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Abstract—Component-level heterogeneous redundancy is gain-
ing popularity as an approach for preventing single-point secu-
rity breaches in Industrial Control Systems (ICSs), especially
with regard to core components such as Programmable Logic
Controllers (PLCs). To take control of a system with component-
level heterogeneous redundancy, an adversary must uncover and
concurrently exploit vulnerabilities across multiple versions of
hardened components. As such, attackers incur increased costs
and delays when seeking to launch a successful attack. Existing
approaches advocate attack resilience via pairwise comparison
among outputs from multiple PLCs. These approaches incur
increased resource costs due to them having a high degree of
redundancy and do not address concurrent attacks. In this paper
we address both issues, demonstrating a data-driven component
selection approach that achieves a trade-off between resources
cost and security. In particular, we propose (i) a novel dual-PLC
ICS architecture with native pairwise comparison which can offer
limited yet comparable defence against single-point breaches, (ii)
a machine-learning based selection mechanisms which can deliver
resilience against non-concurrent attacks under resource con-
straints, (iii) a scaled up variant of the proposed architecture to
counteract concurrent attacks with modest resource implications.

Index Terms—Industrial Control System, Security, Redun-
dancy, Programmable Logic Controller, Machine Learning

I. INTRODUCTION

An industrial Control System (ICS) is a complex system
that monitors and controls industrial processes. Unlike most
computer-based systems, ICSs largely operate within the Oper-
ational Technology (OT) environment, this being the industrial
counterpart to Information Technology (IT) [1]. ICSs are
widely deployed across many industries, often forming part
of critical national infrastructure [2]. As such, the security of
ICSs is a research topic of great importance.

Notwithstanding the latest research efforts [3], ICSs are vul-
nerable to cyberattacks, in part due to longstanding operational
issues and a recent push towards the Industrial Internet of
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Things (IIoT) [4], [5]. The IIoT is the integration of industrial
devices into the Internet, in pursuit of better connectivity,
productivity, and efficiency. The IIoT is bringing systems and
devices in OT and IT closer than ever. In the case of ICSs,
the IIoT enables the operators to monitor and control indus-
trial processes remotely and manage geographically separated
plants simultaneously [6], [7]. An IIoT-enabled ICS can even
have the capability to adapt production rate to the market
demand in real-time. However, with these new features come
a larger attack surfaces and higher security risks for ICSs. In
other words, the move towards the IIoT exposes the system
to a wide array of attack vectors through the Internet, most of
which can not easily be anticipated during ICS design.

Where OT and IT converge, conventional security measures
like firewall and access control can counter most IT-oriented
attacks. However, they fall short when addressing ICS-specific
attacks. Indeed, some methods, such as routine software up-
dates, can lead to the violation of the availability requirements
placed on the ICS [2]. This calls for security solutions that can
identify and mitigate ICS-specific attacks without disrupting
control operations. A natural approach would be embedding
component-level heterogeneous redundancy in ICS. Hetero-
geneous redundancy is different from native redundancy, or
duplication, in that each version of component is implemented
via software and hardware diversification techniques. When
one version is compromised, the system can switch to another,
thereby minimising the impact of attacks. An adversary now
must uncover and concurrently exploit vulnerabilities across
multiple versions of hardened components to continue along
their intended attack path. Increased costs and delay are
imposed on the attacker, reducing the likelihood of a successful
attack being launched.

Heterogeneous redundancy thrives when applied on core
components like Programmable Logic Controller (PLC). A
PLC is a computer-based controller that automates process
control with an interchangeable program. Its direct control
over the industrial process makes it a valuable target, par-
ticularly for knowledgeable attackers. Previous incidents have
underlined both the vulnerability and significance of PLCs [8].
For example, Stuxnet was the first publicly known ICS mal-



ware. Stuxnet operated by injecting malicious code into a PLC
to degrade centrifuges within Iranian nuclear facilities without
being detected [9], [10]. As a further example, ”Kemuri”, an
undisclosed water company, had hundred of its PLCs open
to tampering after a breach into its OT network, with the
worst outcome only being averted due to the ineptness of
attackers [11].

Applying redundancy to PLCs is straightforward and yet
it should only be done after the consideration of resource
costs. PLC hardware is expensive and implementing multiple
versions of software can be costly and extended system
implementation time. A high degree of PLC redundancy leads
to enormous resource costs, hence it is undesirable in the
context of real-world ICS deployments. This paper observes
the practical resource constraints of ICSs, proposing a hetero-
geneous redundant architecture that allows system designers
to balance security and resource costs.

A further consideration when designing a heterogeneous
redundant framework is the possibility of concurrent attacks.
That is, security incidents involving more than one version
of the same component at the same time. To launch such
an attack, an attacker needs to uncover vulnerabilities across
different versions of a PLC. While this is rare and challenging,
it is not impossible. Industroyer, most likely a state-sanctioned
malware, includes payload components for four industrial
control communication protocols [12]. If the history of ICS
incidents taught us anything, it is that a well-financed actor,
such as a state, is fully capable of leveraging vulnerabilities
in order to breach their targets [8], [13]. This paper addresses
concurrent attacks by scaling the redundant architecture whilst
being mindful of resource constraints.

A. Contributions

This paper proposes a novel resource-aware ICS architecture
that embeds heterogeneous redundancy in order to defend
against cyberattacks on PLCs. Under a data-driven selection
scheme, it purges the system of compromised components
under attacks while keep resource costs under control. When
resource constraints are lessened, we scale the architecture in
redundancy to counter concurrent attacks beyond singe-point
breaches. Our proposed solution is the first heterogeneous
redundant architecture to address issues of resource constraints
and concurrent attacks, which are both common in real-world
ICS deployment. In this paper, we show that:

• A novel dual-PLC ICS architecture with native pairwise
comparison can offer limited yet comparable defence
against single-point breaches;

• A machine learning-based selection mechanism can de-
liver resilience against non-concurrent attacks under re-
source constraints;

• The proposed architecture can be scaled up to counteract
concurrent attacks with modest resource implications.

B. Paper Structure

The remainder of this paper is structured as follows: Section II
discusses recent work on using heterogeneous redundancy

to enhance ICS security. Section III outlines a typical ICS
architecture and attack modes targeting PLCs. Section IV
presents our heterogeneous redundant architecture for counter-
ing PLC attacks, of which three variants are derived. Section V
elaborates on our experimental setup, including the industrial
process, control algorithm, disturbance scenarios, and attacks
being carried out on a simulated ICS. Section VI presents the
results of our experiments and discusses their resource and
security implications. Section VII concludes this paper with a
summary of findings and a discussion of extensions.

II. RELATED WORK

In this section we discuss relevant research in ICS security.
Section II-A addresses general attack mitigation strategies for
ICSs. Section II-B covers heterogeneous redundancy and its
roots in proactive rejuvenation. Section II-C considers the
application of machine learning in ICS defence.

A. Attack Mitigation

Availability is a vital requirement for an ICS. An ICS is
expected to maintain control over the underlying industrial
process at all times. Adverse consequences will inevitably en-
sue where an ICS or associated resources become unavailable.
As such, any cyberattack should be countered and its impact
mitigated, either manually by the operator or automatically,
without disrupting the operation of the ICS. In comparison to
the large volume of research on attack and intrusion detection,
work on attack mitigation remains relatively scarce [14], [15].
Most detection techniques assume manual intervention is to
follow, leaving scant details to inform the mitigation actions.
Literature on attack mitigation typically advance detection and
response jointly. Measures of the latter could include restarting
compromised components [16], compensating malicious sig-
nals [17], [18], modifying update period, and shutting down
the whole system [19].

B. Heterogeneous Redundancy

Heterogeneous redundancy can play a central role in the
mitigation of cyberattacks. When heterogeneous redundancy is
implemented for critical components, a system can switch to a
replica component and maintain its operation when the system
becomes aware that one component has become compromised
or non-functional. Heterogeneous redundancy finds its roots
in proactive rejuvenation, in which diverse replicas function
jointly and are restored periodically [20], [21]. Proactive
rejuvenation is introduced into large-state applications, e.g.,
an ICS, in [22] with compiler-based software diversification
and delivers high performance of state transfer, following
a successful integration of intrusion-tolerant protocols into
Supervisory Control and Data Acquisition (SCADA), a type
of ICS, in [23].

Intrusion-tolerant architectures in [24], [25] replicate PLCs
and use pairwise comparisons among replicas for intrusion dis-
covery. Unlike proactive rejuvenation, both architectures only
restore the malicious PLCs upon discovered misbehaviour.
As a comparison, proactive rejuvenation methods can counter



Physical

Control

Supervision

Sensors Actuators

Field Network

PLC RTU

HMI Database

Firewall

LAN

Control Network

Industrial Process

Corporate Production 
Management

Application 
Servers

Fig. 1. System Model of an ICS.

concurrent attacks but exhibit a high degree of redundancy,
leading to undesirable resource implications, while the two
methods disregard the concurrent attacks in design and yet
require at least three PLCs. Using a component selection
approach based on machine learning, this paper addresses both
issues and offers a trade-off between resource efficiency and
system security.

C. Machine Learning in ICS Defence

Machine learning already has a strong foothold in research on
ICS defence. An Intrusion Detection System, or IDS, in ICS
is either signature-based or anomaly-based. Signature-based
IDS uncovers an intrusion with pre-defined patterns, while
anomaly-based with the deviation from normal behaviours
learnt from data. The availability of an increasing volume
of operational data has focused recently developed anomaly-
based IDSs overwhelmingly on supervised machine learning
techniques over statistical methods [26], [27]. Machine learn-
ing also finds its way into attack mitigation, with reinforcement
learning orchestrating attack detection and response actions
in place of human operators in [28]. This paper integrates
machine learning techniques into diversity-based ICS defence
to address limitations in previous work.

III. MODELS

In this section, we outline the assumed system and attack
modes. These model and modes are a basis for the experi-
mental results presented in Section VI.

A. System Model

An ICS is composed of a minimum of four layers. These are
the Process, Control, Supervision, and Corporate layers, as

shown in Fig. 1. The Physical layer contains a set of field
devices such as sensors and actuators, which interface with
the physical process. The Control layer accommodates the
Programmable Logic Controllers (PLCs) and Remote Terminal
Units (RTUs), with local control capabilities for the former
and wireless communication capabilities for the latter. The
Supervision layer hosts the Human Machine Interface (HMI),
data historians, and other workstations to enable real-time
monitoring and control. The Corporate layer, separated by a
firewall, shelters servers for production management and enter-
prise applications. Some literature adopt the Purdue Enterprise
Reference Architecture [29], which divides the last layer
further into manufacturing operations and business logistics,
though this is not necessary or relevant to the contributions or
scope this paper.

B. Attack Modes

We consider four types of attack that an adversary can launch
against the PLCs in an ICS.

1) Denial of Service (DoS) attacks: DoS attacks flood the
controller with requests, typically to cause the dropping
of control commands. Actuators interfacing with the
controller will default to the last command received.

2) Replay attacks: Replay attacks tamper with the control
by replaying control command sequences from historical
data, say, when the process is in a different scenario.

3) Injection attacks: Injection attacks generally seek to
derail processes by sending fake control commands from
compromised PLCs.

4) Setpoint Override attacks: Setpoint override attacks
are a sophisticated form of attack that seeks to impair
processes by overriding the target setpoints of the control
algorithm.

For Injection and Setpoint Override attacks, the adversary
is expected to possess advanced knowledge of the industrial
process to launch an attack with meaningful physical impact.

IV. HETEROGENEOUS REDUNDANT ARCHITECTURE

Applying heterogeneous redundancy to PLCs in an ICS is
founded on the premise that diversified components prevent
singe-point security breaches. When one PLC replica is under
attack, the system still has replica components to fall-back
on. Heterogeneity hardens the system defences but it comes
with increased costs with regard to system deployment. To
launch a successful attack, an adversary needs to uncover and
exploit vulnerabilities across multiple, if not all, replicas of
the PLCs. The effectiveness of heterogeneous redundancy in
defence depends on both the diversification technique and the
fall-back strategy. An effective diversification scheme should
decrease the probability of shared vulnerabilities across repli-
cas, whereas a desirable fall-back strategy should promptly
remove the control of compromised PLCs.

A distinction should be drawn between heterogeneous re-
dundancy and homogeneous redundancy, or simply referred to
as, duplication. While both techniques produce replicas of a
component, duplication delivers the same version of hardware
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and software across replicas. This leaves all other replicas
vulnerable to the same exploit should one vulnerability exist
on any one replica.

A. System Architecture

Previous research utilises diversified replicas for validating
control signals from one another. The authors of [24] make
three diversified versions of the PLC and a hardware-only
selector to select and pass through the signal from one out
of three PLCs. The selector compares outputs from each
pair of PLCs and if there is a match, either one of the
output is passed through to the actuators. We identify this
strategy as a form of pairwise comparison. While easy to
implement and promised to deliver correct outputs under non-
concurrent attacks, pairwise comparison finds its limits when
costs of diversification is high and resources of PLC hardware
heavily constrained. Pairwise comparison is presumed to be
inapplicable to having only two replicas of PLC since a pair of
conflicting replicas cannot validate each other. Thus, pairwise
comparison requires at least three replicas.

a) Pairwise Comparison-based Dual-PLC Architecture:
Our solution observes the reality of resource constraints. We
starts with only two replicas of the PLC in the ICS. We present
a pairwise comparison-based dual-PLC architecture for ICS
in Fig. 2a. Layers of supervision and corporate are omitted

here as they remain unchanged. Two replicas of the PLC are
made using diversification techniques, as discussed in Section
IV-C, and output the same signals at all time despite their
heterogeneous nature. Both receive the latest measurements xt

from the sensors, execute the control algorithm, and send the
control commands ui

t to a hardware-only multiplexer. Being
pairwise comparison-based, the multiplexer then compares the
commands and if there is a match, delivers either one of the
commands to the actuators. If the commands do not match, the
multiplexer will block both commands until there is a match.
The latter scenario is equivalent to an DoS attack on the PLC.
As a result of not receiving new commands, the actuators will
default to the last command received from the multiplexer.
This challenges the convention wisdom that pairwise compar-
ison is inapplicable to any dual-PLC architecture. However, as
we will show in Section VI, the pairwise comparison-based
architecture delivers defence against non-concurrent attacks,
albeit limited, as it promptly halts some physics-aware attacks.

b) Machine Learning-based Dual-PLC Architecture: We
adopt a data-driven selection strategy, i.e., with machine learn-
ing techniques, to prune any PLC replica under attacks from
control. Fig. 2b depicts our machine learning-based dual-PLC
security architecture. A selector that uses machine learning
algorithms is added to the system. Each replica outputs signals
to both the selector and the multiplexer. The selector also
interfaces with the sensors to receive latest measurements of
process variables. In each round of control, the selector runs
a machine learning algorithm on latest signals from sensors
and both replicas to derive anomaly scores for both. It then
selects the lowest-scored PLC, i.e., the PLC less likely to be
under attacks, and sends the selection signal st+1 ∈ {1, 2}
to the multiplexer. The hardware-only multiplexer passes the
commands from st-th replica to the actuators. Unlike its
pairwise comparison-based counterpart, the machine learning-
based multiplexer does not block both replicas’ signals at the
same time and always defaults to PLC1 in absence of selection
signal.

Our data-driven approach benefits from the wealth of
historical data accumulated in process monitoring. Attacks,
however, are of low frequency in real-world and labelling them
is both difficult and costly. Unsupervised machine learning
learns from unlabelled data to recognise or generate samples.
We leverage anomaly detection in unsupervised learning to
identify abnormal events (attacks in our case) which deviate
from normal behaviours, using patterns learnt from normal
operational data. Extensive coverage of this form of anomaly
detection can be found in [30].

c) Machine Learning-based Tri-PLC Architecture: To
counteract concurrent attacks, we scale up the dual-PLC
architecture to tri-PLC by introducing a third replica. While
an adversary could in theory launch attacks on all replicas
simultaneously, the costs associated with such attacks could
turn away even some well-financed actors. At the same time,
the tri-PLC architecture also serves a testament to further
scaled up solutions for defending critical infrastructure.



B. Controller Selection Problem

The goal of selector in machine learning-based architectures,
either dual-PLC or tri-PLC, is to remove the controllers being
compromised from controlling the process. Here we formulate
the controller selection problem. Suppose P = {1, 2, . . . , N}
is the set of PLC replicas in a heterogeneous redundant N -PLC
architecture. At each round of control t, the sensors output
process variables being monitored xt. Each PLC replica, say
the i-th replica, then execute the control algorithm and sends
out manipulated variables ui

t. Note that xt and ui
t are vectors

of respective lengths. The selector, being on the receiver end
on both sensors and PLC, has been collecting time series of
xt and ui

t by each replica since the beginning. The selector
also outputs a selection signal st ∈ P to the multiplexer for
signal selection. The manipulated variables that the actuators
actually receive and execute become ut = ust

t .
Let Xt = {x1, x2, . . . , xt} be the time series of process

variables, U i
t = {ui

1, u
i
2, . . . , u

i
t} the time series of manip-

ulated variables by i-th PLC where i ∈ P , and Ct ⊂ P
the set of compromised PLC replicas at t. Given Xt and
Ut = {U1

t , U
2
t , . . . , U

N
t } at any time t, the selector should

always select a PLC st+1 ∈ P such that st+1 ̸∈ Ct.

C. Heterogeneous Redundancy

Diversified replicas form the basis of the proposed redundant
architecture, distinguishing it from its traditional counterpart
with only singular components. To implement diversified
replicas, one could use software, hardware diversification
techniques, or the combination of both.

a) Hardware Diversification: The global market for
PLCs is vast, which has led to a degree of commoditisation
and convergence with regard to functionality. As such, a PLC
from one vendor is likely to be interchangeable with a PLC
from another vendor, should the devices they are interfacing
with operate on non-proprietary communication protocols.
Alternatively, a replica could be a different PLC model from
the same vendor. One way to reduce costs of diversification
is to retain the older generation when upgrading the PLC.
Retaining older PLCs could actually harden the system, as
some vulnerabilities materialise on the new generation only.

b) Software Diversification: Most techniques of software
diversification originated from fault tolerance and, lately,
cybersecurity perspectives [31]. N-version programming, an
unsophisticated form of software diversity, assigns multiple
development teams a common specification to develop multi-
ple versions of software independently. An early study in [32]
showed that 27 versions of a anti-missile system exhibited
several correlated faults and called into question the indepen-
dence assumption. Conjoined with the costs of hiring multiple
teams, N-version programming becomes unfavourable.

A more practical approach would be some form of compiler-
based diversification [33]. This involves techniques such as
reverse stack [34] and the randomisation of the instruction
set and the address space [35]. Another solution, resembling
N-version programming and yet specific to PLC, would be
implementing the control algorithm using more than one of
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the five programming languages outlined in IEC 61131 [36],
an industrial standard for PLC.

V. EXPERIMENTAL SETUP

In this section we provide the details of the experiments that
produced the results presented in Section VI. This includes
coverage of the underlying physical process, simulated attacks,
and evaluation methods.

A. Physical Process

To evaluate our proposed defence strategies, we model real-
world ICS using our lightweight ICS simulator. Component-
wise, it is self-contained with a built-in physical process,
sensors, actuators, PLC, data historians, and user-definable
devices. It is also network-adaptive via TCP Modbus protocol
to facilitate inter-device communication. For the physical
process, we implement Ricker’s version of the Tennessee
Eastman (TE) process and multiloop control [37], as showin in
Fig. 3. The process is based on a real-world chemical reaction
developed by the Eastman Chemical Company, hence its name,
and over the years has become a benchmark for industrial
control studies with its control strategies thoroughly studied.
It models an irreversible reaction in a vessel with two in
streams, Feed1 and Feed2, and two out streams, Purge and
Product. Both Feed and Purge can be directly controlled via
the openness of valve on each stream. Product is regulated
using the vessel’s liquid level.

B. Attacks

In line with the categorisation in Section III-B, our simulation
environment natively supports modelling attack incidents of
four different types. Each incident has the attributes of the
target variable(s), start time, and end time. Replay attack
requires an additional input of control sequence for each
controlled variable manipulated. Both Injection and Setpoint
Override have additional parameters of target value(s) and



drifting duration (via linear interpolation) for each variable
manipulated. As a result, the parameter space for attacks is
enormous and modelling all possible attacks becomes compu-
tationally intractable.

We instead define a subset of attacks that could materialise
from likely attackers with diverging backgrounds and goals.
For example, we consider nation state actors who might take
a conservative approach by increasing Purge in the long run,
or an aggressive one in active cyber engagement by opening
both Feed immediately. We also consider amateur hackers who
might disrupt the system by launching DDoS attacks. In the
end, we implement a total of 20 attack incidents, of which
four are DoS, three Replay, nine Injection, and four Setpoint
Override. Users can also define new incidents with little effort
using attack APIs of the simulator.

C. Evaluation

All solutions to the controller selection are to be evaluated
under unsupervised settings. They are also to be compared
against the two-out-of-three architecture in [24].

To enable unsupervised learning, we split the ICS simulation
into two parts, normal operations without controller selection
and operations under attacks with selection. The former is
for collecting data to train machine learning algorithms, and
the latter for testing. Notice that pairwise comparison-based
solutions require no training data. We also differentiate the two
parts by the conditions in which the process operate for bias
prevention purposes. To mimic those changing conditions in
real world, Ricker defined six scenarios of disturbances [37].
We reserve the first and third scenarios and scenario of no
disturbance for testing, while using the rest for training.
The combination of three scenarios and 20 attack incidents
lead to a total of 59 test cases (a Replay attack is dropped
due to replaying the correct sequence). Each case is also
simulated three times through, mounting to 177 runs per
solution evaluated. Each run lasts for 90 hours in simulated
time, in which the disturbance is enacted between Hour 10
and 70 and the incident starts no earlier than the disturbance.

All PLCs send out control signals every six minutes and the
selector operates at the same frequency. To leverage time series
anomaly detection algorithms for selection, we constraint all
time series fed into the selector with a window size K = 10.

VI. RESULTS

Section VI-A and VI-B present results for the controller selec-
tion under test cases with single attacks and concurrent attacks
respectively. Both success rate (SR) and accuracy (ACC) are
provided for each architecture and algorithm evaluated. A test
run is considered to be a success if the pressure reading inside
reactor never breaches 3,000 kPa.

Accuracy is the ratio of time during attack(s) when a non-
malicious PLC is being selected. Many machine learning
algorithms evaluated are non-deterministic. Added to the live
nature of the industrial process, accuracy score of only one
iteration is not representative of the algorithm’s performance.
To address the issue, each test case is simulated three times

through and the average accuracy across the three iterations
is reported. Standard deviation (SD) for the accuracy scores
is also computed in order to provide a fair indication of the
robustness of each algorithm.

For machine learning-based architectures, we study six
machine learning algorithms, each representative of their class.
They are linear models AutoRegression [38], Principal Com-
ponent Analysis [39], distance-based KDiscord [40], density-
based Cluster-Based Local Outlier Factor [41], and neural-
network-based Long Short-Term Memory [42] and Mingle-
Objective Generative Adversarial Active Learning [43].

A. Non-concurrent Attacks

Under the non-current attack settings, the attacker always
launches attacks against a single PLC. While multiple con-
trolled variables might be targeted at the same time, only one
PLC is compromised for the whole attack duration.

Table I presents the results of the proposed dual-PLC archi-
tectures against a baseline tri-PLC architecture. The baseline is
a pairwise comparison-based tri-PLC architecutre, analogous
to the two-out-of-three architecture in [24]. The results show
that the baseline is near-perfect in defence but no perfect.
It failed on a test case due to slight divergences in control
signals towards the end of the simulation, most likely the result
of abrupt changes in sensor measurements and asynchronous
receipt on the controller side. This reveals the limitation to the
”perfect” selector, albeit only in some rare cases.

Compared to the system without defence, all machine
learning-based dual-PLC architectures improves the defence
success rates of the system, except for AutoRegression. The
pairwise comparison-based dual-PLC architecture has 20%
improvement under injection attacks, but loses 25% under set-
point override attacks. The dual-PLC architecture with CBLOF
delivers the same success rates as the tri-PLC baseline, despite
having less PLCs. The dual-PLC architectures with PCA and
KDiscord even perfect the defence and outperform the baseline
under injection attacks, despite suffering a 13% loss under
replay attacks. It’s worth noting that injection attacks is a
major theme in many ICS security literature. In a deployment
environment where injection attacks is a major concern, such
architectures might be preferred over CBLOF and the baseline,
or alternatively, pairwise comparison-based dual-PLC over
single-PLC.

Fig. 4 depicts a test run of the machine learning-based
dual-PLC architecture with CBLOF under an injection attack.
A disturbance in feed composition begins at Hour 10 and
causes the composition of A in Feed1 to decrease. This is
evident in decreases of A in Purge. In response, the controller
increases the Feed2 valve. At Hour 20, the attackers launches
an injection attack to fully open both Feed valves and close
Purge instantly from PLC 1. With CBLOF as the scoring
algorithm, the selector always selects PLC 2 over PLC 1 from
then on, as the anomaly score for PLC 1 significantly the one
for surpasses PLC 2. The process remains in firm control of
a genuine controller and the worst outcomes are averted.



TABLE I
SUCCESS RATES AND ACCURACIES OF CONTROLLER SELECTION UNDER SINGLE-ATTACK TEST CASES

DoS Replay Injection Setpoint Override
Arch. Algo. SR ACC SD SR ACC SD SR ACC SD SR ACC SD
single - 1.00000 0.00000 0E+00 0.75000 0.00000 0E+00 0.51852 0.00000 0E+00 0.91667 0.00000 0E+00
dual pc 0.91667 0.00000 0E+00 0.75000 0.00000 0E+00 0.74074 0.00000 0E+00 0.66667 0.00000 0E+00
dual autoreg 0.94444 0.07486 5E-03 0.87500 0.27226 2E-02 0.77778 0.68122 2E-02 0.86111 0.68706 3E-02

pca 1.00000 0.31946 4E-02 0.87500 0.21250 0E+00 1.00000 0.85704 2E-02 1.00000 0.85137 3E-02
kdiscord 1.00000 0.53645 5E-02 0.87500 0.74488 9E-04 1.00000 0.88387 3E-02 1.00000 0.93602 2E-02
cblof 1.00000 0.44448 1E-02 1.00000 0.88557 5E-02 0.98765 0.80553 3E-02 1.00000 0.89884 2E-02
lstm 1.00000 0.37503 5E-02 0.87500 0.76839 3E-02 0.75309 0.57905 4E-02 0.97222 0.61027 1E-01
mogaal 1.00000 0.29585 9E-02 0.87500 0.24377 8E-02 0.64198 0.50597 5E-02 0.94444 0.70102 4E-02

tri pc 1.00000 0.31020 4E-03 1.00000 0.95132 4E-03 0.98765 0.89433 1E-03 1.00000 0.88946 8E-04
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Fig. 4. Machine Learning-based Dual-PLC Architecture (CBLOF) under an Injection Attack.

While higher accuracy scores do not guarantee higher
success rates, thus safety for the system, they do help minimise
disruptions caused by the attacks. In that regard, dual-PLC
architectures with KDiscord and CBLOF deliver disruption
mitigation closest to their pairwise comparison-based tri-PLC
counterpart. DoS is a special category of attacks where even
the defence-free single-PLC architecture achieves 100% suc-
cess rate. The secondary task of mitigating disruptions thus
becomes primary. However, no single selection algorithm, not
even the baseline, fares better than a random selector in terms
of accuracy. One explanation is that the last control signals
which the actuator defaults to in absence of renewed signals
under DoS attacks are so close to the true signals that the
selection algorithm cannot tell them apart.

B. Concurrent Attacks

Under the concurrent attack settings, the attacker launches
same attacks against two PLCs at the same time. As in the

non-concurrent attack settings, multiple controlled variables
might be targeted.

Table II shows the results of the proposed machine
learning-based tri-PLC architectures against a baseline pair-
wise comparison-based tri-PLC architecture. The baseline does
not provide any meaningful defence and has the same success
rates across attack categories when compared to a dual-PLC
architecture with random selection. This is because under
concurrent attacks, two of the PLCs always output the same
control signals, leading the pairwise comparison algorithm to
always choose either one. For machine learning-based tri-PLC
architectures, all except AutoRegression and LSTM outper-
form the baseline and the dual-PLC architecture. PCA and
KDiscord deliver the best defence with only two failed cases
under replay attacks and otherwise impeccable success rates.
CBLOF trail both algorithms closely, having failed single
cases under injection and setpoint override attacks respectively.

Under the machine learning-based defence framework, de-



TABLE II
SUCCESS RATES AND ACCURACIES OF CONTROLLER SELECTION UNDER CONCURRENT-ATTACK TEST CASES

DoS Replay Injection Setpoint Override
Arch. Algo. SR ACC SD SR ACC SD SR ACC SD SR ACC SD
dual random 1.00000 0.00000 0E+00 0.75000 0.00000 0E+00 0.55556 0.00000 0E+00 0.91667 0.00000 0E+00
tri pc 0.97222 0.00000 0E+00 0.75000 0.00000 0E+00 0.56790 0.00000 0E+00 0.88889 0.00000 0E+00
tri autoreg 1.00000 0.09851 7E-03 0.87500 0.23965 3E-02 0.77778 0.62688 1E-02 0.83333 0.64089 2E-02

pca 1.00000 0.35175 2E-02 0.87500 0.21258 1E-04 1.00000 0.82097 1E-02 1.00000 0.84442 3E-02
kdiscord 1.00000 0.51146 7E-02 0.87500 0.74538 5E-04 1.00000 0.87582 2E-02 1.00000 0.90826 6E-03
cblof 1.00000 0.39169 2E-02 1.00000 0.81258 9E-02 0.98765 0.79775 4E-02 0.97222 0.89363 3E-02
lstm 1.00000 0.35656 7E-02 0.95833 0.73504 2E-02 0.77778 0.55815 4E-02 0.83333 0.51540 3E-02
mogaal 1.00000 0.29040 5E-02 0.83333 0.20975 5E-02 0.59259 0.51198 5E-02 0.94444 0.57473 1E-01

fending against concurrent PLC attacks costs only one more
PLC. In the case of pairwise comparison-based, however, we
would need five PLCs and implement a three-out-of-five archi-
tecture to negate these two malicious PLCs. Another observa-
tion is that scaling up the machine learning-based architectures
does not impair their defence capabilities. Comparing Table II
and I side by side, the performance of machine learning-
based tri-PLC architectures closely resemble the performance
of their dual-PLC counterparts under non-concurrent attacks.
These two observations should encourage operators of ICS
to favour machine learning-based over pairwise comparison-
based security architecture for the former is less resource-
intensive. In the ever-changing cyber landscape, ICS operators
can increase the number of PLCs in the machine learning-
based architecture, either by introducing diversified replicas
or retaining old ones when upgrading, to counter increasingly
sophisticated attacks, without impairing the overall defence
performance.

VII. CONCLUSIONS

This section summarises the contributions made in this paper
and discusses future work.

A. Summary of Contributions

Applying heterogeneous redundancy to critical components
such as PLCs has been proven to improve the ICS’s defence
against single-point security breaches. Yet the component
selection approaches in existing heterogeneous redundant ar-
chitectures remain native, relying on comparisons between
diversified replicas. This leads to high resource usage and the
system to crumble in face of concurrent attacks which target
more than one PLCs. In this paper we address both issues,
demonstrating a data-driven component selection approach
that achieves a trade-off between resources cost and security.
In particular, we propose (i) a novel dual-PLC ICS architecture
with native pairwise comparison can offer limited yet compa-
rable defence against single-point breaches, (ii) a machine-
learning based selection mechanism can deliver resilience
against non-concurrent attacks under resource constraints, (iii)
a scaled up variant of the proposed architecture counteracts
concurrent attacks with modest resource implications.

B. Future Work

This work constitutes an initial study of data-driven hetero-
geneous redundant PLC architecture for ICS security. Here,
heterogeneous redundancy is exclusively applied to PLCs
and its effect evaluated. This exclusiveness leaves open the
possibility of building ICS security architecture on top of
other critical components, since they might also benefit from
active usage of redundancy under a data-driven component
switching scheme. They should include a minimum of sensors
and actuators, each of which plays an important role in process
control. Looking further, we also expect a comprehensive
security framework that can leverage all diversified critical
components for defence and adjust dynamically the number
of active replicas for performance.
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