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ABSTRACT
The Newcomb-Benford Law (NBL) prescribes the probability distribution of the first digit of variables which explore a broad
range under conditions including aggregation. Long-term space weather relevant observations and indices necessarily incorporate
changes in the contributing number and types of observing instrumentation over time and we find that this can be detected solely
by comparison with the NBL. It detects when upstream solar wind magnetic field OMNI High Resolution (HRO) Interplanetary
Magnetic Field incorporated new data from the WIND and Advanced Composition Explorer (ACE) spacecraft after 1995. NBL
comparison can detect underlying changes in the geomagnetic Auroral Electrojet (AE) index (activity dependent background
subtraction) and the SuperMAG Electrojet (SME) index (different station types) that select individual stations showing the
largest deflection, but not where station data are averaged, as in the SuperMAG Ring Current (SMR) index. As composite indices
become more widespread across the geosciences, the NBL may provide a generic, data processing independent flag indicating
changes in the constituent raw data, calibration or sampling method.

Key words: Newcomb-Benford Law – Solar Wind – Geomagnetic Indices – Data Methods – Calibration–Observational
uncertainty

1 INTRODUCTION

Benford’s Law, also known as the Newcomb-Benford Law (NBL)
(Newcomb 1881; Benford 1938), prescribes the probability distribu-
tion of the first digit of numbers from large sequences under condi-
tions (see Berger & Hill (2021) and refs. therein) that can include
scale and base invariance (Pietronero et al, 2001), aggregation, and
the absence of a cut-off (Nigrini 2000). Products of random samples
from continuous distributions converge to the NBL (Hill 1995). The
NBL gives the probability of digit 𝑑 being the first digit of a stan-
dard form number in the sequence as 𝑃(𝑑) = log10 ( 𝑑+1

𝑑
), so that

digits 𝑑 = 1 and 2 occur at around 30.1% and 17.61% of the time,
respectively, whereas 𝑑 = 9 occurs only 4.58% of the time. Benford
(1938) demonstrated it in a wide range of domains including physical
constants and physical and societal data. It has been found to apply in
a broad range of observations of physical systems (Sambridge et al.
2010) and in the social (Mir 2012; Pietronero et al, 2001), and biolog-
ical (Pröger et al. 2021) sciences. In particular, it has been proposed
as a means to detect ’anomalies’, that is, changes in time sequences
of data, for example providing a means to detect earthquakes (Diaz
et al. 2014; Sambridge et al. 2010).

Space weather can have significant impact over a wide range of
technological systems including power grids, aviation, satellites and
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communications (Hapgood 2019; Oughton et al. 2016, 2017; Knipp
et al. 2016; Knipp et al 2021) . In common with studies across
the geophysical sciences, the study of space plasma physics and
the climatology of space weather (Pulkkinen 2007) requires long
term space and ground-based parameters and indices that necessarily
aggregate multiple observations, the details of which can change with
time. In this first application to space weather parameters and indices,
we show that the NBL can detect changes in the instrumentation and
calibration underlying long-term geophysical records, solely from
the processed data records.

In space weather, as in other fields such as climate change, it is
critical to be able to verify that any observed secular change is not a
result of changes in how the data record is constructed. As compos-
ite indices are becoming more widespread across the geosciences,
the NBL may provide a generic data flag indicating changes in the
constituent raw data, calibration or sampling method. Magnetic field
observations, both from satellites in-situ and from ground based
magnetometers, are an essential component of the modelling and
prediction of space weather. Geophysical data is often multipoint in
character, with several hundred station observations sampling time-
varying fields across the earth’s surface. It is common practice across
the geosciences to construct indices that capture relevant aspects of
a multipoint-sampled spatial field, that is, indices based for example
on the average, the variance, a threshold crossing, or an extremum
across multiple station data.

An observation of a plasma parameter such as the magnetic field,
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either in-situ in space, or on the ground, includes various stages of
processing of the raw data, involving calibration, removing offsets
or background fields, coordinate rotation, and interpolation onto a
common, uniform time-base. Geomagnetic indices are derived by
combining data from multiple ground based magnetometer stations.
The physical processes underlying these observations are also often
aggregating, or multiplicative processes such as mixing and turbu-
lence. Given sufficient dynamic range, and in the absence of a cut-off,
the NBL might be expected to be followed by both solar wind pa-
rameters and geomagnetic indices, at least to some precision.

The station locations, instrumentation, calibration and processing
required to derive observed parameters naturally change with time.
In this paper we will show that quite subtle changes in the derivation
of a parameter or index can be reflected in a statistically significant
change in how closely the final data product or index follows the NBL.
Our results suggest that the NBL can provide a flag that indicates if
changes have occurred in the details of how long-term observations
and indices are derived. This data flag is generic, acting solely on the
fully processed data record without any information on the details
of how the data product or index is derived. In space weather, as in
other fields such as climate change, it is critical to be able to verify
that any observed secular change is not a result of changes in how
the data record is constructed.

The solar wind magnetic field upstream of earth has been ob-
served in-situ around L1 since the 1960s (Papitashvili et al. 2020)
by a succession of satellites. Ground-based magnetometers com-
prise the Auroral Electrojet AE (Davis & Sugiura 1966), SuperMAG
Electrojet SME (Newell and Gjerloev 2011) and SuperMAG Ring
current SMR (Newell & Gjerloev 2012) geomagnetic indices, at 1
minute resolution from 1981. Unlike AE, the number of stations that
comprise SME and SMR has increased by over an order of magni-
tude, and some more recent stations have different instrumentation.
AE and SME have different baseline subtraction procedures but are
both extremal in the sense that they are both comprised of data from
the stations with the largest deflections, whereas SMR is based on
a multi-station average. We will see that whilst all these quantities
follow the NBL to high precision, quite subtle changes in the under-
lying data and processing can be detected simply by changes in how
closely some parameters and indices follows the NBL. It should be
emphasised that the closeness to which a quantity follows the NBL
is not an indicator of relative quality or precision per-se. Rather, it
offers an indicator that there has been a change in the underlying raw
observations and the process by which the final parameter or index is
derived. To be detectable, any change in the underlying data method-
ology would need to generate a statistically significant change in how
well the NBL is followed, hence the lack of change in the NBL in a
data sequence does not guarantee that the underlying methodology
is preserved.

This paper is organised as follows. In section 2, we describe the
datasets and detail the method to estimate the fit-parameter which
quantifies the precision to which the NBL is followed by a finite
length sequence of data. In section 3, we estimate how the fit pa-
rameter changes over the full records of the OMNI High Resolution
Interplanetary Magnetic Field (IMF), and the AE, SME and SMR
geomagnetic indices. We conclude and discuss the prospect of a
generic data flag in section 4.

2 METHODS

2.1 The datasets

We focus on parameters that monitor the state of the solar wind
upstream of earth, and indices that monitor geomagnetic activity.
As well as being central to space weather, these multi decadal time-
series provide a test-bed to see under what circumstances changes in
their construction can be detected solely by applying the NBL to the
processed data record.

A series of solar wind monitors located at the L1 point upstream
of the Earth have provided solar wind parameters including the In-
terplanetary Magnetic Field (IMF). We will consider the IMF for
the time interval [1981 - 2022] inclusive at 1 minute resolution as
extracted from NASA/GSFC’s Modified (Level-3) High Resolution
OMNI (HRO) data set through OMNIWeb (Papitashvili et al. 2020).
The parameters are interpolated onto a uniform timebase and mapped
to the Earth’s bow shock nose. The HRO 1 minute resolution IMF
is derived from observations from a series of satellites, and from 1st
January 1995 there was a transition from IMP8 only to IMP8, WIND
and later, other satellites such as ACE. The data processing method
was also modified in 1995.

Auroral indices are designed to monitor the high latitude iono-
spheric electrojets. The Auroral Electrojet (AE) is the difference be-
tween the Auroral Upper (AU) and the Auroral Lower (AL) indices
(Davis & Sugiura 1966). AU and AL are derived from the 1 minute
resolution geocentric solar magnetospheric coordinates (GSM) 𝑒 lo-
cal magnetic east field component from one of 12 high latitude ground
based magnetometer stations in the northern hemisphere. The index
takes the value of the data from the stations which at that instant
have the largest positive (AU) and largest negative (AL) deflection.
Recently, a SuperMAG (Gjerloev 2012) analog of AE, SME, has
been derived from the full set of available stations between +40 and
+80 degrees in northern hemispheric latitude (Newell and Gjerloev
2011). We will consider AE for the interval [1981-2018] inclusive
and SME for the interval [1981-2022] inclusive.

Ring-current indices are based on averages over multiple low-
latitude station observations. Our study relies on a statistical analysis,
therefore rather than focus on the 1 hour time resolution DST index
(Sugiura 1964), we will consider the 1 minute resolution SuperMAG
(Gjerloev 2012) ring-current index SMR (Newell & Gjerloev 2012).
SMR is derived from all available magnetometer stations within
±50 degrees of latitude. Following a latitudinal correction, the GSM
�̂� local magnetic north displacement is first averaged over stations
within four 6 hour wide local time windows to give the SMR-00,
SMR-06, SMR-12 and SMR-18 local indices. These four local indices
are then averaged to give SMR. We consider 1 minute SMR for the
interval [1981-2022] inclusive.

Studies of the variations caused by electric currents flowing in the
ionosphere and magnetosphere require a subtraction of the dominant
and slowly varying Earth main field from the constituent magne-
tometer observations. The AE index baseline is determined from
identified quietest days (Davis & Sugiura 1966), whereas the Su-
perMAG indices employ an automated procedure that removes the
yearly trend as well as daily variation (Gjerloev 2012). The number
of stations comprising the AE index does not change over the interval
that we will consider here. The SME and SMR indices draw upon a
set of SuperMAG collated stations where there is an increase in the
number, and changes to the type, of stations over time.

Our analysis will also utilize yearly mean total sunspot number
(SSN) version 2.0 and dates of solar maxima and minima provided
by the World Data Centre-Sunspot Index and Long-term Solar Obser-
vations (WDC-SILSO). Increased dynamic range of the data record
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may improve the NBL fit precision, which might be expected to come
into play during active intervals of the solar cycle.

2.2 Testing data records with the Newcomb-Benford Law

We quantify the statistical goodness of fit to the NBL of the distri-
bution of first digits in samples taken successively in time from the
data record to be tested. The sample length is optimised to test if
any secular change revealed by the data record is of physical origin,
or is due to a change in the underlying instrumentation, calibration
or processing. For space weather parameters and indices an optimal
sample over which to estimate first digit distributions is 1 year, since
it is (i) long enough to provide a statistically significant sample (at
1 minute resolution, 525600 data points); (ii) is a sufficiently long
time interval for the system to explore its full dynamics (quiet times,
substorms and storms, coronal mass ejections) and (iii) is a timescale
which is short compared to the 11 year cycle of solar activity and
changes across solar cycles. Any given year-long sample may contain
data gaps, and we also exclude records that read zero, this is reflected
in bootstrap estimated confidence intervals described below.

A variety of statistical estimators have been used to test for the NBL
(e.g. Durtschi et al. (2004); Druicá et al. (2018); Sambridge et al.
(2010); Mir (2012); Pröger et al. (2021)). We performed a systematic
comparison of three commonly used estimators in order to select an
estimator that best supports sample length optimisation, specifically,
it has fast convergence with increasing sample size. Using notation
that leading digit 𝑑 = 1..9 has a theoretical occurrence frequency
𝑇𝑑 = log10 ( 𝑑+1

𝑑
) from the NBL and observed occurrence frequency

𝑂𝑑 in the data sequence, the three methods are as follows:
the Chi-squared test (Chi) per degree of freedom: (e.g. Peren (2022)):

\𝐶ℎ𝑖2 =

9∑︁
𝑑=1

(𝑇𝑑 −𝑂𝑑)2
𝑇𝑑

(1)

the Mean Absolute Deviation (MAD) as defined in Druicá et al.
(2018); Pröger et al. (2021) (see also Bacon (2012)):

\𝑀𝐴𝐷 =
1
9

9∑︁
𝑑=1

|𝑂𝑑 − 𝑇𝑑 |
𝑁

(2)

and the Root Mean Square Error (RMSE): (e.g. Cichosz (2015))

\𝑅𝑀𝑆𝐸 =

√√√
1
9

9∑︁
𝑑=1

(𝑇𝑑 −𝑂𝑑)2 (3)

The Fibonacci sequence asymptotically obeys the NBL in the large
𝑁 limit (Washington 1981) and we use it to estimate a lower bound
for \ as a function of the length of the data sample for each of the
three estimators. The left panel of Figure 1 overlays the 1st digit
distribution for the first 𝑁 = 525600 Fibonacci numbers, a sample
length equivalent to one ’year’ of 1 minute data records, on the NBL
distribution 𝑇𝑑 = log10 ( 𝑑+1

𝑑
). The right panel plots the fit parameter

\ obtained using the different estimators as a function of 𝑁 . We can
see that the MAD and Chi-squared estimators both perform well, they
have a large dynamic range and are converging faster with increasing
𝑁 . We will use the MAD estimator here. The MAD lower bound
on the fit parameter (estimated from the Fibonacci sequence) for a
sequence that is the length to be tested here, that is, 1 year of minute
observations or N=525600, is \ ≈ 10−9.

For the data analysis to follow we estimate 95% confidence inter-
vals for the fit parameter \ using the stationary bootstrap (Politis &

Romano 1994). The bootstrap method estimates uncertainties by ran-
domly re- sampling with replication from the data sample multiple
times. It provides a reliable uncertainty estimate under conditions of
weak stationarity, and where the sample means form a stable distri-
bution. The optimal length of the bootstrapping block was obtained
using the method outlined in (Politis & White 2004). The stationary
bootstrap and block length selection algorithm were implemented
using the python library arch (Sheppard 2021). The Python function
arch.bootstrap.StationaryBootstrap.conf_int, used to calculate the
confidence interval, required the following inputs: seed, number of
bootstrap replications, method, size, and sampling which we set to
the following values, respectively: 66, 1000, "basic" (also known as
empirical bootstrap), 0.95, nonparametric. We checked the validity
of the bootstrap estimates by examining the distribution of the fit
parameter obtained from the bootstrap re-samples. We discarded es-
timates of the confidence interval where the distribution of the fit
parameter for the bootstrap re-samples was not single-peaked, as
well as where the confidence interval did not converge.

3 RESULTS

3.1 Solar wind Interplantary Magnetic Field at L1

The HRO IMF dataset provides a test case to see if the NBL can
detect changes in instrumentation and processing in a single-point
observational time series. In 1995 there was a change in the con-
tributing satellites to OMNI HRO and to the processing procedure
(https://omniweb.gsfc.nasa.gov/html/HROdocum.html see also (Al-
terman 2022)). Prior to 1995, the underlying observations were from
IMP8 only, post 1995, they also included recently launched WIND
and later ACE.

Figure 2 plots the MAD estimated fit parameters \ for non-
overlapping year-long samples of 1 minute resolution HRO IMF
geocentric solar ecliptic (GSE) x,y, and z components, along with
95% confidence intervals. The NBL is followed reasonably closely,
the fit parameter \ < 10−4 across the entire record. In 1995 there is a
step-change improvement in the fit parameter \ which drops by about
a factor of three, a step-change which significantly exceeds the 95%
confidence intervals. The fit parameter is constant thereafter. This
step-change in \ in 1995 is coincident with the inclusion of WIND
and later, ACE observations in the OMNI HRO record.

The dynamic range explored by the IMF will increase in more
disturbed solar wind which over year-long samples will correlate
with the overall level of solar activity. We can check if this is a factor
in how closely the IMF record follows the NBL. The yearly averaged
SSN is overplotted on Figure 2; it shows that the precision to which
the NBL is followed is not sensitive to the overall level of activity.

As well as a change in instrumentation, the coverage also improves
with time across the OMNI HRO record. Figure 2 plots estimates of
\ and its bootstrap uncertainties for annual samples, but as the record
contains data gaps, each of these samples may not contain a complete
year-long interval of data. Smaller sample sizes will result in larger
bootstrap estimated confidence intervals. Before 1986 the average
annual coverage is 16.55%, \ is more variable and the confidence
intervals are relatively large compared to later times. Between 1986-
1995 the annual coverage is 28.94%, and post 1995 it is 91.27%.
The availability of WIND and ACE resulted in significantly fewer
data gaps per year on average, and the bootstrap confidence intervals
can be seen to be significantly smaller post 1995. However, the step-
change in \ in 1995 cannot be solely attributed to an improvement
in coverage as in that case, the confidence limits pre- and post- 1995
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Figure 1. Left: the first digit distribution of the first 525600 numbers in the Fibonacci sequence (blue line) overplotted on the NBL distribution (red circles).
Right: fit parameter of finite Fibonacci sequences plotted as a function of length of the sequence 𝑁 = [10, 200, 500, 1000, 10000, 100000, 525600] for three
estimators: Chi-squared(blue), MAD (orange) and RMSE (green).

would overlap. This suggests that the step change in the NBL fit
parameter \ does discriminate the inclusion of new instrumentation
from WIND and later ACE in the OMNI HRO record post 1995.

3.2 Geomagnetic indices

Geomagnetic indices are derived from observations from multiple
individual magnetometer stations. Before considering geomagnetic
indices, we first investigated how closely the data from individual
magnetometer stations follow the NBL. Some sample values for
the NBL fit parameter of year-long samples of GSM magnetome-
ter data with SuperMAG baseline subtraction are: Pebek [2014], �̂�
component: \ = 1.22 × 10−6; Yellowknife [2001], 𝑒 component:
\ = 1.24 × 10−7; Abisko [1990], 𝑧 component \ = 2.06 × 10−7.

The AE and SME auroral indices are essentially comprised of data
taken from the pair of ground stations that at any time observe the
maximum (positive and negative) magnetic field deflections. SMR
on the other hand is a multi-station average. Estimates of the NBL fit
parameter \ from non-overlapping year-long samples are plotted in
Figure 3 for the SME, AE and SMR indices, with 95% confidence
limits. The figure examines the effect on SME and SMR of changing
station number and coverage and changes in class of magnetometer.
The figure also examines the effect of different baseline removal in
construction of the index by comparing SME and AE.

Panel (a) of Figure 3 plots the overall coverage provided by the
ground based magnetometers collated by SuperMAG. For each year
we sum over the fraction of the year that each station is taking data to
obtain the total operating station-years, so that if 𝑚 stations were tak-
ing data for the entire year, this would give 𝑚 operating station-years.
Colours discriminate a subset of stations which were introduced after
2003 which use different classes of magnetometer, these are mostly
THEMIS project, and later, Magstar, CARISMA, and McMac op-
erated stations coded as T, R, C, and M in the SuperMAG catalog
(Gjerloev 2009, 2012). The coverage from all other stations are indi-
cated by grey in panel (a) of Figure 3. On panels (b) and (d) the red
line plots the annual mean of the number of stations contributing to
each minute observation of SME, and of SMR, the error bar indicates
the standard deviation for this mean.

The SuperMAG collated stations then provide a test dataset to see
if the NBL is sensitive to (i) an increase in station number but no
change in class of magnetometer, as occurs before 2003 and (ii) the
inclusion of different classes of magnetometer as occurs after 2003.
Figure 3 panel (b) then plots the NBL parameter \ for the SME index
derived from all available SuperMAG stations (green) overplotted
on the NBL parameter for SME constructed excluding the T stations
(blue). The Figure then shows that increasing the number of stations,
that is, the spatial coverage, for stations of the same magnetometer
class, does not change the NBL fit parameter: there is no change
in the NBL fit parameter between the early record, and 1996-2002,
over which period the number of magnetometers has increased by
an order of magnitude. However, after 2005 there is a statistically
significant divergence between the NBL for SME obtained using the
full set of stations (which now include the R, C, M and T stations),
and with the T stations excluded.

Panel (c) of Figure 3 plots the NBL fit parameter for the AE index
which is comprised of a fixed number of stations during this interval.
In the first half of the AE data record there is a statistically signif-
icant correlation between the NBL fit parameter and the variation
in the SSN over stronger solar cycles 22 (maximum in 1989) and
23 (maximum in 2001), it is less evident over weaker cycle 24. For
SME, there is no statistically significant solar cycle variation in the
NBL fit parameter over cycles 22 and 23. The AE index baseline is
determined from identified quietest days (Davis & Sugiura 1966),
whereas the SuperMAG indices do not use the concept of quietest
days, instead, an automated procedure that removes the yearly trend
as well as daily variation is employed (Gjerloev 2012). The AE base-
line will therefore track the overall level of geomagnetic activity in
a different manner to SME. If the quietest days around strong solar
maxima are more active than the quietest days around solar minima,
then a baseline determined from those most quietest days will in turn
track the yearly averaged SSN. During active years, a raised baseline
would then act as a low-end cut-off which would increase the value
of the NBL fit parameter. It should be emphasised that both the AE
and SME records follow the NBL to high precision; changes in the
NBL fit parameter are nevertheless sensitive to quite small changes
in the underlying magnetometers and in the baselines used.
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Figure 2. The MAD-estimated fit parameter \ (left ordinate) for solar wind IMF GSE �̂� (red), �̂� (green) and �̂� (blue) components, estimated for 1 year
non-overlapping samples, with bootstrap 95% confidence limits, are plotted versus time. Smaller fit parameter values indicate closer correspondence to the NBL
first digit distribution. Yearly averages of daily sunspot number (right ordinate) is plotted (black), error bars denote the standard deviation for that year.

The NBL fit parameter for SMR is plotted in panel (d) of Figure
3, alongside the yearly averaged SSN and the total number of Su-
perMAG constituent stations. The SMR fit parameter is essentially
constant within the bootstrap 95% confidence intervals. This sug-
gests that the NBL fit parameter of an average over many stations is
much less sensitive to changes in its constituent data, in this case, the
inclusion of different instrumentation post 2006.

4 CONCLUSIONS

The Newcomb-Benford Law (NBL) prescribes the probability dis-
tribution of the first digit of standard form number sequences under
conditions which include aggregation (the values arise from multi-
ple operations) scale and base invariance, and the absence of strong
truncation. Long-term parameters and indices are in widespread use
across the geosciences and their constituent instrumentation and con-
struction methodology will necessarily change over time. We have
demonstrated that changes in the instrumentation and calibration un-
derlying long-term records can be detected directly just from the
processed records by how closely they follow the NBL.

We determined the precision to which the NBL is followed over
time by long-term parameters and indices that are central to the mon-
itoring of space weather. We considered non-overlapping yearly sam-
ples of the solar wind interplanetary magnetic field (IMF) monitored
at L1, and the AE, SME and SMR geomagnetic indices available
at minute resolution over multiple solar cycles. Our results are as
follows:

(i) The OMNI (HRO) IMF, and indices AE, SME and SMR all
follow the NBL to high precision.

(ii) A change in the NBL fit parameter \ for the OMNI high
resolution IMF parameter occurs when the data source changes from
IMP8 to include data from other spacecraft such as WIND and ACE
following their launch, and the processing method was modified.

(iii) The SMR index which averages over multiple ground-based
magnetometer time-series, follows the NBL to a consistent precision
across changing solar activity, a ten-fold increase in the number

of stations comprising the index, and the introduction of different
classes of constituent magnetometer.

(iv) A change in the NBL fit parameter for the SME auroral in-
dex, which is comprised of data from stations recording the largest
deflections, occurs when there is a change in the class of constituent
magnetometer but not when the number of the same class of stations
is increased.

(v) The AE and SME indices are both based on stations record-
ing the largest deflections but use different baseline determination.
Unlike the SME index, the AE index follows the NBL to a preci-
sion that tracks the relatively strong SSN variation of solar cycles 22
and 23, consistent with the latter using a baseline determined fom
geomagnetically quietest days.

The tendency towards the NBL includes conditions (see Berger &
Hill (2021) and refs. therein) of scale and base invariance (Pietronero
et al, 2001), aggregation, and the absence of a cut-off (Nigrini 2000).
Since products of random samples from continuous distributions
converge to the NBL (Hill 1995), departure from the NBL may not
be expected to be a sensitive indicator of a change simply in the
amplitude of uncorrelated noise in the input to a derived parameter
or index. A change in range or resolution, that is, the number of
digits available to represent each data record, or a change in baseline
or threshold, or saturation, can all affect how closely the NBL is
followed.

These results have practical implications for the design and use
of long-term parameters and indices. In space weather, as in other
fields such as climate change, there is requirement to verify that any
observed secular change is not a result of changes in how the data
record is constructed. We have examined geophysical parameters and
indices which in all cases follow the NBL to high precision. Quite
subtle changes in the underlying instrumentation and differences in
the subtracted baseline can be detected by the NBL in long-term
records of parameters (here, the IMF) and in indices that select
single time-series from the set of stations (here, auroral indices). The
latter may also be expected to apply to indices that select on a high
threshold, again being comprised of a few timeseries selected from
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Figure 3. Panel (a): Stack plot of the coverage (total operating station-years) for different classes of SuperMAG stations. A different class of instrumentation is
introduced after 2003, colours indicate specific SuperMAG station classifications. Panel (b): Left ordinate refers to the NBL fit parameter \ for non-overlapping
yearly samples of the SME index. Green circles plot \ for SME derived from all stations overplotted on blue circles which plot \ for SME derived excluding T
group stations. Panel (c) Left ordinate refers to the NBL fit parameter \ for non-overlapping yearly samples of the AE index (green circles). The fit parameter is
not plotted for years 1988 and 1989 where there are significant data gaps in AE. Panel (d) Left ordinate refers to the NBL fit parameter \ for non-overlapping
yearly samples of the SMR index (green circles). On panels (b-d), error bars plot bootstrap estimated 95% confidence interval uncertainties on the NBL fit
parameter. The right ordinate refers to the yearly averaged SSN (black line), and in panels (b) and (d), to the annual mean number of all SuperMAG stations that
contribute within each year (red line).
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the set of observing stations. In all these cases, the NBL could provide
a data flag that would indicate to the user that further investigation is
needed in how a long-term parameter or index is utilised. Such a data
flag would be informative without any detailed knowledge of how
the parameter or index is constructed, important since parameters
and indices are designed for widespread application as benchmarks
of activity.

Importantly, a lack of change in how closely the NBL is followed
does not in all cases guarantee that there has been no change in how
the data is derived. We have found that the NBL is not sensitive
to changes in the construction of indices that average or aggregate
over many stations (here, ring current indices), consistent with the
aggregating process driving the data records towards closer corre-
spondence to the NBL. Furthermore, to be detectable, any change in
the underlying data methodology would need to generate a statisti-
cally significant change in how well the NBL is followed, which will
depend on sample size and details of the specific parameter or index.

We have found that how closely the NBL first digit distribution is
followed is sensitive to changes in how parameters and indices are
constructed. This is distinct from tracking physical changes in the
system that they are designed to parameterize. The NBL fit parameter
does not track the variation in activity (smoothed SSN), of the last
four solar cycles in the IMF at L1, in SME or SMR. The distribution
of solar wind parameters do show solar cycle variation (Tindale
& Chapman 2016) and the top few percent of the data records of
both AE and SMR also track the solar cycle (Bergin et al. 2022).
Auroral indices such as AE and SME sample the ground magnetic
perturbations from high-latitude current systems, the largest of which
are the auroral electrojets. Auroral electrojet intensity tracks the solar
cycle (Smith et al. 2017) and will have a maximum possible intensity,
this is seen in auroral indices (Nakamura et al 2015). The electrojets
are geographically localized, so that as the number of SME stations
is increased, it is more likely that a station will be located in the
vicinity of the maximum ground magnetic deflection. It has indeed
been shown that the AE record systematically undersamples when
compared to SME for later solar cycles (Bergin et al. 2020) as the
number of stations comprising SME has increased. This change is
not seen in the NBL fit parameter; for SME it does not change
as the number of constituent stations is increased over an order of
magnitude.
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DATA AVAILABILITY

All data used in this study is freely available from the following
sources (accessed on 30th July 2023).

SuperMAG (Gjerloev 2012) indices: https://supermag.jhuapl.edu/
The AE index from the WDC for Geomagnetism, Kyoto (Nose et al
2015) http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
OMNI (Papitashvili et al. 2020) Solar wind parameters:
https://omniweb.gsfc.nasa.gov/form/omni_min_def.html OMNI
HRO Documentation: https://omniweb.gsfc.nasa.gov/html/HROdocum.html
SILSO Royal Observatory of Belgium, Brussels daily total sunspot
number version 2.0 from 1818: http://www.sidc.be/silso/home
The dates of solar cycle maxima and minima are as deter-
mined from the smoothed sunspot number record by SILSO:
http://www.sidc.be/silso/cyclesmm
Stationary bootstrap and block length selection algorithms were
implemented using the Python library of Sheppard (2021): bash-
tage/arch. Retrieved from https://doi.org/10.5281/zenodo.7822947
The Python function arch.bootstrap.StationaryBootstrap.conf_int is
used to calculate the confidence interval.
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