|B|−1(1− p)|A|−|B|f(B) dp =
∑
B⊆A

m
(φ)
|A|−1,|B|−1f(B),

where we define

m
(φ)
a,b ,

∫ 1

0
φeφppb(1− p)a−b/(eφ − 1) dp = E

p∼Dφ
[pa(1− p)b],

where Dφ on [0, 1] as a continuous distribution on [0, 1] with density function Dφ(x) , φeφx

eφ−1
.

For convenience, we will define h(x) , xex

ex−1 and let m(φ)
a,b = 0 if either a < 0 or b < 0.

Algorithm 8: The distorted local-search algorithm for weakly submodular functions

procedure DISTORTEDLOCALSEARCH(M, X, f).

Suppose that f is (γ, β)-weakly submodular and let φ = γ2 + β(1− γ);
A← an arbitrary base ofM;
while ∃a ∈ S, b ∈ X \ S with S − a+ b ∈ I and gφ(A− a+ b) > gφ(A) do

A← S − a+ b;

return A;

Algorithm 8 stops when there is no improving exchange with respect to gφ. There are several
further issues that must be addressed in order to convert Algorithm 8 to a general, polynomial-
time algorithm. First, we cannot compute gφ(A) directly, as it depends on the values f(B)

for all subsets B ⊆ A. In Section 5.5.6 we show that we can efficiently estimate gφ via
simple sampling procedure. To bound the number of improvements made, we can instead
require that each improvement makes a (1 + ε) increase in gφ. Then at termination, we will
instead have

∑|A|
i=1[gφ(A)− gφ(A− ai + oi)] ≤ |A|εgφ(A). In order to bound the resulting loss

5.4 Distorted Local Search 124

in our guarantee we must bound the value gφ(A) in terms of f(A), which we accomplish
in Section 5.5.7. Finally, we address the fact that γ and β may not be known and so we
cannot set φ a priori. We show that by initializing the algorithm with a solution produced by
RESIDUALRANDOMGREEDY, we can bound the range of values for φ that must be considered
to obtain our guarantee. It then suffices to enumerate guesses for φ from this range. In
Section 5.5.4 we show that small changes in φ result in small changes to gφ(A), and so by
initializing the run for each subsequent guess of φ with the solution produced for the previous
guess, we can amortize the total number of improvements (and work) required across all
guesses. The final algorithm, presented in Section 5.5, has the same guarantee as Algorithm 8
minus a small O(ε) term, and requires Õ(nk4ε−3) evaluations of f .

Hence, assuming an oracle access to gφ and to the exact value of φ, our main result is the
following theorem that analyzes the local-gap at the termination of Algorithm 8.

Theorem 5.4.1. Suppose that f is (γ, β)-weakly submodular and let φ = φ(γ, β) , γ2+β(1−γ).
Then, for any base O of a matroid M, Algorithm 8 returns a solution A such that, f(A) ≥
γ2 eφ−1

φeφ
f(O).

Applied to the sparse least square regression problem (Section 5.2), Theorem 5.4.1 has
approximation factor equal to φeφ

γ2(eφ−1)
where φ = γ2 + 1

γ − 1. Thus, as γ → 1, we have that
φ→ 1 and implies an asymptotic approximation factor equal to e/(e− 1). Algorithm 8 can be
transformed into a polynomial-time algorithm at the cost of O(ε) loss in the approximation
factor. Adapting Algorithm 8 to obtain a polynomial time runtime, we get the following
theorem.

Theorem 5.4.2. Given a matroid M = (X, I), and a (γ, β)-weakly submodular function f .
For any ε ∈ (0, 1), there is a randomized algorithm that with probability 1 − o(1) returns a
set S satisfying f(S) ≥

(
γ2(1−e−φ)

φ −O(ε)
)
f(OPT), where φ , φ(γ, β) = γ2 + β(1 − γ). The

algorithm runs in time Õ(nk4ε−3).

Analysis of the distorted local-search algorithm
For the purpose of the analysis, we first assume that f is normalized, i.e. f(∅) = 0. This
reduction doesn’t affect the proof as we can run the algorithm with respect to the set function
f2(S) , f(S)− f(∅). Observe that f2(∅) = 0, and that the upper/lower-submodularity ratio
of f2 are equal to that of f . Moreover, an α approximation for f2 implies an α approximation
for f . Indeed, the optimal solution for f and f2 is the same. Thus, given an α-approximation
algorithm, we have f(OPT)− f(∅) ≤ α(f(S)− f(∅)) which for α ≥ 1 implies that f(OPT) ≤
f(OPT)− (1− α)f(∅) ≤ αf(S).

In the analysis of [FW14], it is shown that if f is submodular, its associated potential g
is as well, and this plays a crucial role in the analysis. Here, however, f is only weakly
submodular, which means we must carry out an alternative analysis to bound the quality of a
local optimum for gφ. Our analysis will rely on the following properties of the coefficients
m

(φ)
a,b (see Section 5.4.1 for a full proof of each):

5.4 Distorted Local Search 125

Lemma 5.4.3. For any φ > 0, the coefficients m(φ)
a,b satisfy the following:

1. gφ(e | A) =
∑

B⊆Am
(φ)
|A|,|B|f(e | B), for any A ⊆ X and e 6∈ A.

2.
∑

B⊆Am
(φ)
|A|,|B| = 1, for all A ⊆ X.

3. m(φ)
a,b = m

(φ)
a+1,b+1 +m

(φ)
a+1,b for all 0 ≤ b ≤ a.

4. φm(φ)
a,b = −bm(φ)

a−1,b−1 + (a− b)m(φ)
a−1,b + (φ/(eφ−1))1b=0 + (φeφ/(eφ − 1))1b=a,

for all a > 0 and 0 ≤ b ≤ a.

In order to analyze the performance of Algorithm 8, we consider two arbitrary bases A and O
of the given matroidM. We index the elements ai ∈ A and oi ∈ O according to the bijection
π : A→ O guaranteed by Proposition 1.B.6 so that A− ai + oi is a base for all 1 ≤ i ≤ |A|. To
prove Theorem 5.4.1, we first note that gφ(A− ai + oi)− g(A) = g(oi|A− ai)− g(ai|A− ai)
and so

|A|∑
i=1

g(ai|A− ai) =

|A|∑
i=1

[g(A)− g(A− ai + oi)] +

|A|∑
i=1

g(oi|A− ai). (5.12)

In the next lemma, we bound the final term in Equation (5.12). In particular, we translate the
sum of the marginal gain of elements o ∈ O with respect to g into a guarantee with respect to
f .

Lemma 5.4.4. Suppose that f is (γ, β)-weakly submodular, and let A,O ⊆ X with A =

{a1, . . . , a|A|} and O = {o1, . . . , o|A|} (so |A| = |O|). Then,

|A|∑
i=1

g(oi|A− ai) ≥ γ2f(O)−
(
γ2 + β(1− γ)

) ∑
B⊆A

m
(φ)
|A|,|B|f(B).

Proof of Lemma 5.4.4. By parts 1 and 3 of Lemma 5.4.3, we have

gφ(oi|A− ai) =
∑

B⊆A−ai

m
(φ)
|A|−1,|B|f(oi|B) =

∑
B⊆A−ai

[m
(φ)
|A|,|B|+1f(oi|B) +m

(φ)
|A|,|B|f(oi|B)]. (5.13)

Since f is γ-weakly submodular from below

f(oi|B) + f(ai|B) ≥ γf(B ∪ {oi, ai})− γf(B) = γf(oi|B + ai) + γf(ai|B),

and so f(oi|B) ≥ γf(oi|B + ai) − (1 − γ)f(ai|B). Thus, the right-hand side of (5.13) is at
least ∑

B⊆A−ai

m
(φ)
|A|,|B|+1 [γf(oi|B + ai)− (1− γ)f(ai|B)] +m

(φ)
|A|,|B|f(oi|B) = P +Q, (5.14)

5.4 Distorted Local Search 126

where

P , γ
∑

B⊆A−ai

[
m

(φ)
|A|,|B|+1f(oi|B + ai) +m

(φ)
|A|,|B|f(oi|B)

]
= γ

∑
B⊆A

m
(φ)
|A|,|B|f(oi|B),

Q , (1− γ)
∑

B⊆A−ai

[
m

(φ)
|A|,|B|f(oi|B)−m(φ)

|A|,|B|+1f(ai|B)
]
≥−(1− γ)

∑
B⊆A−ai

m
(φ)
|A|,|B|+1f(ai|B).

In the first equation, we have used that for each set T ⊆ A, f(oi|T) appears in the right-hand
summation exactly once: if ai ∈ T it appears as T = B + ai with coefficient m(φ)

|A|,|B|+1 =

m
(φ)
|A|,|T | and if ai 6∈ T it appears as T = B with coefficient m(φ)

|A|,|B| = m
(φ)
|A|,|T |. The lower

bound on Q simply follows from the monotonicity of f . Summing (5.14) over each ai ∈ A we
then have

|A|∑
i=1

gφ(oi|A−ai) ≥ γ
|A|∑
i=1

∑
B⊆A

m
(φ)
|A|,|B|f(oi|B)− (1−γ)

|A|∑
i=1

∑
B⊆A−ai

m
(φ)
|A|,|B|+1f(ai|B). (5.15)

Since f is γ-weakly submodular from below and monotone,

γ

|A|∑
i=1

∑
B⊆A

m
(φ)
|A|,|B|f(oi|B) = γ

∑
B⊆A

|A|∑
i=1

m
(φ)
|A|,|B|f(oi|B) ≥ γ2

∑
B⊆A

m
(φ)
|A|,|B|[f(O ∪B)− f(B)]

≥ γ2
∑
B⊆A

m
(φ)
|A|,|B|[f(O)− f(B)] = γ2f(O)− γ2

∑
B⊆A

m
(φ)
|A|,|B|f(B),

where the last equation follows from part 2 of Lemma 5.4.3. Similarly, since f is β-weakly
submodular from above:

(1− γ)

|A|∑
i=1

∑
B⊆A−ai

m
(φ)
|A|,|B|+1(f(B+ ai)− f(B)) = (1− γ)

∑
T⊆A

|A|∑
i=1

m
(φ)
|A|,|T |(f(T)− f(T − ai))

≤ β(1− γ)
∑
T⊆A

m
(φ)
|A|,|T |[f(T)− f(∅)] = β(1− γ)

∑
B⊆A

m
(φ)
|A|,|B|f(B),

where the first equation can be verified by substituting B = T − ai for each ai ∈ T and noting
that |T | = |B|+ 1, and the last equation simply follows from f(∅) = 0 and renaming T to B.
Using the two previous inequalities to bound the right-hand side of (5.15), then gives the
claimed result.

Proof of Theorem 5.4.1. Applying Lemma 5.4.4 to the last term in (5.12) and rearranging
gives:

|A|∑
i=1

gφ(ai|A−ai) +
(
γ2 + β(1− γ)

)∑
B⊆A

m
(φ)
|A|,|B|f(B) ≥ γ2f(O) +

|A|∑
i=1

[gφ(A)− gφ(A−ai + oi)].

(5.16)

5.4 Distorted Local Search 127

From part 1 of Lemma 5.4.3,

|A|∑
i=1

gφ(ai|A− ai) =

|A|∑
i=1

∑
B⊆A−ai

m
(φ)
|A|−1,|B|(f(B + ai)− f(B))

=
∑
T⊆A
|T |m(φ)

|A|−1,|T |−1f(T)− (|A| − |T |)m(φ)
|A|−1,|T |f(T),

where the last equation follows from the fact that each T ⊆ A appears once as T = B + ai
for each ai ∈ T (in which case it has coefficient m(φ)

|A|−1,|B| = m
(φ)
|A|−1,|T |−1) and once as T = B

for each ai 6∈ T (in which case it has coefficient m(φ)
|A|−1,|B| = m

(φ)
|A|−1,|T |). Thus, we can

rewrite (5.16) as:∑
B⊆A

(
|B|m(φ)

|A|−1,|B|−1 − (|A| − |B|)m(φ)
|A|−1,|B| +

(
γ2 + β(1− γ)

)
m

(φ)
|A|,|B|

)
f(B)

≥ γ2f(O) +

|A|∑
i=1

[gφ(A)− gφ(A− ai + oi)]. (5.17)

At the termination of Algorithm 8, each square bracketed term is positive. Thus, it is sufficient
to simplify the left-hand term to conclude the proof. Since φ = γ2 + β(1− γ), the recurrence
in part 4 of Lemma 5.4.3 implies that the left-hand side vanishes for all B except B = ∅,
in which case it is φ

eφ−1
f(∅) = 0 or B = A, in which case it is φeφ

eφ−1
f(A). The theorem then

follows.

5.4.1 Properties of the coefficients m
(φ)
a,b

The analysis of Theorem 5.4.2 crucially rely on the properties of the coefficients m(φ)
a,b from

Lemma 5.4.3. For convenience, we restate them here and give a proof of each claim in turn.

Lemma 5.4.3. For any φ > 0, the coefficients m(φ)
a,b satisfy the following:

1. gφ(e | A) =
∑

B⊆Am
(φ)
|A|,|B|f(e | B), for any A ⊆ X and e 6∈ A.

2.
∑

B⊆Am
(φ)
|A|,|B| = 1, for all A ⊆ X.

3. m(φ)
a,b = m

(φ)
a+1,b+1 +m

(φ)
a+1,b for all 0 ≤ b ≤ a.

4. φm(φ)
a,b = −bm(φ)

a−1,b−1 + (a− b)m(φ)
a−1,b + (φ/(eφ−1))1b=0 + (φeφ/(eφ − 1))1b=a,

for all a > 0 and 0 ≤ b ≤ a.

5.4 Distorted Local Search 128

Proof of Claim 1. Note that by the definition of gφ:

gφ(e | A) =
∑

B⊆A+e

m
(φ)
|A|,|B|−1f(B)−

∑
B⊆A

m
(φ)
|A|−1,|B|−1f(B)

=
∑
B⊆A

[
(m

(φ)
|A|,|B|−1 −m

(φ)
|A|−1,|B|−1)f(B) +m

(φ)
|A|,|B|f(B + e)

]
.

It thus suffices to show (m
(φ)
|A|,|B|−1 −m

(φ)
|A|−1,|B|−1)f(B) = −m(φ)

|A|,|B|f(B). For B = ∅, we have

f(∅) = 0 and so (m
(φ)
|A|,−1 −m

(φ)
|A|−1,−1)f(∅) = 0 = −m(φ)

|A|,0f(∅). When |B| ≥ 1,

m
(φ)
|A|,|B|−1 −m

(φ)
|A|−1,|B|−1 = E

p∼Dφ

[
p|B|−1(1− p)|A|−|B|+1 − p|B|−1(1− p)|A|−|B|

]
= E

p∼Dφ

[
−p|B|(1− p)|A|−|B|

]
= −m(φ)

|A|,|B|.

Proof of Claim 2. By linearity of expectation:

∑
B⊆A

m
(φ)
|A|,|B| =

|A|∑
b=0

(
|A|
b

)
E

p∼Dφ

[
pb(1− p)|A|−b

]
= E

p∼Dφ

 |A|∑
b=0

(
|A|
b

)
pb(1− p)|A|−b

 = 1.

Proof of Claim 3. When 0 ≤ b ≤ a, the definition of m(φ)
a,b immediately gives:

m
(φ)
a,b = E

p∼Dφ

[
pb(1− p)a−b

]
= E
p∼Dφ

[
pb(1− p)a−bp+ pb(1− p)a−b(1− p)

]
= m

(φ)
a+1,b+1 +m

(φ)
a+1,b.

Proof of Claim 4. For a > 0 and b ≤ a, noting that Dφ(p) = d
dp
Dφ(p)
φ and applying integration

by parts

m
(φ)
a,b =

∫ 1

0
Dφ(p) · pb(1− p)a−b dp

=
Dφ(p)

φ
pb(1− p)a−b

∣∣∣∣p=1

p=0

−
∫ 1

0

Dφ(p)

φ

(
bpb−1(1− p)a−b − (a− b)pb(1− p)a−b−1

)
dp .

Which is equivalent to:

φm
(φ)
a,b = −bm(φ)

a−1,b−1 + (a− b)m(φ)
a−1,b +Dφ(p)pb(1− p)a−b

∣∣∣p=1

p=0
.

This follows immediately from the definition of m(φ)
a,b when b > 0, and when b = 0 it follows

from −bm(φ)
a−1,b−1 = 0 = bpb−1(1− p)a−b.

To complete the claim, we note that limp→0+ Dφ(p)pb(1− p)a−b is Dφ(0) = φ/(eφ − 1) if b = 0

and 0 if b > 0, and limp→1− Dφ(p)pb(1 − p)a−b is Dφ(1) = φeφ/(eφ − 1) if a = b, and 0 if
0 ≤ b < a.

5.4 Distorted Local Search 129

5.5 A randomized, polynomial time distorted local-search
algorithm

In this section, we will give our final algorithm is shown in Algorithm 9. Before presenting it
in detail, we describe the main concerns involved in its formulation.

5.5.1 Initialization
We initialize the algorithm with a solution S0 by using the guarantee for RESIDUALRANDOM-
GREEDY provided by [CFK18] when only γ is bounded. In this case, their analysis shows
that the expected value of the solution produced by the algorithm is at least 1

(1+γ−1)2
f(O),

where O is an optimal solution to the problem. Here, however, we will require a guar-
antee that holds with high probability. This is easily ensured by independently running
RESIDUALRANDOMGREEDY a sufficient number of times and taking the best solution found.

Formally, suppose we set ε′ = min(ε, 1
128) and run G times RESIDUALRANDOMGREEDY in-

dependently where G = 2 log(n)
ε′2 = Õ(ε−2). For each 1 ≤ l ≤ G, let Tl be the solution

produced by the lth instance of the RESIDUALRANDOMGREEDY. Define the random variables
Zl = 1

(1+γ−1)2
− f(Tl)

f(O) , where O ∈ I is the optimal solution. Then, E[Zl] = 0 and |Zl| ≤ 1 for
all l. Using straightforward concentration arguments we obtain a result that holds with high
probability. Let S0 = arg max1≤l≤G f(Tl). Then, by the Chernoff bound (Lemma 1.B.5),

Pr
[
f(S0) <

(
(1 + γ−1)−2 − ε′

)
f(O)

]
≤ Pr

[
1
G

∑G
l=1 f(Tl) <

(
(1 + γ−1)−2 − ε′

)
f(O)

]
= Pr

[∑G
l=1 Zl > Gε′

]
< e−

ε′2G
2 ≤ 1

n .

Thus, with probability at least 1− 1
n = 1− o(1), f(S0) ≥

(
1

(1+γ−1)2
− ε′

)
f(O).

5.5.2 In-depth discussion of the proof strategy
In Theorem 5.4.1, we considered a (γ, β)-weakly submodular function f , and used the
potential gφ with φ = φ(γ, β) = γ2 + β(1− γ) to guide the search. In general, however, the
values of γ and β may not be known in advance. One approach to coping with this would be
to make an appropriate series of guesses for each of the values, then run our the algorithm
for each guess and return the best solution obtained.

Here we describe an alternative and more efficient approach: we guess the value of φ(γ, β)

directly from an appropriate geometrically decreasing sequence of values for φ. Moreover,
when running the algorithm for each subsequent guess, we initialize the local search procedure
using the solution produced by the algorithm for the previous guess. Lemma 5.5.1 displays
the change in the solution value by substituting φ by φ(1− ε).

Lemma 5.5.1. For all φ, ε ∈ (0, 1), and S ⊆ X,

5.5 A randomized, polynomial time distorted local-search algorithm 130

1. gφ(1−ε)(S) ≥ e−φεgφ(S)

2. h(φ) ≤ eφεh(φ(1− ε)), where we recall that h(x) , xex

ex−1 .

Lemma 5.5.1 will allow us to amortize the number of improvements made by the algorithm
across all guesses. The appropriate range for the parameter φ is determined by the next lemma.
It shows that if γ or φ(γ, β) is very small, then the guarantee for RESIDUALRANDOMGREEDY is
stronger than that required by our analysis (and so S0 is already a good solution).

Lemma 5.5.2. For all γ ∈ (0, 1] and β ≥ 1, φ(γ, β) ≥ 3
4 . Moreover, if φ(γ, β) > 4 or γ < 1

7 ,

then 1
(1+γ−1)2

> γ2(1−e−φ(γ,β))
φ(γ,β) .

Lemma 5.5.2 shows that it suffices to consider φ(γ, β) ∈ [3/4, 4] and γ > 1/7, since otherwise
the starting solution already satisfies the claimed guarantee.2 Thus, our algorithm considers a
geometrically decreasing sequence of guesses for the value φ ∈ [3/4, 4], given by φj = 4(1−ε)j ,
where 0 ≤ j ≤ dlog1−ε

3
16e. For the first guess, we initialize our algorithm with the solution

S0 produced using several runs of RESIDUALRANDOMGREEDY. For each subsequent guess,
we initialize S with the approximately locally optimal solution produced for the previous
guess.

For each guess, the algorithm proceeds by repeatedly searching for single element swaps that
significantly improve the potential gφ(S). Specifically, we will exchange an element a 6∈ S
with an element b ∈ S whenever g̃φj (a|S − b) > g̃φj (b|S − b) + ∆f(S), where g̃φj (·|S − b) is
an estimate of gφj (·|S − b) computed using N samples as described in Section 5.5.6 and ∆ is
an appropriately chosen parameter.

Lemma 5.5.3. For any φ, N , there is a randomized procedure for obtaining an estimate g̃(e|A)

of gφ(e|A) using N queries to the value oracle for f so that for any δ > 0,

Pr[|g(e|A)− g̃(e|A)| ≥ δf(A+ e)] < 2e−
δ2N
2 ,

We show that by setting N appropriately, we can ensure that with high probability an
approximate local optimum of every gφ is reached after at most some total number M
of improvements across all guesses. To successfully prove Lemma 5.5.3, we require the
boundedness of g. The final hurdle is to prove the boundedness of g necessary to bound the
maximum number of improvements that Algorithm 9 can make. Since, the function gφ might
not be weakly submodular the proof of Lemma 5.5.4 is slightly technical and does not directly
follow from [FW14].

Lemma 5.5.4. If f is γ-weakly submodular, then for allA ⊆ X, γf(A) ≤ gφ(A) ≤ h(φ)H|A|f(A).

2We remark that the use of the RESIDUALRANDOMGREEDY is not strictly necessary for our results. One can instead
initialize the algorithm with a base containing the best singleton as in the standard local search procedure to
obtain a guarantee of γ/k for the initial solution. The remaining arguments can then be modified at the cost
of a larger running time dependence on the parameter k.

5.5 A randomized, polynomial time distorted local-search algorithm 131

Algorithm 9: Distorted Local Search Implementation

Let ∆ = ε
k , δ = ∆

4h(4)·Hk = ε
4h(4)·Hkk , M = (1 + δ−1)(37 + ln(Hk)), N = 28δ−2 ln(Mkn),

G = log(n)/(2 min(ε, 1
128)2);

S0 ← the best output produced by G independent runs of RESIDUALRANDOMGREEDY applied
to f andM;
Smax ← S0;
i← 0;
for 0 ≤ j ≤ dlog1−ε 16/3e do

φ← 4(1− ε)j;
S ← Sj;
repeat

isLocalOpt← true;
foreach b ∈ S and a ∈ X \ S with S − b+ a ∈ I do

Compute g̃φj (a|S − b) and g̃φj (b|S − b) using N random samples;
if g̃φj (a|S − b) > g̃φj (b|S − b) + ∆f(S) then

S ← S − b+ a;
i← i+ 1;
isLocalOpt← false;
break

until isLocalOpt or i ≥M ;
Sj+1 ← S;
if f(Sj+1) > f(Smax) then Smax ← Sj+1;

return Smax

5.5.3 The algorithm and its analysis
Our final algorithm is shown in Algorithm 9. LetM = (X, I) be a matroid, and f : 2X → R≥0

be a (γ, β)-weakly submodular function. Given some 0 < ε ≤ 1 we set the parameters:

∆ = ε
k (threshold for accepting improvements)

δ = ∆
4h(4)·Hk = ε

4h(4)·Hkk = Θ(ε/(k log k)) (bound on sampling accuracy)

L = 1 + dlog1−ε
3
16e = O(ε−1) (number of guesses for φ)

M = log1+δ(7 · 128 · e4Lεh(4) ·Hk) = Õ(δ−1) = Õ(kε−1) (total number of improvements)

N = 4 · 72δ−2 ln(Mkn) = Õ(δ−2) = Õ(k2ε−2) (number of samples to estimate gφ)

Equipped with lemmas 5.5.1, 5.5.2, 5.5.3, and 5.5.4 we are ready to derive guarantees
for Algorithm 9. In Algorithm 9, we evaluate potential improvements using an estimate
g̃φj (·|S − b) for the marginals of g that is computed using N samples. By Lemma 5.5.3, we
then have |g̃φj (e|A)− gφj (e|A)| ≤ γδf(A+ e) for any A, e considered by the algorithm with

probability at least 1− 2e−
δ2γ2N

2 . If γ ≥ 1/7, this is at least 1− 2e−
δ2

2·72
N = 1− 2

(Mkn)2
. In our

algorithm we will limit the total number of improvements made across all guesses for φ to be
at most M . Note that any improvement can be found by testing at most kn marginal values,

5.5 A randomized, polynomial time distorted local-search algorithm 132

so we must estimate at most Mkn marginal values across the algorithm. By a union bound,
we then have |g̃φj (e|A)− gφj (e|A)| ≤ γδf(A+ e) for all A, e considered by Algorithm 9 with
probability at least 1− o(1) whenever γ ≥ 1/7. Before proving our main result, let us show
that if the algorithm terminates and returns S after making M improvements, we must in fact
have an optimal solution with high probability.

Lemma 5.5.5. Suppose that γ ≥ 1/7. Then, if Algorithm 9 makes M improvements, the set S it
returns satisfies f(S) ≥ f(O) with probability 1− o(1).

Proof of Lemma 5.5.5. With probability 1− o(1) we have
∣∣g̃φj (e|A)− gφj (e|A)

∣∣ ≤ γδf(A+ e)

for any e,A considered by Algorithm 9. Whenever the algorithm exchanges some a ∈ X \ S
for b ∈ S for some guess φj , we have g̃φj (a|S − b)− g̃φj (b|S − b) ≥ ∆f(S) and so

gφj (S − b+ a)− gφj (S) = gφj (a|S − b)− gφj (b|S − b)
≥ g̃φj (a|S − b)− δγf(S − b+ a)− g̃φj (b|S − b)− δγf(S)

≥ g̃φj (a|S − b)− δgφj (S − b+ a)− g̃φj (b|S − b)− δgφj (S)

≥ ∆f(S)− δgφj (S − b+ a)− δgφj (S),

where the second inequality follows from the lower bound on gφj in Lemma 5.5.4. Rearranging
and using the upper bound on gφj (S) from Lemma 5.5.4, together with the definition of δ
and ∆, we obtain:

gφj (S − b+ a) ≥
∆f(S) + (1− δ)gφj (S)

1 + δ
≥

ε
k

1
h(φj)·Hk + 1− δ

1 + δ
gφj (S)

≥
ε
k

1
h(4)·Hk + 1− δ

1 + δ
gφj (S) =

1 + 3δ

1 + δ
gφj (S) ≥ (1 + δ)gφj (S), (5.18)

where the last inequality follows from 1+3x
1+x ≥

(1+x)2

1+x for all 0 ≤ x ≤ 1.

Now suppose that f(S0) ≥ ((1 + γ−1)−2 − ε′)f(O), which we have shown also occurs with
high probability 1− o(1). Then, since γ ≥ 1

7 and ε′ = min(1
128 , ε), we have f(S0) ≥ 1

128f(O).
Suppose that i = M when the algorithm is considering some guess φl. We consider how the
current value of gφj (S) changes throughout Algorithm 9, both as improvements are made and
as j increases. As shown in (5.18), each of our M improvements increases this value by a
factor of (1 + δ). Moreover, as shown in Lemma 5.5.1,

gφj (S) = g(1−ε)φj−1
(S) ≥ e−φj−1εgφj−1

(S) ≥ e−4εgφj−1
(S) ,

for any set S. Thus, each time j is incremented, the value gφj (S) decreases by a factor of at
most e4ε. Since we made M improvements, we then have:

gφl(S`+1) ≥ (1 + δ)Me−4lεgφ0(S0) ≥ (1 + δ)Me−4lεγf(S0) ≥ (1 + δ)Me−4lε 1
7

1
128f(O) ,

5.5 A randomized, polynomial time distorted local-search algorithm 133

where the second inequality follows from the lower bound on g given in Lemma 5.5.4,
and the second from γ ≥ 1

7 . The upper bound on g given by Lemma 5.5.4 implies that:
gφl(Sl+1) ≤ h(φl)Hkf(Sl+1) ≤ h(4)Hkf(Sl+1). Thus,

f(Sl+1) ≥ (1 + δ)Me−4lε 1

7 · 128 · h(4) ·Hk
f(O) .

Since l ≤ L and M = log1+δ(e
4Lε7 · 128 · h(4) ·Hk), the set Smax returned by the algorithm

thus has f(Smax) ≥ f(Sl+1) ≥ f(O), as claimed.

We are now ready to prove our main claim, from Section 5.4, restated here for convenience:

Theorem 5.4.2. Given a matroid M = (X, I), and a (γ, β)-weakly submodular function f .
For any ε ∈ (0, 1), there is a randomized algorithm that with probability 1 − o(1) returns a
set S satisfying f(S) ≥

(
γ2(1−e−φ)

φ −O(ε)
)
f(OPT), where φ , φ(γ, β) = γ2 + β(1 − γ). The

algorithm runs in time Õ(nk4ε−3).

Proof of Theorem 5.4.2. We have shown that f(S0) ≥
(
(1 + γ−1)−2 − ε′

)
f(O) with probabil-

ity 1− o(1), where ε′ = min(ε, 1
128). If γ < 1/7 or φ(γ, β) 6∈ [3/4, 4], then Lemma 5.5.2 implies

that (1 + γ−1)−2 > γ2(1−e−φ(γ,β))
φ(γ,β) , and so the claim follows as f(Smax) ≥ f(S0). Thus, we

suppose that γ ≥ 1/7 and φ(γ, β) ∈ [3/4, 4]. Then, if Algorithm 9 makes M improvements,
Lemma 5.5.5 implies that the set returned by the algorithm is optimal with probability at least
1− o(1).

In the remaining case, we have φ(γ, β) ∈ [3/4, 4], γ ≥ 1/7. Each set Sj+1 produced by the
algorithm must have g̃φj (ol | Sj+1 − sl) ≤ g̃φ̃j (sl | Sj+1 − sl) + ∆f(S) for every sl ∈ S and
ol ∈ O when Algorithm 9 terminates without making M improvements. Since γ ≥ 1/7

and the algorithm makes at most M improvements, with probability 1 − o(1), we have∣∣g̃φj (e|A)− gφj (e|A)
∣∣ ≤ γδf(A+ e) for all guesses φj and e,A considered by the algorithm.

Thus,

gφj (Sj+1 − sl + ol)− gφj (Sj+1)

= gφj (ol | Sj+1 − sl)− gφj (sl | Sj+1 − sl)
≤ g̃φj (ol | Sj+1 − sl) + δγf(Sj+1 − sl + ol)− g̃φj (sl | Sj+1 − sl) + δγf(Sj+1)

≤ ∆f(Sj+1) + δγf(Sj+1) + δγf(Sj+1 − sl + ol)

≤ (∆ + 2δ)f(OPT)

= O
(
ε
k

)
· f(OPT).

5.5 A randomized, polynomial time distorted local-search algorithm 134

Consider the smallest j such that φj+1 , 4(1 − ε)j+1 < φ(γ, β). Then, φj+1 < φ(γ, β) ≤
φj+1/(1−ε) , φj . Let β̃ =

φj−γ2
1−γ . Then, φ(γ, β̃) = γ2+

φj−γ2
1−γ (1−γ) = φj and β̃ ≥ φ(γ,β)−γ2

1−γ =

β, so f is also (γ, β̃)-weakly submodular. Theorem 5.4.1 then implies

f(Sj+1) ≥ γ2

h(φj)
f(OPT) +

k∑
i=1

[
gφj (S)− gφj (S − sl + ol)

]
≥
(

γ2

h(φj)
−O(ε)

)
f(OPT)

By Lemma 5.5.1 part 2, our choice of j, and φj ≤ 4,

h(φj) ≤ eφjεh((1− ε)φj) ≤ eφjεh(φ(γ, β)) ≤ e4εh(φ(γ, β))

Thus, f(Sj+1) ≥
(

γ2

h(φ(γ,β)) −O(ε)
)
f(OPT) =

(
γ2(1−e−φ(γ,β))

φ(γ,β) −O(ε)
)
f(OPT).

The running time of the algorithm is dominated by the number of value oracle queries made
to f . The initialization requires running RESIDUALRANDOMGREEDY Õ(ε−2) times, each of
which requires O(nk) value queries. The remaining execution makes at most M = Õ(ε−1k)

local search improvements, each requiring at most Nnk = Õ(nk3ε−2) value queries to find.
Altogether the running time is thus at most Õ(nk4ε−3).

5.5.4 Warm starting the search using the previous solution
To use the solution of the previous guess of φ as the starting solution of the next guess, we
must bound the sensitivity of gφ. The following lemma shows that small changes in the
parameter φ produce relatively small changes in the value gφ(A) for any set A.

Lemma 5.5.1. For all φ, ε ∈ (0, 1), and S ⊆ X,

1. gφ(1−ε)(S) ≥ e−φεgφ(S)

2. h(φ) ≤ eφεh(φ(1− ε)), where we recall that h(x) , xex

ex−1 .

Proof of Lemma 5.5.1. Both claims will follow from the inequality

φ(1− ε)eφ(1−ε)p

eφ(1−ε) − 1
≥ e−φε φe

φp

eφ − 1
, (5.19)

which we show is valid for all p ∈ [0, 1] and ε > 0. Indeed, under these assumptions,

φ(1− ε)eφ(1−ε)p

eφ(1−ε) − 1
· e

φ − 1

φeφp
= (1− ε)e−φεp eφ − 1

eφe−φε − 1
= (1− ε)e−φεp eφ − 1

eφ(1 + (e−φ − 1))ε − 1

≥ (1− ε)e−φεp eφ − 1

eφ(1 + ε(e−φ − 1))− 1
= (1− ε)e−φεp eφ − 1

(1− ε)(eφ − 1)
= e−φεp ≥ e−φε .

Here the first inequality follows from the generalized Bernoulli inequality (1 + x)t ≤ (1 + tx),
which holds for all x ≥ −1 and 0 ≤ t ≤ 1, and the second inequality follows from p ∈ [0, 1].

5.5 A randomized, polynomial time distorted local-search algorithm 135

For the first claim, applying (5.19) gives

gφ(1−ε)(A) =

∫ 1

0

φ(1− ε)eφ(1−ε)p

eφ(1−ε)p − 1

∑
B⊆A

p|B|−1(1− p)|A|−|B|f(B) dp

≥
∫ 1

0
e−φε

φeφp

eφ − 1

∑
B⊆A

p|B|−1(1− p)|A|−|B|f(B) dp = e−φεgφ(A),

as required. For the second claim, setting p = 1 in (5.19) gives h(φ(1 − ε)) ≥ e−φεh(φ) or,
equivalently, h(φ) ≤ eφεh(φ(1− ε)).

5.5.5 Restricted Range of guesses
In this section, we prove Lemma 5.5.2, which allows us to restrict the range for φ and γ that
we consider in Algorithm 9.

Lemma 5.5.2. For all γ ∈ (0, 1] and β ≥ 1, φ(γ, β) ≥ 3
4 . Moreover, if φ(γ, β) > 4 or γ < 1

7 ,

then 1
(1+γ−1)2

> γ2(1−e−φ(γ,β))
φ(γ,β) .

We recall that this theorem shows that whenever γ is too small or φ is too large, then
RESIDUALRANDOMGREEDY has an approximation factor greater than desired. Outputting the
solution of RESIDUALRANDOMGREEDY satisfies the guarantees of Theorem 5.4.2.

Proof of Lemma 5.5.2. First, we show that φ(γ, β) ≥ 3/4 for any value of γ ∈ (0, 1] and β ≥ 1.
Note that ∂φ

∂β = 1 − γ ≥ 0, for all γ ∈ [0, 1]. Thus, any minimizer of φ(γ, β) sets β = 1.

Moreover, ∂φ∂γ = 2γ − β and ∂2φ
∂γ2

= 2 so a φ(γ, β) is minimized by γ = β
2 = 1

2 . It follows that
φ(γ, β) ≥ φ

(
1
2 , 1
)

= 3
4 for all γ ∈ [0, 1] and β ≥ 1.

Now suppose that φ(γ, β) > 4. Then, the claim follows, since

γ2(1− e−φ(γ,β))

φ(γ, β)
<
γ2

4
≤ γ2

(1 + γ)2
=

1

(1 + γ−1)2
.

It remains to consider the case in which γ < 1
7 . Recall that h(x) , xex

ex−1 is increasing in x and
so h(φ(γ, β)) ≥ h(3

4) > 4
3 (where the last inequality follows directly by computation of h(3

4)).
Suppose that γ < 1

7 . Then,

γ2(1− e−φ(γ,β))

φ(γ, β)
=

γ2

h(φ(γ, β))
< 3

4γ
2 .

Comparing the previous estimation to the approximation ratio of [CFK18] and using that
γ < 1/7, we have

3
4γ

2

(1 + γ−1)−2
=

3

4
(γ + 1)2 <

3

4

(
8

7

)2

< 1.

Thus, 3
4γ

2 < 1
(1+γ−1)2

and again the claim follows.

5.5 A randomized, polynomial time distorted local-search algorithm 136

5.5.6 Efficient estimation of the potential via sampling
The definition of gφ requires evaluating f(B) on all B ⊆ A, which requires 2|A| calls to the
value oracle for f . In this section, we show that we can efficiently estimate gφ using only
a polynomial number of value queries to f . Our sampling procedure is based on the same
general ideas described in [FW14], but here we focus on evaluating only the marginals of gφ,
which results in a considerably simpler implementation. In particular, our algorithm does not
require computation of the coefficients m(φ)

a,b .

Lemma 5.5.3. For any φ, N , there is a randomized procedure for obtaining an estimate g̃(e|A)

of gφ(e|A) using N queries to the value oracle for f so that for any δ > 0,

Pr[|g(e|A)− g̃(e|A)| ≥ δf(A+ e)] < 2e−
δ2N
2 ,

Proof of Lemma 5.5.3. We consider the following 2-step procedure given as an interpretation
of g in [FW14]: we first sample p ∼ Dφ, then construct a random B ⊆ A by taking each
element of A independently with probability p. The probability that any given B ⊆ A is
selected by the procedure is then precisely∫ 1

0

φeφp

eφ − 1
p|B|(1− p)|A| dp = m

(φ)
|A|,|B| .

Thus, for a random B̃ ⊆ A sampled in this fashion, E[f(e|B̃)] =
∑

B⊆Am
(φ)
|A|,|B|f(e|B) =

g(e|A), by part 1 of Lemma 5.4.3.

Suppose now that we draw N independent random samples {Bi}Ni=1 in this fashion and define
the random variables Yi = g(e|A)−f(e|Bi)

f(A+e) . Then, E[Yi] = 0 for all i. Moreover, by monotonicity

of f , 0 ≤ f(e|B) ≤ f(B + e) ≤ f(A+ e) for all B ⊆ A and also 0 ≤
∑

B⊆Am
(φ)
|A|,|B|f(e|B) =

g(e|A) and g(e|A) =
∑

B⊆Am
(φ)
|A|,|B|f(e|B) ≤

∑
B⊆Am

(φ)
|A|,|B|f(A+ e) = f(A+ e) by part 2 of

Lemma 5.4.3. Thus, |Yi| ≤ 1 for all i. Let g̃φ(e|A) = 1
N

∑N
i=1 f(e|Bi). Applying the Chernoff

bound (Lemma 1.B.5), for any δ > 0 we have

Pr[|g(e|A)− g̃(e|A)| ≥ δf(A+ e)] ≤ Pr
[∑N

i=1 Yi > δN
]
< 2e−

δ2N
2 .

5.5.7 Proof of Lemma 5.5.4
Here we show that the value of gφ(A) can be bounded in terms of f(A) for any set A. In
the analysis of [FW14], this follows from submodularity of g, which is inherited from the
submodularity of f . Here, we must again adopt a different approach. We begin by proving
the following claim. Fix some set A ⊆ X and for all 0 ≤ j ≤ |A| define Fj ,

∑
B∈(Aj)

f(B)

as the total value of all subsets of A of size j. Note that since we suppose f is normalized,
F0 = f(∅) = 0. We start by bounding Fi.

Lemma 5.5.6. If f is γ-weakly submodular, then Fi ≥
(|A|−1
i−1

)
γf(A) for all 1 ≤ i ≤ |A|.

5.5 A randomized, polynomial time distorted local-search algorithm 137

Proof of Lemma 5.5.6. Let k = |A|. Since f is γ-weakly submodular, for any B ⊆ A we have∑
e∈A\B

(f(B + e)− f(B)) ≥ γ(f(A)− f(B)).

Rearranging this, we have∑
e∈A\B

f(B + e) ≥ γf(A) + (|A| − |B| − γ)f(B) ≥ γf(A) + (|A| − |B| − 1)f(B) , (5.20)

for all B ⊆ A. Summing (5.20) over all
(
k
j

)
possible subsets B of size j, we obtain

(j + 1)Fj+1 ≥ γ
(
k
j

)
f(A) + (k − j − 1)Fj , (5.21)

since each set T of size j + 1 appears once as B + e on the left-hand side of (5.20) for each of
the j + 1 distinct choices of e ∈ T with B = T − e.

We now show that Fi ≥
(
k−1
i−1

)
γf(A) for all 1 ≤ i ≤ k. The proof is by induction on i. For

i = 1, the claim follows immediately from (5.21) with j = 0, since then
(
k
j

)
= 1 =

(
k−1
i−1

)
and

(k − j − 1)Fj = (k − 1)F0 = 0. For the induction step, (5.21) and the induction hypothesis
imply:

Fi+1 ≥ 1
i+1

(
γ
(
k
i

)
f(A) + (k − i− 1)Fi

)
≥ 1

i+1

(
γ
(
k
i

)
f(A) + (k − i− 1)γ

(
k−1
i−1

)
f(A)

)
= γ

i+1

(
k
i

(
k−1
i−1

)
f(A) + (k − i− 1)

(
k−1
i−1

)
f(A)

)
= γ

i+1

(
k+ki−i2−i

i

) (
k−1
i−1

)
f(A)

= γ
i+1

k(i+1)−i(i+1)
i

(
k−1
i−1

)
f(A) = γ k−ii

(
k−1
i−1

)
f(A) = γ

(
k−1
i

)
f(A).

Using the above claim, we now bound the value of gφ(A) for any set A.

Lemma 5.5.4. If f is γ-weakly submodular, then for allA ⊆ X, γf(A) ≤ gφ(A) ≤ h(φ)H|A|f(A).

Proof of Lemma 5.5.4. Let k = |A|. We begin with the lower bound for gφ(A). By the
definition of the coefficients m(φ)

a,b and Lemma 5.5.6:

gφ(A) =
∑
B⊆A

E
p∼Dφ

[
p|B|−1(1− p)|A|−|B|

]
f(B) = E

p∼Dφ

[k∑
i=1

pi−1(1− p)k−iFi
]

≥ E
p∼Dφ

[k∑
i=1

γpi−1(1− p)k−i
(
k−1
i−1

)
f(A)

]
= E

p∼Dφ

[
γf(A)

k−1∑
i=0

(
k−1
i

)
pi(1− p)k−i−1

]
= E

p∼Dφ
[γf(A)] = γf(A).

5.5 A randomized, polynomial time distorted local-search algorithm 138

For the upper bound, we similarly have:

gφ(A) = E
p∼Dφ

[k∑
i=1

pi−1(1− p)k−iFi
]
≤ E

p∼Dφ

[k∑
i=1

pi−1(1− p)k−i
(
k

i

)
f(A)

]

=

∫ 1

0

φeφp

eφ − 1

∑k
i=1

(
k
i

)
pi(1− p)k−if(A)

p
dp =

∫ 1

0

φeφp

eφ − 1

1− (1− p)k

p
f(A) dp

≤ φeφ

eφ − 1

∫ 1

0

1− (1− p)k

p
f(A) dp = h(φ)

∫ 1

0

k−1∑
j=0

(1− p)jf(A) dp

= h(φ)
k−1∑
j=0

1

j + 1
f(A) = h(φ)H|A|f(A),

where the first inequality follows from monotonicity of f and the second inequality from
1−(1−p)k

p > 0 for p ∈ (0, 1] and h(φ) = φeφ

eφ−1
is an increasing function of p.

5.6 A-optimal design for Bayesian linear regression
In this section, we provide another example of a concrete subset selection problem where β is
non-trivially bounded. In Bayesian linear regression, we suppose data is generated by a linear
model y = XTθ + ε, where y ∈ Rn, X ∈ Rp×n and ε ∼ N (0, σ2I), where I is the identity
matrix. Here, X =

[
x1 x2 · · · xn

]
with xi ∈ Rp is a vector of data, and y is a vector

corresponding observations for the response variable. The variable ε represents Gaussian
noise with 0 mean and variance σ2. When the number of columns n (i.e., the number of
potential observations) is very large, experimental design focuses on selecting a small subset
S ⊂ {1, 2, . . . , n} of columns of X to maximally reduce the variance of the estimator θ.

Let XS ,yS be the matrix X (the vector y respectively) restricted to columns (rows respec-
tively) indexed by S. From classical statistical theory, the optimal choice of parameters for
any such S is given by θ̂S = (XT

SXS)−1XSyS and satisfies Var(θ̂S) = σ2(XT
SXS)−1. Because

the variance of θ̂S is a matrix, there is not a universal function which one tries to minimize to
find the appropriate set S. Instead, there are multiple objective functions depending on the
context leading to different optimality criteria.

As in [KSG08; Bia+17; Har+19], we consider the A-optimal design objective. We suppose
our prior probability distribution has θ ∼ N (0,Λ). We start by stating a standard result from
Bayesian linear regression.

Lemma 5.6.1 ([CV95]). Given the previous assumption, and the prior on θ ∼ N (0,Λ), The
posterior distribution of θ follows a normal distribution p(θ|yS) ∼ N (M−1

S XSyS , M
−1
S), where

M−1
S ,

(
σ−2XSX

T
S + Λ−1

)−1.

5.6 A-optimal design for Bayesian linear regression 139

In A-optimal design, our objective function seeks to reduce the variance of the posterior
distribution of θ by reducing the trace of M−1

S , i.e., the sum of the variance of the regression
coefficients. Mathematically, we seek to maximize the following objective function

F (S) = tr(Λ)− tr(M−1
S) = tr(Λ)− tr((Λ−1 + σ−2XSX

T
S)−1). (5.22)

The function F is not submodular as shown in [KSG08]. The current tightest estimation
of the submodularity ratio γ of F is due to Harshaw et al. [Har+19]. They show that
γ ≥ (1 + s2

σ2λmax(Λ))−1, where s = maxi∈[n] ‖xi‖. Here we give a bound on the upper
weak-submodularity ratio β.

Theorem 5.6.2. Assume a prior distribution θ ∼ N (0,Λ), and let s = maxi∈[n] ‖xi‖. The
function F is(1/c, c)-weakly submodular with c = 1 + s2

σ2λmax(Λ).

Observe that like for the R2 objective, our upper bound for β is the inverse of the lower bound
for γ.

Proof of Theorem 5.6.2. The lower bound on γ is shown is [Har+19]. It remains to prove
the upper bound on β. Let B be some set of observations and A ⊆ B with k = |A| and
for convenience, define T = B \ A. By the Sherman-Morrisson-Woodbury formula (see
Lemma 1.B.2), we have

F (B)− F (A) = tr(M−1
A)− tr(M−1

B)

= tr
(
(MB − σ−2XTX

T
T)−1

)
− tr(M−1

B)

= tr
(
M−1
B +M−1

B XT (σ2I −XT
TM

−1
B XT)−1XT

TM
−1
B

)
− tr(M−1

B)

= tr
(
M−1
B XT (σ2I −XT

TM
−1
B XT)−1XT

TM
−1
B

)
= tr

(
(σ2I −XT

TM
−1
B XT)−1XT

TM
−2
B XT

)
. (5.23)

The fourth equality uses the linearity of the trace while the last equality uses the cyclic
property of the trace. We use the previous equation to derive an upper and lower bound for
the numerator and denominator of the submodularity ratio respectively. Applying (5.23) with
A = B \ {i} (and so T = {i}) we obtain

F (B)− F (B − i) =
tr(xTi M

−2
B xi)

σ2 − xTi M
−1
B xi

.

Let � be the Loewner ordering of positive semidefinite matrices, where A � B if and only if
B −A � 0 . First, observe that Λ−1 �MR for any set R, which implies that Λ �M−1

R . Using

5.6 A-optimal design for Bayesian linear regression 140

a second time the Sherman-Morrison-Woodbury formula (Lemma 1.B.2) together with the
previous observation, we get(

σ2 − xTi M
−1
B xi

)−1
= σ−2 + σ−4xTi

(
MB − σ−2xix

T
i

)−1
xi,

= σ−2 + σ−4xTi M
−1
B\{i}xi,

≤ σ−2 + σ−4xTi Λxi,

≤ σ−2 + σ−4λmax(Λ)s2,

where s = maxi ‖xi‖2 and the last inequality follows by the Courant-Fischer min-max theorem.
Summing over all i ∈ T = B \A and using the linearity of the trace, we have

∑
i∈T

F (i|B − i) =
∑
i∈T

tr(xTi M
−2
B xi)

σ2 − xTi M
−1
B xi

≤
(
σ−2 + s2σ−4λmax(Λ)

)∑
i∈T

tr(xTi M
−2
B xi)

=
(
σ−2 + s2σ−4λmax(Λ)

)
tr(XT

TM
−2
B XT). (5.24)

Returning to the expression of F (B) − F (A), we note that MB is positive definite, which
implies that M−1

B is positive definite. This in turn implies that −XT
TM

−1
B XT � 0 and so

σ2I −XT
TM

−1
B XT � σ2I. Thus, (σ2I −XT

TM
−1
B XT)−1 � σ−2I � 0. Therefore,

tr((σ2I −XT
TM

−1
B XT)−1XT

TM
−2
B XT) ≥ tr (σ−2XT

TM
−2
B XT) = σ−2 tr (XT

TM
−2
B XT).

Combining this with the bound (5.24), we have:∑
i∈T F (i|B − i)
F (B)− F (A)

≤
(
σ−2 + σ−4λmax(Λ) · s2

)
tr
(
XT
TM

−2
B XT

)
σ−2 tr (XT

TM
−2
B XT)

≤ 1 +
s2

σ2
λmax(Λ).

Recalling that T = B \A, this completes the proof.

5.7 The Column Subset Selection Problem
In this section, we demonstrate that the column subset selection problem is (γ, β)-weakly
submodular. The problem appears in [Far+15; Alt+16]. Like the R2 objective, it is an
important machine learning problem which provides interpretability of high-dimensional
statistics through the selection of the best columns of a given matrix. Given an m× n matrix
A, the goal is to find a subset of columns S such that S ∈ I for some matroid constraint I. It
is described by the following objective function:

f(S) , ‖PSA‖2F , (5.25)

where PS is the bestm×m projection matrix which projects the columns ofA on the span of the

candidates columns AS . For a matrix A, ‖A‖F ,
√∑m

i=1

∑n
j=1 |ai,j |

2 = tr
(
ATA

)
. Given a set

S of columns the best projection matrix PS has a closed form equal to PS = AS(ATSAS)−1ATS ,
or equivalently, PS = ASA

+
S where A+

S , (ATSAS)−1ATS is the Moore-Penrose inverse. Some

5.7 The Column Subset Selection Problem 141

key properties of the projection matrix PS include: PSPS = PS and P TS = PS . We prove that
the objective function (5.25) is weakly submodular and satisfies similar properties to that of
the R2 objective.

Theorem 5.7.1. Objective (5.25) is (γ, 1/γ)-weakly submodular where γ ≥ σ2
min(A). Restricted

to two sets A ⊆ B, the submodularity property in Equation (1.2) and (5.1) is satisfied with
γ = 1/β ≥ σ2

min(A, |B|), where σ2
min(A, k) is the squared minimum singular value of a subset of

k columns of A.

The proof of Theorem 5.7.1 follows the lines of the proof of Theorem 5.2.1. In fact, Theorem
5.2.1 is a special case of Theorem 5.7.1. To simplify the proof, we define Res(R,S) as the set
of residual vectors/columns in R after being projected onto S. The matrix associated with
Res(R,S) is ΠR,S , AR − PSAR where columns of ΠR,S are the vectors in Res(R,S). We
define PRes(R,S) , ΠR,S(ΠT

R,SΠR,S)−1ΠT
R,S as the projection matrix onto Res(R,S). Observe

that PS is equivalent to PRes(S,∅).

5.7.1 Decomposition Properties
Similar to the R2 objective, the objective function satisfies the following lemmas that are
analog to Lemma 5.2.3 and 5.2.4.

Lemma 5.7.2 ([Far+15]). Let T = S ∪ R be a subset of columns of a given matrix A. Suppose
that S ∩R = ∅. Then, we have

PT = PS + PRes(R,S).

This lemma tells that the projection onto the span of the columns indexed by T is equivalent
to the projection onto the span of the columns indexed by S plus the projection onto the
residual columns indexed by R, where residual vectors are the component of the original
vectors perpendicular to the space spanned by S. Thus, we can intuitively think of the
projection as a 2-stage procedure, first projecting the columns on a subset of columns indexed
by S and secondly on a subset of residual columns indexed by R. The next lemma uses this
idea to compute the projection to understand the 2-stage projection as acting on orthogonal
subspaces with respect to the Frobenius norm.

Lemma 5.7.3 ([Far+15]).

‖PR∪SA‖2F = ‖PSA‖2F + ‖PRes(R,S)A‖2F ,

From straightforward application of Lemma 5.7.3, we obtain the following lemma

Lemma 5.7.4. Let S ∪R ∪ T be pairwise disjoint subsets of columns of a given matrix A. Then,
we have

‖PRes(T ,S∪R)A‖2F = ‖PRes(Res(T ,S),Res(R,S))A‖2F .

5.7 The Column Subset Selection Problem 142

Proof of Lemma 5.7.4. By Lemma 5.7.3, we have that f(T | R ∪ S) = ‖PRes(T ,R∪S)A‖2F .

f(T | R ∪ S) = f(T ∪ R | S)− f(R | S),

= ‖PRes(T ∪R,S)A‖2F − ‖PRes(R,S)A‖2F ,
= ‖PRes(T ,S)∪Res(R,S)A‖2F − ‖PRes(R,S)A‖2F ,
= ‖PRes(R,S)A‖2F + ‖PRes(Res(T ,S),Res(R,S))A‖2F − ‖PRes(R,S)A‖2F ,
= ‖PRes(Res(T ,S),Res(R,S))A‖2F ,

where the before last equality is by Lemma 5.7.3.

5.7.2 Proof of Theorem 5.7.1
We prove Theorem 5.7.1. We assume that we are given two disjoint subsets of columns of A
which we denote by S and R. Our goal is to derive a bound on the submodularity ratio of
the objective function. By a renumbering of the columns of A, we let R , {a1, . . . ,a`} where
` = |R|. As our proof requires projecting R onto the span of S, we denote by πi , ai − PSai
their residual projection. The vectors πi are the columns of the matrix ΠR,S . We will further
assume that πi’s are normalized so that πTi πi = 1. The marginal gain of adding R to S is
equal to:

f(R | S) = ‖PR∪SA‖2F − ‖PSA‖2F
= ‖PRes(R,S)A‖2F (Lemma 5.7.3)

= tr
(
ATPRes(R,S)PRes(R,S)A

)
= tr

(
ATPRes(R,S)A

)
(P 2 = P)

= tr
(
ATΠR,S(ΠT

R,SΠR,S)−1ΠT
R,SA

)
. (5.26)

We observe that ΠT
R,SΠR,S is a positive semidefinite matrix. In particular, ΠT

R,SΠR,S �
λmin(ΠT

R,SΠR,S)I, where I is the identity matrix. Thus, (ΠT
R,SΠR,S)−1 � λ−1

min(ΠT
R,SΠR,S)I,

which implies that:

f(R | S) = tr
(
ATΠR,S(ΠT

R,SΠR,S)−1ΠT
R,SA

)
≤ λ−1

min(ΠT
R,SΠR,S)tr

(
ATΠR,SΠT

R,SA
)
,

5.7 The Column Subset Selection Problem 143

where the inequality follows from: tr(AB) ≤ tr(AC) if A,B,C � 0 and B � C. On the other
hand,

∑̀
i=1

f(ai | S) =
∑̀
i=1

tr
(
ATPRes(ai,S)A

)
=
∑̀
i=1

tr
(
ATπi(π

T
i πi)

−1πTi A
)

=
∑̀
i=1

tr
(
ATπiπ

T
i A
)

= tr
(
ATΠR,SΠT

R,SA
)
,

where the third equality follows by normalization of πx, and the last inequality is by linearity
of the trace. Using Equation (5.26) we derive our lower bound on γ.

f(R | S) ≤ λ−1
min(ΠT

R,SΠR,S) · tr
(
ATΠR,SΠT

R,SA
)

= λ−1
min(ΠT

R,SΠR,S) ·
∑̀
i=1

f(ai | S). (5.27)

Next we turn our attention to the upper submodularity ratio β. To simplify the notations, we
let Res(R,S) = R̂ = {π1,π2, . . . ,π`}, and define R̂−i , R̂ \{πi} and R−i , R \{ai}. Fix
an index i = 1, . . . , `, and let πi ∈ R̂. By permutation of the columns of A, we may assume
that the row and the column corresponding to the index i are the last row and last column of
(ΠT
R,SΠR,S). We expand the term f(ai | S ∪ R−i).

f(ai | S ∪ R − ai) = ‖PRes(Res(ai,S),Res(R−i,S))A‖2F = ‖PRes(πi,R̂−i)A‖
2
F = tr

(
ATPRes(πi,R̂−i)A

)
.

The key idea of the proof is to prove that
∑`

i=1 PRes(πi,R̂−i) � λ
−1
min(ΠT

R,SΠR,S)PR̂. To prove

it, it is sufficient to prove that: vT
(∑`

i=1 PRes(πi,R̂−i)

)
v ≤ λ−1

min(ΠT
R,SΠR,S)vTPR̂v for any

vector v. Applying the block inverse formula 1.B.1 to the matrix ΠT
R,SΠR,S , we get:

(ΠT
R,SΠR,S)−1 =

[
(ΠT
R−i,SΠR−i,S)−1 0

0 0

]
+

1

si
Hi,

where si , 1− πTi ΠR−i,S(ΠT
R−i,SΠR−i,S)−1ΠT

R−i,Sπi, and

Hi ,

[
(ΠT
R−i,SΠR−i,S)−1ΠT

R−i,Sπiπ
T
i ΠR−i,S(ΠT

R−i,SΠR−i,S)−1 −(ΠT
R−i,SΠR−i,S)−1ΠT

R−i,Sπi

−πTi ΠR−i,S(ΠT
R−i,SΠR−i,S)−1 1

]
.

We start by showing the following proposition which rewrites PRes(πi,R̂−i) in a simpler form:

Proposition 5.7.5. PRes(πi,R̂−i) = 1
si

ΠR,SHiΠ
T
R,S

5.7 The Column Subset Selection Problem 144

Proof of Proposition 5.7.5. By definition of the projection matrix, we have PRes(πi,R̂−i) =

Ππi,R̂−i(Π
T
πi,R̂−i

Ππi,R̂−i)
−1ΠT

πi,R̂−i
. We start by observing that,

Ππi,R̂−i = πi − PR̂−iπi = πi − PRes(R−i,S)πi = πi −ΠR−i,S(ΠT
R−i,SΠR−i,S)−1ΠT

R−i,Sπi.

(5.28)

On the one hand, we have

ΠT
πi,R̂−i

Ππi,R̂−i = πTi πi − πTi ΠR−i,S(ΠT
R−i,SΠR−i,S)−1ΠT

R−i,Sπi,

= 1− πTi ΠR−i,S(ΠT
R−i,SΠR−i,S)−1ΠT

R−i,Sπi.

The first equality follows by expanding the term ΠT
πi,R̂−i

using Equation (5.28), computing

the product and then using that ΠR−i,S(ΠT
R−i,SΠR−i,S)−1ΠT

R−i,S is a projection matrix. The
last equality holds because the πi have norm equal to 1. On the one hand,

Ππi,R̂−iΠ
T
πi,R̂−i

= (πi −ΠR−i,S(ΠT
R−i,SΠR−i,S)−1ΠT

R−i,Sπi)(πi −ΠR−i,S(ΠT
R−i,SΠR−i,S)−1ΠT

R−i,Sπi)
T ,

= πiπ
T
i − πiπTi ΠT

R−i,S(ΠT
R−i,SΠR−i,S)−1ΠR−i,S −ΠR−i,S(ΠT

R−i,SΠR−i,S)−1ΠT
R−i,Sπiπ

T
i

+ ΠR−i,S(ΠT
R−i,SΠR−i,S)−1ΠT

R−i,Sπiπ
T
i ΠR−i,S(ΠT

R−i,SΠR−i,S)−1ΠT
R−i,S ,

= ΠR,SHiΠ
T
R,S .

Combining both computations yield the desired result.

Let v be any vector and let u , ΠT
R,Sv. Applying the matrix block inverse theorem 1.B.1 to

the matrix (ΠT
R,SΠR,S)−1, we get

vTΠR,S(ΠT
R,SΠR,S)−1ΠT

R,Sv = uT

[
(ΠT
R−i,SΠR−i,S)−1 0

0 0

]
u +

1

si
uTHiu.

The previous expression drastically simplifies when u is an eigenvector of (ΠT
R,SΠR,S)−1. In

fact, let (λ,w) be an eigenpair of the matrix (ΠT
R,SΠR,S)−1, where w = ΠT

R,Sv. Consider the
ith index of the vector (ΠT

R,SΠR,S)−1w that without loss of generality corresponds to last row
and last column of the matrix, then

λwi =
(
(ΠT
R,SΠR,S)−1w

)
i

=

([
(ΠT
R−i,SΠR−i,S)−1 0

0 0

]
w

)
i

+

(
1

si
Hiw

)
i

,

=

(
1

si
Hiw

)
i

,

=
1

si

(
−πTi ΠR−i,S(ΠT

R−i,SΠR−i,S)−1w−i + wi

)
,

5.7 The Column Subset Selection Problem 145

where w−i corresponds to the vector w minus its ith (and hence last) index. Therefore, we
obtain the following identity:

(1− λsi)wi = πTi ΠR−i,S(ΠT
R−i,SΠR−i,S)−1w−i. (5.29)

Take two such eigenpairs (λ,w) and (µ,y) of the matrix (ΠT
R,SΠR,S)−1. By applying Equation

(5.29), we get that

yTHiw = yT−i(Π
T
R−i,SΠR−i,S)−1ΠT

R−i,Sπiπ
T
i ΠR−i,S(ΠT

R−i,SΠR−i,S)−1w−i

− yT−i(Π
T
R−i,SΠR−i,S)−1ΠT

R−i,Sπiwi − uiπ
T
i ΠR−i,S(ΠT

R−i,SΠR−i,S)−1w−i

+ yiwi,

= (1− λsi)(1− µsi)uiwi − (1− λsi)uiwi − (1− µsi)uiwi + uiwi

= uiwi
[
1− µsi − λsi + λµs2

i − 1 + λsi − 1 + µsi + 1
]
,

= s2
iλµuiwi

Let {w1, . . . ,wi} be an eigenbasis of (ΠT
R,SΠR,S)−1 with associated eigenvalues λ1 ≤ . . . ≤ λi.

Recall, that u = ΠT
R,Sv. Let W be a matrix with columns given by these {wj}ij=1. Since

(ΠT
R,SΠR,S)−1 is a symmetric positive semidefinite matrix, the matrix W is orthonormal.

Hence, we can write u = Wy for some vector y. Thus,

uTHiu = yTW THiWy (5.30)

By the previous computation, the index (`,m) of the matrix W THiW is equal to

(W THiW)`,m = λ`λms
2
iw

T
` wm =

{
0 if ` 6= m,

λ2
`s

2
i otherwise.

Summing over all indices i = 1, . . . , |R|, and applying Proposition 5.7.5 we get:

vT

 |R|∑
i=1

PRes(πi,R̂−i)

v =

|R|∑
i=1

uTHiu

si
≤
|R|∑
i=1

uTHiu

s2
i

=

|R|∑
i=1

yTW THiWy

s2
i

=

|R|∑
i=1

y2
i λ

2
i ,

where the inequality is because si ≤ 1, and the positivity of the marginal contribution
f(ai | S ∪ R−i). The second inequality is by applying Equation (5.30). The final equality is
by the orthonormality of W . Using the previous computation

vT

 |R|∑
i=1

PRes(πi,R̂−πi)

v ≤ λmax((ΠT
R,SΠR,S)−1)

|R|∑
i=1

λiy
2
i

= λmax((ΠT
R,SΠR,S)−1)vTΠR,S(ΠT

R,SΠR,S)−1ΠT
R,Sv.

5.7 The Column Subset Selection Problem 146

Using that λmax((ΠT
R,SΠR,S)−1) = λ−1

min(ΠT
R,SΠR,S), and because the previous computation

holds for any vector v we have:

|R|∑
i=1

PRes(πi,R̂−πi) � λ
−1
min(ΠT

R,SΠR,S)PR̂.

Using monotonicity of the trace operator for semidefinite matrices under the Lowner ordering,
we have that:

|R|∑
i=1

f(ai | S ∪ R−i) = tr

AT
 |R|∑
i=1

PRes(πi,R̂−πi)

A
 ≤ λ−1

min(ΠT
R,SΠR,S)tr

(
ATPR̂A

)
≤ λ−1

min(ΠT
R,SΠR,S)f(R | S).

To conclude the proof, we note that we have show that γ = 1/β ≥ λ−1
min(ΠT

R,SΠR,S). We
point out that ΠT

R,SΠR,S plays the same role has the covariance matrix C with respect
to set {Res(X1,S), . . . ,Res(Xn,S)}. Applying Lemma 5.2.7 to the matrix ΠT

R,SΠR,S =

ATRAR−ATRPSAR shows that λmin(ΠT
R,SΠR,S) ≥ λmin(ATR∪SAR∪S) ≥ λmin(ATA, |R ∪ S|) =

σ2
min(A, |R ∪ S|).

5.8 How large is the upper submodularity ratio
We have shown that the R2 objective (Section 5.2), the A-optimal design objective (Section
5.6), and the column subset objective (Section 5.7) are (c, 1/c)-weakly submodular for some
parameter c. A natural question to ask is whether, given γ > 0, there is a small non-trivial
bound for β independent of the size of the ground set. Here we show that this is not true in
general and prove that

Theorem 5.8.1. For any γ > 0 and k > 0 there exists a function on a ground set of size k that
is not (γ, β)-weakly submodular for any β <

(
k−γ
k−1

)
= Θ

(
k1−γ).

The intuition behind the construction is simple. We build a set function recursively with
lower submodularity ratio exactly equal to γ. The recurrence relation holds until the (k− 1)th

marginal, which allows us to have a large value for the final marginal and thus increase β.

Proof of Theorem 5.8.1. We construct a monotone set function f on a ground set of k elements.
The elements are indistinguishable, meaning that for any given set S, two elements e, e′ ∈
X \S have the same marginal contribution. Therefore, because elements are indistinguishable,
the value of a set is a function of its size. Let xi be the value of any set of size i = 0, 1, . . . , k.
Additionally, let x0 = f(∅) = 0 and xk = 1. We define xi inductively with the following
recurrence for i = 0, 1, . . . , k − 2:

xi+1 =
k − i− γ
k − i

· xi +
γ

k − i
or equivalently xi+1 − xi =

γ

k − i
(1− xi). (5.31)

5.8 How large is the upper submodularity ratio 147

It can easily be shown (by induction) that the described sequence is valid, i.e. it is monotone
and each xi ∈ [0, 1]. Additionally, we note that the sequence satisfies:

1− xi+1 = 1−
(
k − i− γ
k − i

· xi +
γ

k − i

)
=

(
1− γ

k − i

)
(1− xi) , (5.32)

for all i = 0, 1, . . . , k− 2. First, we show that f has a lower submodularity ratio at most γ. We
prove that for any B and A ⊂ B such that |B| = j and |A| = i:∑

e∈B\A f(e|A)

f(B)− f(A)
=

(j − i)(xi+1 − xi)
xj − xi

≥ γ. (5.33)

First, we consider the case in which j = k. If i = k − 1, then the left-hand side of (5.33) is 1.
If i ≤ k − 2, then applying the identity (5.31), and recalling that xk = 1 gives:

(k − i)(xi+1 − xi)
xk − xi

=
(k − i) · γ

k−i(1− xi)
1− xi

= γ,

for any i = 1, . . . , k− 1. Next, we consider the case in which j ≤ k− 1 and so i ≤ k− 2. Then,
by employing recursively the identity (5.32) we obtain

xj − xi = (1− xi)− (1− xj) =(1− xi)

(
1−

j−1∏
`=i

(
1− γ

k − `

))
. (5.34)

Since γ ∈ [0, 1], we can use the generalized Bernoulli inequality (1 − 1/n)x ≤ 1 − x/n for
x ∈ [0, 1], and n ≥ 1 to bound each term in the product above. This gives:

j−1∏
`=i

(
1− γ

k − `

)
≥

j−1∏
`=i

(
1− 1

k − `

)γ
=

(
k − j
k − i

)γ
=

(
1− j − i

k − i

)γ
≥ 1−

(
j − i
k − i

)
,

where in the last inequality we used the fact that (1− x)γ ≥ 1− x for x ∈ [0, 1] and γ ∈ [0, 1].
Thus we have:

(j − i)(xi+1 − xi)
xj − xi

=
(j − i) γ

k−i(1− xi)

(1− xi)
(

1−
∏j−1
`=i

(
1− γ

k−`

)) ≥ (j − i) γ
k−i(1− xi)

(1− xi) j−ik−i
= γ,

where we have used (5.31) and (5.34) in the first equation. Combining these cases, we find
f is γ-weakly submodular from below. To complete the proof we now show that f is not
β-weakly submodular from above for any β <

(
k−γ
k−1

)
. Here we consider the case in which

A = ∅ and B = X and show that:∑
e∈B f(e|B − e)
f(B)− f(∅)

=
k(xk − xk−1)

xk − x0
=

(
k − γ
k − 1

)
.

5.8 How large is the upper submodularity ratio 148

Recall that xk = 1, and x0 = 0, which implies that the denominator is equal to 1. Recursively
applying the identity (5.32) gives

k(1− xk−1) = k ·
k−2∏
`=0

(
1− γ

k − `

)
= k

k∏
`=2

(
1− γ

`

)
=

∏k
`=2(`− γ)∏k−1

`=1 `
=

∏k−1
`=1 (`+ 1− γ)∏k−1

`=1 `
=

(
k − γ
k − 1

)
,

as required.

5.9 Conclusion and Open Questions
In this chapter we gave improved algorithms for sparse subset selection problems subject
to a matroid constraint. The applications that we consider include: Sparse Least Square
Regression, Bayesian A-Optimal Design, and Matrix Column Selection. Increased perfor-
mances are obtained by showing that the objective functions are (γ, β)-weakly submodular
and by designing improved approximation algorithms for maximizing such functions. The
submodularity ratios γ and β measure the deviation of the set function from submodularity. In
particular, as γ, β tends to 1 the set function becomes submodular. For sparse subset selections
applications considered here, we show that β ≤ 1/γ.

We obtain two new algorithmic results for maximizing (γ, β)-weakly submodular functions:
a novel analysis of RESIDUALRANDOMGREEDY, and a distorted local-search algorithm. The
asymptotic approximation factors are equal to 2 and e

e−1 , respectively. The latter being optimal
[FNW78; Fei98].

There are many directions of great interest. We list a few of open questions. All problems
have stars ? denoting a combination of their difficulty and interest.

• (??) Elenberg et al. [Ele+18] show that Restricted Strong Concavity implies γ-weak sub-
modularity. Is there an analogous definition that implies both the upper and lower weak
submodularity definition? It could have a high impact for a wide variety of statistical
problems and perhaps lead to the development of local-search-type of algorithms for
solving them.

• (??) Calinescu et al. [Cal+11] obtained an e/(e − 1) approximation algorithm for
maximizing a monotone submodular function through a relax-and-round approach.
The multilinear relaxation that they use is also defined for weak submodular functions.
However, rounding the fractional solution is the main bottleneck in extending Calinescu
et al.’s result to weakly submodular functions. Is it possible to overcome this obstacle?

• (?) A somewhat surprising fact is that it is still not clear whether GREEDY is a constant
factor approximation algorithm for maximizing a weakly submodular function subject
to a matroid constraint. Gatmiry et al. [GG18] show that GREEDY has guarantee at least√
γk+1

0.4γ2
, where k is the rank of the matroid.

5.9 Conclusion and Open Questions 149

• Due to the wide number of applications that the weakly submodular definition encom-
passes, there are obvious directions consisting in designing approximation algorithms
for (γ, β)-weakly submodular functions subject to general independence systems in
various computational environments.

5.9 Conclusion and Open Questions 150

Bibliography

[AG13] Kook Jin Ahn and Sudipto Guha. „Linear programming in the semi-streaming model with
application to the maximum matching problem“. In: Information and Computation (2013)
(cit. on pp. 85, 86).

[AH98] Esther M Arkin and Refael Hassin. „On local search for weighted k-set packing“. In:
Mathematics of Operations Research 23.3 (1998), pp. 640–648 (cit. on pp. 17, 21, 46).

[Alt+16] Jason M. Altschuler, Aditya Bhaskara, Gang Fu, et al. „Greedy Column Subset Selection:
New Bounds and Distributed Algorithms“. In: Proceedings of the 33nd International Confer-
ence on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. 2016
(cit. on pp. 13, 116, 141).

[ALT21] Sepehr Assadi, S Cliff Liu, and Robert E Tarjan. „An auction algorithm for bipartite
matching in streaming and massively parallel computation models“. In: Symposium on
Simplicity in Algorithms (SOSA). 2021 (cit. on p. 85).

[AS16] Noga Alon and Joel H. Spencer. The Probabilistic Method. 4th. Wiley Publishing, 2016
(cit. on pp. 14, 15).

[Ass+22] Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. „Semi-
Streaming Bipartite Matching in Fewer Passes and Optimal Space“. In: Proceedings of the
2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2022 (cit. on p. 85).

[Bad+14] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause.
„Streaming submodular maximization: massive data summarization on the fly“. In: The
20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’14, New York, NY, USA - August 24 - 27, 2014. 2014 (cit. on pp. 82, 85, 86, 113).

[Bai+15] Ramakrishna Bairi, Rishabh Iyer, Ganesh Ramakrishnan, and Jeff Bilmes. „Summarization
of multi-document topic hierarchies using submodular mixtures“. In: Proc. 53rd Annual
Meeting of the Association for Computational Linguistics and 7th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers). 2015, pp. 553–563 (cit. on
p. 12).

[Ber00] Piotr Berman. „A d/2 approximation for maximum weight independent set in d-claw free
graphs“. In: Scandinavian Workshop on Algorithm Theory. Springer. 2000, pp. 214–219
(cit. on pp. 4, 17, 19–25, 45).

[BF19] Niv Buchbinder and Moran Feldman. „Constrained submodular maximization via a non-
symmetric technique“. In: Mathematics of Operations Research 44.3 (2019), pp. 988–1005
(cit. on pp. 14, 101).

151

[BF22] Kobi Bodek and Moran Feldman. „Maximizing Sums of Non-Monotone Submodular and
Linear Functions: Understanding the Unconstrained Case“. In: 30th Annual European
Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany.
2022 (cit. on p. 102).

[Bia+17] Andrew An Bian, Joachim M Buhmann, Andreas Krause, and Sebastian Tschiatschek.
„Guarantees for greedy maximization of non-submodular functions with applications“. In:
Proc. 34th ICML. 2017, pp. 498–507 (cit. on pp. 12, 116, 118, 139).

[BK03a] Piotr Berman and Marek Karpinski. „Improved Approximation Lower Bounds on Small
Occurrence Optimization“. In: ECCC (2003) (cit. on pp. 3, 17).

[BK03b] Piotr Berman and Piotr Krysta. „Optimizing misdirection“. In: SODA. 2003, pp. 192–201
(cit. on pp. 19, 21).

[Buc+14] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. „Submodular Maximiza-
tion with Cardinality Constraints“. In: Proc. ACM-SIAM Symposium on Discrete Algorithms
(SODA). 2014, pp. 1433–1452 (cit. on pp. 99, 122).

[BZC18] Ilija Bogunovic, Junyao Zhao, and Volkan Cevher. „Robust Maximization of Non-Submodular
Objectives“. In: Proc. 21st AISTATS. 2018, pp. 890–899 (cit. on pp. 12, 118).

[Cal+11] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. „Maximizing a Monotone
Submodular Function Subject to a Matroid Constraint“. In: SIAM Journal on Computing
40.6 (2011), pp. 1740–1766 (cit. on pp. 10, 15, 115, 149).

[CFK18] Lin Chen, Moran Feldman, and Amin Karbasi. „Weakly submodular maximization beyond
cardinality constraints: Does randomization help greedy?“ In: Proc. 35th ICML. 2018,
pp. 804–813 (cit. on pp. 12, 13, 115–118, 122, 130, 136).

[CGM13] Marek Cygan, Fabrizio Grandoni, and Monaldo Mastrolilli. „How to sell hyperedges: The
hypermatching assignment problem“. In: SODA. 2013, pp. 342–351 (cit. on pp. 3, 21).

[CGQ15] Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. „Streaming Algorithms for Sub-
modular Function Maximization“. In: Automata, Languages, and Programming - 42nd
International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I.
2015 (cit. on pp. 11, 83, 85–88, 93, 109, 110).

[CH01] Barun Chandra and Magnús M Halldórsson. „Greedy local improvement and weighted
set packing approximation“. In: Journal of Algorithms 39.2 (2001), pp. 223–240 (cit. on
p. 21).

[CK15] Amit Chakrabarti and Sagar Kale. „Submodular maximization meets streaming: matchings,
matroids, and more“. In: Mathematical Programming 154.1-2 (2015), pp. 225–247 (cit. on
pp. 11, 83–88).

[CL12] Yuk Hei Chan and Lap Chi Lau. „On linear and semidefinite programming relaxations for
hypergraph matching“. In: Mathematical programming 135.1 (2012), pp. 123–148 (cit. on
p. 22).

[CS14] Michael Crouch and Daniel M Stubbs. „Improved streaming algorithms for weighted
matching, via unweighted matching“. In: Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). 2014 (cit. on
pp. 85, 86).

Bibliography 152

[CV95] Kathryn Chaloner and Isabella Verdinelli. „Bayesian experimental design: A review“. In:
Statistical science (1995), pp. 273–304 (cit. on p. 139).

[CVZ14] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. „Submodular Function Maximization
via the Multilinear Relaxation and Contention Resolution Schemes“. In: SIAM Journal on
Computing 43.6 (2014), pp. 1831–1879 (cit. on pp. 15, 101, 102).

[Cyg13] Marek Cygan. „Improved approximation for 3-dimensional matching via bounded path-
width local search“. In: SODA. 2013, pp. 509–518 (cit. on pp. 3, 14, 17, 19, 21, 81).

[DK08] Abhimanyu Das and David Kempe. „Algorithms for subset selection in linear regression“.
In: Proc. 40th STOC. 2008, pp. 45–54 (cit. on pp. 12, 13, 114).

[DK11] Abhimanyu Das and David Kempe. „Submodular meets spectral: Greedy algorithms for
subset selection, sparse approximation and dictionary selection“. In: Proc. 28th ICML.
2011 (cit. on pp. 12, 13, 114).

[DK18] Abhimanyu Das and David Kempe. „Approximate Submodularity and its Applications:
Subset Selection, Sparse Approximation and Dictionary Selection“. In: J. Mach. Learn. Res.
19 (2018), 3:1–3:34 (cit. on pp. 116, 117, 119, 122).

[Edm65] Jack Edmonds. „Paths, trees, and flowers“. In: Canadian Journal of mathematics 17 (1965),
pp. 449–467 (cit. on pp. 3, 14, 17).

[Edm71] Jack Edmonds. „Matroids and the greedy algorithm“. In: Mathematical programming 1
(1971), pp. 127–136 (cit. on p. 6).

[Ele+17] Ethan R Elenberg, Alexandros G Dimakis, Moran Feldman, and Amin Karbasi. „Streaming
Weak Submodularity: Interpreting Neural Networks on the Fly“. In: Proc. 31st NeurIPS.
2017, pp. 4044–4054 (cit. on pp. 12, 85, 118).

[Ele+18] Ethan R Elenberg, Rajiv Khanna, Alexandros G Dimakis, Sahand Negahban, et al. „Re-
stricted strong convexity implies weak submodularity“. In: The Annals of Statistics 46.6B
(2018), pp. 3539–3568 (cit. on pp. 118, 149).

[Far+15] Ahmed K. Farahat, Ahmed Elgohary, Ali Ghodsi, and Mohamed S. Kamel. „Greedy column
subset selection for large-scale data sets“. In: Knowl. Inf. Syst. 45.1 (2015), pp. 1–34
(cit. on pp. 13, 116, 141, 142).

[Fei+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
„On graph problems in a semi-streaming model“. In: Theoretical Computer Science (2005)
(cit. on p. 9).

[Fei98] Uriel Feige. „A threshold of lnn for approximating set cover“. In: Journal of the ACM 45.4
(1998), pp. 634–652 (cit. on pp. 15, 115, 149).

[Fel+11] Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz, and Justin Ward. „Improved approx-
imations for k-exchange systems“. In: Proc. European Symposium on Algorithms (ESA).
2011, pp. 784–798 (cit. on pp. 82, 101).

[Fel+20] Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. „The One-way
Communication Complexity of Submodular Maximization with Applications to Stream-
ing and Robustness“. In: Proc. ACM Symposium on Theory of Computing (STOC). 2020,
pp. 1363–1374 (cit. on pp. 85, 86, 108).

Bibliography 153

[Fel+22] Moran Feldman, Paul Liu, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen.
„Streaming Submodular Maximization Under Matroid Constraints“. In: 49th International
Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris,
France. 2022 (cit. on pp. 85, 86, 108).

[FMU22] Manuela Fischer, Slobodan Mitrović, and Jara Uitto. „Deterministic (1+ epsilon)-approximate
maximum matching with poly (1/epsilon) passes in the semi-streaming model and be-
yond“. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing.
2022 (cit. on p. 85).

[FMV11] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. „Maximizing Non-monotone Submodular
Functions“. In: SIAM Journal on Computing 40.4 (2011), pp. 1133–1153 (cit. on p. 99).

[FNW78] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. „An Analysis of Approximations for
Maximizing Submodular Set Functions II“. In: Mathematical Programming Study (1978)
(cit. on pp. 8, 82, 149).

[FW14] Yuval Filmus and Justin Ward. „A Tight Combinatorial Algorithm for Submodular Maxi-
mization Subject to a Matroid Constraint“. In: SIAM J. Computing 43.2 (2014), pp. 514–
542 (cit. on pp. 10, 13, 15, 115, 117, 125, 131, 137).

[FY14] Martin Fürer and Huiwen Yu. „Approximating the k-set packing problem by local improve-
ments“. In: ISCO. 2014, pp. 408–420 (cit. on pp. 17, 21).

[GG18] Khashayar Gatmiry and Manuel Gomez-Rodriguez. „Non-submodular function maximiza-
tion subject to a matroid constraint, with applications“. In: arXiv preprint arXiv:1811.07863
(2018) (cit. on p. 149).

[GJS22] Paritosh Garg, Linus Jordan, and Ola Svensson. „Semi-streaming algorithms for submodu-
lar matroid intersection“. In: Mathematical Programming (2022) (cit. on p. 85).

[Gon+19] Suning Gong, Qingqin Nong, Wenjing Liu, and Qizhi Fang. „Parametric monotone function
maximization with matroid constraints“. In: J. Global Optimization 75.3 (2019), pp. 833–
849 (cit. on p. 118).

[GV11] Shayan Oveis Gharan and Jan Vondrák. „Submodular maximization by simulated anneal-
ing“. In: Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA). 2011, pp. 1098–1116
(cit. on p. 14).

[Hal95] Magnús M. Halldórsson. „Approximating Discrete Collections via Local Improvements“.
In: SODA. 1995, pp. 160–169 (cit. on pp. 3, 21).

[Har+19] Chris Harshaw, Moran Feldman, Justin Ward, and Amin Karbasi. „Submodular Maximiza-
tion beyond Non-negativity: Guarantees, Fast Algorithms, and Applications“. In: Proc.
36th ICML. Vol. 97. 2019, pp. 2634–2643 (cit. on pp. 12, 13, 84, 102, 103, 106, 116, 118,
139, 140).

[Has+19] Abolfazl Hashemi, Mahsa Ghasemi, Haris Vikalo, and Ufuk Topcu. „Submodular observa-
tion selection and information gathering for quadratic models“. In: Proc. 36th ICML. 2019,
pp. 2653–2662 (cit. on p. 116).

[Has+20] Abolfazl Hashemi, Mahsa Ghasemi, Haris Vikalo, and Ufuk Topcu. „Randomized greedy
sensor selection: Leveraging weak submodularity“. In: IEEE Trans. on Automatic Control
66.1 (2020), pp. 199–212 (cit. on p. 118).

Bibliography 154

[HS21] Chien-Chung Huang and François Sellier. „Semi-Streaming Algorithms for Submodular
Function Maximization Under b-Matching, Matroid, and Matchoid Constraints“. In: arXiv
preprint arXiv:2107.13071 (2021) (cit. on p. 85).

[HS89] Cor A. J. Hurkens and Alexander Schrijver. „On the size of systems of sets every t of
which have an SDR, with an application to the worst-case ratio of heuristics for packing
problems“. In: SIAM Journal on Discrete Mathematics 2.1 (1989), pp. 68–72 (cit. on pp. 3,
17, 21).

[HSS06] Elad Hazan, Shmuel Safra, and Oded Schwartz. „On the complexity of approximating
k-set packing“. In: Computational Complexity 15.1 (2006), pp. 20–39 (cit. on pp. 3, 14,
15, 17, 81).

[HTW20] Chien-Chung Huang, Theophile Thiery, and Justin Ward. „Improved Multi-Pass Streaming
Algorithms for Submodular Maximization with Matroid Constraints“. In: Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX-
/RANDOM 2020, August 17-19, 2020, Virtual Conference. 2020 (cit. on pp. iv, 11, 82, 86,
102).

[Jen75] TA Jenkyns. „Matchoids: a generalization of matchings and matroids.“ In: (1975) (cit. on
pp. 5, 6).

[Kap21] Michael Kapralov. „Space lower bounds for approximating maximum matching in the edge
arrival model“. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM. 2021, pp. 1874–1893 (cit. on pp. 85, 86).

[Kar72] Richard M. Karp. „Reducibility Among Combinatorial Problems“. In: Complexity of Com-
puter Computations. The IBM Research Symposia Series. Plenum Press, New York, 1972,
pp. 85–103 (cit. on pp. 2, 17).

[Kaz+19] Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, and Amin
Karbasi. „Submodular Streaming in All Its Glory: Tight Approximation, Minimum Memory
and Low Adaptive Complexity“. In: Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. 2019 (cit. on
p. 85).

[Kaz+21] Ehsan Kazemi, Shervin Minaee, Moran Feldman, and Amin Karbasi. „Regularized Sub-
modular Maximization at Scale“. In: Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event. 2021 (cit. on pp. 84,
102–104, 106).

[KH78] Bernhard Korte and Dirk Hausmann. „An analysis of the greedy heuristic for independence
systems“. In: Annals of Discrete Mathematics. 1978 (cit. on p. 14).

[Kha+17a] Rajiv Khanna, Ethan Elenberg, Alexandros G. Dimakis, and Sahand Negahban. „On
Approximation Guarantees for Greedy Low Rank Optimization“. In: Proc. 34th ICML.
2017, pp. 1837–1846 (cit. on p. 118).

[Kha+17b] Rajiv Khanna, Ethan Elenberg, Alexandros G Dimakis, Sahand Negahban, and Joydeep
Ghosh. „Scalable greedy feature selection via weak submodularity“. In: Proc. 20th AISTATS.
2017, pp. 1560–1568 (cit. on p. 118).

[KKT03] David Kempe, Jon Kleinberg, and Éva Tardos. „Maximizing the spread of influence through
a social network“. In: Proc. 9th KDD. 2003, pp. 137–146 (cit. on p. 7).

Bibliography 155

[KSG08] Andreas Krause, Ajit Paul Singh, and Carlos Guestrin. „Near-Optimal Sensor Placements
in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies“. In: J. Machine
Learning Research 9 (2008), pp. 235–284 (cit. on pp. 13, 139, 140).

[Kuh+18] Alan Kuhnle, J. David Smith, Victoria G. Crawford, and My T. Thai. „Fast Maximization of
Non-Submodular, Monotonic Functions on the Integer Lattice“. In: Proc. 35th ICML. 2018,
pp. 2791–2800 (cit. on pp. 12, 118).

[Kuh55] Harold W Kuhn. „The Hungarian method for the assignment problem“. In: Naval research
logistics quarterly 2.1-2 (1955), pp. 83–97 (cit. on p. 3).

[LB10] Hui Lin and Jeff A. Bilmes. „Multi-document Summarization via Budgeted Maximization
of Submodular Functions“. In: Human Language Technologies: Conference of the North
American Chapter of the Association of Computational Linguistics, Proceedings, June 2-4,
2010, Los Angeles, California, USA. The Association for Computational Linguistics, 2010,
pp. 912–920 (cit. on pp. 7, 12, 82).

[Liu+21] Paul Liu, Aviad Rubinstein, Jan Vondrák, and Junyao Zhao. „Cardinality constrained sub-
modular maximization for random streams“. In: Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual. 2021 (cit. on p. 108).

[LSV10] Jon Lee, Maxim Sviridenko, and Jan Vondrák. „Submodular Maximization over Multiple
Matroids via Generalized Exchange Properties.“ In: Mathematics of Operations Research
35.4 (2010), pp. 795–806 (cit. on pp. 10, 14, 15, 82, 86, 101, 108).

[LSV13] Jon Lee, Maxim Sviridenko, and Jan Vondrák. „Matroid Matching: The Power of Local
Search“. In: SIAM J. Comput. (2013) (cit. on p. 14).

[LW20] Roie Levin and David Wajc. „Streaming Submodular Matching Meets the Primal-Dual
Method“. In: arXiv preprint arXiv:2008.10062 (2020) (cit. on pp. 85, 86).

[MBK16] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. „Fast Constrained
Submodular Maximization: Personalized Data Summarization.“ In: ICML. 2016, pp. 1358–
1367 (cit. on p. 82).

[Mir+15] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and An-
dreas Krause. „Lazier Than Lazy Greedy“. In: Proc. AAAI Conference on Artificial Intelligence
(AAAI). 2015, pp. 1812–1818 (cit. on p. 82).

[Neu21] Meike Neuwohner. „An Improved Approximation Algorithm for the Maximum Weight
Independent Set Problem in d-Claw Free Graphs“. In: STACS. Vol. 187. 2021, 53:1–53:20
(cit. on pp. 4, 18, 19, 50, 80).

[Neu22] Meike Neuwohner. „The Limits of Local Search for Weighted k-Set Packing“. In: IPCO.
Springer. 2022, pp. 415–428 (cit. on pp. 4, 5, 18–20, 50, 74, 75, 80).

[Neu23] Meike Neuwohner. „Passing the Limits of Pure Local Search for Weighted k-Set Packing“.
In: Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
Florence, Italy, January 22-25, 2023. SIAM, 2023 (cit. on pp. 4, 14, 18, 19, 75, 80, 81).

[Non+19] Qingqin Nong, Tao Sun, Suning Gong, et al. „Maximize a monotone function with a
generic submodularity ratio“. In: Proc. International Conference on Algorithmic Applications
in Management. 2019, pp. 249–260 (cit. on p. 118).

Bibliography 156

[Nor+18] Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrović, et al. „Beyond 1/2-Approximation
for Submodular Maximization on Massive Data Streams“. In: Proc. International Conference
on Machine Learning (ICML). 2018, pp. 3826–3835 (cit. on pp. 85, 86, 108).

[NW78] G L Nemhauser and L A Wolsey. „Best Algorithms for Approximating the Maximum of a
Submodular Set Function“. In: Mathematics of Operations Research 3.3 (1978), pp. 177–
188 (cit. on p. 115).

[NWF78] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. „An analysis of approx-
imations for maximizing submodular set functions—I“. In: Mathematical programming
(1978) (cit. on p. 8).

[PS18] Ami Paz and Gregory Schwartzman. „A (2+ ε)-approximation for maximum weight
matching in the semi-streaming model“. In: ACM Transactions on Algorithms (TALG)
(2018) (cit. on pp. 85, 86).

[Qia+18] Chao Qian, Yibo Zhang, Ke Tang, and Xin Yao. „On Multiset Selection With Size Con-
straints“. In: Proc. 32nd AAAI. 2018, pp. 1395–1402 (cit. on pp. 12, 118).

[RW05] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2005 (cit. on p. 14).

[Sch+03] Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency. Vol. 24.
Springer, 2003 (cit. on pp. 6, 14, 16).

[ST10] Mohit Singh and Kunal Talwar. „Improving integrality gaps via Chvátal-Gomory rounding“.
In: APPROX. 2010, pp. 366–379 (cit. on p. 22).

[Ste04] J Michael Steele. The Cauchy-Schwarz master class: an introduction to the art of mathemat-
ical inequalities. Cambridge University Press, 2004 (cit. on pp. 14, 15).

[SVW15] Maxim Sviridenko, Jan Vondrák, and Justin Ward. „Optimal approximation for submodular
and supermodular optimization with bounded curvature“. In: Proc. 26th SODA. 2015,
pp. 1134–1148 (cit. on pp. 102, 106).

[SW13] Maxim Sviridenko and Justin Ward. „Large neighborhood local search for the maximum
set packing problem“. In: ICALP. Springer. 2013, pp. 792–803 (cit. on pp. 3, 21).

[SY20] Richard Santiago and Yuichi Yoshida. „Weakly Submodular Function Maximization Using
Local Submodularity Ratio“. In: arXiv preprint arXiv:2004.14650 (2020) (cit. on p. 12).

[TW22] Theophile Thiery and Justin Ward. „Two-Sided Weak Submodularity for Matroid Con-
strained Optimization and Regression“. In: Conference on Learning Theory, 2-5 July 2022,
London, UK. Proceedings of Machine Learning Research. 2022 (cit. on pp. iv, 13, 114).

[TW23] Theophile Thiery and Justin Ward. „An Improved Approximation for Maximum Weighted
k-Set Packing“. In: Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2023, Florence, Italy, January 22-25, 2023. 2023 (cit. on pp. iv, 5, 14, 17, 19).

[War12a] Justin Ward. „A (k+ 3)/2-approximation algorithm for monotone submodular k-set
packing and general k-exchange systems“. In: STACS’12 (29th Symposium on Theoretical
Aspects of Computer Science). Vol. 14. LIPIcs. 2012, pp. 42–53 (cit. on p. 15).

[War12b] Justin Ward. Oblivious and non-oblivious local search for combinatorial optimization. Uni-
versity of Toronto (Canada), 2012 (cit. on p. 6).

Bibliography 157

List of Figures

1.1 Turning a 3-hypergraph (left) into a 4-claw free graph (right). Observe that the
green, grey, blue, and red vertices form a 3-claw with the green vertex as the
center. 3

1.2 Hierarchical visualization of independence system classes considered in this
thesis. There is an arrow A→ B if the class A is included in the class B. 8

2.1 An isolated bad example for the weight-squared local search. 21
2.2 In this picture, we show the exchange graph H1/4 (Figure 3.2), coming from

the conflict graph G[A ∪O] in Figure 2.2a. We assume that wa = wb = wc = 1,
wd = 4/5, and we = 1/2. In Figure 2.2a, we label the edge from each vertex of o
to π(o) with an arrow and assume that ties are broken by ordering vertices by
label. 27

2.3 Almost tight example for our analysis, where the vertices at the top are the
vertices in the current solution, and vertices at the bottom are the vertices in the
optimal solution. The values written are for individual vertices. 37

3.1 Exchange graph at level 1 with ` = 2. An arc (b, a) ∈ H1 is present if b ∈ N+
a , and

wb
wa

is between 1 − ε1 and 1. The nodes B, D, I , G are in D1 and A, C, E, F, H
are in I1 . 54

3.2 Exchange graph H≤2 at level 2 with ` = 2. The red arcs are in H2. The
decomposition of A in vertex disjoint trees is made of 4 trees: {B,D,A}, {I, G, H},
{C, F} and {E}. 55

4.1 Example when k = 7. There is a dotted arrow from e to e′ if e arrives before
e′. The first 7 sets are covered by O(1)

1 as shown in the top right. When O
(1)
1

arrives, it is discarded. The next 6 sets are added to the solution and are
covered by O(2)

1 , O
(2)
2 as shown on the top right. When O

(2)
1 ,O(2)

2 arrive, they
are discarded. The algorithm’s output is on the bottom right and has value
f(S) = 4/27 + 4/9 + 4/3 = 52/27. The optimal solution has value f(OPT) = 7.
The approximation factor is f(OPT) /f(S) = 189/52 = 3.6246 88

5.1 Guarantees for (γ, 1/γ)-weakly submodular function maximization under a ma-
troid constraint. 117

158

List of Tables

1.1 State-of-the-art approximation factors for maximizing linear objective functions
over various independence systems. Here τp follows from Table 3.1 for p ≤ 361

and τp = 0.4986(p+ 1) + 0.0208 for p ≥ 361. 14
1.2 State-of-the-art approximation factor for maximizing a monotone submodular

objective function over various independence systems. 15

2.1 Approximation ratio for different values of k and our improvements over k+1
2 . In

the last column, we removed an additional O(ε) term to the approximation. . . 21
2.2 Optimal settings for ε and approximation ratio for different values of k. Here,

τk/2, measures the improvement over k+1
2 . We recall that ` = O(1/ε′) controls

the size of the swaps we consider. 44

3.1 Summary of the results for different values of k. The parameter τk, measures
the improvement over k+1

2 , i.e. τk = k+1
2 − APX. Here, ` bounds the size of

components in Dj , L is the number of layers and ε = εL−1 is the value of εL−1

that we need to set. 74

4.1 Improvements over the state-of-the-art results (at the time of publication) for
monotone submodular functions . 84

4.2 Multipass streaming algorithm results for non-monotone submodular function
maximization . 84

4.3 State-of-the-art approximation factors for maximizing weighted linear objective
functions over various independence systems in the streaming setting. 86

4.4 State-of-the-art approximation factors for maximizing monotone submodular
objective functions over various independence systems in the streaming setting. 86

159

List of Tables 160

	Cover
	Titlepage
	Declaration
	Abstract
	Acknowledgement
	1 General Introduction
	1.1 Weighted p-Set Packing
	1.1.1 Overview of the contributions

	1.2 Streaming Algorithms subject to Independence Systems
	1.2.1 Independence Systems
	1.2.2 Submodular Functions
	1.2.3 Streaming Algorithms
	1.2.4 Overview of the contributions

	1.3 Independence Systems in Machine Learning
	1.3.1 Overview of the contributions

	Appendices
	1.A State-of-the-art results
	1.B Basic Results from linear algebra, calculus, and more

	2 Improved Approximation for Weighted k-Set Packing
	2.1 Introduction
	2.2 Preliminaries
	2.3 A simple proof of Berman's algorithm
	2.4 An Improved Algorithm Using Larger Exchanges
	2.4.1 Removing parallel arcs, triangles and more
	2.4.2 Bounding the slack for non-isolated vertices
	2.4.3 Bounding the slack for isolated claws
	2.4.4 Combining the Bounds
	2.4.5 A matching lower bound

	2.5 Further improving the bound
	2.5.1 Large connected components
	2.5.2 Numerical results for small values
	2.5.3 Bounding on the number of swaps performed by Algorithm 1
	2.5.4 Removing small cycles
	2.5.5 Technical lemmas to build the exchanges

	3 A 3-approximation for Weighted 3-Set Packing
	3.1 Recap from Chapter 2
	3.2 Definitions, notations and structural properties
	3.2.1 Exchanges
	3.2.2 High-level construction of the set of exchanges
	3.2.3 Formal Decomposition
	3.2.4 Numerical properties of the decomposition

	3.3 Efficient charging argument
	3.4 Slack for Large Trees
	3.4.1 Slack from Large Exchanges
	3.4.2 Exterior Slack
	3.4.3 Interior Slack
	3.4.4 Final Expression of the Slack

	3.5 Root Tree
	3.6 Pendant Tree
	3.7 Final Results and Conclusion
	3.7.1 Exact and asymptotic approximation ratio

	3.8 Reaching the local-gap instance
	3.9 Conclusion and Open Questions

	4 Improved Multipass Algorithms for Submodular Maximization with Independence Constraints
	4.1 Introduction
	4.1.1 Our Results
	4.1.2 Additional Related Work

	4.2 Single Pass Algorithm
	4.2.1 Tight Example for Algorithm 2

	4.3 The main multipass streaming algorithm
	4.4 Analysis for monotone submodular functions
	4.5 Multipass algorithm for general submodular functions
	4.6 Analysis for non-monotone submodular functions
	4.7 Regularized Monotone Submodular Maximization
	4.7.1 Analysis for regularized monotone submodular functions

	4.8 Conclusion and Open Questions

	Appendices
	4.A Detailed computations for Section 4.3 and 4.6
	4.A.1 Analysis of Chekuri et al.'s algorithm
	4.A.2 Missing computations in Theorem 4.4.3
	4.A.3 Approximately guessing the value of the optimal solution

	5 Sparse Subset Selection Problems under Matroid Constraint
	5.1 Introduction
	5.1.1 Main Results
	5.1.2 Weak Submodularity and Related Definitions

	5.2 Sparse Least Square Estimator
	5.3 Improved Analysis of ResidualRandomGreedy
	5.4 Distorted Local Search
	5.4.1 Properties of the coefficients m()a,b

	5.5 A randomized, polynomial time distorted local-search algorithm
	5.5.1 Initialization
	5.5.2 In-depth discussion of the proof strategy
	5.5.3 The algorithm and its analysis
	5.5.4 Warm starting the search using the previous solution
	5.5.5 Restricted Range of guesses
	5.5.6 Efficient estimation of the potential via sampling
	5.5.7 Proof of Lemma 5.5.4

	5.6 A-optimal design for Bayesian linear regression
	5.7 The Column Subset Selection Problem
	5.7.1 Decomposition Properties
	5.7.2 Proof of Theorem 5.7.1

	5.8 How large is the upper submodularity ratio
	5.9 Conclusion and Open Questions

	Bibliography

