
Solving the Discretised Neutron Diffusion Equations using Neural Networks

Toby R.F. Phillipsa, Claire E. Heaneya, Boyang Chena, Andrew G. Buchanb, Christopher C. Paina

aApplied Modelling and Computation Group, Department of Earth Science and Engineering, Imperial College London,
London, SW7 2AZ United Kingdom

bSchool of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS United Kingdom

Abstract

This paper presents a new approach which uses the tools within Artificial Intelligence (AI) software

libraries as an alternative way of solving partial differential equations (PDEs) that have been discretised

using standard numerical methods. In particular, we describe how to represent numerical discretisations

arising from the finite volume and finite element methods by pre-determining the weights of convolutional

layers within a neural network. As the weights are defined by the discretisation scheme, no training of

the network is required and the solutions obtained are identical (accounting for solver tolerances) to those

obtained with standard codes often written in Fortran or C++. We also explain how to implement the

Jacobi method and a multigrid solver using the functions available in AI libraries. For the latter, we

use a U-Net architecture which is able to represent a sawtooth multigrid method. A benefit of using AI

libraries in this way is that one can exploit their power and their built-in technologies. For example,

their executions are already optimised for different computer architectures, whether it be CPUs, GPUs

or new-generation AI processors.

In this article, we apply the proposed approach to eigenvalue problems in reactor physics where neutron

transport is described by diffusion theory. For a fuel assembly benchmark, we demonstrate that the

solution obtained from our new approach is the same (accounting for solver tolerances) as that obtained

from the same discretisation coded in a standard way using Fortran. We then proceed to solve a reactor

core benchmark using the new approach.

Keywords: Numerical solution of partial differential equations; Finite Difference Method; Finite Volume

Methods; Convolutional Neural Network; Multigrid Solver; U-Net; Neutron Diffusion Equation; Reactor

Physics

1. Introduction

Development of new computational hardware brings with it the challenge of adapting code in order for

it to be deployed successfully on these new architectures. In the field of Artificial Intelligence (AI), this

Preprint submitted to arXiv January 25, 2023

ar
X

iv
:2

30
1.

09
93

9v
1

 [
cs

.C
E

]
 2

4
Ja

n
20

23

challenge has largely been met by writers of and contributors to widely used AI libraries (for example

TensorFlow [1] and PyTorch [2]). In these libraries, code relating to the architecture has been abstracted

away so that users can concentrate on the algorithm they wish to implement without having to think

about or understand the code relating to the computer architecture. As a result, the user has only to

make minimal changes to their code in order to run on Central Processing Units (CPUs) or Graphical

Processing Units (GPUs) or even Tensor Processing Units (TPUs). In other fields, such as scientific

computation, perhaps because the codes and libraries are less standard and more numerous, users have

to expend much more effort to run their codes on new architectures. Porting code to clusters of CPUs is

relatively straightforward nowadays, however the computational gains to be had by running on clusters are

limited by memory access and data transfer. Although GPUs have demonstrated superior performance

to CPUs, instructions for the GPU must be written in languages such as CUDA or OpenCL that are

unfamiliar to many working in scientific computation. This additional coding task has hindered the

take-up of GPUs, although there are examples of this having been done successfully, for example, in

computational fluid dynamics [3], for acoustic waves [4] and, in radiation transport, for a Monte Carlo

neutron transport code [5] and for eigenvalue problems [6]. With CUDA and OpenCL, GPUs have

been used to accelerate generation of finite element matrices for unstructured meshes [7–10] and for

discontinuous Galerkin methods [11]. Recently, new types of processors have been unveiled, which have

been designed specifically for tasks associated with AI such as matrix multiplication and vector operations.

These processors are therefore also suited to the linear algebra calculations that arise in the area of

scientific computation [12]. Furthermore, these new processors are designed to be more energy efficient

than CPUs or GPUs, with hundreds of thousands of cores on a single chip, making it ideal hardware for

researchers to run computationally demanding problems in an energy-efficient manner. AI libraries are

already up-and-running on these so-called AI processors, which include TPUs of Google [12], Intelligence

Processing Units (IPUs) of Graphcore [13] and CS-2 of Cerebras [14]. In order to exploit the speed of

GPUs or AI processors for scientific computations, this paper outlines a method of formulating numerical

discretisations in terms of operations or functions found in AI libraries, such as discrete convolutions.

Writing discretisations in this way means that code can be deployed on whichever platform is available,

whether it be CPUs, GPUs or the new AI processors, without having to make major modifications to the

code.

Previous work that exploits the linear algebra capabilities of AI processors by using AI libraries to solve

scientific problems includes applications in distributed Fourier Transforms [15, 16]; Monte Carlo simula-

tions for finance [17]; many-body quantum physics [18]; and density functional theory [19]. We have found

four examples of previous work that exploits operations associated with neural networks that can be found

2

within AI libraries in order to solve scientific problems [20–23]. Zhao et al. [20] were the first to equate a

finite difference discretisation of the Navier-Stokes equations with a convolutional neural network in which

the weights were determined by the discretisation. For validation, they use a number of benchmark tests

including lid-driven cavity flow and flow past a cylinder. Wang et al. [21] present a similar idea to Zhao

et al. [20], again using TensorFlow to implement finite difference discretisations of CFD problems, however

using TPUs rather than GPUs. They solve the variable-density Navier-Stokes equations and demonstrate

good weak and strong scaling. Chen et al. [22] implement both a finite difference and a finite element

discretisation through convolutional neural networks in order to solve a number of CFD problems. They

develop a method of solving the discretised systems based on a combination of a sawtooth multigrid

method and the Jacobi method implemented as a U-Net [24] (a convolutional neural network with a spe-

cific architecture). Using convolutional neural networks with pre-determined weights, Phillips et al. [23]

implement an upwind finite volume discretisation and several finite element discretisations arising from

a new convolutional finite element method (ConvFEM). The application they study, radiation transport,

requires development of a 4D multigrid method, again, based on the U-Net. Researchers have previously

noted the similarity between the multigrid method and the encoder-decoder type of neural networks, such

as the U-Net [24]. Consequently, the use of multigrid-inspired architectures for (trained) neural networks

has been explored and been shown to enhance performance relative to conventional CNN architecture for

applications in computer vision [25, 26] and in computational fluid dynamics (CFD) [27, 28]. Taking a

different approach, Margenberg et al. [29] use a (trained) neural network to produce solutions for the finer

levels of a multigrid and standard CFD solvers to produce solutions at the coarser levels. By contrast to

the previous examples of integrating the multigrid method with neural networks [25–29], Chen et al. [22]

implements a multigrid method using (untrained) neural networks with pre-determined weights to solve

the PDEs on the coarse levels, and determine the residuals and provide Jacobi relaxation on finer levels.

It is this method that is adopted in our current investigation.

In this paper we describe how to implement a finite volume discretisation of the neutron diffusion equa-

tion using a convolutional neural network whose weights are pre-determined by the particlar discretisation

scheme. (In this case our finite volume discretisation is equivalent to a finite difference discretisation.)

We also use this approach to implement a quadratic finite-element discretisation for the neutron diffusion

equation. The Jacobi method and a sawtooth mutligrid method are used as solvers, implemented through

standard operations found in AI software libraries. We demonstrate the approach using a fuel assembly

benchmark, and compare the solution for the spatial variation of the neutron flux with that obtained

from the same discretisation coded in a standard way using Fortran. We then proceed to solve a reactor

core benchmark using the proposed method. The approach described in this article is a new and alter-

3

native way of harnessing AI technologies for forming solutions of governing PDEs. Ultimately solutions

obtained through this new approach are identical to those obtained by standard codes, but the advantage

of performing all operations through an AI library is that the code will run efficiently on all architectures.

Furthermore, through the neural networks, the latest developments can be realised for methods such as

sensitivities [30] , uncertainty quantification [31, 32] and data assimilation [33]. Although AI is becoming

popular for nuclear engineering, it is often through surrogate modelling, which requires training a neural

network. Some examples of current work include using physics-informed neural networks for point kinet-

ics [34] and for non-smooth heterogeneous neutron diffusion problems [35]; surrogate models for transient

analysis [36], eigenvalue problems [37] and digital twins [33]; and cross-section generation with neural

networks [38]. The approach presented here is fundamentally different, however, providing an alternative

way of exactly representing a given discretisation of a system of PDEs, whereas surrogate models provide

an approximation of a discretised system of PDEs. Having formulated these discretisations in terms of

neural networks, an obvious extension is to combine both untrained networks (i.e. the networks with pre-

determined weights as described here) and trained networks to form more efficient and powerful digital

twins, as has previously been observed [20, 22, 39].

The sections of this paper are organised as follows. Section 2 describes how a convolutional neural network

can be uesd to express a finite volume discretisation, and how a neural network can be used to formulate

Jacobi iterations and multigrid methods. Section 3 presents the three numerical examples using the

neural network solver to resolve reactor physics eigenvalue problems, and comparisons are drawn against

a standard finite volume method. Finally, Section 4 completes the paper with a conclusion of its findings.

2. Methodology

The first part of this section introduces the governing equations, their discretisation with the finite volume

or control volume method and the Jacobi method for solving the resulting system. We then explain how

the discretisation can be formulated using convolutional layers of a neural network with pre-defined

weights. To solve the resulting system, we embed a Jacobi method within a multigrid method. Both

Jacobi and multigrid methods are implemented within the neural network, and the latter is based on the

U-Net architecture. Finally, an overview of the solution process is given for the case of multiple energy

groups, including how the eigenvalue is determined.

4

2.1. Diffusion Equation

The multi-group steady-state diffusion equation for criticality can be written as:

−∇ · (Dg∇φg) + Σa
gφg +

Ng∑
g
′
=1

g
′ 6=g

Σs
g→g′

φg =

Ng∑
g
′
=1

g
′ 6=g

Σs
g′→g

φg′ + λχg

Ng∑
g′=1

νg′Σ
f

g′
φg′ ,

∀g ∈ {1, 2, . . . , Ng},

(1)

where φg is the scalar flux of the neutron population, Σa
g represents the absorption cross-section, Σf

g

represents the fission cross-section, νg is the average number of neutrons produced per fission event, Σs
g

represents the scatter cross-section, χg is the proportion of neutrons produced for each energy group per

fission event and Ng is the number of energy groups used. The subscript g denotes the particular energy

group. The diffusion coefficient, Dg, is defined as:

Dg =
1

3(Σa
g + Σs

g)
. (2)

The eigenvalue, λ, is taken to be the reciprocal of keff (i.e. λ = 1/keff), where:

keff =
number of neutrons in one generation

number of neutrons in the preceding generation
. (3)

Reflective and vacuum or bare surface boundary conditions can be implemented as follows:

Dg (n · ∇φg) = 0 (reflective) (4)

−Dg (n · ∇φg) =
1

2
φg (vacuum or bare surface) (5)

where n is the outward-pointing normal to the boundary.

5

2.2. Discretisation

The diffusion equation in 2D can be discretised with finite volumes on a regular mesh of Nx×Ny cells as

follows:

−(Di−1,j,g +Di,j,g)

2∆x2
φi−1,j,g −

(Di,j,g +Di+1,j,g)

2∆x2
φi+1,j,g −

(Di,j−1,g +Di,j,g)

2∆y2
φi,j−1,g

−(Di,j,g +Di,j+1,g)

2∆y2
φi,j+1,g +

(
(Di−1,j,g + 2Di,j,g +Di+1,j,g)

2∆x2
+

(Di,j−1,g + 2Di,j,g +Di,j+1,g)

2∆y2

)
φi,j,g

+Σa
i,j,gφi,j,g +

Ng∑
g
′
=1

g
′ 6=g

Σs
i,j,g→i,j,g′

φi,j,g =

Ng∑
g′=1

Σs
i,j,g′→i,j,g

φi,j,g′ + λχg

Ng∑
g′=1

νg′Σ
f

i,j,g′
φi,j,g′ , (6)

∀i ∈ {2, 3, . . . , Nx − 1}, ∀j ∈ {2, 3, . . . , Ny − 1}, ∀g ∈ {1, 2, . . . , Ng},

where ∆x and ∆y are the uniform cell widths in the x and y directions respectively, Nx and Ny are the

numbers of cells in the x and y directions respectively, the subscripts i and j refer to the cells in the

x and y directions respectively and φi,j,g represents the scalar flux of energy group g in cell i, j. This

discretisation is equivalent to a finite difference discretisation. Boundary conditions are applied to the

first and last cells in both the x and y directions, so Equation (6) is not solved for these cells. We want

to apply the boundary conditions in such a way as to avoid changing the discretisation stencil near the

boundaries to maximise the efficiency of the implementation. With this in mind, reflective boundary

conditions for the left edge (i = 1) can be enforced by the following constraints:

φ1,j,g = 0, D1,j,g = −D2,j,g ∀j (7)

and for the right edge (i = Nx):

φNx,j,g = 0, DNx,j,g = −DNx−1,j,g ∀j . (8)

Similar constraints can be applied to the top and bottom edges as required. This way of implementing the

boundary conditions ensures that there is an average diffusivity of zero at the interface between boundary

cells and their neightbours, and this avoids any diffusion occurring across the interface. For bare surface

boundary conditions (see Equation (5)), where the normal to the boundary is aligned with the x-direction,

the absorption term is modified as follows:

Σa
i,j,g ← Σa

i,j,g +
1

2∆x
. (9)

6

For bare surface boundary conditions where the boundary is aligned with the y direction:

Σa
i,j,g ← Σa

i,j,g +
1

2∆y
. (10)

For cells that have both boundary conditions the following modification is made:

Σa
i,j,g ← Σa

i,j,g +
1

2∆x
+

1

2∆y
. (11)

For the 5 point stencil associated with Equation (6), the boundary conditions are implemented through

one layer of ‘halo cells’. For higher order discretisations, with larger stencils, more layers of cells will be

required to serve as halo cells.

Equation (6) and its associated boundary conditions are often written as:

Aφ = λBφ. (12)

where the matrix A contains the absorption, diffusion and scattering terms; matrix B represents the

fission terms; and the vector φ contains the values of the scalar flux for each cell in every energy group.

In the following, we instead keep with the notation used thus far, which stores the unknown scalar flux

of each energy group in a 2D array. Although this way of formulating the problem may be less familiar,

the motivation will become clear in the following section, when we compare discretisation stencils to

convolutional operators. Bearing this in mind, we rewrite the system in Equation (6) as

l∑
u=−l

l∑
v=−l

au,vi,j,g φi+u,j+v,g = si,j,g , ∀i ∈ {2, 3, . . . , Nx − 1}, ∀j ∈ {2, 3, . . . , Ny − 1}, ∀g ∈ {1, 2, . . . , Ng},

(13)

7

where

au,vi,j,g =

− (Di,j,g +Di+u,j+v,g)

2∆x2
for |u| = 1, v = 0

− (Di,j,g +Di+u,j+v,g)

2∆y2
for u = 0, |v| = 1

Di−1,j,g + 2Di,j,g +Di+1,j,g

2∆x2
+
Di,j−1,g + 2Di,j,g +Di,j+1,g

2∆y2
+ Σas

i,j,g for u = 0 = v

0 for |u| = 1 = |v|

(14)

Σas
i,j,g = Σa

i,j,g +

Ng∑
g
′
=1

g
′ 6=g

Σs
i,j,g→i,j,g′

(15)

si,j,g =

g−1∑
g′=1

Σs
i,j,g′→i,j,g

φ
(k+1)

i,j,g′
+

Ng∑
g′=g

Σs
i,j,g′→i,j,g

φ
(k)

i,j,g′
+ λχg

Ng∑
g′=1

νg′Σ
f

i,j,g′
φ

(k)

i,j,g′
. (16)

As the stencil used in Equation (6) is a 5 point stencil (which can be written equivalently as a 3 by 3

stencil), the value of l in Equation (13) is 1. The right-hand side of Equation (13) can be determined by

using a “best guess” for φi,j,g. This effectively linearises Equation (13) which can now be solved by the

Jacobi method:

φ
(k+1)
i,j,g =

1

a0,0
i,j,g

(
si,j,g −

l∑
u=−l

l∑
v=−l

au,vi,j,g φ
(k)
i+u,j+v,g + a0,0

i,j,gφ
(k)
i,j,g

)
, (17)

where 2l + 1 is the width of the stencil, k is the Jacobi iteration and {{au,vi,j,g}lu=−l}lv=−l represents the

coefficients of the stencil used to calculate the scalar flux in cell i, j. The Jacobi method can be used for

diagonally dominant systems, and given an initial guess, is solved for each diagonal component in turn.

Iteration continues until the system converges [40]. The diagonal terms of the usual matrix-vector form

of Equation (17) (seen in Equation (12)) are now denoted by a0,0
i,j,g (for cell i, j and energy group g), the

remaining terms are the non-diagonal terms (au,vi,j,g ∀u, v such that |u| = 1 and v = 0, and u = 0 and

|v| = 1), which are subtracted from the source term in Equation (17).

2.3. Implementing discretisations with convolutional neural networks

A convolutional layer of a neural network has a filter or kernel associated with it, which is a small grid

(typically of dimension 3 × 3, 5 × 5 or 7 × 7 for 2D filters) whose cells have values known as weights

associated with them. The filter is applied to part of the input by multiplying the input value by the

weight in the overlapping cells. The products are summed to produce the output. This is illustrated in

Figure 1, where a filter acting on one part of the input data can be seen. This process of passing the

filter over parts of the input data is repeated until the filter has passed over all the input data and all the

8

1

1

1

1

1

2

2

2

2

2

5

5

5

5

5

4

4

4

4

4

1

1

1

1

1

Input (Nx × Ny) Filter

0

-1

0

-1

4

-1

0

-1

0

* =

Sum of Values

0

-2

0

-5

20

-5

0

-4

0
= 4

Output

Figure 1: A 3 by 3 convolutional filter which applies the discretised diffusion operator (a five-point finite volume stencil)
in 2D to 9 cells. The filter is first applied to all the cells in the blue block on the left; the result of which can be seen in the
blue block following the equals sign. The 9 values are then summed to give the value in the red block on the right which is
the output value, which represents the value of the diffusion operator acting on the input approximated at the central cell.

output values are known. The action of a 2D convolutional layer on a 2D input can be written as follows

x
(k+1)
i,j =

l∑
u=−l

l∑
v=−l

wu,v x
(k)
i+u,j+v, (18)

where the input and output are 2D grids with components x
(k)
i,j and x

(k+1)
i,j respectively. The weights of

the filter are represented by wu,v and the size of the filter is (2l+ 1)× (2l+ 1). The example in Figure 1

corresponds to applying a discretised diffusion operator to an input for the case ∆x = 1 = ∆y and a

constant diffusivity (Dg) of 1. For general grid sizes, using the notation in Equation (18) and for a

particular set of weights w, the discretised diffusion operator applied to the scalar flux of energy group g

and cell i, j can be written as

−∇2Φg

∣∣∣
i, j

=

l∑
u=−l

l∑
v=−l

wu,vφi+u,j+v,g = −
(
φi−1,j,g − 2φi,j,g + φi+1,j,g

∆x2
+
φi,j−1,g − 2φi,j,g + φi,j+1,g

∆y2

)
,

(19)

which is equivalent to

l∑
u=−l

l∑
v=−l

wu,vφi+u,j+v,g =
∑

entries

0 −1

∆y2 0

−1
∆x2

2
∆x2 + 2

∆y2
−1
∆x2

0 −1
∆y2 0

�

φi−1,j+1,g φi,j+1,g φi+1,j+1,g

φi−1,j,g φi,j,g φi+1,j,g

φi−1,j−1,g φi,j−1,g φi+1,j−1,g

 =: f(Φg;w)
∣∣∣
i,j
.

(20)

where l = 1, � denotes the Hadamard product which performs entrywise multiplication, the symbol∑
entries denotes the summation of all the entries of a matrix (see Equation (B.2)) and f represents the

discrete convolution applied to the field Φg by a 3× 3 filter with weights w. The components inside the

square brackets used in Equation (20) are ordered as if they are pixels in an image rather than components

of a matrix. Equation (19) shows one way of writing a finite volume discretisation of the diffusion operator

acting on a field Φg and Equation (20) is exactly the same discretisation written as a convolution (using the

Hadamard product). This illustrates how a discretisation scheme can be represented by a convolutional

9

neural network.

By comparing Equations (13) and (18), we can see that the diffusion equation (with a spatially varying

Dg) cannot yet be written as a convolution layer, as the weights in Equation (13) vary in space (for two

cells i, j and i∗, j∗, au,vi,j 6= au,vi∗,j∗), whereas in Equation (18), the weights do not depend on which part

of the input data they are applied to (i.e. wu,v is independent of i, j). By recalling that the diffusion

operator in Equation (1) can be written as three terms all of which involve the Laplace operator (see

Appendix A), we can therefore write the diffusion operator as three convolutions:

−∇ · (Dg∇φg) =
1

2

(
−∇2(Dgφg)−Dg∇2φg + φg∇2Dg

)
analytical form (21)

fDiff(Φg,Dg;w) =
1

2
(f(Dg �Φg;w) +Dg � f(Φg;w)−Φg � f(Dg;w)) discretised form (22)

where Φg is a Nx×Ny matrix containing all φi,j,g components, Dg is a Nx×Ny matrix containing all Di,j,g

components and f represents the application of the convolutional layer with weights w. Equation (22)

serves as a definition of the diffusion convolution fDiff and the weights w. The equivalence between this

formulation of the finite volume discretisation of the diffusion operator and the standard formulation

presented in Equation (6) can be seen in Appendix B. The discretised diffusion equation can now be

written for energy group g as:

fDiff(Φg,Dg;w) +

Σa
g +

Ng∑
g
′
=1

g
′ 6=g

Σs
g→g

′

�Φg = sg, ∀g ∈ {1, 2, . . . , Ng}, (23)

in which the source sg for energy group g also contains coupling terms between the energy groups other

than g. The terms Σa
g and Σs

g→g′
represent matrices which contain the absorbtion and scatter cross-

sections for each cell. Equation (23) can be solved with the Jacobi method as before. However, when

implementing this, instead of using Equation (23), we rewrite this to use one fewer convolutional operation

for efficiency. The term
∑l

u=−l
∑l

v=−l a
u,v
i,j,g φ

(k)
i+u,j+v,g−a

0,0
i,j,g φ

(k)
i,j,g can be determined using a convolutional

filter containing just the off-diagonal terms:

l∑
u=−l

l∑
v=−l

au,vi,j,g φ
(k)
i+u,j+v,g − a

0,0
i,j,g φ

(k)
i,j,g ≡

1

2

(
Dg � f(Φ(k)

g ;wod) |i,j,g + f(Dg �Φ(k)
g ;wod)

) ∣∣∣
i,j,g

, (24)

10

where f is a convolutional layer with weights wod:

wod =

0 −1

∆y2 0

−1
∆x2 0 −1

∆x2

0 −1
∆y2 0

 . (25)

with the central term of w set to zero in order to obtain this. The Jacobi method as written in Equa-

tion (17) is therefore equivalent to:

Φ(k+1)
g = (A0,0

g)�−1 �
(
sg −

1

2

(
Dg � f(Φ(k)

g ;wod) + f(Dg �Φ(k)
g ;wod)

))
, (26)

where (A0,0
g)�−1 is the Hadamard inverse [41] which is an Nx×Ny array whose ith, jth component is 1

a0,0
i,j,g

for energy group g. This equation can be written as a function J,

Φ(k+1)
g = J

(
Φ(k)

g , (A0,0
g)�−1, sg,Dg

)
, (27)

which calculates the updated solution after one Jacobi iteration. Figure 2 shows the architecture of this

function, i.e., the neural network that solves one Jacobi iteration of the neutron transport problem as

discretised in Equation (26). Green boxes contain the inputs; blue boxes are convolutional layers; orange

boxes are mathematical functions as layers; and the grey box is the output of the network. The second

line in each box gives the dimension of the output of that box.

So far, we have described how to find the weights for the filters of convolutional layers that correspond

to a finite volume discretisation of the neutron diffusion equation, solved with a Jacobi method. The

approach described in this paper is not limited to the finite volume method, however, and for comparison,

we also use a discretisation based on a new convolutional finite element method (ConvFEM) [23] of the

diffusion operator. Using quadratic 9-noded rectangular elements, the 5× 5 filter for this discretisation is

given by

w =
1

900

−5 50 −15 50 −5

50 −320 −660 −320 50

−15 −660 3600 −660 −15

50 −320 −660 −320 50

−5 50 −15 50 −5

(28)

Dleft = Dright = Dtop = Dbottom, (29)

11

Inputs

Equation (24)

Output

Φ
(k)
g

Nx × Ny

Dg

Nx × Ny

sg
Nx × Ny

(A0,0
g)�−1

Nx × Ny

f (· ;wod)
Nx × Ny

Multiply
Nx × Ny

Multiply
Nx × Ny

f (· ;wod)
Nx × Ny

Subtract
Nx × Ny

Multiply
Nx × Ny

Φ
(k+1)
g

Nx × Ny

Figure 2: Schematic of the neural network used for a single Jacobi iteration written as J(·) in Equation (26). This network

performs a single Jacobi iteration on the flux of a single energy group. The inputs are the flux (Φ
(k)
g), representative source

(sg), diffusion coefficients (Dg) and the strictly diagonal coefficients (A0,0
g)�−1) (green boxes). A number of layer operations

are performed, mathematical operations are shown in orange and convolutional operations are in cyan. The output is the
flux of the next Jacobi iteration (Φ

(k+1)
g). Arrows originate from which layer the data originated and the end of an arrow

indicates which layer takes that data as input. The dimensions of the layers are given on the second line of each box.

and for the left side:

Dleft = Di,j,g ∀i ∈ {3, 4} ∀j ∈ {3, 4, . . . , Ny − 2}, (30)

with corresponding constraints for the right, top and bottom sides. If Equation (29) holds and Equa-

tion (30) holds for all sides then the boundary conditions for the left side, i = 1, can be implemented

with:

φ1,j,g = 0, φ2,j,g = 0, Dleft = −D1,j,g = −D2,j,g, (31)

and similar conditions for the other sides. Equation (30) may not hold if two cells next to the boundary

do not have the same value and thus this approach might not be used in this situation or one may use

some sort of average. An alternative that works for all filter sizes is simply to set the values of the

diffusion coefficient and the fluxes to be zero in the halo regions and then no addition to the absorption

cross sections for the boundary condition are required. This effectively implements the 2∆x extrapolation

boundary condition obtained using Equations (9), (10) and (11).

12

2.4. Multigrid

Figure 3: A schematic diagram showing the U-Net architecture (left) that is used to form a single multigrid sawtooth cycle.
On the right, we can see how multiple cycles are brought together to form the overall solution method.

In Figure 3 we show how the U-Net [24] architecture has been repurposed to form a sawtooth multigrid

method. Figure 4 shows a single multigrid iteration, using the U-Net, with two restrictions. Note that

r
(k)
1 = s1 −

(
A0,0

1 �Φ
(k)
1 + 1

2

(
D1 � f (Φ

(k)
1 ;wod) + f (D1 �Φ

(k)
1 ;wod)

))

r
(k)
1

r
(k)
2 = f (r

(k)
1 ;wR)

r
(k)
3 = f (r

(k)
2 ;wR)

∆Φ
(k)
3 = J

(
0, (A0,0

3)�−1, r
(k)
3 ,D2

)
∆̃Φ2

(k)
= UpSamp(∆Φ

(k)
3)

∆Φ
(k)
2 = J

(
∆̃Φ2

(k)
, (A0,0

2)�−1, r
(k)
2 ,D2

)
∆̃Φ1

(k)
= UpSamp(∆Φ

(k)
2)

∆Φ
(k)
1 = J

(
∆̃Φ1

(k)
, (A0,0

1)�−1, r
(k)
1 ,D1

)

Φ
(k+1)
1 = Φ

(k)
1 + ∆Φ

(k)
1

Figure 4: Multigrid iteration, with the subscript indicating the resolution and superscript representing the multigrid iteration
and J(·) representing a Jacobi iteration. The residual is calculated and restricted twice, indicated by the cyan nodes. These
residuals are used with Jacobi smoothing, indicated by yellow nodes. After smoothing, prolongation is performed using
UpSampling layers, indicated by teal nodes. After the finest level is reached, the flux is updated and the process repeats.

the subscript indicating energy group is no longer shown, the bold subscript now indicates the coarseness

of the mesh, with 1 being the finest mesh. The residual (rk) is calculated using:

r
(k)
1 = s1 −

(
A0,0

1 �Φ
(k)
1 +

1

2

(
D1 � f(Φ

(k)
1 ;wod) + f(D1 �Φ

(k)
1 ;wod)

))
(32)

which is then restricted twice to (r
(k)
2) and (r

(k)
3). A Jacobi iteration is performed on the coarsest level

(bold subscript 3) to determine ∆Φ
(k)
3 , starting with an array of zeros. This is prolongated to estimate

∆̃Φ2
(k)

which is then smoothed to ∆Φ
(k)
2 with another Jacobi iteration using the residual of the next

highest level. This repeats until the finest level is reached (bold subscript 1), where the flux is updated

(k+1) and the process is repeated for a number of multigrid iterations. The restriction may be performed

13

with the convolution:

r
(k)
2 = f (r

(k)
1 ;wR), (33)

with filter weights:

wR =

0.25 0.25

0.25 0.25

 . (34)

Upsampling layers can perform the role of prolongating the solution to a higher level. The upsampling

operation simply copies the value from the coarser cell to the associated cells on the finer grid, which

increases the dimensions of the data [42] and results in an approximation for the data on a finer mesh:

Φ̃1
(k)

= UpSamp(Φ
(k)
2) . (35)

Inputs

Residual

Equation 32

Residual

restriction

to level 2 and 3

Smoothing

of level 3

Prolongation

to level 2

Smoothing

of level 2

Prolongation

to level 1

Smoothing

of level 1

Output

Φ
(k)
1

Nx × Ny

(A0,0
1)

Nx × Ny

s1

Nx × Ny

D1

Nx × Ny

(A0,0
3)�−1

Nx
4 ×

Ny
4

D3
Nx
4 ×

Ny
4

(A0,0
2)�−1

Nx
2 ×

Ny
2

D2
Nx
2 ×

Ny
2

(A0,0
1)�−1

Nx × Ny

f (·;wod)

Nx × Ny

Multiply

Nx × Ny

Multiply

Nx × Ny

Multiply

Nx × Ny

f (·;wod)

Nx × Ny

Add

Nx × Ny

Subtract

Nx × Ny

f (·;wR)
Nx
2 ×

Ny
2

f (·;wR)
Nx
4 ×

Ny
4

J(·)
Nx
4 ×

Ny
4

J(·)
Nx
2 ×

Ny
2

J(·)
Nx × Ny

UpSamp

Nx × Ny

UpSamp
Nx
2 ×

Ny
2

Φ
(k+1)
1

Nx × Ny

Figure 5: Multigrid network, MG(·), representing a single multigrid iteration. This network performs a single multigrid

iteration on the flux of a single energy group. Takes the flux (Φ
(k)
1), representative source (s1), diffusion coefficients (D1)

and the strictly diagonal coefficients (A0,0
1), along with the coarser resolution coefficients, as inputs (green boxes). A number

of layer operations are performed, mathematical operations in orange, convolutional passes in cyan, sub-model operations in
yellow and upsampling in teal. The sub-models can be iterated on multiple times. Finally it outputs the flux of the next
multigrid iteration flux (Φ

(k+1)
1). Arrow origins show which layer the data originated and the end of the arrow shows which

layer takes that data as input. Dimensions of layers are given on the second line of each box.

Figure 5 shows how the multigrid method can be represented by a neural network. Green boxes contain

14

the inputs, blue boxes are convolutional layers, orange boxes are mathematical functions as layers, yellow

boxes are sub-networks, teal boxes are upsampling layers and the grey box is the output of the network.

The second line in each box is the dimension of the output. This can be written as:

Φ
(k+1)
1 = MG

(
Φ

(k)
1 , s1, (A

0,0
1), (A0,0

1)�−1, (A0,0
2)�−1, (A0,0

3)�−1,D1,D2,D3

)
, (36)

and for a single energy group g:

Φ
(k+1)
1g = MGg

(
Φ

(k)
1g , s1g, (A

0,0
1g), (A0,0

1g)�−1, (A0,0
2g)�−1, (A0,0

3g)�−1,D1g,D2g,D3g

)
, (37)

where MG(·) is a function that calculates the result of one sawtooth multigrid iteration and many of

these iterations are strung together to form the final solution, see Figure 3. MGg(·) is the multigrid

iteration applied to energy group g, indicated by the subscript.

It should be noted that the diffusion coefficients and other material properties are mapped to a coarser

grid using a harmonic average before the discretisations are formed on the coarser grids. The same

discretisation is used at each multigrid level but with different cell sizes.

2.5. Multi-group network

The multigrid function and network, given by Equation (36) and Figure 5 respectively, show how a single

multigrid iteration may be applied to a single energy group g. Multi-group problems must have balanced

scattering terms, achieved through iterating until the terms balance. Equation (16) shows how a block

Gauss-Seidel approach is used when constructing si,j,g. The scattering term, Σs, is constructed using the

most recent flux information, achieved by resolving each energy group sequentially.

Figure 6 shows how energy groups can be resolved using a block Gauss-Seidel approach within a neural

network. Green boxes represent inputs, yellow boxes represent sub-networks and grey boxes represent

outputs. For clarity, the green outputs are only shown as being linked to the first energy group but would

be linked to all subsequent energy groups. sg is a vector containing Σs, sfiss and Φ(k) and is formed

using Equation (16). sg is then used in the MG sub-model to resolve for Φg, repeating for a number of

multigrid iterations until:

Φ(k+1)
g ≈ Φ(k)

g . (38)

Φg is then used in sg′ where g′ > g. Once all energy groups have been resolved they can be concatenated

to form Φ(k+1). This is repeated until:

Φ(k+1) ≈ Φ(k). (39)

15

Inputs

Resolve
Energy
Group 1

Resolve
Energy
Group 2

Resolve Energy Groups
3, 4, . . . , (Ng − 1)

Resolve
Energy

Group Ng

Output:
Concatenated

energy
groups

Σs

Nx × Ny ×
Ng × Ng

Φ(k)

Nx × Ny × Ng

A0,0
2

Nx × Ny × Ng

sfiss

Nx × Ny × Ng

D1

Nx × Ny × Ng

(A0,0
1)�−1

Nx
4 ×

Ny

4 × Ng

D3
Nx
4 ×

Ny

4 × Ng

(A0,0
2)�−1

Nx
2 ×

Ny

2 × Ng

D2
Nx
2 ×

Ny

2 × Ng

(A0,0
3)�−1

Nx × Ny × Ng

Create sg=1

Nx × Ny

MGg=1(·)
Nx × Ny

Φ
(k+1)
g=1

Nx × Ny

Create sg=2

Nx × Ny

MGg=2(·)
Nx × Ny

Φ
(k+1)
g=2

Nx × Ny

Create sg=Ng

Nx × Ny

MGg=Ng(·)
Nx × Ny

Φ
(k+1)
g=Ng

Nx × Ny

Φ(k+1)

Nx × Ny × Ng

Figure 6: Multi-group network representing a single multi-group iteration. This network performs a single multi-group
iteration on the flux of all energy groups. Takes the flux (Φ

(k)
1), scattering cross-sections Σs, source fission term (sfiss),

diffusion coefficients (D1) and the strictly diagonal coefficients (A0,0
1), along with the coarser resolution coefficients, as

inputs (green boxes). Each energy group is updated sequentially, first through updating the source term for a specific energy
group and then performing a number of multigrid sub-model iterations. The updated flux for an energy group is then passed
onto subsequent energy groups. Left out of the figure for clarity, the inputs (green boxes) are all connected to subsequent

sub-models (yellow boxes). Finally, it outputs the flux of the next multi-group iteration flux (Φ
(k+1)
1). Arrow origins show

which layer the data originated and the end of the arrow shows which layer takes that data as input. Dimensions of layers
are given on the second line of each box.

An alternative to the Gauss-Seidel approach would be to use the Jacobi approach to resolve all energy

groups simultaneously, which could be achieved by using the multigrid network alone, as described in

Section 2.4. This is performed by passing all Ng energy groups to the MG network at the same time, only

updating s outside of this. The source term in Equation (16) instead changes to:

si,j,g =

Ng∑
g′=1

Σs
i,j,g′→i,j,g

φ
(k)

i,j,g′
+ λχg

Ng∑
g′=1

νg′Σ
f

i,j,g′
φ

(k)

i,j,g′
. (40)

Equation (12) is an eigenvalue problem so λ needs to be determined. An approximation is used (usually

16

λ = 1) and the fission term is passed to the multi-group network where

sfiss,g = λχg

Ng∑
g′=1

νg′Σ
f

g′
Φ

(k)

g′
, (41)

for each energy group g and sfiss is an array containing all g of sfiss,g. The power method [43] is the

method chosen here to determine the dominant eigenvalue for this problem. The implementation of the

power method used here is the same as [37] and operates outside of the multi-group network.

3. Results

The approach described in this paper is demonstrated on two test cases: a fuel assembly and a reactor

core, both based on the KAIST benchmark [44]. For the fuel assembly, two configurations are investigated

(control rods fully withdrawn and fully inserted). Results for a finite volume discretisation of the 2D

neutron diffusion equation are generated by a neural network with pre-determined weights and compared

with a results from a traditional Fortran implementation. A neural network solution of a discretisation

based on the quadratic finite element method, ConvFEM [23], is also presented. For the reactor core,

the cross-sections are taken from the KAIST benchmark, and a grid of 3× 3 fuel assemblies are used to

make up one quarter of the core. Results are presented from a finite volume discretisation of the neutron

diffusion equation using a neural network. All the neural networks in this section were implemented in

python using Keras [42] with the TensorFlow backend [1].

3.1. Fuel Assembly - Geometry and Configuration

The geometry of the UOX fuel assembly based on the KAIST benchmark [44] can be seen in Figure 7. It

consists of a 17×17 lattice containing 264 UOX fuels rods with guide tubes in the remaining 25 lattice-cells

which can be filled with either moderator or control rods. We consider two configurations of the assembly.

In the first configuration, all 25 of these lattice-cells are filled with moderator, representing a system where

the control rods are fully withdrawn. In the second configuration, all 25 of the remaining lattice-cells are

control rods, representing a system where the control rods are fully inserted. Two computational grids

are used, with either 20 × 20 cells or 10 × 10 cells within each lattice-cell. The higher resolution grid is

used for the fuel assembly test case and the coarser grid is used when modelling the whole reactor (see

Section 3.6). For the 20×20 case, there is a total of 115, 600 computational cells in the lattice with 1, 364

of these forming the boundaries (i.e. as halo cells or ghost cells). The energy is discretised into seven

groups, meaning that the fuel assembly has 818, 720 degrees of freedom. Each side of the fuel assembly is

17

of length 21.42 cm meaning each computational cell measures 0.063 cm × 0.063 cm. Each side of the fuel

assembly has vacuum boundary conditions applied to it.

Fuel Rod

Control Rod or
Moderator

Figure 7: Geometry of UOX fuel assembly with laatice-cells containing fuel rods or guide tubes with either moderator or
control rods.

Moderator

Moderator, Con-
trol Rod or Fuel

Figure 8: Computational grid shown here for a single lattice-cell for the fine (20×20) grid (used for the assembly calculations
in Section 3.2) and the coarse (10 × 10) grid (used in the reactor core calculations in Section 3.6).

All lattice-cells in the fuel assembly have the same geometry with the moderator occupying the outer

region of every lattice-cell and either fuel, a control rod or moderator occupying the inner region. This

is shown in Figure 8. The guide tube is not modelled. The material parameters required are UOX cross-

sections for the fuel rods, and cross-sections for the control rods and moderator (same as the coolant), all

taken from the KAIST benchmark.

18

3.2. Fuel Assembly - Finite Volume Discretisation

The neutron diffusion equation is solved for a 2D fuel assembly which uses geometry and cross-sections

from the KAIST benchmark [44]. We perform two Jacobi iterations, 100 multigrid iterations and 100

multi-group iterations to obtain the solution from the multi-group neural network with weights that

are pre-determined by a finite volume discretisation. After the final multi-group iteration, the solution

converged to an effective tolerance of 10−14. Solutions obtained from the neural network are compared

with solutions from a traditional implementation of the finite volume discretisation in Fortran that uses

a Gauss-Seidel iterative method (with a tolerance of 10−15).

Figure 9 contains the flux profiles of three energy groups for a fuel assembly with control rods fully

withdrawn. The high values of scalar flux for group 7 indicate the location of the moderator within the

guide tubes. It can be observed that the pointwise difference between the neural network solution and

the Fortran solution with Gauss-Seidel iteration is small, O(10−10), and within the tolerances set for the

solvers.

Figure 9: Scalar flux (neutrons cm−2 s−1) across the fuel assembly for three energy groups for a fuel assembly with control
rods fully withdrawn, generated using the multi-group network.

19

Figure 10 contains the flux profiles for three energy groups for a fuel assembly with control rods fully

inserted. The positions of the control rods can be observed in between the fuel rods, where the flux

decreases sharply. It can be observed that the pointwise difference between the neural network solution

and the Fortran solution is small, O(10−10), and within the tolerances set for the solvers.

Figure 10: Scalar flux (neutrons cm−2 s−1) across the fuel assembly for three energy groups for a fuel assembly with control
rods fully inserted, generated using the multi-group network.

Figure 11 contains the rate of convergence of keff for a fuel assembly with control rods fully withdrawn

(Figure 11(a)) and fully inserted (Figure 11(b)). It can be observed that keff is lower when control rods

are inserted, as would be expected. The convergence for the solution from the neural network solver

and that from the Fortran implementation is identical for both configurations (fully withdrawn and fully

inserted control rods). See Table 1 for a comparison of the converged values of keff.

20

(a) Control rods fully withdrawn. keff converging to 0.5797
for the Neural Network Solver and 0.5797 for the Fortran
implementation (with the Gauss-Seidel solver).

(b) Control rods fully inserted. keff converging to 0.4347
for the Neural Network Solver and 0.4347 for the Fortran
implementation (with the Gauss-Seidel solver).

Figure 11: A plot of convergence of keff against power iteration for the fuel assembly, generated using the multi-group network
with the finite volume discretisation.

3.3. Fuel Assembly - Finite Element discretisation

Figures 12 and 13 contain the scalar flux solution for a fuel assembly with control rods fully withdrawn and

fully inserted, respectively. Both solutions were generated using quadratic convolutional finite elements

(ConvFEM) implemented with a neural network. The weights used in the filters are given in Equation (28).

In both cases, the flux profile shows a similar distribution to the solutions generated using the finite volume

discretisation in Section 3.2. The converged values of keff using the quadratic finite elements are both

slightly larger than for the finite volume discretisation, see Table 1.

(a) Scalar flux (neutrons cm−2 s−1) across the fuel assembly for four
energy groups.

(b) Convergence of keff against power iteration. keff

converges to 0.5838 compared to 0.5797 for the finite
volume discretisation.

Figure 12: Results for a fuel assembly with control rods fully withdrawn, generated using the multi-group network for
quadratic convolutional finite elements (using ConvFEM).

21

(a) Scalar flux (neutrons cm−2 s−1) across the fuel assembly for four
energy groups.

(b) keff vs power iteration. keff converges to 0.4370
compared to 0.4347 for the finite volume discretisation.

Figure 13: Results for a fuel assembly with control rods fully inserted, generated using the multi-group network for quadratic
convolutional finite elements (with ConvFEM).

discretisation implementation solver withdrawn inserted

finite volume neural network multigrid with Jacobi iterations 0.5797 0.4347
finite volume Fortran Gauss-Seidel 0.5797 0.4347
finite element neural network multigrid with Jacobi iterations 0.5838 0.4370

Table 1: Values of keff for the fuel assembly test cases

3.4. Fuel Assembly - Time comparisons

Table 2 shows the time comparisons for 100 Jacobi iterations performed on the fuel assembly test case. The

neural network implementation using the GPU used the multi-group network (see figure 6) but replaced

the multigrid network (see figure 5) with the Jacobi network (see figure 2). The equivalent operations

were performed in a Fortran code in serial using a CPU. It can be observed that the average time for

the neural network solver was less than one-third that of the time for the solver written in Fortran. The

neural network solver also shows more consistent timings, with the difference between the minimum and

maximum times being 0.0636 seconds. The Fortran solver shows a much greater variance in timings, with

the difference between the minimum and maximum times being 1.3400 seconds.

implementation hardware max time (s) min time (s) average time (s)

neural network NVIDIA RTX 6000 GPU 1.3412 1.2776 1.2819
Fortran AMD EPYC 7742 CPU 5.2568 3.9168 4.3681

Table 2: Time comparisons for 100 Jacobi iterations performed on the fuel assembly test case using GPU for the neural
network solver and a CPU for the Fortran code. The 100 iterations were performed 400 times so the maximum, minimum
and average times from these are shown.

22

3.5. Reactor Core - Geometry and Configuration

We now model a reactor core using the cross-sections from the KAIST benchmark [44]. Unlike the

benchmark, our core is a 3 × 3 grid of fuel assemblies of type UOX only. One quarter of the domain

is modelled, using reflective boundary conditions to represent the rest of the core, see Figure 14. The

reflector surrounding the fuel assemblies uses the moderator material. Vacuum boundary conditions are

applied to the external boundary of the core. The width of the reflector and each of the assemblies

is 21.42 cm so each side of the domain shown in Figure 14 measures 85.68 cm. Each lattice-cell of the

assemblies has a computational grid of 10 × 10 cells (see Figure 8). The grid is uniform throughout

the domain, meaning that the reflector contains 202, 300 cells, all nine fuel assemblies contain a total of

260, 100 cells and 2, 724 cells are used as halo cells needed to apply the boundary conditions. The energy

was again discretised into seven groups resulting in 3, 236, 800 degrees of freedom.

UOX

UOX

UOX

UOX

UOX

UOX

UOX

UOX

UOX

Reflector

R
efl

ec
ti

ve
B

ou
n

d
ar

y
V

acu
u

m
B

ou
n

d
ary

Vacuum Boundary

Reflective Boundary

Figure 14: Geometry of Reactor Core for a simplified version of the KAIST benchmark [44].

Each fuel assembly can either have control rods fully inserted or fully withdrawn. The two configurations

of the core that are investigated here can be seen in Figure 15. Configuration one has five fuel assemblies

with fully withdrawn control rods and four fuel assemblies with control rods fully inserted. Configuration

two has six fuel assemblies with fully withdrawn control rods and three fuel assemblies with fully inserted

23

control rods. These configurations were chosen randomly.

Withdrawn

Withdrawn

Inserted

Inserted

Withdrawn

Inserted Inserted

Withdrawn

Withdrawn

(a) Reactor configuration one.

Inserted

Withdrawn

Withdrawn

Inserted

Withdrawn

Inserted Withdrawn

Withdrawn

Withdrawn

(b) Reactor configuration two.

Figure 15: Reactor core configurations where withdrawn means control rods are fully withdrawn and inserted means control
rods are fully inserted.

3.6. Reactor Core - Finite Volume discretisation

A neural network with weights determined by a finite volume discretisation was used to solve the 2D

neutron diffusion equation and give solutions for the reactor core described in the previous section. For

all the solutions in this section, 5 Jacobi iterations, 100 multigrid iterations and 100 multi-group iterations

were performed. Figure 16 contains the flux profiles for four energy groups for reactor configuration one.

It can be observed that flux is higher in regions where control rods are fully withdrawn, with a notable

drop for the flux of all the energy groups in the upper left corner where they are inserted. In the flux

profile of the lowest energy group (group 7), the locations of the control rods and the moderator (within

the guide tubes) are clearly picked out with the flux decreasing or increasing sharply respectively.

24

Figure 16: Scalar flux (neutrons cm−2 s−1) across the fuel assembly for four energy groups for reactor configuration one,
generated using the multi-group network with the finite volume discretisation.

Figure 17 contains the flux profiles for four energy groups for reactor configuration two. Again, the flux

drops sharply where control rods are inserted, with the highest flux values occurring in the upper left

corner by the reflective boundaries. The locations of both the control rods and moderator within the

guide tubes are clearly picked out in the flux profile of the lowest energy group (group 7).

25

Figure 17: Scalar flux (neutrons cm−2 s−1) across the fuel assembly for four energy groups for reactor configuration two,
generated using the multi-group network for the finite volume discretisation.

Figure 18 shows the convergence of keff for both reactor configurations. It can be observed that config-

uration two has a slightly higher keff than configuration one, which is expected as configuration two has

fewer control rods inserted.

26

(a) keff vs power iteration for reactor configuration one, con-
verging to 1.1777.

(b) keff vs power iteration for reactor configuration two, con-
verging to 1.2557.

Figure 18: Reactor core keff vs power iteration using the multi-group network with a finite volume discretisation for both
configurations.

4. Conclusions and Future work

This paper presents a new approach that uses the tools within Artificial Intelligence (AI) software libraries

to replicate the processes of solving partial differential equations that have been discretised through

standard numerical method schemes. Whilst applicable to partial differential equations (PDEs) in general,

this article has focused on the field of nuclear reactor physics and solves the eigenvalue problem arising from

neutron transport, as described through diffusion theory. Furthermore, whilst underlying discretisation

methods can be arbitrary, our demonstration focuses on the use of convolutional neural networks to

replicate the solution process when using the finite volume method. Instead of training the network,

the approach taken here is to define the weights of convolutional neural network in order to reproduce

the discretisation exactly. Iterative solvers are also replicated within the network. A sawtooth multigrid

method based on the U-Net architecture with an internal Jacobi iteration is investigated here. The

multigrid network is then used with another network that acts across all energy groups as a multi-group

solver.

Two test cases are used to demonstrate the approach, a fuel assembly and a reactor core. For the

fuel assembly test case, the solution from the neural network solution is compared with the same finite

volume discretisation solved by a Gauss-Seidel method and implemented in a standard way using Fortran.

The absolute pointwise error between the two solutions was O(10−10). The fuel assembly test case

demonstrates that the approach produces the identical solution (accounting for solver tolerances) to that

obtained through a standard approach, and produces the same rate of convergence for keff. This test case

is also used to demonstrate how a quadratic finite element discretisation may be used in the convolutional

27

layers. The approach is also extended to a more computationally demanding problem, in the form of a

reactor core.

A benefit of using such an approach is that it allows one to exploit the power of AI libraries and their built-

in technologies. For example, their executions are already optimised for different computer architectures,

whether it be CPUs, GPUs or new-generation AI processors. This flexibility brings within easy reach

the ability to run code on multiple platforms without the need for modification of the code. A further

benefit is that of simplified code development, as the AI libraries abstract away code relating to the

platform, leaving the user to concentrate on their programming tasks. As well as exploiting the substantial

developments already made in AI libraries, formulating numerical discretisations as convolutional layers

in neural networks will mean that these codes are ready to run on the latest AI processors.

Future work will involve including the power eigenvalue iteration within the neural network. This would

enable the neural network to calculate sensitivities of the eigenvalue to material properties automatically,

using the backpropagation algorithm of the neural network. An important next step would be to optimise

the code and methods further (e.g. taking into account the multigrid bottleneck caused by the coarsest

grid) so that large problems can be run on GPUs or new AI computers.

CRediT authorship contribution statement

TRFP: methodology, software, writing (original draft, review and editing). CEH: methodology, writing

(original draft, review and editing), supervision. BC: software, writing (review and editing). AGB:

software, writing (original draft, review and editing). CCP: conceptualisation, methodology, software,

writing (original draft, review and editing), supervision, funding acquisition.

Acknowledgements

The authors would like to acknowledge the following EPSRC grants: RELIANT, Risk EvaLuatIon fAst

iNtelligent Tool for COVID19 (EP/V036777/1); CO-TRACE, COvid-19 Transmission Risk Assessment

Case Studies — education Establishments (EP/W001411/1); INHALE, Health assessment across bi-

ological length scales (EP/T003189/1); the PREMIERE programme grant (EP/T000414/1); MAGIC

(EP/N010221/1); and MUFFINS (EP/P033180/1).

References

[1] M. Abadi, P. Agarwal, Aand Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

28

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,

B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,

P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale Machine Learning

on Heterogeneous Systems, 2015. Software available from www.tensorflow.org.

[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-

amkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An Imperative Style, High-

Performance Deep Learning Library, in: Advances in Neural Information Processing Systems

32, Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[3] B. Vermeire, F. Witherden, P. Vincent, On the utility of GPU accelerated high-order methods for

unsteady flow simulations: A comparison with industry-standard tools, Journal of Computational

Physics 334 (2017) 497–521.

[4] J. Chan, Z. Wang, A. Modave, J.-F. Remacle, T. Warburton, GPU-accelerated discontinuous

Galerkin methods on hybrid meshes, Journal of Computational Physics 318 (2016) 142–168.

[5] R. M. Bergmann, K. L. Rowland, N. Radnović, R. N. Slaybaugh, J. L. Vujić, Performance and

accuracy of criticality calculations performed using WARP — A framework for continuous energy

Monte Carlo neutron transport in general 3D geometries on GPUs, Annals of Nuclear Energy 103

(2017) 334–349.

[6] R. N. Slaybaugh, M. Ramirez-Zweiger, T. Pandya, S. Hamilton, T. M. Evans, Eigenvalue Solvers

for Modeling Nuclear Reactors on Leadership Class Machines, Nuclear Science and Engineering 190

(2018) 31–44.

[7] C. Cecka, A. J. Lew, E. Darve, Assembly of finite element methods on graphics processors, Interna-

tional Journal for Numerical Methods in Engineering 85 (2011) 640–669.

[8] F. Mossaiby, R. Rossi, P. Dadvand, S. Idelsohn, OpenCL-based implementation of an unstructured

edge-based finite element convection-diffusion solver on graphics hardware, International Journal for

Numerical Methods in Engineering 89 (2012) 1635–1651.

[9] A. Dziekonski, P. Sypek, A. Lamecki, M. Mrozowski, Generation of large finite-element matrices on

multiple graphics processors, International Journal for Numerical Methods in Engineering 94 (2013)

204–220.

29

www.tensorflow.org
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[10] S. Sanfui, D. Sharma, A three-stage graphics processing unit-based finite element analyses ma-

trix generation strategy for unstructured meshes, International Journal for Numerical Methods in

Engineering 121 (2020) 3824–3848.

[11] A. Modave, A. Atle, J. Chan, T. Warburton, A GPU-accelerated nodal discontinuous Galerkin

method with high-order absorbing boundary conditions and corner/edge compatibility, International

Journal for Numerical Methods in Engineering 112 (2017) 1659–1686.

[12] A. G. M. Lewis, J. Beall, M. Ganahl, M. Hauru, S. B. Mallick, G. Vidal, Large-scale distributed

linear algebra with tensor processing units, Proceedings of the National Academy of Sciences of the

United States of America 119 (2022) e2122762119.

[13] Graphcore, Intelligence Processing Units, https://www.graphcore.ai/products/ipu, 2022. Ac-

cessed: 16-12-2022.

[14] Cerebras, CS-2: A Revolution in AI Infrastructure, https://www.cerebras.net/product-system/,

2022. Accessed: 2022-10-12.

[15] T. Lu, T. Marin, Y. Zhuo, Y.-F. Chen, C. Ma, Accelerating MRI Reconstruction on TPUs, in:

2020 IEEE High Performance Extreme Computing Conference (HPEC), 2020, pp. 1–9. doi:10.1109/

HPEC43674.2020.9286192.

[16] T. Lu, T. Marin, Y. Zhuo, Y.-F. Chen, C. Ma, Nonuniform Fast Fourier Transform on TPUs,

in: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, pp. 783–787.

doi:10.1109/ISBI48211.2021.9434068.

[17] F. Belletti, D. King, K. Yang, R. Nelet, Y. Shafi, Y.-F. Shen, J. Anderson, Tensor processing units

for financial monte carlo, in: Proceedings of the 2020 SIAM Conference on Parallel Processing for

Scientific Computing, 2020, pp. 12–23. doi:10.1137/1.9781611976137.2.

[18] A. Morningstar, M. Hauru, J. Beall, M. Ganahl, A. G. Lewis, V. Khemani, G. Vidal, Simulation

of Quantum Many-Body Dynamics with Tensor Processing Units: Floquet Prethermalization, PRX

Quantum 3 (2022) 020331.

[19] R. Pederson, J. Kozlowski, R. Song, J. Beall, M. Ganahl, M. Hauru, A. G. M. Lewis, S. B. Mallick,

V. Blum, G. Vidal, Tensor Processing Units as Quantum Chemistry Supercomputers, arXiv preprint

(2022) 2202.01255.

[20] X.-Z. Zhao, T.-Y. Xu, Z.-T. Ye, W.-J. Liu, A TensorFlow-based new high-performance computational

framework for CFD, Journal of Hydrodynamics 32 (2020) 735–746.

30

https://www.graphcore.ai/products/ipu
https://www.cerebras.net/product-system/
http://dx.doi.org/10.1109/HPEC43674.2020.9286192
http://dx.doi.org/10.1109/HPEC43674.2020.9286192
http://dx.doi.org/10.1109/ISBI48211.2021.9434068
http://dx.doi.org/10.1137/1.9781611976137.2

[21] Q. Wang, M. Ihme, Y.-F. Chen, J. Anderson, A TensorFlow simulation framework for scientific

computing of fluid flows on tensor processing units, Computer Physics Communications 274 (2022)

108292.

[22] B. Chen, C. E. Heaney, C. C. Pain, Using AI libraries for Incompressible Computational Fluid

Dynamics, in preparation (2023).

[23] T. R. Phillips, C. E. Heaney, B. Chen, A. G. Buchan, C. C. Pain, Solving the discretised Boltzmann

transport equations using neural networks: Applications in neutron transport, in preparation (2023).

[24] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmen-

tation, in: Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 9351

of LNCS, Springer, 2015, pp. 234–241. doi:10.48550/arXiv.1505.04597.

[25] T.-W. Ke, M. Maire, S. X. Yu, Multigrid Neural Architectures, in: 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4067–4075. doi:10.1109/CVPR.2017.

433.

[26] J. He, J. Xu, MgNet: A unified framework of multigrid and convolutional neural network, Science

China Mathematics 62 (2019) 1331–1354.

[27] N. Thuerey, K. Weißenow, L. Prantl, X. Hu, Deep Learning Methods for Reynolds-Averaged Navier-

Stokes Simulations of Airfoil Flows, AIAA Journal 58 (2020) 25–36.

[28] Q. T. Le, C. Ooi, Surrogate modeling of fluid dynamics with a multigrid inspired neural network

architecture, Machine Learning with Applications 6 (2021) 100176.

[29] N. Margenberg, D. Hartmann, C. Lessig, T. Richter, A neural network multigrid solver for the

Navier-Stokes equations, Journal of Computational Physics 460 (2022) 110983.

[30] E. Cervi, X. Lu, A. Cammi, F. Di Maio, E. Zio, Sensitivity-analysis-driven surrogate model for

molten salt reactors control, Journal of Nuclear Engineering 3 (2022) 277–294.

[31] H. D. Kabir, A. Khosravi, M. A. Hosen, S. Nahavandi, Neural network-based uncertainty quantifi-

cation: A survey of methodologies and applications, IEEE Access 6 (2018) 36218–36234.

[32] R. K. Tripathy, I. Bilionis, Deep UQ: Learning deep neural network surrogate models for high

dimensional uncertainty quantification, Journal of Computational Physics 375 (2018) 565–588.

31

http://dx.doi.org/10.48550/arXiv.1505.04597
http://dx.doi.org/10.1109/CVPR.2017.433
http://dx.doi.org/10.1109/CVPR.2017.433

[33] H. Gong, S. Cheng, Z. Chen, Q. Li, Data-Enabled Physics-Informed Machine Learning for Reduced-

Order Modeling Digital Twin: Application to Nuclear Reactor Physics, Nuclear Science and Engi-

neering 196 (2022) 668–693.

[34] E. Schiassi, M. De Florio, B. D. Ganapol, P. Picca, R. Furfaro, Physics-informed neural networks

for the point kinetics equations for nuclear reactor dynamics, Annals of Nuclear Energy 167 (2022)

108833.

[35] J. Wang, X. Peng, Z. Chen, B. Zhou, Y. Zhou, N. Zhou, Surrogate modeling for neutron diffu-

sion problems based on conservative physics-informed neural networks with boundary conditions

enforcement, Annals of Nuclear Energy 176 (2022) 109234.

[36] B. Foad, R. Elzohery, D. R. Novog, Demonstration of combined reduced order model and deep neural

network for emulation of a time-dependent reactor transient, Annals of Nuclear Energy 171 (2022)

109017.

[37] T. R. F. Phillips, C. E. Heaney, P. N. Smith, C. C. Pain, An autoencoder-based reduced-order model

for eigenvalue problems with application to neutron diffusion, International Journal for Numerical

Methods in Engineering 122 (2021) 3780–3811.

[38] S. Qin, Q. Zhang, J. Zhang, L. Liang, Q. Zhao, H. Wu, L. Cao, Application of deep neural network

for generating resonance self-shielded cross-section, Annals of Nuclear Energy 149 (2020) 107785.

[39] A. Beck, M. Kurz, A perspective on machine learning methods in turbulence modeling, GAMM-

Mitteilungen 44 (2021) e202100002.

[40] F. S. Acton, Numerical methods that usually work, Mathematical Association of America, Washing-

ton DC, 1990.

[41] R. Reams, Hadamard inverses, square roots and products of almost semi-definite matrices, Linear

Algebra and its Applications 288 (1999) 35–43.

[42] F. Chollet, et al., Keras, 2015. https://keras.io.

[43] G. H. Golub, C. F. Loan, Matrix Computations, John Hopkins University Press, 1996.

[44] Z. Cho, Kaist Benchmark Problem 2A : MOX Fuel-Loaded Small PWR Core, http://nurapt.

kaist.ac.kr/benchmark/kaist_ben1a.pdf, 2000.

32

https://keras.io
http://nurapt.kaist.ac.kr/benchmark/kaist_ben1a.pdf
http://nurapt.kaist.ac.kr/benchmark/kaist_ben1a.pdf

Appendix A. Diffusion operator

For two scalars φg and Dg, the following is true

∇2(Dgφg) = ∇ · ∇(Dgφg) (A.1)

= ∇ · (φg∇Dg +Dg∇φg) (A.2)

= φg∇2Dg +Dg∇2φg + 2∇Dg · ∇φg , (A.3)

which leads to the following identity

2∇Dg · ∇φg = ∇2(Dgφg)− φg∇2Dg −Dg∇2φg . (A.4)

Expanding out the diffusion term in Equation (1) and then substituting in the expression from Equa-

tion (A.4) results in

∇ · (Dg∇φg) = Dg∇2φg +∇φg · ∇Dg (A.5)

= Dg∇2φg +
1

2

(
∇2(Dgφg)− φg∇2Dg −Dg∇2φg

)
(A.6)

=
1

2

(
∇2(Dgφg)− φg∇2Dg +Dg∇2φg

)
. (A.7)

Equation (A.7) is used in Equation (21).

Appendix B. Equivalence of finite volume discretisation written in standard notation and

written as convolutions

First, let us recall that the Hadamard product of two N by M matrices is given by

A�B
∣∣
k`

= Ak`Bk` ∀k ∈ {1, 2, . . . , N}, ` ∈ {1, 2, . . . ,M} (B.1)

and the sign
∑

entries

sums all the entries of a matrix

∑
entries

A ≡
M∑
k=1

N∑
`=1

Ak` . (B.2)

In this section, we will show equivalence of the diffusion operator’s finite volume discretisation given in

Equation (6) (also in Equations (13) and (14)) and the same discretisation formulated as a convolutional

33

layer with pre-defined weights as described by Equations (20) and (22). Considering each term on the

right-hand side of Equation (22), we start with part of the second term and evaluating this in the i, jth

cell:

f(Φg;w)
∣∣∣
i, j

=
∑

entries

0 −1

∆y2 0

−1
∆x2

2
∆x2 + 2

∆y2
−1
∆x2

0 −1
∆y2 0

�

φi−1,j+1,g φi,j+1,g φi+1,j+1,g

φi−1,j,g φi,j,g φi+1,j,g

φi−1,j−1,g φi,j−1,g φi+1,j−1,g

 (B.3)

=
− (φi−1,j,g + φi+1,j,g)

∆x2
+
− (φi,j−1,g + φi,j+1,g)

∆y2
+

(
2

∆x2
+

2

∆y2

)
φi,j,g . (B.4)

Now, considering the second term in its entirety,

(Dg � f(Φg;w))
∣∣∣
i, j

=
−Di,j,g (φi−1,j,g + φi+1,j,g)

∆x2
+
−Di,j,g (φi,j−1,g + φi,j+1,g)

∆y2

+

(
2

∆x2
+

2

∆y2

)
Di,j,gφi,j,g . (B.5)

Similarly, for the third term on the right-hand side of Equation (22)

(Φg � f(Dg;w))
∣∣∣
i, j

=
−φi,j,g (Di−1,j,g +Di+1,j,g)

∆x2
+
−φi,j,g (Di,j−1,g +Di,j+1,g)

∆y2

+

(
2

∆x2
+

2

∆y2

)
Di,j,gφi,j,g . (B.6)

The first term on the right-hand side of Equation (22) can be expanded as follows

f (Dg �Φg;w)
∣∣∣
i, j

=
− (Di−1,j,gφi−1,j,g +Di+1,j,gφi+1,j,g)

∆x2
+
− (Di,j−1,gφi,j−1,g +Di,j+1,gφi,j+1,g)

∆y2

+

(
2

∆x2
+

2

∆y2

)
Di,j,gφi,j,g . (B.7)

Combining the expressions in Equations (B.5), (B.6) and (B.7) according to the definition of the diffusion

34

operator from Equation (22) and gathering terms that multiply each scalar flux term gives

fDiff(Φg,Dg;w) =
1

2
(f(Dg �Φg;w) +Dg � f(Φg;w)−Φg � f(Dg;w)) (B.8)

=
− (Di−1,j,gφi−1,j,g +Di+1,j,gφi+1,j,g)

2∆x2
+
− (Di,j−1,gφi,j−1,g +Di,j+1,gφi,j+1,g)

2∆y2

+

(
1

∆x2
+

1

∆y2

)
Di,j,gφi,j,g (B.9)

+
−Di,j,g (φi−1,j,g + φi+1,j,g)

2∆x2
+
−Di,j,g (φi,j−1,g + φi,j+1,g)

2∆y2
+

(
1

∆x2
+

1

∆y2

)
Di,j,gφi,j,g

− −φi,j,g (Di−1,j,g +Di+1,j,g)

2∆x2
− −φi,j,g (Di,j−1,g +Di,j+1,g)

2∆y2
−
(

1

∆x2
+

1

∆y2

)
Di,j,gφi,j,g

= −
(
Di−1,j,g +Di,j,g

2∆x2

)
φi−1,j,g −

(
Di,j,g +Di+1,j,g

2∆x2

)
φi+1,j,g

−
(
Di,j−1,g +Di,j,g

2∆y2

)
φi,j−1,g −

(
Di,j,g +Di,j+1,g

2∆y2

)
φi,j+1,g (B.10)

+

(
Di−1,j,g + 2Di,j,g +Di+1,j,g

2∆x2
+
Di,j−1,g + 2Di,j,g +Di,j+1,g

2∆y2

)
φi,j,g .

From this, we can see that Equation (B.10) is equivalent to the discretised diffusion operator seen in

Equation (6). In other words, this particular finite volume discretisation can be written as a convolutional

layer in a neural network with a 3 by 3 kernel or filter with weights

w =

0 −1

∆y2 0

−1
∆x2

2
∆x2 + 2

∆y2
−1
∆x2

0 −1
∆y2 0

 (B.11)

35

	1 Introduction
	2 Methodology
	2.1 Diffusion Equation
	2.2 Discretisation
	2.3 Implementing discretisations with convolutional neural networks
	2.4 Multigrid
	2.5 Multi-group network

	3 Results
	3.1 Fuel Assembly - Geometry and Configuration
	3.2 Fuel Assembly - Finite Volume Discretisation
	3.3 Fuel Assembly - Finite Element discretisation
	3.4 Fuel Assembly - Time comparisons
	3.5 Reactor Core - Geometry and Configuration
	3.6 Reactor Core - Finite Volume discretisation

	4 Conclusions and Future work
	Appendix A Diffusion operator
	Appendix B Equivalence of finite volume discretisation written in standard notation and written as convolutions

