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Abstract

This thesis comprises three studies on extracting the information embedded in option

prices.

In Chapter One, we propose a new predictor to forecast U.S. real economic activity

(REA) by utilising the information embedded in equity option prices. We construct our

equity option-based predictor by applying standard and recent data reduction meth-

ods, to the cross-section of computed option-implied expected returns of the underlying

stocks. Our predictor forecasts REA both in- and out-of-sample setting even after con-

trolling for common REA predictors and considering their persistence. We find a robust

negative relationship between the option-implied predictor and REA. We show that

individual stocks contain some additional predictive power that is not being captured

neither by the index option-implied expected return, nor by standard factors.

In Chapter Two, we analyze the impact of Federal Open Market Committee (FOMC)

meetings on S&P 500 option markets. We document that volatility and tail risks as

well as their premiums increase in the week before meetings, whereas option liquidity

decreases. We show that these findings are stronger in weaker economic conditions.

In Chapter Three, we review variables available for extracting information from equity

option prices. We consider option-implied volatilities, implied risk-neutral skewness and

implied expected returns. We discuss how these measures have been used in the litera-

ture and document the usefulness of their information in forecasting future prices, asset

allocation strategies, corporate events, and the state of the economy. In addition, we

comprehensively analyse the cross-sectional predictive power of several option-implied

variables for forecasting future equity returns. We show that option-implied measures
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demonstrate statistically and economically significant predictability for future stock re-

turns.
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Chapter 1

Predicting Real Economic

Activity with Individual

Option-Implied Expected Returns

1.1 Introduction

The provision of reliable forecasts of real economic activity (REA) has long been one

of the principal challenges for economists and of primary importance to corporates,

investors and policymakers. There has been considerable research on forecasting eco-

nomic activity using measures based on the prices of stocks, bonds and commodities.

These variables, however, failed to predict the economic downturn from 2007 to 2009

and led econometricians and macroeconomists to question the adequacy of these pre-

dictors. Therefore, they highlight the necessity of developing a precise REA predictor

using financial markets’ information (Ng and Wright (2013)).

In this paper, we propose a new option-based predictor which uses for the first time in-

formation from individual equity option prices, that is, option-implied underlying stocks’

expected returns. The stock’s expected return is a natural candidate as a predictor of

REA. Campbell and Cochrane (1999) show that in a standard log-linear representa-

tive agent model, the stock’s expected returns are counter-cyclical. Surprisingly, the

previous literature has not examined its predictive ability. This may be due to the

17



econometric challenges in estimating stocks’ expected returns using historical data.1

Our purpose is to estimate an updated, forward-looking expected return, and recent re-

search bypasses these obstacles by providing methods which use information extracted

from option prices. Options are forward-looking and are expected to possess informa-

tional content about the future state of the economy, thus, being natural candidates for

forecasting REA. We investigate the predictive ability of the expected returns of the

individual optionable stocks extracted from the respective equity market option prices

to forecast the growth of the U.S. REA. Bakshi et al. (2011), and Faccini et al. (2019)

have recently proposed using the information from index option prices to predict REA

and found that index option prices should be incorporated in the list of variables that

predict economic growth. Individual equity and index options are different and serve

different purposes and trading patterns.2 To the best of our knowledge, our paper is the

first that investigates whether individual equity option prices may also convey useful

information to predict REA.

We compute the individual stocks’ expected returns via Martin and Wagner (2019)

formula. This formula expresses the expected return on a stock in terms of the risk-

neutral variance of the market portfolio, the risk-neutral variance of the individual

constituent stocks and the value-weighted average of the constituent stocks’ risk-neutral

variances.3 All three quantities of risk-neutral variance are calculated directly from

market equity option prices and therefore help us to exploit the information embedded

in option price quotes to forecast future REA. In addition, this approach is distinct

from more conventional methods, such as the risk premium estimates using historical

excess returns, the CAPM and the Fama-French three-factor model, due its particular

1. Typically, the expected returns are estimated using historical time series of assets return
(Damodaran (2019)). However, this is not optimal since the historical approach is backwards-looking
and only relies on the belief that the future will be similar to the past, which is not always the case. As
outlined by Duan and Zhang (2014), investors are subject to higher uncertainty in the volatile phase-
i.e., during a crisis. Hence, the forward-looking risk premium will increase. However, historical average
returns cannot adequately reflect market conditions when such an increase in market volatility is tempo-
rary. During the crisis period, the realized stock returns are negative; therefore, the historical approach
produces a negative risk premium.

2. Bollen and Whaley (2004) document that trading in S&P 500 index options contributes to the
hedging demand of investors- i.e., buying index puts as portfolio insurance against market declines.
While Lakonishok et al. (2007) show that trading in stock options involves naked positions.

3. We also compute the individual stocks’ expected returns via Chabi-Yo et al. (2022)s’ method,
which takes into account the entire shape of risk-neutral density using higher moments of the risk-neutral
distribution. The predictive power of the option-based expected returns predictor remains regardless of
the method used to compute the option-implied expected returns.
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features.4 Firstly, it does not require accounting data. Second, it is based on observed

market prices and can be implemented in real-time. Third, it is model-free and does not

need any historical information to estimate its parameters. We focus our analysis on

firms that have been constituents of the S&P 500 index from July 1998 to May 2019. We

compute the individuals’ option-implied expected returns for different horizons (h =1,

2, 3, 6 and 12 months).

Once we compute the stocks’ option-implied expected returns, we construct our option-

based predictor by relying on data reduction methods. We employ Principal Com-

ponent Analysis (PCA) and the Instrumented Principal Component Analysis (IPCA),

separately, to assess whether results may differ depending on the method used to re-

duce dimensionality. PCA extracts factors that capture the co-movement of expected

returns. The first PCA factor explains almost 70% of the variance of h-month(s) ex-

pected returns (h = 1,2,3,6,12). PCA assumes a static correlation coefficient between

expected returns and the latent factor- i.e., static loadings. In addition, PCA method

does not incorporate other data beyond returns. For these reasons, we also utilise the

Instrumented Principal Component Analysis (IPCA) as proposed by Kelly and Pruitt

(2019). The IPCA, first, brings the wealth of characteristics into account by considering

them as an instrumental variables which help predict loadings. Then, armed with load-

ings, it estimates factors which inherently depend on observable firms’ characteristics.5

Mapping the characteristics on loadings provide a link between expected returns and

firms’ characteristics. Therefore, IPCA enables a factor model to accommodate the con-

ditional information of stock characteristics into the expected returns. The correlation

between the 1-month first IPCA factor and the 1-month first PCA factor is 96%, yet

not perfectly correlated.

Next, we investigate whether PCA/IPCA factor predicts future U.S. REA both in and

out of the sample. We test the predictability of these factors over different forecasting

horizons while controlling for well-known predictors of REA. To evaluate the robustness

4. see Lewellen (2015) and Duan and Zhang (2014).

5. The estimation objective in the IPCA method is similar to PCA- i.e., both estimate factors and
loadings by concentrating on the common variation of the system of variables. The objective function
in both models is to minimise the sum of squared model errors. However, the weight applied to each
squared residual is static in PCA whereas it is time-varying and depends on the characteristics of each
firm in IPCA.
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of our results, we employ eight different proxies of REA, namely, industrial production

(IP), non-farm payroll (NFP), retail sales (RS), housing starts (HS), capacity utilisation

(CU), unemployment rate (UR), Chicago Fed National Activity Index (CFNAI) and

Aruoba–Diebold–Scotti (ADS).

Our results from the in-sample analysis suggest that the first principal component of

expected returns obtained from either PCA or IPCA method is a statistically significant

predictor of REA, especially for the short-term horizons and contains information that

other financial predictors have not already incorporated. We reject the null hypothe-

sis of no predictability after addressing econometric concerns. Specifically, we conduct

statistical inference tests of our regression results using the instrumental variable test

following Kostakis et al. (2015) to deal with predictors with unknown degree of persis-

tence. We find a negative relationship between the first PCA (IPCA) factor and the

future REA. Some previous studies propose that consumption smoothing is the reason

for the relation between expected returns and REA (e.g., Balvers et al. (1990); Chen

(1991) and Loflund and Nummelin (1997)). Consumption-smoothing models predict

that expected real returns are counter-cyclical.

For each REA index, we estimate the out-of-sample (OOS) forecasts recursively using

an expanding window. At each point in time, we construct the PCA/IPCA predictor

recursively to avoid any look-ahead bias. We compare our forecasts obtained from a

full model (which contains our options-implied PCA or IPCA factor along with a set

of standard predictors of REA) with forecasts obtained from a nested model (which

does not contain the option-implied factor in the set of its predictors) by computing

the out-of-sample R2 measures following Campbell and Thompson (2008). Our results

suggest that the inclusion of PCA or IPCA factors in predictive models improves OOS

forecasts. In addition, we show that the IPCA factor is preferred to the PCA factor to

estimate OOS forecasts in longer horizons.6

In our robustness analysis, first, we compare the predictive ability of the PCA factor

obtained from the variance-based expected returns of Martin and Wagner (2019) with

6. Firms characteristics that are employed in the IPCA method are mainly calculated based on 12
months. This may be why the predictive model with the IPCA factor estimates better OOS forecasts
than the PCA factor in longer horizons.
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risk-neutral-based expected returns proposed by Chabi-Yo et al. (2022).7 We found that

the predictive power of the option-based expected returns predictor remains regardless of

the method used to compute the option-implied expected returns. Second, we investigate

whether the option-implied PCA/IPCA factors computed from the stock option-implied

expected returns outperform (i) the previously established pricing factors, such as those

from Fama and French (2015) and (ii) the index option-implied expected return. To

address this, we compare the OOS forecasts of the full model with PCA/IPCA factor

and show that this model outperforms the nested model, which contains the market risk

premium (SVIX) measure of Martin (2017) or the five systematic risk factors of Fama

and French (2015). Our findings imply that even though the derived PC factors may

be interpreted as “level” factors that proxy the market, individual stocks contain some

additional predictive power that is not captured by the index expected return nor by

standard factors that describe the cross-section of expected returns. Equity and index

options are dissimilar and serve different purposes and trading patterns.8

The rest of the paper is organised as follows. Section 1.2 reviews the related literature.

Section 1.3 describes our data. Section 1.4 describes the procedure we employ to extract

the expected return factors. Section 1.5 explains our prediction models to forecast REA.

Section 1.6 summarises our results. Section 1.7 reports our additional analysis results

and Section 1.8 concludes.

1.2 Related Literature

This paper relates to three strands of literature. First, it relates to papers that employ

financial variables to estimate real economic activity. Several studies have found that

the spread between the short and long-term maturity U.S. Treasury bills (term-spread)

has a strong predictive relation to aggregate economic activity. (e.g., Harvey (1989),

Chen (1991), Stock and Watson (1989), Friedman and Kuttner (1991), Estrella and

Hardouvelis (1991)). Some papers document the predictive power of credit spreads to

forecast REA. Bernanke (1983) finds that during the interwar period, the Baa-corporate

7. Expected returns computed from Chabi-Yo et al. (2022)s’ method considers the entire risk-neutral
distribution of returns and accounts for higher RN moments rather than only the second moment.

8. Lemmon and Ni (2014) document that trading activity in equity options is linked to individual
investors’ beliefs and past market returns, whereas a hedging demand motivates index options trades.
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and Treasury bond spread predicts industrial production growth. During the postwar

period, however, Friedman and Kuttner (1991) find that the paper-bill spread (defined

as the difference between the interest rates on commercial paper and Treasury bills) has

predictive power for real growth. Gilchrist and Zakrajsek (2012) show that the credit

spreads obtained from the spread between corporate bonds and treasuries bonds with

same maturities are a powerful predictor of output growth. Ng and Wright (2013) find

that term spreads were reasonable predictors of economic activity during 1970s and

1980s, whereas credit spreads show better predictive ability in recent years. Another

group of papers, such as Liew and Vassalou (2000) suggest that asset pricing factors

contain significant information about future REA growth. Likewise, Stock and Watson

(2003) find that asset prices of some countries significantly predict those countires’ out-

put growth. Bakshi et al. (2012) document that the Baltic dry index (BDI) growth rate

forecasts the global economic activity growth. Moreover, Hong and Yogo (2012) propose

that commodity futures open interest is a predictive factor for the real economy. On the

other hand, Allen et al. (2012) used the Chicago Fed National Activity Index (CFNAI)

to forecast economic downturns. Kelly and Jiang (2014) utilise monthly firm-level price

crashes and found that their measure negatively predicts real economic activity. While

this study exploits the information in the cross-section of stock prices, we extract the

information embedded in the cross-section of equity options.

Another strand of literature deals with the estimation of expected returns. The average

of historical realised returns are often used for estimating expected return. Damodaran

(2019) documents that this method does not reflect transient rises in the market’s volatil-

ity and produces a negative risk premium, particularly during a crisis when the realised

stock return is negative. On the other hand, several studies, such as Welch (2000) and

Fernández (2009) interviewed academics, traders or financial managers to obtain their

opinions on expected returns. However, this approach is time-consuming, requires a

very long prediction horizon, and faces sample selection bias. Other studies extract

the information embedded in option prices to estimate expected returns. For example,

Santa-clara and Yan (2010) derive the risk premia as a function of volatility and jump

intensity implied from options while Duan and Zhang (2014) derive it as a function of

physical moments and option-implied risk aversions. Buss and Vilkov (2012) employ
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information extracted from equity and index option prices to estimate correlations and

build option-implied betas. Using the implied betas, they derive linear factor mod-

els and hence expected returns. Martin (2017) derives a lower bound on the market

premium in terms of simple risk-neutral variance (SVIX) that can be computed from

index option prices. Ross (2015) and Schneider and Trojani (2019) estimate market

return from state prices i.e., the product of risk aversion (the pricing kernel) and the

risk-neutral probability distribution using the recovery theorem. These studies focus on

the market return. Extracting the information embedded in individual options, Martin

and Wagner (2019) and Kadan and Tang (2019) propose a forward-looking lower bound

on the expected rates of return on the individual assets. Their proposed lower bounds

reflect idiosyncratic and systematic risk and rely on risk-neutral variances. Chabi-Yo

et al. (2022) consider higher moments of the stocks’ risk-neutral distribution to extract

option-implied expected returns. González-Urteaga et al. (2021) combine the results

of Martin (2017) and the literature on the stochastic discount factor and extract the

expected returns of stocks. We choose the method proposed by Martin and Wagner

(2019) to extract individual stocks’ expected returns using option prices. This estima-

tion is computed from the observed current index and stock option prices and does not

require any historical data. More importantly, this method is parsimonious in terms of

the required inputs and can be computed precisely from the cross-section of market and

individual option prices that are easily available. In addition, expected returns obtained

from this method correspond to the market risk and indicate a significantly positive

market risk premium. They are also align with several stock characteristics, including

value, size, profitability, and momentum.9

This paper is also related to studies that have investigated the predictive power of

option-implied variables for REA. Surprisingly, there is very little literature on whether

the information inferred from option prices can predict REA. Bakshi et al. (2011), Faccini

9. In the robustness analysis, we compare the predictive ability of expected returns extracted from
Martin and Wagner (2019) with those obtained from Chabi-Yo et al. (2022). Our results suggest that
Chabi-Yo et al. (2022) ’s method, which takes into account the higher moments of risk-neutral distribu-
tion, does not improve the predictive power of implied-expected returns.
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et al. (2019) and Buss et al. (2019) are the only papers which explore this.10 Bakshi

et al. (2011) show the forward variance extracted from S&P 500 index options predicts

economic activity. Faccini et al. (2019) find that investor’s implied relative risk aversion

extracted from index option prices predicts REA. Buss et al. (2019) document that

implied correlation acts as a leading procyclical state variable and negatively forecasts

unemployment. We add to this literature by analysing the information embedded in

options at the stock level, namely individual stocks expected returns.

1.3 Data

1.3.1 Option Data

We compute the individual stocks’ expected returns via Martin and Wagner (2019)

formula. This formula calculates the expected return on a stock based on the risk-

neutral variance of the market, the risk-neutral variance of the individual stock, and the

value-weighted average of stocks’ risk-neutral variance. These measures are computed

directly using observed prices of options on both the index and the individual stocks. We

collect the required variables from OptionMetrics Ivy DB(OM) through the Wharton

Research Data Services (WRDS) and Compustat. Our sample spans January 1996 to

May 2019.

We first obtain information on the S&P500 index and its constituents from Compustat.

Using the lists of index constituents, we searched the OptionMetrics database for the

entire universe of firms that formed the S&P 500 index during our sample period. Where

available, we obtain the time series of implied volatility surface data for these individual

10. Other studies analyse the forecasting power of option-implied information for stock returns. For
example, An et al. (2014) find that increases in implied volatilities of ATM put and call options have
different indications, forecasting low and high future stock returns, respectively. Conrad et al. (2013)
examine the relationship between RN moments and realised returns and find a negative, albeit not sta-
tistically significant. Xing et al. (2010) find that stocks with the steepest implied volatility smirks show
worst earnings shocks in subsequent months. Cremers and Weinbaum (2010) show that the deviation
from put-call parity arising from expensive puts possesses information about future prices of underlying
stocks and predicts abnormally negative returns. Rehman and Vilkov (2012) and Stilger et al. (2016)
show that the RN skewness is positively related to future stock return. Gkionis et al. (2021) document
that high RNS, arising from expensiveness OTM calls relative to OTM puts, contains positive infor-
mation regarding the underlying stock. Other studies focus on options trading activities. For example,
Pan and Poteshman (2006) show a negative relationship between the put-call ratio and future stock
returns. Hu (2013) find that the stock exposure imbalance generated by option trading is positively
related to next-day stock returns. Johnson and So (2012) find that a low volume trading in options
markets compared to the stock market predicts low stock performance. Kostakis et al. (2011) show that
the information option-implied distributions can predict market timing.
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firms from the Optionsmetrics volatility surface (VS) file. The VS file contains implied

volatilities for standardised equity options for standard maturities- i.e., 30, 60, 91, 182,

and 365 calendar days, on a delta grid, accompanied by implied strike prices. We

remove options that their deltas or implied volatilities are missing. Moreover, we collect

daily index and stock prices as well as number of outstanding shares of each firm from

OptionMetrics’s underlying price file to compute their market capitalisations. We collect

forward prices for each firm from OM standardised option price file. In addition, Zero

yield curve data and projected dividend yield are also obtained from the OM Zero Curve

File and Index Dividend Yield file.

Using equity prices and volatility surface data, we compute the risk-neutral variance

(SVIX) of all individual firms that have been constituents of S&P 500 index from 1996

to 2019 for horizons of one, two, three, six, and twelve months. From these time series,

on each day, we focus only on the SVIX of firms that have been included in SPX and

calculate the value-weighted average of the risk-neutral variance of the market. As

summarised in Panel A of Table 1.1, we calculate almost 2.5 million individual stocks’s

SVIX for each horizon; We cover 1,092 firms over our sample period from January

1996 to May 2019. For each horizon, we collect data for 482 firms on average per day,

suggesting that we capture slightly more than 96% of the firms included in the S&P 500

index.

[Table 1.1 about here.]

1.3.2 Real Economic Activity Data

We collect monthly data for eight different measures which proxy for U.S. REA from

July 1998 to May 2019. First, we use Industrial Production (IP), a measure which

quantifies the output of the industrial sector of the economy. The industrial sector

comprises manufacturing, mining, and utilities. Second, we focus on Nonfarm payrolls

(NFP) which represents the number of employees in the nonfarm sectors in the U.S.

economy. Third, we consider real retail sales (RS), defined as the consumer demand for

finished goods. RS is measured by the purchases of durable and non-durable goods over

a specific period. Fourth, we employ housing starts (HS), defined as the total of new

private-owned houses.
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Fifth, we use capacity utilisation (CU), which measures the extent to which resources

in corporations and factories are employed to produce goods in manufacturing, mining,

and gas and electric utilities in the United States. Sixth, we consider the unemployment

rate (UR), which represents the number of unemployed people as a ratio of the labour

force. The latter is the sum of unemployed and those in paid or self-employment.

Our seventh proxy for the U.S. REA is the Chicago Fed National Activity Index (CF-

NAI), which is a monthly index created to measure overall economic activity and related

inflationary pressure. Finally, our last proxy is the Aruoba–Diebold–Scotti (ADS) index

(Aruoba et al. (2009)), which tracks business conditions. ADS is composed of six eco-

nomic indicators, including monthly payroll employment, weekly initial jobless claims,

personal income fewer transfer payments, manufacturing and trade sales, industrial pro-

duction, and quarterly real GDP.

We acquire all these proxies from the Federal Reserve Economic Data (FRED) database

held by the Federal Reserve Bank of St. Louis(FRED), except for ADS, which we collect

from the Philadelphia Fed webpage. We denote the monthly values of these proxies by

Yt,i (i = 1 for IPI, 2 for NFP, 3 for RS, 4 for HS, 5 for CU, 6 for UR, 7 for CFNAI and

8 for ADS).

Next, we calculate the h-month overlapping log growth rates of NFP, IP, HS, RS, CU

and UR -i.e., REAt+h,i = lnYt+h,i−lnYt,i, for h = 1, 2, 3, 6, 12 months and i = 1 to 6. By

construction, the values of CFNAI and ADS denote growth or recession and therefore,

we do not need to calculate the growth rates for these two proxies. Therefore, we define

REAt+h,i = Yt+h,i for i = 7, 8.

1.3.3 Control Variables

We obtain data on various variables that have been studied by previous literature and

have shown a predictive ability to predict REA. We use these variables as control vari-

ables in our predictive regression models. First, we consider lagged REA in our regression

model-i.e., REAi,t is the growth of the ith REA proxy over the period t−1 to t-i.e., the

length of the period is h month(s). Second, we collect monthly treasury bond and bill

rates from the FRED website to measure the term spread (TS), as the difference be-
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tween the 10-year Treasury bond rate and the three-month Treasury bill rate. Third, we

employ credit spread (CR), the spread between the Moody’s AAA and BAA corporate

bonds yields.

Fourth, we use OTM options data to calculate the value of the forward variance FVt,t+1

between t and t + 1 at time t- i.e., the forward variance with a h-month horizon. We

follow Bakshi et al. (2011) and calculate FVt,t+1 as follows:

H(t,t+1) = e−r(h/12) +

∫
K<St

ω(K)Putt(K)dK +

∫
K>St

ω(K)Callt(K)dK (1.1)

where Ct(K) and Pt(K) are the prices of a call and put options on SPX index, respec-

tively, at time t, with time to expiry (h) month(s) and strike price K. Moreover, er(h/12)

is the price at time t of a riskless discount bond with unit face value and time-to-maturity

of h month(s).

ω(K) = −

8√
14

cos(arctan(1/
√
7) +

√
7

2
ln(

K

St
)

√
StK3/2

(1.2)

We define the forward variance at time t between t and t+ 1, as:

FVt,t+1 = −lnH(t, t+ 1) (1.3)

Our fifth control variable is investor’s implied relative risk aversion (IRRA). We extract

IRRA using Kang et al. (2010) formula:

σ2
p,t(τ)− σ2

q,t(τ)

σ2
q,t(τ)

≈ γσq,t(τ)θq,t(τ) +
γ2

2
σ2
q,t(τ)(kq,t(τ)− 3) (1.4)

where γ is the coefficient of the relative risk aversion of the representative agent. The

formula estimates the spread between the risk-neutral variance (σ2
q,t(τ)) and physical

variance (σ2
q,t(τ)) as a function of the investor’s relative risk aversion (γ) by considering

a power utility function. In this formula θq,t(τ) and kq,t(τ) are the RN skewness and

kurtosis, respectively. We calculate the S&P 500 RN moments with a τ =1-month

horizon following Bakshi et al. (2003) formulae (see Appendix 1.A). Following Faccini

27



et al. (2019), we apply the generalised method of moments employing a 30-months

rolling window. Provided that our options data set is from January 1996 to May 2019,

we obtain the IRRA time series from July 1998 to May 2019.

The left axis of Figure 1.A.1 depicts the movements of forward variance, and the right

axis displays the changes of the U.S. implied risk aversion (IRRA) over July 1998 to

May 2019. Two remarks are in order in case of IRRA. First, IRRA values span from

3 to 6.5. This is similar to range of IRRA computed by the previous literature. For

example, Faccini et al. (2019) report IRRA values ranging from 2.27 to 9.55. Second,

we can see that the U.S. IRRA and forward variance rises substantially in 2008 during

the financial crisis and begin declining after that. These patterns could result from the

quantitative easing monetary policy implemented by the Fed from 2008 to 2014.

[Figure 1.A.1 about here.]

Finally, we consider five factors of Fama-French (5FF) as our sixth set of control vari-

ables.11 These factors include the size of firms (SMB), book-to-market values (HML),

expected return on the market (mrkt), profitability factor (RMW) and investment factor

(CMA). These factors capture the different dimensions of systematic risk and are ex-

pected to explain the cross-section of stock’s average returns with a linear relationship.

We mainly use these factors to assess whether the sources of systematic risks in indi-

vidual stocks’ returns are adequate to predict the REA or whether the forward-looking

option-implied risk factors contain additional predictive information.

1.4 Constructing the Option-Implied Predictor

In this section, we discuss the procedure to construct our option-implied predictor. We

follow Martin and Wagner (2019) formula, which derive the expected return on a stock

in terms of the stock’s excess risk-neutral variance and the risk-neutral variance of the

market. We then apply principal component analysis (PCA) and instrumented principal

component analysis (IPCA) to produce our proposed option-implied predictor.

11. We obtain 5FF from https://mba.tuck.dartmouth.edu
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1.4.1 Formula for the Individual’s Expected Return

The inputs to the Martin and Wagner (2019) formula are the following three measures

of risk-neutral variance:

SV IX2
m,t = var∗t (

Rm,t+1

Rf,t+1
)

SV IX2
i,t = var∗i,t(

Ri,t+1

Rf,t+1
)

SV IX
2
t = Σiωi,tSV IX2

i,t

(1.5)

where Rm,t+1 is the market gross return from time t to t+ 1, Ri,t+1 is the gross return

on stock i from time t to t+ 1 and Rf,t+1 is the gross riskless rate from time t to t+ 1.

The length of the period from time t to time t+1 depends on the forecasting horizon of

interest-i.e., h month(s). SV IX2
m,t denotes the measure of market risk-neutral variance,

SV IX2
i,t is the RN variance at the stock level and SV IX

2
t , measures the average risk-

neutral stock volatility.

Martin (2017) claims that the SV IX2
m,t index can forecast the equity premium. The

prices of index options determine this measure:

SV IX2
m,t =

2

Rf,t+1S
2
m,t

[

∫ Fm,t

0
Putm,t(K)dK +

∫ ∞

Fm,t

Callm,t, (K)dK] (1.6)

where Sm,t denotes the price of the market portfolio. Fm,t = Rf,t+1(St − D̄m,t) is the

forward price of stock as of time t for delivery at time t+ 1 and D̄m,t is the the present

value of dividends paid between times t and t+1. Putm,t(K) and Callm,t(K) are prices

of European index call and put options with strike prices K.

The corresponding SVIX measure at the individual stock level is obtained using indi-

vidual stock option prices:

SV IX2
i,t =

2

Rf,t+1S
2
i,t

[

∫ Fi,t

0
Puti,t(K)dK +

∫ ∞

Fi,t

Calli,t(K)dK] (1.7)

where the subscripts i denote that the reference asset is stock i.
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Finally, using SV IX2
i,t for all firms in the index available at time t and ωi,t be the market-

capitalization weight of stock i in the index, we compute the risk neutral average stock

variance index as SV IX
2
t = Σiωi,tSV IX2

i,t

We compute the three measures of risk-neutral variance for horizons (i.e., option ma-

turities) of 1, 3, 6, 12, and 24 months. We then remove a few extreme outliers in our

data that do not meet the monotonicity property of SV IXi,t across horizons described

above12.

Then, for each optionable stock in our sample, we construct the expected returns in

excess of the market following Martin and Wagner (2019).

EtRi,t+1 −Rm,t+1

Rf,t+1
=

1

2
(SV IX2

i,t − SV IX
2
t ) (1.8)

Exploiting the results of Martin (2017), specifically, EtRm,t+1−Rf,t+1 = Rf,t+1SV IX2
m,t,

we have:

EtRi,t+1 −Rf,t+1

Rf,t+1
= SV IX2

m,t +
1

2
(SV IX2

i,t − SV IX
2
t ) (1.9)

Finally, we define the expected return of stock i as:

EtRi,t+1 = Rf,t+1 × [SV IX2
m,t +

1

2
(SV IX2

i,t − SV IX
2
t )] +Rf,t+1 (1.10)

1.4.2 Principal Component Analysis

We apply Principal Component Analysis (PCA) to the cross-section of options implied

expected returns obtained in the previous section to construct our predictor. This

method transforms our extensive set of firms into a smaller one that still contains most

12. If the underlying asset does not pay dividends, call prices are rising with time-to-maturity. Assum-
ing this is not cancelled by the opposing effect of increased interest rates Rf,t+1 over longer horizons,
SV IXi,t should be expected to be monotonic in horizon length. In the daily data, we come up with
2,837,127 firm-day observations after withdrawing 21,438 observations based on nonmonotonicity. In the
case of end-of-the-month data, we end up with 135,343 observations after removing 1,012 observations
based on nonmonotonocity
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of the information in the large set. However, before applying the PCA, we must deal

with the missing data in our sample.

As reported in Table 1.1, our sample consist of 1,092 firms. Panel A of Table 1.2 shows

that ”Services” is the most represented industry in our sample, which forms 16% of

our sample. The data set is unbalanced: almost 45% of it is missing for three reasons.

First, the volatility surface data was unavailable on some days for some firms; therefore,

calculating the SVIX for those firms was impossible. Second, according to Martin and

Wagner (2019), the expected returns on individual stocks are determined relative to the

market index; each day, the expected return on the individual stock is reported only

if the firm is incorporated in the market index (in our case SPX). Third, the SVIX

measure for some firms was not monotonic with respect to the horizon on some days.

Following Martin and Wagner (2019), we only consider stocks that formed the S&P 500

index at each point in time during the sample span (July 1998- May 2019)13 and have no

missing values during our sample period. This results in a balanced panel of expected

returns for 125 firms with 251 monthly observations. Panel B of Table 1.2 suggests that

”Services” is the most represented industry in our reduced-balanced sample. Moreover,

we compare the characteristics of the firms included and excluded from the final sample.

The left panel of Table 1.3 demonstrates the descriptive statistics of 125 firms for which

we have a full data history and has been constituents of SPX for the entire sample. The

right panel of Table 1.3 reports the characteristic of SPX constituents firms at each time

t(- i.e, not only those that we have a full IVS history but also those that that would not

be constituent for the entire sample). As shown in the table, the characteristics of both

group are very close to each other and suggest that our sample is a good representative

of SPX constituents.

[Table 1.2 about here.]

[Table 1.3 about here.]

For each horizon (h =1, 2, 3, 6 or 12), we compute the corresponding expected returns.

Then, we apply PCA to 125 firms with 251 observations of expected returns for each

13. Data covers the same period that IRRA is extracted for- i.e., July 1998 to May 2019
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horizon. This yields 125 PCA components for each horizon. Table 1.4 reports the

amount of variance explained by the first five PCA factors for different horizons and

suggest that the first PC factor explains almost 65-70% of the variance of h-month(s)

expected returns (h = 1, 2, 3, 6, 12).

[Table 1.4 about here.]

1.4.3 Instrumented Principal Component Analysis

PCA extracts factors that capture the co-movement of variables but can only accommo-

date static loadings. Therefore, it cannot incorporate any information that is beyond

returns and is contained in the characteristics14 of the firms. Kelly and Pruitt (2019)

proposed a novel technique for data reduction called instrumented principal components

analysis or IPCA. This approach introduces observable firms’ characteristics as instru-

mental variables and brings the informational content of characteristic to the factor

models through latent time-varying loadings.

The general IPCA model specification is a system comprising N assets with L firms’

characteristics over T periods. We assume that the expected return on asset i from time

t to t + 1 (ri,t+1 = EtRi,t+1) computed from Equation (1.10) maps to a factor model

proposed by Kelly and Pruitt (2019) as follows:

ri,t+1 = αi,t + βi,tft+1 + ϵi,t+1 (1.11)

where ft+1 is a (K × 1) vector of K latent factors and inherently depends on lagged

observed asset characteristics incorporated in the (L × 1) instrument vector zi,t. The

specification of βi,t is the main feature of the IPCA analysis and has two roles. First, it

uses observable characteristics which serve as instrumental variables in the estimation of

the latent factor loadings. Second, the time-varying instruments facilities the estimation

of dynamic factor loadings. βi,t is estimated following the equation below:

αi,t = z′i,tΓα + να,i,t and βi,t = z′i,tΓβ + νβ,i,t (1.12)

14. Characteristics are factors that provide independent information about average returns.
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The matrix Γβ is a (L×K) vector and maps a large number of characteristics to a few

risk factors. To find the Γβ and the factor, we use the vector form of Equations (1.13)

and (1.12)15:

rt+1 = ZtΓ̃f̃t+1 + ϵt+1 (1.13)

where rt+1 is an (N × 1) vector of individual firm returns, Zt is the (N × L) matrix

that stores the lagged characteristics of each firm, and ϵ∗t+1 is the residuals of individual

firms. Γ̃ = [Γα,Γβ] and f̃t+1 = [1, ft+1]. The estimation goal is to minimise the sum of

squared model errors:

minΓ̃,f̃

T−1∑
t=1

(rt+1 − ZtΓ̃f̃t+1)
′(rt+1 − ZtΓ̃f̃t+1) (1.14)

The values of IPCA latent factor and Γ that minimize the above equation will satisfy

the first order conditions:

ft+1 = (Γ′
βZ

′
tZtΓβ)

−1Γ′
βZ

′
t(rt+1 − ZtΓα), (1.15)

and

vec(Γ̃′) =

(
T−1∑
t=1

[Zt ⊗ f̃ ′
t+1]

′[Zt ⊗ f̃ ′
t+1]

)−1(T−1∑
t=1

[Zt ⊗ f̃ ′
t+1]

′rt+1

)
(1.16)

where Γ̃ is (L×(K+1)) vector and is the coefficients of mapping the L instruments to the

K factor loadings. We consider K = 1 in our analysis. These equations suggest that the

IPCA factor is achieved by dynamic cross-section regression of rt+1 on the latent loading

matrix βt. Similarly, Γβ, is the regression coefficient obtained from regressing returns

on factors that interact with firm characteristics. There is no closed-form solution for

the system of first-order conditions above, and therefore, must be solved numerically.

To this end, following Kelly and Pruitt (2019) we choose an initial guess for Γ̃ equal to

the second moment matrix,
∑

t xt+1x
′
t+1, where xt+1 = Z ′

trt+1 is the time t observed

returns on a set of L managed portfolios. The lth component of xt is a weighted average

of stock returns with weights specified by the value of lth characteristic of each firm at

time t.

15. We consider the unrestricted model of Kelly and Pruitt (2019) in which Γα ̸= 0.
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Provided with starting guess for Γ̃, we estimate the least squares regression based on the

first-order condition (1.15) for all t. Next, having the consequent solutions for ft+1’s,

we estimate the least squares regression with respect to first-order condition (1.16). We

repeat between estimations of (1.15) and (1.16) until convergence. The convergence is

described as the point at which the maximum absolute change in any element of Γ̃ for

f̃t,T (for all t) is smaller than 10−6.

We empirically instrument the estimation of the first IPCA factor with observable char-

acteristics data of the firms in our sample. Specifically, we focus on 125 firms in our

sample that have constantly been included in the SPX index. Our sample spans July

1996 - May 2019. For each firm, we calculate 33 characteristics. These characteristics are

defined exactly following Freyberger et al. (2020) and include market beta (beta), assets-

to-market (a2me), total assets (assets), sales-to- assets (ato), book-to-market (bm),

cash-to-short-term- investment (c), ratio of change in property, capital turnover (cto),

capital intensity (d2a), earnings-to-price (e2p), fixed costs-to-sales (fc2y), cash flow-to-

book (freecf), idiosyncratic volatility with respect to the FF3 model (idiovol), investment

(invest), leverage (lev), market capitalization (mktcap), turnover (turn), net operating

assets (noa), plants and equipment to the change in total assets (dpi2a), operating accru-

als (oa), operating leverage (ol), price-to-cost margin (pcm), profit margin (pm), gross

profitability (prof), Tobin’s Q (q), price relative to its 52-week high (w52h), return on

net operating assets (rna), return on assets (roa), return on equity (roe), momentum

(mom), intermediate momentum (intmom), short-term reversal (strev), long-term re-

versal (ltrev), sales-to-price (s2p), the ratio of sales and general administrative costs to

sales (sga2s), bid-ask spread (bidask), and unexplained volume (suv). Section 1.C in

the appendix describes these characteristics and their construction.

Figure 1.A.2 shows the evolution of the first factor obtained from the PCA model,

the first factor obtained from the IPCA model, as well as the SVIX measure. These

measures are highly correlated with SVIX, yet the correlation is not perfect; this implies

that the informational content of the factors extracted from equity and index options

may differ. Specifically, the correlation between SVIX and PCA factor is 87%. The

correlation between SVIX and IPCA factor is 86%. The correlation between the PCA

and the IPCA factor is 96%.
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[Figure 1.A.2 about here.]

1.5 Predicting REA

Stock and Watson (2003) argue that stock prices reflect the expected discounted value of

future earnings, making stock returns potentially useful variables for predicting output

growth. We address this argument in this section by investigating whether the option-

implied factors extracted from the stock level expected returns can predict subsequent

growth in real economic activity

1.5.1 Empirical Setup

To identify whether stocks’ h−month(s) expected returns predict REA growth over h

forecasting horizons (h = 1, 2, 3, 6, 12 months), we set up our empirical investigation

based on the following predictive regression:

REAi,t+h = βi,0 + βi,1REAi,t + βi,2Ft,h + β′
i,3Xt + ϵi,t+h (1.17)

where REAi,t+h is the growth rate of the ith REA proxy (i = 1 for IPI, 2 for NFP, 3 for

RS, 4 for HS, 5 for CU, 6 for UR, 7 for CFNAI and 8 for ADS) over the period t to t+h.

Ft,h is the first factor obtained from PCA or IPCA methods using h-month(s) expected

returns -i.e., we match the horizon of the expected returns with the forecasting horizon.

Xt is a (4× 1) vector of additional predictors at time t and includes credit spread, term

spread, forward variance and IRRA. β1,i, β2,i and β′
3,i are (1 × 1), (1 × 1) and (1 × 4)

vectors of regression coefficient parameters respectively and the ith REA proxy is the

dependent variable.

In our further analysis, we also analyse the predictive power of our proposed predictor in

the presence of common risk factors, which explain the cross-section of expected returns,

namely the Fama and French (2015) five-factor model. This will tell us if the additional

workload of extracting option-based equity returns adds some value compared to simply

using asset pricing factors to predict REA. To test this, we add Fama and French

(2015) five factors to the set of our control variables mentioned above and evaluate the

predictive ability of our predictor in the presence of these factors. We fully discuss this
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model in Section 1.7.2.

Among different economic concerns that our predictive model may have, we first checked

for the correlation matrix of the explanatory variables employed in our regression models.

The covariance matrices of our control variables are reported in Table 1.5.

As indicated in Table 1.5, the forward variance is highly correlated with the first PCA

(bigger than 0.50) for all horizons. Moreover, there is a high correlation between credit

spread and the first PCA factor extracted from the expected return of 1, 2 and 3-month

horizons. Moreover, as reported in Panel B of Table 1.5 the first IPCA factors obtained

from h-month horizon(s) expected returns have a high correlation with forward variance

and credit spread.

To alleviate multicollinearity concerns that arise from these correlations, we orthogo-

nalise variables that have correlations bigger than 0.5 with the h-month PCA (IPCA)

factor, namely forward variance and credit spread. More specifically, we regress these

variables on a constant and the h-month first factor and obtain the residuals of these

regressions. These residuals represent the part of the control variables orthogonal (un-

correlated) with the factor. Then, we run our predictive regressions using the first factor

and residual terms as predictors.

[Table 1.5 about here.]

Secondly, to consider the possible econometric concerns arising from small samples or

time-series properties of the regressors, we report the p-values for the regression coeffi-

cients in two ways: (i) Two-sided p-values of Newey and West (1994) which considers

heteroscedasticity and autocorrelation of error terms and (ii) p-values of the IVX-Wald

test of Kostakis et al. (2015), which considers time-series properties of predictors. The

IVX-Wald test does not presume an initial assumption for the degree of persistence

and allows different persistence levels for predictors. We describe the details of IVX

estimator and test in Appendix 1.D.1 and 1.D.2.
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1.6 Results

1.6.1 In-Sample Evidence

Table 1.6 shows the results of estimating Equation (1.17) for forecasting horizons h =

1; 2; 3; 6; and 12 months employing the first PCA factor in our predictive regression

model. To recall, our predictive model considers lagged REA, credit and term spread,

forward and IRRA in the set of its control variables. This table reports the standardised

ordinary-least-squares (OLS) coefficient estimates of the h-month(s) first PCA factor,

the Newey-West and IVX-Wald test p-values of the regressor and the adjusted R2 of the

regression. We reject the null hypothesis of a zero coefficient (no predictability) based

on the p-values of the IVX-Wald test at the 1%, 5%, and 10% levels and denote it by

triple, double, and single asterisks, respectively.

We can obtain three key findings from Table 1.6. First, our results suggest that the

first PCA is a significant predictor of most REA proxies at the short-term horizon (i.e.,

1 and 2 months horizon). Specifically, the first PCA factor predicts all but one REA

proxies (i.e., RS) at a one-month horizon. It also predicts six out of eight REA proxies,

including IP, NFP, CU, UR CFNAI, and ADS, at a 2-months horizon. At three months

horizon, the PCA factor also predicts UR and ADS. Second, extending the forecasting

horizon to the longer term, our results suggest that the PCA factor can predict CU at

12 months horizon. Third, the sign of the first PCA factor coefficient is negative in all

cases except for the unemployment rate. UR is a counter-cyclical measure of economic

growth, and a positive regression coefficient of the first PCA factor also explains this

property. These results suggest that a rise in expected return forecasts a decrease in

REA.

Tables 1.A.2 to 1.A.3 in the appendix, report the regression coefficients of the control

variables in our predictive model. These results show that among different control

variables, forward variance and IRRA have significant predictive power to predict REA

even at long-term horizons. For example, FV predicts all REA proxies except HOUS

up to 3 months horizon. It also predicts 5 out of 8 proxies, including IP, NFP, CU, UR

and ADS, up to 12 months horizon. On the other hand, IRRA predicts all REA proxies

for up to 3 months. These results imply that index option-implied variables, especially
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FV, strongly predict REA, even for a long horizon. However, even after controlling for

these strong predictive variables in our model, our stock level predictor shows significant

predictive power at short-term horizons. This implies that the stock-level option-based

expected returns capture info which is not being captured by index-options implied

variables, and this extra information is useful for predicting REA. For longer-horizon,

however, one may choose forward variance to forecast REA.

The negative relationship between expected returns and REA is in an agreement with the

prediction of consumption-based asset pricing models, such as Fama and French (1989)

and Campbell and Cochrane (1999), which propose that the risk premia and, hence, the

expected returns are high during recessions -i.e., investors become more risk-averse and

require higher premiums to hold stocks during recessions.16

[Table 1.6 about here.]

We expand our analysis by including the second PCA factor in our predictive regression

model. However, we find no significant predictive ability of this factor in forecasting

REA. Additionally, we explore whether 1-month expected return factors can predict

REA over longer time horizons (h = 2, 3, 6, 12). Unfortunately, these extensions do not

yield improved results.

In order to compute a PCA factor from the cross section of individual expected returns,

it was necessary to obtain a balanced sample. Alternatively, we derived a single factor by

calculating a weighted average of the expected returns of the market index components

at each time point. This approach effectively creates a proxy for the market expected

return using individual options instead of relying on index options.

Table 1.7 shows the results of estimating Equation (1.17) for forecasting horizons h =

1; 2; 3; 6; and 12 months employing the weighted factor in our predictive regression model.

Our findings indicate that similar to the standard PCA factor, the weighted factor

exhibits robust predictive power for REA within short-term horizons. For instance,

even in the presence of other control variables such as IP, NFP, HOUS, UR, CFNAI,

and ADS, the weighted factor continues to forecast six REA proxies at a one-month

16. Our results remain unchanged when we use risk premia of stocks instead of expected returns. This
suggests that the effect of the risk-free rate is negligible.
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horizon. Furthermore, at longer horizons, the factor successfully predicts UR for up to

12 months.

[Table 1.7 about here.]

Next, we incorporate the information embedded in the firms’ characteristics, and proceed

by evaluating the predictive capability of the IPCA factor in forecasting the REA.

Table 1.8 reports the regression coefficients of estimating Equation (1.17) for forecasting

horizons h = 1; 2; 3; 6; and 12 months using instrumented PCA factor as the main

predictor of interest. Our results suggest that similar to the standard PCA factor, the

first IPCA factor is a strong predictor of REA at short-term horizons. For example, at

a one-month horizon, the first 1-month IPCA factor continues to predict 7 REA proxies

even in the presence of other control variables. These variables include IP, NFP, HOUS,

CU, UR, CFNAI and ADS. At a longer horizon, IPCA forecasts UR and ADS up to a

3-months horizon. We could not find predictive power of option-implied expected return

for horizons greater than six months.

Comparing the R2 of PCA and IPCA models suggests that both types of factors exhibit

nearly the same predictive ability. These results imply that incorporating the informa-

tional content of stock characteristics into factor loading estimations does not improve

the predictive ability of expected return factors extracted from options. This observa-

tion may be attributed to the high correlation between PCA and IPCA factors (92%),

suggesting that options are sophisticated derivatives and may already encompass firms’

characteristics.

[Table 1.8 about here.]

1.6.2 Out-of-Sample Evidence

This section assesses the forecasting ability of the PCA (IPCA) factors in a real time

out-of-sample (OOS) setting from October 2007 to May 2019. This period is interesting

because it covers the global financial crisis over 2007 to 2009 and includes the explosion

of the U.S. housing bubble. It also includes the substantial monetary policies led by the

Fed. To this end, we construct PCA/IPCA factors from h−month(s) expected returns

for each REA proxy. Employing an expanding window, we recursively estimate Equation

39



(1.17)17 Our first training sample window covers July 1998 to September 2007. Next,

at each month (t), we construct h = 1, 2, 3, 6, 12−months ahead forecasts. Doing so, we

bypass any look-ahead bias in our forecasts by utilising only the information available

up to time t. Specifically, for every month t ≥ September 2007, we employ entire data

through t to estimate the regression model (1.17) which includes our proposed factor18

in the set of its predictor. We denote the resulting parameter estimates by b1,i, b2,i and

b3,i. Then, based on (1.17), we define our full-forecasting model which contains the first

PCA/IPCA factor in the set of predictors and is in the form of:

Et(REAfull
i,t+h) = b0,i + bi,1REAi,t + bi,2Ft,h + b′i,3Xt (1.18)

Et(REAfull
i,t+h) denotes the h−months ahead out-of-sample forecasts from the full-forecasting

model. b1,i, b2,i and b′3,i are the (1×1), (1×1) and (1×4) vectors of estimated regression

coefficients, respectively. The ith REA proxy (i = 1 for IPI, 2 for NFP, 3 for RS, 4 for

HS, 5 for CU, 6 for UR, 7 for CFNAI and 8 for ADS) is the dependent variable. Ft,h

is the PCA or IPCA factor obtained from h-months expected returns. Similar to the

in-sample analysis, Xt is the vector of control variables and consists of credit spread,

term spread, forward variance and IRRA. Clearly, Et(REAfull
i,t+h) forecasts does not rely

on the information beyond time t.

We also estimate regression (1.17) in a restricted form -i.e., with models which do not

contain our proposed factor within the set of predictors. Specifically, we consider two

alternative model specifications for benchmark (restricted) forecasts:

1. benchmark1: This is an AR(1) model which considers only lagged REA as the

predictor of REA.

Et(REAbenchmark1
i,t+h ) = b0,i + b1,iREAi,t (1.19)

2. benchmark2: This model is in the form of:

Et(REAbenchmark2
i,t+h ) = b0,i + b1,iREAi,t + bi,2Xt (1.20)

17. We also perform the analysis using a rolling window, and our results remain unchanged.

18. obtained recursively from h-month(s) expected returns from July 1998 to t− h
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where Xt includes the credit and term spread, forward variance, and IRRA.

Next, we compute the out-of-sample R2 measure following Campbell and Thompson

(2008) to examine the OOS forecasting performance of our proposed estimator (indi-

vidual stocks expected returns PCA (IPCA) factors). The out-of-sample R2 indicates

whether the variance explained by forecasts of the full model, which includes the PCA

(IPCA) factor in the set of its predictors, is more or less than the variance explained by

alternative benchmark models (benchmarkm, m = 1, 2) which do not contain PCA fac-

tor in the set of its predictors. We define the out-of-sample R2
i,h acquired from predicting

the ith REA proxy as:

R2
i,h = 1−

var[Et(REAFull
i,t+h)−REAi,t+h]

var[Et(REAbenchmarkm
i,t+h )−REAi,t+h]

(1.21)

A positive out-of-sample R2 indicates that the full model performs better than the

benchmark model; therefore, our proposed factor has superior OOS predictive ability.

Tables 1.9 and 1.10 report the out-of-sample R2 obtained from Equation (1.21) where

the full model includes PCA and IPCA factor, respectively.19 Panels A and B of these

tables report results when we consider the AR(1) model in Equation (1.19) and the

nested model in Equation (1.20), respectively.

Table 1.9 shows that the out-of-sample R2 is mostly positive when we consider the PCA

factor in our model -i.e., the full regression model with the PCA factor outperforms the

restricted models. Therefore, incorporating the PCA factor in REA prediction models

is statistically significant20 in an out-of-sample setting. More precisely, for the case of

the AR(1) model, the out-of-sample R2 is positive in all proxies except for two cases.

Exceptions occur at the 3 and 6 months horizons for CFNAI. As reported in Panel B, the

full model forecasts are also better than the nested model (benchmark2) for all proxies

at short-term horizons (i.e., h ≤ 3). The evidence on this is relatively weaker for longer

horizons. At 6-months horizon, the full model performs better than the nested model

19. Our results remain robust if we calculate the OOS-R2 measure using the sum of squared errors
instead of the variance.

20. We test the statistical significance of the out-of-sample R2s, using Diebold- Mariano test in Section
(1.G) in the Appendix.
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for all proxies except RS, UR, CFNAI and ADS. However, at 12 months horizon, the

full model only outperforms the nested model for NFP and HOUS.

From Table 1.10, we can see that the forecasts of the full model with the IPCA factor

beat the forecasts of the benchmark models that do not contain the IPCA factor for

most REA proxies. More specifically, Panel A of the table shows that the OOS-R2 is

mostly positive and suggests that the full model outperforms the AR(1) for almost all

proxies up to 12 months horizon (exceptions include CFNAI at h > 1 months horizon).

In addition, Panel B of this table suggests that the full model with the IPCA factor

beats the nested model (benchmark2) for NFP, HOUS, UR and ADS at a one-month

horizon. At longer horizons up to 6 months, the forecasts of the full model improve-i.e.,

the model with the IPCA factor is better than the nested model for all proxies except

CU and CFNAI at two months and UR at six months.

[Table 1.9 about here.]

[Table 1.10 about here.]

Our findings on OOS analysis complement our results on in-sample analysis and suggest

that our proposed equity-level factor contains additional information in predicting REA.

This information cannot be captured by other option-implied measures such as IRRA

and FV, especially at the short-term horizon. Therefore, the inclusion of our predictor

is statistically significant in forecasting REA and the existing list of REA predictors

should be extended by option-implied equity factors.

Furthermore, our findings suggest that the forecasts of the standard PCA factor are

qualitatively similar to the instrumented PCA factor in an in-sample setting. In addition,

the PCA factor forecasts perform better than the IPCA factor in an OOS setting for

short-term horizons.21 These results imply that equity options may already subsume

firm’s characteristics and hence the IPCA does not necessarily improve predicting REA.

21. -i.e., the OOSR2 which compares the full model with the PCA factors versus the nested model
is positive for all REA proxies up to 3 month, whereas the respective OOSR2 for the IPCA factor is
negative for four proxies at 1-month horizon and for 2 proxies at 2-months horizon.
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1.7 Further Analysis

1.7.1 Variance-based versus Density-based Expected Returns

Chabi-Yo et al. (2022) propose a flexible technique to build expected return bounds that

consider the entire shape of the risk-neutral distribution rather than considering only

the second moment as in Martin and Wagner (2019). Specifically, they suggest that:

Et(Ri,t+1 −Rf,t+1) = maxθ∈Θi,t
{E∗

t (R
θ+1
i,t+1)/E

∗(Rθ
i,t+1)−Rf,t+1} (1.22)

where Ri,t+1 is the the simple gross return on stock i and Rf,t+1 is the risk-free rate.

The risk-neutral expectations, E∗, in (3.15) can be calculated straightly from observed

option prices for a given θ where the set of Θ is equivalent to:

Θi,t = {θ : θ − γtβMi +
γtρt

Rf,t+1
βM2,i +

θ(θ − 1)

2Rf,t+1
Bi2,i −

θγt
Rf,t+1

βMi,i ≤ 0} (1.23)

Following Chabi-Yo et al. (2022) we use parameters γt = 2 and ρt = 1. βi2,i, βM,i, βMi,i

and βM2,i are defined as follows:

βM,i = COV (RM,t+1, Rf,t+1)/V AR(Ri,t+1)

βM2,i = COVt((RM,t+1 −Rf,t+1)
2, Ri,t+1)/V ARt(Ri,t+1),

βi2,i = COVt(Ri,t+1 −Rf,t+1)
2, Ri,t+1/V ARt(Ri,t+1);

βMi,i = COVt((RM,t+1 −Rf,t+1)(Ri,t+1 −Rf,t+1), Ri,t+1)/V ARt(Ri,t+1)

(1.24)

where RM,t+1 is the market return. We compare the predictive power of the PCA

factor obtained from expected returns extracted from Chabi-Yo et al. (2022) which

considers the higher moments of the risk-neutral distribution, with those extracted from

variance-based models of Martin and Wagner (2019) in an out-of-sample setting. Panel

B of Table 1.11 reports the OOS − R2 obtained from Equation (1.21), where the full

model considers factors obtained from variance-based models and the benchmark model

contains the factors obtained from Chabi-Yo et al. (2022) ’s method. Looking closely at

the feasible θ in Equation (1.23), we found that for 87% of the returns, the feasible θ is
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equal to one, and the derived bounds are based on the second moments. Therefore, the

predictive power of the option-based expected returns predictor remains regardless of

the method used to compute the option-implied expected returns. The positive (albeit

small) out-of-sample R2 suggest that it is possible that the estimation errors in the

density-based measure are contributing to this discrepancy. The limited information

captured by the density-based measure, based mostly on second moments, may lead to

challenges in enhancing the predictive ability of the option-based factor.

[Table 1.11 about here.]

1.7.2 Option-Implied Factors versus Equity Factors

PCA or IPCA are alternative models to explain the variation in expected returns. A

natural question is whether or not the option-implied PCA/IPCA factors outperform

the traditional pricing factors such as those from Fama and French (2015). We answer

this question by extending our analysis to both in- and out-of-sample settings.

First, we assess the predictive performance of option-implied factors in an in-sample

setting. To this end, we augment the control variables in the predictive regression

model (1.17) with 5 Fama-French factors (5FF) proposed by Fama and French (2015).

More precisely, our new predictive model considers a constant, lagged REA, the ex-

tracted first PCA or IPCA factor from h-month (h = 1, 2, 3, 6 or 12 -months) expected

returns, credit and term spread, forward variance and IRRA plus five factors of Fama-

French including the size of firms (SMB), book-to-market values (HML), expected return

on the market (mrkt), profitability factor (RMW) and investment factor (CMA).22 A

significant regression coefficient suggests that our proposed forward-looking stock-level

option-implied risk factors contain additional predictive information relative to the 5FF.

Table 1.12 and 1.13 report the in-sample regression coefficients of PCA and IPCA factors,

respectively. These tables suggest that our results are robust, and both PCA and IPCA

factors have predictive power even after controlling for five Fama-French factors. We can

see that at a one-month horizon, both PCA and IPCA factors predict 7 out of 8 REA

proxies, including IP, NFP, HOUS, CU, UR, CFNAI and ADS. At 2-months horizon,

22. Fama-French factors capture the different dimension of systematic risk in stock prices and are
expected to explain the cross-section of stock’s average returns with a linear relationship.
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the PCA factor remains predictive for six proxies while IPCA predicts four proxies.

However, these factors become less predictive at a longer horizon, i.e., at three months

horizon, both factors only predict UR, while at 12 months horizon, only the PCA factor

predicts CU. These results highlight the forward-looking nature of options and show

that the expected returns implied from options contain additional information over the

systematic risk factors obtained from the stock market. This extra information is useful

in predicting REA, especially at short-term horizons.

[Table 1.12 about here.]

[Table 1.13 about here.]

Second, we compare the performance of our proposed predictor (option-implied stocks’

expected returns PCA/IPCA factor) with five factors of Fama-French (5FF) in an

out-of-sample setting. To this end, we define alternative predictive regression mod-

els (benchmark3) which do not contain the PCA/IPCA factor and instead contain 5FF

and are in the form of:

Et(REAbenchmark3
i,t+h ) = b0,i + b1,iREAi,t + bi,2FF5t + b′i,3Xt (1.25)

where Xt includes the credit and term spread as well as the forward variance and IRRA.

We compare the forecasts of our full predictive model explained in Equation (1.18)

with forecasts of Equation (1.25) and compute the OOSR2 following Equation (1.21).

Panel A and B of Table 1.16 report the OOS results and suggest that the predictive

models with either of our proposed predictors outperform the alternative model with

5 Fama-French factors. More specifically, in the case of the full model with the PCA

factor, the OOS R2 is positive for all proxies at all horizons but two cases, which are

six and twelve-month horizons for UR. On the other hand, the full model with IPCA

outperforms the alternative model with 5FF factors for NFP, RS, HOUS, CFNAI and

ADS at all horizons. Our findings imply that although the derived PC factors may be

interpreted as “level” factors that proxy for the market, individual stocks contain some

additional predictive power that is not captured by standard risk factors.
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1.7.3 Individual Equity Options versus Index Options

Lemmon and Ni (2014) points out that individual equity options and index options are

dissimilar and attract different types of investors. Individual equity options are actively

traded by individual investors and are influenced by investor sentiment. In contrast,

index options are primarily used by sophisticated traders for hedging purposes.

The differences between individual equity options and index options lead to distinct

advantages for single stock options. Firstly, single stock options provide investors with

specific exposure to a particular company. This enables them to focus their trading

strategies on individual companies and express their views on the movement of those

companies’ stock prices. Such focused exposure proves advantageous for investors who

possess in-depth knowledge or strong opinions regarding the future prospects of specific

companies. Secondly, single stock options have the potential for higher returns compared

to index options. Since they are directly tied to the performance of a specific company,

accurately predicting the price movement of an individual stock can yield substantial

profits. Thirdly, single stock options provide more flexibility in managing risk. Investors

can create custom risk profiles by selecting individual stocks with specific risk-reward

characteristics that align with their investment objectives and risk tolerance. This allows

for more precise hedging or speculative strategies tailored to the desired risk exposure.

Lastly, individual stocks often exhibit higher levels of price volatility compared to broad

market indices. This creates opportunities for options traders to capitalize on larger

price swings. Higher volatility generally leads to higher option premiums, and skilled

options traders can take advantage of expected volatility in specific stocks by employing

strategies such as straddles or strangles.

To highlight the additional value of single stocks versus index options, we begin by com-

paring the market expected return implied by index options (SVIX) with the weighted

factor derived from single options. To do so, we regress the weighted factor obtained

from individual options on the market expected return (SVIX) and take the residuals.

Next, we assess the predictive ability of the residuals. Table 1.14 presents the in-sample

estimated regression coefficients of the residuals of the weighted factor on the SVIX mea-

sure and shows predictive ability of the residual component to forecast IP, CU, CFNAI,
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and ADS in short-term horizon. Our findings suggest that single stock options offer

certain advantages over index options, which can make them attractive to investors.

[Table 1.14 about here.]

Given the high correlation between the PCA factor and the SVIX (96%), another way to

understand better the added value of using individual options is to run a regression of the

PCA on the SVIX and then analyze the dynamics of the residual component. Therefore,

we analyze the persistence in the predictive ability of the residual. Table 1.15 shows the

results of estimating Equation (1.17) for forecasting horizons h = 1; 2; 3; 6; and 12 months

employing the residual component in our predictive regression model in the presence of

the SVIX. Our results suggest that the residual component is still a significant predictor

of most REA proxies (i.e., IP, NFP, CFNAI, and ADS) even after controlling for the

SVIX measure. This finding implies that the individual options contain some predictive

power in forecasting REA that cannot be captured by info obtained from index options.

[Table 1.15 about here.]

Furthermore, we compare the predictive performance of our proposed predictor (option-

implied stocks’ expected returns PCA/IPCA factor) with the index expected return

(SVIX) in an out-of-sample setting. Doing so, we examine whether the individual ex-

pected returns factors contain some predictive power in forecasting REA that cannot

be captured by info obtained from index options. To this end, we define an alterna-

tive predictive regression model (benchmark4), which does not contain the PCA/IPCA

factor and contains SVIX instead. More specifically, we compare the forecasts of our

full predictive model explained in Equation (1.18), which includes the expected return

factors (PCA/IPCA)23, with the forecast obtained from the following model:

Et(REAbenchmark4
i,t+h ) = b0,i + b1,iREAi,t + bi,2SV IXt + b′i,3Xt (1.26)

We compute the OOSR2 following Equation (1.21) and report the results in Table 1.16.

Panel C and Panel D of Table 1.16 report the OOS results when the full models include

23. Augmented by a set of control variables (Xt)- namely, lagged REA, credit spread, term spread,
forward variance and IRRA
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PCA and IPCA, respectively, and the benchmark model contains the SVIX measure

(Equation 1.26). Panel C of the table shows that the comparative performance of a

predictive model with PCA factor is better than the predictive model with the market

SVIX measure, especially at short-term horizon -i.e., at h = 1 it outperforms all proxies

except RS. Panel D of this table suggests that the proposed model with the IPCA factor

beats the benchmark model with the SVIX measure only for NFP, HOUS, UR, CFNAI

and ADS at one-month horizon.

Our findings imply that the individual stocks’ option-implied standard PCA factors

contain some useful information in predicting REA that the index options cannot cap-

ture24 and therefore, the list of REA predictors should be extended by individual’s

option-implied PCA factor.

[Table 1.16 about here.]

1.8 Conclusions

Campbell and Cochrane (1999) suggests that expected return is an appropriate state

variable for forecasting output growth and is countercyclical. In addition, Fama and

French (1989) suggest that the risk premia and, hence, the expected returns are high

during recessions -i.e., investors become more risk-averse and require higher premiums

to hold stocks during recessions.25 Due to the econometric challenges in estimating

expected returns, previous literature has not examined its predictive ability. We bypass

these obstacles by employing methods which use information from option prices. Doing

so, we exploit the information embedded in equity option prices and investigate the

predictive ability of the expected returns of the individual stocks extracted from the

equity option prices to forecast the growth of U.S. REA. As expected by theory, we find

24. Especially at short-term horizon. This might be due to the fact that individual options are mostly
traded for speculative reasons and at short horizons, while index options are used for hedging reasons
and longer horizon. More precisely, individual options offer the potential for high returns within a
short time frame -i.e, they can experience significant price movements based on company-specific news,
events, or earnings reports. Therefore, options traders may take short-term positions to capitalize on
these anticipated price changes. Speculative traders aim to profit from fluctuations in the price of the
underlying stock and often employ strategies such as buying call or put options or engaging in more
complex option strategies to generate quick profits.

25. The rationale is that as business conditions and investment opportunities change, expected returns
change because investors attempt to smooth consumption over multiple periods, which generally predict
a countercyclical risk premium.
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a significant predictive ability of our proposed option-implied factor for forecasting REA

both in and out-of-sample.

To build our proposed predictor, first, we follow Martin and Wagner (2019) to compute

option-implied expected returns on stocks that have been constituents of the S&P500

index from July 1998 to May 2019. We then employ dimension reduction techniques,

namely principal component analysis and instrumented principal component analysis,

to construct expected return factors. We document that our expected return factor

is a new predictor of U.S. real economic activity (REA) and has significant predictive

power even after controlling for a well-known set of variables that has been documented

by the previous literature to predict REA- namely, term spread credit spread, forward

variance and IRRA. Our results are robust after addressing some econometric concerns,

such as dealing with the unknown persistence degree of predictors and heteroscedasticity

and auto-correlation of error terms. In addition, our findings remain robust even after

contorting for the systematic risk factors of Fama and French (2015) in the in-sample

analysis and imply that individual expected returns contain some predictive power in

addition to the standard systematic risk factors.

We also examine the out-of-sample performance of our proposed predictive model, which

contains the expected return factor within the set of its predictor. Our findings suggest

that incorporating the expected return factors in predictive regression models is also

statistically significant in an out-of-sample setting. In the case of forecasts obtained by

the regression models, the evidence is relatively weaker for longer horizons. We also

document that the OOS forecasts obtained from a predictive model with our proposed

predictor are better than the OOS forecasts obtained from benchmark models, which

contain the market risk premium (SVIX) measure of Martin (2017) or the five systematic

risk factors of Fama and French (2015). Our findings imply that individual stocks contain

some additional predictive power that is not captured by the index expected return nor

by standard factors that explain the cross-section of expected returns.
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Figure 1.A.1. Evolution of the U.S. Forward Variance and Implied Risk
Aversion (IRRA): The Right axis shows the evolution of IRRA while the left axis
shows the evolution of forward variance over July 1998 to May 2019. We compute the
IRRA time series following Faccini et al. (2019) by performing a generalised method of
moments (GMM) using a rolling window estimation. We employ a rolling window with
a size of 30 months to obtain the respective U.S. IRRA time series. Forward variance is
constructed using index option prices as explained in section 1.3.3
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Figure 1.A.2. Evolution of the SVIX measure and PCA and IPCA factors:
The figure shows the evolution of SVIX, first PCA and IPCA factor obtained from
expected returns over July 1998 to May 2019. We extract the SVIX time series via
Martin (2017) formula using prices of index options. We construct the PCA and IPCA
factor as described in section 1.4.2 and 1.4.3 respectively.
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Panel A: Daily Data for SPX firms

horizon 30 60 90 182 365

Observations 2,837,127 2,837,127 2,837,127 2,837,127 2,837,127
Sample days 5892 5892 5892 5892 5892
Sample firms 1092 1092 1092 1092 1092
Average firms/day 482 482 482 482 482

Panel A: Monthly Data for SPX firms

horizon 30 60 90 182 365

Observations 135,343 135,343 135,343 135,343 135,343
Sample months 281 281 281 281 281
Sample firms 1092 1092 1092 1092 1092
Average firms/month 482 482 482 482 482

Table 1.1. Sample Data: This table reports a summary of the data used in the
empirical analysis. We searched the OptionMetrics database for all firms included in
the S&P 500 from January 1996 to May 2019 and obtained all available volatility surface
data. Using these data, we compute firms’ risk-neutral variances (SV IX2

i,t) for horizons
of 1, 2, 3, 6 and 12 months. Panel A reports the total number of observations, the
number of unique days and firms in our sample, and the average number of firms for
which options data are available per day. Panel B reports monthly observations subsets
for constituents of the S&P 500.
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Panel A

code industry number of firms % of firms over industry

1 basic material 95 9%
3 Consumer Goods 97 9%
4 Financial 129 12%
5 Health care 84 8%
6 industrial Goods 69 6%
7 Services 171 16%
8 Technology 148 14%
9 Utilities 45 4%

Unknown-from OM 220 20%

Panel B

code industry number of firms % of firms over industry

1 basic material 16 13%
3 Consumer Goods 17 13%
4 Financial 16 13%
5 Health care 13 10%
6 industrial Goods 20 16%
7 Services 25 20%
8 Technology 11 9%
9 Utilities 8 6%

Unknown-from OM 1 1%

Table 1.2. Industrial Sector Coverage: Panel A reports the percentage of firms
considering all firms in our data set (1092 firms), while Panel B reports the percentage
of firms that covers each industrial sector considering firms that have been constantly
in the SPX index and have no missing data (125 firms).
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Panel A: Constant constituents of SPX Panel B: All constituents of SPX

mean std min max mean std min max

a2me 1.66 2.92 0.06 53.01 1.94 4.47 0.00 210.03
at *104 5.72 16.76 0.04 218.76 2.64 11.20 0.00 228.12
ato*102 0.01 0.28 -10.47 3.57 0.02 0.52 -33.30 19.59
beme 0.40 0.32 -0.70 3.07 0.48 0.62 -11.69 19.70
beta 0.57 0.23 -0.11 2.26 0.61 0.29 -0.33 3.08
c 0.11 0.12 0.00 0.72 0.13 0.16 0.00 0.99
cto 1.05 0.79 0.03 6.77 1.16 0.89 0.00 18.65
r12,2 0.14 0.30 -0.89 3.04 0.16 0.47 -0.99 12.99
r12,7 0.08 0.21 -0.91 3.04 0.09 0.31 -0.97 11.83
r1,0 0.01 0.09 -0.59 0.87 0.01 0.11 -0.96 2.45
r36,12 0.32 0.53 -0.92 7.98 0.38 1.00 -0.99 77.49
d2a 0.04 0.02 0.00 0.21 0.04 0.03 0.00 0.60
dpi2a 0.05 0.13 -2.50 2.43 0.06 0.20 -2.50 10.45
e2p 0.05 0.06 -1.33 0.49 0.02 0.38 -23.51 7.36
fc2y 0.27 0.19 0.00 1.42 0.42 4.75 -0.05 422.09
freecf 0.28 18.49 -492 764 -0.23 36.26 -3786 764
idiovol 0.01 0.01 0.00 0.12 0.02 0.02 0.00 0.94
investment 0.09 0.23 -0.66 4.00 0.16 0.85 -1.00 55.26
lev 0.44 0.25 0.00 2.83 0.44 1.04 -73.17 40.44
lme *107 4.71 7.59 0.08 109.94 1.78 4.18 0.00 109.94
lturnover 1.49 1.16 0.13 28.07 2.02 2.18 0.00 102.96
noa 0.54 0.27 -0.30 3.74 0.61 0.64 -3.76 51.13
oa -0.04 0.05 -0.40 0.74 -0.04 0.15 -10.86 3.14
ol 0.81 0.67 0.02 4.66 0.88 0.68 0.01 6.13
pcm 0.41 0.23 -3.37 0.98 0.35 1.67 -99.89 1.00
pm 0.16 0.15 -4.06 0.57 0.00 5.01 -457.23 0.83
prof 0.97 86.63 -2831 3193 0.06 97.43 -8993 3193
q 2.14 1.34 0.61 16.47 2.31 9.03 0.41 925.25
rel2highprice 0.84 0.16 0.06 1.00 0.81 0.19 0.02 1.00
rna 0.16 3.27 -79 55 0.30 20.06 -936 1147
roa 0.08 0.06 -0.40 0.55 0.05 0.17 -9.13 2.84
roe 0.25 18.93 -579 675 -0.23 40.06 -4251 675
s2p 0.90 0.81 0.03 8.15 1.30 2.70 0.00 90.09
sga2m 0.16 0.14 0.00 1.61 0.24 0.46 - 0.14 15.98
spread mean *10−2 0.32 0.59 - 0.12 6.77 0.47 0.92 - 7.29 72.84

Table 1.3. Descriptive Statistics of Firms Characteristics: Panel A provides
summary statistics for the characteristics of firms employed in our analysis. The sample
comprises the 125 largest US firms that have been SPX constituents consistently over
the sample period July 1998 to May 2019. Panel B provides the summary statistics
of all firms that have been SPX constituent, but not necessarily constantly. We cover
1,092 firms over our sample period from July 1998 to May 2019. For each horizon, we
collect data for 482 firms on average per day.
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h = 1M h = 2M h = 3M h = 6M h = 12M

First Factor 70.20 68.81 70.01 67.16 65.09
Second Factor 7.73 8.71 9.09 10.90 12.80
Third Factor 4.91 5.34 4.98 5.34 5.28
Forth Factor 2.65 2.94 2.96 3.41 3.51
Fifth Factor 1.60 1.57 1.45 1.66 1.69

Table 1.4. Variance Explained by PCA Factors: This table reports the percentage
of variance explained by the first 5 PCA factors obtained from individual stocks’ options-
implied expected returns, considering firms that have been constantly included in SPX
for different horizons under our considerations.
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Panel A - First PCA factor

TS CS mrkt SMB HML RWM CMA FV SVIX IRRA

1-months Factor -0.18 0.51 -0.07 0.21 0.22 -0.10 0.02 0.97 0.87 0.20
2-months Factor -0.22 0.51 -0.06 0.21 0.20 -0.10 0.01 0.96 0.85 0.21
3-months Factor -0.24 0.50 -0.06 0.22 0.19 -0.10 0.03 0.95 0.83 0.20
6-months Factor -0.29 0.46 -0.05 0.22 0.15 -0.13 0.01 0.92 0.76 0.19
12-months Factor -0.31 0.40 -0.03 0.23 0.12 -0.15 0.00 0.89 0.70 0.17

Panel B - First IPCA factor

TS CS mrkt SMB HML RWM CMA FV SVIX IRRA

1-months Factor -0.15 0.52 -0.07 0.17 0.24 -0.03 0.02 0.92 0.87 0.25
2-months Factor -0.18 0.52 -0.06 0.17 0.22 -0.03 0.00 0.92 0.85 0.25
3-months Factor -0.22 0.51 -0.06 0.19 0.21 -0.05 0.01 0.93 0.83 0.24
6-months Factor -0.27 0.46 -0.04 0.20 0.15 -0.09 0.00 0.89 0.75 0.22
12-months Factor -0.30 0.39 -0.02 0.21 0.11 -0.12 -0.02 0.86 0.68 0.19

Panel C - Control variables

TS CS mrkt SMB HML RWM CMA FV SVIX IRRA

TS 1.00 0.16 -0.01 -0.09 0.02 0.02 -0.04 -0.15 0.15 -0.38
CS 0.16 1.00 0.09 0.07 0.15 -0.08 -0.07 0.51 0.70 0.15
mrkt -0.01 0.09 1.00 -0.04 -0.02 -0.34 -0.43 -0.06 -0.08 -0.02
SMB -0.09 0.07 -0.04 1.00 -0.04 -0.29 0.03 0.22 0.16 -0.01
HML 0.02 0.15 -0.02 -0.04 1.00 -0.06 0.44 0.24 0.25 0.17
RWM 0.02 -0.08 -0.34 -0.29 -0.06 1.00 0.17 -0.11 -0.05 0.02
CMA -0.04 -0.07 -0.43 0.03 0.44 0.17 1.00 0.04 0.03 -0.04
FV -0.15 0.51 -0.06 0.22 0.24 -0.11 0.04 1.00 0.90 0.14
SVIX 0.15 0.70 -0.08 0.16 0.25 -0.05 0.03 0.90 1.00 -0.01
IRRA -0.38 0.15 -0.02 -0.01 0.17 0.02 -0.04 0.14 -0.01 1.00

Table 1.5. Correlation Coefficient Between Predictors: Panel A reports the
correlation coefficients between the first PCA factor extracted from the h months (
i.e., h =,1, 2, 3, 6, 12) individual’s expected returns and a set of control variable,
namely: term spread (TS), credit spread (CR), forward variance (FV) and Fama and
French 5 factors (market, SMB, HML, RMW and CMA). Panel B reports the correlation
coefficient between control variables and the h−month first IPCA factor. Panel C shows
the correlation coefficient between control variables.
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h = 1 month h = 2 months h = 3 months h = 6 months h = 12 months

IP β -0.26*** -0.22** -0.03 0.04 0.01
[0.00] [0.01] [0.58] [0.61] [0.48]
(0.00) (0.00) (0.62) (0.67) (0.98)

R2 0.25 0.41 0.48 0.41 0.32

NFP β -0.26*** -0.17** -0.07 -0.09 -0.17
[0.00] [0.01] [0.49] [0.20] [0.13]
(0.00) (0.00) (0.22) (0.19) (0.08)

R2 0.68 0.78 0.79 0.74 0.55

RS β -0.02 0.03 0.13 0.13 0.01
[0.68] [0.87] [0.60] [0.72] [0.97]
(0.71) (0.71) (0.27) (0.35) (0.96)

R2 0.10 0.17 0.23 0.27 0.35

HOUS β -0.13* -0.12 -0.09 -0.23 -0.18
[0.06] [0.15] [0.66] [0.41] [0.89]
(0.16) (0.20) (0.32) (0.01) (0.02)

R2 0.20 0.19 0.17 0.37 0.59

CU β -0.30*** -0.25** -0.10 -0.06 -0.20*
[0.00] [0.01] [0.36] [0.29] [0.08]
(0.00) (0.00) (0.09) (0.55) (0.10)

R2 0.26 0.42 0.49 0.39 0.30

UR β 0.36*** 0.37*** 0.24* 0.13 0.20
[0.00] [0.00] [0.07] [0.45] [0.30]
(0.00) (0.00) (0.01) (0.20) (0.11)

R2 0.20 0.35 0.42 0.58 0.52

CFNAI β -0.35*** -0.14* 0.02 -0.01 -0.14
[0.00] [0.09] [0.75] [0.80] [0.75]
(0.00) (0.01) (0.65) (0.93) (0.32)

R2 0.52 0.53 0.44 0.28 0.14

ADS β -0.10** -0.18*** -0.03* 0.01 -0.15
[0.00] [0.00] [0.09] [0.60] [0.33]
(0.00) (0.00) (0.57) (0.87) (0.26)

R2 0.87 0.76 0.68 0.41 0.21

Table 1.6. In-sample Prediction of REA Proxies with the First PCA Factor:
This table presents the in-sample estimated regression coefficients of the first PCA factor
for different U.S. real economic activity (REA) proxies. We matched the forecasting hori-
zon with the horizon of expected returns. For each REA under our consideration, we con-
sider predictive regression model 1.17 as explained in Section 1.5 and employ the lagged
REA, term-spread, credit-spread, forward variance and IRRA in the set of our control
variables. Reported entries are the standardized ordinary-least-squares (OLS) coeffi-
cient estimates, IVX-Wald (within squared brackets) and Newey-West (within brackets)
p-values of each one of the predictors as well as the in-sample adjusted R2 for the given
model. The sample covers July 1998 to May 2019. We reject the null hypothesis of a
zero coefficient (no predictability) based on the p-values of the IVX-Wald test at the 1%,
5%, and 10% levels and denote it by triple, double, and single asterisks, respectively.
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h=1 month h=2 month h=3 month h=6 month h=12 month

IP beta -0.32*** -0.24** -0.10 0.00 -0.06
[0.00] [0.03] [0.33] [0.40] [0.60]
(0.00) (0.01) (0.18) (0.96) (0.61)

R2 0.20 0.33 0.42 0.34 0.28

NFP beta -0.27*** -0.18** -0.15* -0.16** -0.23
[0.00] [0.02] [0.06] [0.04] [0.11]
(0.00) (0.01) (0.03) (0.04) (0.03)

R2 0.67 0.76 0.76 0.70 0.53

RS beta -0.03 -0.03 -0.06 0.04 -0.06
[0.67] [0.80] [0.57] [0.88] [0.87]
(0.65) (0.69) (0.57) (0.75) (0.62)

R2 0.09 0.10 0.15 0.25 0.35

HOUS beta -0.11* -0.08 -0.07 -0.17 -0.23
[0.06] [0.21] [0.53] [0.27] [0.80]
(0.22) (0.38) (0.40) (0.02) (0.00)

R2 0.20 0.19 0.17 0.37 0.61

CU beta -0.33*** -0.25** -0.10 -0.02 -0.23*
[0.00] [0.02] [0.28] [0.25] [0.08]
(0.00) (0.01) (0.19) (0.84) (0.06)

R2 0.22 0.36 0.45 0.34 0.28

UR beta 0.36*** 0.38*** 0.36*** 0.16 0.28
[0.00] [0.00] [0.00] [0.31] [0.29]
(0.00) (0.00) (0.00) (0.11) (0.03)

R2 0.18 0.31 0.39 0.55 0.51

CFNAI beta -0.38*** -0.15 -0.05 0.03 -0.17
[0.00] [0.24] [0.64] [0.85] [0.77]
(0.00) (0.02) (0.51) (0.78) (0.20)

R2 0.48 0.48 0.41 0.27 0.15

ADS beta -0.10*** -0.16*** -0.11** 0.02 -0.19
[0.00] [0.00] [0.03] [0.29] [0.43]
(0.02) (0.01) (0.10) (0.85) (0.14)

R2 0.86 0.72 0.62 0.37 0.22

Table 1.7. In-sample Prediction of REA Proxies with the Weighted Factor
This table presents the in-sample estimated regression coefficients of the weighted factor
(by computing a weighted average of the expected returns of the components of the
market index at each time t. ) for different U.S. real economic activity (REA) proxies.
We matched the forecasting horizon with the horizon of expected returns. For each REA
under our consideration, we consider predictive regression model 1.17 as explained in
Section 1.5 and employ the lagged REA, term-spread, credit-spread, forward variance
and IRRA in the set of our control variables. Reported entries are the standardized
ordinary-least-squares (OLS) coefficient estimates, IVX-Wald (within squared brackets)
and Newey-West (within brackets) p-values of each one of the predictors as well as the
in-sample adjusted R2 for the given model. The sample covers July 1998 to May 2019.
We reject the null hypothesis of a zero coefficient (no predictability) based on the p-
values of the IVX-Wald test at the 1%, 5%, and 10% levels and denote it by triple,
double, and single asterisks, respectively.
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h = 1 month h = 2 months h = 3 months h = 6 months h = 12 months

IP β -0.28*** -0.26** -0.12 0.06 0.05
[0.00] [0.03] [0.41] [0.94] [0.82]
(0.01) (0.01) (0.04) (0.47) (0.65)

R2 0.20 0.32 0.42 0.41 0.36

NFP β -0.24*** -0.15 -0.14 -0.06 -0.14
[0.00] [0.11] [0.27] [0.64] [0.43]
(0.00) (0.01) (0.03) (0.36) (0.16)

R2 0.67 0.78 0.79 0.75 0.57

RS β -0.01 0.07 0.05 0.19 0.05
[0.70] [0.37] [0.48] [0.50] [0.88]
(0.84) (0.26) (0.62) (0.14) (0.71)

R2 0.09 0.17 0.26 0.31 0.36

HOUS β -0.17** -0.09 -0.04 -0.17 -0.13
[0.02] [0.21] [0.79] [0.51] [0.91]
(0.10) (0.37) (0.67) (0.06) (0.11)

R2 0.21 0.19 0.18 0.36 0.57

CU β -0.31*** -0.28** -0.13 -0.04 -0.15
[0.00] [0.02] [0.34] [0.71] [0.38]
(0.00) (0.01) (0.02) (0.61) (0.20)

R2 0.22 0.35 0.44 0.39 0.32

UR β 0.34** 0.34** 0.32** 0.12 0.17
[0.00] [0.01] [0.04] [0.65] [0.47]
(0.00) (0.00) (0.00) (0.25) (0.16)

R2 0.19 0.34 0.43 0.58 0.53

CFNAI β -0.33*** -0.13 -0.02 0.04 -0.11
[0.00] [0.22] [0.66] [0.99] [0.83]
(0.00) (0.03) (0.74) (0.63) (0.43)

R2 0.48 0.49 0.44 0.30 0.14

ADS β -0.08** -0.15** -0.11* 0.06 -0.12
[0.01] [0.01] [0.09] [0.83] [0.82]
(0.02) (0.01) (0.02) (0.50) (0.35)

R2 0.86 0.73 0.65 0.44 0.22

Table 1.8. In-sample Prediction of REA Proxies with the First IPCA Fac-
tor: This table presents the in-sample estimated regression coefficients of the first in-
strumented PCA factor for various U.S. real economic activity (REA) proxies. We
matched the forecasting horizon with the horizon of expected returns. For each REA
under our consideration, we consider predictive regression model 1.17 as explained in
Section 1.5 and employ the lagged REA, term-spread, credit-spread, forward variance
and IRRA in the set of our control variables. Reported entries are the standardized
ordinary-least-squares (OLS) coefficient estimates, IVX-Wald (within squared brackets)
and Newey-West (within brackets) p-values of each one of the predictors as well as the
in-sample adjusted R2 for the given model. The sample covers July 1998 to May 2019.
We reject the null hypothesis of a zero coefficient (no predictability) based on the p-
values of the IVX-Wald test at the 1%, 5%, and 10% levels and denote it by triple,
double, and single asterisks, respectively.
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Panel A: OOS −R2: full model with PCA factor versus AR(1)

IP NFP RS HOUS CU UR CFNAI ADS

h = 1 months 0.26 0.22 0.08 0.02 0.20 0.26 0.35 0.13
h = 2 months 0.28 0.22 0.14 0.09 0.20 0.30 0.04 0.29
h = 3 months 0.17 0.24 0.14 0.10 0.09 0.27 -0.09 0.22
h = 6 months 0.11 0.27 0.08 0.27 0.06 0.13 -0.16 0.01
h = 12 months 0.19 0.24 0.31 0.41 0.09 0.23 0.10 0.14

Panel B: OOS −R2: full model with PCA factor versus the nested model

IP NFP RS HOUS CU UR CFNAI ADS

h = 1 month 0.05 0.05 0.02 0.01 0.04 0.01 0.09 0.07
h = 2 months 0.12 0.10 0.06 0.01 0.09 0.02 0.05 0.16
h = 3 months 0.08 0.13 0.02 0.01 0.06 0.01 0.02 0.15
h = 6 months 0.04 0.10 -0.06 0.01 0.04 -0.07 -0.04 -0.02
h = 12 months -0.01 0.06 -0.03 0.02 -0.01 -0.09 -0.01 -0.01

Table 1.9. Out-of-Sample Predictability of U.S. REA with PCA Factor: Panel
A shows the out-of-sample R2 obtained from the forecasts of the full model in Equation
(1.18) (which contains PCA factor, lagged REA and the control variables as predictors)
versus the forecasts of the AR(1) model in Equation (1.19) (which considers only lagged
REA as predictors). Panel B reports the out-of-sample R2 obtained from the forecasts of
the full model versus the forecasts of the nested model (benchmark2) in Equation (1.20).
The nested model does not include the IPCA factor and incorporates only lagged REA
and the control variables in the set of its regressors. Control variables in the full and
nested model include credit spread, term spread, forward variance and IRRA.
For each U.S. REA proxy, we estimate the relevant form of Equation (1.17) for the
respective full and benchmark models by considering an expanding window; the first
estimation sample window covers July 1998 to September 2007. At each point in time, we
estimates h = 1-,3-, 6-, 9-, and 12-months-ahead REA forecasts. The positive (negative)
sign of the out-of-sampleR2 denotes that the full model that incorporates the PCA factor
in the set of its predictors outperforms (underperforms) the benchmark model.
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Panel A: OOS −R2: full model with IPCA factor versus AR(1)

IP NFP RS HOUS CU UR CFNAI ADS

h = 1 month 0.20 0.20 0.01 0.03 0.13 0.26 0.27 0.10
h = 2 months 0.17 0.17 0.12 0.08 0.11 0.29 -0.02 0.21
h = 3 months 0.10 0.21 0.20 0.11 0.02 0.30 -0.07 0.14
h = 6 months 0.13 0.28 0.14 0.27 0.06 0.18 -0.09 0.07
h = 12 months 0.24 0.26 0.32 0.39 0.12 0.26 0.11 0.15

Panel B: OOS −R2: full model with IPCA factor versus the nested model

IP NFP RS HOUS CU UR CFNAI ADS

h = 1 month -0.04 0.02 -0.05 0.01 -0.03 0.01 -0.01 0.04
h = 2 months 0.01 0.05 0.04 0.01 -0.01 0.02 -0.01 0.07
h = 3 months 0.01 0.10 0.08 0.02 0.01 0.04 0.04 0.06
h = 6 months 0.06 0.12 0.01 0.01 0.05 -0.02 0.01 0.06
h = 12 months 0.04 0.08 -0.02 -0.01 0.02 -0.05 -0.01 0.01

Table 1.10. Out-of-Sample Predictability of U.S. REA with IPCA Factor:
Panel A shows the out-of-sample R2 obtained from the forecasts of the full model in
Equation (1.18) (which contains IPCA factor, lagged REA and the control variables as
predictors) versus the forecasts of the AR(1) model in Equation (1.19) (which considers
only lagged REA as predictors). Panel B shows out-of-sample R2 obtained from the
forecasts of the full model versus the forecasts of the nested model (benchmark2) in
Equation (1.20). The nested model does not include the IPCA factor and considers
only lagged REA and the control variables in the set of its regressors. Control variables
in the full and nested model include credit spread, term spread, forward variance and
IRRA.
For each U.S. REA proxy, we estimate the relevant form of Equation (1.17) for the
respective full and benchmark models by considering an expanding window; the first
estimation sample window covers July 1998 to September 2007. At each point in time, we
estimates h = 1-,3-, 6-, 9-, and 12-months-ahead REA forecasts. The positive (negative)
sign of the out-of-sampleR2 denotes that the full model that incorporates the PCA factor
in the set of its predictors outperforms (underperforms) the benchmark model.
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OOSR2 from a full model with variance based PCA factor versus
benchmark model with RN-distribution based PCA factor

IP NFP RS HOUS CU UR CFNAI ADS

h=1 month 0.03 0.00 -0.01 0.01 0.03 0.00 0.01 0.10
h=2 month 0.04 0.08 0.04 0.02 0.02 0.02 0.01 0.14
h=3 month 0.04 0.12 0.10 -0.02 0.03 0.05 0.00 0.13
h=6 month 0.14 0.19 0.01 -0.06 0.11 0.13 0.02 0.14
h=12 month 0.16 0.20 0.08 0.00 0.09 0.17 0.05 0.07

Table 1.11. Variance-based versus Density-based Expected Returns: Table
reports OOR2 obtained from full model with PCA factor extracted from Martin and
Wagner (2019) method versus an alternative PCA factor obtained from Chabi-Yo et al.
(2022) which take into account the whole risk-neutral distribution. All predictive models
are augmented by a set of control variables which consists of the lagged REA, credit
spread, term spread, forward variance and IRRA.
For each U.S. REA proxy, we estimate the relevant form of Equation (1.17) for the
respective full and benchmark models by considering an expanding window; the first
estimation sample window covers July 1998 to September 2007. At each point in time, we
estimates h = 1-,3-, 6-, 9-, and 12-months-ahead REA forecasts. The positive (negative)
sign of the out-of-sampleR2 denotes that the full model that incorporates the PCA factor
in the set of its predictors outperforms (underperforms) the benchmark model.

62



h = 1 month h = 2 months h = 3 months h = 6 months h = 12 months

IP β -0.25*** -0.23** -0.04 0.03 -0.02
[0.00] [0.01] [0.62] [0.60] [0.64]
(0.00) (0.00) (0.42) (0.77) (0.86)

R2 0.24 0.41 0.48 0.41 0.33

NFP β -0.28*** -0.18*** -0.08 -0.10 -0.18
[0.00] [0.00] [0.37] [0.16] [0.13]
(0.00) (0.00) (0.13) (0.09) (0.02)

R2 0.69 0.79 0.79 0.75 0.57

RS β -0.02 0.03 0.10 0.12 -0.02
[0.64] [0.88] [0.71] [0.73] [0.74]
(0.66) (0.72) (0.37) (0.37) (0.87)

R2 0.09 0.17 0.23 0.27 0.37

HOUS β -0.13** -0.12 -0.12 -0.24 -0.19
[0.04] [0.13] [0.49] [0.24] [0.86]
(0.11) (0.17) (0.18) (0.00) (0.01)

R2 0.20 0.19 0.19 0.36 0.58

CU β -0.30*** -0.26*** -0.11 -0.06 -0.21*
[0.00] [0.00] [0.35] [0.28] [0.06]
(0.00) (0.00) (0.06) (0.53) (0.10)

R2 0.25 0.42 0.49 0.39 0.31

UR β 0.37*** 0.38*** 0.26** 0.16 0.22
[0.00] [0.00] [0.02] [0.35] [0.29]
(0.00) (0.00) (0.00) (0.08) (0.04)

R2 0.19 0.36 0.44 0.59 0.54

CFNAI β -0.35*** -0.14** 0.00 -0.03 -0.20
[0.00] [0.05] [0.65] [0.61] [0.51]
(0.00) (0.01) (1.00) (0.73) (0.09)

R2 0.51 0.54 0.45 0.27 0.18

ADS β -0.10*** -0.18*** -0.04 0.01 -0.18
[0.00] [0.00] [0.58] [0.78] [0.45]
(0.01) (0.00) (0.37) (0.87) (0.13)

R2 0.86 0.76 0.69 0.41 0.22

Table 1.12. In-sample Prediction of REA Proxies with PCA Factor in the
Presence of 5 Fama-French Factors: This table presents the in-sample estimated
regression coefficients of the first PCA factor for various U.S. real economic activity
(REA) proxies. We matched the forecasting horizon with the horizon of expected re-
turns. For each REA under our consideration, we consider the predictive regression
model (1.17) with the PCA factor plus a set of control variables which includes the
lagged REA, credit and term spread, forward and IRRA and is augmented by 5 factors
of Fama-French including the size of firms (SMB), book-to-market values (HML), ex-
pected return on the market (mrkt), profitability factor (RMW) and investment factor
(CMA). Reported entries are the standardized ordinary-least-squares (OLS) coefficient
estimates, IVX-Wald (within squared brackets) and Newey-West (within brackets) p-
values of each one of the predictors as well as the in-sample adjusted R2 for the given
model. The sample covers July 1998 to May 2019. We reject the null hypothesis of a
zero coefficient (no predictability) based on the p-values of the IVX-Wald test at the 1%,
5%, and 10% levels and denote it by triple, double, and single asterisks, respectively.
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h = 1 month h = 2 months h = 3 months h = 6 months h = 12 months

IP β -0.27*** -0.26** -0.12 0.04 0.03
[0.00] [0.02] [0.34] [0.92] [0.52]
(0.00) (0.01) (0.03) (0.55) (0.78)

R2 0.19 0.32 0.42 0.41 0.37

NFP β -0.25*** -0.15 -0.14 -0.08 -0.15
[0.00] [0.12] [0.20] [0.50] [0.50]
(0.00) (0.01) (0.03) (0.20) (0.05)

R2 0.68 0.78 0.79 0.76 0.58

RS β -0.01 0.07 0.04 0.18 0.02
[0.71] [0.35] [0.60] [0.51] [0.56]
(0.83) (0.26) (0.70) (0.17) (0.88)

R2 0.08 0.17 0.26 0.31 0.38

HOUS β -0.17** -0.09 -0.04 -0.19 -0.14
[0.01] [0.17] [0.63] [0.34] [0.88]
(0.05) (0.31) (0.60) (0.02) (0.06)

R2 0.21 0.20 0.20 0.35 0.56

CU β -0.30*** -0.28** -0.13 -0.05 -0.17
[0.00] [0.01] [0.27] [0.63] [0.34]
(0.00) (0.00) (0.02) (0.57) (0.18)

R2 0.20 0.35 0.45 0.39 0.33

UR β 0.34*** 0.35** 0.33** 0.15 0.20
[0.00] [0.01] [0.03] [0.52] [0.48]
(0.00) (0.00) (0.00) (0.10) (0.06)

R2 0.18 0.35 0.44 0.59 0.55

CFNAI β -0.33*** -0.12 -0.03 0.02 -0.16
[0.00] [0.17] [0.53] [0.84] [0.63]
(0.00) (0.02) (0.67) (0.80) (0.13)

R2 0.48 0.51 0.46 0.30 0.19

ADS β -0.07** -0.14** -0.11 0.05 -0.15
[0.02] [0.04] [0.11] [0.82] [0.95]
(0.04) (0.01) (0.03) (0.55) (0.17)

R2 0.86 0.73 0.66 0.44 0.23

Table 1.13. In-Sample Prediction of REA Proxies with Instrumented PCA
Factor in the Presence of 5 Fama-French Factors: This table presents the in-
sample estimated regression coefficients of the first IPCA factor for various U.S. real
economic activity (REA) proxies. We matched the forecasting horizon with the horizon
of expected returns. For each REA under our consideration, we consider the predictive
regression model (1.17) with the IPCA factor plus a set of control variables which in-
cludes the lagged REA, credit and term spread, forward and IRRA and is augmented by 5
factors of Fama-French including the size of firms (SMB), book-to-market values (HML),
expected return on the market (mrkt), profitability factor (RMW) and investment factor
(CMA). Reported entries are the standardized ordinary-least-squares (OLS) coefficient
estimates, IVX-Wald (within squared brackets) and Newey-West (within brackets) p-
values of each one of the predictors as well as the in-sample adjusted R2 for the given
model. The sample covers July 1998 to May 2019. We reject the null hypothesis of a
zero coefficient (no predictability) based on the p-values of the IVX-Wald test at the 1%,
5%, and 10% levels and denote it by triple, double, and single asterisks, respectively.
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h=1 month h=2 month h=3 month h=6 month h=12 month

IP beta -0.14** -0.18** -0.15 -0.06 -0.13***
[0.02] [0.03] [0.10] [0.21] [0.00]
(0.05) (0.02) (0.08) (0.65) (0.61)

R2 0.21 0.34 0.41 0.32 0.28

NFP beta -0.01 0.00 0.00 -0.01 0.04
[0.86] [0.90] [0.91] [0.36] [0.12]
(0.81) (0.99) (0.95) (0.90) (0.81)

R2 0.67 0.76 0.76 0.69 0.54

RS beta -0.01 0.05 0.04 0.08 0.10
[0.84] [0.69] [0.75] [0.75] [0.85]
(0.85) (0.58) (0.66) (0.61) (0.56)

R2 0.08 0.10 0.14 0.26 0.35

HOUS beta 0.00 0.06 0.12 0.15 0.27
[0.97] [0.76] [0.56] [0.94] [0.92]
(0.98) (0.46) (0.18) (0.07) (0.00)

R2 0.20 0.19 0.18 0.37 0.58

CU beta -0.10* -0.14 -0.12 0.01 0.06**
[0.09] [0.08] [0.16] [0.46] [0.03]
(0.12) (0.06) (0.16) (0.95) (0.77)

R2 0.22 0.36 0.43 0.32 0.28

UR beta 0.00 -0.04 -0.08 -0.07 -0.20
[1.00] [0.79] [0.65] [0.99] [0.93]
(0.98) (0.62) (0.37) (0.52) (0.18)

R2 0.17 0.31 0.39 0.55 0.53

CFNAI beta -0.08* -0.03 0.01 0.07 0.10
[0.06] [0.36] [0.71] [0.84] [0.83]
(0.10) (0.45) (0.92) (0.53) (0.39)

R2 0.48 0.48 0.40 0.27 0.14

ADS beta -0.04* -0.08* -0.06 0.07 0.15
[0.10] [0.06] [0.16] [0.70] [0.58]
(0.06) (0.11) (0.37) (0.62) (0.39)

R2 0.86 0.72 0.61 0.36 0.21

Table 1.14. In-sample Prediction of REA Proxies with the Residual Com-
ponents of the Weighted Factor on the SVIX measure: This table presents the
in-sample estimated regression coefficients of the residual component (obtained from
regression of the weighted factor on the SVIX) for different U.S. real economic activity
(REA) proxies. We matched the forecasting horizon with the horizon of expected re-
turns. For each REA under our consideration, we consider predictive regression model
(1.17) we employ the lagged REA, term-spread, credit-spread, forward variance, SVIX,
and IRRA in the set of our control variables. Reported entries are the standardized
ordinary-least-squares (OLS) coefficient estimates, IVX-Wald (within squared brackets)
and Newey-West (within brackets) p-values of each one of the predictors as well as the
in-sample adjusted R2 for the given model. The sample covers July 1998 to May 2019.
We reject the null hypothesis of a zero coefficient (no predictability) based on the p-
values of the IVX-Wald test at the 1%, 5%, and 10% levels and denote it by triple,
double, and single asterisks, respectively.
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h=1 month h=2 month h=3 month h=6 month h=12 month

IP beta -0.43*** -0.47*** -0.30* -0.26** -0.32***
[0.00] [0.00] [0.06] [0.02] [0.00]
(0.00) (0.00) (0.00) (0.11) (0.30)

R2 0.25 0.39 0.43 0.35 0.32

NFP beta -0.18** -0.17** -0.14* -0.13** -0.07***
[0.01] [0.04] [0.08] [0.01] [0.00]
(0.01) (0.01) (0.10) (0.30) (0.75)

R2 0.67 0.76 0.76 0.70 0.53

RS beta -0.08 -0.18 -0.20 0.00 0.01
[0.58] [0.29] [0.32] [0.96] [0.52]
(0.33) (0.09) (0.14) (0.99) (0.97)

R2 0.08 0.10 0.14 0.25 0.34

HOUS beta 0.01 0.11 0.18 0.23 0.30
[0.77] [0.47] [0.42] [0.71] [0.94]
(0.89) (0.27) (0.09) (0.07) (0.02)

R2 0.20 0.19 0.18 0.38 0.58

CU beta -0.31*** -0.32** -0.18 -0.12* -0.06***
[0.00] [0.01] [0.26] [0.09] [0.00]
(0.00) (0.00) (0.04) (0.43) (0.84)

R2 0.24 0.39 0.45 0.34 0.30

UR beta 0.14 0.17 0.12 0.03 -0.10
[0.17] [0.19] [0.33] [0.45] [0.23]
(0.10) (0.08) (0.26) (0.78) (0.53)

R3 0.17 0.31 0.39 0.55 0.51

CFNAI beta -0.43*** -0.28** -0.13 0.00 0.02
[0.00] [0.01] [0.27] [0.70] [0.73]
(0.00) (0.00) (0.15) (0.98) (0.91)

R3 0.51 0.50 0.41 0.28 0.15

ADS beta -0.15** -0.27*** -0.23** -0.05 0.06*
[0.01] [0.00] [0.01] [0.14] [0.07]
(0.00) (0.00) (0.02) (0.75) (0.84)

R3 0.86 0.74 0.63 0.37 0.22

Table 1.15. In-sample Prediction of REA Proxies with the Residual Compo-
nents of the PCA Factor on the SVIX measure: This table presents the in-sample
estimated regression coefficients of the residual component (obtained from regression of
the PCA factor on the SVIX) for different U.S. real economic activity (REA) proxies.
We matched the forecasting horizon with the horizon of expected returns. For each
REA under our consideration, we consider predictive regression model (1.17) we em-
ploy the lagged REA, term-spread, credit-spread, forward variance, SVIX, and IRRA in
the set of our control variables. Reported entries are the standardized ordinary-least-
squares (OLS) coefficient estimates, IVX-Wald (within squared brackets) and Newey-
West (within brackets) p-values of each one of the predictors as well as the in-sample
adjusted R2 for the given model. The sample covers July 1998 to May 2019. We reject
the null hypothesis of a zero coefficient (no predictability) based on the p-values of the
IVX-Wald test at the 1%, 5%, and 10% levels and denote it by triple, double, and single
asterisks, respectively.
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Panel A: OOSR2 from model with PCA factor versus a model with 5 FF factors

IP NFP RS HOUS CU UR CFNAI ADS

h = 1 month 0.07 0.11 0.08 0.01 0.07 0.02 0.13 0.18
h = 2 months 0.10 0.14 0.08 0.03 0.08 -0.01 0.05 0.22
h = 3 months 0.06 0.17 0.05 0.01 0.05 0.01 0.00 0.13
h = 6 months 0.07 0.12 0.00 0.03 0.07 -0.06 0.04 0.04
h = 12 months 0.06 0.09 0.07 0.08 0.04 -0.06 0.03 0.11

Panel B: OOSR2 from model with IPCA factor versus a model with 5 FF factors

IP NFP RS HOUS CU UR CFNAI ADS

h = 1 month -0.01 0.09 0.01 0.01 -0.01 0.01 0.03 0.15
h = 2 months -0.02 0.09 0.06 0.02 -0.02 -0.02 0.02 0.13
h = 3 months -0.02 0.14 0.11 0.03 -0.02 0.05 0.02 0.04
h = 6 months 0.09 0.13 0.06 0.03 0.07 -0.01 0.08 0.12
h = 12 months 0.10 0.10 0.08 0.05 0.07 -0.02 0.03 0.12

Panel C: OOSR2 from model with PCA factor versus a model with market svix

IP NFP RS HOUS CU UR CFNAI ADS

h = 1 month 0.04 0.07 -0.01 0.01 0.01 0.01 0.10 0.08
h = 2 months 0.12 0.10 0.04 -0.06 0.08 -0.01 0.07 0.16
h = 3 months 0.08 0.12 -0.03 -0.04 0.06 -0.09 0.02 0.13
h = 6 months 0.02 0.05 -0.16 -0.09 0.02 -0.20 -0.07 -0.07
h = 12 months -0.09 -0.05 -0.11 -0.08 -0.12 -0.30 0.01 -0.02

Panel D: OOSR2 from model with IPCA factor versus a model with market svix

IP NFP RS HOUS CU UR CFNAI ADS

h = 1 month -0.05 0.04 -0.09 0.01 -0.06 0.01 0.01 0.05
h = 2 months 0.00 0.05 0.01 -0.06 -0.02 -0.02 0.01 0.05
h = 3 months 0.00 0.09 0.03 -0.02 -0.01 -0.04 0.04 0.03
h = 6 months 0.05 0.06 -0.09 -0.09 0.02 -0.15 -0.01 0.01
h = 12 months -0.03 -0.03 -0.09 -0.11 -0.09 -0.25 0.02 0.00

Table 1.16. Individual Equity Options versus Standard Risk Factors: Panels A
and B show the OOS-R2 obtained from the full predictive model explained in Equation
(1.18) which contain the PCA factor or IPCA, respectively, versus the benchmark model
which contains the 5 Fama-French factors Equation (1.25). Panel C and D report
OOR2 obtained from the full model with PCA or IPCA factor, respectively, versus an
alternative predictive model which contains the SVIX measure Equation (1.26). All
predictive models are augmented by a set of control variables which consists of the
lagged REA, credit spread, term spread, forward variance and IRRA.
For each U.S. REA proxy, we estimate the relevant form of Equation (1.17) for the
respective full and benchmark models by considering an expanding window; the first
estimation sample window covers July 1998 to September 2007. At each point in time, we
estimates h = 1-,3-, 6-, 9-, and 12-months-ahead REA forecasts. The positive (negative)
sign of the out-of-sampleR2 denotes that the full model that incorporates the PCA factor
in the set of its predictors outperforms (underperforms) the benchmark model.
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Appendix - Chapter One

1.A Computation of the Risk-Neutral Moments

We compute the S&P500 risk-neutral moments following the methodology of Bakshi

et al. (2003) using the volatility surface data of S&P500 index options. At time t the

τ period risk-neutral skewness (θq,t(τ)) and kurtosis (kq, t(τ)) of the log-return R(t, τ)

distribution with horizon τ are given by

θq,t(τ) =
erτM(3)t,T − 3erτµt,TM(2)t,T + 2µ3

t,T

[erτM(2)t,T − µ2
t,T ]

3/2
(1.A.1)

kq,t(τ) =
erτM(4)t,T − 4erτµt,TM(3)t,T + 6erτµ2

t,TM(2)− 3µ4
t,T

[erτM(2)t,T − µ2
t,T ]

2
(1.A.2)

where M(n)t,T (n = 2, 3, 4) is given by:

M(n)t,T =

∫ ∞

St

η(K,St, n)Ct(K,T )dK +

∫ St

0
η(K,St, n)Pt(K,T )dK (1.A.3)

η(K,St, n) =
n

K2
[(n− 1)log(

K

St
)n−2 − log(

K

St
)n−1] (1.A.4)

and

µt,T = erτ − 1− erτ [M(2)t,T /2 +M(3)t,T /6 +M(6)t,T /24] (1.A.5)

r is the riskless rate. St denotes the price of the asset at time t and Pt(K,T ) and

Ct(K,T ) are the OTM put and call prices expiring at T .

1.B SVIX Empirical Computation

A spectrum of option prices with respect to the strike price is needed to compute the

integrals in Equation (1.5). However, the required continuum of option prices is not

available in empirical applications, and we have to make some choices regarding the

implementation. Firstly, we follow Conrad et al. (2013) and estimate SVIX for days

that a stock has more than two OTM calls and two OTM puts with the same maturity.
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Moreover, following Dennis and Mayhew (2002), we employ equal numbers of OTM puts

and calls for each asset on each day. Therefore, If there are only n OTMP available on

day t, we need only n OTMC prices and if N > n OTMC prices are available on the

day t, we only use the n OTMC that are the least out-of-the-money. We also discard a

few day-stock IV surface data if their OptionsMetrics’s strike prices are not monotonic

in deltas.

Next, we follow Jiang and Tian (2005) to impose a structure for implied volatilities. To

do so, we define moneyness level as the implied strike prices provided by OM, divided

by the stock price (K/St).

Since the SVIX formula requires only OTM-forward option prices, we follow Christof-

fersen et al. (2012) and keep only calls (puts) with moneyness that are greater (less)

than or equal to the forward-moneyness (F/St). Then, we sort the puts and calls in

increasing order by moneyness:

KP
1

St
<

KP
2

St
<

KP
3

St
< ... <

KP
np

St
<

F

St
<

KC
1

St
<

KC
2

St
<

KC
3

St
< ... <

KC
nc

St
,

where nc (np) denote the number of call (put) options.

Then, we interpolate implied volatilities using cubic piece-wise Hermite polynomial in-

terpolation in the moneyness-IV metric to obtain a continuum of implied volatilities on

a fine grid of 1,001 implied volatilities for moneyness levels between 1/3 and 3. Cubic

piece-wise Hermite polynomial interpolation is adequate for interpolating between the

available moneyness levels. Therefore, for values outside the available ranges, we use

the implied volatility of the lowest strike price (KP
1 ) for moneyness below the lowest

available moneyness level. We use the implied volatility of the highest strike (KC
nc) for

moneyness above the highest available moneyness.

Once the continuous Implied Volatility surface is formed, we compute the BS options

prices at 1,001 strike points (equally-spaced) over the moneyness from 1/3 to 3. Money-

ness levels smaller than (Ft,T /St) are used to generate OTM put prices and moneyness

levels greater than (Ft,T /St) are used to generate call prices. In addition, to convert IVs

to option prices, we derive the projected dividend payments Dt,T from forward price as

Dt,T = Rf ;t;TSt − Ft;T . Next, we deduct the present value of Dt,T from the stock price

69



at time t and replace it in the modified Black-Scholes formula.

Finally, we follow Christoffersen et al. (2012) we employ trapezoidal approximation rule

to numerically approximate the integrals of Equation (1.7). More specifically, on each

day and for each maturity we assume that:

∫ ∞

0
Qt,T (K)dK = ΣN

i=1

Qt,T (Ki+1) +Qt,T (Ki)

2
(Ki+1 −Ki) (1.A.6)

where K1, ...,KN are the strikes of observable options, Qt,T (Ki) is the mid bid-ask price

of an OTM option with strike Ki.
26

1.C Characteristic Data

In this section, we define characteristic variables used in the IPCA method. We use

CRSP and Compustat variable names in parentheses and report the relevant references.

All these definitions27 are directly obtained from Freyberger et al. (2020). We mainly

use balance-sheet data from the fiscal year ending in year t− 1 for returns from July of

year t to May of year t+ 1 following the Fama and French (2015) timing convention.

1. ”A2ME: Following Bhandari (1988), we define assets-to-market cap as total assets

(AT) over market capitalisation as of December t-1. Market capitalisation is shares

outstanding (SHROUT) times price (PRC). AT Total assets (AT) as in Gandhi

and Lustig (2015).

2. ATO: Following Soliman (2008), ATO is Net sales over lagged net operating assets.

Net operating assets are operating assets minus operating liabilities. Operating

assets are total assets (AT) minus the investment, minus cash and short-term

investments (CHE), and other advances (IVAO). Operating liabilities are total

assets (AT) minus long-term debt (DLTT), minus common equity (CEQ), minus

debt in current liabilities (DLC), minus preferred stock (PSTK), minus minority

interest (MIB).

26. In Equation (1.A.6), we use put prices when their strike prices are less than the forward price and
call prices when their strikes are greater than or equal to the forward price.

27. The definition of all 33 characteristic variables are directly brought from Freyberger et al. (2020).
However, we compute all measures ourselves.
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3. BEME: BEME is the ratio of the book value of equity to the market value of

equity. Book equity is deferred taxes and investment tax credit (TXDITC) plus

shareholder equity (SH) minus preferred stock (PS). SH is shareholders’ equity

(SEQ). If missing, SH is the sum of common equity (CEQ) and preferred stock

(PS). If missing, SH is the difference between total assets (AT) and total liabilities

(LT). Depending on availability, we use the redemption (item PSTKRV), liquidat-

ing (item PSTKL), or par value (item PSTK) for PS. The market value of equity is

as of December t-1. The market value of equity is shares outstanding (SHROUT)

times price (PRC). See Rosenberg et al. (1985) and James L. Davis and French

(2000).

4. Beta: We define the CAPM beta as correlations between the expected return

of stock i and the market expected return times volatilities following Frazzinia

and Pedersen (2014). We calculate correlations from overlapping three-day log

expected returns over a five-year period requiring at least 750 non-missing ob-

servations. We estimate volatilities using the standard deviations of daily log

expected returns over a one-year horizon requiring at least 120 observations.

5. C: Following Palazzo (2012), cash to short-term investment is defined as cash and

short-term investments (CHE) divided by total assets (AT).

6. CTO: Capital turnover is defined as the ratio of net sales (SALE) to lagged total

assets (AT) following Haugen and Baker (1996).

7. D2A: Capital intensity is the ratio of depreciation and amortization (DP) to total

assets (AT) as in Gorodnichenko and Weber (2016).

8. DPI2A: Following Evgeny Lyandres and Zhang (2008), the change in property,

equipment, and plants is defined as the changes in property, plants, and equipment

(PPEGT) and inventory (INVT) over lagged total assets (TA).

9. E2P: Following Basu (1983), we define earnings to price as the ratio of income

before extraordinary items (IB) to the market capitalisation as of December t-1.

Market capitalisation is the shares outstanding (SHROUT) times price (PRC).

10. FC2Y: Following D’Acuntoa et al. (2018), Fixed costs to sales are defined as the
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ratio of selling, general, and administrative expenses (XSGS), advertising expenses

(XAD), and research and development expenses (XRD) to net sales (SALE).

11. Free CF: Cash flow to book value of equity is the ratio of depreciation and

amortisation (DP), net income (NI) less change in capital expenditure (CAPX)

and working capital (WCAPCH), divided by the book value of equity defined as

in the construction of BEME following Houa et al. (2012).

12. Idio vol: Following Ang et al. (2006), Idiosyncratic volatility is the standard

deviation of the residuals from a regression of expected returns on the Fama and

French (1993) three-factor model. We use one month of daily data and require at

least fifteen non-missing observations.

13. investment: Investment is the percentage year-on-year growth rate in total assets

(AT) following Cooper et al. (2008).

14. Lev: Following Lewellen (2015), we define Leverage as the ratio of long-term debt

(DLTT) and debt in current liabilities (DLC) to the sum of long-term debt, debt

in current liabilities, and stockholders’ equity (SEQ).

15. LME: Following Fama and French (1992), Size is shares outstanding (SHROUT)

times the total market capitalisation of the previous month defined as price (PRC).

16. LTurnover: Following Datar et al. (1998), lagged Turnover is last month’s volume

(VOL) divided by shares outstanding (SHROUT).

17. NOA: Net operating assets are the difference between operating assets minus

operating liabilities scaled by lagged total assets as in Hirshleifer et al. (2004).

Operating assets are total assets (AT) minus the investment and other advances

(IVAO) minus cash and short-term investments (CHE). Operating liabilities are

total assets (AT), minus long-term debt (DLTT), minus debt in current liabili-

ties (DLC), minus preferred stock (PSTK), minus minority interest (MIB), minus

common equity (CEQ).

18. OA: Following Sloan (1996), we define operating accruals as changes in non-cash

working capital minus depreciation (DP) scaled by lagged total assets (TA). Non-

72



cash working capital is the difference between non-cash current assets and cur-

rent liabilities (LCT), income taxes payable (TXP) and debt in current liabilities

(DLC). Non-cash current assets are current assets (ACT) minus cash and short-

term investments (CHE).

19. OL: Operating Leverage is defined as the sum of administrative expenses (XSGA)

and cost of goods sold (COGS) over total assets as in Novy-Marx (2011).

20. PCM: The price-to-cost margin (PCM) is the difference between net sales (SALE)

and costs of goods sold (COGS) divided by net sales (SALE) as in Bustamant and

Donangelo (2017).

21. PM: Profit margin is defined as the ratio of operating income after depreciation

(OIADP) to net sales (SALE) as in Soliman (2008).

22. Prof : Following Balla et al. (2015) Profitability is defined as gross profitability

(GP) divided by the book value of equity.

23. Q: Tobin’s Q is total assets (AT), the market value of equity (SHROUT times

PRC), minus deferred taxes (TXDB) scaled by total assets (AT) minus cash and

short-term investments (CEQ).

24. Rel to High: Closeness to 52-week high is the stock price (PRC) at the end of

the previous calendar month divided by the previous 52-week high price following

George and Hwang (2004).

25. RNA: The return on net operating assets is operating income after depreciation

divided by lagged net operating assets following Soliman (2008). Net operating

assets are the difference between operating assets minus operating liabilities. Oper-

ating assets are total assets (AT) minus the investment and other advances (IVAO)

minus cash and short-term investments (CHE). Operating liabilities are total as-

sets (AT) minus common equity (CEQ), minus minority interest (MIB), minus

debt in current liabilities (DLC), minus preferred stock (PSTK), minus long-term

debt (DLTT).

26. ROA: Return-on-assets is income before extraordinary items (IB) to lagged total
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assets (AT) following Balakrishnan et al. (2010).

27. ROE: Return-on-equity is income before extraordinary items (IB) to lagged book-

value of equity as in Haugen and Baker (1996). r12−2 : We define momentum as

cumulative return from 12 months before the return prediction to two months

before, as in Fama and French (1992).

28. r12−7: The intermediate momentum is a cumulative return from 12 months before

the return prediction to seven months before, as in Novy-Marx (2012).

29. r2−1 : Short-term return is the lagged one-month return as in JEGADEESH

(1990).

30. r36−13 : Long-term return is the cumulative return from 36 months before the

return prediction to 13 months before, as in Bondt and Thaler (1985).

31. S2P: Sales-to-price is the ratio of net sales (SALE) to the market capitalisation

as of December following Lewellen (2015).

32. SGA2S: SG&A to sales is the ratio of selling, general and administrative expenses

(XSGA) to net sales (SALE).

33. Spread: The bid-ask spread is the average daily bid-ask spread in the previous

months as in JEGADEESH (1990).”

1.D IVX-Wald test

1.D.1 IVX Estimator

Assume that the following multivariate system of predictive regressions consists of re-

gressors with arbitrary degree of persistence:

yt(K) = µ+Axt−1 + ϵt (1.A.7)

where yt(K) = ΣK−1
i=0 yt+i, A is a (m× r) coefficient matrix and

xt+1 = Rnxt + ut+1 (1.A.8)
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where xt = (x1t, x2t, ..., xrt) is the vector of predictors in (1.A.7), Rn = Ir + C/nα is

the autoregressive matrix with degree of persistence equal to α ≥ 0, C = diag(c1, ..., cr)

and n is the sample size.

The IVX method proposed by Kostakis et al. (2011) estimates Equation (1.A.7) us-

ing two-step least square equations which uses the near-stationary instruments in zt

rather than the initial predictors xt. The intuition behind it is to build an instrumen-

tal variable with a known degree of persistence using the initial predictors of xt with

an unknown degree of persistence. To construct the IVX estimator, first, we estimate

Equations (1.A.7) and (1.A.8) using ordinary least squares. Next, we build the near-

stationary instruments Zt by differencing the regressor xt, initializing at z0 = 0. More

specifically, IVX construct instruments using a first-order autoregressive process with

the autoregressive artificial matrix of Rnz and innovations ∆xt as follows:

zt = Rnzzt−1 +∆xt (1.A.9)

where Rnz = Ir +
Cz

nβ . We select Cz = −Ir and β = 0.95 following Kostakis et al. (2015)

.

Once we construct our instrument variable, we apply standard instrumental variable

estimation and continue with IVX estimation of A using regression system in (1.A.7)

ĀIV X(K) = Ȳ (K)′Z[X̄(K)′Z ′] =

n∑
r=1

(yt − ȳn)z̄
′
t−1[

n∑
j=1

(xj − x̄n−1)z̄
′
j−1]

−1 (1.A.10)

where ȳn = (1/n)
∑n

t=1 yt, x̄n−1 = (1/n)
∑n

t=1 xt−1, Ȳ = (Y ′
1 , ..., Y

′
n) and X̄ = (X0, ..., X

′
n−1)

are the predictive regression matrices which are demeaned and Znk
is the instrument

matrix.

1.D.2 IVX-Wald Test

The asymptotic feature of the IVX method suggests that linear restrictions on the

coefficients A rendered by the system of predictive regression (1.A.7) can be examined

by a standard Wald test using the IVX estimator. We test for the predictive ability of

75



xt with the following null hypothesis:

H0 : Hvec(A) = 0 (1.A.11)

where vec(A) is the vectorisation of A and H is a known r × r matrix, which its (i, i)

element is one and its other elements are zero. This helps to test for the significance of

each regressor individually.

We consider the following IVX-Wald test statistic for testing the H0

WIV X = (HvecĀIV X))
′Q−1(HvecĀIV X)) (1.A.12)

where vecĀIV X is the vectorization of IVX estimator in (1.A.10) and:

QH = H[(Z̄ ′X)−1 ⊗ Im]M[(X ′Z̄)−1 ⊗ Im]H ′ (1.A.13)

M = Z̄ ′Z̄ ⊗ Σ̂ϵϵ − nz̄n−1z̄
′
n−1 ⊗ Ω̂FM (1.A.14)

Ω̂FM = Σ̂ϵϵ − Ω̂ϵuΩ̂
−1
uu Ω̂

′
ϵu (1.A.15)

Denoting ϵ̂t the OLS residuals from regression (1.A.7) and ût residuals from regression

(1.A.8), the covariance matrices Σ̂ϵϵ, Ω̂ϵu and Ω̂uu can be estimated as follows:

Σ̂ϵϵ =
1

n

n∑
t=1

ϵ̂tϵ̂
′
t, Σ̂ϵu =

1

n

n∑
t=1

ϵ̂tû
′
t, Σ̂uu =

1

n

n∑
t=1

ûtû
′
t, (1.A.16)

and

Λ̂uu =
1

n

Mn∑
i=1

(1− i

Mn + 1
)

n∑
t=i+1

ûtû
′
t−i, Ω̂uu = Σ̂uu + Λ̂uu + Λ̂′

uu (1.A.17)

Λ̂uϵ =
1

n

Mn∑
i=1

(1− i

Mn + 1
)

n∑
t=i+1

ûtϵ̂
′
t−i, Ω̂uϵ = Σ̂uu + Λ̂′

uϵ (1.A.18)
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where Mn is a bandwidth parameter satisfying Mn → 1 and Mn/
√
n → 0 as n → ∞.

We set Mn = n1/3 following Kostakis et al. (2015).

1.E Improving REA Predictability Using SVIX

In this section, we investigate the predictive ability of SVIX, as inferred from the index

option, to predict future growth in real economic activity.

In order to examine whether SVIX forecasts REA growth over h forecasting horizons,

we set up our empirical analysis based on the following predictive regression:

REAi,t+h = βi,0 + βi,1REAi,t + βi,2SV IXt + βi,2Xt + ϵi,t+h (1.A.19)

where REAi,t+h is the growth rate of a different measure of economic activity as ex-

plained in Section 1.3.2. SV IXt,h is the h-month SVIX measure defined in Equation

(1.5) , and Xt is a vector of additional predictors at time t as explained in Section 1.3.3.

More specifically, we consider all of our control variables: term spread, credit spread,

forward variance and IRRA.

Our results are reported in Table 1.A.1 and show two main findings. First, we can see

that SVIX predict 8 out of 9 REA proxies at 1-month horizon (all proxies except RS).

At two-months horizon, SVIX predicts 6 out of 9 proxies (All proxies except RS and

CFNAI). At three-months horizon, SVIX predicts IP, NFP, HOUS, UR and ADS. In

addition, SVIX predicts NFP and IP at all forecasting horizon (1 to 12 month). The

sign of the SVIX coefficient is significantly negative for NFP, IP, CNFAI, ADS and CU.

We found a positive SVIX coefficient for the unemployment rate, which explains its

countercyclical behaviour. This suggests that a rise in SVIX forecasts a decrease in

REA.

[Table 1.A.1 about here.]

1.F Regression Coefficient of Control Variables

This section analyses the regression coefficient of the control variables included in our

predictive regression model. Tables 1.A.2 to 1.A.3 report the regression coefficient of
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control variables, namely term spread, credit spread and option-based variables (IRRA

and Forward Variance) for different forecasting horizons when the variable of interest

is the PCA factor. These results show that FV and IRRA have significant predictive

power to predict REA among different control variables. Specifically, at 1 and 2 months

horizon, the regression coefficient of forward variance is significant for IP, NFP, CU,

CFNAI and ADS and is positive for UR. The coefficient of IRRA is also significant for

IP, HOUS, RS and UR at one and two-months horizons. In addition, the regression

coefficient of FV at 6 and 12 months horizon is significantly negative for IP, NFP, CU

and ADS, while it is positive for the unemployment rate. Furthermore, at six months

horizon, the coefficient of IRRA is significant for estimating HS.

[Table 1.A.2 about here.]

[Table 1.A.3 about here.]

1.G Diebold-Mariano Test for Accuracy of OOS Results

In this section, we test the statistical significance of the out-of-sampleR2s, using Diebold-

Mariano test. We report the results of this test in Table 1.A.4. The Diebold-Mariano

test compares the forecast accuracy of two forecast methods. It defines the loss differ-

ential between the two forecasts and examine whether the two forecasts are significantly

different. As shown in the Panel B of Table 1.A.4, the OOSR2 is significantly positive

for forecasting IP, NFP CU and ADS specially at short-term horizon, suggesting that

the full model that incorporates the PCA factor outperforms the nested model which

does not incorporate the factor in the set of its predictors.

In addition, we plot a time series comparison of the predicted OOS values of REA for the

two models (1. Full model with the PCA and 2. Nested model without the PCAfactor)

in Figures 1.A.1 and 1.A.2 over September 2007 - May 2019.

[Table 1.A.4 about here.]

[Figure 1.A.1 about here.]

[Figure 1.A.2 about here.]
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1.H Compare the Predictive Power of PCA and SVIX for

Future SPX Returns

In this section, we examine the predictive power of three variables for forecasting future

stock market returns: PCA factor, weighted factor, and SVIX. The PCA factor is derived

from individual equity options and is expected to proxy for the market’s expected return.

We also control for three factors from the Fama-French model: market, size (SML), and

value (HML).

We conduct regression analysis using the following model to estimate the coefficients for

each variable in predicting the market’s expected return:

The results, shown in Table 1.A.5, indicate that neither the PCA factor, the weighted

factor, nor SVIX shows a significant coefficient in forecasting market returns when con-

trolling for the three Fama-French factors.

Retspx,t+1 = α+ β1Factort + β2mrktt + β3SMLt + β4HMLt + ϵt

[Table 1.A.5 about here.]
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Figure 1.A.1. Evolution of OOS Forecasts of IP, NFP and CU: The figure
shows the evolution of REA forecasts (IP, NFP and CU) over September 2007 - May
2019. For each REA measure, we extract the time series by performing a rolling window
estimation. We use a rolling window starting on July 1998 with size 30 months.
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Figure 1.A.2. Evolution of OOS Forecasts of UR, CFNAI and ADS: The figure
shows the evolution of REA forecasts (UR, CFNAI and ADS) over September 2007 -
May 2019. For each REA measure, we extract the time series by performing a rolling
window estimation. We use a rolling window starting on July 1998 with size 30 months.
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h=1 month h=2 month h=3 month h=6 month h=12 month

IP beta -0.38*** -0.34*** -0.17 -0.05 -0.19
[0.00] [0.00] [0.16] [0.39] [0.02]
(0.00) (0.00) (0.05) (0.65) (0.34)

R2 0.21 0.32 0.40 0.31 0.27

NFP beta -0.29*** -0.20** -0.18** -0.17** -0.20***
[0.00] [0.01] [0.02] [0.02] [0.01]
(0.00) (0.01) (0.04) (0.11) (0.26)

R2 0.67 0.76 0.76 0.71 0.54

RS beta -0.05 -0.03 -0.07 0.07 0.03
[0.38] [0.75] [0.56] [0.91] [0.71]
(0.43) (0.66) (0.57) (0.59) (0.80)

R2 0.09 0.11 0.16 0.26 0.34

HOUS beta -0.11** -0.06 -0.01 -0.07 0.08
[0.04] [0.18] [0.56] [0.30] [0.92]
(0.28) (0.55) (0.87) (0.22) (0.37)

R2 0.20 0.20 0.19 0.36 0.56

CU beta -0.38*** -0.32*** -0.14 -0.04 -0.14
[0.00] [0.00] [0.17] [0.42] [0.00]
(0.00) (0.00) (0.07) (0.69) (0.35)

R2 0.22 0.34 0.43 0.32 0.28

UR beta 0.38*** 0.40*** 0.36*** 0.13 0.07
[0.00] [0.00] [0.00] [0.26] [0.29]
(0.00) (0.00) (0.00) (0.24) (0.57)

R2 0.18 0.32 0.41 0.56 0.52

CFNAI beta -0.43*** -0.18 -0.05 0.06 -0.05
[0.00] [0.19] [0.53] [0.82] [0.85]
(0.00) (0.01) (0.56) (0.64) (0.73)

R2 0.49 0.48 0.41 0.27 0.15

ADS beta -0.12*** -0.21*** -0.15** 0.05 0.01
[0.00] [0.00] [0.01] [0.52] [0.77]
(0.01) (0.01) (0.05) (0.73) (0.97)

R2 0.86 0.71 0.61 0.37 0.22

Table 1.A.1. Predicting REA via SVIX: This table reports results from the esti-
mated multiple predictor regressions as in Equation (1.A.19) for various U.S. real eco-
nomic activity (REA) proxies and for an h-month forecasting horizon (h = 1, 3, 6, 9, and
12 months). The REA proxies considered are explained in Section 1.3.2. The multiple
predictor model includes the lagged REA and the h-month SVIX measure as predic-
tors and is augmented by a set of control variables: term spread (TS), credit spread
(CR), forward variance (FV), and IRRA. We report the standardized ordinary-least-
squares (OLS) coefficient estimates, IVX-Wald (within squared brackets) and Newey-
West (within brackets) p-values of each one of the predictors as well as the in-sample
adjusted R2 for any given model. The sample spans July 1998 to May 2019. We reject
the null hypothesis of a zero coefficient (no predictability) based on the p-values of the
IVX-Wald test at the 1%, 5%, and 10% levels and denote it by triple, double, and single
asterisks, respectively.
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IP NFP RS HOUS CU UR CFNAI ADS

TS

h=1 0.06 -0.11 -0.05** -0.02 0.17** 0.07 0.02 0.01
[0.27] [0.01] [0.49] [0.89] [0.02] [0.18] [0.55] [0.69]
(0.38) (0.01) (0.35) (0.74) (0.01) (0.25) (0.72) (0.75)

h=2 0.11 -0.02 0.04 0.00 0.22** 0.05 0.07 0.05
[0.10] [0.60] [0.72] [0.97] [0.01] [0.55] [0.17] [0.21]
(0.10) (0.60) (0.40) (0.97) (0.00) (0.40) (0.12) (0.22)

h=3 0.14 0.03 0.10 0.01 0.22 0.02 0.10 0.10*
[0.13] [0.82] [0.35] [0.92] [0.06] [0.80] [0.18] [0.05]
(0.07) (0.50) (0.15) (0.85) (0.01) (0.67) (0.11) (0.03)

CS

h=1 -0.26*** -0.22*** -0.08 0.03 -0.18** 0.18** -0.34*** -0.12*
[0.00] [0.00] [0.51] [0.60] [0.03] [0.02] [0.00] [0.08]
(0.00) (0.00) (0.26) (0.73) (0.02) (0.00) (0.00) (0.03)

h=2 -0.25** -0.17** -0.18 0.00 -0.14 0.20* -0.19*** -0.21**
[0.02] [0.01] [0.19] [0.91] [0.26] [0.07] [0.00] [0.02]
(0.02) (0.01) (0.02) (0.97) (0.14) (0.02) (0.01) (0.00)

h=3 -0.16 -0.16** -0.27 0.02 -0.05 0.20 -0.14* -0.21*
[0.39] [0.04] [0.17] [0.93] [0.80] [0.18] [0.06] [0.04]
(0.14) (0.05) (0.01) (0.88) (0.67) (0.04) (0.14) (0.01)

FV

h=1 -0.28*** -0.16*** -0.13 -0.06 -0.28*** 0.22*** -0.25*** -0.13***
[0.00] [0.00] [0.12] [0.55] [0.00] [0.00] [0.00] [0.00]
(0.00) (0.00) (0.06) (0.22) (0.00) (0.03) (0.01) (0.00)

h=2 -0.37*** -0.20*** -0.27** -0.06 -0.35*** 0.28*** -0.26*** -0.27***
[0.00] [0.00] [0.02] [0.48] [0.00] [0.00] [0.00] [0.00]
(0.00) (0.00) (0.00) (0.42) (0.00) (0.00) (0.00) (0.00)

h=3 -0.35*** -0.22*** -0.32** -0.03 -0.32** 0.28** -0.21** -0.33***
[0.00] [0.00] [0.03] [0.65] [0.02] [0.02] [0.02] [0.00]
(0.00) (0.00) (0.00) (0.71) (0.00) (0.00) (0.00) (0.00)

IRRA

h=1 -0.25*** -0.18*** -0.28*** -0.23*** -0.17*** 0.22 *** -0.20*** -0.11***
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
(0.01) (0.00) (0.00) (0.00) (0.06) (0.00) (0.01) (0.00)

h=2 -0.29*** -0.18*** -0.39*** -0.39*** -0.20** 0.26** -0.21** -0.21***
[0.00] [0.00] [0.00] [0.00] [0.02] [0.01] [0.01] [0.00]
(0.02) (0.00) (0.00) (0.00) (0.10) (0.00) (0.01) (0.01)

h=3 -0.27** -0.18*** -0.45*** -0.45** -0.18* 0.27** -0.20* -0.25***
[0.01] [0.00] [0.00] [0.01] [0.08] [0.03] [0.07] [0.00]
(0.05) (0.01) (0.01) (0.00) (0.18) (0.01) (0.04) (0.02)

Table 1.A.2. Regression coefficient of control variables at short-term hori-
zon forecast: This table presents the regression coefficients of the control variables
in predictive model (1.17) for various U.S. real economic activity (REA) proxies and
for long-term horizon (h = 6, 12). The main variable of interest in the model is the
PCA factor, and control variables include term spread (TS), credit spread (CS), for-
ward variance (FV) and IRRA. For each control variable at each horizon, we report the
ordinary least-squares (OLS) coefficient estimates, IVX-Wald (within squared brackets)
and Newey-West (within brackets) p-values of each one of the predictors, as well as
the in-sample adjusted R2 for any given model. The sample spans July 1998 to June
2019. We reject the null hypothesis of a zero coefficient (no predictability) based on the
p-values of the IVX-Wald test at the 1%, 5%, and 10% levels and denote it by triple,
double, and single asterisks, respectively.
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IP NFP RS HOUS CU UR CFNAI ADS

TS

h=6 0.17* 0.12 0.07 -0.03 0.27* -0.13 0.08 0.09*
[0.04] [0.13] [0.61] [1.00] [0.03] [0.45] [0.51] [0.09]
(0.21) (0.13) (0.60) (0.70) (0.06) (0.16) (0.54) (0.48)

h=12 0.07** 0.16*** 0.12 -0.01*** 0.24 -0.26 0.08 0.05
[0.01] [0.00] [0.63] [0.98] [0.00] [0.10] [0.69] [0.26]
(0.70) (0.39) (0.25) (0.95) (0.16) (0.12) (0.41) (0.66)

CS

h=6 -0.06 -0.07 -0.10 0.09 0.08 -0.03 0.09 0.03
[0.45] [0.13] [0.57] [0.98] [0.97] [0.72] [0.59] [0.37]
(0.61) (0.45) (0.55) (0.35) (0.48) (0.82) (0.58) (0.86)

h=12 -0.11** -0.05** 0.03 0.18 0.15 -0.18 0.17 0.25
[0.05] [0.07] [0.86] [0.96] [0.76] [0.72] [0.76] [0.68]
(0.37) (0.72) (0.81) (0.09) (0.09) (0.15) (0.08) (0.05)

FV

h=6 -0.38*** -0.28*** -0.12 0.02 -0.36*** 0.26** -0.12 -0.26**
[0.00] [0.00] [0.50] [0.88] [0.00] [0.04] [0.43] [0.01]
(0.00) (0.00) (0.24) (0.74) (0.00) (0.00) (0.13) (0.00)

h=12 -0.29*** -0.27*** -0.05 0.13 -0.26*** 0.24** -0.02 -0.09*
[0.00] [0.00] [0.69] [0.68] [0.00] [0.01] [0.67] [0.07]
(0.00) (0.00) (0.43) (0.01) (0.00) (0.02) (0.66) (0.08)

IRRA

h=6 -0.34** -0.23*** -0.47* -0.67** -0.23 0.25 -0.24 -0.33**
[0.01] [0.00] [0.07] [0.01] [0.11] [0.22] [0.31] [0.01]
(0.11) (0.12) (0.03) (0.00) (0.27) (0.10) (0.21) (0.13)

h=12 -0.51 -0.34 -0.54 -0.73 -0.33 0.32 -0.30 -0.40
[0.05] [0.16] [0.16] [0.41] [0.54] [0.51] [0.60] [0.06]
(0.05) (0.16) (0.02) (0.00) (0.16) (0.15) (0.14) (0.09)

Table 1.A.3. Regression coefficient of control variables at long-term hori-
zon forecast: This table presents the regression coefficients of the control variables in
predictive model (1.17) for various U.S. real economic activity (REA) proxies and for
short-term horizon (h = 1, 2 3) . The main variable of interest in the model is the PCA
factor and control variables includes: term spread (TS), credit spread (CS), forward
variance (FV) and IRRA. For each control variable at each horizon, we report the ordi-
nary least-squares (OLS) coefficient estimates, IVX-Wald (within squared brackets) and
Newey-West (within brackets) p-values of each one of the predictors as well as the in-
sample adjusted R2 for any given model. The sample spans July 1998 to June 2019. We
reject the null hypothesis of a zero coefficient (no predictability) based on the p-values
of the IVX-Wald test at the 1%, 5%, and 10% levels and denote it by triple, double,
and single asterisks, respectively.
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Panel A:OOSR2: full model with PCA factor versus AR(1)

IP NFP RS HOUS CU UR CFNAI ADS

h=1 month
0.26* 0.22* 0.08 0.02 0.20 0.27* 0.35* 0.13*
(1.72) (2.38) (0.51) (0.21) (1.42) (3.29) (1.99) (1.97)

h=2 month
0.28 0.22** 0.14 0.09 0.20 0.30*** 0.04 0.29***

(1.44) (3.22) (1.07) (0.86) (1.11) (3.91) (0.17) (2.72)

h=3 month
0.17** 0.24** 0.14 0.10 0.09 0.27*** -0.09 0.22
(2.29) (2.77) (1.14) (1.32) (0.97) (3.71) (-0.48) (2.34)

h=6 month
0.11 0.27*** 0.08 0.27*** 0.06 0.13** -0.16 -0.01

(1.02) (2.72) (0.87) (3.11) (0.57) (2.10) (-0.99) (-0.03)

h=12 month
0.19 0.24*** 0.31 0.41*** 0.09 0.23** 0.10 0.14

(1.47) (2.92) (4.16) (3.60) (0.92) (5.08) (0.99) (1.31)

Panel B:OOSR2: full model with PCA factor versus the nested model

IP NFP RS HOUS CU UR CFNAI ADS

h=1 month
0.05 0.04 0.02 0.00 0.04 0.01 0.09 0.07

(0.98) (1.03) (0.72) (-0.24) (1.34) (0.42) (1.01) (0.99)

h=2 month
0.12** 0.10* 0.06 0.00 0.09** 0.02 0.05 0.16***
(2.36) (1.72) (1.47) (-0.11) (2.42) (1.12) (0.91) (2.88)

h=3 month
0.08* 0.13* 0.02 0.00 0.06* 0.00 0.02 0.15*
(1.84) (1.59) (0.52) (0.03) (1.87) (-0.15) (0.39) (1.92)

h=6 month
0.04 0.10 -0.06 0.00 0.04 -0.07 -0.04 -0.02

(1.05) (1.34) (-1.06) (0.13) (1.33) (-1.13) (-1.01) (-0.34)

h=12 month
-0.01 0.06 -0.03 0.03 -0.01 -0.09 -0.01 -0.01
(0.58) (1.12) (-1.03) (1.39) (-0.09) (-1.13) (-0.58) (-0.58)

Panel C: OOSR2: full model with PCA factor versus model with SVIX

IP NFP RS HOUS CU UR CFNAI ADS

h=1 month
0.04 0.07 -0.01 0.00 0.02 0.01 0.10 0.08

(0.46) (1.30) (1.24) (0.59) (0.93) (0.57) (1.03) (1.27)

h=2 month
0.13** 0.10* 0.04** -0.06 0.08** -0.01 0.07 0.16***
(2.04) (1.61) (1.64) (-0.21) (2.39) (0.39) (1.47) (3.25)

h=3 month
0.08** 0.12 -0.03 -0.04 0.06** -0.08 0.02 0.13**
(2.05) (1.57) (0.96) (-0.31) (2.08) (-0.74) (0.89) (2.37)

h=6 month
0.02 0.05 -0.16 -0.09 0.02 -0.20 -0.07 -0.07

(1.19) (1.39) (-0.88) (-0.46) (1.35) (-1.62) (-0.58) (-0.34)

h=12 month
-0.09 -0.05 -0.11 -0.08 -0.12 -0.30 0.01 -0.02
(0.39) (0.14) (-0.05) (-0.97) (0.05) (-2.28) (1.12) (0.48)

Table 1.A.4. Out-of-Sample Predictability of U.S. REA with PCA Factor
with Diebold-Mariano (DM) test: This table compares the OOSR2 and their cor-
responding DM test statistic obtained from comparing the forecasts of full predictive
model explained in Equation (1.18) which contain the PCA factor, versus the AR(1)
model (in panel A), versus forecasts of the nested model (in Panel B), versus forecasts
of the full model with alternative predictive model which contains the SVIX measure
(in Panel C) and forecasts of full model with FF5 (in Panel D).
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PCAF Mrkt SMB HML

coef 0.00 -0.05 0.06 -0.04
t-stat -0.55 -2.61 1.87 -1.10
NW p-value 0.58 0.01 0.06 0.27
IVX pvalue 0.83 0.02 0.09 0.31

weightedF Mrkt SMB HML

coef -0.20 -0.05 0.06 -0.04
t-stat -0.37 -2.60 1.83 -1.12
NW p-value 0.71 0.01 0.07 0.26
IVX pvalue 0.66 0.01 0.08 0.35

SVIX Mrkt SMB HML

coef -0.10 -0.05 0.06 -0.05
t-stat -0.16 -2.58 1.79 -1.20
NW p-value 0.87 0.01 0.07 0.23
IVX pvalue 0.78 0.01 0.08 0.34

Table 1.A.5. Predictive Power of PCA and SVIX for Future SPX Returns:
This table reports the regression coefficient of forecasting market expected return with
PCA factor or the SVIX measure controling for 3 factors of fama-french, namely market,
SML and HML using the followingregression model.

Retspx,t+1 = α+ β1Factort + β2mrktt + β3SMLt + β4HMLt + ϵt
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Chapter 2

Do Options Markets React to

FOMC meetings?

2.1 Introduction

Macroeconomic events have been shown to have a substantial impact on stock markets

and are, in general, accompanied by a rise in risk and return.1 However, very few

papers have investigated the impact of these events on options markets. It is not trivial

that options markets should react similarly to stock markets. Under the hypothesis

that options traders are better informed than stock traders,2 they may better anticipate

macroeconomic events’ outcomes. However, Kelly et al. (2016) find that elections and

summits lead to an increase in priced variance and tail risk, which suggests that it is

not the case.

This paper uses as treatments options that are traded before FOMC meetings and

expiring after the meetings. These options are compared to other options whose lives

do not span FOMC meetings, to measure the impact of these meetings on volatility and

tail risks, and on the demand for options.

1. Daniel et al. (2002), and Ozoguz (2009) suggest that there is a negative relationship between the
level of macroeconomic uncertainty and asset valuations.

2. Options are contracts used to hedge against or speculate/take a view on uncertainty about the
future prices of a wide range of financial assets and commodities. Option prices contain information
about the investors’ expectations about the future prices of these underlying assets. Hull (2000)
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We consider FOMC meetings in the United States between 2006 and 2016. We investi-

gate whether option-implied risk-neutral moments, risk premiums and trading activity

indicators are significantly different for options whose lives span an FOMC meeting and

for other options. We find that the implied volatility, its slope on the left of the ATM

level as well as the variance risk premium (VRP) are larger for options whose lives span

FOMC meetings. These findings are consistent with Kelly et al. (2016) and suggest

that investors are willing to pay for protection against the price, downside tail risk and

variance associated with these events. Higher prices may also compensate for the risk

that market makers bear for trading with informed traders. These higher prices are

associated with an increase in the bid-ask spread and more generally a decrease in the

liquidity of options (open interest and trading volume). More specifically, the net de-

mand to open positions on options decreases while the net demand to close positions

increases. These results are statistically significant across all options’ moneyness levels.

A time series analysis of risk-neutral moments and trading activity indicators around

FOMC meetings reveals that the impact of these events on options markets are most

pronounced in the week before the event and last until a few days after the event.

Our results are in agreement with Handa et al. (2006), who show that bid-ask spreads are

correlated with information asymmetry in a limit order book market. In addition, our

results are consistent with Erenburg and Lasser (2009), who find that the bid-ask spreads

of index-linked securities increase around macroeconomic news releases in a limit order

book market. Furthermore, Lucca and Moench (2015) show that the trading activities

on mini S&P 500 futures decrease before FOMC meetings. They document that the

FOMC decisions provide information about the future economic outlook and interest

rates; therefore, pre-FOMC returns carry a premium that equity investors require for

bearing systematic risk associated with these events. Although FOMC members may

share some information through interviews and speeches between meetings, they avoid

these discussions in the week before FOMC meetings3 and hence, systematic risk is likely

to be high these days, the window during which we observe higher prices, tail risk, and

lower market liquidity.

3. a time period known as the blackout period
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Further, we examine the existence of directional trading before the FOMC events. Fol-

lowing Bernanke and Kuttner (2005), we decompose monetary policy shocks (mps) into

their expected and unexpected components and assess their relationship with tail risk

and the demand for protection (proxied by RN-skewness and put-call ratio). We find

that the expected component of monetary policy shocks is positively related to the av-

erage put-call ratio on the days before FOMC meetings and negatively related with the

RN-skewness. Therefore, a positive shock to downside risk and to the put-call ratio pre-

dicts an increase in the Fed rate. It implies that when investors become more worried

about a decline in stock market prices, they predict a contractionary monetary policy-

i.e., future short-term rates to increase. These results align with Bernanke and Kuttner

(2005), who find that an increase in the Fed fund decreases the 30-day index returns.

They are also in line with David and Veronesi (2014) equilibrium model, suggesting

that when the tail-risk index rises, it indicates that the economy is moving to a boom-

ing regime. Consequently, the forward-looking Taylor rule anticipates a tightening of

monetary policy back to normal levels- i.e., higher future interest rates. We also find

a negative relationship between the 30-days implied volatility of S&P500 options and

mps. This finding suggests that the monetary authority reacts to a volatile stock market

by lowering interest rates. Therefore, investors anticipate lower interest rates from the

Fed during periods of high volatility.

Finally, employing the Composite Leading Indicator (CLI) published by the OECD as a

measure of economic conditions, and a measure of political uncertainty (EPU) proposed

by Baker et al. (2013), we analyse whether the effect of FOMC meetings depends on

political uncertainty and economic conditions. We find that they do. Indeed, consistent

with Kelly et al. (2016), we find that the implied volatility and VRP differentials on

the week preceding FOMC meeting are larger when the uncertainty is higher, or the

economy is weaker. Also, the open net demand is higher in the week before the event

when the economy is weaker. This is consistent with the Garleanu et al. (2009) demand

pressure hypothesis. The higher demand pressure increases the implied volatility of

options and hence option prices.

The rest of this paper is organised as follows: Section 2.2 reviews the related literature.

Section 2.3 describes our data; Section 2.4 quantifies the effect of FOMC meetings; Sec-
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tion 2.5 examines the timing of option trading activities and changes on pricing moments

around FOMC meetings. Section 2.6 considers how option traders are informed; Section

2.7 analyses the role of economic conditions on the effect of uncertainty and Section 2.8

briefly concludes.

2.2 Related Literature

We build on several strands of literature. Some papers studied the financial effect of

monetary policy events on different markets. Using a daily event window, Bernanke and

Kuttner (2005) find that the effect of unexpected monetary policy actions on expected

excess returns explains most significant part of the changes on stock prices. Lucca and

Moench (2015) show that returns drift upwards on the day before FOMC meetings,

regardless of the direction of the monetary policy surprise. Neuhier and Weber (2018)

find that stock returns start shifting upwards 25 days before expansionary monetary

policy announcements, and this increase continues after the policy decision for another

15 days. Cieslak et al. (2018) find that the equity premium is higher in even weeks

between FOMC meeting cycles. Their study, together with Vissing-Jorgensen (2019),

also implies that FOMC announcements have a larger stock market impact than other

types of macroeconomic announcements. Savor and Wilson (2013) show that stock

returns are considerably higher on macroeconomic announcement days such as FOMC

days. We contribute to this literature by studying the effect of FOMC meetings on

options markets in terms of pricing moments and find that implied volatility and tail

risk extracted from options increase before the meeting.

This paper also contributes to literature that studies liquidity dynamics around an-

nouncements, i.e., Cremers et al. (2022) find that traders of options on individual stocks

are more active than other market participants both immediately before and immedi-

ately after news releases. However, Erenburg and Lasser (2009) find that in a limit order

book market, the bid-ask spreads of index-linked securities increase around macroeco-

nomic news releases. Bollerslev et al. (2016) find that the trading volume spike after

FOMC announcements is related to the level of disagreement among investors. In this

paper, we find that the bid-ask spread of index options increase before the meeting,

resulting in lower trading activities.
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Some papers have suggested that options traders were more informed and skilled than

stock traders and argued that the options markets facilitates the price discovery process

in the equity market. Skinner (1997) shows that introducing options trading for a spe-

cific stock improves price efficiency. If options traders hold superior information, then

we should observe directional trading in the options markets. Amin (1997) examines

abnormal trading volume in the options markets around the earning announcements and

document directional trading evidences. Pan and Poteshman (2006) find that put-call

open-buy trading volume ratios predict underlying stock returns suggesting that options

traders who open new positions possess significant trading skills. Along the same line,

Jin et al. (2012) analyse the unbalance between put and call trading by studying implied

volatility spreads between ATM puts and calls and implied volatility skews. They show

that the predictive ability of these variables is larger before earnings announcements,

client and product announcements, and days with large stock price movements. Consis-

tent with these studies, our results show that traders take advantage of the predictable

movements of underlying index returns and their volatility- i.e., a positive shock to the

downside-risk proxied by RN-skewness and the put-call ratio predicts higher Fed rate.

At this point, we have not performed tests to identify the channel whereby decreased

liquidity in options is associated with increased implied volatility and decreased risk-

neutral skewness. A few papers have linked the fundamentals of options and risk-

neutral moments. Bollen and Whaley (2004) show that changes in option demand lead

to changes in option prices and found that the implied volatility of index options is

directly related to the buying pressure for index puts. Garleanu et al. (2009) find that

demand pressure in one option contract increases its price by an amount proportional

to the variance of the unchangeable part of the option. Constantinides and Lian (2021)

find that the net buy of puts by public customers has negative relationship with risk-

neutral variance and disaster index. The intuition is that when the risk-neutral variance

and disaster index increase, public customers incline to buy more puts as insurance,

but market makers become more risk averse. Therefore, both the supply and demand

curves shift, however, the supply shift emerges as the driving factor in decreasing the

equilibrium net buy of puts. Chen et al. (2019) show that the net buy of deep OTM puts

proxies for demand for crash insurance and predicts the return on the S&P 500 index.
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They suggest that tightening intermediary constraints is linked to expensive option

prices, increased risk premia, illiquidity, and broker-dealer deleveraging. Therefore,

positive comovements between prices and trading indicators are due to demand shocks,

while negative relationships are consistent with the presence of supply shocks. Garleanu

et al. (2009) show that volatility demand on days prior to earnings announcements

increases option prices.

2.3 Data

2.3.1 Macroeconomic Events

We study the impact of the Federal Open Market Committee (FOMC) meetings that

took place during 2006 - 2016, listed on the website of the Federal Reserve. FOMC

members makes policy decisions under the dual statutory mandate of price stability

and maximum sustainable employment. They regularly assemble at scheduled meetings

every 42 days and sometimes at unscheduled meetings, which are typically conducted

via teleconference calls. In this paper, we focus our analysis exclusively on scheduled

meetings and study the options markets ahead of these meetings which are known to

investors in advance.

2.3.2 Data Sources

We collect daily options on S&P 500 from 2006 - 2016, from OptionMetrics. We keep

options with maturity between 5 and 45 days. We remove options with missing quotes,

zero open interest or moneyness above 2 (as measured by the ratio of the strike by

the spot price). We create three buckets of moneyness: out-of-the-money put and call

options (OTMP, OTMC) and at-the-money options (ATM). The moneyness buckets

and the number of options in each category are given in Table 2.1. Before 2006, op-

tions’ expiration dates were on Saturdays immediately following the third Friday of each

month. From 2006, the number of available expiration dates has increased to become

close to weekly. However, the most used expiration dates remain the end-of-the-month

expiration days.

To compute options’ implied moments with constant maturity (30 days), we use implied
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volatilities for standardised equity options with 30-day expiry on a grid of the deltas, as

provided by OptionMetrics.

Furthermore, we use the volume data contained in the CBOE (C2 exchange) Open-Close

database. This dataset contains daily records of closing short and long open interest on

all S&P 500 options traded by public customers, firm proprietary traders and market

makers from the beginning of 2006 until the end of 2016. Following Garleanu et al.

(2009), we assume that options “end-users”- i.e., non-market makers, are either public

customers or firm proprietary traders.

2.3.3 Trading Activity Variables

To analyse the trading activities of options traders, we focus on a few key liquidity

indicators. First, for each option, we consider the open interest, the volume, the bid-

ask spread scaled by options’ mid-price, and the put-call ratio. These indicators are

calculated for options in different moneyness buckets (see Table 2.1). As options trad-

ing activity has been increasing over time, the volume and open-interest have been

normalised using their average value over a rolling window of 42 days.4

[Table 2.1 about here.]

Second, we focus on transactions initiated by end-users (i.e., non-market makers) and

on the pressure these transactions may induce on financial intermediaries. We construct

the net demand measure proposed by Garleanu et al. (2009), defined as the long trading

volume minus the short volume. As options are in zero net supply, the end-users net

demand equals the negative of the market makers’ net demand. Large demand for a

particular type of option creates deviation from optimal inventory for market makers

and induces demand pressure, which may, in turn, be priced. We decompose net demand

into open and close net demand and normalise each of these quantities by the average

of open (close) buy and sell demand, over the rolling window of 42 days:

ONDi,t =
OBi,t −OSi,t

(
∑42

j=1OBt−j/42 +
∑42

j=1OSt−j/42)/2
(2.1)

where OBi,t (OSi,t) is the open buy (sell) positions on option i on day t and OBt−j

4. There are on average 42 days between consecutive FOMC meetings.
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(OSt−j) is the total open (close) buy positions on day t− j.

In addition, we compute the refined signed put-call ratio of Cremers et al. (2022), which

focuses on open-buy contracts purchased by end-users:

PCRm,t =
Pm,t

Cm,t + Pm,t
(2.2)

where Pm,t and Cm,t are the numbers of put and call contracts purchased by non-market

makers to open new positions, on date t and at moneyness m.

Finally, following Andreou et al. (2018), we measure the dispersion in investors’ beliefs

regarding the future stock price by computing the daily dispersion of options’ open

interest across levels of moneyness Mj , labelled DISPOI. Given a range of strikes Kj

where j = 1, 2, ..., N , DISPOI is defined as:

DISPOIt =
N∑
j=1

Φj |Mj −
N∑
j=1

jMj | (2.3)

where Φj is the ratio of open interest of options strike Kj to all available strikes, we

require at least three options with positive open interest to compute DISPOI on a given

day. An increase in DISPOI reflects an increase in the dispersion of investor beliefs

regarding the future stock price.

2.3.4 Risk-neutral Moments and Risk Premiums

We analyse the behaviour of option prices around FOMCmeetings, focusing on measures

of volatility and skewness of the underlying index. More specifically, we analyse the value

of option protection against three aspects of risk associated with FOMC meetings: price

risk, tail risk, and variance risk.

First, we examine the price risk using the at-the-money implied volatility (ATM-IV).

We compute three alternatives to this measure. First, we compute the average implied

volatilities of ATM options from the option-data file in Optionsmetrics5 using options on

each day over a given window of time. We denote this measure by ATM-IVM1. Second,

5. Moneyness buckets are given in Table 2.1.
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we extract the ATM-IV of the horizon 30 days from the interpolated IV surface file in

the Optionsmetrics and indicate it by ATM-IVM2. Third, the 30-days model-free IV

(MFIV) is computed following Bakshi et al. (2003) using a portfolio of OTM options.

These measures are defined and discussed in Appendix 2.A.1.6

In addition, we examine whether variance shocks are priced. We consider two approx-

imations of the variance risk premium (VRP). The first one, VRPM1, calculates the

difference between the implied variance of an ATM option and the expected future re-

alised variance over the life of an option, whereby the latter results from a linear model

as described in Appendix 2.A.1. The second one, VRPM2, subtracts the realised 30-

day variance from the 30-day MFIV 2. These two estimates of the VRP have a 78%

correlation.

To measure the expensiveness of out-of-the-money put and call options separately, we

compute the slope of the implied volatility on the left and right hand-sides of the at-

the-money level (referred to as left and right IV slopes). To construct it, we regress the

implied volatilities of options each day of a given window on their deltas. We compute

two alternative measures of implied volatility slope. The first measure is constructed

using the option data file in Optionsmetrics. Specifically, We aggregate all options

traded each day, t, with a same time-to-maturity, τ , and build IV St,τ and denote

it by IV SM1. The second measure is calculated using the volatility surface file using

options with constant 30-days to maturity. We denote the second measure by IV SM2.

We complement these measures with the risk-neutral skewness (RNS) of Bakshi et al.

(2003).7 The left (resp. right) IV slope has a correlation of -0.25 (resp. 0.14) with the

risk-neutral skewness. All variables are formally defined in Appendix 2.A.1.

6. Alternative proxies for volatility such as the VIX and the simple VIX (SVIX) of Martin (2017)
can be used and do not change the results. Correlations between the volatility measures we use and the
VIX index in our sample are between 0.95 and 1.

7. We calculate two alternatives to this measure. The first measure is constructed using S&P500
options traded each day t, with an available time-to-maturity τ . We use the option data file of Option-
smetrics to construct our first measure. This measure is denoted by RNSM1. The second measure is
constructed using constant 30-days time-to-maturity options using the volatility surface file in Option-
sMetrics and is denoted by RNSM2.
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2.4 Quantify the Effect of FOMC Meetings on Options

In this section, we quantify the effect of FOMC meetings on options whose lives span

the event. Unless otherwise specified, we consider all options with maturities between 5

and 45 days. To this end, we build three regression models.

The first regression model evaluates the impact of FOMC meetings on risk-neutral

moments- namely, the ATM implied volatility (ATM − IVM1)
8, the risk-neutral skew-

ness9 (RNSM1), the implied volatility slope (IV SM1), and the variance risk premium

(V RPM1). These variables are constructed by aggregating all options traded each day

with a given maturity. We define the dummy variable DFOMC
t,τ which takes value 1 if

there is an FOMC meeting between times t and t + τ , and value of 0 otherwise. The

above mentioned variables (OptionV art,τ ) are then regressed on DFOMC
t,τ :

OptionV art,τ = β0 + β1.D
FOMC
t,τ + β2τ + ϵt,τ (2.4)

The computation of all variables is described in Section 2.3.3 and in Appendix 2.A.2.10

Table 2.2 reports the coefficient estimates of regression (2.4). We find that options whose

lives span FOMC meetings have higher ATM-IV, i.e., they tend to be more expensive

than other options. Their VRPs are significantly larger, indicating that (at least part

of) the additional volatility is priced. Kelly et al. (2016) find a similar effect induced

by earnings announcements and elections. The risk-neutral skewness is also higher, but

this change is not statistically significant. In particular, estimating the model with the

IV slopes reveals a substantial increase in both the left and right tail risk. Both are

statistically significant.

[Table 2.2 about here.]

8. Pricing variables denoted by subscript M2, which are calculated based on fixed-term maturity
(30-day) options, are not suitable for this analysis. However, we find high correlations between variables
obtained from the option-data file and from the volatility-surface files. For example, ATM-IVM2 and
VRPM2 have 98% and 78% correlation with the ATM-IVM1 and VRPM1 statistic, respectively.

9. RNS is not comparable across maturities; hence we calculate it using the option with 25 to 35
days to maturity.

10. To calculate standard errors, both here and in our subsequent regressions, we consider Het-
eroskedasticity of error terms and calculate the t-stats following White (1980)’s method.
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While it is usual that OTM put options become more expensive before events involving

macroeconomic uncertainty (e.g., elections or earning announcements as in Kelly et al.

(2016)), the increase in OTM call prices may seem more surprising. It is consistent with

the increase in underlying index prices highlighted by Lucca and Moench (2015) in the

days before FOMC meetings. The associated puzzle in the underlying market is that

investors do not seem to take advantage of this pattern, resulting in the low liquidity of

the index. We now examine whether this low liquidity can also be found in the options

markets.

The second regression model evaluates the impact of FOMCmeetings on trading indicators-

namely volume, open interest, bid-ask spread and net-open demand or net-close demand

of options and dispersion. We denote these trading indicators (OptionV ari) in our re-

gression model. Next, we define the dummy variable DFOMC
i , which is option-specific:

for option i, it takes value of 1 if an FOMC meeting takes place between the time the

option is traded (ti) and the time it expires (ti + τi), it takes value of 0 otherwise. The

treatment group contains all options whose lives span an FOMC meeting, whereas the

control group contains all other options. Finally, we set up our regression model as

follows.11:

OptionV ari = β0 + β1.D
FOMC
i + β2τi + ϵi. (2.5)

The term β2τi controls for the maturity fixed effect of options.

Table 2.3 presents the coefficient estimates of regression (2.5) along with the correspond-

ing T-statistics in parentheses. The T-statistics account for the Heteroskedasticity of

error terms and are calculated using the method proposed by White (1980).12 We re-

ject the null hypothesis of a zero coefficient (no predictability) based on the p-values of

the IVX-Wald test at the 1%, 5%, and 10% levels and denote it by triple, double, and

single asterisks, respectively. The results suggest that the liquidity of options covering

FOMC meetings is decreasing: the trading volume, open interest and open net demand

are respectively 3.19%, 0.61% and 0.33% lower for these options, whereas the bid-ask

11. We also consider applying regression (2.4) for these trading variables by averaging them over a
specific window. Our results remain qualitatively the same.

12. In section 2.C of the Appendix, our robustness analysis addresses time-series concerns. Clustering
standard errors by time yields consistent results, and auto-correlation of error terms has no impact on
our findings regarding trading activities.

97



spread and close net demand are respectively 1.31% and 0.33% higher. This decrease in

liquidity is observed over the three buckets of moneyness. Furthermore, the dispersion

measure DISPOI increases significantly for OTM calls, indicating little consensus among

OTM call option traders.

[Table 2.3 about here.]

In addition to our main analysis, we also consider the time fixed effect in our regression

model. The results are presented in Table 2.A.1 in the Appendix (Section 2.B). The

robustness of our findings is evident as the liquidity of all options covering FOMC

meetings exhibits a consistent pattern. Specifically, the trading volume and open interest

for options covering the event are 1.95% and 13.2% lower, respectively, while the bid-

ask spread and close net demand show respective increases of 24.3% and 0.46%. These

results highlight the consistent pattern of reduced liquidity during FOMC meetings

across different measures. The decrease in trading volume and open interest suggests a

decline in market activity, while the higher bid-ask spread and close net demand indicate

increased trading costs and potential imbalance between buyers and sellers.

Our third regression model, quantifies the effect of FOMC meetings on put-call ratio.

To do so, we look more specifically at the put-call ratio, using the definition of Cremers

et al. (2022) as in Equation (2.2). Therefore, the dummy DFOMC
t,i , in our regression

model, is set equal to one when using options whose lives span the event, and to 0

otherwise. We do not consider the time to maturity as a control variable for this model,

since we aggregate options with different maturities each day.

OptionV art,i = β0 + β1.D
FOMC
t,i + ϵt,i (2.6)

The low liquidity of OTM calls compared to put options is highlighted in Table 2.4, for

options whose lives span the event. This result holds for both OTM and ATM options.

[Table 2.4 about here.]

These results indicate a demand-supply imbalance of options before FOMC meetings,

in line with Constantinides and Lian (2021). End-users seek to hedge the risk of FOMC
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meetings by buying put options, or speculate on its outcome by buying both put and call

options. This demand pressure tightens constraints and induces pressure on financial

intermediaries, who increase the prices of options as a response and restrict their supply.

This, in turn, leads to a decreased trading of put and call options.

2.5 Option Moments and Liquidity over FOMC Cycles

In Section 2.4, we have shown that options whose lives span an FOMC event are more

expensive and exhibit larger risk premiums, but lower liquidity than other options. In

this Section, we analyse in more detail the timing of these phenomenons. We show that

they are most prominent in the week preceding the meeting.

2.5.1 Model Design

We build on Cieslak et al. (2019) and decompose FOMC cycles into 7 weeks:

−15 −10 −5 0

FOMC meeting

5 10 15 days to event

Week -3 Week -2 Week -1 Week 0 Week 1 Week 2 Week 3

Week -1 starts four days before FOMC meeting and ends on the meeting day. Week 0

starts a day after the meeting and ends five days after, etc. Date 0 refers to the day of

the scheduled FOMC meeting. For two-day meetings, date 0 is the second day, i.e., the

announcement day. Weekends are omitted, and all variables under consideration are set

to zero on holidays. Therefore, ten days after a meeting represent two calendar weeks

after the event.

Most FOMC cycles include weeks -3, -2, -1, 0, 1, and 2, but the number of data points

drops off quickly past week 2. There are 400 days in each of weeks -3 to 2, while there

are only 200 days in week 3. This is mainly because FOMC meetings do not necessarily

occur at regular intervals.

Each day, we calculate the volume of traded options, the open interest, the net demand,

the average bid-ask spread, the average dispersion in investors’ beliefs and the put-

call ratio, using all options with maturity between 5 and 45 days. These measures
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are normalised as explained in Section 2.3.3. The return moments- i.e., ATM implied

volatility, model-free IV, risk-neutral skewness and variance risk premium V RPM2 are

computed using constant maturity (30-day) options.13

2.5.2 Weekly Fluctuations Over the FOMC Cycle

Figure 2.A.1 displays the fluctuations of average daily moments and risk premiums over

each week of the FOMC cycle. During the week preceding FOMC meetings, consistent

with our results from Section 2.4, the implied volatility is at its highest point, whereas

the skewness is at its lowest. In addition, the variance risk premium is unusually high.

Most of these effects disappear after the meeting. Specifically, the price and variance

risk resolve after the meeting, while the tail risk remains persistent for another week.

[Figure 2.1 about here.]

Similarly, Figure 2.A.2 displays the average daily liquidity indicators over each week

of the FOMC cycle, with their 5% and 95% confidence bands. The overall liquidity

of the options markets is high two weeks before FOMC meetings and decreases as one

gets closer to the event. Volume and open interest are the lowest one week before and

the week after the meeting, and the bid-ask spread is the highest. This low liquidity is

due to the low open net demand in the week preceding meetings and the high close net

demand. Furthermore, the signed put-call ratio is higher during these two weeks.

[Figure 2.2 about here.]

We observe the same liquidity trends when focusing on ATM, OTM call and OTM put

options, as shown in Figures 2.A.3, 2.A.4 and 2.A.5. Finally, in line with our findings in

Section 2.4, the net demand to close call options is high on the week before the event.

These findings confirm the ones obtained in Section 2.4.

[Figure 2.3 about here.]

[Figure 2.4 about here.]

13. To be consistent with our analysis in quantifying the effect of FOMC meetings in Section 2.4,
we also construct ATM-IV, right (left) IV-slope and VRP using the option-data file in Optionmetrics,
employing options with 35 to 45 days to maturity on each day.
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[Figure 2.5 about here.]

[Figure 2.6 about here.]

2.5.3 Statistical Significance of Results

We test whether the averages of trading indicators or pricing moments in the weeks

before the FOMC event are statistically different from those in the weeks after FOMC

meeting. To this end, we regress daily variables on two dummies: one that equals 1 for

days in the week preceding FOMC meetings and one that equals 1 for days in the week

right after FOMC meeting. We control for the number of available maturities (NoAM)

on each day.

OptionV ari,t = α+ β1.1{t ∈ week -1 }+ β2.1{t ∈ week 0}+ β3 ×NoAM+ ϵt (2.7)

Positive (resp. negative) coefficients β1 or β2 suggest that the variable of interest is, on

average, higher (resp. lower) during weeks -1 or 0 than during other weeks of the cycle.

As shown in Table 2.5, the implied volatility (ATM-IV) is significantly higher on days

in week -1 with t-statistic of 2.80. In weeks -1 and 0, the left implied volatility slope

obtained from constant maturity options is significantly higher with t-statistics of 3.61

and 2.26, respectively. Therefore, risk-neutral skewness is significantly lower by 4.75%

during week -1 and 3.41% during the week after the meeting, and the VRP is higher

during week -1 and drops after the meeting. To be consistent with our analysis in Section

2.4, we employ options pricing variables obtained from option-data file (variables sub-

scripted by M1 as explained in Appendix) and regress daily average of these variables

on week dummies.14 Table 2.6 reports the results of the cycle analysis employing these

variables. These results are consistent with our findings in Table 2.5 suggesting that the

variance risk resolves after the meeting in week 0 (t-statistic of -2.23), while the tail risk

(RNS) remains persistent for another week (t-statistic of -2.77).

[Table 2.5 about here.]

[Table 2.6 about here.]

14. We take the daily average of each variable using options with 25 to 35 days to maturity.
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The effects of liquidity indicators are displayed in Table 2.7. The total volume on all

options per day is lower on days that fall in week -1 in FOMC cycle time by 4.28%.

Results of the regression on bid-ask spread and dispersion are shown in Table 2.8. In

week -1, the bid-ask spread is also greater (i.e. by 0.32% on all options). We run the

regression for different buckets of moneyness and observe the same results for OTM put

and call options. Our results suggest that the dispersion of investors’ beliefs on all, ATM

and OTMP options, is high and significant in weeks -1 and 0.

[Table 2.7 about here.]

[Table 2.8 about here.]

Table 2.9 reports the significant tests on signed tradings, namely open net-demand and

close net-demand. We find that in the week before the event, the net demand to close

positions increases while the net demand to open positions decreases with t-stats equal

to 1.88 and -1.84, respectively. Furthermore, the net demand to close the OTMC options

is greater in week -1 by 8.58%. Finally, Table 2.10 reports the results of the regression

on the put-call ratio and shows that the put-call ratio is higher in the week before the

event by 3.6%. This increase in the put-call ratio applies for all buckets of options.

[Table 2.9 about here.]

[Table 2.10 about here.]

2.5.4 Discussion of Results

Our findings on trading activities complement our results on RN moments and suggest

that around the time of the FOMC meetings, market makers are exposed to three types

of risks: price, variance, and tail risk. As discussed by Lucca and Moench (2015), pre-

FOMC underlying returns include a premium to compensate equity investors for bearing

the uncertainty of what will be decided during the meeting. This leads investors to buy

put options in the week before the meeting as a hedge against unfavorable outcomes

and/or both put and call options to speculate on the outcome. The increased demand

for options, combined with lower supply by constrained financial intermediaries, results

in higher option prices, variance, and tail risk. Consequently, trading activity decreases,

and bid-ask spreads widen.
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Our results suggest that the FOMC meetings have an effect on options characteristics

in the week preceding the announcement (week -1). This period is typically marked by

heightened volatility and uncertainty in the options markets as traders anticipate po-

tential policy changes or interest rate decisions by the Federal Reserve. Consequently,

option premiums may increase, reflecting the higher perceived risk and uncertainty as-

sociated with the upcoming announcement. Options traders may adjust their positions

or use options to hedge against potential market moves, thereby influencing options

characteristics.

Some of these effects persist in the week after the meeting. One possible explanation

could be that the effects of changes in Fed rates are not immediately fully incorporated

in index prices. Bernanke and Kuttner (2005) found that an unanticipated 25-basis-

point cut in the Federal funds rate target is associated with about a 1% increase in

stock prices after 30 days.

On the other hand, Cieslak et al. (2019) show that the impact of FOMC cycles extends

more broadly to the stock market, particularly in every even week of the cycle.15 This

broader impact could be attributed to the release of minutes from the previous FOMC

meeting, which typically occurs three weeks after the meeting. These minutes provide

insights into the discussions and debates among policymakers, offering information about

the future path of monetary policy. Market participants scrutinize these minutes for

clues regarding the Federal Reserve’s stance and potential policy changes, leading to

reactions in the stock market.

The difference in the effects of FOMC meetings on options characteristics and stock

market behavior in different time frames can be attributed to the nature of policy

uncertainty and its resolution. The inherent unpredictability and ambiguity surrounding

the Federal Reserve’s decisions, such as changes in interest rates or shifts in monetary

policy, create a sense of uncertainty in financial markets. As a result, market participants

15. Our results indicate that the FOMC meetings have an impact on options characteristics in the
week preceding the announcement (week -1). We also observe that these effects on the moments persist
in week 3, which corresponds to week 4 in Cieslak et al. (2019)’s setting due to a slight shift in their
week numbering. However, Cieslak et al. (2019) suggest that there is an effect on the stock market
in every even week of the FOMC cycle. Hence, it appears that most of the effect of FOMC meetings
is concentrated in weeks -1 and 3 (week 0 and 4 in Cieslak and Povala’s setting). This suggests that
FOMC meetings exhibit a mid-cycle effect on the stock market rather than the option market.
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actively respond to this uncertainty by adjusting their strategies, resulting in heightened

volatility and changes in options positions.

However, this policy uncertainty can be resolved through the actual FOMC announce-

ments or the subsequent release of meeting minutes. Clarity is provided to the market,

enabling investors to make informed decisions based on the revealed policy decisions.

The resolution of policy uncertainty triggers consequential market reactions, leading to

adjustments in options pricing and stock market behavior. Market participants reassess

their positions and adapt their investment strategies based on the new information.

Understanding these differential effects and the nature of policy uncertainty is crucial

for traders and investors to navigate the intricacies of FOMC cycles effectively and make

well-informed decisions aligned with their risk appetite and investment objectives.

2.6 Directional Trading Before the Meeting

In this section, we investigate whether option traders trade on the predictable movements

of FOMC policies. We decompose monetary policy shocks into an expected component

and a surprise component, following Bernanke and Kuttner (2005). Let us consider a

meeting taking place on day d of monthm, and denote by f0
m,d the current-month futures

rate implied federal futures funds. The one-day surprise in target rates is calculated as

the difference between the rate implied by the contract expiring on the day of the meeting

and the implied by the contract expiring on the day before the meeting :16

∆runexpectedd =
D

D − d
(f0

m,d − f0
m,d−1) (2.8)

where D is the number of days in the month.

The expected component of the change in target rates is defined as the actual change

minus the unexpected component:

∆rexpectedd = ∆rtotald −∆runexpectedd (2.9)

16. These contracts are referred to as “30 Day Federal Funds Futures” and traded on the Chicago
Board of Trade. They contain information on expectations of the effective Federal funds rate, averaged
over the settlement. The implied futures rate is 100 minus the contract price.
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We regress the total change in target rates, and its expected and unexpected individual

components on trading and pricing variables:

mpsd = α+ βOptionV ard−1 + ϵ (2.10)

where mps denotes the monetary policy shock considered (total, expected or unex-

pected). OptionV ard−1 denotes the average option-based variable between 15 days and

1 day before the event.17

Our results are reported in Table 2.11. Two interesting observations can be made.

First, both components of the IV are negatively related to change in the Fed fund rate,

and this relation is statistically significant. It is not surprising that expected decline

in fund rates increase option prices, but the fact that the relation also holds for the

unexpected change is in line with the presence of informed traders. These traders would

have superior information prior to the meetings, and trade on this information, making

the price of options rise. Second, there is a significant negative relationship between

the RN-skewness and the total and expected component of monetary policy shocks. We

also find a significant positive relationship between the put-call ratio and these shocks.

These relations show that an increase in expected tail risk and in the purchase of put

options relative to call options predict an increase in the Fed fund rate. This link is not

surprising as Bernanke and Kuttner (2005) finds that an increase in the fed fund leads

to a decrease in 30-day index returns. Interestingly, our results do not highlight any link

between unexpected rate changes and tail risk.

David and Veronesi (2014)’s model can also explain our results. This model discusses

that in good times, investors perceive greater downside risk in stocks than in bad times-

i.e., positive fundamental news has little effect on revising investors’ views about a boom

regime, however, negative fundamental news may lead to a substantial downward revi-

sion of such beliefs. A significant downward revision of views in a booming regime would

lead to considerably lower stock prices. Therefore, in good times, stock returns incline

to be negatively skewed. The negatively skewed return distribution increases the price

17. To calculate the put-call ratios we focus our analysis on mid-term options with maturities between
25-45 days. This ensures that we have exploited the information embedded in options covering the events,
and also confirms that our results from put-call ratios are comparable with RN moments obtained from
constant maturity 30-days options in volatility surface file of Optionsmetrics.
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of OTM put options relative to OTM call options. When the tail-risk index rises, it

indicates that the economy is shifting to a booming regime with regular capacity utilisa-

tion and inflation. Consequently, the forward-looking Taylor rule anticipates tightening

monetary policy back to normal levels and hence lead to higher future interest rates.

[Table 2.11 about here.]

We also found a negative relationship between implied volatilities and real and un-

expected components of monetary policy shocks. This finding also suggests that the

monetary authority reacts to a volatile stock market by lowering interest rates; there-

fore, investors expect expansionary lower Fed rates when the volatility is high. The

David and Veronesi (2014) equilibrium model can explain these findings. This model

suggests that when investors are uncertain about the current regime, ATMIV increases.

In this situation, investors update their beliefs more rapidly, resulting in higher return

volatility. During such times, expected economic growth is lower than during good times

and is represented by lower expected future capacity utilisation. These views persuade

the central bank to react through the forward-looking Taylor rule. Therefore, central

banks decrease the target real interest rates to sustain economic stability. This explains

the reason why an increase in the ATMIV is related to reduced future rates.

2.7 Role of Economic Conditions and Political Uncertainty

Pastor and Veronesi (2012) find option-implied risk measures react more strongly to

political events (e.g., elections) in weak economies due to the added uncertainty. In this

Section, we analyse whether our results depend on the economic conditions at the time

of FOMC meetings.

We use two measures of economic conditions in the United States. First, the Composite

Leading Indicator (CLI) as is a monthly index published by the Conference Board, which

presents signals of turning points in business cycles and aims to predict the direction

of global economic movements. We obtain monthly CLI data from the OECD website

from 2006 to 2016. We standardise this measure and denote the resulting variable by

Econ. Second, the Economic Policy Uncertainty (EPU) index of Baker et al. (2013)

measures economic uncertainty using text analysis methods.
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We regress the option-based variables (volume, open-interest, Open net-demand, ATM

implied volatility, VRP and risk-neutral skewness) in the week before the event (week

−1 in the cycle) on each of these indexes, Econ and EPU , at the time of the event:

OptionV art = α+ β1Econt + β2EPUt + ϵt (2.11)

As shown in Table 2.12, there is a significant negative relationship between the CLI and

both the implied volatility and the variance risk premium (t-statistics of -15.12 and -5.36,

respectively). A higher volatility and price of volatility preceding the meetings therefore

leads to worse economic conditions on the day of the meeting. In line with this, we find a

significant positive relationship between the CLI the RNS, with a t-statistic of 2.38. This

positive relationship also suggests that a lower RNS leads to worse economic conditions.

When focusing on policy uncertainty, we find a significant positive relationship between

the EPU and the implied volatility, with a t-statistic of 6.11. Additionally, the bid-ask

spread shows a positive relationship with uncertainty (EPU) and a negative relationship

with economic conditions (CLI), with t-statistics of 3.06 and -6.86, respectively.

[Table 2.12 about here.]

We argue that stock overpricing is the source of this relationship. In weak economic

conditions, stock overpricing may not be quickly corrected in the underlying market

due to limits to arbitrage. Therefore, investors may incline to the options market to

trade on their negative news or beliefs. To maximise their leverage on their negative

beliefs, they sell (buy) OTM calls (puts) instead of shorting the stock. The purchase of

OTM is attractive compared to directly selling the underlying stock because the options

market does not expose to the potential risk that holding the stock involves. In turn,

The risk-averse market makers would need to sell the underlying stock and get exposed

to the downside and inventory risk. As a result, they induce an upward (downward)

price pressure on OTM puts (calls) to compensate for their risk. This mechanism is

consistent with the demand-based option pricing framework of Garleanu et al. (2009)

and renders relatively more (less) OTM puts (calls) expensive, resulting in a lower RNS

value. Subsequently, a relatively low RNS value is followed by stock underperformance

if market participants perceive this options trading activity as an informative signal
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correct the stock overpricing.

Our additional analysis in section 2.D confirms that the inclusion of the SPX return as

a control variable does not significantly alter the robustness of our findings, strength-

ening the evidence of the link between options trading and stock market dynamics in

weak economic conditions. These insights shed light on the interplay between options

characteristics and market behavior in response to economic uncertainty and provide

valuable implications for investors and traders navigating uncertain market conditions.

2.8 Conclusions

Options provide valuable protection against unfavourable outcomes. Many investors also

use options for speculation purposes. We analyse the value of option protection against

risks associated with uncertainty in FOMC events. Furthermore, we investigate the

changes in the trading behaviour of traders and the value of option protection against

three types of risk corresponding to these political events: price risk, variance risk and

tail risk.

We find that policy uncertainty increases option prices and therefore implied volatility

of options for policy events.

Our results suggest that in the case of monetary policy news and announcements (FOMC

meetings), trading activity decreases from 6 days before the event and shifts more to-

wards put options. This happens with an increase in price, variance and tail risk of

option prices, so option prices become more left-skewed and more expensive in weeks

around the event. Similarly, we found that the put-call ratio increases one week before

the meeting.

We also examine how option variables can predict monetary policy shocks. We find

that a positive shock to downside-risk predicts an increase in the Fed rate and implies

that when investors become more worried about a stock market decline, they predict

that future short-term rates to increase. In addition, we found a negative relationship

between implied volatilities and monetary policy shocks. These findings suggest that

the monetary authority reacts to a volatile stock market by lowering interest rates.
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Therefore when the volatility is high, investors expect an expansionary lower Fed rate.

Finally, we analyse the role of economic conditions in the value of option protection

against risks associated with political events. We showed that our findings are more

pronounced in weaker economic conditions.
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Figure 2.A.1. Option moments and premia over the FOMC cycle: This figure
represents the fluctuations of pricing indicators over the FOMC cycle for all options
traded between 2006 and 2016. The period covers 82 FOMC cycles. Dashed lines
represent the 5% and 95% confidence intervals. Subscript M1 and M2 are explained in
the Appendix 2.A.2.
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Figure 2.A.2. ALL Option liquidity over the FOMC cycle: This figure represents
the fluctuations of liquidity indicators over the FOMC cycle, for all options traded
between 2006 and 2016. The period covers 82 FOMC cycles. Dashed lines represent the
5% and 95% empirical confidence intervals.
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Figure 2.A.3. ATM Option liquidity over the FOMC cycle: This figure rep-
resents the fluctuations of liquidity indicators over the FOMC cycle, for ATM options
traded between 2006 and 2016. The period covers 82 FOMC cycles. Dashed lines rep-
resent the 5% and 95% empirical confidence intervals.
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Figure 2.A.4. OTMC Option liquidity over the FOMC cycle: This figure
represents the fluctuations of liquidity indicators over the FOMC cycle, for OTMC
options traded between 2006 and 2016. The period covers 82 FOMC cycles. Dashed
lines represent the 5% and 95% empirical confidence intervals.
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Figure 2.A.5. OTMP Option liquidity over the FOMC cycle: This figure rep-
resents the fluctuations of liquidity indicators over the FOMC cycle, for OTMP options
traded between 2006 and 2016. The period covers 82 FOMC cycles. Dashed lines rep-
resent the 5% and 95% empirical confidence intervals.
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Figure 2.A.6. Put-call ratio over the FOMC cycle: This figure represents the
fluctuations of put-call ratio over the FOMC cycle, for all options traded between 2006
and 2016. The period covers 82 FOMC cycles. Dashed lines represent the 5% and 95%
empirical confidence intervals.
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Moneyness Number of Obs.

ALL options 0 <= K/S < 2 1,083,353
ATM Options 0.98 <= K/S < 1.02 175,173
OTM puts 0 <= K/S <= 0.98 473,497
OTM calls 1.02 <= K/S <= 2 152,272

Table 2.1. Sample Data: This table reports the number of options in our data set
for each bucket of moneyness K/S, where K denotes an option’s strike and S is the
underlying spot price.
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ATM − IVM1 VRPM1 RNSM1 left IV SM1 right IV SM1

β1 0.90*** 0.45** 2.39 0.62*** 0.66***
t-stat (3.55) (2.72) (0.47) (3.35) (5.75)

Table 2.2. Quantifying the Effect of FOMC Meetings on Risk-Neutral Mo-
ments and Risk Premia: This table displays the estimated β1 coefficients in regression
(2.4):

OptionV art,τ = β0 + β1.D
FOMC
t,τ + β2τi + ϵt,τ

The dependent variables (OptionV ar) are the ATM implied volatility (ATM IV) and
the variance risk premium (VRPM1), RNS, the left and right implied volatility slopes
(left/right IVS),. The t-statistics, reported in parentheses, consider Heteroskedasticity
of error terms and are calculated following White (1980)’s method.
***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Vol OI BAS OND CND DISP

ALL β1 -0.0319∗∗∗ -0.0061∗∗ 0.0131∗∗∗ -0.0033 0.0048 8.88
(-13.65) (-2.536) (6.064) (-1.139) (1.618) (1.33)

ATM β1 -0.0457∗∗∗ -0.0016 -0.0142∗∗∗ -0.0137∗∗ 0.0107∗ -1.14**
(-7.533) (-0.2545) (-2.737) (-2.198) (1.710) (-1.96)

OTMC β1 -0.0366∗∗∗ -0.0418∗∗∗ 0.0388∗∗∗ 0.0059 0.0032 8.00**
(-6.009) (-6.522) (6.649) (0.8830) (0.4795) (2.41)

OTMP β1 -0.0268∗∗∗ -0.0063∗ 0.0380∗∗∗ -0.0016 0.0030 -4.24
(-7.543) (-1.730) (11.55) (-0.3700) (0.6840) (-0.68)

Table 2.3. Quantifying the Effect of FOMC Meetings on Trading Activity
Variables: This table displays the estimated β1 coefficients. For the first five variables,
the estimated β1s come from the (2.5):

OptionV ari = β0 + β1.D
FOMC
i + β2τi + ϵi

The dependent variables (OptionV ar) are the volume (VOL), open-interest (OI), bid
ask spread (BAS), open net demand (OND) and close net demand (CND). DFOMC

i is
the dummy that if there is an FOMC meeting between quotation date and expiration
date. τi is the days-to-maturity. For the dispersion in investors’ beliefs (DISP), the
estimated β1 comes from the (2.4):

DISPt,τ = β0 + β1.D
FOMC
t,τ + β2τ + ϵt,τ

where DFOMC
t,τ takes the value 1 if there is an FOMC meeting between times t and

t + τ , τ is the days-to-maturity. The t-statistics, reported in parentheses, consider
Heteroskedasticity of error terms and are calculated following White (1980)’s method.
***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Dependent Variables: pcr.all pcr.atm pcr.otm

0.0886∗∗∗ 0.0730∗∗∗ 0.0831∗∗∗

(9.580) (11.01) (8.163)

vcovHC co-variance matrix, t-stats in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 2.4. Quantifying the Effect of FOMC Meetings on Put-Call Ratio
Measures: This table displays the estimated β1 coefficients in the following regression:

OptionV art,i = β0 + β1.D
FOMC
t,i + ϵt,i

Each date t, we divide options with different days-to-maturity into two groups. The
treatment group contains the options whose remaining lives span at least one FOMC
meetings. The control group contains the other options in date t. The dependent
variables (OptionV ar) are the put-call ratios of the two groups of options at each date
t. DFOMC

t,i equals 1 for the treatment group and 0 for the control group. The t-statistics,
reported in parentheses, consider Heteroskedasticity of error terms and are calculated
following White (1980)’s method. ***, **, and * denote statistical significance at the
1%, 5%, and 10% levels, respectively.
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Dependant Variable M1 M2 M3

ATM.IV week -1 0.0080∗∗∗ 0.0086∗∗∗

(2.667) (2.803)
week 0 0.0017 0.0033

(0.5821) (1.086)

MFIV week -1 0.0093∗∗∗ 0.0101∗∗∗

(2.681) (2.860)
week 0 0.0028 0.0046

(0.8171) (1.337)

VRP week -1 0.0029∗ 0.0027
(1.736) (1.599)

week 0 -0.0015 -0.0011
(-0.8564) (-0.5737)

RNS week -1 -0.0413∗∗∗ -0.0475∗∗∗

(-2.988) (-3.354)
week 0 -0.0255∗ -0.0341∗∗

(-1.712) (-2.243)

RIVS week -1 0.0091∗∗∗ 0.0099∗∗∗

(2.736) (2.920)
week 0 0.0027 0.0045

(0.8432) (1.368)

LIVS week -1 0.0095∗∗∗ 0.0107∗∗∗

(3.269) (3.612)
week 0 0.0048 0.0067∗∗

(1.616) (2.226)

Table 2.5. Regressions of Pricing Moments on Week Dummies: This table
displays the estimated coefficients β1 and β2 of the following regression run on daily
data:

OptionV ari,t = α+ β1.1{t ∈ week -1 }+ β2.1{t ∈ week 0}+ ϵt

where OptionV ar is the pricing indicator obtained from 30-days constant maturity op-
tions, namely (ATM−IVM2), the risk-neutral skewness (RNSM2), left and right implied
volatility slopes (L(R)IV SM2), and the variance risk premium (V RPM2) obtained from
model 2 as discussed in Appendix 2.A.1. These measures are computed using volatility
surface file in Optionsmetrics using options with constant time to maturity of 30-days.
In regression 1 (M1), the coefficient β2 is set to 0, in regression 2 (M2), β1 is set to 0,
in regression 3 (R3) they are both estimated. The t-statistics, reported in parentheses,
consider Heteroskedasticity of error terms and are calculated following White (1980)’s
method. ***/**/* indicate significance at the 1/5/10% levels.
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M1 M2 M3

ATM-IVM1

β1 0.75 0.68
(0.98) (0.88)

β2 0.52 0.43
(-0.73) (-0.59)

VRPM1

β1 0.42 0.27
(0.93) (0.59)

β2 -0.99** -0.95**
(-2.35) (-2.23)

RNSM1

β1 -6.44 -8.31*
(-1.43) (-1.84)

β2 -10.63** -11.80***
(-2.52) (-2.77)

LIVSM1

β1 0.30 0.23
(0.83) (0.64)

β2 -0.45 -0.42
(-1.32) (-1.21)

RIVSM1

β1 0.76 0.67
(1.27) (1.10)

β2 -0.68 -0.59
(-1.22) (-1.04)

Table 2.6. Regressions of Pricing Moments on Week Dummies - Robustness
Check: This table displays the estimated coefficients β1 and β2 of the following regres-
sion run on daily data:

OptionV ari,t = α+ β1.1{t ∈ week -1 }+ β2.1{t ∈ week 0}+ ϵt

where OptionV ar is the left slope of IV smile (LIVSM1), the right slope of IV smile
(RIVSM1) or the variance risk premium (VRPM1), obtained from model 1, as dis-
cussed in Appendix 2.A.1. These measures are calculated using option-data file in
Optionsmetrics- i.e., using options quoted on each day over a given window of time. In
regression 1 (R1), the coefficient β1 is set to 0, in regression 2 (R2), β2 is set to 0, in
regression 3 (R3) they are both estimated. The t-statistics, reported in parentheses,
consider Heteroskedasticity of error terms and are calculated following White (1980)’s
method. ***/**/* indicate significance at the 1/5/10% levels.
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Dependent Variables: Vol OI
Moneyness Model: M1 M2 M3 M1 M2 M3

ATM week1 -13.53∗∗∗ -14.60∗∗∗ -9.376∗∗∗ -11.29∗∗∗

(-4.125) (-4.369) (-2.902) (-3.432)
week0 -2.915 -5.695 -8.027∗∗ -10.18∗∗∗

(-0.8081) (-1.548) (-2.505) (-3.113)

OTMC week1 0.3327 0.2493 -7.133∗∗ -8.212∗∗∗

(0.0860) (0.0632) (-2.305) (-2.594)
week0 -0.4904 -0.4430 -4.172 -5.736∗

(-0.1283) (-0.1136) (-1.275) (-1.713)

OTMP week1 0.4181 0.5000 -4.627∗ -5.455∗∗

(0.1368) (0.1605) (-1.793) (-2.077)
week0 0.3400 0.4353 -3.358 -4.397

(0.1101) (0.1383) (-1.230) (-1.581)

ALL week1 -4.281 -4.770∗ -9.923∗∗∗ -11.61∗∗∗

(-1.566) (-1.711) (-3.563) (-4.099)
week0 -1.693 -2.602 -6.765∗∗ -8.978∗∗∗

(-0.6332) (-0.9538) (-2.244) (-2.922)

Table 2.7. Regressions of Unsigned Liquidity Indicators on Week Dummies:
This table displays the estimated coefficients β1 and β2 of the following regression run
on daily data:

OptionV ari,t = α+β1.1{t ∈ week -1 }+β2.1{t ∈ week 0}+β3 ∗NoAM+β4 ∗DTM+ ϵt

where OptionV ar is the trading volume (VOL) and open-interest (OI). NoAM is the
number of available maturities on each day. DTM is the average days-to-maturity of
each day. In regression 1 (M1), the coefficient β1 is set to 0, in regression 2 (M2), β2
is set to 0, in regression 3 (M3) they are both estimated. The t-statistics, reported
in parentheses, consider Heteroskedasticity of error terms and are calculated following
White (1980)’s method. ***/**/* indicate significance at the 1/5/10% levels.
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Dependent Variables: Spread dispersion
Moneyness Model: M1 M2 M3 M1 M2 M3

Variables
ATM week -1 -0.0075 -0.0118 0.0465∗∗∗ 0.0630∗∗∗

(-0.6053) (-0.9297) (4.038) (5.309)
week 0 -0.0177 -0.0203 0.0759∗∗∗ 0.0879∗∗∗

(-1.341) (-1.494) (6.522) (7.339)

OTMC week -1 -0.0403 -0.0714 0.1046 0.1287∗

(-0.5356) (-0.9208) (1.475) (1.775)
week 0 -0.1296∗ -0.1454∗ 0.1037 0.1282∗

(-1.663) (-1.811) (1.563) (1.889)

OTMP week -1 -0.0063 -0.0143 0.2336∗ 0.3156∗∗

(-0.2616) (-0.5825) (1.840) (2.452)
week 0 -0.0344 -0.0376 0.3757∗∗∗ 0.4358∗∗∗

(-1.399) (-1.493) (2.887) (3.304)

ALL week -1 0.0036 0.0032* 0.3688∗∗ 0.4712∗∗∗

(0.8022) (1.6850) (2.565) (3.210)
week 0 -0.0027 -0.0020 0.4541∗∗∗ 0.5439∗∗∗

(-0.6046) (-0.4379) (3.091) (3.628)

vcovHC co-variance matrix, t-stats in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 2.8. Regressions of Liquidity Indicators on Week Dummies: This table
displays the estimated coefficients β1 and β2 of the following regression run on daily
data:

OptionV ari,t = α+β1.1{t ∈ week -1 }+β2.1{t ∈ week 0}+β3 ∗NoAM+β4 ∗DTM+ ϵt

where OptionV ar is the bid-ask spread (BAS) and dispersion measure (DISPOI). NoAM
is the number of available maturities on each day. DTM is the average days-to-maturity
of each day. In regression 1 (M1), the coefficient β2 is set to 0, in regression 2 (M2),
β1 is set to 0, in regression 3 (M3) they are both estimated. The t-statistics, reported
in parentheses, consider Heteroskedasticity of error terms and are calculated following
White (1980)’s method.***/**/* indicate significance at the 1/5/10% levels.
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Dependent Variables: DC DO
Moneyness Model: M1 M2 M3 M1 M2 M3

Variables
ATM week -1 0.5258 0.4243 -2.496 -1.924

(0.3009) (0.2389) (-0.9496) (-0.7200)
week 0 -0.6208 -0.5400 3.407 3.041

(-0.3652) (-0.3126) (1.079) (0.9464)

OTMC week -1 8.559∗∗∗ 8.580∗∗ -1.005 -1.452
(2.589) (2.568) (-0.3606) (-0.5135)

week 0 -1.521 0.1125 -2.096 -2.373
(-0.5076) (0.0372) (-0.8502) (-0.9502)

OTMP week -1 0.8521 0.8599 -2.443 -2.101
(0.4818) (0.4777) (-1.412) (-1.184)

week 0 -0.1222 0.0416 2.218 1.818
(-0.0582) (0.0194) (0.9700) (0.7773)

Variables
ALL week -1 1.879∗ 1.859∗ -2.178∗ -1.988

(1.881) (1.834) (-1.848) (-1.643)
week 0 -0.4582 -0.1040 1.386 1.007

(-0.4094) (-0.0915) (0.8943) (0.6349)

vcovHC co-variance matrix, t-stats in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 2.9. Regressions of Signed Liquidity Indicators on Week Dummies:
This table displays the estimated coefficients β1 and β2 of the following regression run
on daily data:

OptionV ari,t = α+β1.1{t ∈ week -1 }+β2.1{t ∈ week 0}+β3 ∗NoAM+β4 ∗DTM+ ϵt

where OptionV ar is the open net-demand (OND) and close net-demand (CND). NoAM
is the number of available maturities on each day. DTM is the average days-to-maturity
of each day. In regression 1 (M1), the coefficient β2 is set to 0, in regression 2 (M2),
β1 is set to 0, in regression 3 (M3) they are both estimated. The t-statistics, reported
in parentheses, consider Heteroskedasticity of error terms and are calculated following
White (1980)’s method. ***/**/* indicate significance at the 1/5/10% levels.
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ATM.PCR OTM.PCR ALL.PCR
Model: M1 M2 M3 M1 M2 M3 M1 M2 M3

week1 0.026∗∗ 0.033∗∗∗ 0.024∗∗∗ 0.031∗∗∗ 0.029∗∗∗ 0.0367∗∗∗

(2.178) (2.678) (2.680) (3.401) (3.746) (4.491)
week0 0.031∗∗ 0.036∗∗∗ 0.0354∗∗∗ 0.041∗∗∗ 0.032∗∗∗ 0.039∗∗∗

(2.431) (2.853) (3.712) (4.184) (3.709) (4.335)

Table 2.10. Regressions of Put-Call Ratio on Week Dummies: This table
displays the estimated coefficients β1 and β2 of the following regression run on daily
data:

OptionV ari,t = α+ β1.1{t ∈ week -1 }+ β2.1{t ∈ week 0}+ β3 ∗NoAM+ ϵt

where OptionV ar is the put-call ratio (PCR) across different level of moneyness. NoAM
is the number of available maturities on each day. DTM is the average days-to-maturity
of each day. In regression 1 (M1), the coefficient β2 is set to 0, in regression 2 (M2),
β1 is set to 0, in regression 3 (M3) they are both estimated. The t-statistics, reported
in parentheses, consider Heteroskedasticity of error terms and are calculated following
White (1980)’s method. ***/**/* indicate significance at the 1/5/10% levels.
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Panel A: signed put-call ratios

PCR-ALL PCR-OTM PCR-ATM

total unexp exp total unexp exp total unexp exp

β 0.27* -0.05 0.32** 0.30** -0.04 0.34** -0.02 -0.05 0.04
t-stat (1.86) (-1.24) (2.07) (2.38) (-1.18) (2.54) (-0.13) (-1.46) (0.26)
p-value 0.07 0.22 0.04 0.02 0.24 0.01 0.90 0.15 0.79

Panel B: RN moments

IV VRP SKEW

total unexp exp total unexp exp total unexp exp

β -0.39*** -0.10** -0.29* 0.23 0.33*** -0.10 -0.13** -0.01 -0.12**
t-stat (-2.64) (-2.36) (-1.77) (0.66) (3.59) (-0.27) (-2.61) (-0.54) (-2.25)
p-value 0.01 0.02 0.08 0.51 0.00 0.79 0.01 0.59 0.03

Table 2.11. Do Option-Implied Moments and Liquidity Predict the Change
in Fed fund Rate? This table shows the coefficient estimates of regression model:
mpsτ = α+ β Option Varτ−1 + ϵ
where the dependent variable is one of the components of monetary policy shocks (ex-
pected, unexpected and real) and the dependant variable is the average of put-call ratio
(Panel A) or option implied moments (Panel B) on days before the meeting.
The t-statistics, reported in parentheses, consider Heteroskedasticity of error terms and
are calculated following White (1980)’s method. In this table, ***/**/* indicates sig-
nificance at the 1/5/10% level

126



VOL OI BAS OND IV VRP RNS

β1 0.018 -0.008 -0.341*** -0.104** -0.62*** -0.30*** 0.14**
t-stat (0.34) (-1.15) (-6.86) (-1.91) (-15.12) (-5.36) (2.38)
p-value 0.73 0.87 0.00 0.05 0.00 0.00 0.02

β2 -0.018 -0.117** 0.1523** 0.017 0.25*** 0.07 0.06
t-stat (-0.32) (-2.15) (3.06) (0.32) (6.11) (1.23) (1.06)
p-value 0.74 0.03 0.00 0.74 0.00 0.22 0.29

Table 2.12. The Effect of Economic Policy Uncertainty (EPU) and Economic
Condition (CLI) on Trading Factors and Pricing Moments: The table shows
the slope coefficients, β1 and β2, of regression model:
OptionV art = α+ β1CLIt + β2EPUt + ϵt
where OptionV ar is trading factors (columns 1-4) and implied option moments (columns
5-7) on week -1 of the FOMC cycle. We regress option-based variables on the measures
of economic condition (CLI) and economic policy uncertainty index. CLI is standardized
to zero mean using data from 2006 to 2016. The t-statistics, reported in parentheses,
consider Heteroskedasticity of error terms and are calculated following White (1980)’s
method.
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Appendix - Chapter Two

2.A Variable Construction

2.A.1 Trading Activity Variables

2.A.1.1 Liquidity Indicators

Regarding general unsigned liquidity indicators, we focus on total volume and open

interest of options. In addition, we define bid-ask spread as the difference between

option trade prices scaled by their mid-price.

In addition, we focus on end-users open net demand and close net demand as measures

of signed trading activities. We follow Garleanu et al. (2009) and build our signed

trading indicators as follows. We obtain the data from the Chicago Board Options

Exchange (CBOE). These data consist of a daily record of opening (closing) short and

long open interest on all SPX for public customers and firm proprietary traders from

the beginning of 2006 to the end of 2016. We compute the net demand of each of these

groups of agents as the open (close) long open interest minus the short open interest.

We focus our analysis on non-market-maker net demand, defined as the sum of the net

demand of public customers and proprietary traders, which is equal to the negative of

the market-maker net demand (since options are in zero net supply). Hence, we assume

that public customers and firm proprietary traders—that is, all non-market-makers—are

“end-users.

2.A.1.2 Put-Call Ratio

The signed put-call ratio of Cremers et al. (2022) is defined as:

PCOB
t = OpenBuyPutt/(OpenBuyPutt +OpenBuyCallt) (2.A.1)

where, on date t, OpenBuyPutt and OpenBuyCallt are the numbers of put and call

contracts purchased by non-market makers to open new positions. We defined the open-

sell, close-buy and close-sell put-call ratios in the same manner.
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2.A.2 Risk-neutral Moments and Risk Premiums

2.A.2.1 ATM implied Volatility (IV)

We compute two alternatives of ATM-IV. The first measure is constructed following

Kelly et al. (2016) and averages IVs of ATM options as described in Table 2.1, over a

given window of time- i.e., IVs of ATM options quoted on day t and expires on day t+τ .

We denote this measure by ATM − IVM1.

In addition, we use 30-day Volatility Surface file from OptionMetrics to compute 30-

days ATM-IV. We denote this measure by ATM − IVM2. This file contains implied

volatilities for standardized equity options with 30-day expiry for a grid of the delta

space, which is often used as a measure of option moneyness. The implied volatility

surface provides a standardized way of measuring the expensiveness of equity options

with different strikes and maturities. 30-days ATM-IV measures stock price risk, and it

is computed as the average implied volatility of at-the-money call and put options:

ATMIV =
ATMIVcall +ATMIVPut

2
(2.A.2)

where ATMIVCall is the implied volatility of the 0.5 delta call and ATMIVPut is the

implied volatility of the 0.5 delta put.

2.A.2.2 30-day Model-Free IV (MFIV)

The 30-day model-free implied volatility (MFIV) for cycle analysis is estimated following

Bakshi et al. (2003) and computed using a portfolio of OTM options. We use 30-day18

Volatility Surface file from OptionMetrics to compute MFIV. MFIV at time t is defined

as:

MFIVt =

√
erf (τ)M(2)t,τ − µ2

t,τ

τ
(2.A.3)

18. τ = 30− days
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where M(n = 2) and µ are given by:

M(n)t,τ =

∫ ∞

St

η(K,St, n)Ct(K, t, τ)dK +

∫ St

0
η(K,St, n)Pt(K, t, τ)dK (2.A.4)

η(K,St, n) =
n

K2
[(n− 1)log(

K

St
)n−2 − log(

K

St
)n−1] (2.A.5)

and

µt,τ = Rf,t,τ − 1−Rf,t,τ [M(2)t,τ/2 +M(3)t,τ/6 +M(6)t,τ/24] (2.A.6)

Rf,t is the riskless rate. St denotes the price of the asset at time t and Pt(K, t, τ) and

Ct(K, t, τ) are the OTM put and call prices. τ is the time to maturity.

2.A.2.3 Implied Volatility Slope

We compute the left and right slopes of the implied volatility smile using OTMP and

OTMC options. We regress the implied volatilities of options each day of a given window

on their deltas whenever at least three available options exist.

IVt,τ = α+ Slope∆t,τ + ϵ (2.A.7)

where IVt,τ and ∆t,τ are the implied volatility of OTMP (OTMC) options respectively

at time t with τ being the time to maturity. The coefficient Slope denote the left (right)

implied volatility slope.

We construct two alternative measures of implied volatility slope. The first measure

is constructed using the option data file in Optionsmetrics. We aggregate all options

traded each day, t, with a same time-to-maturity, τ , and build IV St,τ and denote it

by IV SM1. The second measure is calculated using the volatility surface file employing

options with constant 30-days to maturity. We denote the second measure by IV SM2.

We use the first measure for the difference-in-differences analysis and the second for the

cycle analysis.
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2.A.2.4 Risk-Neutral Skewness (RNS)

We calculate the risk-neutral skewness for our analysis using a portfolio of OTM options

as described by Bakshi et al. (2003):

RNSt,τ =
erf τM(3)t,τ − 3erf τµt,τM(2)t,τ + 2µ3

t,τ

[erf τM(2)t,τ − µ2
t,τ ]

3/2
(2.A.8)

where M(n)t,τ (n = 2, 3, 4) and µ are given by Equation (2.A.5) and (2.A.6) respectively.

We calculate two alternatives of this measure. The first measure is constructed using

S&P500 options traded each day t with an available time-to-maturity τ . We use the

option data file of Optionsmetrics to build our first measure. This measure is denoted by

RNSM1. The second measure is constructed using constant 30-days time-to-maturity

options using the volatility surface file in Optionsmetrics and is denoted by RNSM2.

2.A.2.5 Variance Risk Premium (VRP)

We construct VRP following Kelly et al. (2016), where the variance risk premium is

defined as the difference between the implied and realized variances over a given window

of time (τ). In our subsequent analysis, we denote this measure by (VRPM1). To build

this measure, the VRP between time t and t + τ is defined as the difference between

implied variance of options quoted at time t and expires at time t+τ denoted by IV 2
t,t+τ

and realized volatility of the the S&P index over the life of the option (i.e., between

times t and t+ τ) denoted by RV 2
t,τ .

V RPt,τ = IV 2
t,t+τ − ˆRV 2

t,t+τ (2.A.9)

An estimate of the conditional expectation of future realized variance over the life of the

option R̂V
2
t,t+τ , given the information set available at t, is calculated using the following

linear model for the future realized volatility:

RV (t, t+ τ) = α+ βIV (t, t+ τ)2 + γRV (t− τ, t) + ϵt. (2.A.10)

IV (t, t + τ) denotes the implied volatility of an ATM option quoted on date t which
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expires on date t + τ , and RV (t − τ, t) is the realized variance19 between t − τ and

t. The coefficients α, β and γ are estimated using Ordinary Least Squares, using all

ATM options available in our data. The expectation of future realized variance is then

computed as ˆRV 2
t,t+τ = α̂ + β̂IV (t, t + τ)2 + γ̂RV (t − τ, t) and is replaced in Equation

(2.A.9).

In addition, we construct an alternative measure of VRP, namely the 30-day variance

risk premium. This measure is calculated as the difference between the 30-day MFIV

and the 30-day historical volatility, where we obtain the historical volatility from the

OM Historical Volatility file. In our subsequent analysis, we denote this measure by

(VRPM2).

2.B Two-Way Fixed-Effects

In Section 2.4, our primary objective is to compare options whose lifespans span the

dates of political events with other options. For this purpose, let OptionV art,m denote

the option variable at time t of an option maturing at time m > t. We focus on

OptionV ar for t < τ < m, where τ represents the date of any such political event. To

create control and treatment groups, we define control group options as those whose

lifespans span the FOMC meetings, and treatment group options as all other options in

our sample whose lifespans do not span the meeting.

In our setup, the treatment is assigned at the individual option level, so the group fixed

effect approach suggested by Callaway and Sant’Anna (2021) is not applicable here.

This is because the first assumption of their setup, the irreversibility of treatment, is

not valid for our empirical setting. When the option does not cover the event at time

t, we set the dummy variable equal to 0. The next day, we receive a new set of options

with new prices, strikes, and maturity, and the options available on previous dates are

no longer followed; they are treated as new options.

However, we do consider the time fixed effect in our analysis. Table 2.A.1 presents the

coefficient estimates of regression (2.5), and we observe that our results remain robust.

19. Daily realized variances are collected from the website of the Oxford-Man Institute (http://real
ized.oxford-man.ox.ac.uk/).
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The liquidity of all options covering FOMC meetings decreases: the trading volume

and open interest decrease by 1.95% and 13.2%, respectively, for options covering the

event, while the bid-ask spread and close net demand increase by 24.3% and 0.46%,

respectively. These findings suggest a notable impact of FOMC meetings on option

liquidity.

[Table 2.A.1 about here.]

2.C Standard Errors and Clustering

In Chapter 2 of our research, we utilised regression models following White (1980)’s

method, which accounts for Heteroskedasticity in the covariance matrix of coefficient es-

timates within the linear regression model. Consequently, we reportedWhite’s heteroskedasticity-

consistent (HC) t-statistics.

To ensure the robustness of our findings, we conducted a comprehensive analysis to

address potential econometric concerns arising from the time-series properties of the

regressors. First, we clustered standard errors by time and reported the t-stats of the

regression coefficients for Equation (2.5) in Panel A of table 2.A.2. The results re-

mained consistent, indicating that the time-series properties of the regressors did not

significantly impact our main findings. This outcome can be attributed to our treat-

ment group definition, which focuses on individual options and randomization at the

individual option level rather than individual-time periods.

In addition, we thoroughly considered the presence of Auto-correlation in the error

terms. Panel B of Table 2.A.2 displays the regression coefficients for Equation (2.5)

and their t-stats, applying NNewey and West (1994)’s method, which accounts for both

heteroscedasticity and autocorrelation of the error term. Importantly, our results con-

cerning trading activities remained robust even after controlling for Auto-correlation of

error terms.

Overall, by employing robust regression techniques to address potential econometric con-

cerns such as heteroskedasticity and autocorrelation, we have reinforced the reliability

and consistency of our main findings.
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[Table 2.A.2 about here.]

2.D Role of Economic Uncertainty and Political uncer-

tainty in the presence of Control Variables

In Section 2.7 we showed that option variables (in terms of RN-moments and trading

activities) react more strongly in weak or uncertain conditions. In this section, we

analyse the robustness of our results in the presence of control variables. To this end,

following Cremers et al. (2022), we consider SP500 index return in the week proceeding

the event in the set of our control variables. Therefore, our proposed regression equation

is in the form of:

OptionV art = α+ β1CLIt + β2EPUt + β3Rett,t−1 + ϵt

where, on day t in the week before the event, Optionvart denotes the relative option

variable (RN moments or trading indicators), Rett,t−1 is the return of SPX on day t,

and CLIt and EPUt are the economic condition and uncertainty measure on day t

respectively.

As shown in Table 2.A.3, there is a significant negative relationship between the CLI

and both the implied volatility and the variance risk premium even after controlling for

return on the SPX. A higher volatility and price of volatility preceding the meetings

therefore leads to worse economic conditions on the day of the meeting. In line with

this, we find a significant positive relationship between the CLI the RNS, with a t-

statistic of 2.47. This positive relationship also suggests that a lower RNS leads to worse

economic conditions. When focusing on policy uncertainty, we find a significant positive

relationship between the EPU and the implied volatility (t-statistic of 1.70). Moreover,

we find a positive (negative) relationship between the bid-ask spread and uncertainty

(economic condition) in economic conditions, with a t-statistic of 3.06 (-6.88).

We argue that stock overpricing is the source of this relationship. In weak economic

conditions, stock overpricing may not be quickly corrected in the underlying market

due to limits to arbitrage. Therefore, investors may incline to the options market to
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trade on their negative news or beliefs. To maximise their leverage on their negative

beliefs, they sell (buy) OTM calls (puts) instead of shorting the stock. The purchase of

OTM is attractive compared to directly selling the underlying stock because the options

market does not expose to the potential risk that holding the stock involves. In turn,

The risk-averse market makers would need to sell the underlying stock and get exposed

to the downside and inventory risk. As a result, they induce an upward (downward)

price pressure on OTM puts (calls) to compensate for their risk. This mechanism is

consistent with the demand-based option pricing framework of Garleanu et al. (2009)

and renders relatively more (less) OTM puts (calls) expensive, resulting in a lower RNS

value. Subsequently, a relatively low RNS value is followed by stock underperformance

if market participants perceive this options trading activity as an informative signal

correct the stock overpricing.

[Table 2.A.3 about here.]
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Dependent Variables: (Vol) (OI) (SP) (OD) (CD)
Model: (1) (2) (3) (4) (5)

Variables
indicator -0.0195∗∗∗ -0.0132 0.0243∗∗∗ -0.0032 0.0046∗∗

(-3.104) (-1.300) (3.026) (-1.278) (2.177)
(dtm) -0.0297∗∗∗ -0.0351∗∗∗ -0.0032 0.0039∗∗∗ -0.0063∗∗∗

(-11.71) (-7.297) (-0.8023) (3.545) (-5.739)

Fixed-effects
time Yes Yes Yes Yes Yes

Table 2.A.1. Quantifying the Effect of FOMC Meetings on Trading
indicators- Controlling for Time Fixed Effect: This table displays the estimated
β1 coefficients. For the first five variables, the estimated β1s come from the (2.5):

OptionV ari = β0 + β1.D
FOMC
i + β2τi + ϵi

The dependent variables (OptionV ar) are the volume (VOL), open-interest (OI), bid
ask spread (BAS), open net demand (OND) and close net demand (CND). DFOMC

i is
the dummy that if there is an FOMC meeting between quotation date and expiration
date. τi is the days-to-maturity. For the dispersion in investors’ beliefs (DISP), the
estimated β1 comes from the (2.4):

DISPt,τ = β0 + β1.D
FOMC
t,τ + β2τ + ϵt,τ

where DFOMC
t,τ takes the value 1 if there is an FOMC meeting between times t and

t + τ , τ is the days-to-maturity. The t-statistics, reported in parentheses, consider
Heteroskedasticity of error terms and are calculated following White (1980) method
controlling for time fixed effect. ***, **, and * denote statistical significance at the 1%,
5%, and 10% levels, respectively.

136



Dependent Variables: (Vol) (OI) (SP) (OD) (CD)
Model: (1) (2) (3) (4) (5)

Panel A

β1 -0.0319∗∗ -0.0061 0.0131 -0.0033 0.0048∗∗

(-2.572) (-0.3009) (1.533) (-1.332) (2.040)

Panel B

β1 -0.0319∗∗∗ -0.0061∗∗ 0.0131∗∗∗ -0.0033 0.0048
(-13.65) (-2.536) (6.064) (-1.139) (1.618)

Table 2.A.2. Quantifying the Effect of FOMC Meetings on Trading Activity
Variables of All options with Clustering Standard Errors and NewyWest t-
stats: This table displays the estimated β1 coefficients of Equation (2.5). The dependent
variables (OptionV ar) are the volume (VOL), open-interest (OI), bid ask spread (BAS),
open net demand (OND) and close net demand (CND). The dummy takes the value
equal to one if there is an FOMC meeting between quotation date and expiration date of
the option. Panel A reports the NewyWest t-statistics in parantheses. Panel B, reports
White’s (1980) t-statistics in parantheses, clustering standard errors by time.
***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Vol OI SP OND IV VRP RNS

beta1 0.02 -0.01 -0.34*** -0.11** -0.62*** -0.31*** 0.13**
t-stat (0.34) (-0.16) (-6.88) (-2.08) (-16.89) (-6.12) (2.47)
p-value 0.74 0.88 0.00 0.04 0.00 0.00 0.01

beta2 -0.02 -0.12** 0.15*** 0.02 0.25*** 0.06 0.09*
t-stat (-0.33) (-2.15) (3.06) (0.35) (6.79) (1.13) (1.70)
p-value 0.74 0.03 0.00 0.72 0.00 0.26 0.09

beta3 -7.62 -1.05 -2.34 -8.70** -5.78** -3.95 -24.62***
t-stat (-1.97) (-0.27) (-0.66) (-2.26) (-2.23) (-1.11) (-6.74)
p-value 0.05 0.79 0.51 0.02 0.03 0.27 0.00

Table 2.A.3. The Effect of Economic Policy Uncertainty (EPU) and Eco-
nomic Condition (CLI) on Trading Factors and Pricing Moments - Robust-
ness: The table shows the slope coefficients, β1 and β2 β3, of regression model:
OptionV art = α+ β1CLIt + β2EPUt + β3Rett,t−1 + ϵt
where OptionV ar is trading factors (columns 1-4) and implied option moments (columns
5-7) on week -1 of the FOMC cycle. We regress option-based variables on the measures
of economic condition (CLI) and economic policy uncertainty index. CLI is standardized
to zero mean using data from 2006 to 2016. The t-statistics, reported in parentheses,
consider Heteroskedasticity of error terms and are calculated following White (1980)
method.
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Chapter 3

Review of Option-Implied

Measures and their Applications

3.1 Introduction

Investors who trade according to their views and information about the future price of an

asset may select the options market to exploit the information embedded in their prices.

Options are financial derivatives that offer buyers the right, but not an obligation, to

sell or buy an underlying asset at an agreed price and date. The price of the options

written on a given asset, with different exercise prices and specific time to expiration,

indicates the market assessment of the payoff over the series of strike prices.1

Black and Scholes (1973) proposed a pricing model to determine the fair price of Euro-

pean options. Reversing the (BS) formula converts option price to a real number called

the implied volatility (IV). This mapping of prices to implied volatilities allows for an

easier comparison of option prices across various strikes, expiries and underlying assets.

BS formula remains popular among researchers and helps them realise the opportunity

to obtain option-implied measures from option prices to enhance the forecast of future

1. For example, assume that put options maturing in a week with a strike K <(80% ×St) trade at
a very high price (compared to some benchmark, e.g., last week’s prices). This means some investors
believe that the stock with a value of St today can drop 20% in one week; otherwise, people would price
these options at zero value.
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prices and the state of the economy.2 For example, plotting BS implied volatilities

against the strike price at a fixed maturity, known as implied volatility surface (IVS),

indicates a skew or smile pattern and may indicate a skew in the risk-neutral density of

future returns.

In this paper, we first review methods available to construct a smooth implied-volatility

surface (IVS). These methods typically employ implied volatilities inferred from the

Black-Scholes model and then interpolate in some clever ways to build a smooth implied

volatility curve.3 These methods include specifying an explicit function of IV and curve

fitting techniques. We document that due to the complications involved in estimating

the parameters of IVS functions (such as dealing with the unobserved variables or a

limited number of options for estimations), curve fitting methods are more popular

among practitioners and in empirical works. The construction of IVS is directly related

to the underlying conditional return risk-neutral (RN) distribution4 and offers a fertile

ground for computing option-based variables.5

Second, we review a number of statistical variables inferred from option prices and

provide a summary of techniques used to construct them. These variables include im-

plied measures of volatility, implied measures of tail risk, and implied measures of risk

preferences. Then, we review their application in the literature for forecasting future

asset returns or the state of the economy. We document that the literature has em-

ployed option-implied volatility more extensively than other option-implied variables

for two reasons. First, option-implied volatility estimation is more straightforward than

option-implied higher moments. Second, when risk premia are small, option-implied

2. Option-based variables inferred from option prices may provide interesting additional information
not contained in the historical data. For example, Bali et al. (2019) have investigated the information
embedded in option-implied variables for expected stock returns and Chang et al. (2012) exploit its
information for equity risk. Kostakis et al. (2011), DeMiguel et al. (2013), and Kempf et al. (2015) use
option-implied information to improve asset allocation techniques or market timing. Amin (1997), Cao
et al. (2005), Jin et al. (2012), Chan et al. (2015) examine the relative effectiveness of option-implied
variables to predict corporate events- i.e., takeovers, earnings announcements, etc. Goyal and Saretto
(2009), Bali and Murray (2013) examine option-based variables to predict option returns.

3. In a typical market, only a few strike prices and maturities are available; therefore, the IV curve
is not always smooth.

4. For example, a smile indicates fat tails, whereas a skew shows an asymmetry in the return distri-
bution.

5. Ulrich and Walther (2020) show that recognised option-implied metrics such as risk-neutral vari-
ance, the variance risk premium, and skewness are affected by techniques that the implied volatility
surface is built.
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forecasts are more informative. The literature suggests that the volatility risk premi-

ums are smaller than the risk premiums of higher moments, particularly skewness (see

Christoffersen et al. (2011)).

Next, equipped with methods and variables available to extract information from option

quotes, we contribute to the literature by studying which option-implied measure fore-

casts future stock returns cross-sectionally. Specifically, we examine the statistical and

economic predictive power of eight option-based variables to forecast future individual

stock returns. These variables include model-free implied volatility (MFIV) from Bak-

shi et al. (2003), forward volatility (FV) from Bakshi et al. (2011), implied risk-neutral

skewness (RNS) from Bakshi et al. (2003), implied options expected returns (ExRet)

from Martin and Wagner (2019), implied volatility smirk from Xing et al. (2010), a

measure of deviation from put-call parity (PCD) from Cremers and Weinbaum (2010),

and implied-volatility slope of call (put) options, which reflects the right (left) slope of

the volatility curve (left (right)-IVS) from Kelly et al. (2016).6

We apply formal statistical significant tests via predictive panel regression models to

assess whether there are cross-sectional predictive abilities for future returns in the dy-

namics of option-implied measures mentioned above. Furthermore, we examine whether

the forecasts of option-implied measures are economically significant using a portfolio

sorting approach- i.e., for each option-based variable, we sort stocks into quintiles and

compare the profitability of a portfolio that buys stocks with high option-based measure

(top quintile) and sells stocks with low measure (bottom quintile).

We find that volatility measures, namely, model-free implied volatility, implied forward

variance and implied expected returns, statistically and economically forecast future

stock returns cross-sectionally- i.e., there is a significant positive relationship between

MFIV, FV and ExRet with the cross-section of stock returns. This finding suggests that

volatility risk induces an increase in future returns- i.e., traders need compensation for

taking volatility risk.

Furthermore, we find a positive (negative) relationship between RNS (left-IVS) and the

6. We include smirk, PCD and left (right)-IVS in the set of our predictors to examine the forecasting
ability of measures that capture specific positions on the volatility curve.
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cross-section of returns. These relationships are statistically and economically signif-

icant. We argue that stock overpricing renders this positive relationship- i.e., stock

overpricing may not be promptly updated in the underlying market due to arbitrage

constraints. Therefore, market participants may incline to the options market to trade

based on their negative information or views. To maximise the leverage on their negative

beliefs, they sell (buy) out-the-money (OTM) calls (puts) instead of shorting the stock.

Buying OTM puts is attractive compared to selling the underlying stock because the

options market does not bear inventory risks. In turn, the risk-averse market makers

have to sell the underlying stock and, therefore, should take the adverse risk of inventory.

Consequently, they induce an increase (decrease) in OTM puts (calls) option prices to

compensate for the risk they take.

Our paper contributes to the literature that reviews option implied measures. Jackwerth

(2004) provide an overview on option-implied risk-neutral distributions. Homescu (2011)

reviews methods to construct an option-implied volatility surface. Christoffersen et al.

(2011) reviewed techniques available for extracting information embedded in option

prices and option-implied variables that are used in forecasting. Our paper differs from

these studies by reviewing additional recent measures such as implied expected returns,

variance risk premiums, tail loss measures and implied risk aversions. These measures

are extensions of model-free implied volatilities and risk-neutral skewness. They have

been widely used in the literature to forecast the economy’s future state or future returns.

In addition, our paper is related to studies which propose various options-based mea-

sures for forecasting the cross-section of stock returns. Xing et al. (2010), Cremers

and Weinbaum (2010), Cremers et al. (2015) propose a variety of different option-based

variables of stock mispricing. Our paper is different from these studies. First, we use

newly proposed implied measures such as implied expected returns and implied-volatility

slopes. In addition, we compare the predictive ability of OTM call options with OTM

put options. We show that put options show more predictive power than call options

and contain more informational content.

The remainder of this paper is organised as follows. Section 3.2 reviews different meth-

ods for extracting implied volatility surfaces (IVS). Section 3.3 focuses on statistical
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measures implied from options, namely, implied volatility measures, implied tail risk

measures and implied risk preferences measures. Finally, Section 3.4 comprehensively

analyses the predictive power of several option-implied variables for the cross-section of

returns. Section 3.5 concludes.

3.2 Implied Volatility Surface

Black and Scholes (1973) (BS) proposed a pricing model to determine the fair price of

call or a put option assuming that the asset prices are log-normally distributed. BS

theoretical model relies on six parameters, including volatility, option type, price of the

underlying asset, time to maturity, strike price, and risk-free rate. This model forms

a landmark in modern quantitative finance. The BS formula remained popular among

practitioners and has been used as a primary instrument, which maps the space of option

prices to a unique number- i.e., option-implied volatility.

Specifically, BS model assumes that stock price follows a geometric Brownian motion

dynamic in which the volatility is constant:

dSt = rStdt+ σStdωt

where r is a risk-less rate, σ is volatility, and ωt is a Brownian motion. In this model,

only volatility (σ) is unobserved and can be inversely backed out using the option’s

market value. The option price with a strike price of K and time-to-maturity of T can

be obtained in a close form:

CBS(T ;K;S0; r;σ2) = S0N(d)−Kexp(−rT )N(d− σ
√
σ)

where S0 is the spot price and N(.) indicates the standard normal cumulative distribu-

tion function, and

d =
ln(S0/K) + T (r +

1

2
σ2

σ
√
T

)

BS model implies that for any option with a observed market price of CMkt
0 , there exists
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one volatility measure (σ) and can be inferred from market price of that option.7

CMkt
0 = CBS(T ;K;S0; r;BSIV 2)

Due to the structure of the Black & Scholes formula, the implied volatility cannot be

found in a closed-form formula. Many articles offered techniques for approximating the

volatility with more or less accurate results. The investigations have been conducted in

two directions: one group of studies attempt to find closed-form approximations for BS

implied volatility- i.e., Bharadia et al. (1996) and Brenner and Subrahmanyan (1988).

Another group of studies explore numerical methods such as Newton–Raphson method

to approximate implied volatilities.

However, it soon became evident that the lognormality assumptions of BS are far from

realistic and are invalidated by options’ data.8 Several studies such as Cox and Ross

(1976), Rubinstein (1976) and Brennan (1979) proved that lognormal returns are nec-

essary and sufficient conditions for option prices to satisfy the BS equation; However,

this prediction was rejected by several papers including, MacBeth and Merville (1979),

Rubinstein (1985), and Cont and da Fonseca (2002). These studies indicate that the

variation of implied volatilities across term to maturity and option strike, known as “

implied volatility surface” (IVS), is substantial. This plot suggests that the volatility

surface is not flat and is dependant on both moneyness and time- i.e., IVS shows smile

and has term structure. These studies propose that the skew or smile shape in the

implied-volatility surface is correlated with the conditional non-normality distribution

of the underlying return; therefore, the construction of a smooth IV surface is consistent

with extracting the RNDs.

7. The option price function is strictly increasing of volatility- i.e., the vega of an option is always
positive. For call options, we have:

CBS(σ = 0, T,K, S) = (S0 −Ke−r(T−t))+

CBS(σ = ∞, T,K, S) = S0

The intermediate value theorem implies that there always exists a Black Scholes implied volatility for a
market price between these bounds. When considering arbitrage-free market data, we can always find
implied volatility BSIV such that the model price equals the market price.

8. Empirically, the implied volatility extracted from out-of-the-money put index options (K/S0 << 1)
are more than other options. Therefore, market prices of these options are more than the estimation
price of the BS model.
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An important question here is how to generate an arbitrage-free IV surface that rep-

resents option market information more accurately. Many papers have answered this

problem by finding necessary or sufficient conditions for the IVS to be arbitrage free.

The presence of an arbitrage opportunity will develop negative transition probabilities

and negative local volatilities. This situation will generate severe mispricings such that

even a slight deviation of the input parameters lead to entirely different price quotes

and highly unstable greeks.

To satisfy the arbitrage restrictions, call option price should be a convex and monoton-

ically decreasing function of strike price. Following Fengler (2009) conditions that are

necessary and sufficient for the IVS to be statically free of arbitrage are:

−e−
∫ T
t rsds ≤ ∂C

∂K
≤ 0

∂2C

∂K2
≥ 0

max
(
e−

∫ T
t qsdsSt − e−

∫ T
t rsdsK, 0

)
≤ C ≤ e−

∫ T
t qsdsSt

∂C

∂T
≥ 0

where St is the spot price, r is the risk-less rate and q is the stock’s dividend rate and

the valuation function of a European call at time t with strike K and maturity T is

given by Ct(K,T ) = e−
∫ T
t rsds

∫∞
0 max(ST −K, 0)ϕ(t, T, ST )dST , assuming that the RN

density exist and is denoted by ϕ(t, T, ST ).

Furthermore, in a typical market, only a few strike prices and maturities are available;

therefore, the IV curve is not always smooth. Moreover, Ulrich and Walther (2020) show

that the values of many famous option-implied metrics such as RN variance, skewness,

and the variance risk premium depends on the methods available for smoothing the

volatility surface. In the remainder of this section, we provide a survey of techniques

available for constructing a smooth BS implied-volatility surfaces in more detail. Home-

scu (2011), categorises these approaches into two groups: model-free and model-based.

We will discuss these models in more detail in the following sections.
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3.2.1 Explicit Functions of IVS

Parametric or model-based techniques to extract IVS consist of studies which explic-

itly specify a function (e.g. polynomial functions) on Black-Scholes implied volatility

and then, in some clever way, interpolate in the time dimension so as not to intro-

duce arbitrage. These techniques have several advantages; For example, they are cheap

to implement, easy to interpret, and need few computational requirements for option

pricing.

These methods were first introduced by Dumas et al. (1998), who modelled the IV as a

quadratic function of strike price and time to maturity (M,T ). Specifically, they suggest

that the following describes the daily IVS:

σ(M,T ) = b1 + b2M + b3M
2 + b4T + b5M × T

Later, Gonçalves and Guidolin (2006) employ a same setting to the IV logs using mon-

eyness instead of strike. Chalamandaris and Tsekrekos (2011) argue that these models

approximate the term structure of the IVS linearly at any moneyness level; they perform

relatively well for constructing the IVS of options with a time to expiration of shorter

than a year; however, they might be problematic when considering longer option maturi-

ties. For this reason, they develop a parametric specification which employs Nelson and

Siegel (1987) factorisation to model the IVS term structure. Specifically, they introduce

level, slope and curvature factors to the IVS model.

σi = Σ7
j=1βjIj,i + ϵi

where i = 1, ..., N is the number of implied volatilities in the cross-section, I1,i = 1 is the

Level, I2,i = 1{∆i>0}∆
2
i is the Right “smile”, I3,i = 1{∆i<0}∆

2
i is the Left “smile”, I4,i =

1−e−λτi

λτi
is the Short–term term structure, I5,i = 1−e−λτi

λτi
− e−λτi is the Medium–term

term structure, I6,i = 1{∆i>0}∆iτi is the right “smile” attenuation, I7,i = 1{∆i < 0}∆iτi

is the Left “smile” attenuation.

More recently, François et al. (2022) established a parametric representation of IV sur-

faces based on a linear combination of risk factors. The implied volatility σ(M, τ)
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obtained for an option with moneyness M on a specific day and time to expiry τ is

modelled by:

σ(M, τ) = β1︸︷︷︸
Long-term ATM IV

+β2 exp
(
−
√
τ/Tconv

)︸ ︷︷ ︸
Time to maturity slope

+β3
(
M1(M≥0) +

e2M−1

e2M+1
1(M<0)

)
︸ ︷︷ ︸

Moneyness slope

+β4
(
1− exp(−M2)

)
log(τ/Tmax)︸ ︷︷ ︸

Smile attenuation

+β5
(
1− exp((3M)3)

)
log(τ/Tmax)1(M<0)

)︸ ︷︷ ︸
Smirk

where Tmax is the maximum maturity described by the model and Tconv denotes the

position of a fast convexity change in the implied volatility term structure based on

maturity. These parameters are determined using observed data. The IV specification

of François et al. (2022) uses factors that are twice continuously differentiable. There-

fore, their model completes the shape of the density in the tails such that risk-neutral

probability densities are smooth and add up to one over moneyness.

3.2.2 Curve-Fitting Methods in constructing IVS

Parametric methods described above are easy to implement if the collection of traded

options includes a sufficient spectrum of strike prices and maturities. For instance, we

can apply the BS model for each available option to infer the implied volatility from the

option price. If option prices are available for all exercise prices and time-to-expirations,

the inferred implied volatilities intrinsically form a smooth surface. However, in a typ-

ical market, only a few strike prices and maturities are available. In this situation,

researchers proposed curve-fitting methods to back out the implied volatility surface

from given option quotes.

Curve-fitting methods are implemented in two steps. First, an interpolation procedure

is performed in the moneyness dimension to provide a smooth curve for the BS implied

volatilities. This procedure produces implied volatility as a function of moneyness for

each maturity (T ). Next, the moneyness is set fixed and an interpolation method is

performed in the maturity dimension. The two steps result in a smooth implied volatility

surface.
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Splines usually employed in the literature to interpolate implied volatilities include piece-

wise linear interpolation, regular cubic splines, Cubic B-splines and Thin splines.9 These

techniques have minimal restriction on the shape of IVS and hence follow the data bet-

ter. Campa and Chang (1998) propose using a natural spline to ensure that the fitted

IVS function is flexible and smooth. Bliss and Panigirtzoglou (2002) proposed the use

of cubic spline to match the implied volatility with the option delta. Kahale (2004)

suggests an interpolation technique based on piecewise convex polynomials employing

the BS formula. Figlewski (2008) proposed fitting Generalised Extreme Value (GEV)

distributions to the tails. In addition, for strikes beyond the series of available options,

Jiang and Tian (2005) proposed use of extrapolation, while Andersen and Bondarenko

(2009) and Andersen et al. (2011) suggest employing truncation. Benko et al. (2007)

propose to use the local polynomial smoothing technique. A system of nonlinear min-

imisation problems is solved for a given grid of strikes and time-to-maturities to obtain

local polynomial estimators. Laurini (2011) employs constrained smoothing B-splines.

Cont and da Fonseca (2002) develop another group of non-parametric IV smoothing

methods. They used a nonparametric Nadaraya–Watson estimator with a Gaussian

Kernel process.10 In addition, Israelov and Kelly (2017) used principal component

analysis to describe the full IV surface. Ackerer et al. (2020) used a neural network

approach to construct an implied volatility surface.

3.2.3 Comparisons of Methods for Extracting IVS

Ait-Sahalia and Duarte (2003) suggest that parametric methods discussed above for IVS

extraction are beneficial for many reasons. First, they allow extrapolation beyond the

available data. Second, it is easy to specify a function which can satisfy the restrictions

imposed by theory (i.e., increasing and concave returns, Y = Ln(X))). Third, more

unrestricted parametric models can be proposed and examined against other models to

validate constraints imposed by the theory. Fourth, theoretical restrictions may decrease

these models’ estimated parameters’ variance.

9. The option price function interpolation also has some additional applications. For example, using
liquid option market quotations, an interpolation method is used to price nonliquid or nontraded options.
It is also used in interest-rate cap markets and swaption markets.

10. The Nadaraya–Watson estimator is a weighted average of Y 1, . . . , Y n utilising the set of weights
Wi(x)

n
i=1 (they add to one). The set of varying weights depends on the evaluation point x.

148



Despite all their benefits, parametric models have disadvantages: (i) Specification errors

will lead to inconsistent estimates. (ii) Any theory test is also a test for a parametric

model. (iii) Empirically, the slow convergence rate of estimators is a significant issue.

The reason behind it is mainly due to a small number of observations and liquidity

issues which can be substantial. On the other hand, the nonparametric methods do not

need large samples to fulfil the restrictions. For these reasons, nonparametric methods

are often used empirically, at least as a first step in analysing the data.

3.3 Option-Implied Measures

The foundation of the Chicago Board Options Exchange motivated investors to reverse

the process of option pricing and infer implied measures from observed option prices

instead. The BS formula remained popular among practitioners and serves as a suit-

able and simple instrument which maps option prices to a single actual number- i.e.,

option-implied measure. Converting option prices to statistical implied measures allows

comparing option prices with different strike prices and expiration dates for various un-

derlying assets. For example, a skew or smile shape in the BS implied volatility surface

is directly linked to the conditional non-normality distribution of the underlying’s return

as opposed to the BS assumptions. A smile indicates fat tails in the return distribution,

while a skew shows an asymmetry in the return distribution. Furthermore, the variation

of implied volatility smile over different maturities and times implies the variation of

the return distribution across these features. These empirical facts suggest that option

prices and variables implied from them may be forward-looking instruments and may

incorporate market expectations over the option’s maturity.

In addition to BS implied variables, practitioners have proposed several measures implied

from options. In this section, we review a number of these metrics and discuss their

superior information about the future state of the economy.

3.3.1 Measures of Volatility

We cannot directly observe volatility. Therefore, the literature has proposed different

proxies to measure it. These models are categorised into three groups—first are model-

based approaches, which formulate the volatility process as an ARCH or stochastic

149



volatility model. Second are realised volatilities computed from summation of high

frequency squared realised returns. Third are forward-looking implied volatilities (IV)

inferred from options quotes.

Option-implied volatility is particularly the most well-known implied measure in the

literature and is extensively used in asset pricing. Implied volatility inferred from option

quotes offers reasonable estimates for future volatility. This section, reviews IV metrics

and their extensions that forecast future state of economy such as stock prices and

macroeconomic and corporate events.

3.3.1.1 Model-Free Implied Volatility

Breeden and Litzenberger (1978) suggest that a series of OTM options can define any

payoff function that is twice continuously differentiable. This observation was later

established formally in Green and Jarrow (1987) and Nachman (1988). More specifically,

these studies suggest that the price of any hypothetical claim with payoff H(S) is:

E(e−rtH[S]) = (H[S̄]− S̄HS [S̄])e
−rt +HS [S̄]S(t)

+

∫ ∞

S̄
HSS [K]C(t, τ,K)dK +

∫ S̄

0
HSS [K]P (t, τ,K)dK

(3.1)

where HS [S̄] (HSS [K]) denotes the first (second) order derivative of the payoff with

respect to S estimated at the strike price (S̄).

Carr and Madan (1998) document that using Equation (3.1) one can compute volatility

payoffs by holding different positions in options without necessarily being exposed to

prices.11 Therefore, a continuum of OTM option prices can estimate the future realised

variance between time t and T as follows:

σ̂2
t,T = V ar0{ln(FT /Ft)} = E0{ln(FT /Ft)− E0[ln(FT /Ft)]}2

= E0[

∫ T

t
σ2
udu] = 2

∫ ∞

0

CF (0, T,K)− CF (0, t,K)

K2
dK

where CF (0, t,K) and CF (0, T,K) are the prices of call options at time zero on a forward

11. To see the proof please refer to Carr and Madan (1998)
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contract with forward price K at time t and T , respectively. Therefore, If we forecast

realised volatility from the current time 0 to a date, say T , CF (0, t,K) will be replaced

by the intrinsic value of a call option with strike K or max(F0−K)+ (i.e., F0 being the

forward price at time t = 0 and K the strike).

Britten-Jones and Neuberger (2000) document that relying on the underlying’s spot

price rather than the forward contract, one can forecast realised volatility from the

current time 0, to date T , by the instantaneous squared return:

E0[

∫ T

0
(
dSu

Su
)2] = 2

∫ ∞

0

C(0, T,K)−max(S0 −K, 0)+

K2
dK

Correspondingly, Demeterfi et al. (1999) derive a price of a variance swap12 and employ

it to replicate the risk-neutral variance. More specifically, they assume that the price of

an underlying follows a stochastic process as below:

dSt

St
= µdt+ σtdωt = XS

where XS is the strike price of a variance swap. Using Ito Lema, they suggest that

dSt

St
− dln(St) =

1

2
σ2
t dt

They show that with this modelling assumption and using Ito lemma, a weighted sum

of OTM call and put prices replicates the risk-neutral expected variance σt.

E[
∫ T

t
σ2
udu] = 2E0[

∫ T

t

dSt

St
− dln(St)] =

2[rT − (
S0

Ft
− 1)− ln(

Ft

S0
) +

∫ Ft

0

erT

K2
P (t, T,K) +

∫ ∞

Ft

erT

K2
C(t, T,K)]

2er(T−t)[

∫ Ft

0

1

K2
P (t, T,K)dK +

∫ ∞

Ft

1

K2
C(t, T,K)dK]

(3.2)

where P and C are prices of put and call options with strike price K at time t expiring

at T . Ft = Ste
r(T−t) is the forward price.

12. Variance swap is a contract that at time T pays integrated variance between time 0 and T and
receives a strike price, XS . The strike is specified such that the value of the variance swap is zero when
written at time 0- i.e., e−rt E[ 1

T

∫ T

0
σ2
t dt−XS ] = 0
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Letting the relative return be R(t, T ) = ln(ST ) − ln(St), Bakshi et al. (2003) (BKM)

define a volatility contract which pays functions of the realized variance of an underlying

asset’s returns- i.e., H(S) = R2(t, T ). They showed that the fair value of this contract

at time t denoted by V (t, T ) = E[e−r(T−t)R2(t, T )] can be obtained using a continuum

of option prices as:

V (t, T ) =

∫ ∞

st

2(1− ln[KSt
])

K2
C(t, T,K)dK +

∫ st

0

2(1 + ln[St
K ])

K2
P (t, T,K)dK

Therefore, BKM define the annualised model-free implied volatility as follows:

MFIVt,i =

√
erf (T−t)M(2)t,T,i − µ2

t,T,i

T − t
(3.3)

where µ is obtained as follows:

µt,T,i = Rf,t,T − 1−Rf,t,T [M(2)t,T,i/2 +M(3)t,T,i/6 +M(6)t,T,i/24] (3.4)

and M(n) is obtained as follows:

M(n)t,T =

∫ ∞

St

η(K,St, n)Ct(K,T )dK +

∫ St

0
η(K,St, n)Pt(K,T )dK (3.5)

η(K,St, n) =
n

K2
[(n− 1)log(

K

St
)n−2 − log(

K

St
)n−1]

Rf,t is the riskless rate. St,i denotes the price of the asset i at time t and Pt,i(K,T ) and

Ct,i(K,T ) are the OTM put and call prices of asset i with exercise price K expiring at

T .

BKM derive the price of the volatility contract based on the current stock price (St)

while Demeterfi et al. (1999) derive the payoff based on the forward price (Ft). All these

concepts of volatility proposed by different studies will provide identical results if the

log returns are uncorrelated and have a zero mean.

Carr and Lee (2008) assume that the variance of the market index return follows an
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adapted process σ2
t . The variance of returns13 over τ(= T − t) is equal to the quadratic

variation
∫ T
t σ2

udu = ⟨X⟩τt . ⟨X⟩ is known as the realized variance of the returns on S and

denotes the quadratic variation of X = log(ST /St). Then, they consider a specific form

of the generic exponential claim on integrated variance- i.e., an exponential variance

claim which pays eλ⟨X⟩τt for some constant λ. Bakshi et al. (2011) adopt this modelling

setup and consider an exponential claim on variance with payoff H[S] have the following

price at time t:

EQ[e−rτH[S]] = e−rτEQ{exp(−
∫ t+τ

t
σ2
udu)|Ft} (3.6)

= e−rτ EQ{
√

8

7
(

√
St+τ

St
)× cos(arctan(1/

√
7) +

√
7

2
ln(

St+τ

St
))|Ft} (3.7)

They extract the price of such a claim using the prices of traded call and put options:

V τ
t = E[e−rτH[S]] = e−rτ +

∫ ∞

St

ω[K]C(t, τ,K)dK +

∫ St

0
ω[K]P (t, τ,K)dK (3.8)

where C(t, τ,K) and P (t, τ,K) are the prices of index call and put options at time-t

with strike price K and time to expiry τ . Moreover, e−rτ is the price of a risk-free

discount bond at time t maturing at T = t+ τ , with face value equals one and,

ω = −
8√
14
cos(arctan(1/

√
7) +

√
7
2 ln(KSt

)
√
StK3/2

(3.9)

is the position in options. Finally, they define the forward variance at time t between

t+ τ and t+ τ ′ (with τ ′ > τ) based on observed prices of exponential claims :

FVt,τ,τ ′ = ln(V τ
t
′)− ln(V τ

t ) (3.10)

The right-hand side (RHS) of the above equations shows that the integral of OTM

option prices over a series of strike prices defines the model-free implied volatility. The

13. In the absence of price jumps
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integral can be easily calculated through numerical integration methods if a set of options

is available for all strike prices. However, in the real options market, only a limited

number of strike prices are traded, which may result in calculation errors. Therefore,

the finite available strike prices is the main implementation issue of MFIV calculation.

In addition, the numerical integration of these equations (dK) should be replaced by a

summation (∆K), resulting in discretisation errors. The ∆K needs to be reasonably

small to reduce these errors. Several studies suggest applying curve-fitting techniques to

interpolate across given strikes to fill the gaps in strikes. Truncation errors are another

implementation issue in the calculation of model-free implied volatilities. Truncation

errors arise when the integration is calculated over a limited number of strike prices

rather than from 0 to ∞. Jiang and Tian (2005) suggest using a flat extrapolation

beyond available strike prices to overcome truncation errors.

3.3.1.2 CBOE Volatility Index (VIX)

The Chicago Board Options Exchange proposed the VIX as a forward-looking volatility

index of the US stock market to measure the expected short-term US market volatility

over the next thirty calendar days. This measure, known as the “fear” gauge, is a

typical example of option-implied measures and has a significant negative relationship

with S&P 500 return dynamics.

Whaley (1993) was the first who proposes this index as a linear composition of implied

volatilities of eight at-the-money (ATM) options on the S&P 100 options with maturities

nearest to one month. This version of VIX relies on the BS pricing model and assumption

and is computed as follows:

V IX = σ1(
N2 − 22

N2 −N1
) + σ2(

22−N1

N2 −N1
)

σ1 and σ2 denote the estimated S&P 100 ATM-IV for the two nearest maturities (just

less and more) than one month and are computed as follows:

σ1 = (
σ
X1,L

C,1 + σ
X1,L

P,1

2
)(

X1,L − S

X1,U −X1,L
) + (

σ
X1,U

C,1 + σ
X1,U

P,1

2
)(

S −X1,L

X1,U −X1,L
)
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where (X1,L, X1,U ) and (X2,L, X2,U ) are strikes less and more than the underlying price

S for the first and second options with the nearest available maturity, respectively.

And N1 and N2 are the time to expiration (in days) of the first and second options,

respectively.

σ2 = (
σ
X2,L

C,2 + σ
X2,L

P,2

2
)(

X2,L − S

X2,U −X2,L
) + (

σ
X2,U

C,2 + σ
X2,U

P,2

2
)(

S −X2,L

X2,U −X2,L
)

As mentioned in the previous section,Carr and Madan (1998), Britten-Jones and Neu-

berger (2000) and Demeterfi et al. (1999) proposed a model-free measures of volatility.

CBOE and Goldman Sachs employed their methods and published the model-free ver-

sion of VIX. In 2003, S&P 500 options absorbed more attraction and became more

informative than the S&P 100 options. Therefore CBOE shifted to the new options

market structure and used S&P 500 options quotes to calculate VIX. Since then, the

model-free VIX has been widely used for quantifying market risk, hedgeing portfolios,

volatility tradings, anticipating the spot volatility dynamics or predicting future volatil-

ity. More specifically, CBOE suggests that the calculation of the VIX at time t = 0

follows Equation (3.2) and can be obtained by:

V IX = 100

√
2

T

∑
i

∆Ki

K2
i

erTO(Ki)−
1

T
[
F0

K0
− 1]2

where K0 is the first strike less than F0, Ki = (Ki+1 − Ki/2), and O(Ki) is the mid

bid-ask price for an out-of-the-money put or call option with strike Ki.

The theoretical model in Demeterfi et al. (1999) adopts a diffusive dynamic for the

underlying; therefore, the “model-free” feature is doubtful for some researchers. The

literature suggests that different specifications of the underlying dynamics result in dif-

ferent schemes of weighted (OTM option) in the volatility formula. For example, Martin

(2011) suggests that in the existence of jumps, VIX becomes a biased measure of diffu-

sion risk, and its bias degree is linked to the jump severity.

Andersen et al. (2015) show that the model-free implied volatility formula is still useful in

the existence of jumps if the realised volatility is calculated employing squared weighted
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returns; therefore, the model-free volatility is jump robust. They propose the corridor

implied volatility index, CIV, assuming that volatility and returns may jump together-

i.e., “co-jump”. They obtain the expected value of corridor variance under the RN

probability measure (the corridor variance swap rate) utilising a continuum of options

with strikes between B1 and B2:

CIV =
2erT

T

∫ B2

B1

O(Ki)

K2
dk (3.11)

If B1 = 0 and B2 = ∞, then corridor variance turn into model-free implied variance.

This suggests that the corridor variance swap is less expensive than a variance swap and

allows investors to bet on potential stock price patterns. Andersen et al. (2015) suggest

that it is difficult to measure option prices in the tails of the distribution. However,

if we define the corridor via symmetric percentiles, the truncation points can show

the significance of the right and left tails. Andersen et al. (2015) propose to consider

B1 = K0.03 and B2 = K0.97 in Equation (3.11).

3.3.1.3 Lower Bound on the Expected Excess return (SVIX)

Martin (2017) derives an option-implied lower bound on the market premium in terms

of simple risk-neutral variance, (SV IXt,T = varQ(
Rt,T

RF,t,T
)), that can be calculated from

index option prices. To derive this measure, first, consider that the conditional RN

variance of a gross return (Rt,T = ST
St

− 1) is denoted by varQt,T :

1

RF,t,T
varQt (Rt,T ) =

1

S2
tRF,t,T

[EQ
t S2

T − (EQ
t ST )

2] (3.12)

The first term inside the square brackets is also a “squared contract”— which is, the

price of a contract which pays S2
T at time T and can be approximated by the price of a

continuum of options:

1

RF,t,T
EQ
t S2

T = 2

∫ ∞

0
C(t, T,K)dK

The second term in the square brackets of Equation (3.12) is obtained considering that
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the forward price of the underlying stock is Ft,T = EQ
t ST

In the light of the put-call parity and combining the above equations, one can express

the simple risk-neutral variance (SVIX) as follows:

1

RF,t,T
varQt,T (Rt,T ) =

1

S2
t

[2

∫ ∞

0
C(t, T,K)dK −

F 2
t,T

RF,t,T
] =

2

S2
t

[

∫ Ft,T

0
P (t, T,K)dK +

∫ ∞

Ft,T

P (t, T,K)dK]

therefore:

SV IX2
t,T =

2

RF,t,TS2
t

[

∫ Ft,T

0
P (t, T,K)dK +

∫ ∞

Ft,T

P (t, T,K)dK] (3.13)

The RHS of the Equation (3.13) resembles the VIX index, and suggests that the two

measures are connected. As outlined, SVIX quantifies the RN volatility of the return

on the market uniquely by European option prices. SVIX puts equal weights on option

prices; however, VIX is weighted by 1
K2 . Obviously, VIX puts more weight on OTM puts

and less on OTM calls- i.e., imposes more importance on left-tail events. Martin (2017)

documents that the VIX estimates entropy, while the SVIX index estimates variance.

He shows that both quantities are equally reasonable, and it depends on the analyst’s

objective to choose them and exploit their information- i.e., Entropy is more sensitive

to the left tail, while variance is more sensitive to the right tail.

Martin (2017) employs the SVIX measure and derives a lower bound on expected index

returns. More specifically, he suggests that the following identity links the expected

returns and risk-neutral variances:

varQt Rt,T = EQ
t R2

t,T − (EQRt,T )
2 = RF,t,T EP

t (MTR
2
t,T )−R2

F,t,T

where EP is expectation under physical measure, and MT is the stochastic discount
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factor. The following identity links expected returns and risk-neutral variance:

EP
t Rt,T −RF,t,T = [EP

t (MTR
2
t,T )−RF,t,T ]− [EP

t (MTR
2
t,T )− EP

t Rt,T ] =

1

RF,t,T
varQRt,T − cov(MTRt,T , Rt,T )

Considering a negative correlation condition (NCC) assumption- i.e., cov(MTRT , RT ) ≤

0, Martin proposes that the RN variance of the market offers a lower bound on the equity

premium:

EtRt,T −RF,t,T ≥ 1

RF,t,T
varQRt,T = SV IXt,T

While Martin (2017) argues that an NCC should hold for the market return, Kadan and

Tang (2019) extend this idea and compute a lower bound for expected stock returns

assuming that NCC holds for individual stocks. Similarly, Martin and Wagner (2019)

build on the SVIX measure and propose a new formula that expresses the expected

return on a stock in terms of three measures, namely the risk-neutral variance of the

market (SV IXM ), the risk-neutral variance of the individual stock (SV IXi), and the

value-weighted average of stocks’ risk-neutral variance ( ¯SV IX =
∑

wiSV IXi). Martin

and Wagner (2019) propose that the expected return on stock i from time t to T is

obtained as follows:

EtRi,t,T = Rf,t,T × [SV IX2
m,t,T +

1

2
(SV IX2

i,t,T − SV IX
2
t,T )] +Rf,t,T (3.14)

where SV IX2
i,t,T is the RN variance at the stock level and Rf,t,T is the gross riskless

rate from time t to t+ 1.

In addition, Chabi-Yo et al. (2022) propose a flexible technique to build individual assets’

expected excess return bounds. Their approach considers the entire shape of the RN

density rather than only the second moments in Martin and Wagner (2019). Specifically,

they suggest that:

Et(Ri,t,T −Rf,t,T ) = maxθ∈Θi,t
{E∗

t (R
θ+1
i,t,T )/E

∗(Rθ
i,t,T )−Rf,t,T } (3.15)
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where Ri,t,T is the the simple gross return on stock i and Rf,t,T is the risk-free rate. The

RN expectations, E∗, in (3.15) are calculated using option quotes for a specific θ where

the set of Θ is given by:

Θi,t = {θ : θ − γtβMi +
γtρt
Rf,t,T

βM2,i +
θ(θ − 1)

2Rf,t,T
Bi2,i −

θγt
Rf,t,T

βMi,i ≤ 0} (3.16)

Chabi-Yo et al. (2022) suggest that the parameters γt = 2 and ρt = 1. They define βi2,i,

βM,i, βMi,i and βM2,i as follows:

βM,i = COV (RM,t,T , Rf,t,T )/V AR(Ri,t,T )

βM2,i = COVt((RM,t,T −Rf,t,T )
2, Ri,t,T )/V ARt(Ri,t,T ),

βi2,i = COVt(Ri,t,T −Rf,t,T )
2, Ri,t,T /V ARt(Ri,t,T );

βMi,i = COVt((RM,t,T −Rf,t,T )(Ri,t,T −Rf,t,T ), Ri,t,T )/V ARt(Ri,t,T )

(3.17)

where RM,t,T is the market return.

A fixed quadratic function of returns will project the lower bound of Chabi-Yo et al.

(2022) to the variance-based bound of Kadan and Tang (2019) and Martin and Wagner

(2019), while payoffs of fractional or higher degree polynomials consider higher moments.

3.3.1.4 Variance Risk Premium

One application of model-free implied volatilities is that it “Synthesises” variance swap

rates and provides a robust technique for measuring the variance risk premium on fi-

nancial assets. A variance swap has zero market value at time zero. However, at the

expiration date, the payoff to the buyer of the swap is the spread between the realised

variance during the contract’s life and the variance swap rate:

[RVt,T − SWt,T ]× L

where RVt,T represents the realized annualized return variance between time t and T

, SWt,T indicates the fixed variance swap rate that is estimated at time t and paid at

time T . L indicates the notional dollar value that transforms the variance into a dollar

payoff. SW rates are unavailable from real data sources; therefore, the previous litera-
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ture calculates the SW rates by synthesising them via a trading strategy in European

options and futures. Demeterfi et al. (1999) suggest that the no-arbitrage condition

implies that the variance swap rate equals the risk-neutral variance:

SWt,T = EQ
t [RVt,T ]

Carr and Wu (2009) estimate the average variance risk premium via the average of the

spread between the variance swap rate and the realised variance, RPt,T = RVt,T −SWt,T

where realised variance is calculated using the forward prices:

RVt,T =

T−t∑
i=1

(
Ft+i,T − Ft+i−1,T

Ft+i−1,T
)2

Bollerslev et al. (2009b) also estimates the value of the “ex-ante” variance risk pre-

mium (V RPexa) for the index proxy as the spread between the 30-days implied variance

(MFIV) observed on day t and the realised index variance over the last 30 calendar days.

Konstantinidi and Skiadopoulos (2016) generalize the conventional approach of Bon-

darenko (2014) and propose a method to measure the market V RP T
t,t+h from a T -

maturity swap held from t to t + h. More specifically, they propose that the V RP T
t,t+h

for an investment horizon h can be obtained as follows.

V RP T
t,t+h = Et[RetSW T

t,t+h]

where RetSW T
t,t+h =

PLT
t,t+h

SWT
t,t+h

and

PLT
t,t+h = e−r(T−h)L[λRVt,t+h + (1− λ)SWt+h,T+t − SWt,t+T ]

PL is the profit and loss received from owning a swap contract for an investment horizon

h, maturing at T . L is the notional dollar amount of the swap, r is the risk-less rate.

λ = h/T is the ratio of the investment horizon over the time-to-expiry of contract, and

RVt,t+h is the asset return’s realised variance from t to t+ h.

Konstantinidi and Skiadopoulos (2016) suggest that synthesising SW from option prices
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could result in a bias in VRP computations. First, the conventional methods of V RP

computation followed the MFIV calculation and assumed a diffusion process in the ab-

sence of jump and stochastic volatility. However, if a jump exists in the underlying

dynamics, the synthetic SW rate is a biased predictor of EQ[RV ]. Therefore, synthetic

SW rates underestimate real SW if negative jumps are dominant. Second, there are

computational errors in synthesising the SW rates (Jiang and Tian (2007)). Third,

the MFIV estimation is untrustworthy during a crisis, especially when it is employed

to measure the investor’s fear. (see Andersen et al. (2015)). To address these short-

comings, Bollerslev et al. (2011) estimates the volatility risk premium considering that

the underlying asset follows a stochastic process. Furthermore, Ait-Sahalia and Mancini

(2020) analyse the swap rates using a model-free technique to estimate the price of a

jump in swap rates.14

3.3.1.5 Application of Implied Volatility Measures

Several studies employed model-free implied volatility measures for prediction. For ex-

ample, some studies show that the implied-volatility contains valuable information in

predicting future stock returns. An et al. (2014) document that the implied volatili-

ties of ATM call and put options have conflicting inferences. They empirically show

that an upward shift in the implied volatility of call (put) options is associated with

higher (lower) future returns. Conrad et al. (2013) analyse the relationship between RN

variance and subsequent stock returns and find an insignificant negative relationship be-

tween the two. Ang et al. (2006) use the variations in the VIX as innovation in volatility

and show that stocks which are more sensitive to innovations in aggregate volatility earn

lower returns on average. Diavatopoulos et al. (2008) define the implied idiosyncratic

volatilities as the spread between the implied volatility of the market and the implied

volatility of the firm and document a strong positive relationship between implied id-

iosyncratic risk and future asset returns. Other studies, such as Navon (2014) and Cao

et al. (2022), study the relationship between implied volatility changes and corporate

bond returns. Both studies document that changes in implied volatilities negatively

14. If the stock price process does not jump, the V S payoff can be replicated by dynamically trading
futures contracts and by taking a static position in a continuum of European options with various strike
prices and the same maturity. However, if the stock price has a jump component, the replication above
no longer holds. This observation makes it possible to assess whether VS rates embed a jump component
and quantify its magnitude.
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predict future bond returns.

Another strand of literature employs option-implied volatilities to forecast market volatil-

ity. Number of studies state that implied volatility incorporates additional information

compared to historical volatility in predicting future volatility. For example, Busch et al.

(2011) predict the current month’s total realised variance (RV) with the lagged realised

variances and BS implied volatility. They document that adding the BS implied volatil-

ity to the set of predictors increases the adjusted R2. Kourtis et al. (2016) compare the

predictive ability of a GARCH model with the S&P 500 option-implied variance and

suggest that implied volatility offers better monthly realised variance forecasts. Sim-

ilarly, Giot and Laurent (2007), Frijns et al. (2009), Kambouroudis et al. (2016) all

show that implied-volatility is an efficient estimator of realised variance. Some studies

such as Xu and Taylor (1994), Fleming et al. (1995), Blair et al. (1999) suggest that

BS implied-volatility is a biased but efficient estimator of volatility. Nevertheless, some

other studies suggest that RN volatilities are systematically different from their physical

pairs because variance risk premiums are non-zero (e.g., Bakshi and Madan (2006), Carr

and Wu (2009). These studies document that implied volatility is a weak predictor of

future volatility and has limited practical information for forecasting future volatility.

(Day and Lewis (1992); Lamoureux and Lastrapes (1993), Canina and Figlewski (1993),

Becker et al. (2007)).

To address risk premiums, measures synthesised from implied volatility, such as VRP

(defined as the difference between the model-free implied variance and the lagged realised

variance), show that market risks are linked with variance risk premiums. Bollerslev

et al. (2009a) and Drechsler and Yaron (2011) document that the one-month variance

risk premium has substantial forecasting ability for future market excess returns. Boller-

slev et al. (2011), Schneider and Trojani (2018), Andersen et al. (2019), among others,

show that the VRP is mainly due to the tail risk, and thus the tail risk is predictable

by VRP.

Other studies focus on the CAPM and try to predict betas more precisely by taking

into account the forward-looking information inferred from options. French et al. (1983)

estimate beta using the correlation between stock’s and market’s historical returns as
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well as option-implied volatilities of the stock and the market.

Other studies such as Martin (2017) demonstrates that options incorporate information

on the lower bound of the underlying’s expected return. Martin and Wagner (2019)

derive a measure for estimating a stock’s expected return from its implied volatility

surface. Du and Kapadia (2012) construct a tail risk index from the difference between

VIX and implied variance measure of Bakshi et al. (2003). Bollerslev and Todorov

(2011) introduce risk measures to forecast jump risk under RN probability measure and

document that a considerable part of the equity risk premium compensates jump risk.

3.3.2 Measures of Tail Risk

Empirical works on extracting option-implied skewness are divided into two classes.

The first class consists of methods which define the implied skewness based on the

asymmetry in the implied volatility surface. The second relies on the RN distribution

of the returns and the primary result of Bakshi et al. (2003), who show that any payoff

can be determined by precise positions on options. We will discuss these methods in

more detail in the following sections.

3.3.2.1 Asymmetry of Implied-Volatility Surface

The literature has extensively reported that option-implied volatility differs across strike

prices, which is known as the “volatility smile”, “volatility smirk,” or “volatility skew”.

These terms refer to the situation where observed implied Black-Scholes volatilities are

larger for options with lower strike prices than for options with higher strike prices.

Several studies describe the implied volatility skew based on the asymmetry in the

implied volatility surface. One effort to estimate volatility smirks is proposed by Bates

(1991), who defines volatility smirk as the spread between the implied volatility of OTMP

options and IV of OTMC options. However, options exist only for a limited number

of exercise prices and therefore, the skew measure of asymmetry cannot be estimated

directly. Bates (1991) suggests interpolating across strike prices to overcome this issue.

Toft and Pruck (1997) define implied volatility skew as the spread between the implied

volatility of a 10 per cent in-the-money and a 10 per cent out-of-the-money option, pro-
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portional to the implied volatility of an ATM option. This measure delivers information

in both the level and the slope.

Doran and Krieger (2010) define the implied skew as the spread between the average

IV of options whose exercise prices are more than the current price of the underlying

and the average IV of options whose exercise prices are less than the current price. This

measure is known as above-minus-below (AMB).

AMB =
(IVITMP + IVOTMC)− (IVITMC + IVOTMP )

2

where IVITMP , IVOTMC , IVITMC and IVOTMP are average implied volatilities of all

ITMP options, all OTMC options, all ITMC options, and all OTMP options, respec-

tively.

Doran and Krieger (2010) also propose two more quantities, as the spread between OTM

and ATM implied volatilities of call or put options.

COMA = IVOTMC − IVATMC

POMA = IVOTMP − IVATMP

In contrast to AMB , COMA ( POMA ) uses only OTM and ATM call (put) options

to capture the volatility curve asymmetry. The ATM options used in this method

are options with a strike-to-spot ratio nearest to 1.00. A positive COMA is related to

bullish anticipations and suggests that optimistic traders increase their trading activities.

However, a positive POMA shows that OTM puts are more expensive than ATM options

and indicates a bearish market.

Corresponding to POMA, Kelly et al. (2016) proposed an implied-volatility slope, which

quantifies the slope of the function that relates implied volatilities to delta. The implied

slope is estimated by regressing the IV of an option against its delta as:

IVt,T = α+ IV Slope∆t,T + ϵt,T (3.18)
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where IVt,T and ∆t,T are the implied volatility and delta of an OTM option. The

regression coefficient left (right)-IV Slope denote the put (call) implied volatility slope.

Kelly et al. (2016) use this measure to quantify the tail risk of political uncertainty.

Another alternative measure to COMA, is the volatility smirk proposed by following

Xing et al. (2010) as the difference between the average implied volatilities of OTM puts

and ATM options. The smirk measure is computed as follows:

Smirkt,T = IV OTMP
t,T − IV ATM

t,,T (3.19)

Xing et al. (2010) define ATM options as options with a moneyness level (defined as the

ratio of strike price to the current stock price) between 0.95 and 1.05. Moreover, a put

option is defined as OTM when the ratio of strike price to the stock price is between 0.8

and 0.95.

Cremers and Weinbaum (2010) (and Bali and Hovakimian (2009)) define the deviation

from put-call parity (PCD) as the difference between call and put implied volatilities.

More precisely, this measure is the average difference in implied volatilities (IVt,T,K),

between call and put options (with the same strike price and maturity):

PCDt, T =

∑N
j=1 IV

Calls
t,Kj

− IV Puts
t,Kj

N
(3.20)

where j refers to pairs of put and call options and index strike prices. This measure

quantifies the deviation from put-call parity- i.e., the IV of call and put options with

identical strike price and time-to-expiration should be the same. A deviation from put-

call parity- i.e., a non-zero PCD does not certainly imply an arbitrage opportunity;

instead, it could be due to short-sale constraints, transaction costs, or the existence of

informed traders. For example, suppose that insider traders obtain information about

an increase in underlying asset prices. In that case, the prices of call options will rise

while the prices of the put option will fall, resulting in positive PCD.

Doran and Krieger (2010) suggests that each measure motioned above captures a specific

position of the implied volatility surface, and specific pairs can create the third measure.
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Specifically, they document that IV SXZZ captures the left and the middle of the put

and call volatility skew, respectively. CPIV describes the middle of the volatility skew.

AMB reflects both tails of the volatility curve while COMA concentrates on the right

and centre of the volatility curve of call options, and POMA focus on the left and centre

of the volatility curve of put options.

3.3.2.2 Moments of RN-density

It has been widely recognised that the volatility smile is due to heavy-tailed risk-neutral

distribution- i.e., there is a one-to-one relationship between the RN density function and

the IV surface. Bakshi et al. (2003) (BKM) identify a significant relationship between

the measure of the RN skewness and the slope of the implied volatility- i.e., negatively

sloped volatility curves, where the implied volatilities of OTM puts are higher than that

of ITM puts, demonstrate negative RN skewness.

Relying on the results of Carr et al. (2001) in Equation (3.1), BKM show that the cubic

contract (which measures the third moment of returns) can quantify return asymmetry

by positioning in OTM put and call options. Risk-neutral model-free skewness is com-

puted using observed prices of OTM European call and put options. More specifically,

they show that the RN skewness between time t and T is given by:

RNSt,T =
erf (T−t)M(3)t,T − 3erf (T−t)µt,TM(2)t,T + 2µ3

t,T

[erf (T−t)M(2)t,T − µ2
t,T ]

3/2
(3.21)

where M(n)t,T (n = 2, 3, 4) is given by Equation (3.5).

and µt,T = Rf,t,T − 1−Rf,t,T [M(2)t,T /2 +M(3)t,T /6 +M(4)t,T /24], Rf,t is the riskless

rate. St denotes the price of the asset at time t and Pt(K,T ) and Ct(K,T ) are the OTM

put and call prices.

This method has been broadly used by researchers mainly because it is model-free and

straightforward to implement. However, as discussed by Jiang and Tian (2005), one of

its shortcomings is the selection of extrapolation technique to the tails of the distribution

where there exists no available option price. In addition, its estimates are likely to be

biased since the moments are risk-neutral rather than physical.
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3.3.2.3 Implied Measures of Tail Risk and Default

Aıt-Sahalia and Lo (2000) established working on option-implied risk measures. Their

work implies that Value-at-Risk (VaR) under the RN measure might reveal some parts

of market risk that the physical measure cannot estimate. Therefore, they deduce that

the option-implied VaR measure is more of a compliment than a substitute measure in

risk management. They suggest that V aR and expected shortfall (ES) of log returns

at the α level at time t are obtained by constructing a kernel estimator of the density

function F r
t of these returns:

V aRQ
t = inf{x ∈ R : F r

t (x) ≤ α}

ESQ
t = EQ

t [x ∈ R : x ≤ −V aRQ
t ]

In the same spirit, Vilkov and Xiao (2012) document that an option-implied conditional

expectation of market loss arising from tail events, or tail loss measure (TLM), forecasts

future market returns and the possibility of crashes. TLM is similar to the conditional

Value-at-Risk, calculated under the RN probability and is equivalent to RN skewness.

Employing the results of the Extreme Value Theory (EVT)15 event, they utilise the

second theorem of EVT, to determine the distribution of the asset price x less than a

threshold h by a generalised Pareto distribution. They suggest that the average excess

tail of the asset, with ϵ < 1, can be computed as:

E(h− xt|h > x) =
β

1− ϵ

where β and ϵ are the scale and the tail shape parameters, respectively.16 Therefore,

the TLM, Ωh,t, at time t conditional on the threshold h is defined as:

Ωh,t =
E(h− x|h > x)

xt

15. which primarily focuses on the distributional properties of the extreme or low probability.

16. Refer to the EVT results and generalised Pareto distribution properties in the original papers of
Balkema and Haan (1974)
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Vilkov and Xiao (2012) infer the parameters β and ϵ from the available market prices.

Therefore, all expectations and TLM are determined under the RN probability by re-

solving the optimisation problem using all OTM puts with strikes relatively smaller than

K0,t:

ϵt, βt = arg minϵ,β∈(RR+)

n−1∑
i=0

Pi,t − P ∗
i,t

P ∗
i,t

where Pi,t is the market price of a put option with strike Ki,t on day t, and P ∗
i,t is the

price of a put option calculated based on the Extreme Value Theory:

P ∗
i,t = P ∗

0,t[
ϵt
βt

(K0,t −Ki,t) + 1]1−1/ϵt

The strike K0,t is the threshold strike.

Another measure of tail risk is proposed by Culp et al. (2018) and Culp et al. (2021)

via the concept of implied spread (IS). These papers turn Merton (1973)’s idea and

construct an option implied bond, a defaultable zero-coupon bond, with an European

put option Pt(K,T ) with strike price K and maturity date T and a risk free zero coupon

bond, Zt(T ), with maturity T

Bt(K,T ) = Zt(T ) +
P(T,K)

K

Culp et al. (2021) suggest that the implied spread of a put option is the credit spread

of its implied bond and reflects tail risk.

ISt(K,T ) = yt(K,T ) + rt(T )

where yt(K,T ) = logBt(K,T )/T − t is the continuously compounded yield of the risky

zero-coupon bond and rt(T ) = logZt(T )/T − t is that of the risk-free zero-coupon bond.

IS is countercyclical and predicts implied bond returns. However, it does not predicts

put return. They propose that the countercyclical relationship is consistent with a

stochastic volatility model- i.e., Higher volatility increases put option premia, whereas

jump intensity decreases put option premia.
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3.3.2.4 Forecasting with Option-Implied Skewness

Implied skewness has been widely used to explain the subsequent cross-section of returns.

Several studies employed implied skew based on asymmetry in BS implied volatilities.

For example, Cremers and Weinbaum (2010) document that the deviation from put-

call parity is more possible when the probability of informed trading of Easley et al.

(1998) is high. Xing et al. (2010) look at the difference between OTMP and ATMC

implied volatilities. They find that the implied volatility smirk negatively predictive

firm-level cross-sectional returns. Furthermore, they find that this predictability persists

for at least six months. Xing et al. (2010) and Cremers and Weinbaum (2010) find a

theoretically contradictory positive relation between RN skewness and future returns.

Doran and Krieger (2010) compared implied-skewness measures based on the positions

they captured in the volatility surface. They show that splitting the volatility skew

into parts and dealing separately with each part can be effective in forecasting future

equity returns. Doran et al. (2006) report evidence supporting the hypothesis that

the risk-neutral skewness, defined as the spread between implied volatilities of OTM

puts and calls, has strong forecasting ability in the short-term decline of the stock

market. Baltussen et al. (2011) find a negative relationship between weekly returns and

all option-implied skewnes.17

Furthermore, several studies have widely used the implied skewness proposed by BKM.

For example, Chang et al. (2012) propose a market skewness factor which commands a

negative risk premium. They show that stocks which are more sensitive to the innova-

tions in implied market skewness demonstrate lower returns on average. Rehman and

Vilkov (2012) and Stilger et al. (2016) show that the RN skewness is positively related

to future stock return. In addition, Borochin and Zhao (2022), Gkionis et al. (2021),

and Chordia et al. (2020) find that a strong negative RNS value, due to expensive OTM

puts relative to OTM calls, indicates future stock underperformance. These studies ar-

gue that stock overpricing is the reason for this positive relationship. Stock overpricing

may not be promptly updated in the underlying markets; therefore, traders may incline

to the options market to trade based on their negative views by buying (selling) OTM

puts (calls). Consistent with Garleanu et al. (2009) demand-based option pricing frame-

17. Defined as the difference between the implied volatility of OTMP and ATMC.
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work, if the risk averse market makers cannot completely hedge their positions, they

would increase the price of put options to compensate for the risk they take. This, in

turn, will provide a more negative RNS value. This option-implied information gradually

merges into stock prices and increases the predictive relations. These findings, however,

contrast with the empirical evidence supported by Conrad et al. (2013) and Dennis and

Mayhew (2002). Specifically, Dennis and Mayhew (2002) document a negative relation

between the RN skewness and systematic risk, beta. They claim that market risk is

mirrored in the RN skewness inferred from the option quotes. Conrad et al. (2013) find

that firms with less negative RN skewness earn less returns. Their results are consistent

with Brunnermeier et al. (2007)’s model, which discusses the trade-off between the ben-

efits of diversification and skewness- i.e., holding skewed securities results in a negative

correlation between idiosyncratic skewness and expected returns.

Several studies deal with forecasting crashes with volatility skew. Doran et al. (2007)

analyse whether the implied volatility skew pattern can forecast the market crash or spike

probability. Doran et al. (2006) and Doran et al. (2007) find that option-implied skew

has substantial predictive power for estimating the extent of market crash risk. Cremers

et al. (2015) derive an aggregate jump and volatility risk factors by constructing a delta-

neutral ATM straddle sensitive to crash risk and document that their factor requires

negative risk premiums. Wang and Yen (2018) derive option-implied tail loss and then

use these quantities to analyse whether option-implied tail risk contain information on

the future returns of the underlying assets. Their empirical investigation indicates that

tail measures inferred from S&P 500 options can predict crashes in S&P 500 index.

Some studies employed risk-neutral skewness to enhance the accuracy of the forecasts

of future volatility. For example, Byun and Kim (2013) detect whether RN skewness

and kurtosis have additional forecasting power on future volatility. They show that

RN skewness has supplementary information compared to past realised volatilities and

implied volatility- i.e., risk-neutral skewness and kurtosis measures contain some infor-

mation content to predict jump variations in the heterogeneous auto-regressive realised

volatility (HAR-RV) model. DeMiguel et al. (2013) suggest employing implied volatility,

variance risk premium, correlation, and skewness in portfolio selection. They document

that the skewness and the variance risk premium significantly enhances the portfolio’s
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performance.

3.3.3 Measures of Risk Preferences

The complete market hypothesis suggests that the relationship between investors’ risk

preferences, asset return process (i.e., R = ln(ST /St) and state price densities are char-

acterised as follows:

RRA(R) = −R
U ′(R)

U ′′(R)
= −R

m′(R)

m(R)

where RRA is the relative risk aversion function and U is the utility function of investors.

The m(R) is the stochastic discount factor (pricing kernel) that specifies the equilibrium

asset prices.

Pioneering with Aıt-Sahalia and Lo (2000), number of other studies including Rosenberg

and Engle (2002), Bliss and Panigirtzoglou (2004), Kang and Kim (2006) have focused on

extracting risk preferences of investors using option quotes. Following Bakshi and Madan

(2006), Kang et al. (2010) simplify this equation using the Taylor series expansion and

exponential utility function. They provide a theoretical formula to compute volatility

differences and extract implied RRA:

σ2
p,t(τ)− σ2

q,t(τ)

σ2
q,t(τ)

≈ γσq,t(τ)θq,t(τ) +
γ2

2
σ2
q,t(τ)(kq,t(τ)− 3) (3.22)

where γ is the coefficient of the relative risk aversion of the representative agent. The

formula suggests that the difference between the risk-neutral variance (σ2
q,t(τ)) and phys-

ical variance (σ2
q,t(τ)) is a function of the representative investor’s relative risk aversion

(γ) and higher order moments. In this formula σ2
q,t(τ), θq,t(τ) and kq,t(τ) are the risk-

neutral variance, skewness and kurtosis following Bakshi et al. (2003) obtained from

Equations (3.3) and (3.21), respectively. Extracting the relative risk aversion from

Equation (3.22),18 Faccini et al. (2019) document that investor’s implied relative risk

aversion obtained from S&P 500 option quotes has forward-looking information and can

18. Estimate γ (IRRA) using the generalized method of moments (GMM) and a rolling window of 30
monthly observations.
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predict economic conditions.

3.4 Predictive Power of Option-Implied Variables for Cross-

Section of Returns

Market prices of options are forward-looking and may reflect some information regard-

ing the future price of the underlying asset on the expiration day. Thus, an investor

who trades based on her beliefs may trade in the options market to benefit from the

information embedded in options (Black (1975), Easley et al. (1998)). For example,

investors may choose the options market to trade based on their negative information

or views by purchasing OTM puts.

A growing body of literature discusses the opportunity of exploiting forward-looking

information from option prices to enhance the prediction of future asset returns- i.e.,

predicting abnormal stock returns using option-implied measures. As mentioned in the

previous sections, number of studies, including An et al. (2014), Hu (2014), Cremers

and Weinbaum (2010), Johnson and So (2012), Muravyev et al. (2013), Manaster and

Rendleman (1982), and Xing et al. (2010) propose a variety of different option-based

measures for predicting stock prices. However, researchers have no consensus regarding

the relationship between implied measures and the stocks’ returns. The main contribu-

tion of this section is to discuss the forecasting ability of option-implied predictors. We

compare the predictability of eight option-implied measures under similar circumstances

to reveal when they succeed in forecasting stocks’ returns.

3.4.1 Data

We compute eight option-implied variables, namely, the risk-neutral model-free im-

plied volatility (MFIV), Forward Variance (FV), Risk Neutral Skewness (RNS), Volatil-

ity Smirk (Smirk), implied volatility call-slope (IVS-Call), implied volatility put-slope

(IVS-Put), put-call deviation (PCD), individual expected returns (ExRet). These vari-

ables are computed using index and individual stocks option prices. We collect the

required data from OptionMetrics Ivy DB(OM) via the Wharton Research Data Ser-

vices (WRDS) and Compustat. Our sample spans January 1996 to May 2019.
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First, we obtain information on the S&P 500 index and its constituents from Compustat.

Using the lists of index constituents, we searched the OptionMetrics database for all firms

that formed the S&P 500 during our sampling period. Then, where available, we obtain

the time series of implied volatility surface (IVS) data for these individual firms from

the Optionsmetrics volatility surface file. The IVS file contains implied volatilities for

standardized equity options with standardized maturities, including 30 calendar days,

on a grid of the delta space accompanied by implied strike prices.19 we remove options

whose deltas or implied volatilities are missing. As mentioned in Section 3.2, curve-

fitting methods are among the most popular methods to construct the implied-volatility

surface. Therefore, we employ this method and interpolate and extrapolate the implied

volatilities of OTM options in the moneyness dimension using cubic splines. Next, we

convert implied volatilities to BS option prices to calculate all the required risk-neutral

expectations.20 In addition, we collect daily index and stock prices as well as data on

the number of outstanding shares of each firm to compute their market capitalisations

from OptionMetrics’s underlying price file. Also, we collect forward prices for each firm

from OM standardised option price file. Zero yield curve data is also obtained from the

OM Zero Curve File.

Using equity prices and volatility surface data, we compute the risk-neutral option-

implied variables of all individual firms that have been constituents of S&P 500 from

1996 to 2019 for horizons of one month. Panel A of Table 3.1 reports that we ended

up with almost 2.5 million individual stock implied variables for one-month horizons,

covering 1,092 firms over our sample period from January 1996 to May 2019. Over

different horizons, we have data on 482 firms on average per day, indicating that we

obtain almost 96% of the firms included in the S&P 500 index. Not all of these firms

are constituents of the SPX index for the entire sample. Therefore, to avoid missing

variables, on each day, we only focus on firms that have been included in SPX and

19. The theoretical procedures for computing option-based variables are established for European
option prices. However, the exchange-listed individual U.S. equity options are Americans. To resolve
this, the OM relies on the binomial tree and calculates IVs by considering early exercise premium. We
follow the routine in the literature (e.g., Martin and Wagner (2019)) and rely on the IVs provided by
the OM.

20. We employ a piecewise cubic Hermite to interpolate implied volatilities as a function of moneyness
between available moneyness points. For ranges beyond left and right boundaries, we extrapolate using
constant rule. Therefore, we fill in the moneyness range of [1/3,3], with a total of 1,001 points.
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calculate the value-weighted average of the RN variance of the market resulting in a

balanced panel of expected returns for 125 firms with 251 monthly observations from

June 1998 to May 2019.

[Table 3.1 about here.]

3.4.2 Variables

Equipped with the dataset discussed above; first, we compute the individuals’ total

return as:

Rett+1,i = log
Pt+1,i

Pt,i
(3.23)

where Rett+1,i is the one-month return on the ith firm at the end of month t+1. Pt+1,i

and Pt,i denote the total price of ith firm at the end of months t+ 1 and t.

Next, following the literature, we parsimony and cautiously choose specific option-

implied measures from the variables reviewed in previous sections and assess their pre-

dictive ability to forecast the cross-section of future returns. Due to space and time

limitations, we do not consider all the option-implied variables studied in the previous

sections.

Across different model-free implied volatilities reviewed in Section 3.3.1.1, we select

MFIV proposed by BKM as our first option-implied predictor. MFIV of BKM is intrin-

sically linked to measures proposed by Carr and Madan (1998), Britten-Jones and Neu-

berger (2000) and Demeterfi et al. (1999). Therefore, we construct the 30-day model-free

implied volatility (MFIVt,i) of ith firm following Bakshi et al. (2003) with a portfolio

of OTM options using Equation (3.3).

Considering an exponential claim on variance, Bakshi et al. (2011) assign different

weights to (positions on) the OTM put and call options. Therefore, we compute the for-

ward variance proposed by Bakshi et al. (2011) as our second option-implied predictor

to examine the effect of this positioning on its predictive ability. We use OTM options

data to compute at time t the forward variance, FVt,T,i, between t and T— i.e., the

forward variance with a T − t = 1-month horizon. We calculate FVt,T using Equations

(3.7) to (3.10).
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Further, we employ the RN skewness proposed by Bakshi et al. (2003) which measures

the tail risk as our third predictor. As highlighted by Buss and Vilkov (2012), this

measure is highly correlated with the tail loss measure (TLM) discussed in Section

3.3.2.3. Therefore, between the two, we focus our analysis on RN skewness and compute

it following Bakshi et al. (2003) using a portfolio of OTM options via Equation (3.21) .

Our fourth and fifth option-implied predictors are the implied volatility slope of put and

call options. Specifically, we calculate the left (right)-Implied volatility slope of the ith

firm using OTM put (call) options (the slope of the implied volatility smile). Following

Kelly et al. (2016), we define OTM put (call) options as options where the absolute

values of their deltas are between 0.1 and 0.5. We regress the implied volatilities of

options on their deltas and define the implied volatility slope as in Equation (3.18).

These measures are inherently alternatives to COMA and POMA proposed by Doran

and Krieger (2010).

Sixth, we calculate volatility smirk following Xing et al. (2010) as the difference between

the average implied volatilities of OTM puts and ATM options. The smirk measure is

computed following Equation (3.19). Following Xing et al. (2010), we define ATM

options as options with a moneyness level (defined as the ratio of strike price to the

current stock price) between 0.95 and 1.05. Moreover, a put option is defined as OTM

when the ratio of strike price to the stock price is between 0.8 and 0.95.

Seventh, following Cremers and Weinbaum (2010), we define the deviation from put-call

parity (PCD) as the difference between call and put implied volatilities. More precisely,

this measure is the average difference in implied volatilities between call and put options

(with the same strike price and maturity) and obtained via Equation (3.20).

Eighth, following Martin and Wagner (2019), we compute option-implied individuals’

expected return (ExRet) using Equation (3.14). With respect to the expected returns

obtained from Martin and Wagner (2019), looking closely at the feasible θ in Equation

(3.16), we found that for 87% of the returns, the feasible θ is equal to one, and the

derived expected returns bounds are based on the second moments- i.e., variance-based

measures. Consequently, expected returns obtained from Martin and Wagner (2019) and

Chabi-Yo et al. (2022) are highly correlated; hence, we focus our analysis on risk-neutral
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expected returns based on the second moment.

We left examining the predictive power of other option-implied variables (such as IRRA

and variance risk premium) to forecast the cross-section of returns for future research.

3.4.3 Methodology

In this section, we compare the predictive ability of option-based variables introduced

above to predict future stock returns using two different methodologies, namely panel

regressions and portfolio sorts strategy.

• Panel Regressions

First, we use panel regressions to investigate whether option-implied measures can pre-

dict the one-month returns from a statistical perspective. We run panel regressions of

monthly stock returns of firm i at time t to predict the one-month returns, controlling

for time and firm fixed effects:

Rett+1,i = α+ β1Xt,i + β2Controlst,i + ϵt+1,i (3.24)

where Rett+1,i is the log-return21 from time t to t + 1 on firm i, α and βs denote the

intercept and slope parameters, respectively. Xt is one of the forecasting variable(s)

mentioned in Section 3.4.2 computed at the end of month t. Controlst,i is a 1×4 vector

of control variables for firm i observed at month t. With this regression, we can assess

not only the predictability of the implied variable but also control for firm characteristics.

Therefore, we consider four control variables obtained from the equity market. These

variables are documented by the previous literature to predict the cross-section of equity

returns, including book-to-market ratio, lagged return, size and turnover.22

Table 3.2 provides summary statistics of option-implied variables and control variables

in our sample. First, we compute the the averages over the cross-section for each month,

and then we again average the statistics over the monthly time series. Table 3.3 shows

21. not annualized

22. Book to market is the book value of equity divided by the market value of equity. Size is the firm’s
market capitalisation. Turnover is the stock trade volume over the number of shares outstanding.
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the cross sectional variations of option-implied variables and control variables in our

sample.

[Table 3.2 about here.]

[Table 3.3 about here.]

• Portfolio Sorts Trading Strategy

In the previous section, we examine the statistical significance of the option-base pre-

dictors. In this section, we examine the economic significance of the in-sample pre-

dictability. To do so, we build long-short trading strategies with respect to each option

implied measures. ”Each month, we sort stocks into five portfolios based on each of the

following option-implied measures: risk-neutral model-free implied volatility (MFIV),

Forward Variance (FV), Risk Neutral Skewness (RNS), Volatility Smirk (Smirk), im-

plied volatility call slope (IVSC), implied volatility put slope (IVSP), put-call deviation

(PCD), and individual expected returns (ExRet). Following this methodology, Portfolio

1 contains firms with the lowest corresponding implied variables, and portfolio 5 includes

firms with the highest implied variables. Then, we calculate returns for each portfolio

over the next month. For each option-based measure, if we buy portfolio one and sell

portfolio 5, the return on this long-short strategy indicates the economic significance of

the sorting implied variable. In contrast to the panel regressions method, the portfolio

sorting method does not impose a restricted linear relation between the option implied

variables and the return. In addition, firm-level noise is reduced by grouping individual

firms into portfolios.

3.4.4 Main Results

• Results of Panel Regressions

Panel A of Table 3.4 reports the regression coefficients of estimating Equation (3.24)

which only includes the option-implied variable and a constant. However, we also con-

sider four control variables in the regression model to distinguish the predictive power of

option-implied variables from other firm characteristics. Panel B reports the regression

coefficients of option-implied variables in a regression model (3.24) which controls for

firms’ characteristics variables.
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The panel regression analysis indicates several interesting implications. First, its confirm

that price, variance and tail risks are all priced in the cross-section of returns- i.e., the

regression coefficient of implied variables are all positive except for the implied volatility

slope of puts. Second, it shows that including the control variables does not reduce the

predictive power of implied variables.

The volatility risk results are interpretable by economic theories. These theories posit

that higher volatility stocks should earn higher expected returns. The MFIV, FV, and

ExRet are statistically significant predictors in panel regressions documented by their

t − statistics of 4.77, 4.70 and 5.88, respectively- i.e., higher implied volatility results

in higher future returns. These results suggest that stocks require compensation for

taking high volatility risk- i.e., stock volatility may induce a risk premium and leads to

a positive relationship between volatility and returns.

Furthermore, we found a strong positive relationship between RNS and returns with a

t − statistic of 5.27. Similar to Gkionis et al. (2021) and Buss and Vilkov (2012), we

argue that stock overpricing is the source for this positive relationship. Stock overpricing

may not be promptly updated in the underlying market due to arbitrage limitations.

Therefore, traders may incline to the options market to trade based on their negative

information or views. To maximise their leverage on their negative beliefs, they sell (buy)

OTM calls (puts) instead of shorting the stock. Buying OTM is appealing compared to

selling the underlying stock since the options market does not expose to the potential

risks of holding stocks. In turn, the risk-averse market makers have to sell the underlying

stock and, therefore, are exposed to negative inventory risks. Therefore, they induce

a raising (lowering) price pressure on OTM puts (calls) to compensate for their risk.

This mechanism is in agreement with the demand-based option pricing framework of

Garleanu et al. (2009) and yields OTM puts (calls) relatively more (less) expensive

and hence, lower RNS value. Subsequently, a low RNS value is accompanied by stock

underperformance if investors recognise this procedure as an informative sign to update

the stock overpricing. Similarly, we find that the information in volatility slopes is

connected to future earnings shocks because firms with the steepest volatility slope of

put options have the worst earnings surprises. This finding is also inconsistent with

Xing et al. (2010).
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Section 3.A in the appendix of the paper addresses economic concerns related to our

regression model. Specifically, we implement fixed effects and clustered standard errors

to tackle omitted variables bias and dependence in residuals. Tables 3.A.1 to A.3.8

evaluate the predictive ability of option-implied variables with various control variables

in multiple regression models. The findings reveal that option-implied variables remain

significant predictors, even after accounting for fixed effects and clustering errors.

Furthermore, we extract a single component (e.g., using PCA) from the option-implied

variables and examine its predictive power for the cross-section of returns. The results

are reported in Table A.3.9 in the Appendix and demonstrate that this single factor

derived from option-implied measures exhibits significant predictive ability across all

regression models, even after accounting for fixed effect errors and clustering in our

regression model.

• Results of Portfolio Sorts Trading Strategy

Following the portfolio sorts strategy, we investigate whether implied option measures

are priced risk factors of stock returns. Each month, we sort stocks into quintile port-

folios by each of the following option-based measures: MFIV, FV, ExpRet, RNS, PCD,

LIVS, RIVS, and smirk. Each quintile portfolio has 25 stocks on average.

Column 1, of Table 3.5 reports results for equal-weighted quintile portfolios formed with

respect to MFIV- i.e, portfolio 1 (low), includes firms with the lowest MFIV and has a

monthly return rate of 33 basis points. Portfolio 5 (high), contains firms with the highest

MFIV and has a monthly return of 84 basis points. Portfolio 5 outperforms Portfolio

1 by 76 basis points per month with a t − statistic of 1.89. This is in agreement with

our assumption that higher volatility predicts higher earnings. Similarly, as shown in

Table 3.5, portfolios with higher FV (column 2), risk-neutral skewness (column 3), and

implied expected returns (column 8) earn significantly higher returns. However, if we

long portfolio one and short portfolio 5 with respect to smirk (column 4) or implied

volatility slope of put options (column 5), we earn lower returns- i.e., the excess return

of the long-short strategy is 55 basis points and 41 basis points, respectively. Other

implied variables, such as deviation from put-call parity and implied volatility slope of

call options, do not show any significant predictive ability for future realised returns.
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These results are consistent with panel regression coefficients and heuristically illus-

trate the economic significance of the predictive ability of option-implied variables for

forecasting the cross-section of future returns.

[Table 3.4 about here.]

[Table 3.5 about here.]

• Double Sort Portfolios

We extend our analysis by using double-sorted portfolios to assess the relative impor-

tance of different option-implied measures. In previous sections, we discovered that a

forecasting model incorporating risk-neutral skewness (RNS) among its predictors out-

performs models with other option-implied variables in out-of-sample (OOS) forecasts.

To ensure the robustness of our findings based on single sorts, while controlling for other

implied variables, we conduct double-sorts.

Table 3.6 presents returns from various double sorts, where we alternate the sorting order

between RNS and other characteristics. Panel A of Table 3.6 illustrates this process by

first sorting assets into five quintiles based on their RNS and then further sorting them

within each quintile based on model-free volatility (MFIV), forward, implied volatility

slope of put options, and implied expected returns. For instance, MFIV1 represents the

lowest MFIV-ranked bond quintiles within each of the five RNS-ranked quintiles, while

MFIV5 represents the highest MFIV-ranked bond quintiles within each quintile.

The results in Panel A demonstrate a clear pattern, where the average portfolio re-

turns increase monotonically from MFIV1 to MFIV5 quintile. Importantly, the return

differences between quintiles 5 and 1 range from 0.23% to 0.62% per month and are sta-

tistically significant. These findings validate the economic significance of option-implied

variables in predicting future returns, reinforcing the robustness of our conclusions based

on double sorts and controlling for other implied variables.

[Table 3.6 about here.]

• Effect of Transaction Costs

In This section, we thoroughly investigate the impact of transaction costs on portfolios
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sorted by various option-implied measures. These measures include MFIV, Forward,

skewness, Smirk, implied volatility slope of put and call options, put-call deviation, and

implied expected return. Understanding how transaction costs influence the performance

of these portfolios is crucial for assessing their practicality and real-world applicability.

By considering transaction costs, we aim to gain a comprehensive understanding of the

economic significance and viability of these option-implied measures in predicting returns

in a more realistic trading environment. To estimate portfolio transaction costs, we

adopt a method also used by Chordia et al. (2015), which considers trading illiquidity and

portfolio turnover. Specifically, we use the bid-ask spread as an indicator of illiquidity,

and the resulting transaction cost estimates are derived by multiplying the time-series

average of this illiquidity measure with the time-series average of the portfolio turnover

rate.

The outcomes are presented in Table 3.7, where we deduct these estimated transaction

costs from the return spreads. Remarkably, our findings demonstrate that the estimated

transaction costs are relatively small compared to the return spreads for the sorted

portfolios. More importantly, even after accounting for transaction costs, the return

spreads in the portfolios sorted by RNS, Smirk, IV SP, and implied expected return

remain economically significant.

For example, when transitioning from quintile 1 to quintile 5, the average excess return

on the skewness portfolios exhibits a nearly monotonic increase from -0.03% to 0.37% per

month. This indicates a monthly average return difference of 0.41% between quintiles

5 and 1, with a t-statistic of 2.53, providing clear evidence of the robustness of our

findings regarding the economic significance of option-implied measures in predicting

returns, even when considering transaction costs.

[Table 3.7 about here.]

3.4.5 A Comparative Analysis of Forecasting Stock Returns with Option-

Implied Variables

In this section, we conduct a ”horse-race” comparison among different option-implied

variables to determine their relative forecasting performance. To do so, we calculate the
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out-of-sample R2 (OOSR2) following the method proposed by Campbell and Cochrane

(1999). This metric allows us to assess whether the variance explained by models using

specific option-implied variables in their predictors is higher or lower than the variance

explained by alternative models with other implied variables.

Panel A of Table 3.8 presents the OOSR2, where the full model considers the implied

variable in the column, and the benchmark model considers the implied variable in the

row as part of its predictors. Panel B reports the relevant Diebold-Mariano (DM) test

statistics for OOSR2. The DM test statistic is derived from the out-of-sample forecast

of a full model with a specific option-implied variable (in the column) compared to

a benchmark model with another implied variable (in the row). A positive OOSR2

indicates that the full model outperforms the benchmark model, indicating that the

variable in the column has superior out-of-sample predictive power compared to the

variable in the row.

Our findings reveal that the model incorporating risk-neutral skewness (RNS) exhibits

significantly positive OOSR2 compared to other models with different option-implied

variables. This indicates that the forecasts made by the model containing RNS in

its regressors outperform models with other implied variables, suggesting the superior

predictive ability of RNS in our analysis

[Table 3.8 about here.]

3.5 Conclusions

Traders favour trading in different markets to exploit their informational leverage.

Therefore, one market may be better than another market in price discovery. Among dif-

ferent markets, option markets are known for incorporating valuable information about

the future state of the economy. In this paper, we study option markets, review several

statistical measures inferred from individuals’ option prices, and discuss different meth-

ods to obtain them. We also analyse their application and assess their information’s

usefulness in forecasting. Some empirical studies have found that the option-implied

moments could be biased estimators of physical moments. However, others show that

this bias may be negligible, and removing it may be challenging. Therefore, a bias in
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an option-implied moment does not prevent it from being a valuable estimator of future

variables of interest.

We investigate whether the implied variables inferred from options contain useful infor-

mation for predicting the underlying stock’s future returns. We compare the economic

and statistical predictive ability of several option-based variables to predict expected

returns both in and out-of-sample. These variables include implied volatility, implied

skewness, and measures that capture a specific position of the volatility curve (i.e.,

deviation from put-call parity proposed by Cremers and Weinbaum (2010), or implied-

volatility slope measure, which reflects the slope of the volatility curve). Five of eight

option-based variables, namely model-free implied volatility, forward variance, RN skew-

ness, implied expected returns and implied volatility slope, capture most of the infor-

mation in the cross-section of stock returns. These forecasting powers follow economic

theories suggesting that higher volatility stocks should earn a higher expected return.

In addition, our results are consistent with Garleanu et al. (2009) model, which shows

that demand positively relates to option expensiveness.
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Panel A: Daily Data for SPX firms

horizon 30 60 90 182 365

Observations 2,837,127 2,837,127 2,837,127 2,837,127 2,837,127
Sample days 5892 5892 5892 5892 5892
Sample firms 1092 1092 1092 1092 1092
Average firms/day 482 482 482 482 482

Panel A: Monthly Data for SPX firms

horizon 30 60 90 182 365

Observations 135,343 135,343 135,343 135,343 135,343
Sample months 281 281 281 281 281
Sample firms 1092 1092 1092 1092 1092
Average firms/month 482 482 482 482 482

Table 3.1. Sample Data: This table summarises the data used in the empirical
analysis. We search the OptionMetrics database for all firms that have been included
in the S&P 500 during the sample period from January 1996 to May 2019 and obtain
all available volatility surface data. We use these data to compute firms’ risk-neutral
variances (SV IX2

i,t) for horizons of 1, 2, 3, 6 and 12 months. Panel A summarises the
number of total observations, the number of unique days and unique firms in our sample,
as well as the average number of firms for which options data are available per day. We
also compile data subsets at a monthly frequency for firms included in the S&P 500
(Panel B).
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Variable Mean 5% 25% 50% 75% 95%

Size*106 35.96 2.53 6.95 11.51 30.55 169.83
BM 0.35 0.06 0.18 0.29 0.48 0.84
Turnover 0.98 0.36 0.53 0.74 1.09 2.33
Ret 0.00 -0.18 -0.06 0.00 0.07 0.20
MFIV 0.12 0.08 0.10 0.12 0.14 0.18
FV 0.02 0.01 0.01 0.02 0.02 0.04
RNS -0.25 -0.95 -0.48 -0.24 -0.02 0.49
Smirk 0.05 -0.02 0.02 0.05 0.08 0.14
IVS-Call -0.10 -0.48 -0.15 -0.05 0.02 0.09
IVS-Put 0.18 -0.02 0.06 0.15 0.26 0.52
PC-Deviation -0.02 -0.15 -0.06 -0.02 0.02 0.09
ExpRet 0.98% 0.53% 0.69% 0.87% 1.14% 1.83%

Table 3.2. Summary Statistics: Data are obtained from OptionMetrics. Our sample
period is from May 1998 to July 2019. Variable SIZE is the firm’s market capitalisation
in $ billions. Variable BM is the book-to-market ratio. Variable TURNOVER is cal-
culated as monthly volume divided by shares outstanding. Our option-based variables
include Risk-neutral model-free implied volatility (MFIV), Forward Variance (FV), Risk
Neutral Skewness (RNS), Volatility Smirk (Smirk), implied volatility call slope (IVS-
Call), implied volatility put slope (IVS-Put), PC-Deviation (PCD) and the individual
expected returns (ExRet). We first calculate the summary statistics over the cross-
section for each month, and then we average the statistics over the monthly time series.
For each month, there are, on average, 125 firms in the sample.
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Statistic N Mean St. Dev. Min Max

Size*106 30,747 52.12 78.90 0.81 1099.43
BM 30,753 0.457 0.430 0.360 5.757
Turnover 30,748 1.533 1.142 0.181 28.072
Returns 30,871 0.007 0.104 −0.853 7.965
MFIV 30,871 0.090 0.040 0.031 0.605
FV 30,871 0.011 0.012 0.001 0.358
RNS 30,871 −0.789 0.417 −10.650 2.793
Smirk 30,871 0.064 0.043 −1.357 0.805
IVS Call 30,871 −0.033 0.155 −1.901 5.228
IVS Put 30,871 0.219 0.166 −0.563 3.565
PC Deviation 30,871 −0.007 0.082 −1.165 1.423
1+ExpectedRet 30,750 1.005 0.006 0.998 1.173

Table 3.3. Descriptive Statistics: This table reports the cross sectional statistics
of firms’ characteristics and option-implied variables. Data are obtained from Option-
Metrics. Our sample period is from May 1998 to July 2019. Variable SIZE is the firm’s
market capitalisation in $ billions. Variable BM is the book-to-market ratio. Vari-
able TURNOVER is calculated as monthly volume divided by shares outstanding. Our
option-based variables include Risk-neutral model-free implied volatility (MFIV), For-
ward Variance (FV), Risk Neutral Skewness (RNS), Volatility Smirk (Smirk), implied
volatility call slope (IVSCall), implied volatility put slope (IVS-Put), PC-Deviation
(PCD) and the individual expected returns (ExRet). We first calculate the summary
statistics over the cross-section for each month, and then we average the statistics over
the monthly time series. For each month, there are, on average, 125 firms in the sample.

186



Panel A. Panel regression without control variables

MFIV FV RNS Smirk IVS-Put IVS-Call PCD ExRet

coefficient 0.0701∗∗∗ 0.2369∗∗∗ 0.0075∗∗∗ -0.0009 -0.0090∗∗ -0.0078∗∗ 0.0136∗ 0.6130∗∗∗

t-stat (4.775) (4.696) (5.279) (-0.0643) (-2.521) (-2.046) (1.887) (5.882)
Rsquared 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

Panel B. Panel regression with control variables

MFIV FV RNS Smirk IVS-Put IVS-Call PCD ExRet

coefficient 0.0192 0.0914 0.0072∗∗∗ -0.0052 -0.0135∗∗∗ -0.0118∗∗∗ 0.0145∗∗ 0.3369∗∗∗

t-stat (1.112) (1.589) (5.024) (-0.3744) (-3.731) (-3.017) (2.017) (2.772)
Rsquared 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

Table 3.4. Predictability of Option-Implied Measures, Panel Regression: This
table reports the regression results of monthly excess returns on a constant and the
lagged predictive option implied variable(s) as specified in Equation (3.24). The option-
based predictor is one of the followings: MFIV, which is a risk-neutral model-free im-
plied volatility, Forward Variance (FV), Risk Neutral Skewness (RNS), Volatility Smirk
(Smirk), implied volatility call slope (IVS-Call), implied volatility put slope (IVS-Put),
PC-Deviation and the individual expected returns ExRet. . Panel A reports the regres-
sion coefficient of option-implied variables without controlling for firm-specific charac-
teristics, while Panel B reports the regression coefficient of implied variable controlling
for firm’s effect. R-squared is the in-sample adjusted R-squared. *, **, and *** indi-
cate the significance at the 10%, 5%, and 1% significance levels, respectively. d. The
t-statistics, reported in parentheses, consider Heteroskedasticity of error terms and are
calculated following White (1980)’s method. The sample period extends from July 1998
to May 2019. All data are sampled at a monthly frequency and relate to constituents
of the SP 500 index.
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Portfolio MFIV FV RNS Smirk IVS-Put IVS-Call PCD ExRet

1 (low) 0.33 0.31 0.25 1.17 0.94 0.95 0.56 0.28
2 0.43 0.45 0.57 0.36 0.78 0.36 0.65 0.45
3 0.59 0.58 0.55 0.43 0.70 0.47 0.64 0.56
4 0.76 0.77 0.78 0.55 0.59 0.60 0.69 0.77
5 (high) 0.84 0.88 0.87 0.62 0.53 0.68 0.66 0.89
high-low 0.51* 0.57** 0.62*** -0.55** -0.41** -0.27 0.10 0.61**
t-stat (1.89) (2.08) (3.85) (-2.62) (-2.36) (-1.32) (0.74) (2.22)
p-value 0.06 0.04 0.00 0.01 0.02 0.19 0.46 0.03

Table 3.5. Predictability of Option-Implied Measures, Portfolio Forming
Approach: This table reports the average returns of portfolios formed based on option-
based measures discussed in Section 3.4.2. These variables include model-free implied
volatility (MFIV), forward variance (FV), risk-neutral skewness (RNS), put/call implied
volatility slope (IVS-put(call)), volatility smirk, put-call deviation (PCD), and expected
return (ExpRet) . Our sample period is from July 1998 to May 2019. At the end of
each month, we sort the stocks into quintiles based on individual stock option-based
variables and create a long-short portfolio by taking a long (short) position in stocks
within the top (bottom) quantile. This long-short portfolio is held until the end of the
subsequent month. The t-statistics and p-values for the abnormal return of long-short
portfolios are reported over 251 months.

188



Stocks Sorted by RNS, then Controlling for:

MFIV

(1) low (2) (3) (4) (5) high

(MFIV1) low -0.19 0.43 0.34 0.46 0.48
(2) 0.21 0.57 0.24 0.70 0.87
(3) 0.16 0.56 0.43 0.72 0.87
(4) 0.37 0.64 0.64 0.86 0.99
(MFIV5) high 0.44 0.66 0.75 0.92 1.04
high-low 0.63 0.23 0.31 0.49 0.56
t-stat 1.95 0.69 1.01 1.64 1.92
p-value 0.05 0.49 0.31 0.10 0.06

Forward

(1) low (2) (3) (4) (5) high

(Forward1) low -0.23 0.43 0.34 0.44 0.45
(2) 0.27 0.59 0.23 0.72 0.92
(3) 0.12 0.54 0.44 0.73 0.88
(4) 0.37 0.63 0.63 0.86 0.99
(Forward5) high 0.40 0.67 0.74 0.93 1.04
high-low 0.63 0.24 0.31 0.49 0.59
t-stat 1.95 0.72 1.00 1.65 2.01
p-value 0.05 0.47 0.32 0.10 0.05

Put slope

(1) low (2) (3) (4) (5) high

(IV SP1) low 0.37 0.82 0.79 1.09 1.16
(2) 0.15 0.49 0.56 0.89 0.94
(3) 0.23 0.62 0.58 0.81 0.96
(4) 0.15 0.48 0.48 0.70 0.79
(IV SP5) high 0.28 0.47 0.45 0.63 0.72
high-low -0.09 -0.34 -0.37 -0.18 -0.44
t-stat -0.34 -1.18 -1.41 -0.74 -1.95
p-value 0.74 0.24 0.16 0.46 0.05

expected return

(1) low (2) (3) (4) (5) high

(ExpRet1) low -0.17 0.45 0.34 0.41 0.44
(2) 0.22 0.55 0.20 0.72 0.90
(3) 0.16 0.56 0.43 0.71 0.85
(4) 0.37 0.63 0.63 0.87 0.99
(ExpRet5) high 0.42 0.70 0.76 0.94 1.04
high-low 0.59 0.26 0.31 0.49 0.60
t-stat 1.81 0.77 1.00 1.65 2.02
p-value 0.07 0.44 0.32 0.10 0.04

Table 3.6. Bivariate Portfolios Sorted by RNS Controlling for other Option-
Implied Variables: This table presents average returns for portfolios sorted by RNS
measures controlling for different implied measures. At the end of each month, all the
stocks in the sample are sorted into quintile portfolios based on ascending values of
RNS. Then, within each quintile portfolio, stocks are further sorted based on the values
of beme, lme, and turnover. Each portfolio is held for one month. The row labeled
“High-Low” reports the average values of one-month-ahead returns.
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MFIV Forward RNS Smirk IVS P IVS C PCD Exp Ret

(1) low 0.18 0.16 -0.03 0.85 0.65 0.64 0.20 0.14
-2 0.17 0.18 0.22 0.00 0.41 0.01 0.28 0.19
-3 0.28 0.27 0.06 -0.08 0.19 -0.03 0.11 0.24
-4 0.51 0.51 0.38 0.15 0.23 0.19 0.24 0.51
(5) high 0.56 0.61 0.37 0.13 0.10 0.20 0.10 0.61
high-low 0.38 0.44 0.41 -0.72 -0.55 -0.44 -0.10 0.48
t-stat 1.40 1.62 2.53 -3.38 -3.08 -1.13 -0.66 1.75
p-value 0.16 0.11 0.01 0.00 0.00 0.23 0.51 0.08

Table 3.7. Univariate Portfolios Sorted by Option-implied Measures, con-
sidering for Transaction Costs: This table reports the average returns of portfolios
formed based on option-based measures discussed in Section 3.4.2. These variables
include model-free implied volatility (MFIV), forward variance (FV), risk-neutral skew-
ness (RNS), put/call implied volatility slope (IVS-put(call)), volatility smirk, put-call
deviation (PCD), and expected return (ExpRet). Our sample period is from July 1998
to May 2019. At the end of each month, we deduct the transaction costs from return
and then sort the stocks into quintiles based on individual stock option-based variables
and create a long-short portfolio by taking a long (short) position in stocks within the
top (bottom) quantile. This long-short portfolio is held until the end of the subsequent
month. The t-statistics and p-values for the abnormal return of long-short portfolios
are reported over 251 months
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Panel A: OOSR2 MFIV Forward RNS Smirk Call Slope Put Slope PCD EXP ret PCA factor

RMSE 14.24 14.10 13.97 14.09 14.05 14.00 14.04 14.11 14.02

MFIV 0.00% 1.93% 3.80% 2.20% 2.76% 3.43% 2.88% 1.91% 3.11%
Forward -1.97% 0.00% 1.90% 0.28% 0.84% 1.52% 0.96% -0.03% 1.20%
RNS -3.95% -1.94% 0.00% -1.66% -1.08% -0.39% -0.96% -1.97% -0.72%
Smirk -2.25% -0.28% 1.63% 0.00% 0.56% 1.25% 0.69% -0.31% 0.93%
Call Slope -2.83% -0.85% 1.07% -0.57% 0.00% 0.69% 0.12% -0.87% 0.36%
Put Slope -3.55% -1.55% 0.39% -1.26% -0.69% 0.00% -0.57% -1.57% -0.33%
PCD -2.96% -0.97% 0.95% -0.69% -0.12% 0.57% 0.00% -1.00% 0.24%
EXP ret -1.94% 0.03% 1.93% 0.30% 0.87% 1.55% 0.99% 0.00% 1.23%
PCA factor -3.21% -1.21% 0.71% -0.93% -0.36% 0.33% -0.24% -1.24% 0.00%

Panel B: DM stats MFIV Forward RNS Smirk Call Slope Put Slope PCD EXP ret PCA factor

RMSE 14.24 14.10 13.97 14.09 14.05 14.00 14.04 14.11 14.02

MFIV - 13.33 13.95 12.78 15.24 15.00 15.72 13.67 15.41
Forward -13.33 - 10.66 2.17 6.79 9.68 7.81 -0.87 7.72
RNS -13.95 -10.66 - -10.69 -8.42 -3.89 -7.65 -10.41 -5.99
Smirk -12.78 -2.17 10.69 - 14.05 13.49 14.77 -2.26 11.20
Call Slope -15.24 -6.79 8.42 -14.05 - 9.63 4.31 -6.63 5.50
Put Slope -15.00 -9.68 3.89 -13.49 -9.63 - -9.16 -9.39 -4.11
PCD -15.72 -7.81 7.65 -14.77 -4.31 9.16 - -7.60 3.45
EXP ret -13.67 0.87 10.41 2.26 6.63 9.39 7.60 - 7.47
PCA factor -15.41 -7.72 5.99 -11.20 -5.50 4.11 -3.45 -7.47 -

Table 3.8. Comparison between the Predictive Ability of option Implied
variables: Top panel of the table reports the Diebold-Mariano test statistics obtained
from the OOS forecast of a model with specific option-implied (in the column) variable
comparing to another model with another implied variable (in the row). The bottom
panel reports the OOSR2 of comparing the model with the implied variable in the
column versus the model with the implied variable in the row.
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Appendix - Chapter Three

3.A Clustering of Standard Errors

When working with regressions in empirical finance, we need to deal with omitted vari-

ables bias and dependence in residuals. Therefore, in this section we focus on the

implementation of fixed effects and clustered standard errors.

One way to tackle the issue of omitted variable bias is to get rid of as much unexplained

variation as possible by including fixed effects - i.e., model parameters that are fixed

for specific groups or time. In essence, each group has its own mean in fixed effects

regressions. In addition, apart from biased estimators, we usually have to deal with

potentially complex dependencies of our residuals with each other. Such dependencies

in the residuals invalidate the i.i.d. assumption of OLS and lead to biased standard

errors. With biased OLS standard errors, we cannot reliably interpret the statistical

significance of our estimated coefficients.

In our setting, the residuals may be correlated across years for a given firm (time-series

dependence), or, alternatively, the residuals may be correlated across different firms

(cross-section dependence). One of the most common approaches to dealing with such

dependence is the use of clustered standard errors. The idea behind clustering is that

the correlation of residuals within a cluster can be of any form.

Tables 3.A.1 to A.3.8 assess the predictive ability of option-implied variables in the

presence of some control variables in multiple regression models. In these tables, model

(1) does not considers the fixed effects and clustering. Model (2) is a is a one-way fixed

effect on firm. Model (3) is a is a two-way fixed effect on firm and time. Model (4) is a

two-way fixed effect on time and firm and also one-way clustering by firm. Model (5) is

a two-way fixed effect and two-way clustering regression model on firm and time. Our

results suggest that even after relaxing the assumptions behind our standard errors, the

regression coefficients of the option-implied variable are still comfortably significant as

the statistics are well above the usual critical values.

The predictive ability of Forward and MFIV to forecast one-month return are reported
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in Table 3.A.1 and 3.A.2 and suggest that the Forward and model-free volatility are a

significant predictor of one-month returns even after controlling for two-way fixed effect

and clustering errors by firm.

[Table 3.A.1 about here.]

[Table 3.A.2 about here.]

The predictive ability of RNS and IV SP to forecast one-month return are reported in

Table A.3.3 and A.3.5. Our results suggest that both RNS and IV slope of put options

remain as a significant predictor of one-month return even after considering a two-way

fixed effect on firm and time and two-way clustering on time and firm. We couldn’t

find significant predictive ability of Smirk and put-call deviation to forecast one-month

returns. However, Our results in Table A.3.8 suggests that the implied-expected return

is a significant predictor of returns in regression models 1 to 4.

[Table 3.A.3 about here.]

[Table 3.A.4 about here.]

[Table 3.A.5 about here.]

[Table 3.A.6 about here.]

[Table 3.A.7 about here.]

[Table 3.A.8 about here.]

3.B Predictive Power of Option-Implied PCA Factor for

Cross-Sectional Returns

In this Section, we extract a single component (e.g., using PCA) from the option-implied

variables and examine its predictive power for the cross-section of returns. The results,

reported in Table A.3.9, demonstrate that this single factor derived from option-implied

measures exhibits significant predictive ability across all regression models, even after

accounting for fixed effect errors and clustering in our regression model.
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[Table 3.A.9 about here.]
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Dependent Variable: Returns
Model: (1) (2) (3) (4) (5)

Variables
Constant -0.0006

(-0.4402)
lagged return -0.0047 -0.0068 -0.0356∗∗∗ -0.0356∗∗∗ -0.0356∗∗

(-0.6687) (-0.9566) (-4.771) (-4.130) (-2.339)
beme 0.0068∗∗∗ 0.0254∗∗∗ 0.0172∗∗∗ 0.0172∗∗∗ 0.0172∗∗∗

(4.851) (9.655) (6.725) (3.060) (2.766)
lme2 -0.0178∗∗ -0.0750∗∗∗ -0.0736∗∗∗ -0.0736∗∗∗ -0.0736∗∗

(-2.311) (-5.039) (-4.967) (-2.635) (-2.459)
lturnover 0.0027∗∗∗ 0.0023∗∗∗ 0.0018∗∗ 0.0018 0.0018

(4.572) (3.153) (2.203) (1.570) (1.223)
Forward 0.0914 0.1113∗ 0.3779∗∗∗ 0.3779∗∗ 0.3779

(1.589) (1.871) (4.878) (2.536) (1.063)

Fixed-effects
permncode Yes Yes Yes Yes
date Yes Yes Yes

Fit statistics
Observations 30,747 30,747 30,747 30,747 30,747
R2 0.00276 0.00733 0.18320 0.18320 0.18320
Within R2 0.00557 0.00567 0.00567 0.00567

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 3.A.1. Predictive Power of Forward Variance: This table assess the pre-
dictive ability of Forward volatility in the presence of some control variables in multiple
regression models to forecast one-month returns. In these tables, model (1) does not
considers the fixed effects and clustering. Model (2) is a is a one-way fixed effect on firm.
Model (3) is a is a two-way fixed effect on firm and time. Model (4) is a two-way fixed
effect on time and firm and also one-way clustering by firm. Model (5) is a two-way
fixed effect and two-way clustering regression model on firm and time.
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Dependent Variable: Returns
Model: (1) (2) (3) (4) (5)

Variables
Constant -0.0014

(-0.7963)
lagged return -0.0054 -0.0077 -0.0363∗∗∗ -0.0363∗∗∗ -0.0363∗∗

(-0.7559) (-1.079) (-4.870) (-4.240) (-2.476)
beme 0.0068∗∗∗ 0.0251∗∗∗ 0.0167∗∗∗ 0.0167∗∗∗ 0.0167∗∗∗

(4.813) (9.560) (6.511) (2.915) (2.636)
lme2 -0.0176∗∗ -0.0759∗∗∗ -0.0714∗∗∗ -0.0714∗∗ -0.0714∗∗

(-2.278) (-5.059) (-4.821) (-2.581) (-2.376)
lturnover 0.0028∗∗∗ 0.0024∗∗∗ 0.0019∗∗ 0.0019 0.0019

(4.617) (3.422) (2.291) (1.632) (1.306)
MFIV 0.0192 0.0203 0.1213∗∗∗ 0.1213∗∗ 0.1213

(1.112) (1.115) (4.237) (2.395) (1.201)

Fixed-effects
permncode Yes Yes Yes Yes
date Yes Yes Yes

Fit statistics
Observations 30,747 30,747 30,747 30,747 30,747
R2 0.00272 0.00725 0.18305 0.18305 0.18305
Within R2 0.00549 0.00548 0.00548 0.00548

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 3.A.2. Predictive Power of Model-Free Implied Volatility: This table
assess the predictive ability of MFIV in the presence of some control variables in multiple
regression models to forecast one-month returns. In these tables, model (1) does not
considers the fixed effects and clustering. Model (2) is a is a one-way fixed effect on firm.
Model (3) is a is a two-way fixed effect on firm and time. Model (4) is a two-way fixed
effect on time and firm and also one-way clustering by firm. Model (5) is a two-way
fixed effect and two-way clustering regression model on firm and time.

196



Dependent Variable: Returns
Model: (1) (2) (3) (4) (5)

Variables
Constant 0.0055∗∗∗

(3.237)
lagged return -0.0025 -0.0040 -0.0332∗∗∗ -0.0332∗∗∗ -0.0332∗∗

(-0.3553) (-0.5677) (-4.440) (-3.706) (-2.239)
beme 0.0070∗∗∗ 0.0255∗∗∗ 0.0172∗∗∗ 0.0172∗∗∗ 0.0172∗∗∗

(4.999) (9.761) (6.722) (3.321) (2.955)
lme2 -0.0169∗∗ -0.0732∗∗∗ -0.0701∗∗∗ -0.0701∗∗∗ -0.0701∗∗

(-2.204) (-4.952) (-4.741) (-2.622) (-2.384)
lturnover 0.0030∗∗∗ 0.0031∗∗∗ 0.0034∗∗∗ 0.0034∗∗∗ 0.0034∗

(5.678) (4.603) (4.613) (3.449) (1.798)
RNS 0.0072∗∗∗ 0.0083∗∗∗ 0.0095∗∗∗ 0.0095∗∗∗ 0.0095∗∗∗

(5.024) (5.549) (6.170) (4.525) (4.370)

Fixed-effects
permncode Yes Yes Yes Yes
date Yes Yes Yes

Fit statistics
Observations 30,747 30,747 30,747 30,747 30,747
R2 0.00349 0.00821 0.18359 0.18359 0.18359
Within R2 0.00645 0.00614 0.00614 0.00614

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A.3.3. Predictive Power of Risk-Neutral Skewness: This table assess the
predictive ability of RNS in the presence of some control variables in multiple regression
models to forecast one-month returns. In these tables, model (1) does not considers the
fixed effects and clustering. Model (2) is a is a one-way fixed effect on firm. Model (3)
is a is a two-way fixed effect on firm and time. Model (4) is a two-way fixed effect on
time and firm and also one-way clustering by firm. Model (5) is a two-way fixed effect
and two-way clustering regression model on firm and time.
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Dependent Variable: Returns
Model: (1) (2) (3) (4) (5)

Variables
Constant 0.0003

(0.1687)
lagged return -0.0065 -0.0087 -0.0419∗∗∗ -0.0419∗∗∗ -0.0419∗∗∗

(-0.9282) (-1.247) (-5.633) (-4.847) (-2.862)
beme 0.0067∗∗∗ 0.0249∗∗∗ 0.0176∗∗∗ 0.0176∗∗∗ 0.0176∗∗∗

(4.797) (9.512) (6.901) (3.222) (2.899)
lme2 -0.0189∗∗ -0.0792∗∗∗ -0.0698∗∗∗ -0.0698∗∗ -0.0698∗∗

(-2.458) (-5.365) (-4.718) (-2.562) (-2.336)
lturnover 0.0031∗∗∗ 0.0028∗∗∗ 0.0036∗∗∗ 0.0036∗∗∗ 0.0036∗

(5.847) (4.120) (4.809) (3.561) (1.880)
Smirk -0.0052 -0.0088 0.0261∗ 0.0261 0.0261

(-0.3744) (-0.6081) (1.808) (1.186) (1.198)

Fixed-effects
permncode Yes Yes Yes Yes
date Yes Yes Yes

Fit statistics
Observations 30,747 30,747 30,747 30,747 30,747
R2 0.00268 0.00723 0.18265 0.18265 0.18265
Within R2 0.00547 0.00500 0.00500 0.00500

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A.3.4. Predictive Power of Smirk: This table assess the predictive ability of
Smirk in the presence of some control variables in multiple regression models to forecast
one-month returns. In these tables, model (1) does not considers the fixed effects and
clustering. Model (2) is a is a one-way fixed effect on firm. Model (3) is a is a two-way
fixed effect on firm and time. Model (4) is a two-way fixed effect on time and firm
and also one-way clustering by firm. Model (5) is a two-way fixed effect and two-way
clustering regression model on firm and time.
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Dependent Variable: Returns
Model: (1) (2) (3) (4) (5)

Variables
Constant -0.0011

(-0.8480)
lagged return -0.0054 -0.0075 -0.0377∗∗∗ -0.0377∗∗∗ -0.0377∗∗

(-0.7745) (-1.074) (-5.082) (-4.456) (-2.606)
beme 0.0066∗∗∗ 0.0246∗∗∗ 0.0170∗∗∗ 0.0170∗∗∗ 0.0170∗∗∗

(4.730) (9.425) (6.647) (3.116) (2.795)
lme2 -0.0156∗∗ -0.0763∗∗∗ -0.0671∗∗∗ -0.0671∗∗ -0.0671∗∗

(-2.016) (-5.164) (-4.525) (-2.507) (-2.301)
lturnover 0.0034∗∗∗ 0.0032∗∗∗ 0.0038∗∗∗ 0.0038∗∗∗ 0.0038∗∗

(6.352) (4.714) (5.069) (3.669) (1.986)
IVSP -0.0118∗∗∗ -0.0135∗∗∗ -0.0166∗∗∗ -0.0166∗∗∗ -0.0166∗∗∗

(-3.017) (-3.259) (-4.092) (-3.425) (-2.844)

Fixed-effects
permncode Yes Yes Yes Yes
date Yes Yes Yes

Fit statistics
Observations 30,747 30,747 30,747 30,747 30,747
R2 0.00297 0.00756 0.18301 0.18301 0.18301
Within R2 0.00580 0.00544 0.00544 0.00544

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A.3.5. Predictive Power of Implied-volatility Slope of Put Options:
This table assess the predictive ability of IV SP in the presence of some control variables
in multiple regression models to forecast one-month returns. In these tables, model (1)
does not considers the fixed effects and clustering. Model (2) is a is a one-way fixed
effect on firm. Model (3) is a is a two-way fixed effect on firm and time. Model (4) is a
two-way fixed effect on time and firm and also one-way clustering by firm. Model (5) is
a two-way fixed effect and two-way clustering regression model on firm and time.
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Dependent Variable: Returns
Model: (1) (2) (3) (4) (5)

Variables
Constant 0.0025∗

(1.740)
lagged return -0.0064 -0.0086 -0.0401∗∗∗ -0.0401∗∗∗ -0.0401∗∗∗

(-0.9144) (-1.228) (-5.408) (-4.664) (-2.724)
beme 0.0069∗∗∗ 0.0250∗∗∗ 0.0177∗∗∗ 0.0177∗∗∗ 0.0177∗∗∗

(4.889) (9.580) (6.926) (3.247) (2.920)
lme2 -0.0204∗∗∗ -0.0794∗∗∗ -0.0705∗∗∗ -0.0705∗∗ -0.0705∗∗

(-2.652) (-5.385) (-4.761) (-2.552) (-2.331)
lturnover 0.0033∗∗∗ 0.0032∗∗∗ 0.0036∗∗∗ 0.0036∗∗∗ 0.0036∗

(6.236) (4.701) (4.874) (3.607) (1.933)
IVSC -0.0135∗∗∗ -0.0154∗∗∗ -0.0028 -0.0028 -0.0028

(-3.731) (-4.051) (-0.7165) (-0.4782) (-0.4487)

Fixed-effects
permncode Yes Yes Yes Yes
date Yes Yes Yes

Fit statistics
Observations 30,747 30,747 30,747 30,747 30,747
R2 0.00313 0.00775 0.18258 0.18258 0.18258
Within R2 0.00599 0.00491 0.00491 0.00491

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A.3.6. Predictive Power of Implied-volatility Slope of Call Options:
This table assess the predictive ability of IV SC in the presence of some control variables
in multiple regression models to forecast one-month returns. In these tables, model (1)
does not considers the fixed effects and clustering. Model (2) is a is a one-way fixed
effect on firm. Model (3) is a is a two-way fixed effect on firm and time. Model (4) is a
two-way fixed effect on time and firm and also one-way clustering by firm. Model (5) is
a two-way fixed effect and two-way clustering regression model on firm and time.
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Dependent Variable: Returns
Model: (1) (2) (3) (4) (5)

Variables
Constant 4.87× 10−5

(0.0379)
lagged return -0.0070 -0.0093 -0.0405∗∗∗ -0.0405∗∗∗ -0.0405∗∗∗

(-0.9994) (-1.323) (-5.476) (-4.792) (-2.789)
beme 0.0067∗∗∗ 0.0247∗∗∗ 0.0176∗∗∗ 0.0176∗∗∗ 0.0176∗∗∗

(4.791) (9.426) (6.910) (3.266) (2.931)
lme2 -0.0190∗∗ -0.0807∗∗∗ -0.0703∗∗∗ -0.0703∗∗ -0.0703∗∗

(-2.478) (-5.461) (-4.751) (-2.551) (-2.333)
lturnover 0.0031∗∗∗ 0.0027∗∗∗ 0.0036∗∗∗ 0.0036∗∗∗ 0.0036∗

(5.848) (4.104) (4.836) (3.575) (1.878)
PCD 0.0145∗∗ 0.0140∗ 0.0027 0.0027 0.0027

(2.017) (1.927) (0.3487) (0.3010) (0.2827)

Fixed-effects
permncode Yes Yes Yes Yes
date Yes Yes Yes

Fit statistics
Observations 30,747 30,747 30,747 30,747 30,747
R2 0.00281 0.00733 0.18257 0.18257 0.18257
Within R2 0.00558 0.00490 0.00490 0.00490

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A.3.7. Predictive Power of Put-Call Deviation: This table assess the
predictive ability of PCD in the presence of some control variables in multiple regression
models to forecast one-month returns. In these tables, model (1) does not considers the
fixed effects and clustering. Model (2) is a is a one-way fixed effect on firm. Model (3)
is a is a two-way fixed effect on firm and time. Model (4) is a two-way fixed effect on
time and firm and also one-way clustering by firm. Model (5) is a two-way fixed effect
and two-way clustering regression model on firm and time.
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Dependent Variable: Returns
Model: (1) (2) (3) (4) (5)

Variables
Constant -0.3372∗∗∗

(-2.768)
lagged return -0.0033 -0.0054 -0.0362∗∗∗ -0.0362∗∗∗ -0.0362∗∗

(-0.4590) (-0.7624) (-4.843) (-4.155) (-2.354)
beme 0.0068∗∗∗ 0.0253∗∗∗ 0.0170∗∗∗ 0.0170∗∗∗ 0.0170∗∗∗

(4.825) (9.616) (6.668) (2.964) (2.685)
lme2 -0.0187∗∗ -0.0736∗∗∗ -0.0696∗∗∗ -0.0696∗∗ -0.0696∗∗

(-2.434) (-4.931) (-4.700) (-2.489) (-2.336)
lturnover 0.0022∗∗∗ 0.0017∗∗ 0.0018∗∗ 0.0018 0.0018

(3.686) (2.409) (2.185) (1.569) (1.204)
expRet 0.3369∗∗∗ 0.3677∗∗∗ 0.8725∗∗∗ 0.8725∗∗ 0.8725

(2.772) (2.922) (5.239) (2.503) (1.107)

Fixed-effects
permncode Yes Yes Yes Yes
date Yes Yes Yes

Fit statistics
Observations 30,627 30,627 30,627 30,627 30,627
R2 0.00287 0.00737 0.18356 0.18356 0.18356
Within R2 0.00560 0.00583 0.00583 0.00583

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A.3.8. Predictive Power of Implied Expected Returns: This table assess
the predictive ability of implied expected returns in the presence of some control variables
in multiple regression models to forecast one-month returns. In these tables, model (1)
does not considers the fixed effects and clustering. Model (2) is a is a one-way fixed
effect on firm. Model (3) is a is a two-way fixed effect on firm and time. Model (4) is a
two-way fixed effect on time and firm and also one-way clustering by firm. Model (5) is
a two-way fixed effect and two-way clustering regression model on firm and time.
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Dependent Variable: Returns
Model: (1) (2) (3) (4) (5)

Variables
Constant -0.0007

(-0.5062)
lagged return -0.0020 -0.0042 -0.0336∗∗∗ -0.0336∗∗∗ -0.0336∗∗

(-0.2797) (-0.5952) (-4.490) (-3.758) (-2.261)
beme 0.0069∗∗∗ 0.0255∗∗∗ 0.0172∗∗∗ 0.0172∗∗∗ 0.0172∗∗∗

(4.913) (9.761) (6.754) (3.338) (2.969)
lme2 -0.0170∗∗ -0.0734∗∗∗ -0.0703∗∗∗ -0.0703∗∗∗ -0.0703∗∗

(-2.219) (-4.971) (-4.748) (-2.619) (-2.383)
lturnover 0.0033∗∗∗ 0.0031∗∗∗ 0.0035∗∗∗ 0.0035∗∗∗ 0.0035∗

(6.281) (4.668) (4.658) (3.427) (1.803)
PCAfactor 0.0079∗∗∗ 0.0081∗∗∗ 0.0088∗∗∗ 0.0088∗∗∗ 0.0088∗∗∗

(5.522) (5.684) (6.024) (4.267) (4.062)

Fixed-effects
permncode Yes Yes Yes Yes
date Yes Yes Yes

Fit statistics
Observations 30,747 30,747 30,747 30,747 30,747
R2 0.00366 0.00826 0.18354 0.18354 0.18354
Within R2 0.00650 0.00608 0.00608 0.00608

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A.3.9. Predictive Power of PCA factor: This table assess the predictive
ability of PCA factor obtained from various option-implied variables (namely, MFIV,
Forward, RNS, IV SPut, IV SCall, Smirk, PCD and implied expected return) in the
presence of some control variables in multiple regression models to forecast one-month
returns. In these tables, model (1) does not considers the fixed effects and clustering.
Model (2) is a is a one-way fixed effect on firm. Model (3) is a is a two-way fixed effect
on firm and time. Model (4) is a two-way fixed effect on time and firm and also one-way
clustering by firm. Model (5) is a two-way fixed effect and two-way clustering regression
model on firm and time.
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Conclusions

In Chapter One, we developed a prediction regression model to assess the predictive

ability of information embedded in individual optionable stocks to forecast U.S. real

economic activity (REA) growth. We construct our option-based predictor by relying

on data reduction methods. We find a significant negative predictive relation between

our proposed option-implied predictor and REA both in and out-of-sample. The predic-

tive ability of our option-based measure remains even after controlling for well-known

REA predictors in our prediction model. Our findings also imply individual stocks con-

tain some additional predictive power that is not captured by standard risk factors or

index options. We separately employ Principal Component Analysis (PCA) and the

Instrumented Principal Component Analysis (IPCA) factors to assess whether results

may differ by incorporating the wealth of firms’ characteristic information into our pre-

dictor. Our results suggest that options are sophisticated derivatives and may already

subsume firms’ characteristics; hence the IPCA does not necessarily improve predicting

REA.

We left three topics related to Chapter Two for future research: (i) Extending the anal-

ysis for other countries, (ii) Developing a theoretical modelling framework to explain the

negative relationship between option-implied expected return and REA (iii) Employing

other data reduction techniques such as the three-pass regression filter (3PRF) of Kelly

and Pruitt (2015).

In Chapter Two, we measure the impact of FOMC meetings on volatility and tail risks

and the demand for options. We used treatment options traded before FOMC meetings

and expiring after the meetings and compared them to other options whose lives do

not span FOMC meetings. We find that the implied volatility, its slope on the left
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of the ATM level, and the variance risk premium (VRP) are larger for options whose

lives span FOMC meetings. These findings are consistent with Kelly et al. (2016) and

suggest that investors are willing to pay for protection against the price, downside tail

risk and variance associated with these events. Higher prices may also compensate for

the risk that market makers bear for trading with informed traders. These higher prices

are associated with an increase in the bid-ask spread and, more generally, a decrease in

the liquidity of options. In addition, we conduct a time series analysis of risk-neutral

moments and trading activity indicators around FOMC meetings. Our findings reveal

that the impacts of these events on options markets are most pronounced in the week

before the event and last until a few days after the event. In addition, we found that

a positive shock to downside risk and the put-call ratio predicts an increase in the Fed

rate. It implies that when investors become more worried about a decline in stock

market prices, they predict a contractionary monetary policy- i.e., future short-term

rates to increase.

At least three topics fall beyond this chapter’s scope, and we leave them for future anal-

ysis. These topics include (i) Performing tests to identify the channel whereby decreased

liquidity in options is associated with increased implied volatility and decreased risk-

neutral skewness, (ii) Identifying a link between options trading and pre-announcement

drift reported by Neuhier and Weber (2018) and (iii) Finding a trading strategy to ex-

ploit market inefficiencies before FOMC meetings- i.e., trading variance swaps one week

before the event when the VRP peaks.

In Chapter Three, we study option markets, review several statistical measures inferred

from individuals’ option prices, and discuss different methods to obtain them. We also

analyse their application and assess their information’s usefulness in forecasting. We

investigate whether the implied variables inferred from options contain useful infor-

mation for predicting the underlying stock’s future returns. We find a statistical and

economic negative predictive relation between volatility measures, namely model-free

implied volatility, implied forward variance, and implied expected returns with future

stock returns cross-sectionally. Furthermore, we find a positive (negative) relationship

between RNS (left-IVS) and the cross-section of future returns.
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Due to space and time limitations, we do not consider all the option-implied variables

studied in Chapter three. We leave the examination of the predictive ability of implied-

risk aversion, variance risk premium, and tail loss measure for future research.
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