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Abstract 
 
The same genetic variant found in different individuals can cause a spectrum of 

phenotypes, with some individuals showing no signs of any clinical illness, and 

some displaying severe illness. Variants that cause this can be said to show 

incomplete penetrance, where the related genotype either causes clinical 

disease or not, or they can be said to display variable expressivity, in which the 

clinical symptoms can vary across a spectrum. Incomplete penetrance and 

variable expressivity are both thought to be influenced by a large number of 

factors, including genetic modifiers, epigenetics, and environmental factors.  

 

Many thousands of genetic variants have been identified as causal of 

monogenic disorders, mostly determined through small clinical studies, and thus 

the penetrance and expressivity of these variants may be overestimated when 

compared to their effect in the general population. With the wealth of population 

cohort data currently available, the penetrance and expressivity of such genetic 

variants can be investigated across a much wider contingent, potentially helping 

to reclassify variants that were previously thought to be completely penetrant.  

 

This thesis aims to investigate the penetrance and expressivity of rare genetic 

variants in large population cohorts, and to potentially identify any genetic 

modifiers that could also affect the phenotypic effect of these variants, including 

the presence of other rare variants, and the aggregation of small effect common 

variants. We show that putatively damaging variants in a large number of genes 

are present at a higher rate than previously expected in healthy population 

cohorts. Furthermore, we show that as an aggregate, individuals who carry one 

of these variants have sub-clinical phenotypes related to the traits seen in 

clinical disease cases with variants in similar genes. We also show that the 

penetrance and expressivity of these rare variants can be modified by the 

presence of other rare variants in similar genes, and through common genetic 

variant, aggregated as polygenic scores. We then investigate methods of 

identifying rare non-coding variants that could be potential genetic modifiers.   
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1. Chapter one: Aims and objectives 
 

1.1 Introduction  
Approximately 80% of all rare diseases are genetic in origin, and most of these 

are thought to be monogenic in nature1. Rare, deleterious variants are known to 

cause thousands of different genetic disorders in humans2,3, and while the 

molecular basis of over 6000 monogenic diseases has been uncovered4, with 

more than 350,000 pathogenic variants described5, the underlying genetic basis 

of most rare disorders remains to be determined. With advances in next 

generation sequencing (NGS), and the increasing availability of whole 

exome/genome sequencing (WES/WGS), the study of genotype-phenotype 

relationships has become more widespread, as determining how genotype 

causes a phenotype is a fundamental step towards understanding disease 

pathology6. Protein-coding variants that are associated with disease 

phenotypes directly link DNA variation to altered protein function or dosage and 

to the phenotypic outcome, and so much of what we know about the genotype-

phenotype relationship is based on the study of rare variants that cause 

monogenic disease7. Monogenic genotypes and phenotypes can be highly 

predictive for specific individual disorders, but sometimes this relationship can 

be complicated, with some damaging dominant monogenic variants not 

following expected Mendelian inheritance patterns8. Individuals with the same 

genotype can display distinctly different clinical phenotypes9–12, including being 

clinically asymptomatic (i.e. incompletely penetrant). There are currently gaps in 

translating how individual genomic variation affects phenotypic presentation, 

and how genetic variants exert their functional impact to cause disease.  

 

1.2 Rare variant interpretation  
The study of genetic disease has often been divided into rare monogenic forms 

of disease, and more common polygenic complex disorders13. Rare variants are 

generally defined as those with an allele frequency below 1%, although many 

known deleterious variants have a frequency in the general population far lower 

than that. Current evidence suggests that the causes of rare and complex 

disease may be more overlapping than previously thought, as the genetic 

variation present across the genome highlights the complexity underlying 
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phenotypic presentation. There are both rare variants in individual genes that 

cause monogenic forms of complex disease14,15, as well as common variants 

that affect the severity of monogenic disease9,16. Such complexity makes 

investigating genotype-phenotype relationships more complicated, which is only 

exacerbated by erroneous variant associations due to study design problems17. 

Human genetic diversity displays considerable variability, with individual 

genomes differing from the reference at 4.1-5 million sites18. Although most 

variation is common and predicted to be functionally neutral19, each individual 

has on average 85 heterozygous and 35 homozygous protein truncating 

variants (PTVs)20. Population cohort studies have shown that the average 

genome contains around 200 very rare coding variants (gnomAD frequency of 

<0.1%) per person21 and 54 variants previously reported as disease-causing, 

including 7.6 rare non-synonymous coding variants in monogenic disease 

genes20,22. Variant interpretation is an ongoing challenge within diagnostic 

medicine, making understanding the phenotypic consequences of underlying 

genetic variation a key aim of genomics research.  

 

1.3 Using population cohorts 
While small clinical studies that are based on a specific presentation of disease 

can overestimate the penetrance of any rare variants identified, large population 

studies will tend to underestimate the penetrance of variants due to largely 

consisting of generally healthy individuals, the “healthy volunteer effect”17,23. 

However, large population cohorts can give us the ability to investigate 

previously defined ‘highly penetrant’ variants in healthy individuals, and identify 

variants that may have a much lower level of penetrance than previously 

suggested24. Furthermore, within rare variant studies, very large sample sizes 

are often needed to identify such variants that contribute towards disease25.  

Population cohorts increasingly consist of detailed clinical and biological 

information in addition to genetic data, and the aggregation of all this data gives 

us the ability to research gene-phenotype associations, and potentially identify 

variants behind disease mechanisms26. These large datasets of genomic 

information paired with deep phenotypic has given researchers the ability to 

identify and characterize genetic and phenotypic relationships27.  
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1.31 UK Biobank 
The UK Biobank (UKB) is a voluntary population-based cohort from the UK, with 

deep phenotypic data and genetic data for ~500,000 individuals aged 40-70 at 

the time of recruitment28,29. Participants provided a variety of information via 

self-report questionnaires, cognitive and anthropometric measurements, and 

linked medical information through Hospital Episode Statistics (HES) data, 

including ICD9 and ICD10 codes. This data currently includes whole exome 

sequencing on 450,000 individuals (data made available October 2021), and 

whole genome sequencing on 200,000 individuals, along with the hospital 

record data, medical data, self-report questionnaire results, and additional test 

data. Detailed sequencing and variant detection methodology for UKB is 

available at https://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=170. The UKB 

resource was approved by the UK Biobank Research Ethics Committee and all 

participants provided written informed consent to participate28. While such a 

large and phenotypically defined cohorts gives us a great ability to investigate 

genetic relationships, as previously mentioned, population cohorts tend to be 

healthier than the average individual, and participants in UKB are known to be 

healthier and wealthier than the average individual in the UK population23.  

 

1.4 Monogenic developmental disorders 
Developmental disorders are a collection of severe neurological conditions that 

manifest from birth or early childhood, and have been shown to be caused by 

rare deleterious variants in a large number of genes, or large CNVs that overlap 

these regions. Approximately 2-5% of children are born with major congenital 

malformations, or develop severe neurodevelopmental disorders during early 

childhood30–33. Developmental disorders are a heterogenous group of conditions 

that can affect brain development and function, and can result in issues with 

behaviour, language, motor functioning, and impaired cognition34,35. Many of 

these disorders are caused by dominant de novo variants in developmentally 

important genes30, and have been identified by large scale studies such as the 

Deciphering Developmental Disorders (DDD) study36, and this information has 

led to resources such as the developmental disorder gene to phenotype 

database (DDG2P)37, which provides clinically curated information on genes 

and variants that are reported to be associated with related disorders38.  
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Monogenic developmental disorders are an interesting collection of conditions 

in which to study penetrance for several reasons. Firstly, because they are 

extremely genetically heterogenous, large numbers of genes are linked with 

monogenic conditions and large numbers of pathogenic variants have been 

identified, making them statistically tractable30. Although they are also 

phenotypically heterogenous, developmental delay and intellectual disability are 

a very common part of many rare syndromes39. Secondly, their phenotypic 

effect occurs from early childhood (or before), so a phenotype should be 

apparent at almost any adult age, and would therefore be expected to have a 

lifelong effect on many cognitive or cognitive-related traits. Thirdly, although 

many of the genes in which these damaging variants cause disease have been 

discovered through small clinical cohorts, there are several large-scale clinical 

cohorts (such as the DDD study) in which genes and causal variants have been 

systematically evaluated using a more statistical approach36. Finally, although 

some examples of incomplete penetrance has previously been observed within 

families40–42, many of these disorders were (until recently) believed to be fully 

penetrant, and therefore potentially pathogenic variants were not anticipated to 

be present in population cohorts such as gnomAD or UK Biobank. The 

presence of plausibly pathogenic variants in these ‘healthy’ cohorts therefore 

provides an excellent opportunity to study their likely pathogenicity, penetrance 

and expressivity in a clinically-unselected cohort. 

 

1.5 Aims 
 

The aims of this project were: 

 

• To review our current understanding of penetrance and expressivity of 

rare genetic variants (Chapter 2) 

• To explore the penetrance of predicted pathogenic rare variants in a 

population cohort using developmental disorders as an example 

(Chapter 3) 

• To investigate potential genetic modifiers of penetrance in a population 

cohort (Chapter 4) 



 20 

• To evaluate new analytic approaches to finding novel cis-modifiers, using 

a single gene as an example (Chapter 5) 
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2. Chapter two: Incomplete penetrance and variable 

expressivity 
 

2.1 Introduction 
The same genetic variant found in different individuals can cause a range of 

diverse phenotypes, from no discernible clinical phenotype to severe disease, 

even among related individuals. Such variants can be said to display incomplete 

penetrance, a binary phenomenon where the genotype either causes the 

expected clinical phenotype or it doesn’t, or they can be said to display variable 

expressivity, in which the same genotype can cause a wide range of clinical 

symptoms across a spectrum. Both incomplete penetrance and variable 

expressivity are thought to be caused by a range of factors, including common 

variants, variants in regulatory regions, epigenetics, environmental factors, and 

lifestyle. 

 

This chapter examines our current knowledge of the penetrance and 

expressivity of genetic variants in rare disease and across populations, as well 

as looking into the potential causes of the variation seen, including genetic 

modifiers, mosaicism, and polygenic factors, among others. We also consider 

the challenges that come with investigating penetrance and expressivity.  

 

 
2.11 Incomplete penetrance and variable expressivity 
A deleterious genotype should be no more prevalent in the population than the 

disease that it causes43. However, the same genetic variant can result in 

different disease presentations in different people, from clinically asymptomatic 

to severely affected, even among members of the same family44. The proportion 

of individuals who possess a particular genotype and exhibit the expected 

clinical symptoms is defined as the penetrance of that genotype45,46. If everyone 

with the genotype presents with clinical symptoms by a particular age then it is 

said to be fully penetrant, whereas if it falls below this it is said to exhibit 

reduced or incomplete penetrance. Genotype-phenotype relationships can also 

display variable expressivity, where the severity of the phenotype caused by the 
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genotype can vary among affected individuals46 (Table 2.1); this differs from 

pleiotropy, where variants in the same gene can cause different, potentially 

unrelated phenotypes that may even be categorised as different diseases47 

(Figure 2.1). Although penetrance, expressivity, and pleiotropy are three 

distinct concepts, biological reality means that their overall effects often overlap, 

especially in population cohorts where it is difficult to identify the cause of the 

phenotypic diversity. Multiple distinct phenotypes, in aggregate, could either be 

classified as a single more severe phenotype or different disease subtypes. As 

these three are likely to be caused by overlapping or similar mechanisms48, 

especially in genetically heterogenous conditions, we will discuss them together 

in this review.  

 

Causal 
Gene 

Severe Phenotype Milder Phenotype 

HOXD13 Synpolydactyly (extra 

fused digits)49  

Short digits50,51 

KCNQ4 Deafness52 Mild hearing loss50 

SGCE Myoclonus Dystonia53 Dystonia / Writer’s cramp50,54 

KRT16 Pachyonychia congenita55 Blistered Feet50,56 

FLCN Birt-Hogg-Dube 

Syndrome57 

Mild fibrofolliculomas50 

SFTPC Lung Disease58 Abnormal lung diffusion 

capacity50,59 

FBN1 Severe Marfan 

syndrome60,61 

Mild Marfan phenotypes (tall, thin, 

slender fingers)62 

ERCC4 Xeroderma 

pigementosum63 

Higher likelihood of sunburn17 

FLG Ichthyosis vulgaris64 Eczema17 

POLG Childhood onset Alpers-

Huttenlocher65 

Deterioration of eye muscles66 

Table 2.1: Examples of variable expressivity in monogenic diseases. 
Deleterious variants in these genes are known to cause a spectrum of 

phenotypes, from severe disease to mild subclinical effects.  
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Figure 2.1. Conceptual representation of penetrance, expressivity, and 
pleiotropy. Squares represent individuals with the same genotype, with shaded 

squares indicating the individual displays the related phenotype, and non-

shaded squares indicating the individual does not display the related disease 

phenotype. Line one shows incomplete penetrance, where 60% of the 

individuals display the related phenotype. Line two shows that all individuals 

display the related phenotype, from severe manifestations to milder 

presentations. Line three shows incomplete penetrance and variable 

expressivity, where the genotype varies both in severity of presentation, and in 

penetrance across the population. Line four shows pleiotropy, whereby different 

phenotypes are caused by variants (represented by different shapes) in one 

gene.  

 

 

 



 24 

Incomplete penetrance can be observed in both dominant and recessive 

conditions. However, the cause of variability in genotype-phenotype correlations 

can be difficult to elucidate – phenotypic variation has been observed in mice 

with identical environmental and genetic backgrounds, including variability in 

lethality for knockout genes despite the introduction of identical variants67. 

Establishing that a variant identified is the sole (or primary) cause an 

individual’s clinical phenotype can be difficult68, which is an important concern 

when it comes to diagnosis and providing accurate genetic counselling, and 

such difficulties can lead to incorrect or delayed diagnosis69. The widespread 

presence of incomplete penetrance and variable expressivity through many 

overlapping mechanisms (Figure 2.2) can explain why apparently unaffected 

parents can pass on pathogenic variants to affected offspring12, and why 

seemingly healthy individual’s genomes can contain a large number of 

putatively damaging variants and yet not suffer any obvious adverse effects70.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 25 

  
 

 
Figure 2.2. Factors affecting penetrance and expressivity. (a) Examples of 

different biological mechanisms that can affect the overall penetrance and 

expressivity of monogenic disease-causing genetic variants. Figure created 

with BioRender.com. (b) Summary of factors affecting penetrance and 

expressivity across the genome, from global modifiers that can have wide-

ranging overall effects, to expression of the gene containing causal variants, to 

specific causal variants that have more distinctive effects.  

A 

B 
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While databases of clinically identified variants in affected individuals are useful 

for assessing pathogenicity71, population-based datasets that include 

WES/WGS alongside phenotypic and medical information are increasingly 

important for investigating the penetrance and expressivity of these variants. 

Large population cohort studies have shown the occurrence of apparently 

pathogenic variants is much higher than previously estimated through small 

clinical or familial cohort studies17,71,72, and their frequency highlights either the 

incomplete penetrance, variable expressivity, or misclassification of such 

variants. The existence of PTVs (protein truncating variants) in dosage-sensitive 

genes in healthy individuals also remains problematic when it comes to 

determining pathogenicity73. The potential for genomic technologies and WGS 

to detect individuals at risk of genetic disease is enormous, but incomplete 

penetrance and variable expressivity present a challenge for clinicians, 

especially when an incidental finding occurs without any prior clinical indication, 

leading to uncertainty over whether a clinical phenotype will develop, and if so, 

when. This problem is highlighted when testing unselected population cohorts, 

who may or may not have phenotypes of relevance to genomic findings at the 

point of testing. To understand how genetic disorders develop, we need to 

consider how deleterious variants interact with the rest of variation in the 

genome, and how variation can affect phenotypic presentation. This may also 

identify targets that help prevent disease progression74. The presence of 

putatively pathogenic variants in asymptomatic adults also highlights the 

possibility that there are disease-resistance mechanisms we can identify 

through the sequencing of general population cohorts. 

 

2.12 Clinical versus population cohorts 
Traditionally, rare pathogenic variants were identified in small phenotypically 

enriched clinical cohorts of individuals and families with similar monogenic 

disease. Population cohorts allow us to utilize the information from small clinical 

studies to investigate the penetrance of variants in the general ‘healthy’ 

population, where such severe monogenic phenotypes are likely to be depleted, 

as well as the potential to identify the causes of clinical heterogeneity. 

Ascertainment bias can occur with any study design, with volunteer population 

cohorts tending to be healthier than the average individual23, and clinical 

cohorts tending to have more severe phenotypes. Estimates of the maximum 
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and minimum variant effect sizes across different ascertainment contexts are 

needed to avoid falsely predicting that a significant proportion of the healthy 

population are at risk for a monogenic condition75. The proportion of individuals 

affected and the average age of onset (i.e., age-dependent penetrance) can 

vary depending on ascertainment context (Figure 2.3). For example, individuals 

with putatively pathogenic variants in HNF1A and HNF4A, known for causing 

maturity onset diabetes of the young (MODY), develop diabetes significantly 

later or not at all when tested outside of the context of clinical referrals for 

suspected MODY76.  

 
 

Figure 2.3. Penetrance in clinical versus population cohorts. Penetrance of 

genetic variants identified in clinical cohorts tends to be higher than the same 

variants identified in population cohorts, which can manifest as earlier disease 

onset, less severe disease, or a larger proportion of affected individuals. Due to 

inherent ascertainment biases in both types of cohorts, the penetrance of 

variants in the general unselected population is likely to lie somewhere in-

between. 

 

For almost all human genetic disease, individual variability in phenotype is 

influenced by background variation in the genome. As genetic testing becomes 

more widely available, both through healthcare systems77 and direct-to-
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consumer testing78, our understanding of how genomic variation affects disease 

progression and prevalence becomes significantly more important, both for 

clinical utility68 and for our functional understanding of disease79. Variation in the 

genome can predispose individuals to disease through traditional monogenic 

variants that disrupt physiological pathways and exert a large effect on 

phenotype, or through the accumulation of polygenic effects that involve many 

variants of small effect sizes in different pathways80, or as is increasingly 

becoming clear, through their combined effect.    

 

Within population cohorts, penetrance estimates for monogenic variant carriers 

average 60% or lower for most conditions16, illustrating that there are many 

individuals who have apparently highly penetrant, pathogenic variants in known 

monogenic disease-causing genes who never develop the corresponding 

phenotype81. For example, one in 75 (1.3%) of healthy elderly individuals in the 

APSREE trial carried a previously identified pathogenic variant, including in 

Lynch Syndrome and familial hypercholesterolemia genes, without having the 

phenotype associated72. These cases demonstrate that carrying such 

pathogenic variants does not necessarily equate to disease and that other 

mechanisms may contribute towards the protection of human health, including 

genetic modifiers that ‘rescue’ individuals from a disease phenotype.   

 

2.2 Causal variants 

2.21 Variant location and consequence  
For genetically heterogenous monogenic diseases, the penetrance and 

expressivity can vary between different genes or variants, with the same 

phenotype potentially caused by numerous different variants across multiple 

genes82. Even within the same gene, some deleterious variants in known 

monogenic disease genes may exhibit complete penetrance, while others show 

incomplete or low penetrance. Variation can be due to functional redundancy of 

genes, or the location and type of variant, with missense and PTVs in the same 

gene often causing different phenotypes. For example, hereditary angioedema 

can show great phenotypic diversity, even among members of the same family, 

and individuals with missense variants in SERPING1 typically display a milder 

and later onset of disease compared to patients with PTVs83. In contrast,  
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missense variants in BMPR2 cause earlier and more severe pulmonary 

hypertension compared to PTVs in the same gene84.  

 

Pathogenic PTVs typically cause disease through loss of function (LoF) due to 

degradation of the RNA by nonsense mediated decay (NMD)85. NMD is an 

mRNA surveillance pathway that recognizes and degrades damaged mRNA 

transcripts that would produce misfolded or shortened proteins that can 

accumulate in the cell and initiate the endoplasmic reticulum (ER) stress 

response86. However, production of variant protein can either exacerbate 

disease severity through accumulation of toxic proteins in the cell87, or alleviate 

it through providing residual function that protects against haploinsufficiency-

mediated disease88–90, meaning the occurrence of NMD can affect phenotypic 

severity depending on the mechanism of disease. PTVs may also cause LoF 

through aberrant splicing73, which is also regulated by NMD91. In some cases, 

the location of NMD boundaries at the 5’ and 3’ ends of genes containing causal 

variants can explain phenotypic variation between individuals with different 

PTVs in the same gene92,93. For example, PTVs located outside of the region 

that triggers NMD in SOX10 escape NMD and produce proteins that have 

dominant negative activity, causing the severe complex neurological disorder 

PCWH, whereas PTVs located within the NMD region produce transcripts that 

are recognised by NMD and removed, causing the relatively milder WS4 

syndrome via haploinsufficiency94,95. This variability in penetrance or 

expressivity could potentially be classed as distinct subtypes of disease, with 

different variants causing different mechanisms of disease and producing 

distinct syndromes. Pathogenic variants in KAT6B show a similar disease 

manifestation, with two distinct syndromes depending on whether NMD is 

triggered or not96. Variants in KAT6A cause severe intellectual disability (ID) 

and neurodevelopmental disorders (NDD), with late PTVs more likely to cause a 

severe phenotype, compared to 60% of early PTVs which conferred a mild 

phenotype88, potentially due to whether NMD is activated or not. The position of 

the PTV within the gene has also been seen to modulate the severity of clinical 

phenotypes in Marfan Syndrome97 and Charcot Marie Tooth disease98. Disease 

due to SFTPB variants typically presents in neonates as respiratory distress 

syndrome, resulting in death within the first few months; variants that allow 

partial production of the SP-B protein confer longer survival times and later 
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onset of disease, whereas the variants that cause complete deficiency of SP-B 

due to NMD cause fatal neonatal respiratory distress syndrome99. 

 

Missense variants can also result in LoF due to substantially reduced protein 

function or stability100. Although many missense variants have little or no effect, 

they can result in conformational changes, increased protein misfolding, and 

aberrant protein trafficking, which can lead to intracellular retention or 

accumulation, increased ER stress, activation of the unfolded protein response, 

or increased pro-apoptotic signalling and apoptosis99. Some missense variants, 

small insertions/deletions and gene duplications can also result in gain of 

function (GoF) effects due to increased activity101, increased protein 

production102, or via protein products that gain a new damaging function103. 

Some GoF variants can exhibit a more severe phenotype than LoF variants in 

the same gene; for example GoF variants in KCNA2 were associated with more 

severe epilepsy phenotypes than LoF variants104. Where in a gene a variant is 

located can affect mechanism of disease, as well as penetrance and 

expressivity through molecular subregional effects105; the impact of a variant 

depends on whether it is located at sites that undergo post-translational 

modification, within sites that are critical for tertiary and quaternary structure, at 

protein-protein interaction interfaces or ligand binding sites, or inside or outside 

of functional domains106. For example, missense variants in GRIN2A located in 

transmembrane or linker domains were more frequently associated with severe 

developmental phenotypes than those located elsewhere, such as within amino 

terminal or ligand-binding domains107, with a wide range of phenotypes 

observed from normal, to mild epilepsy, to severe developmental and epileptic 

encephalopathy108.  Similarly GoF variants in highly conserved regions of the 

potassium channel of KCNA2 were associated with more severe epileptic 

encephalopathy phenotypes than variants located elsewhere109. An improved 

understanding of protein structure and the functionality of interacting domains 

will help elucidate specific variant effects on resulting phenotypic 

presentation110.  

 

Finally, there are a small but increasing number of pathogenic non-coding 

variants that have been identified as causes of monogenic diseases. These 

variants operate either through LoF or GoF mechanisms by altering gene or 
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isoform expression111. For example, biallelic variants in the PTF1A enhancer 

are a well-established cause of recessive pancreatic agenesis through tissue-

specific LoF112, de novo LoF variants in the 5’ untranslated region (UTR) of 

MEF2C have been shown to account for around a quarter of developmental 

disorder diagnoses in this gene113, and a single GoF variant that creates a novel 

promoter has been shown to cause α-thalassaemia114. However, establishing 

the pathogenicity of non-coding variants is often much more challenging than 

coding variants, and thus studies of penetrance and expressivity of these 

variants are likely to lag behind. 

 

2.22 Size of repeat expansions 
Repeat expansion disorders are caused by genomic expansions of short 

tandem repeat (STR) sequences that either affect gene expression or protein 

sequence115, with the penetrance and expressivity affected by the number of 

repeats (Table 2). Anticipation is often observed in families due to molecular 

instability around the repeats; in each generation the repeat length can 

increase, resulting in earlier onset of disease and increased severity. For 

example, Fragile X Syndrome is caused by expansion of over 200 repeats in 

the CGG motif in the 5’UTR of FMR1 on the X chromosome, resulting in 

hypermethylation of the promoter, silencing the gene116. Fragile X exhibits 

incomplete penetrance and reduced expressivity, with 100% of males and 60% 

of females presenting with ID, and 50-60% of males and 20% of females 

diagnosed with autism spectrum disorder (ASD)117. Wild type (WT) alleles 

contain <44 CGG repeats while full mutations in affected individuals typically 

have >200 repeats. Those with premutation alleles of 55-200 repeats have 

milder phenotypes compared to full mutation carriers, although they have an 

increased risk of Fragile X associated tremor/ataxia syndrome118 and primary 

ovarian insufficiency prior to age 40119 compared to WT. Monotonic dystrophy 

shows a similar mechanism, with unaffected individuals having 5-37 CTG 

repeats in the 3’UTR of DMPK and fully affected individuals having >80 repeats 

(although repeats of >1000 have been seen in congenitally affected children120), 

with the number of repeats correlating with earlier age of onset.  
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Disease Gene STR Non-
penetrant 

Intermediate 
Penetrance 

Full 
Penetrance 

Spinocerebellar 

Ataxia 8 

ATXN8OS / 

ATXN8121 

CTG/CAG <91 92-106 >107 

Spinal Muscular 

Atrophy 

SNM1122 CAG <34 35-46 >47 

Fragile X FMR1116 CGG <44 45-200 >200 

Huntington’s HTT123 CAG <36 37-39 >40 

ALS C9orf72124 GGGGCC <23 24+ >700 

Friedrich’s 

Ataxia 

FXN125 GAA <34 35-99 >100 

Table 2.2: Trinucleotide repeat disorders with varying penetrance 
depending on the number of repeats present. 
 
While the number of repeats accounts for a large proportion of variable 

expressivity, there are still missing genetic factors accounting for differences in 

age of onset. For example, in Huntington’s disease, a lower number of n-

terminal CAG repeats in HTT is associated with reduction in penetrance and 

later onset of clinical symptoms123 but while the number of repeats is inversely 

correlated with the age of onset of motor symptoms they only account for 70% 

of the variability126. The remaining unexplained variance displays a high degree 

of heritability, suggesting further genetic modifiers127. Additional genetic variants 

in the DNA mismatch repair pathway have been linked with anticipation and 

overall severity of disease, and functional studies showing the knockout of 

base-excision repair or transcription-coupled repair pathways in animal and 

cellular models of nucleotide repeat disorders can inhibit the expansion and 

reduce the phenotypic severity128,129. Variants in the DNA repair gene MSH3 

have also been linked with differences in disease severity through somatic 

instability130. As non-penetrant individuals will not necessarily come to clinical 

attention, and large triplet repeats are hard to genotype accurately using 

NGS131, it is suspected that individuals with fewer than 41 CAG repeats in HTT 

may exist at a higher frequency than previously expected in the general 

asymptomatic population123. 
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2.3 Gene expression 

2.31 Variation in allelic expression 
It has been hypothesized that the differential expression of alternative alleles in 

the gene containing causal variants could affect the presentation of phenotypic 

traits in individuals with identical genotypes. This mechanism has been 

proposed primarily for dominantly inherited conditions where haploinsufficiency 

is the cause of disease132,133, including Lynch Syndrome134 and hypertrophic 

cardiomyopathy (HCM)135, where an allelic imbalance could cause either higher 

expression of the wild-type allele (thus compensating for the haploinsufficiency 

and resulting in reduced penetrance), or lower expression of the WT allele (thus 

exacerbating the haploinsufficiency and resulting in higher penetrance). 

Significant allelic imbalance has been observed in up to 88% of genes in human 

tissues, potentially caused by genetic modifiers or stochastic factors136, and has 

been identified as both tissue-specific and genome-wide in mouse models137. 

Structural variants such as duplications that are in trans with a pathogenic LoF 

variant can alleviate the potential clinical phenotype when disease would be 

caused by haploinsufficiency, by providing an additional WT copy of a gene, 

thus resulting in a normal level of gene expression138, as has been observed in 

DiGeorge syndrome139. Additional variants in the untranslated regions of mRNA 

can also affect translational efficiency, and gene expression can also vary 

widely across tissues140, highlighting the importance of sequencing disease-

relevant tissue in interpretation of genetic variation141. Compared to 

synonymous variants, rare missense variants show a significant reduction in 

allelic expression across many tissues in proportion to their predicted 

pathogenicity, suggesting deleterious variants are depleted from highly 

expressed haplotypes142. Some highly differentially expressed genes have been 

shown to contain fewer disease-associated variants143, which are less likely to 

accumulate on haplotypes that are highly expressed, or in high-penetrance 

combinations142. For example, genetically heterogenous monogenic eye 

disorders display both incomplete penetrance and variable expressivity and also 

display significant variability in gene expression levels throughout the 

population144.  Differential expression of alleles has also been shown to play a 

role in the variable expressivity of the dominant condition Marfan’s syndrome145 

and inherited eye disorders144. In HCM, the proportion of sarcomeric proteins 
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produced by variant alleles can vary with allelic expression, and 30-80% of 

sarcomere structure can be made up of proteins with reduced function146,147, 

causing variation in overall phenotypic severity.  Differential expression of 

alleles can also potentially cause recessive conditions to present in a dominant 

fashion. For example, Zellweger spectrum disorder (ZSD) is an autosomal 

recessive disorder caused by deleterious variants in any of 13 PEX genes, with 

the most common cause being variants in PEX1 or PEX6. Affected 

heterozygous carriers have been identified with ZSD, despite lacking a second 

pathogenic allele, with all affected heterozygotes presenting with allelic 

overexpression of the variant allele compared to WT, and a common 

polymorphism has been linked to this allelic overexpression148.  

 

Stochastic variation within normal cellular and developmental processes can 

potentially be amplified by disease-causing variants, and thus play a role in 

incomplete penetrance and variable expressivity149. Random monoallelic 

expression (RME) is the transcription of only one allele from a homologous pair, 

and can be constitutive, with all cells expressing the same allele throughout (as 

seen in imprinted genes), or somatic, with individual cells showing variation in 

expression levels150. Overall levels of RNA in cell populations tends to be 

stable, but dynamic allelic fluctuation through RME can present variability in 

gene expression. Genes that show little RME are mostly housekeeping genes 

which have higher expression levels150. Although no variation in disease trait 

has yet been definitively linked to somatic RME, conceptually it could explain 

phenotypic variation either through alteration of gene dosage or higher 

expression of a variant allele. RME during embryonic development has been 

tentatively linked with variation in developmental disorders such as Holt-Oram 

syndrome151. Model organism research has suggested stochastic variation in 

gene expression can affect the expressivity of variant genotypes, with 20% of 

genes causing variation in phenotypes in two different isolates with defined 

genetic backgrounds in C. elegans152. Phenotypic variability has also been 

observed in inbred mice with a defined genetic background67, as well as in 

monozygotic twins153 suggesting the influence of stochastic molecular events in 

variable expressivity.  
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2.32 Variation in isoform expression 
Production of different transcripts of genes may also lead to differential 

expression of traits and explain why potentially deleterious variants in 

haploinsufficient genes are found in population cohorts. Annotations based on 

transcription levels of different isoforms in haploinsufficient genes identified 23% 

of LoF variants are in under-expressed exons, and had similar effect sizes to 

synonymous variants73. In monogenic cardiomyopathies caused by LoF variants 

in the giant muscle protein titin, studies of TTN expression levels indicate that 

LoF variants found in unaffected population cohorts occur predominantly in 

exons that are absent from the most highly expressed transcripts, and thus do 

not cause the phenotypic effect associated with deleterious variants154,155. 

Similarly, haploinsufficiency of TCF4 causes the highly penetrant Pitt-Hopkins 

syndrome156,157, and unaffected individuals identified with PTVs in this gene 

were all found to be located in minimally expressed exons136, suggesting that 

functional protein can be made in the presence of these variants. The 

expression of tissue-specific isoforms can also affect the penetrance of a 

genotype, potentially resulting in distinct disease subtypes. For example, 

CACNA1C has two clinically important isoforms with mutually exclusive exons 

that explain two different forms of Timothy Syndrome; pathogenic variants 

across the widely expressed transcript produce a multi-system disorder (type 1), 

while pathogenic variants in the alternative exon of a transcript predominantly 

expressed in the heart are much rarer and result in more severe cardiac-

specific defects and fewer syndromic phenotypes (type 2)158. Further examples 

are likely to be uncovered through large-scale analysis of isoform expression in 

different tissues and at different times.  

 

2.33 Cis and trans acting genetic modifiers 
Variants in regulatory regions can affect the phenotypic presentation of disease 

by altering gene expression, and through modulation of deleterious genetic 

variants found in associated protein-coding regions159, potentially affecting the 

penetrance and expressivity of the monogenic variant. Cis acting elements are 

DNA sequences located on the same haplotype as the gene they affect, 

whereas trans-acting factors are proteins or elements that bind to the cis-acting 

sequences to affect gene expression. Variants in these non-coding regions can 

have multiple downstream effects, through interactions with other genetic 
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features, or through effects on monogenic variants160.  Small changes within 

transcription factor binding or expression can lead to dysregulation that affects 

multiple genes within the same regulatory network160, and therefore could 

potentially alter the final phenotypic presentation. Cis-regulatory variants have 

been36oncept36ed that modify the penetrance of coding variants, and therefore 

contribute to disease risk or presentation. Pathogenic coding variants are 

depleted from higher-expressed haplotypes with cis-regulatory variants in the 

general population142, suggesting that individuals who present with a disease 

phenotype may have an enrichment of cis regulatory variants that increase the 

expression of the pathogenic allele, compared to individuals who are 

asymptomatic who have an enrichment of ‘protective’ regulatory variants that 

decrease the expression and therefore penetrance of the pathogenic allele142.  

 

Upstream open reading frames (uORFs) are tissue-specific cis-regulators of 

protein translation found in the 5’UTR of protein-coding genes, and variants that 

alter uORFs can affect whether a deleterious protein-coding variant causes a 

disease phenotype or not, and may alter the phenotypic presentation of the 

disease161. Active translation of a uORF can reduce downstream protein levels 

by up to 80% via several mechanisms, including production of a peptide that 

stalls the translating ribosome162, and termination at a uORF stop codon that 

can trigger NMD163. Variation that either introduces or removes uORF start or 

stop codons can therefore affect phenotypic presentation, and peptides created 

by uORF variants may also have a role in disease pathology164. Variants in the 

downstream 3’UTR may also play a role in regulation of gene expression 

through altering mRNA stability or translational efficiency140,165,166. For example, 

a common SNP downstream of GATA6 has been shown to reduce GATA6 

expression, potentially resulting in a more severe pancreatic agenesis 

phenotype when found in trans with a LoF variant in the same gene167. 

Similarly, polymorphisms in the 3’UTR region of KCNQ1 have been suggested 

to alter expression of the cis allele, either increasing the severity of disease or 

reducing it through uneven expression of WT or variant alleles168. However, an 

attempt to replicate this in a diverse group of population cohorts found no 

association between the identified polymorphisms and the severity of 

disease169, highlighting the difficulties with trying to identify non-coding modifiers 

of rare disease, both in clinical cohorts and population studies.   
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Approximately 400,000 candidate enhancer regions have been identified in the 

human genome, an average of around 20 enhancers per gene170,171. Non-

coding variants within enhancer regions can be a cause of phenotypic diversity 

through alterations in gene expression, therefore affecting overall disease 

phenotype presentation172.  Although identifying non-coding variants that affect 

disease presentation can be very difficult, there are some notable examples. A 

large study identified a SNP in an intronic enhancer of the RET gene that 

appeared to increase penetrance of Hirschsprung disease in patients with rare 

RET coding variants173. Intronic variants have also been suggested to affect the 

penetrance of coding variants in patients with Stargardt disease, where a deep 

intronic variant has been shown to be a major cis-acting modifier of the most 

common pathogenic variant in ABCA4174,175. A small study also suggested that 

SNPs in promoter regions affect severity of arrhythmias among individuals with 

LoF variants in SCN5A176. Variants that create novel binding sites for 

transcription factors have been implicated in affecting penetrance through 

altering gene expression, including a common non-coding polymorphism that 

alters the hepatic expression of SORT1177, contributing to myocardial infarction. 

Further WGS research is needed to identify non-coding variants that affect gene 

expression levels.  

 

Genes are often associated with more than two cis regulatory elements through 

topologically associated domains (TADs)178. These domains are thought to 

affect gene expression and mediate the effects of cis- and trans- regulatory 

factors through the 3D conformation of chromatin, and therefore variants in 

these domains can affect penetrance and expressivity of genotypes179,180. 

Although expression of some genes has been shown to be unaffected by 

changes in TADs181, the creation of new TADs has been implicated in the 

pathogenicity of rare duplications182. Alterations to 3D chromatin structure within 

and between TADs can lead to mis-alignment of genes, enhancers, and 

silencers, affecting transcriptional control of gene expression183. Variants in 

TAD loops may have no effect on healthy individuals but could affect disease-

presentation in those with an underlying monogenic variant184. Common genetic 

variants in cis regulatory domains can affect gene expression, and rare variants 

have been identified that disrupt the structure of the domain160,185, and both 
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could contribute to varying phenotypic expressivity of identical protein-coding 

sequences by causing changes in upstream mechanisms of gene regulation. 

Structural changes that affect transcription factor binding can lead to functional 

gene expression changes180, as seen in the EPHA4 locus, where deletions or 

duplications that overlap the TAD boundary can cause severe limb 

malformations186, while deletion of the entire locus does not187, thought to be 

due to differential gene-enhancer associations.  

 

2.34 Somatic mosaicism 
Postzygotic de novo mutations that occur during cell division can result in 

somatic genetic variation that differs between cells, leading to mosaicism188. 

Monogenic disease is usually less severe in mosaic individuals compared with 

those who have the same variant constitutively and, depending upon which 

cells or tissues contain the pathogenic variant, mosaicism can result in non-

penetrance or reduced expressivity189. Somatic mosaicism is suspected to be 

more widespread than is usually detected, especially when testing only a single 

tissue sample that may or may not contain the clinically relevant variant(s), 

although NGS is making it easier to identify lower-level genetic changes190,191. 

 

Mosaic somatic variants have been suggested to be more representative than 

germline variants of the true diversity and range of potential variation in human 

disease, as genotypes that are lethal in constitutive form can be identified when 

present as mosaic192,193. These include variants that cause osteogenesis 

imperfecta, where a mosaic father presented with mild symptoms, but the 

constitutive form was incompatible with life194, Proteus Syndrome195 and 

CLOVES Syndrome196, two overgrowth disorders that are lethal in constitutive 

form, and various mosaic aneuploidies197. Alternatively, mosaic individuals can 

display different or milder phenotypes compared to those with germline variants 

in the same gene. For example, mosaic individuals with a variant in HRAS 

present with benign keratinocytic epidermal nevi (“woolly hair”)198, whereas 

those with the same constitutive variant have the more severe Costello 

Syndrome199. Other diseases that have been demonstrated to show a milder 

phenotype when caused by somatic mosaicism include telangiectasis200 and 

polycystic kidney disease201. Mosaic genotypes can also display varying 

phenotypes that include segmental forms of the constitutive disease, such as 
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segmental neurofibromatosis type 1, where clinical manifestations are only seen 

in certain parts of the body202. As well as presenting with variable expressivity, 

mosaic variants can also be incompletely penetrant. In individuals with primary 

immunodeficiencies, 80% of mosaic individuals were clinically asymptomatic, 

with the remaining 20% exhibiting partial clinical symptoms48,203.  Similarly, 

mosaic chromosomal aneuploidy has been shown to be incompletely penetrant 

in population cohorts, with women who had 45X,46XX mosaicism presenting 

with normal reproductive lifespan and birth-rate, and no cardiovascular 

complications, compared to those with the non-mosaic genotype204. Unaffected 

parents with mosaic pathogenic variants can pass their genotype onto their 

offspring as a constitutive germline variant, so an incompletely penetrant or 

milder disease in one generation can cause a completely penetrant disease in 

the next205–209.  

 

Somatic mosaicism can also rescue an individual from disease, through cellular 

reversion that reduces the expressivity of a phenotype. For example, somatic 

reversions have been observed in several cell lineages from individuals with 

immunodeficiency caused by biallelic variants in DOCK8, including SNVs that 

correct or remove germline PTVs, and recombination events that attenuate or 

remove the deleterious variant from one allele. These somatic reversions 

improve overall survival time, but they are unable to completely eliminate the 

disease phenotype210. Somatic reversion has been observed in other primary 

immunodeficiencies211,212 and may partially explain incomplete penetrance48. 

Reversion of clinical phenotype in individuals with recessive dystrophic 

epidermolysis213 and Fanconi anaemia214,215 has also been identified. 

Remarkably, long-term remission from WHIM syndrome, caused by GoF 

variants in CXCR4, was seen in an adult who had undergone chromothripsis of 

chromosome 2 resulting in deletion of the disease allele in a single 

haematopoietic stem cell, leading to repopulation of the bone marrow with the 

haploinsufficient CXCR4 cells216,217.  

 

2.35 Epigenetics 
Epigenetic modifications are molecularly heritable changes that alter gene 

expression without altering the DNA sequence itself, including DNA methylation, 

histone modifications, and microRNA (miRNA) expression218. Differential 
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epigenetic modifications between individuals carrying the same pathogenic 

genotype can potentially account for incomplete penetrance and variable 

expressivity of phenotype. DNA methylation is important in the control of 

alternative splicing, prevention of cryptic initiation of transcription from 

alternative promoters, and X chromosome inactivation, all of which have been 

shown to affect progression of disease219. Studies of monozygotic (MZ) twins 

that are discordant for disease phenotypes have highlighted how epigenetic 

mechanisms could affect the penetrance or expressivity of disease220. For 

example, MZ twins with neurofibromatosis, caused by variants in NF1, showed 

significant discordance in the presence of tumours, and severity of scoliosis, 

suggesting that additional non-hereditary factors were modifying their 

phenotypes221. Similarly, one MZ twin with a pathogenic homozygous variant in 

GBA was diagnosed with Gaucher disease, while the other was clinically 

asymptomatic222,223, and differences in their epigenome were posited as a 

mechanism to explain this discordance. However, epigenetic studies are 

generally more challenging than genetic studies, as variation may be both 

tissue and time-specific, making it harder to elucidate how epigenetic 

mechanisms affect the penetrance of such genotypes. One suggested 

mechanism is that epigenetics may compensate for the presence of a 

deleterious variant, and this may segregate through several generations without 

any ill effects until the epigenetic modifications are no longer functional224. This 

has been seen in Xq24 microdeletions that are inherited from mothers with 

extremely skewed X-chromosome inactivation, which modifies the 

penetrance224. Skewed X inactivation is also suggested to be a cause behind 

the clinical heterogeneity in Klinefelter Syndrome225. Epigenetic mechanisms 

have also been suggested to partially compensate for deletions in heathy 

carriers of IMMP2L deletions, which cause ID and NDD, as reduced DNA 

methylation levels were seen in healthy carriers but not in affected offspring226.  

 

Another mechanism by which epigenetic changes may affect penetrance of 

monogenic diseases is via miRNAs, small non-coding RNAs that regulate gene 

expression227. One miRNA can influence multiple genes, and a gene can be 

affected by several miRNAs, potentially highlighting how variants in one may 

lead to multiple downstream phenotypic effects228. Differential miRNA 

expression can be caused by genetic variation, and variants within miRNA 
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could thus affect allelic expression and modify the penetrance or expressivity of 

monogenic diseases229. Expression of numerous miRNAs may affect the 

penetrance and expressivity in hereditary breast and ovarian cancer (HBOC)230; 

incomplete and age-dependent penetrance is common in carriers of pathogenic 

variants in BRCA1 and BRCA2, and variation in several miRNAs that bind the 

3’UTRs and downregulate expression of both genes have been linked with an 

increased risk of earlier onset cancer230–234.  

 

2.4 Global modifiers 

2.41 Threshold model of disease 
There may be a threshold that has to be met for manifestation of a clinical 

disease phenotype, and genetic and other factors may vary in their relative 

contribution to meeting this threshold for different diseases and in different 

individuals (Figure 2.4)235. Some highly penetrant monogenic disease variants 

may always be sufficient to push the genetic burden above the threshold of 

disease, although secondary variants may still contribute to severity236. For 

example, Dravet Syndrome (DS) is a highly penetrant and devastating form of 

childhood epilepsy caused by de novo loss-of-function variants in SCN1A237. 

Although DS displays considerable clinical heterogeneity within families, and 

severity may relate to background genetic variation238, there are no known 

modifiers that protect against the effects of the primary causal variant; the LoF 

variant alone is sufficient to push the individual above the threshold for disease, 

and other variants can only change the severity of the phenotype above this 

point. Individuals with monogenic variants that are causative of disease alone, 

and thus are already above the threshold for disease, can be further modulated 

by secondary monogenic variants in related genes that also cause the same 

phenotype and the accumulation of these PTVs is associated with a more 

severe phenotype, as the burden is pushed way beyond the threshold239. For 

example, in monogenic polycystic kidney disease, individuals with a PTVs in 

each of the causative genes, PKD1 and PKD2, present with a much more 

severe disease than those with just one PTV240. Many monogenic disease-

causing variants have been found to have secondary genes or loci that affect 

the severity of their related clinical phenotype236,241 (Table 2.3). 



 42 

 
 
Figure 2.4. Threshold model of disease. Some deleterious monogenic 

variants are sufficient to cause disease alone, and do not need any genetic 

modifiers to cause the disease phenotype. Other monogenic variants may be 

incompletely penetrant, and only display a disease phenotype when 

accompanied by other genetic or non-genetic factors that raise them above the 

clinical threshold for disease presentation. In the latter scenario, individuals may 

have the same underlying causal variant, but have very different phenotypic 

presentations depending upon their modifying factors. 
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Disease Causal 
gene 

Modifier 
gene/loci 

Phenotypic effect 

Cystic Fibrosis CFTR TGFB1242 

IFRD1243 

DCTN4244,245 

Increased severity of lung 

disease 

Earlier age of onset of chronic 

infection 

Sickle Cell disease HBB BCL11A246 

HBS1L-MYB246–

249 

CLCN6250 

OGHDL250 

Prolonged production of fetal 

haemoglobin, reduced 

disease severity 

 

Decrease in disease severity 

Long QT syndrome KCNQ1 

KCHN2 

SCN5A 

NOS1AP251 

 

Modulate risk of arrythmias 

X-linked retinitis 

pigmentosa 

RPGR IQCB1252 

RPGRIP1L253 

CEP29065 

Increase in disease severity 

Bardet-Biedl 

syndrome 

BBS10 MGC1203254 Increase in disease severity 

Joubert syndrome NPHP11 CEP290 

AHI1255 

Increase in disease severity 

(also been linked to 

monogenic disease alone, 

with conflicting results256–258) 

Spinal muscular 

atrophy 

SMN1 PLS3259 

SNM2260 

Reduction in disease severity 

Fragile X syndrome FMR1 COMT10 Reduction in disease severity 

Spinocerebellar 

Ataxia 17 

TBP STUB1261 Changes from non-penetrant 

to penetrant 

Phenylketonuria PKU SHANK gene 

family262 

Protective effect on cognitive 

development in untreated 

patients 

Table 2.3: Examples of monogenic conditions affected by a putative 
second genetic locus that modifies phenotypic expression.   
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In contrast, some monogenic disease-causing variants may be partially 

tolerated and transmitted through unaffected generations unnoticed, until they 

surpass the threshold for causing disease in the presence of other contributory 

factors. For example, large copy number variants (CNVs) are well known 

causes of NDDs, but some – such as recurrent 16p12.1 deletions263 – have 

been widely observed to be inherited from unaffected parents. In this case, 

penetrance of a phenotype that is severe enough to present clinically requires 

an additional variant that modulates the primary genetic variant138 supporting a 

“two-hit” model of NDDs264. Similarly, deleterious variants in CNTNAP2 and 

LRRC4C are insufficient to cause disease alone, but together may impair 

development and function of synapses265,266, suggesting a possible digenic 

mechanism for modulation of phenotypes267. In many cases, however, there are 

likely to be numerous factors that affect whether an individual lies above or 

below the disease threshold, including the overall deleteriousness of the 

primary causal variant(s), the level of expression of the causal gene or isoform, 

and other genetic and non-genetic modifiers (Figure 2.4). Global modifiers that 

might affect penetrance and expressivity include polygenic risk, genetic 

compensation, variation in NMD efficiency, family history, age, sex, and 

environmental factors. 

 

2.42 Polygenic risk  
The penetrance and expressivity of genotypes can be altered through the 

accumulated impact of many common genetic variants throughout the genome. 

The “omnigenic” model proposes that, due to their interconnected nature, 

variants in gene-regulatory networks that are expressed in disease-relevant 

cells or tissues may affect the functioning of “core” disease-related genes, due 

to effects on genes outside of the core pathways268, suggesting that many 

unrelated variants contribute to the presentation of a phenotype. While 

proposed as a factor in inheritance of complex traits, this polygenic architecture 

could potentially also affect the presentation of monogenic conditions in a 

similar way, through non-coding variation that affects overall gene regulation, 

and many loci have been shown to additively affect expressivity and penetrance 

of monogenic variants in model organisms269.  
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Genome-wide association studies (GWAS) have uncovered thousands of 

susceptibility loci for hundreds of diseases270, suggesting that polygenic 

background can either predispose80 or protect individuals from disease271. 

Polygenic background can be quantified into a polygenic risk score (PRS)272,273 

and potentially used as a tool for the prediction of overall disease risk in both 

monogenic and polygenic disorders274. PRS associations highlight the 

additional risk of polygenic components in affecting severity of monogenic 

disease, with polygenic risk being shared across monogenic variant carriers and 

the general population275. The effect of PRS has been widely explored to 

improve clinical interpretation of the penetrance of pathogenic variants across a 

range of monogenic conditions, including numerous familial cancer 

syndromes276. The penetrance estimates for individuals with a pathogenic 

BRCA1 or BRCA2 variant range from 45-85% for breast cancer, and 10-65% for 

ovarian cancer277,278, some of which can be explained by polygenic 

background275,279,280. Using a PRS generated from breast cancer GWAS, it has 

been shown that individual carriers of monogenic variants have risk differences 

of over 10% between the top and bottom PRS deciles275. Interestingly, the 

majority of the SNPs identified as polygenic risk variants are common non-

coding variants within regulatory regions, the target genes of which overlap with 

other known somatic cancer driver genes281. Polygenic risk can also have a 

large effect on phenotypic diversity, even within individuals who have a known 

monogenic variant, illustrating that the genetic architecture for many diseases 

can be viewed as a spectrum rather than a binary classification of clinically 

symptomatic vs asymptomatic235. While overall polygenic contribution to 

disease phenotype can be weaker in individuals with a monogenic variant282, it 

can be useful in predicting overall penetrance and risk stratification.  

 

2.43 Genetic compensation 
The phenomenon of genetic compensation (or genetic buffering), where another 

gene or genes in a network can functionally compensate for LoF variants, has 

been shown in model organisms283 and hypothesised to play a role in 

incomplete penetrance in humans284. The upregulation of related genes or 

pathways or the differential expression of compensating alleles can help 

suppress a disease phenotype285, either through a small number of 

compensatory mechanisms or via a global shift in gene expression. The 
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functional redundancy of genes and rewiring of affected genetic networks may 

affect the penetrance and expressivity of corresponding phenotypes, and the 

consequence of a pathogenic variant may be influenced by variation across the 

genome286 and explain why certain LoF variants are tolerated by some 

individuals but not others287,288. Haploinsufficiency caused by genetic variation 

can influence the expression of other genes in the same network, for the 

purposes of maintaining homeostasis or suppression of disease phenotypes289. 

The functional loss of one gene can be compensated for through functional 

redundancy290. Genes that contain high numbers of PTVs in general population 

cohorts and thus are less likely to cause adverse phenotypes were found to 

belong to larger gene families than genes that contain known pathogenic 

PTVs19, suggesting functional redundancy as a mechanism affecting 

penetrance291. Further research is needed to find robust evidence of this 

mechanism in humans. 

 

2.44 Nonsense mediated decay efficiency 
The efficiency of NMD varies between individuals292, which could act as a 

potential modifier of penetrance and expressivity of PTVs targeted by NMD 

irrespective of the specific causal variant(s)293. The variation in NMD efficiency 

across codons, genes, cells, and tissues can affect disease pathology94,294,295; 

in studies of model organisms, the variant alleles that caused milder 

phenotypes were those that exhibited more NMD, with reduction in NMD being 

correlated with a more severe phenotype289. In this case, NMD could either help 

trigger a compensatory response, or haploinsufficiency could produce a milder 

phenotype than accumulation of truncated proteins. Variants in genes that 

encode the NMD machinery, or that either downregulate or remove NMD 

activity, have been linked to several NDD and ID syndromes, including variants 

in UPF2296, UPF3A297, EIF4A3298, SMG8299, and RNPS1300, highlighting its 

importance in development and phenotypic expression. Common 

polymorphisms within the NMD pathway have been suggested to cause 

differences in NMD efficiency301,302, which could help explain differences in 

expressivity of diseases caused by haploinsufficiency, with severity linked to 

whether they trigger NMD or not. Interindividual variability in NMD efficiency has 

the ability to alter the expressivity of genetic variants, through converting the 

cause of the disease phenotype from dominant negative to haploinsufficiency, 
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or vice versa303. For example, two patients with the same PTV in the DMD gene 

displayed different clinical phenotypes, with one diagnosed with Duchenne 

muscular dystrophy, and the other with the milder Becker muscular dystrophy; 

here, the difference in phenotype was suspected to be caused by weaker NMD 

efficiency in the less severely affected patient, which resulted in production of 

the damaged but still partially functional DMD protein304,305.  

 

2.45 Family history 
Family history can be seen as a crude but effective proxy for the combined 

effect of many shared genetic and environmental modifiers of disease 

phenotypes. In many cases, the pathogenicity and penetrance of variants in 

monogenic diseases has only been determined through studies of large families 

with multiple affected individuals, which can make it difficult to disentangle the 

relative contribution of different modifiers. Family history is a well-known major 

risk factor for hereditary cancer syndromes and the number of affected relatives 

increases the risk of a pathogenic variant carrier developing cancer306. Although 

the evidence base for estimating penetrance in individuals without a family 

history is currently very limited307, individuals identified with a pathogenic variant 

for a heritable monogenic disease but without a family history of that disease 

may have a lower penetrance than those with a family history17,308. 

 

Evaluating genetic differences between affected and unaffected carriers in the 

same family – such as de novo variants or unique combinations of modifiers – 

can be informative for understanding penetrance. It has been shown that 

children with monogenic NDDs have an excess of other damaging genetic 

variants compared to their either mildly clinically affected or asymptomatic 

carrier parents, with the extra genetic burden being enriched in genes that are 

highly expressed within the brain and in neurodevelopmental pathways236. 

Similarly, children with 22q11.2 deletion syndrome display a wide variability in 

IQ scores that is highly correlated with the scores of their immediate relatives309. 

The IQ of individuals affected by 22q11.2 deletion syndrome follows a normal 

distribution curve, similar to that of the general population, only 30 points 

lower310. The significant association seen between parental and proband 

IQ311,312 suggests inherited genetic variants associated with intelligence may 

alleviate some of the deleterious impact of the 22q11.2 deletion on phenotypic 
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presentation. The heritability of intelligence may be driven either by the 

cumulative effect of many common small-effect variants, similar to the 

heritability within population cohorts313, or by a small number of rare high-effect 

variants. Similarly, individuals carrying 16p11.2 deletions present with variable 

phenotypic diversity308,314, and are frequently present in ‘healthy’ general 

population cohorts315, albeit with a range of cognitive and neuropsychiatric 

difficulties, despite none of them reaching traditional clinical diagnosis threshold 

levels316. Within these carrier individuals, the best overall predictor of phenotype 

was that of the average of their parental phenotype for the traits of interest, with 

individuals displaying deleterious effects relative to their phenotypic family 

background317,318.   

 

2.46 Age  
It can be argued that penetrance is an almost meaningless concept without 

specifying an age threshold, as many diseases do not present until later in life. 

As we age, gene expression and chromatin structure across the genome 

change, which can increase the penetrance or expressivity of 

disease319,320.Expression of certain genes can cause change in a predictable 

way throughout life, with some only being expressed in the feotus or during 

early childhood, and others only after this developmental period. For example, 

the relative proportion of two protein subunits in the NMDA receptor alters with 

age due to the varying expression levels of the two genes, GRIN2A and 

GRIN2B, which can alter phenotypic expression of deleterious variants in these 

genes; prenatally expressed GRIN2B is linked with severe cognitive defects 

from birth, while postnatally expressed GRIN2A is linked with epilepsies in 

childhood and schizophrenia in adults108.  Studies of individuals who are below 

the age-penetrant threshold for known age-dependent diseases could explain 

why some pathogenic variants are found in apparently asymptomatic population 

cohorts. Classical examples of conditions where penetrance increases with age 

include cancer predisposition syndromes such as Li-Fraumeni321, Lynch 

syndrome322, and Hereditary Breast and Ovarian Cancer (HBOC)234, where 

penetrance is affected by the accumulation of DNA damage over time323. Meta-

analysis studies have shown that the cumulative breast cancer risk for BRCA1 

and BRCA2 pathogenic variant carriers by age 70 is 57-65% and 45-49% 

respectively234,324, highlighting the difficulties with predicting the course of 



 49 

disease even in known pathogenic variant carriers, and the importance of 

considering other genetic and environmental factors279. Age-dependent 

penetrance is also seen in diseases caused by the slow accumulation of 

aberrant proteins, where variation can affect the rate at which the protein 

accumulates325. For example, retinitis pigmentosa, has been suggested to be 

caused by retention of misfolded proteins, which leads to up-regulation of genes 

that encode for proapoptotic machinery, and leads to apoptosis of 

photoreceptor cells, accumulating damage over time and eventually reaching 

disease threshold and causing penetrant disease326. Age-dependent 

penetrance may also be caused by gradual loss of neurons, causing the 

associated disease phenotype when the number of surviving cells drops below 

a certain threshold or overcomes brain plasticity327. For example, progressive 

and late occurring neurological manifestations in patients with DNMT1 variants 

may originate from the gradual loss of DNA methylation over time, affecting 

adult neurogenesis219.  

 

The penetrance of age-dependent variants presents a diagnostic and 

prognostic challenge for individuals with such genotypes328. Previously, testing 

for many conditions early in life was not possible, and so little is known about 

long term effects of mildly deleterious variants. Variants in HFE cause 

hereditary hemochromatosis, which can lead to iron overload in adulthood, and 

was previously thought to be an adult-onset condition. However, healthy cohort 

studies of children have shown that the effects of homozygous variants in HFE 

can be seen in childhood, and that the cumulative effect of excess iron over a 

lifetime may affect the penetrance of numerous iron-related diseases329. Recent 

population studies of adults have also shown substantially higher morbidity in 

homozygous HFE variant carriers with increasing age330. The early identification 

of individuals at risk can help with monitoring disease progression and 

introducing timely interventions (such as blood donation).  

 

2.5 Sex 
Sex can affect the penetrance and expressivity of some genetic disorders, most 

obviously when deleterious genetic variants occur on the X chromosome, with 

hemizygous males more phenotypically affected than heterozygous females. 

Although differences in the penetrance of inherited variants based on sex have 
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been reported in a variety of disorders25, mechanisms behind sex-dependent 

penetrance outside those that occur on the X chromosome are mostly unknown. 

However, there are widespread sex-biased differences in gene expression331, 

so differences in penetrance of phenotypes is also likely to be common. 

Females are less likely to be diagnosed with neurodevelopmental disorders 

than men, with a fourfold increase in the number of males diagnosed with ASD 

compared to females332,333, suggesting that there may be a “female protective 

model” which affects the penetrance of such conditions334. Girls diagnosed with 

ASD have an increased number of CNVs compared to boys with the same 

diagnosis, and asymptomatic mothers with children diagnosed with NDDs or 

ASD had a higher genetic burden of deleterious variants than fathers317, 

suggesting there may be some other cause for the incomplete penetrance and 

variable expressivity in females compared to males. However, females are 

ascertained at a closer frequency to males when they are more severely 

affected, suggesting some bias in clinical ascertainment due to differing 

phenotypic presentations between the sexes335, supported by the fact that 

males were more likely to be referred for genetic testing than females carrying 

the same autosomal variant336.  

 

2.6 Environment 
The environment can affect disease penetrance or expressivity in both a 

negative and positive manner and includes diet, drugs, alcohol intake, physical 

activity, ultraviolet light, in utero exposures, education, and socio-economic 

status, among many others. Epigenetic factors can provide a mechanistic link 

between the environment and gene expression337–339 and studies of the human 

microbiome can also explain some extreme variability in genotype-phenotype 

presentation340. However, although gene-environment interactions are likely to 

be widespread, they are often extremely hard to prove as the complete and 

systematic collection of an individual’s environment is almost impossible, and 

detailed relevant exposure data are rarely available alongside genetic data. 

 

Inborn errors of metabolism perhaps provide the simplest examples of 

monogenic diseases where both a pathogenic genotype and an environmental 

exposure are required to cause disease341. A clear example of dietary impact on 

phenotypic variation is phenylketonuria, a rare autosomal recessive disease 
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that is usually detected through newborn screening, whereby individuals who 

have damaging variants in PAH can be put on a low phenylalanine diet to avoid 

serious disease progression342,343. Later onset monogenic disease penetrance 

can also be affected by the environment, as seen in several cancer syndromes, 

including colorectal cancer, where inherited genetic variants interact with dietary 

variables and BMI to confer overall risk344. Cancer susceptibility can also be 

altered through gene-environment interactions such as smoking or sunburn, 

that can accelerate the accumulation of somatic variants that contribute towards 

tumorigenesis345,346. Similarly, environmental exposure to cigarette smoke, air 

pollution, and other airborne toxins can cause accumulation of unfolded or 

misfolded proteins and therefore affect the penetrance or expressivity of chronic 

lung disease347. Individuals who carry a damaging monogenic variant may also 

be more susceptible to some environmental exposures, which can affect 

phenotypic severity348. For example, cystic fibrosis is characterized by 

progressive damage to the lungs, and non-genetic factors may account for up to 

50% of the clinical variation seen349. Environmental factors such as smoking, air 

pollutants, temperature and high fat diets have all been shown to affect severity 

and progression of disease348–351, and the specific CFTR variant can also 

modulate how much environmental impact has on disease severity352. 

Environmental factors can also affect presentation of disease in primary atopic 

disorders, commonly seen as monogenic allergic disorders, where diet, 

microbiome at the epithelial-environment interface, presence/extent of infection, 

and psychological stress can all affect the penetrance or expressivity of the 

related phenotype353.  

 

2.7 Challenges within determining penetrance and 

expressivity 

2.71 Incomplete penetrance challenges definitions of pathogenicity 
Determining the penetrance and expressivity of a variant can be difficult 

because it is sensitive to ascertainment context, and many studies are designed 

to enable the discovery of causative pathogenic variants in clinically affected 

individuals rather than to analyse effect sizes in populations354. This has been 

demonstrated in recent studies that stress the importance of cohort background 

for the determination of penetrance16,355. Investigating clinically-classified 
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pathogenic variants in large population cohorts can provide additional 

information about penetrance and expressivity356, or determine whether variants 

or genes have been misclassified17. However, finding low penetrance 

pathogenic variants in large numbers of asymptomatic individuals challenges 

the concept of pathogenicity, particularly in the absence of known modifiers. 

What does it mean to describe a genotype as pathogenic if it is frequently found 

in individuals without disease and no explanation as to why? Reclassification of 

previously reported pathogenic variants occurs frequently, with variants first 

classified prior to the release of large population datasets showing a higher rate 

of reclassification357. A study reappraising pathogenic variants in Brugada 

syndrome showed that only one gene (SCN5A) out of 21 could be definitively 

identified as causal358, and another study has raised doubt over the involvement 

of 11/58 genes thought to cause inherited monogenic retinal disease359. 

Variants that show low penetrance or a wide range of expressivity can also be 

potentially classified as risk alleles rather than causative variants. Some CFTR 

variants have been classified this way, with variations in cystic fibrosis 

phenotypes from very mild to very severe, and over 1900 different genotypes 

reported352,360,361. Many genotype-phenotype associations are only reported 

once, or they are reported several times but with inconsistent results, due to 

differences in data collection, differences in methods, or differences in cohort 

ascertainment. Associations can also differ due to poor annotation of coding 

genes, lack of relevant functional information for non-coding regions, 

sequencing, and annotation errors, as well as varying penetrance and 

expressivity, making a simple binary classification of many genetic variants very 

difficult.   

 

2.72 Monogenic versus polygenic disease 
An overlapping genetic basis between complex traits and monogenic conditions 

is becoming increasingly apparent across the genome. Deleterious variants in 

genes causative of monogenic disease can be further dysregulated by non-

coding variants that are associated with common traits, and monogenic forms of 

numerous common complex diseases have been identified271,362,363. While this 

can help identify and prioritize genes for further future disease analysis, it can 

cause considerable complexity when it comes to determining genotype-

phenotype relationships364. The prevalence of incomplete penetrance and 
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variable expressivity raises questions as to what constitutes a disease state as 

opposed to extremes of normal phenotypic variation, especially within 

conditions that show significant clinical heterogeneity308, with many traits that 

constitute a clinical phenotype being the extreme end of either side of the bell 

curve of continuous distribution in the general population. Therefore, defining 

the penetrance of a genotype can be difficult, especially when there is ambiguity 

as to what defines the “disease state”, particularly for disorders where clinical 

features are only identified when they reach above a certain threshold365.  

 

2.73 Genetic modifiers are hard to identify 
Relatively few studies have investigated low penetrant rare variants in detail or 

identified why such variants cause disease in one individual and not another. 

Despite increasing numbers of sequenced individuals, identification of genetic 

modifiers for monogenic conditions remains challenging. By definition, carriers 

of rare variants that cause monogenic conditions will be rare, with even fewer 

individuals having identical genetic modifiers that explain incomplete 

penetrance or variable expression. NGS approaches involving bioinformatic 

algorithms, including pathogenicity score-based prioritisations, can produce 

conflicting results, and often need manual curation to identify candidate 

variants. A computational approach that could comprehensively analyse and 

prioritize candidate variants and potential modifiers would be a great advantage. 

Even in large population cohorts genome-wide analysis of genetic interactions 

lacks statistical power, and can be easily affected by confounders366. Many 

genetic modifiers are likely to be located in non-coding regions, making it 

challenging to determine their direct functional effect on gene expression, 

especially as much of the genome is found to be bound by at least one 

transcription factor, many of which have no known function yet171. Improved 

computational approaches to identify candidate modifier gene interactions 

across the genome are needed367, as well as identification of functional non-

coding regions and the genes that they affect368, and machine learning 

approaches such as DeepSEA and Enformer369 could improve annotation of 

these regions370.   

 

 

 



 54 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 55 

3. Chapter three: Rare genetic variants in dominant 

developmental disorder loci in UKB 
 

 

3.1 Introduction 
Many rare diseases are caused by deleterious variants in thousands of 

monogenic disease genes9. However, not all individuals with these variants 

share the same clinical phenotypes; some don’t appear to be affected at all, 

whereas others are very severely affected48. Monogenic variants can cause 

different effects in different individuals272. The range of phenotypes caused by 

deleterious variants in the same gene can be explained by pleiotropy, 

incomplete penetrance, and variable expressivity17. Penetrance (i.e. whether an 

individual with a disease-causing genotype displays the corresponding clinical 

phenotype) is generally binary; either a variant is penetrant and causes the 

clinical phenotype associated with that genotype, or it is not45,48. In contrast, 

variable expressivity (i.e. the range of phenotypes that can be observed in 

affected individuals) is generally continuous, e.g. from mild to severe46. 

Although incomplete penetrance and variable expressivity are distinct concepts, 

in practice they can be hard to separate, especially when considering the 

continuous spectrum of phenotypes in populations. 

 

As most disease-causing monogenic variants have been identified through 

small clinical cohorts, including families with multiple affected individuals, 

penetrance of these variants is often over-estimated. Investigating the effect of 

these variants in the general population is therefore important to give a more 

accurate view of the penetrance in clinically unselected individuals and families. 

It has been suggested that many of the primary symptoms of rare disease are 

actually extremes of normally distributed phenotypes in the general 

population9,371. Large, well genotyped population cohorts with deep phenotypic 

data gives us the ability to investigate the spectrum of phenotypes of individuals 

with variants in known monogenic disease-causing genes. Phenotypic 

heterogeneity and variability are a major concern for rare Mendelian disorders, 

where they can lead to incorrect or delayed diagnoses3,372.  
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Many severe developmental disorders (DD) manifest from birth or early 

childhood and are caused by rare damaging variants in around 2,000 genes 

and loci36. Pathogenic variants in these genes have been identified primarily 

through phenotype-led clinical studies of affected individuals and families17. Due 

to extensive genetic and phenotypic heterogeneity, large multigene panels are 

increasingly being used for diagnostic testing, often through panel-based virtual 

analysis of whole exome or genome sequence data. However, little is known 

about what effect, if any, deleterious variants in these genes have on adults in 

the general population or their life-long implications. In this study, using genetic 

and phenotypic data from UK Biobank (UKB)28, we investigated whether adults 

with rare deleterious variants in genes and loci known to cause autosomal 

dominant forms of DD have any developmentally-relevant phenotypes.  

 

3.2 Materials and Methods 

3.21 UK Biobank cohort 
UKB is a population-based cohort from the UK with deep phenotyping data and 

genetic data for around 500,000 individuals aged 40-70 years at recruitment. 

Individuals provided a variety of information via self-report questionnaires, 

cognitive and anthropometric measurements, and Hospital Episode Statistics 

(HES) including ICD9 and ICD10 codes. Genotypes for single nucleotide 

polymorphisms (SNPs) were generated using the Affymetrix Axiom UK Biobank 

array (~450,000 individuals) and the UK BiLEVE array (~50,000 individuals). 

This dataset underwent extensive central quality control 

(http://biobank.ctsu.ox.ac.uk). A subset of ~200,000 individuals also underwent 

whole exome sequencing (WES) using the IDT xGen Exome Research Panel 

v1.0; this dataset was made available for research in October 2020. Detailed 

sequencing and variant detection methodology for UKB is available at 

https://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=170. The UKB resource 

was approved by the UK Biobank Research Ethics Committee and all 

participants provided written informed consent to participate.  

 

3.22 Gene selection 
We used the clinically curated Developmental Disorders Gene-to-Phenotype 

Database (DDG2P) to select genes known to cause monogenic DD. The 
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database (https://www.deciphergenomics.org/ddd/ddgenes - accessed on 27 

November 2020) was constructed from published literature and provides 

information relating to genes, variants and phenotypes associated with DDs, 

including mode of inheritance and mechanism of pathogenicity36. We initially 

included all genes that had been annotated as a “confirmed” or “probable” 

causes of autosomal dominant DD (n=599). Further subsets of these genes 

were selected for sensitivity analyses, including: a panel of 325 genes that are 

known to cause DD through a loss-of-function (LoF) mechanism; a more 

stringent panel of 125 of these haploinsufficiency genes that were significantly 

enriched for damaging de novo LoF mutations in a recent analysis of 31,058 DD 

probands373; and a small panel of 25 clinically well-established genes with >30 

likely pathogenic de novo LoF mutations in the same study373 (see Figure 3.1 

and Appendix Table 7.3.1).  
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Figure 3.1. Flow diagram outlining selection process for DD genes in each 

subset that were used for analysis. DDG2P = Developmental Disorders 

Genotype-to-Phenotype database; DD = Developmental Disorder; LoF = Loss 

of Function variants; 31K DD trios = 31,058 parent-offspring families with 

developmental disorders (12: (Kaplanis et al. 2020)). 

 

3.23 Variant selection 
To investigate the penetrance of likely deleterious single nucleotide variants 

(SNVs) and insertions/deletions (indels) in known autosomal dominant DD 

genes, we used WES data from 200,632 individuals in UKB to identify 

individuals with a rare SNVs and/or indels in any of these genes. For most of 

our analyses, rare was defined as any variant that occurred in 5 or fewer 
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individuals in the UKB cohort; we also investigated the effect of changing this 

threshold to n=1, n=10, n=50 and n=100 individuals. We included variants that 

had individual and variant missingness <10%, minimum read depth of 7 for 

SNVs and 10 for indels, and at least one sample per site passed the allele 

balance threshold > 15% for SNVs and 20% for indels. We selected three 

functional classes of variant in canonical transcripts based on annotation by the 

Ensembl Variant Effect Predictor37:  

(1) Likely deleterious LoF variants: we defined a LoF variant as one that is 

predicted to cause a premature stop, a frameshift, or abolish a canonical 

splice site; only those variants deemed to be high confidence by the 

Loss-Of-Function Transcript Effect Estimator (LOFTEE) were retained 

(https://github.com/konradjk/loftee).  

(2) Likely deleterious missense variants: missense variants with a REVEL 

score > 0.7374. A further set of likely deleterious missense variants were 

identified using CADD375, with cut offs of 20, 25, and 30. 
(3) Likely benign synonymous variants. 

Individuals with variants in group (1) were excluded from groups (2) and (3); 

individuals with variants in group (2) were excluded from group (3). Following 

variant selection, one gene  (DNMT3A) was removed from further analysis as 

the variants in this gene – which is known to be strongly linked with blood 

cancer376 – had a significantly lower allele balance, suggesting substantial 

somatic mosaicism (Figure 3.2). Other genes linked to blood cancer such as 

ASXL1 and TET3 were examined, but showed no difference in allele balance 

compared to the remainder of the LoF variants identified. LoF variants in the 

most stringent 25 gene subset were visually confirmed using the Integrative 

Genomics Viewer (IGV).  
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Figure 3.2: Histogram of variant allele balance, highlighting variants in 

DNMT3A. The average VAF of DNMT3A variants (A) is significantly below that 

of the average of the remaining LoF variants (B).   

 
To investigate the penetrance of multigenic copy number variants (CNVs) 

overlapping known DD loci, we used SNP-array data from 488,377 genotyped 

individuals in UKB and PennCNV377 (version 1.0.4) to detect multigenic CNVs 

overlapping 69 published CNVs strongly associated with developmental 

delay378,379. Log R ratio (LRR) and B-allele frequency (BAF) values for 805,426 

genome-wide SNP probe sets were provided by UKB, and an in-house script 

was used to convert these data to PennCNV input signal files. The PennCNV 

Hidden Markov Model (HMM) transition matrix was trained using 250 random 

UK Biobank samples using PennCNV-train. Population Frequency B Allele 

reference data (PFB) were generated using 1,000 random UK Biobank 

samples. PennCNV-test was then used to detect regions in a duplication or 

deletion state in LRR/BAF Hidden Markov Model (HMM) with the generated 

PFB and transition matrix. An individual was classified as having a multigenic 

DD deletion or duplication if the region detected using PennCNV reciprocally 

intersected the published region by at least 50%. We plotted LRR/BAF data for 

each call in each of these regions, and carried out visual inspection of each 

event, and false positives and single gene CNVs were excluded. A list of 

included CNVs is provided in Appendix 7.3.2. 
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3.24 Statistical analysis 
We performed both individual gene and gene panel burden tests across our 

different gene subsets. We grouped individuals into one of five groups 

depending upon the type of variant they carried (LoF, missense or synonymous 

variants in one or more autosomal dominant DD genes; or deletions or 

duplications overlapping published DD multigenic CNVs). Association tests 

were limited to individuals in UKB with genetically defined European ancestry 

that were unrelated up to third-degree relationship (184,142 with WES data; 

380,029 with SNP-array data) and were controlled for age, sex, recruitment 

centre and 40 principal components. Variant burden association tests in gene 

panels and multigenic CNVs were performed using STATA (version 16.0), using 

linear regression for continuous phenotypes and logistic regression for binary 

phenotypes. Associations were tested between each group of individuals and 

other individuals in the UKB cohort without any of the classes of rare variation 

defined above. Information from HES codes, self-report questionnaires and 

cognitive tests taken at recruitment was used for the phenotypic information. 

Associations were tested for 22 UKB phenotypes selected based on their likely 

relevance to developmental disorders, including:  

• Medical: epilepsy (self-reported or ICD10 codes G40); ever reported a 

mental health issue (self-reported through questionnaire); diagnosed with 

“Child DD” (including intellectual disability (ICD10 codes F70-73), 

epilepsy (G40), developmental disorders (F80-84) and congenital 

malformations (Q0-99)); or diagnosed “Adult DD” (including 

schizophrenia, (self-reported or ICD10 codes F20-29) and bipolar 

disorder (self-reported or ICD10 codes F30-F39)). 

• Reproductive: infertility, number of pregnancies, number of stillbirths, 

number of children fathered. 

• Physical: height, body mass index (BMI) (inverse normalised).  

• Cognitive: fluid intelligence (Field ID: 20016), reaction time (inverse 

normalised, Field ID: 20023), time taken on pairs test (Field ID: 20131), 

numeric memory (inverse normalised, Field ID: 20240), age left 

education, number of years in education, has a degree. 

• Socioeconomic: in employment, unable to work (both Field ID: 6142), 

income (Field ID: 738), Townsend Deprivation Index (TDI) (Field ID: 

189). 
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We used the Bonferroni method to calculate the p-value for statistically 

significant results, to correct for multiple testing. As we tested 22 traits, our 

Bonferroni-corrected p-value was 0.002.  

 

3.3 Results 

3.31 Rare deleterious variants in UKB 
Although each gene individually accounts for extremely rare forms of DD and 

has a small burden of rare deleterious variants, together they account for a 

large portion of DD diagnoses and have a surprisingly high burden of rare 

deleterious variants in UKB. In 184,477 unrelated European individuals with 

WES data in UKB and across 599 autosomal dominant DD genes: 9103 

individuals carry a rare (n<5) LoF variant, 25,288 individuals carry a rare 

missense variant with REVEL > 0.7, and 79,959 individuals carry a rare 

synonymous variant. As the gene panel becomes smaller and more stringent, 

the burden of rare deleterious variants decreases; for example, 3602, 1327 and 

167 individuals in UKB carry rare LoF variants in smaller more stringent subsets 

of 384, 125 and 25 monogenic DD genes, respectively. In 450,274 individuals 

with SNP-array data in UKB and across 69 known DD loci, 4922 individuals 

carry large deletions, and 7054 individuals carry large duplications.  

 

3.32 Related sub-clinical phenotypes 
We performed gene panel (including 599 autosomal dominant genes) and 

multigenic copy number (including 53 deletions/duplications syndromes) burden 

tests for 22 traits in UKB selected to be of relevance (in adults) to 

developmental phenotypes. Bonferroni-corrected significant associations were 

found across most phenotypes in individuals carrying likely damaging variants 

compared with the rest of the UKB cohort (Table 3.1 and Figure 3.3 and 3.4). 

Individuals carrying these variants generally had lower cognitive performance 

than the rest of the cohort, with reduced fluid intelligence (LoF group beta:          

-1.059), slower reaction times (LoF group beta: +0.043), lower numeric memory 

scores (LoF group beta: -0.068) and longer pairs matching times (LoF group 

beta: +0.122). They also completed fewer years in education, left education at 

an earlier age and were less likely to have a degree. Medically, individuals were 

more likely to have reported having a mental health issue or been diagnosed 
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with either a childhood DD (including mild-severe intellectual disability, epilepsy, 

autism, ADHD, and congenital malformations) or an adult DD-related diagnosis 

(including schizophrenia and bipolar disorder). Individuals were also more likely 

to be shorter, have a higher BMI and have had fewer children (though the latter 

association was only significant in men). Individuals also had significant 

socioeconomic disadvantages, being less likely to be employed or be able to 

work, having a lower income and a higher Townsend Deprivation Index (TDI). 

Across all phenotypes tested, we observed a trend corresponding to the likely 

deleteriousness of the variants; the largest effect was generally observed in the 

group of individuals with multigenic deletions, followed by multigenic 

duplications, then LoF variants and finally missense variants in one (or more) 

DD genes. These trends were robust to using different CADD thresholds to 

select missense variants (Table 3.2) and to removing individuals with a 

diagnosed childhood developmental disorder (“Child DD”, as defined in 

Methods, n = 3,132; see Appendix 7.3.3). In contrast, individuals with only rare 

synonymous variants in DD genes showed no statistically significant difference 

in any phenotype compared to the remainder of the cohort, as expected for 

likely benign variants, suggesting that most of the confounding caused by 

population sub-structure was appropriately controlled.  

 

 

 



 64 

 
Figure 3.3. Summary of gene panel association tests for carriers of likely 
deleterious variants in known autosomal dominant DD loci for binary 
traits. Associations are shown for individuals carrying deletions or duplications 

overlapping 69 known DD syndromic loci, or rare (n<5) LoF, missense 

(REVEL>0.7) or synonymous variants in any of 599 known autosomal dominant 

DD genes, compared with the remaining unrelated white Europeans in UKB. 

Lines indicate 95% confidence intervals. Unbroken lines indicate statistically 

significant, i.e. below Bonferroni-corrected p-value; dashed lines indicate above 

this value.  
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Figure 3.4: Summary of gene panel association tests for carriers of likely 
deleterious variants in known autosomal dominant DD loci for continuous traits. 
Associations are shown for individuals carrying deleterious or duplications overlapping 

69 known DD syndromic loci, or rare (n<5) LoF, missense (REVEL > 0.7), or 

synonymous variants in any of 599 known autosomal dominant DD genes, compared 

with the remaining unrelated white Europeans in UKB.  
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Table 3.1: Gene panel association test results: 22 phenotypes tested in individuals in UK Biobank carrying deletions or duplications 

overlapping 69 known DD syndromic loci, or rare (n<5) LoF, missense (REVEL>0.7) or synonymous variants in any of 599 known 

autosomal dominant DD genes were tested. 

Dataset: 
Deletions  

overlapping 69 DD loci 
Duplications  

overlapping 69 DD loci 
LoF variants  

in 599 DD genes 
Missense variants  
in 599 DD genes 

Synonymous 
variants in 599 DD 

genes 

Binary Traits OR P Value  OR  P Value OR  P Value OR  P Value OR  P Value 

In employment 0.728 3.356E-10 0.814 7.580E-07 0.907 5.778E-04 0.988 0.500 1.012 0.323 
Have a degree 0.624 2.052E-28 0.748 6.684E-17 0.833 6.134E-15 0.925 1.368E-07  1.028 6.115E-03 
Have an epilepsy diagnosis 1.689 2.179E-03 1.292 0.113 1.394 0.003 1.068 0.403 0.917 0.131 
Diagnosed with Child DD 1.588 1.827E-04 1.279 0.030 1.316 5.056E-04 1.123 0.031 1.018 0.645 
Diagnosed with Adult DD 1.502 1.359E-06 1.395 4.027E-06 1.158 7.061E-03 1.062 0.092 1.003 0.914 
Is unable to work 1.921 1.093E-16 1.554 6.663E-10 1.344 8.573E-08 1.134 8.459E-04 0.977 0.403 
Continuous Traits Beta  P Value Beta  P Value Beta  P Value Beta:  P Value Beta  P Value 
Fluid Intelligence -0.592 3.834E-20 -0.347 2.534E-11 -0.159 1.152E-06 -0.089 1.207E-05 0.002 0.865 
Number of years in education -1.139 7.878E-30 -0.755 1.496E-19 -0.391 4.589E-12 -0.189 1.323E-07 0.064 0.009 
Income -0.346 1.850E-45 -0.217 1.042E-26 -0.127 1.599E-20 -0.058 2.675E-11 0.012 0.040 
Reaction time 0.199 1.086E-25 0.079 6.277E-07 0.043 8.179E-05 0.013 0.060 -0.005 0.290 
Pairs test score 0.285 1.345E-05 0.315 7.174E-09 0.122 9.928E-04 0.055 0.019 -0.022 0.172 
Townsend Deprivation Index 0.527 8.628E-19 0.485 9.962E-23 0.279 5.596E-17 0.090 1.855E-05 0.020 0.160 
Age left education -0.214 2.158E-05 -0.218 4.345E-07 -0.110 2.892E-04 -0.044 0.025 0.003 0.806 
Height -1.608 1.474E-36 -0.613 7.254E-09 -0.449 4.809E-10 -0.251 3.725E-08 0.044 0.164 
Reported a mental health issue 0.071 1.629E-03 0.023 0.222 0.041 1.047E-03 0.015 0.053 -0.001 0.848 
Numeric memory score -0.188 1.765E-06 -0.054 0.096 -0.068 1.032E-03 -0.025 0.053 -0.002 0.813 
BMI 0.157 3.164E-15 0.112 1.766E-11 0.032 4.611E-03 0.016 0.024 -0.003 0.608 
Number of children fathered -0.216 1.048E-09 -0.100 6.985E-04 -0.069 1.135E-03 -0.018 0.168 -0.011 0.210 
Number of pregnancies -0.041 0.358 -0.039 0.292 -0.043 0.076 -0.024 0.120 0.007 0.499 
Number of stillbirths 0.005 0.381 0.009 0.066 0.004 0.245 0.004 0.039 0.001 0.430 
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Table 3.2: Gene panel association test results for deleterious missense variants across different CADD bins

  CADD > 20  CADD > 25 CADD > 30 

Phenotype - P Value 
Lower 
95% CI 

Upper 
95% CI - P Value 

Lower 
95% CI 

Upper 
95% CI - P Value 

Lower 
95% CI 

Upper 
95% CI 

Binary Traits:  OR:       OR:       OR:       

In employment 1.004 7.242E-01 0.981 1.027 0.992 5.362E-01 0.967 1.017 0.972 3.096E-01 0.920 1.027 

Have a degree 0.969 9.256E-04 0.951 0.987 0.941 1.233E-08 0.922 0.961 0.929 1.295E-03 0.889 0.972 
Have an epilepsy diagnosis 1.057 2.896E-01 0.954 1.172 1.006 9.151E-01 0.898 1.127 1.117 3.550E-01 0.883 1.414 

Diagnosed with Child DD* 0.968 3.789E-01 0.902 1.040 1.010 7.990E-01 0.934 1.093 1.052 5.495E-01 0.890 1.244 

Diagnosed with Adult DD* 1.007 7.833E-01 0.961 1.054 1.050 5.900E-02 0.998 1.105 1.107 6.111E-02 0.995 1.232 
Is unable to work 1.055 3.448E-02 1.004 1.109 1.092 1.509E-03 1.034 1.153 1.088 1.514E-01 0.969 1.222 

Continuous Traits: Beta:       Beta:       Beta:       

Fluid Intelligence -0.043 1.096E-03 -0.069 -0.017 -0.074 4.916E-07 -0.102 -0.045 -0.090 4.384E-03 -0.152 -0.028 
Number of years in 
education -0.087 1.922E-04 -0.132 -0.041 -0.153 2.754E-09 -0.203 -0.102 -0.207 1.817E-04 -0.315 -0.099 

Income -0.032 7.494E-09 -0.043 -0.021 -0.050 8.536E-16 -0.062 -0.038 -0.065 1.187E-06 -0.091 -0.039 

Reaction time 0.017 1.113E-04 0.008 0.026 0.018 2.537E-04 0.008 0.028 0.018 9.647E-02 -0.003 0.038 
Pairs test score 0.034 2.687E-02 0.004 0.063 0.042 1.347E-02 0.009 0.075 0.094 9.163E-03 0.023 0.165 
Townsend Deprivation 
Index 0.070 3.479E-07 0.043 0.097 0.093 8.451E-10 0.063 0.123 0.136 2.778E-05 0.073 0.200 

Age left education -0.026 3.721E-02 -0.051 -0.002 -0.035 1.269E-02 -0.063 -0.007 -0.012 7.012E-01 -0.071 0.048 

Height -0.144 1.098E-06 -0.202 -0.086 -0.206 3.383E-10 -0.271 -0.142 -0.283 5.914E-05 -0.421 -0.145 
Reported a mental health 
issue 0.000 9.633E-01 -0.010 0.010 0.009 1.013E-01 -0.002 0.021 0.026 3.312E-02 0.002 0.050 

Numeric memory score -0.012 1.563E-01 -0.028 0.005 -0.019 4.151E-02 -0.037 -0.001 -0.046 2.207E-02 -0.085 -0.007 

BMI 0.009 5.943E-02 0.000 0.018 0.017 8.016E-04 0.007 0.027 0.010 3.597E-01 -0.012 0.032 
Number of children 
fathered -0.022 8.959E-03 -0.039 -0.006 -0.015 1.084E-01 -0.034 0.003 -0.021 2.964E-01 -0.061 0.019 

Number of pregnancies -0.023 2.334E-02 -0.042 -0.003 -0.021 5.502E-02 -0.043 0.000 -0.019 4.318E-01 -0.066 0.028 

Number of stillbirths 0.002 1.565E-01 -0.001 0.004 0.002 2.058E-01 -0.001 0.005 0.001 7.943E-01 -0.005 0.007 
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3.33 Highly penetrant genes 
We repeated our association analysis with smaller, more stringent, subsets of 

325, 125 and 25 known DD genes. Interestingly, even within the most stringent 

subset of 25 genes that are thought to be highly penetrant causes of DD via 

haploinsufficiency, with >30 de novo LoF mutations identified in 31,058 DD 

probands373, we were able to identify 167 individuals in UKB who had a high 

confidence LoF variant in one of these genes. We observed similar trends to the 

full 599 gene panel for LoF variants in smaller subsets of genes cause DD by 

haploinsufficiency, with the group overall exhibiting mild DD-related phenotypes, 

though the results were less significant due to the smaller number of individuals 

carrying likely LoF variants (Table 3.3). Nonetheless, a Bonferroni-corrected 

significant result was seen across all gene subsets for shorter stature, reduced 

chance of having a degree and increased TDI; lower fluid intelligence, lower 

income, higher BMI, and an increased chance of being diagnosed with a child 

DD also remained nominally significant even in the 25 gene subset. We also 

performed single gene burden testing but were underpowered to find any 

significant associations for most genes due to the small number of individuals 

and likely mild phenotypic effects in UKB. Interestingly, despite previously 

reaching genome-wide significance for enrichment of damaging de novo 

mutations, MIB1 had the largest number of individuals carrying likely LoF 

variants in UKB (n=260), more than the 25 most stringent genes combined, but 

showed no associations with any DD-related phenotypes. The gene also has 

almost double the number of LoF variants observed versus expected in 

gnomAD (https://gnomad.broadinstitute.org/gene/MIB1), and thus appears to be 

remarkably unconstrained and thus may not be a true haploinsufficient DD 

gene.  

 

 



 69 

Dataset 599 Gene Set 325 Gene Set 125 Gene Set 25 Gene Set 

Phenotype - P Value - P Value - P Value - P Value 

Binary Traits:  Odds Ratio:   Odds Ratio:   Odds Ratio:   Odds Ratio:   

In employment 0.907 5.778E-04 0.847 2.144E-04 0.759 1.583E-04 0.802 3.248E-01 

Have a degree 0.833 6.134E-15 0.798 9.390E-10 0.763 6.424E-06 0.597 9.110E-03 

Have an epilepsy diagnosis 1.394 2.690E-03 1.543 7.964E-03 0.830 6.004E-01 . . 

Diagnosed with Child DD* 1.316 5.056E-04 1.581 4.889E-05 1.612 8.029E-03 2.582 3.833E-02 

Diagnosed with Adult DD* 1.158 7.061E-03 1.234 1.082E-02 1.630 3.796E-05 1.308 5.231E-01 

Is unable to work 1.344 8.573E-08 1.318 1.361E-03 1.596 2.818E-04 1.481 3.504E-01 

Continuous Traits: Beta: - Beta: - Beta: - Beta: - 

Fluid Intelligence -0.159 1.152E-06 -0.196 1.525E-04 -0.316 2.113E-04 -0.565 3.605E-02 

Number of years in education -0.391 4.589E-12 -0.552 4.614E-10 -0.551 1.259E-04 -0.367 4.251E-01 

Income -0.127 1.599E-20 -0.173 9.557E-16 -0.217 6.970E-10 -0.244 2.695E-02 

Reaction time 0.043 8.179E-05 0.058 6.250E-04 0.087 1.624E-03 0.128 1.451E-01 

Pairs test score 0.122 9.928E-04 0.145 1.270E-02 0.099 2.931E-01 -0.019 9.483E-01 

Townsend Deprivation Index 0.279 5.596E-17 0.435 9.558E-17 0.663 5.178E-15 0.810 2.717E-03 

Age left education -0.110 2.892E-04 -0.143 2.396E-03 -0.149 4.935E-02 -0.324 1.824E-01 

Height -0.449 4.809E-10 -0.700 6.278E-10 -0.509 5.515E-03 -2.122 3.001E-04 

Reported a mental health issue 0.041 1.047E-03 0.040 4.293E-02 0.081 1.177E-02 0.109 2.873E-01 

Numeric memory score -0.068 1.032E-03 -0.099 3.199E-03 -0.183 1.138E-03 -0.259 1.218E-01 

BMI 0.032 4.611E-03 0.048 6.804E-03 0.092 1.294E-03 0.157 8.762E-02 

Number of children fathered -0.069 1.135E-03 -0.099 2.546E-03 -0.088 9.567E-02 0.187 2.338E-01 

Number of pregnancies -0.043 7.618E-02 -0.041 2.832E-01 -0.081 1.938E-01 -0.540 1.227E-02 

Number of stillbirths 0.004 2.447E-01 0.004 3.932E-01 -0.005 5.212E-01 -0.029 2.987E-01 

 
Table 3.3: Gene panel association test results for LoF variants across different gene subsets
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3.34 Rare and common variants 
We investigated the effect of allele count (AC) on the phenotypic effect of LoF 

variants in our largest gene panel (599 autosomal dominant DD genes). 

Specifically, we performed association tests with 16 DD-related traits that were 

significant in the previous analysis for groups of individuals with rare LoF 

variants in these genes that were present in just a single individual in UKB, 

compared with variants seen 5, 10, 50 or 100 or fewer times (Figure 3.5). The 

group of individuals who had the rarest variants (AC=1) had the largest 

phenotypic effect change compared to the rest of the cohort, though the results 

were generally not significant due to low numbers. However, across the 

phenotypes tested, both the effect size and the p-value decreased as the AC 

increased, suggesting either that the more common variants have a milder 

effect on phenotype, or that more common variants are benign and are simply 

diluting the effect of rare pathogenic variants. No difference was observed 

between the effect of LoF variants in the first or second half of genes. In 

addition, 295 individuals had LoF variants that were previously classified as 

“likely pathogenic” or “pathogenic” in ClinVar, but no significant difference was 

detectable in their phenotypes compared with the remainder of the LoF variant 

carrier group.  
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Figure 3.5: Change in phenotype associations for individuals with a LoF 
variant in 599 known autosomal dominant DD genes versus different 
minor allele counts. Associations are grouped by whether the effect of MAC = 

1 LoF variants either (a) decreases or (b) increases the phenotype.  

 

3.4 Discussion 
We have shown that rare, potentially damaging variants in genes and loci 

known to cause autosomal dominant DD are present in adults in UK Biobank 

and result in a mild developmental phenotype. Individuals carrying these 

variants have notably reduced cognitive abilities and a lower socioeconomic 

status. Gene panel association tests suggest a strong and consistent trend for 

increasing phenotypic effects with rarer and more damaging variants. Although 

it is Impossible to disentangle incomplete penetrance and variable expressivity 

in a population study, our findings are consistent with similar studies16,17,204,380–

382 showing reduced penetrance of rare damaging variants in monogenic forms 

of DD in clinically unselected population cohorts. Moreover, our results are 

robust to removal of individuals diagnosed with a childhood developmental 

disorder, suggesting that fully penetrant individuals are not driving the signal. 

 

We note that the variants identified in UKB are not necessarily the same ones 

that have been identified previously in clinical cases, and indeed very few of 

those we identified had previously been annotated in ClinVar383. We also note 

that our dataset likely includes some predicted LoF variants that do not actually 

result in a loss of function (either due to technical false positives or biological 
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rescue through translation re-initiation, alternative splicing, etc). Nonetheless, 

these issues are common to any clinical or research scenario where variants 

are prioritised from WES data, and our findings were robust when limited to 

likely LoF variants in a subset of 384 DD genes that act via a haploinsufficiency 

mechanism. The fact that our findings are robust to smaller, more stringent 

subsets of genes also suggests that the low effect sizes cannot simply be 

explained by a subset of low penetrance (or non-causal) DD genes. 

Furthermore, rare predicted LoF variants were found in individuals in genes that 

were thought to be fully or nearly fully penetrant causes of very well-established 

developmental syndromes, but without the full clinical phenotype that would be 

expected, suggesting that there is a range of penetrance and expressivity in the 

general population.  

 

Despite the large size of UKB, we were limited by the number of individuals of 

European ancestry carrying rare damaging variants in these genes, which 

meant some of our analyses were under-powered to show a significant effect. 

We were also limited by the clinical and phenotypic data available on these 

individuals, all of whom were over 40 years of age at recruitment; evaluation 

and diagnosis of DD was much less routine when these individuals were 

children, and is less likely to be recorded in the HES codes of older adults. 

Nonetheless, when found in an appropriate clinical paediatric setting, rare 

damaging variants in these genes are widely considered diagnostic for DD, and 

thus they might not be expected to be present in a population cohort. Our 

results suggest that, although the penetrance of variants across these genes is 

lower than would be expected from previous clinical studies, they do still exert a 

phenotypic effect on adults in the general population who are nonetheless 

healthy enough, and have sufficient capacity, to volunteer to participate in a 

biobank.  

 

Genes and loci that cause monogenic DD have historically been identified 

almost exclusively through clinical cohorts of affected children and families, and 

their effect on adults in the general population has not previously been 

evaluated. While clinical studies may overestimate the penetrance of such rare 

variants, population cohorts like UKB are likely to underestimate the 

penetrance, due to ascertainment bias towards healthy individuals23. The 
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penetrance and expressivity of variants in these genes could be affected by a 

number of different modifiers, including genetic variants in other genes, 

regulatory variants affecting gene expression, somatic mosaicism, and 

accumulated environmental factors45. The latter is particularly relevant when 

considering the effect of damaging variants in DD genes on adults. It is 

interesting to note that, unlike most traits, the heritability of intelligence (i.e. 

general cognitive ability) increases dramatically with age384, suggesting a major 

role for gene-environment interactions as individuals become better able to 

select, modify and optimise their environment. Further research is needed into 

the penetrance of rare, damaging variants in the general population using larger 

datasets, which may allow modifiers to be investigated to help explain why 

some individuals are more severely affected by particular genetic conditions 

than others.  
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4. Chapter four: Genetic modifiers of rare genetic 

variants in UK Biobank 
 

 

4.1 Introduction 
Ascertaining whether rare genetic variants cause a monogenic phenotype can 

be challenging due to incomplete penetrance and variable expressivity385. Many 

rare variant studies use clinical or familial cohorts that can overestimate the 

penetrance of damaging causal variants17. The presence of such rare, 

putatively damaging variants in healthy population cohorts79 can provide a lower 

boundary for estimates of penetrance, and individuals in both clinical and 

population cohorts display a spectrum of phenotypic variability caused by 

similar or identical variants in the same gene385,386. Previous research has 

suggested that common genetic variants can modify the penetrance or 

expressivity of phenotypes caused by rare genetic variants9,387,388, potentially 

through the liability threshold model, which posits that a certain threshold of 

disease susceptibility needs to be crossed before clinically-diagnosable disease 

manifests235,389–391. Some damaging rare variants may reach this threshold 

alone, resulting in a monogenic disease phenotype with 100% penetrance, 

while other variants may need additional genetic, environmental, or other 

modifiers to reach this threshold389.  In certain diseases, common variant 

burden has been shown to confer a risk similar to that of a deleterious 

monogenic variant, where the highest polygenic risk may be equivalent to that 

conferred by a monogenic variant274,392. As the effect of each individual 

common variant is very small393, aggregating them together as a polygenic 

score (PGS) has become a widely used method for predicting overall related 

risk from common genetic variation275,394, and combining PGS with rare 

pathogenic variant status could improve individual disease prediction395,396. 

 

Previously, we showed that rare, predicted loss-of-function (LoF), deleterious 

missense and large copy number variants (CNVs) in genes and loci linked with 

severe monogenic developmental disorders (DD) can have milder, sub-clinical 

effects in the general population397. Related common variant burden has been 

shown to affect the phenotype in carriers of such variants9,236,398, suggesting 
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that the cumulative effect of common variants can modify the penetrance of rare 

variants in such phenotypes even if the primary cause is thought to be 

monogenic. While the impact of common variants on overall phenotypic 

expressivity has been examined for several neuropsychiatric236,312,399 and other 

disease cohorts80,282,400, the modification of rare variant penetrance by other 

rare genetic variants has not been widely investigated due to the very large 

cohort sizes required. Here, we present an analysis of common and rare variant 

burden in 419,854 adults from the UK Biobank (UKB)28. We investigate 

individuals carrying a rare LoF variant in genes and loci where similar variants 

are known to cause monogenic DD, and use related polygenic scores and 

additional rare variant burden to examine the effect on a number of related 

cognitive phenotypes and socioeconomic traits. We show that rare variant 

burden across these loci and PGS for Educational Attainment (EA-PGS) has an 

additive effect on the phenotype. Our results demonstrate that both additional 

rare and common genetic variants linked to relevant traits can contribute 

towards the variable expressivity of rare, predicted large-effect variants in 

known monogenic disease genes.  

 

4.2 Methods 
4.21 UK Biobank Cohort 
The UKB cohort has been described in previous chapters.  We used exome 

sequencing and microarray data from individuals in UKB who were of 

genetically defined European ancestry (N = 419,854) in our analysis. 
 

4.22 Gene and variant selection 

We used the clinically curated Developmental Disorders Gene2Phenotype 

Database (DDG2P) to select genes known to cause monogenic DD37,397. The 

database (accessed from https://www.ebi.ac.uk/gene2phenotype/ on 27 

November 2020) was constructed and clinically curated from published 

literature and provides information relating to genes, variants and phenotypes 

associated with DDs, including mode of inheritance and mechanism of 

pathogenicity. We included all genes that had been annotated as monoallelic 

(i.e., autosomal dominant) with an evidence level of “confirmed” or “probable” 

(n=599). From this gene set we identified carriers of rare (allele count < 5) 
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LoF401 or deleterious missense (REVEL>0.7)374 variants. Carriers of multigenic 

CNVs were also included where the variant overlapped known syndromic DD-

related loci378,379, as described previously397. For quality control purposes, 

anyone with a variant with a depth below 10 or a variant allele frequency (VAF) 

below 0.3 was removed.   

We selected two functional classes of variant in canonical transcripts based on 

annotation by the Ensembl Variant Effect Predictor (v104)37:  

(1) likely deleterious LoF variants: we defined a LoF variant as one that is 

predicted to cause a premature stop, a frameshift, or abolish a canonical splice 

site; only those variants deemed to be high confidence by the Loss-Of-Function 

Transcript Effect Estimator (LOFTEE), and fell outside of the final exon were 

retained (https://github.com/konradjk/loftee); and  

(2) likely deleterious missense variants: missense variants with a REVEL 

score > 0.7.  

Individuals with >1 variant within a 40bp window in the same gene were 

counted once.   

 

In addition, we used SNP-array data from 488,377 genotyped individuals in 

UKB and PennCNV377 (version 1.0.4) to detect multigenic CNVs overlapping 69 

published CNVs strongly associated with developmental delay, as described 

previously397.  

 

4.23 PGS calculation 
We calculated related polygenic scores using summary statistics and weighted 

allele effects from genome-wide association studies (GWAS) for every 

individual in UKB with European ancestry. We used previously published 

summary statistics containing 3952 SNPs for the Educational Attainment (EA) 

PGS, with data from a large cohort meta-analysis, Okbay et al. 2022402 to 

create the EA-PGS. The EA-PGS was calculated as ∑iwigi, where wi is the 

weight (effect size) for SNP I and gi is the genotype (number of effect alleles, 0-

2) at SNP i. The SNP weightings were the regression coefficients obtained from 

the most recently reported GWAS as mentioned above.  

 

Sensitivity analysis: As the previously published large meta-cohort analysis 

included participants from UKB among many other cohort studies, we 
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calculated a secondary EA-PGS from an previous publication that did not use 

any participants from UKB in the identification of the 74 educational ability 

related SNPs and their consequential calculation of associated summary 

statistics403. Related results from the sensitivity analysis can be found in 

Appendix 7.4.1 and Appendix 7.4.2. 

 

Additional PGS: We calculated further PGSs related to our traits of interest, for 

cognitive ability, mathematical ability, and intelligence from previously published 

summary statistics and weighted allele effects from GWAS, again for every 

individual of European ancestry in UKB. Cognitive and mathematical ability 

weighted SNPs were obtained from Genç et al (2021)393, and intelligence 

related SNPs were obtained from Savage et al (2018)404, and calculated in the 

same way as the EA-PGS above. Schizophrenia and Bipolar PGS were 

downloaded from UKB394. 

 

4.24 Statistical analysis 

We performed gene panel burden tests across our 599 gene subset, with 

association tests limited to individuals in UKB who had genetically defined 

European Ancestry due to the well-recognised biases in PGS performance in 

other ancestries405,406.  

Phenotypes of interest were selected from self-reported questionnaires or 

results from cognitive related tests undertaken through UKB, based on likely 

relevance to cognitive, behavioural, reproductive, and socio-economic effects 

within neurodevelopmental disorders. Medical-related phenotypes were 

categorized using ICD9 and ICD10 codes and self-reported questionnaire 

responses as follows:  

• Medical:  

o ever reported a mental health issue (self-reported through 

questionnaire or ICD10 codes F40-F48, F50,F51, F53, F54, F99, 

G47 and R45, or ICD9 codes 300, 307-309, 311, 780.5); 

o diagnosed with “Child DD” (including intellectual disability (ICD10 

codes F70-73), epilepsy (G40), developmental disorders (F80-84, 

F88-F95, F98, R62, R48, and Z55) and congenital malformations 

(Q0-99));  
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o diagnosed with an “Adult Neuropsychiatric” condition (including 

schizophrenia, (self-reported or ICD10 codes F20-29) and bipolar 

disorder (self-reported or ICD10 codes F30-F39). 

• Reproductive: never a parent, never a father, never pregnant. 

• Physical: height 

• Cognitive: fluid intelligence (Field ID: 20016), reaction time (inverse 

normalised, Field ID: 20023), time taken on the pairs matching test 

(averaged, Field ID: 20133), numeric memory (inverse normalised, Field 

ID: 20240), age left education, number of years in education, has a 

degree. 

• Socioeconomic: in employment, unable to work (both Field ID: 6142), 

income (Field ID: 738), Townsend Deprivation Index (TDI) (Field ID: 

189). 

 

The list of ICD9 and ICD10 codes used to generate the defined groups is listed 

in Appendix 7.4.3. 

 

We controlled for age, sex, recruitment centre and 40 principal components. 

Variant burden tests were performed using STATA (version 16.0), using linear 

regression for continuous phenotypes, and logistic regression for binary 

phenotypes. Associations were tested between individuals with an identified 

rare variant in any of these DDG2P genes and the remainder of the European 

UKB population. EA-PGS quintiles were defined using the entire cohort of 

European UKB. When testing across PGS quantiles, each group was tested 

against individuals in the middle quintile (i.e. 40-60% EA-PGS) who were not 

identified as being carriers of likely deleterious rare variants in the DDG2P gene 

subset.  When testing associations within specific types of variants, similarly, 

the comparison group was those with were not identified as being carriers of 

likely deleterious variants. When testing smaller subgroups of individuals, those 

who had previously been identified as putatively deleterious variant carriers 

were removed from the comparison group.  To define phenotypic “deviators”, 

we used the highest and lowest scores of fluid intelligence scores (0 and 1 

versus 11, 12 and 13), and the top and bottom category for qualifications (no 

qualifications recorded versus having a degree).  
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4.3 Results 

4.31 Additional rare variant burden 
We first investigated whether DD-related phenotypes could be modified 

amongst rare DD variant carriers by the presence of additional rare LoF or 

damaging missense variants in the same set of DDG2P genes. In UKB, 50,395 

(12%) individuals carry a single rare likely deleterious variant overlapping one of 

the 599 autosomal dominant DDG2P genes (12,153 LoF and 35,603 missense) 

or syndromic DD loci (1127 large deletions and 1512 large duplications); an 

additional 3831 individuals carry two rare DD variants, and 219 individuals have 

three or more putatively deleterious rare variants across these DD loci. The 

highest overall rare variant burden across the DD loci was five, which was seen 

in two individuals with three missense variants and two LoF variants each 

(Table 4.1). We performed regression analysis to test associations between 

number of rare variants in DD genes and the 15 DD-related traits and 

diagnoses, using linear regression for continuous traits (Figure 4.1) and logistic 

regression for binary traits (Figure 4.2). Increasing rare variant burden 

correlated with a larger change away from the average UKB participant in 

several DD-related phenotypes, including lower fluid intelligence, shorter 

stature, lower income, lower likelihood of being employed, lower likelihood of 

being a parent, and higher Townsend Deprivation Index (TDI). An increase in 

rare variant burden also correlated with a higher likelihood of having a DD-

related diagnosis, and those with three or more rare DD variants were 2.1X 

(95% CI: 1.05-4.33, p = 0.03) and 1.7X (95% CI: 1.01=2.89, p = 0.04) more 

likely to be diagnosed with a child-DD or an adult neuropsychiatric-related 

diagnosis respectively than non-carriers (Figure 4.2). When we excluded those 

with rare missense variants and only considered LoF and large CNV carriers, 

we observed a larger change in phenotype, but the smaller number of 

individuals present in each group reduced the statistical power substantially; 

nonetheless, those with two or three rare variants were 2.2X (95% CI: 1.37-

3.43, p = 0.0009) more likely to have a child DD related diagnosis than those 

without a LoF variant or CNV (Appendix 7.4.4 and 7.4.5).  
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Overall Rare Variant Burden in 599 DDG2P Genes in 419,865 UKB Individuals: 

Number of Variants Times Seen 

Overall 54,445 

One 50,395 

Two 3831 

Three 206 

Four 11 

Five 2 

  

  

Type of variant seen in 599 DDG2P Genes in 419,865 UKB Individuals: 

Type of Variant Times Seen 

CNV Deletions 2644 
CNV Duplications 3348 

LoF 13,989 

Missense 39,211 

  

  
Among individuals with one variant: 

Type of Variant Times Seen 

Individuals with one variant 50,395 

CNV Deletions 1127 
CNV Duplications 1512 

LoF 12,153 

Missense 35,603 

  
Among individuals with two variants: 

Type of Variant Times Seen 

Individuals with two variants 3,831 

Two CNV Deletions 1 

CNV Deletion and CNV Duplication 1 
CNV Deletion and LoF 47 

CNV Deletion and Missense 123 

Two CNV Duplications 0 
CNV Duplication and LoF 37 

CNV Duplication and Missense 164 

Two LoF  344 
LoF and Missense 1,268 

Two Missense 1,846 
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Among individuals with three variants: 

Type of Variant Times Seen 

Individuals with three variants 206 

Two CNV Deletions and one LoF 1 

One CNV Deletion, One CNV Duplication, one Missense 1 

One CNV Deletion, one LoF, one Missense 7 
One CNV Duplication, one LoF, one Missense 3 

Three LoF  9 

Two Lof and one CNV Duplication 2 
Two LoF and one Missense 46 

Three Missense 59 

Two Missense and one CNV Deletion 6 
Two Missense and one CNV Duplication 11 

Two Missense and one LoF 61 

  
Among individuals with four variants: 

Type of Variant Times Seen 

Individuals with four variants 11 

Three LoF, one Missense 2 

Two LoF, two Missense 3 

One LoF, three Missense 4 

Four Missense 2 

  
Among individuals with five variants: 

Type of Variant Times Seen 

Individuals with five variants 2 

Two LoF, three Missense 2 
Table 4.1: The number of individuals identified with a rare variant in any of 
599 DDG2P genes in UK Biobank. The individuals are sorted by number of 

variants present, and variant type.  
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Figure 4.1: Associations of continuous traits in individuals carrying either 
1, 2, or 3+ rare LoF, deleterious missense, or multigenic variants 
overlapping dominant DDG2P genes, compared with the rest of UK 
Biobank (i.e. non-carriers). Beta values were measured as follows: Fluid 

Intelligence = standardised unites (ranging from 0-13); Age Left Education and 

Years in Education are both measured in years; Height = cm; Reaction Time, 

Time taken on Pairs Test, Numeric Memory, Income, and Townsend 

Deprivation Index (TDI) = standard deviations from the mean. Bonferroni-

corrected p value for multiple testing is 0.003. Lines indicate 95% confidence 

intervals.  
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Figure 4.2: Associations of binary traits and diagnoses in individuals 
carrying 1, 2, or 3+ rare, LoF, deleterious missense, or multigenic variants 
overlapping dominant DDG2P genes, compared with the rest of UK 
Biobank.  

 

 

4.32 Educational Attainment PGS 
Next, we investigated the effect of common polygenic background on rare DD 

variant carriers390. We separated the UKB cohort into five EA-PGS quantiles 

and repeated the phenotype association tests with rare DD variant carrier 
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status. We saw a similar trend across all traits tested against the EA-PGS 

quintiles (Figure 4.3), with the direction of the PGS effect being the same in 

both carrier and non-carrier groups. Individuals who carried at least one rare 

variant showed a consistently larger change in fluid intelligence, years of 

education, employment and TDI across the PGS spectrum compared to the 

control group, with larger phenotypic effects observed in carriers of multiple rare 

DD variants (Figure 4.4). We observed similar trends when we repeated this 

analysis excluding missense variants (number of individuals in each group in 

Appendix 7.4.5, results in Appendix 7.4.6) or using a smaller subset of DD 

genes (Appendix 7.4.7), specifically those known to cause disease via 

haploinsufficiency (n= 325) or only those that reached genome-wide 

significance based on burden of de novo variants in ~31,000 DD cases 

(n=125)373.  
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Figure 4.3: Additive effect of rare DD variant burden and EA-PGS on DD-
related phenotypes. Change in (a) fluid intelligence, (b) income, (c) years in 

education and (d) Townsend Deprivation Index are shown versus EA-PGS 

quintile in UKB. Black dashed line shows the non-carriers of rare DD-related 

variants (n=365,409); dark/medium/light blue lines indicate carriers of 1, 2, or 3+ 

rare DD variants respectively (n=50,395, 3831, 219 respectively). Notably, 

within UKB, a high enough EA-PGS can compensate for the presence of a 

primary variant, and in most cases, any additional rare variant burden.  
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Figure 4.4: Trait results across EA-PGS quintiles for variant carriers and 
non-carriers. Circles represent the EA-PGS group that was the control, i.e. the 

comparison group for all the others.  

 

For fluid intelligence, the difference in the mean score between the bottom and 

top EA-PGS quintiles equated to approximately 1 point on the 13-point scale, 

both for rare variant carriers and non-carriers in UKB. On average, rare DD 
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variant carrier status was equivalent to around a 20-percentile point decrease in 

EA-PGS, on average, with the result that an EA-PGS above the 70th centile was 

able to compensate for the effect of carrying a single rare DD variant on fluid 

intelligence. Importantly, rare variant carrier status and EA-PGS appear to have 

an additive effect when assessed against multiple related traits, with the effect 

of rare variants remaining similar throughout the EA-PGS spectrum. When we 

investigated rare variant classes within fluid intelligence scores, deleterious 

missense variant carriers reached parity with the control group at the 62nd EA-

PGS percentile, LoF carriers at the 80th percentile and CNV duplication carriers 

at the 82nd percentile, while CNV deletion carriers never reached parity with the 

control group (Table 4.2). We hypothesized that the EA-PGS could include 

SNPs in cis-regulatory regions of monogenic DDG2P genes, so we examined 

proximity between the 599 autosomal dominant DDG2P genes and 3952 SNPs 

included in the EA-PGS, using simulations to test whether the genes fall 

disproportionately close to the GWAS loci407. As expected, we found that found 

that the GWAS loci were closer to DDG2P genes than expected by chance (p = 

0.005), suggesting that the large-effect rare variants and small-effect common 

variants may work through overlapping biological pathways.  
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Table 4.2: Rare variant association test results for individuals with a rare 
variant in any of the 599 DDG2P genes, grouped by the type of variant they 

carry, and their EA-PGS quintile.  

Results per quintile for each variant type for fluid intelligence: 

Variant Type: Beta 
Standard 

Error P Value 95% CI I 95% CI II 
Any rare variant:      
EA-PGS Quintile 1 -0.710 0.031 6.290E-116 -0.771 -0.650 
EA-PGS Quintile 2 -0.327 0.030 7.523E-27 -0.387 -0.267 
EA-PGS Quintile 3 -0.173 0.030 7.537E-09 -0.231 -0.114 
EA-PGS Quintile 4 0.046 0.030 1.266E-01 -0.013 0.104 
EA-PGS Quintile 5 0.387 0.029 3.971E-40 0.330 0.444 
LoF variant      
EA-PGS Quintile 1 -0.837 0.059 1.053E-45 -0.953 -0.722 
EA-PGS Quintile 2 -0.355 0.059 1.797E-09 -0.470 -0.239 
EA-PGS Quintile 3 -0.180 0.058 1.957E-03 -0.294 -0.066 
EA-PGS Quintile 4 -0.006 0.058 9.231E-01 -0.120 0.108 
EA-PGS Quintile 5 0.367 0.055 1.930E-11 0.260 0.474 
Missense variant      
EA-PGS Quintile 1 -0.650 0.037 1.975E-70 -0.721 -0.578 
EA-PGS Quintile 2 -0.291 0.036 3.481E-16 -0.361 -0.221 
EA-PGS Quintile 3 -0.145 0.035 3.575E-05 -0.214 -0.076 
EA-PGS Quintile 4 0.078 0.035 2.506E-02 0.010 0.146 
EA-PGS Quintile 5 0.425 0.034 2.177E-35 0.358 0.492 
CNV Duplication      
EA-PGS Quintile 1 -0.757 0.124 9.829E-10 -1.000 -0.515 
EA-PGS Quintile 2 -0.666 0.118 1.566E-08 -0.897 -0.435 
EA-PGS Quintile 3 -0.462 0.117 7.488E-05 -0.690 -0.233 
EA-PGS Quintile 4 -0.177 0.124 1.533E-01 -0.420 0.066 
EA-PGS Quintile 5 0.299 0.112 7.737E-03 0.079 0.518 
CNV Deletion      
EA-PGS Quintile 1 -1.272 0.141 1.653E-19 -1.548 -0.996 
EA-PGS Quintile 2 -0.518 0.136 1.381E-04 -0.784 -0.252 
EA-PGS Quintile 3 -0.564 0.126 8.049E-06 -0.811 -0.316 
EA-PGS Quintile 4 -0.124 0.140 3.776E-01 -0.398 0.151 
EA-PGS Quintile 5 -0.063 0.131 6.293E-01 -0.320 0.193 
No variant      
EA-PGS Quintile 1 -0.525 0.016 2.070E-242 -0.556 -0.495 
EA-PGS Quintile 2 -0.213 0.016 8.707E-43 -0.244 -0.183 

EA-PGS Quintile 3 
Comparison 

Set . . . . 
EA-PGS Quintile 4 0.215 0.015 3.853E-44 0.185 0.246 
EA-PGS Quintile 5 0.512 0.015 1.790E-242 0.482 0.542 
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4.33 Additional PGS 
Cognitive-related PGS: 
We additionally investigated alternative PGSs as other potential genetic 

modifiers, including cognitive abilities, mathematical abilities, and intelligence 

using previously published summary statistics313,393,404, testing the additive 

effect on both fluid intelligence (Figure 4.5) and years in education (Figure 4.6).  

While we saw a similar trend among all three additional PGSs, they were less 

predictive than the original EA-PGS, possibly due to containing fewer numbers 

of SNPs, as the summary statistics used to develop them came from smaller 

cohort studies, and therefore may have less power than the large meta-cohort 

analysis used to calculate the summary statistics for the EA-PGS. 

 

 
Figure 4.5: Additive effect of rare variant status and different polygenic 
scores on fluid intelligence test result scores: for A) Intelligence PGS, B) 

Mathematical Ability PGS, and C) Cognitive Ability PGS. The dashed line 

indicates the change in fluid intelligence results across the PGS quintiles for 

non-carriers, and the unbroken line indicates the change in fluid intelligence 

results across the PGS quintiles for any individual who carries a rare variant.  

Vertical lines indicate 95% confidence intervals, with filled symbols indicating 

statistically significant results, and unfilled symbols indicating those that did not 

reach statistical significance.  

A B 

C 
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Figure 4.6: Additive effect of rare variant status and different polygenic scores on years spent in education: for A) Intelligence PGS, B) 

Mathematical Ability PGS, and C) Cognitive Ability PGS. The dashed line indicates the change in fluid intelligence results across the PGS 

quintiles for non-carriers, and the unbroken line indicates the change in fluid intelligence results across the PGS quintiles for any individual who 

carries a rare variant.  Vertical lines indicate 95% confidence intervals, with filled symbols indicating statistically significant results, and unfilled 

symbols indicating those that did not reach statistical significance.  

A B 

C 
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Clinically-related PGS:  A large number of calculated PGS were previously 

released for individuals in UKB394, of which two are related to our phenotypes of 

interest – PGS for bipolar disorder (BPD-PGS) and PGS for schizophrenia 

(SCZ-PGS).  

 

Previous research has suggested that cognitive impairment is an important 

clinical component of schizophrenia408, and tends to be present prior to onset of 

symptoms or diagnosis408,409. There was a small correlation seen between SCZ-

PRS quintile and fluid intelligence score among both variant carriers and non-

variant carriers in UKB, with fluid intelligence score decreasing as SCZ-PRS 

quintile increased, but no correlation between SCZ-PRS and years spent in 

education among the same group (Figure 4.7).   

 

 

 
Figure 4.7: SCZ-PGS effect on A) fluid intelligence scores and B) years in 
education across polygenic quintiles in non-variant carriers and rare-
variant carriers. 
 

Previous research has suggested that there may not be a difference in cognitive 

or educational ability between individuals diagnosed with BPD prior to their 

diagnosis, and non-clinically affected individuals, or if there is, it may be much 

milder in severity when compared to individuals with schizophrenia408,409. 

Furthermore, some studies have suggested that individuals with bipolar disorder 

may fall at the extremes of the population when it comes to cognitive abilities or 

their time spent in education, and therefore taking an average does not show 

any cognitive differences to healthy controls409–411. When we tested individuals 

in BPD-PGS quintiles against our cognitive traits we saw no specific significant 

A B 
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trend in either fluid intelligence scores or years in education in individuals in 

UKB in either DD rare variant carriers or among non-carriers (Figure 4.8).  

 

 

 
Figure 4.8: BPD-PGS effect on A) fluid intelligence scores and B) years in 
education across polygenic quintiles in non-variant carriers and rare-
variant carriers.  
 

We further tested both clinically-related PGS against our child and adult 

neuropsychiatric diagnosis groups. As our adult neuropsychiatric phenotype 

includes individuals with HES codes related to BPD and schizophrenia some 

correlation may be expected between having a higher PGS for either of these 

conditions and the odds ratio of being diagnosed with an adult neuropsychiatric 

condition in our cohort, or a higher likelihood of other or additional mental health 

issues, as SCZ-PRS has previously been shown to be correlated with the 

likelihood of mental health issues, with or without formal diagnosis412. However 

while those who fell within the top quintile of either of the scores did show a 

higher odds ratio of having an adult neuropsychiatric-related diagnosis, there 

was no obvious trend for either of the PGS groups. Both clinical PGS showed 

stronger correlation for diagnosis among non-variant carriers than variant 

carriers however (Figure 4.9).  
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Figure 4.9: (a) BPD-PRS effect on the odds ratio of being diagnosed with 
either an adult neuropsychiatric-related diagnosis (pink/red), or a child DD 
related diagnosis (blue), when compared to the 40-60% PGS group. (b) 
SCZ-PRS effect on the odds ratio of being diagnosed with either an adult 
neuropsychiatric or child dd related diagnosis when compared to the 40-
60% PGS group.  
 

4.34 Phenotypic “deviators” 
As the UKB cohort is known to be biased towards healthier, wealthier, and more 

educated individuals than the general population23, we hypothesized that those 

individuals in UKB who carry a rare DD variant might also have a higher EA-

PGS on average than the non-carrier control group, which could partially 

compensates for the potentially deleterious effects of the rare DD variant. 

Overall, we observed that individuals who carried at least one rare DD variant 

did indeed have a slightly higher EA-PGS percentile than non-carriers (t-test: 

difference =+2.1, 95%CI: 1.9-2.4, p < 0.0005), supporting this hypothesis. 

Furthermore, among the small number of individuals who achieved the top 

score on the fluid intelligence test (N=139), we observed that rare DD variant 

carriers (N=4) were depleted versus the rest of UKB (3% versus 13%, p = 

0.0002) and had a substantially higher EA-PGS percentile than non-carriers (t-

test: difference = +26.1, 95%CI: 1.8-50.3, p = 0.04).  

 

Intrigued by the presence of these apparently highly intelligent rare DD variant 

carriers, we further investigated phenotypic “deviators” in whom the predicted 

genetic susceptibility is discordant with the observed phenotype413,  e.g. high 

EA-PGS but low fluid intelligence score and vice versa (Figure 4.10). This 

question has particular clinical relevance, as it has previously been suggested 

that individuals with familial disease could be prioritised for genetic testing 

A B 
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based on having a low-risk PGS, as they may be more likely to have a single 

large-effect causal variant than individuals with a high-risk PGS whose disease 

may be more polygenic414,415. To investigate this hypothesis, we further split the 

UKB cohort into deciles by EA-PGS and tested whether individuals whose low 

cognitive phenotype was discordant with their high EA-PGS were more likely to 

be rare DD variant carriers than the remainder of the UKB cohort. Individuals in 

the top EA-PGS decile but with low fluid intelligence (scores of 0 or 1 out of 13) 

were more likely to be rare DD variant carriers (OR: 1.68, 95% CI: 1.13-2.50, p 

= 0.01) (Figure 4.11), when compared to those in the same EA-PGS decile who 

did not have a low fluid intelligence score, as were those in the top EA-PGS 

decile who had no educational qualifications on record (OR: 1.22, 95% CI: 1.10-

1.35, p = 0.00006) (Figure 4.12). When separated by rare DD variant class, we 

found that large multigenic deletions had a larger effect than any other type of 

rare DD variant (OR: 4.7, 95% CI:  1.73-12.95, p = 0.002), followed by LoF 

variants, and then CNV duplications (Table 4.3). We then investigated whether 

the opposite was also true, i.e., whether those with a bottom decile EA-PGS but 

a high fluid intelligence score (11-13 out of 13) were less likely to be rare variant 

carriers, and found that individuals were almost half as likely as others in the 

same decile to carry a rare DD variant (OR: 0.58, 95% CI: 0.38-0.87, p = 0.009).   
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Figure 4.10: Rare DD variant carrier status of phenotypic “deviators” from 
EA-PGS predictions. Shows the distribution of EA-PGS and fluid intelligence 

within UK Biobank; phenotypic deviators are highlighted and defined as either a 

top decile EA-PGS and a low fluid intelligence score (0-1) or a bottom decile 

EA-PGS and a high fluid intelligence score (11-13). 
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Figure 4.11: Individuals in UKB who have a top decile EA-PGS but scored 
low on the fluid intelligence test were more likely to be rare DD variant 
carriers. The comparator group is those within the same EA-PGS decile but 

with a higher fluid intelligence score (≥2 on the fluid intelligence test).  

 

 
Figure 4.12: Individuals in UKB who reported having no qualifications 
recorded despite having a top decile EA-PGS were more likely to be rare 
DD variant carriers. The comparator group is those within the same EA-PGS 

decile but at least GCSE level qualifications.  
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Vs Decile 1-9 

      
Vs Decile 1-9 

     

Variant Type Odds 
Ratio 

Standard 
Error 

P Value 95% 
CI I 

95% CI II 
 

Variant Type Odds Ratio Standard 
Error 

P Value 95% 
CI I 

95% CI 
II 

Any variant  1.630 0.329 1.539E-02 1.098 2.420 
 

Any variant  1.303 0.070 7.552E-07 1.173 1.447 

CNV or LoF Variant 2.771 0.696 4.947E-05 1.694 4.533 
 

CNV or LoF Variant 1.560 0.125 2.813E-08 1.333 1.825 

CNV Deletion 4.409 2.238 3.476E-03 1.630 11.924 
 

CNV Deletion 2.139 0.405 5.850E-05 1.476 3.099 

CNV Duplication 4.281 1.949 1.406E-03 1.754 10.451 
 

CNV Duplication 1.887 0.326 2.413E-04 1.345 2.649 

LoF 2.077 0.680 2.558E-02 1.093 3.947 
 

LoF 1.362 0.135 1.841E-03 1.121 1.655 

Missense 0.969 0.272 9.113E-01 0.559 1.682 
 

Missense 1.169 0.076 1.632E-02 1.029 1.327 

No Variant 0.613 0.124 1.539E-02 0.413 0.911 
 

No Variant 0.768 0.041 7.552E-07 0.691 0.852 

Table 4.3: Rare variant association tests for phenotypic “deviators”, where their EA-PGS does not correlate with corresponding phenotypes 
(fluid intelligence scores or their qualifications), tested against both individuals who fall in the same EA-PGS decile, or compared to the rest of UK 
Biobank. Odds ratio relates to the likelihood of an individual who is a phenotypic “deviator” being a carrier of a rare variant.  

Fluid Intelligence 
Deviators: (n=155) 

      
Qualifications 
Deviators: (n=3222) 

     

Vs Those in the same EA-
PGS Decile (10) 

      
Vs Those in the same 
EA-PGS Decile (10) 

     

Variant Type Odds 
Ratio 

Standard 
Error 

P Value 95% 
CI I 

95% CI II 
 

Variant Type Odds 
Ratio 

Standard 
Error 

P Value 95% 
CI I 

95% CI 
II 

Any variant  1.681 0.340 1.032E-02 1.130 2.500 
 

Any variant  1.224 0.062 6.039E-05 1.109 1.351 

CNV or LoF Variant 2.800 0.707 4.560E-05 1.707 4.593 
 

CNV or LoF Variant 1.438 0.107 1.130E-06 1.242 1.664 

CNV Deletion 4.735 2.432 2.460E-03 1.731 12.956 
 

CNV Deletion 1.897 0.326 1.994E-04 1.354 2.657 

CNV Duplication 4.053 1.864 2.338E-03 1.646 9.981 
 

CNV Duplication 1.713 0.272 7.136E-04 1.254 2.338 

LoF 2.112 0.695 2.300E-02 1.109 4.025 
 

LoF 1.267 0.118 1.091E-02 1.056 1.521 

Missense 1.002 0.283 9.940E-01 0.576 1.742 
 

Missense 1.115 0.068 7.559E-02 0.989 1.258 

No Variant 0.595 0.120 1.032E-02 0.400 0.885 
 

No Variant 0.817 0.041 6.039E-05 0.740 0.902 
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4.34 Clinical diagnoses among carriers 
Next, we investigated whether a decrease in EA-PGS correlates with the 

likelihood of receiving a clinical diagnosis related to DD amongst the rare DD 

variant carriers we identified in UKB. The number of individuals identified within 

the three diagnostic categories (child-DD N=7933; adult neuropsychiatric 

N=19,004; and other mental health issues N=32,911) is likely to be under-

estimated due to absence of, or omissions in, individual hospital records 

available within UKB. Therefore, while individuals in any of these diagnostic 

categories were more likely to be rare DD variant carriers than the rest of UKB, 

the majority did not carry a rare variant in any of the DD genes, and many 

individuals with a rare DD variant did not have a corresponding diagnosis. 

Despite these limitations, we found that, amongst rare DD variant carriers, 

those with a related clinical diagnosis across any of our three categories had a 

substantially lower EA-PGS than those without (Figure 4.13). They also had a 

larger phenotypic change than other rare variant carriers without a diagnosis; 

individuals with a rare DD variant and a related clinical diagnosis were more 

likely to be unable to work (OR: 6.66, 95% CI: 6.07-7.32, p = 4.51E-308), less 

likely to have a degree (OR: 0.71, 95% CI: 0.66-0.76, p = 3.76E-23), and less 

likely to be in employment (OR: 0.33, 95% CI: 0.31-0.37, p = 2.07E-143) than 

those who carry a rare DD variant but do not have a diagnosis recorded in UKB 

(Table 4.4). This suggests that both the aggregation of overall number of rare 

DD variants carried and a lower EA-PGS can alter the overall expressivity of the 

phenotype towards reaching the threshold of clinical disease.   
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Figure 4.13: Average change in EA-PGS among rare DD variant carrier 
with a relevant clinical diagnosis. Amongst individuals carrying one or more 

rare DD variants, those who are clinically diagnosed with either child-dd or adult 

neuropsychiatric condition or other mental health issues have a substantially 

lower EA-PGS percentile than those who do not have a related clinical 

diagnosis recorded in UKB. 
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Association results between DD clinically diagnosed rare variant carrier (n=3602), and non-
clinically diagnosed rare variant carriers (n= 50,843):  

Trait: Beta 
Standard 
Error P Value 95% CI I 95% CI II 

 

Fluid Intelligence -0.451 0.053 2.645E-17 -0.556 -0.347  

Age Left Education -0.281 0.041 1.274E-11 -0.362 -0.199  

Years in Education -1.095 0.084 8.852E-39 -1.260 -0.931  

Income -0.518 0.020 3.290E-142 -0.558 -0.478  

Townsend Deprivation 
Index 1.151 0.051 1.590E-113 1.051 1.250 

 

Numeric Memory -0.184 0.033 3.648E-08 -0.250 -0.119  

Reaction Time 0.191 0.016 8.869E-33 0.160 0.223  

Time Taken on Pairs Test 0.328 0.056 4.347E-09 0.218 0.437  

Height -0.863 0.109 2.222E-15 -1.076 -0.650  

      
 

Trait: 
Odds 
Ratio 

Standard 
Error P Value 95% CI I 95% CI II  

Unable to Work 6.670 0.319 0.000E+00 6.074 7.325  

In Employment 0.339 0.014 2.070E-143 0.312 0.368  

Has a Degree 0.706 0.025 3.757E-23 0.659 0.756  

Never a Parent 1.436 0.057 1.498E-19 1.327 1.553  

Never Pregnant 1.226 0.070 4.035E-04 1.095 1.372  

Never a Father 1.690 0.095 1.673E-20 1.512 1.888  

(Has a mental health related 
diagnosis) 7.736 0.311 0.000E+00 7.151 8.369 

 

 
Table 4.4: Association test results showing the difference in phenotype 
between individuals who carry a rare DDG2P variant and also have either 
an Adult neuropsychiatric or Child-DD related diagnosis, and those who 
carry a rare variant but do not have a clinical diagnosis.  
 

4.35 Female protective effect 
Previous research has suggested that the prevalence of neurodevelopmental 

disorder diagnosis is higher among males than females30,332,416,417, and that 

transmission from unaffected mothers to affected sons is overrepresented. A 

“female protective model” could contribute towards this observation, in that 

females can tolerate larger, more deleterious variants in their genome before 

they reach the clinical diagnosis threshold317,334,418. To test whether this could 

be seen in a non-clinical population cohort, we investigated whether females 

with a related neurodevelopmental or neuropsychiatric diagnosis in UKB were 

more likely to be rare DD variant carriers than males with a similar diagnosis in 
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UKB.  Women and men in UKB were no more likely than each other to carry a 

rare DD variant overall, and among those with a diagnosis, women were slightly 

more likely to carry a rare variant than men (7.5% of women had a variant 

compared to 6% of men, p = 0.10).  

 

We found that among individuals in UKB, females with a related diagnosis were 

somewhat more likely to be rare variant carriers than males with a related 

diagnosis when compared to the rest of UKB without a related clinical diagnosis 

(p = 0.08) (Figure 4.14). While this trend followed when compared only to each 

other, it was not statistically significantly different (Figure 4.15).  Among those 

with a diagnosis, women were more likely to be carriers of a higher impact 

variant, as they were more likely to carry a CNV deletion when compared to the 

men, which we have previously seen to cause larger phenotypic changes than 

other deleterious variants397. This trend has also been shown previously in 

clinical studies, where females have been seen to carry a significantly increased 

large CNV burden compared to males with the same diagnosis317, and that 

large structural variations are more likely to be damaging than other types of 

variation419, and structural variants that are associated with complex related 

phenotypes, such as autism or schizophrenia have been shown to affect both 

regions that are associated with variable phenotypes and loci that are 

associated with mendelian disease419. Within UKB, women were less likely to 

carry CNV duplications, and there was no difference in the likelihood of carrying 

a LoF. Male variant carriers showed a bigger change in phenotype when 

compared to the rest of UKB or the female carriers, with lower fluid intelligence, 

fewer years in education, and lower income as a group, whereas previous 

studies suggested that females with a neurodevelopmental related diagnosis 

were more likely to have an overall more adverse phenotype than males with 

the same diagnosis317,336,420. However, the 95% confidence intervals for males 

and females overlapped for all traits, despite showing a consistent trend.  
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Figure 4.14: The likelihood among individuals who have a diagnosis to be 
carriers of a specific rare variant in a DD gene compared to the remainder 
of undiagnosed UKB.  Females are slightly more likely to be carriers of CNV 

deletions, and males are slightly more likely to be carriers of CNV duplications, 

with no difference in the odds ratio of being a loss of function variant carrier.   
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Figure 4.15: The likelihood among individuals who have a diagnosis to be 
carriers of a specific variant in a DD gene, when only compared to other 
individuals who also have a diagnosis (i.e., males vs females). When not 

compared to the remainder of UKB, females stay slightly more likely to be 

variant carriers than males, but these results do not reach statistical 

significance.   

 

To see whether there was a similar additive PGS effect within the diagnosed 

group, we investigated whether the educational attainment PGS results were 

any different between males and females, and found that overall, women with a 

diagnosis had a lower EA-PGS percentile, whether they were also rare DD 

variant carriers or not (Figure 4.16), again, however, the confidence intervals 

overlapped so the difference is not significant. Conversely, 

unaffected/undiagnosed women had a slightly higher EA-PGS overall when 
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compared to their male counterparts (+0.7% EA-PGS, CI: 0.55-0.87, p = 4.77E-

18).  

 
Figure 4.16: Sex differences in the change in EA-PGS among individuals 
who have a diagnosis, further split into those who also carry a rare DD 
variant in any of the 599 genes, and those who are not variant carriers. 
Overall, females generally have a lower EA-PGS percentile if they have a 

diagnosis than males. Lines show 95% confidence intervals.  

 

4.4 Discussion 
We have shown that the phenotypic effect of rare and common genetic variants 

is additive for a genetically heterogeneous rare disease in a population cohort. 

The adverse effects of carrying a single deleterious rare variant in genes 

wherein similar variants cause monogenic DD can be modified by additional 

rare variants in those genes or by common variants across the genome. 

Carriers of multiple rare DD variants in UKB have lower fluid intelligence, 

shorter stature, fewer children, lower income, higher unemployment and higher 

TDI compared with carriers of single rare DD variants. Additionally, our results 

suggest that having a higher EA-PGS can partially compensate for the negative 

cognitive and socio-economic effects of carrying a single or multiple rare DD 

variants. Moreover, a higher burden of DD-associated variants is more likely to 

push the phenotypic presentation over the threshold for clinical diagnosis, and 

correlates with a larger change in phenotype compared to individuals who carry 
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fewer or no variants. Our results suggest that PGS may provide some clinical 

utility by improving diagnostic interpretation of rare, likely pathogenic variants 

that cause monogenic disease.  

 

We have also shown that PGS for similar traits to educational attainment: 

cognitive ability, mathematical ability, and intelligence, all show similar trends to 

that of the EA-PGS, both in rare variant carriers and in the remainder of the 

UKB population cohort, which could be expected, as these traits are all 

overlapping. However, there were fewer included SNPs used to calculate each 

of these PGS, and so they had overall less predictive value than the EA-PGS. 

Conversely, we didn’t see the same trend within PGSs that were derived for 

clinical conditions among our rare variant carriers, and only a slight correlation 

with our traits and the non-rare variant carrier population for these PGSs.  

 

Investigating the effect of pathogenic rare variants in the general population is 

important for understanding penetrance and variable expressivity of monogenic 

diseases. However, there are important limitations on using large-scale genetic 

data from UK Biobank to investigate rare disease. Firstly, some of the 

deleterious rare variants we identified may be benign, due to technical artefacts, 

erroneous pathogenicity predictions, alternative splicing or other mechanisms. 

Secondly, UKB is known to have an ascertainment bias towards healthier and 

wealthier individuals compared with the rest of the British population23, and 

individuals affected by severe highly penetrant monogenic disorders are likely to 

be depleted from the cohort. Thirdly, complete medical histories are not 

available within UKB, which is a relatively old cohort, so many phenotypes of 

relevance to childhood DDs cannot be evaluated. Fourthly, environment 

influences were not assessed and may have additional effects on the overall 

phenotype  as well as altering the penetrance and expressivity of genetic 

variants through gene-environment interactions. Finally, there are challenges in 

applying common variant PGS across a population, as the underlying summary 

statistics are heavily dependent upon the populations and ethnicities in which 

the GWAS were performed. Moreover, PGS often include GWAS results from 

meta-analyses that incorporate the UKB cohort, which could result in some 

overfitting. However, our additional sensitivity analysis with SNPs that did not 

include GWAS information from UKB showed a similar trend to that produced 
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by the meta-GWAS that did include UKB. Nonetheless, despite these 

limitations, our results are consistent with previous studies showing the effect of 

rare DD variants in non-clinical cohorts and the modifying effect of PGS on 

carriers of rare DD variants9,387.  

 

In conclusion, we have shown that common and rare genetic variants can 

additively and independently affect the phenotype of non-clinically ascertained 

individuals. Our results go some way to explaining the puzzling observation of 

apparently healthy carriers of monogenic disease-causing variants in the 

general population, as well as instances of incomplete penetrance and variable 

expressivity in families affected by rare diseases. Further research is needed to 

investigate other modifiers, such as rare non-coding variants and gene-

environment interactions, and to understand the mechanisms by which genetic 

modifiers act. Ultimately, incorporating the additive effects of both rare and 

common variants will improve our understanding of disease. 
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5. Chapter five: Genetic modifiers of an incompletely 

penetrant gene: KDM5B 
 

5.1 Introduction 

5.11 Introduction 
We previously investigated how the penetrance or expressivity of a 

heterogenous group of genetic variants can be modified through additional rare 

variant burden, and through the accumulation of common genetic variation as 

polygenic scores. However, there are an additional number of specific ways in 

which penetrance or expressivity could be modulated. Other potential genetic 

modifiers include specific non-coding variants that regulate the expression of 

particular genes, however as the variants that we are investigating are already 

very rare within large cohort studies, it can be increasingly difficult to identify 

further variants that affect their expression. Due to their likely rarity, our aim was 

to identify a gene in which looking for specific genetic modifiers might be 

possible within a large population cohort such as UKB.  

 

Rare variants in KDM5B have been shown in several different cohort studies to 

be a cause of developmental disorders423 with incomplete penetrance. KDM5B 

is also a very unconstrained gene. The high prevalence of individuals with 

plausibly pathogenic KDM5B variants in healthy population cohorts, along with 

its previously demonstrated incomplete penetrance makes it an excellent 

exemplar gene for studying potential genetic modifiers of penetrance or 

expressivity, or to test new ways of exploring the effects of specific genetic 

variants on an individual gene. Here we outline initial work to evaluate the 

phenotypic effect of regulatory variants or groups of regulatory variants near 

KDM5B. 

 

5.12 KDM5B 
Loss of function variants in KDM5B have previously been shown to be an 

incompletely penetrant cause of monogenic developmental disorders, in both a 

recessive and dominant fashion424–427. While homozygous and compound 

heterozygous LoF variants in KDM5B cause a recognizable syndrome which 
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involves developmental delay and facial dysmorphism427, dominant LoF variants 

have also been shown to cause developmental disorders424. KDM5B differs 

from many other genes in which haploinsufficiency is known to cause 

developmental disorders, in that it has a pLI of zero, suggesting that LoF 

variants are well tolerated in this gene428. Most genes in which LoF variants are 

known to cause DD have a pLI closer to 1428. pLI is a measure of constraint 

derived from the gnomAD database, which can be used to identify genes in 

which protein truncating variants (PTVs) or other deleterious LoF variants are 

absent or present at a very low frequency in large population samples. Genes 

with a high pLI, or a pLI of 1 appear ‘intolerant to mutation’429. 

 
KDM5B encodes for a protein that falls into a subcategory of histone lysine 

methyltransferases, and demethylates H3K4me3, and is involved in 

transcriptional initiation and elongation430. In general, histone lysine enzymes 

are produced by large group of 51 protein coding genes431, and they underpin 

gene regulation427. The epigenetic regulation of chromatin by such enzymes 

plays a critical role in controlling embryonic stem cell self-renewal and 

pluripotency, and these gene products are strongly expressed during prenatal 

development430. Overall, the function of KMD5B and similar genes is important 

for managing gene expression networks that control self-renewal or 

differentiation430. Histone modifying enzymes are involved in the 

posttranslational modification of histones and the epigenetic control of gene 

expression. De novo variants in histone modifier genes have been shown to be 

the cause of a spectrum of different genetic diseases, including congenital heart 

disease432 and developmental disorders427. There are four paralogs to KDM5B, 

two of which have also been previously linked to developmental disorders: 

KDM5A to ASD433,434, and KDM5C to X-linked intellectual disability and 

ASD435,436.   

 

As KDM5B has been shown to be a relatively unconstrained gene, we were 

interested in why this may be. Variants within the gene are equally distributed, 

there are no PTV hotspots that may be the cause of the low pLI value, similarly, 

variants are not located all within one transcript, making the variants present in 

large population cohorts plausibly pathogenic (Figure 5.1).   
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Figure 5.1: gnomAD information showing where LoF variants are located 
in KDM5B 
 

5.13 Regulatory elements as genetic modifiers 
While the functional effects of LoF variants within protein coding regions can be 

more easily investigated, the remaining ~98% of the non-coding genome 

contains many regulatory regions that are also functionally important437, and 

variants within these regions may explain a large fraction of the heritability of 

some genetic conditions438. Variants in non-coding regions can potentially 

alleviate or exacerbate clinical conditions caused by a primary PTV3, and 

therefore can be an important form of genetic modifier.  Previous GWAS results 

have suggested that more than 88% of trait-associated variants identified are in 

non-coding regions439, making them a potentially great source of genetic 

modifiers to examine when looking at rare disease caused by deleterious rare 

variants, with variants that have an effect on the resulting phenotype being 

considered putative regulatory variants440.  

 

Regulatory regions include promoters, enhancers, boundary elements such as 

UTRs, and transcription factor binding sites, and all are important in 

understanding how genes are expressed, and how variation can affect the 

transcription or translation of genes440. Variants in these regions could result in 

up- or down-regulation of gene expression, potentially ameliorating or 

exacerbating the effect of a heterozygous LoF on the other haplotype142. 
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5.14 Identifying potential genetic modifiers 
The identification of the functional effects of non-coding variants is a major 

challenge within human genetics370. Understanding how regulatory functions 

are defined within genomic sequences is difficult and makes characterizing how 

genomic variation links to phenotypic traits difficult, even among diseases 

where the significance of specific regulatory variants has already been 

shown441,442. Increasing our understanding of how variation in the human 

genome can affect phenotype depends on having a comprehensive and 

detailed knowledge of both the underlying genetic sequence and the phenotype 

associated with it, both within coding regions and the rest of the genome27.  

 

While large population-based databases and population cohorts are 

increasingly important for investigating the penetrance and expressivity of rare 

genetic variants that have previously only been identified in clinical cohorts, 

there is still a significant amount of genetic data that has not yet been explored 

– much of it within non-coding or regulatory regions of the genome. Because 

the genome is so vast, the use of machine learning to try and interpret different 

regions based on underlying patterns is a promising idea. Many common 

variants that are identified by GWAS are located in non-coding regions of the 

genome443, but identifying disease-associated rare variants located in 

promoters, enhancers, and other regulatory elements is more challenging. 

Although aggregate burden tests have been developed for performing 

association tests of rare, functionally similar coding variants, it is unclear how to 

group regulatory variants as they could have opposing functional effects. 

 

Many machine learning models have been produced with the aim of identifying 

or prioritizing non-coding variants that may affect or cause disease444–448. 

Machine learning models provide an opportunity to assist in the prioritization 

within the prediction of variants that may result in functional effects449, predict 

gene expression levels450, or identify novel trait-associated variants451,452. For 

example, the sei machine learning model is a convolutional neural network, 

using 4kb samples taken from across the genome, with chromosomes 8 and 9 

left for testing, and chromosome 10 for validation. The developers of Sei 

attempted to provide a “comprehensive, chromatin-level sequence model”, 

using genomic sequence features to predict which regions of the genome were 
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likely to contain functional or regulatory elements. To calculate these 

predictions, they used data from the Cistrome453, ENCODE454, and Roadmap 

Epigenomics455 projects. Data from these consortiums was used to train the 

model on identifying epigenetic features, so that commonalities could be 

identified and expanded to predictions within the remainder of the genome448.  

Sei can be adapted for predicting whether variants located within non-coding 

regions are likely to be found within a number of regulatory regions, which are 

grouped together based on their predicted function and the type of tissue they 

have been predicted to have an effect within.  

 

In addition to evaluating the effect of LoF variants in KDM5B in UKB, and single 

variant associations near KDM5B that might explain instances of incomplete 

penetrance, we also utilized a previously published machine learning model to 

try and identify and predict whether specific genetic variants or groups of 

functionally similar variants near our gene of interest cause a potential change 

in gene regulation448. The model allowed us to group non-coding variants 

predicted to have the same direction of effect on gene regulation, and hence 

perform aggregate burden tests of regulatory variants predicted to be 

functionally similar. 

 

5.2 Materials and Methods 

5.21 Identifying variants in of interest in UK Biobank Cohort 
The UKB cohort has been described in previous chapters. Whole genome 

sequence data relating to  200,000 individuals was released in November 2021, 

with average coverage of 32.5X, by Illumina Novaseq27.  Using the genomic 

data from 200,000 UKB participants, and exome data from 450,000 UKB 

participants, we attempted to use different methods to identify putative genetic 

modifiers that could affect the penetrance or expressivity of LoF KDM5B 

variants.  

 

We identified anyone who carried a rare (<5 occurrences in UKB) putatively 

deleterious LoF variant in KDM5B in 450k individuals who have WES, and 200k 

individuals who have WGS. We only included those with variants in the 

canonical transcript, variants that fell outside of the final exon, and were 
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predicted high confidence as being LoF by LOFTEE401. To investigate the 

potential effects of non-coding variants found proximal to KDM5B, we identified 

variants located either up to 1Mb upstream or 1Mb downstream of the gene that 

were present in the genomes of individuals in UKB (Figure 5.2). 

 

   
Figure 5.2: Potential regions of interest to identify within 1Mb proximity to 
KDM5B  
 

5.22 Sei Machine Learning Model 
We evaluated the Sei machine learning model for identifying rare non-coding 

variants in the regulatory regions of KDM5B (e.g., promoters, enhancer, and up- 

and down-stream UTRs surrounding the gene) that may be associated with 

changes in the phenotype in rare variant carriers, either as individual variants 

than confer an overall effect, or as overall rare variant burden, as both have 

previously been suggested to affect the clinical presentation of other 

neurodevelopmental disorders456.  We used the Sei machine learning model to 

annotate variants 1Mb either side of KDM5B in UKB. Using the predictions from 

the machine learning model, we identified those predicted to have the biggest 

effect on gene expression – either negative or positive – which included variants 

in promoters, enhancers, and transcription factor binding sites.  

 

5.23 Statistical analysis 
To evaluate the effect of variants or groups of variants on various 

neurocognitive phenotypes of interest (see previous chapters), we used logistic 

regression for binary traits and linear regression for continuous traits, using 

STATA (Version 16.0). We controlled for age, sex, centre, and 40 principal 

components. Tested traits were described in Chapter 4.  
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For the single variant analysis we used REGENIE457 on 150k individuals in 

UKB, to test for associations between single variants and fluid intelligence 

scores.   

 

5.3 Results 

5.31 Phenotypic changes in KDM5B LoF variant carriers in UKB  
We identified 199 individuals in UKB who carried a predicted deleterious LoF 

variant in KDM5B, 76 of whom also have a whole genome sequence (WGS) 

available. LoF variants were distributed throughout the gene. We performed 

aggregate gene burden tests on these carriers of KDM5B LoF variants across 

the entire UKB cohort, and those who also had a WGS available for several 

traits related to the previous cognitive-related phenotypes we identified. 

Individuals with a KDM5B LoF variant showed a decrease in fluid intelligence, 

fewer years in education, and lower numeric memory scores than the non-

carrier group (Figure 5.3). They were also more likely to be unable to work, and 

less likely to have a degree (Figure 5.4). Individuals with a KDM5B LoF variant 

were also less likely to have a recorded fluid intelligence score compared to the 

rest of UKB; among the entire 450k cohort, 40.7% of carriers had taken the fluid 

intelligence test, compared to 48.2% of the non-carrier cohort (difference: 7.5%, 

ttest p = 0.01, 95%CI: 0.5-14). Among those who also had WGS, 32/76 KDM5B 

variant carriers had taken the test (42.1%), compared to the 52.4% of non-

carriers among the WGS group (difference: 10.3%, p = 0.036, 95%CI: 0.9-21).  
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Figure 5.3: The change in phenotype of KDM5B LoF variant carriers 
compared to the remainder of non-carrier UKB for some tested 
continuous traits. Years in education beta is measured in years, fluid 

intelligence is measured from 0-13. All tests reached Bonferroni corrected 

statistically significant levels (0.003), horizontal lines represent 95% confidence 

intervals.  

 

 
Figure 5.4: The change in phenotype of KDM5B LoF variant carriers 
compared to the remainder of non-carrier UKB for three binary traits. 

Horizontal lines show 95% confidence intervals, unbroken lines represent 

statistically significant results (Bonferroni corrected p value is 0.003). Dashed 

lines represent results that did not reach the threshold for statistical 

significance.  
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None of the KDM5B LoF variant carriers had an additional coding variant in the 

gene that could explain the variable penetrance so next we investigated cis 

regulatory variants.  

 

5.32 Non-coding variants in KDM5B variant carriers 
We first investigated whether any individual common variants within 1Mb of 

KDM5B were associated with fluid intelligence, but found that there were no 

single variants that were significantly associated with the trait (Figure 5.5). 

Therefore, we chose to use the Sei model to try and identify potential rare 

variants that could have an effect on fluid intelligence scores, and further group 

the variants together to potentially increase statistical power and ability to 

identify such variants.  

 

 
Figure 5.5: Locuszoom plot showing SNP associations with fluid 
intelligence within a 1Mb region either side of KDM5B. Dotted line shows 

the Bonferroni-corrected p value threshold, of which no individual SNP reached.  

 
Using the Sei model, we identified any variant that was found in at least one 

individual in UKB and was predicted to have either a >1.1-fold positive or <-1.1-

fold negative effect on the predicted genetic functional element. There were 362 
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variants upstream of KDM5B that were predicted to have some functional effect 

on a regulatory region, and 344 downstream, with a range of minor allele 

frequencies (Appendix 7.5.1 and Appendix 7.5.2). As there were a large 

number of individuals who had at least one identified variant, we also took a 

further subset of individuals who carried a variant that was predicted to have a 

larger effect on the predicted regulatory region. As nearly every individual who 

was WGS was predicted to have a non-coding variant that had a positive 

transcriptional effect on a related predicted regulatory feature (n=165,723), we 

chose only to examine those that had a variant that had a predicted negative 

effect (n=13,270).  

 

Among individuals who had WGS data, 76 had an identified KDM5B LoF 

variant, and this subset of the KDM5B carrier group showed similar association 

results to that of the larger group with WES (Table 5.1). Among these 76, 13 

individuals also carried a non-coding variant that was predicted to have a 

negative effect on the predicted regulatory region, with 8 having a variant that 

was upstream of the gene, and 5 having a variant that was downstream of 

KDM5B. Due to having such few carriers, we grouped them into two groups for 

burden testing – those who had a negative-predicted variant that was upstream, 

and those who had a negative-predicted variant that was downstream.  

 

Table 5.1: Association test results for KDM5B LoF variant carriers with 
WGS 

 

We then tested associations for these additional variant carriers and our related 

traits, both in comparison to the other KDM5B LoF variant carriers (Table 5.2) 

and to the remainder of individuals who were WGS in UKB (Table 5.3). 

However, due to the small number of carriers within the KDM5B LoF variant 

carrier group we lacked overall statistical power to identify whether these non-

coding variants could be having an overall effect on resulting phenotypes.  

 

Trait Beta Standard Error P Value 95% CI I 95% CI II 

Fluid Intelligence -0.807 0.369 2.880E-02 -1.531 -0.084 

Years in Education -1.847 0.568 1.161E-03 -2.961 -0.732 

Income -0.376 0.139 6.934E-03 -0.649 -0.103 

TDI 1.057 0.334 1.554E-03 0.402 1.712 
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Table 5.2: Association results for KDM5B LoF carriers with additional non-
coding variants compared to KDM5B LoF carriers without additional non-
coding variants  
 

Table 5.3: Association results for KDM5B LoF variant carriers with 
additional non-coding variants compared to the remainder of UKB.  
 

Further to this, we performed linear regression burden tests with the predicted 

quantitative effects on underlying regulatory regions given by the Sei model for 

the variant effect among the KDM5B LoF variant carriers, but saw the same 

issue with small numbers and lack of statistical power to identify anything 

(Appendix 7.5.3).   

Trait Beta 
Standard 
Error P Value 95% CI I 95% CI II 

Fluid Intelligence           
Negative Downstream Variant (n=5) 2.653 1.551 0.096 -0.496 5.802 
Negative Upstream Variant (n=8) 2.800 2.196 0.211 -1.659 7.258 
Years in Education      
Negative Downstream Variant -0.989 1.947 0.612 -4.835 2.858 
Negative Upstream Variant 1.310 2.413 0.588 -3.457 6.077 
Income      
Negative Downstream Variant 0.512 0.458 0.266 -0.394 1.418 
Negative Upstream Variant -0.291 0.598 0.627 -1.475 0.893 
TDI      
Negative Downstream Variant 1.255 1.299 0.336 -1.312 3.822 
Negative Upstream Variant 0.356 1.617 0.826 -2.839 3.552 

Trait Beta 
Standard 
Error P Value 95% CI I 95% CI II 

Fluid Intelligence           
Negative Downstream Variant (n=5) 0.914 0.934 0.328 -0.917 2.746 
Negative Upstream Variant (n=8) -2.004 1.477 0.175 -4.899 0.892 

Years in Education           

Negative Downstream Variant -1.266 1.740 0.467 -4.677 2.145 
Negative Upstream Variant -1.353 2.201 0.539 -5.668 2.961 
Income           
Negative Downstream Variant -0.045 0.418 0.915 -0.863 0.774 
Negative Upstream Variant -0.583 0.552 0.291 -1.665 0.500 
TDI           
Negative Downstream Variant 1.930 1.030 0.061 -0.088 3.948 
Negative Upstream Variant 1.593 1.302 0.221 -0.960 4.146 
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5.33 Non-coding variants in non KDM5B LoF variant carriers  
Due to the small number of KDM5B LoF variant carriers, and even smaller 

number of additional non-coding variant carriers within this group, we expanded 

the association tests to include anyone who had either a negative upstream or a 

downstream predicted non-coding in one of the regulatory regions proximal to 

KDM5B. We hypothesized that variants that had a negative effect on the 

transcription may potentially have a similar, albeit smaller, effect to LoF 

variants. In total, 414 individuals carried a non-coding variant with a predicted 

negative effect on a regulatory region proximal to KDM5B. We therefore 

repeated the association testing between individuals who carried one of these 

non-coding variants, for the same cognitive related traits as previously (Table 
5.4). However, we saw no significant results or trend, possibly because some of 

these variants were predicted to have a very small effect.  

 

Trait Beta Standard Error P Value 95% CI I 95% CI II 
Fluid Intelligence           
Negative Downstream Variant (n=112) -0.004 0.026 0.869 -0.055 0.046 
Negative Upstream Variant (n=302) 0.039 0.030 0.203 -0.021 0.098 
Years in Education           
Negative Downstream Variant 0.116 0.044 0.009 0.029 0.202 
Negative Upstream Variant 0.055 0.052 0.290 -0.047 0.158 
Income           
Negative Downstream Variant -0.001 0.011 0.889 -0.022 0.019 
Negative Upstream Variant 0.009 0.013 0.472 -0.016 0.034 
TDI           
Negative Downstream Variant 0.012 0.026 0.632 -0.038 0.063 
Negative Upstream Variant -0.013 0.031 0.664 -0.074 0.047 
Table 5.4: Non-coding variant association test results for all KDM5B 
proximal predicted negative non-coding variant carriers  
 

We then repeated the analysis with a smaller group of individuals who were 

predicted to have a higher impact non-coding variant in a regulatory region 

proximal to KDM5B (Table 5.5). We defined a higher impact non-coding variant 

as one that was predicted to have a predicted negative effect that caused a -5-

fold or below relative difference. In total, 414 individuals carried one of these 

predicted variants, and none of them also carried a KDM5B LoF variant. 
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However, we lacked statistical power to show an effect due to the number of 

individuals carrying one of these variants being small.  

 

Trait Beta Standard Error P Value 95% CI I 95% CI II 
Fluid Intelligence           
Negative Downstream Variant  -0.350 0.192 0.068 -0.726 0.025 
Negative Upstream Variant  -1.738 1.206 0.150 -4.102 0.626 
Years in Education      
Negative Downstream Variant -0.117 0.321 0.715 -0.747 0.512 
Negative Upstream Variant -2.187 2.010 0.276 -6.126 1.752 
Income      
Negative Downstream Variant 0.073 0.077 0.341 -0.078 0.224 
Negative Upstream Variant -0.259 0.451 0.566 -1.143 0.625 
TDI      
Negative Downstream Variant -0.164 0.189 0.387 -0.534 0.207 
Negative Upstream Variant 0.127 1.189 0.915 -2.204 2.457 

Table 5.5: Rare non-coding variant association test results for predicted 
high impact non-coding variant carriers 
 

5.4 Discussion 
Deleterious LoF variants within KDM5B have previously been shown to be an 

incompletely penetrant cause of developmental disorders, and we have shown 

that LoF variants in this gene have an impact on related sub-clinical phenotypes 

among individuals in UKB who carry such variants. Individuals who carried a 

KDM5B LoF variant had a significantly lower fluid intelligence score and fewer 

years in education on average when compared to the remainder of UKB, 

despite being a gene in which potentially damaging variants can be 

incompletely penetrant.  

 

We attempted to use a machine learning model to predict whether proximal 

non-coding variants could have an overall phenotypic effect on individuals in 

UKB who carried KDM5B LoF variants, however the accurate prediction of the 

functional effects of non-coding variants is a difficult challenge, especially when 

regulatory regions for many genes have yet to be identified. This is made more 

challenging by the size of cohorts that would be needed to identify associations 

between rare variants and non-coding genetic modifiers and the overall 

phenotypic effect of these. Limitations of our work therefore include the 
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relatively small number of individuals who carry LoF variants in KDM5B, even 

though there are significantly more carriers of LoF variants in this gene than the 

majority of monoallelic DD genes. The low number and lack of haplotype 

information resulted in limited statistical power to identify whether non-coding 

variants with predicted functional effects within proximal regulatory regions had 

any overall phenotypic effect on carriers. Similarly, even when we expanded the 

associations to everyone in UKB who had a predicted high impact negative 

variant proximal to KDM5B, there were only 414 individuals in UKB, suggesting 

that even larger cohort sizes would be needed for future identification or 

classification of such non-coding variant effects. 

 

The Sei machine learning model we used is trained on the identification of 

patterns within the primary genetic sequence of the human genome, and 

translates these patterns to predictions of regulatory features, based on 

previously identified regions that follow similar motifs. While this is a good 

method of expanding our current knowledge to identify putative regulatory 

features in other areas of the genome, it does mean that our results are not 

predictions of whether specific non-coding variants are likely to have a 

functional effect on specific genes, just that they are predicted to have an 

overall effect on the predicted regulatory feature. While the underlying primary 

sequence can give suggestions as to where enhancers could be located, not all 

motifs are well known, or have previously been described458. To be able to 

classify non-coding variants as potentially deleterious or having an overall 

negative effect on the transcription of a specific gene, we need a more detailed 

map of where regulatory regions are found for that gene, and the effect of the 

variant on both proximal cis- and potentially distant trans- genes. Currently, the 

identification of regulatory features using this method cannot identify the genes 

that a regulatory feature has an effect on, beyond that of linear proximity. This 

information would give us a much greater ability to identify potentially 

deleterious non-coding variants that could have an effect on resulting 

phenotypes, and therefore give us the ability to limit association tests to those 

with truly damaging variants. Overall, the identification of non-coding variants 

that lie within regions that can potentially have a damaging effect on specific 

gene transcription, or on the effect of specific coding variants, is still a complex 

task, and will need to include the curation of variants and regulatory features. 
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Similarly, even larger population cohorts will be needed to investigate the 

modification of already rare genetic variants, a substantial barrier to our 

understanding has been the lack of statistical power when searching for 

enrichment of variants across and between different regulatory regions or 

variant classification.  

 

While we attempted to identify some potential non-coding genetic modifiers 

proximal to KDM5B, there are many other genetic causes that could be further 

investigated. KDM5B interacts with many other proteins in its functional 

pathway, including FOXG1B, PAX9, MYC, MYCN, and RB1, and has been 

linked to several more. It is also part of a five member gene family, and previous 

research has suggested that upregulation of the paralogs within this group can 

occur when one member produces non-functional proteins459. To expand the 

search for potential genetic modifiers, identification of LoF or predicted gain of 

function variants in the genes that code for these proteins could be an 

interesting way of examining whether such genes could be potential genetic 

modifiers for the relating phenotypic effect associated with KDM5B LoF 

variants.  

 

Similarly, the expansion of the Sei machine learning model to identifying 

proximal non-coding variants in all of the 599 monoallelic DD genes that we 

previously looked at could potentially increase the ability to test for associations 

between non-coding variants and overall phenotypic expression. This would 

involve careful curation of the results predicted by the model. A future machine 

learning model that could make accurate predictions of non-coding variants and 

the regions in which they are located, from underlying sequence to resulting 

phenotypic effect would be incredibly useful, especially when it comes to 

personalized clinical care. The integration of functional annotations of the non-

coding regions of the genome could help to identify disease-associated 

pathways and to help prioritize the identification of disease specific regulatory 

variants460. We still face great challenges to accurately predict, interpret, and 

evaluate the biological functions of non-coding regulatory variants in gene 

regulation461.  This difficulty is further increased by the fact that many variants 

can overlap potentially identifiable regulatory elements within the genome, but 

may cause no phenotypic change462. Similarly, the use of specific regulatory 
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regions has previously been shown to vary across different tissues and time 

periods, in particular, the usage of promoters and enhancers has been shown to 

change through different developmental periods, making it difficult to identify 

variants that modify genes of interest111,463,464.  
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6. Chapter six: Conclusion 
 

6.1 Summary 
Overall, we have shown that a large number of rare putatively deleterious 

variants in genes in which such variants are known to cause monogenic 

developmental disorders have an overall sub-clinical phenotypic effect in 

individuals in the healthy general population, with individual carriers as an 

aggregate showing lower fluid intelligence scores and spending fewer years in 

education compared to non-variant carriers. These results suggest that variants 

in such genes can vary in their penetrance and expressivity, even among 

individuals with no recorded clinical symptoms of disease.  

 

We have also shown that the adverse effects of carrying a single deleterious 

variant within our subset of genes can be modified by additional rare variants 

within one of these genes, or by the aggregation of common variants across the 

genome. We have further shown that the phenotypic effect of rare and common 

variants is additive for these genetically heterogenous rare diseases. 

Furthermore, among individuals who carried a putatively deleterious variant, 

those with a clinical diagnosis had overall a significantly lower related polygenic 

score than those without a clinical diagnosis. These results suggest a 

mechanism in which rare deleterious genetic variants can be present in healthy 

populations without causing the corresponding clinical phenotype, and that the 

overall burden of both rare and common genetic variants can modify the 

expressivity of a phenotype.  

 

Finally, we investigated whether non-coding variants that could potentially be 

genetic modifiers could be identified through machine learning, and whether 

association tests could identify potential effects caused by these variants using 

an incompletely penetrant gene as an example.  This initial exploration focused 

on a single gene, KDM5B, but was underpowered to show any effect.  
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6.2 Future perspectives 

6.21 Estimating penetrance in diverse cohorts 
Participants in population studies are usually investigated in a research-based 

environment rather than a clinical context, and despite the rigorous phenotypic 

collection present in some population studies, individuals involved may have 

subclinical manifestations of disease phenotypes that were unnoticed at the 

time of recruitment, or were not recorded in their medical histories71. Lack of 

comprehensive phenotypic data can make using population cohorts to calculate 

the penetrance of genotypes very difficult, but can at least provide a lower 

boundary of penetrance, with small clinical studies providing the upper 

boundary465. Variant interpretation guidelines suggest that the penetrance of 

pathogenic variants in general population cohorts should be taken into account 

when calculating the overall penetrance of such variants328; however even 

within healthy population cohorts there have been individuals identified with the 

associated phenotype but who have previously been described as unaffected81, 

as well as individuals who display symptoms but are below the clinical threshold 

for classification. This is further complicated by conditions that are late onset. In 

addition, genetic studies of human disease currently fail to capture the diversity 

that exists across the world, with most studies involving individuals of European 

descent466. This issue directly affects penetrance estimates, particularly as 

GWAS results and PRS may not be transferrable across diverse populations 

due to differing allele frequencies467. Many deleterious variants may not be 

sufficient alone to cause disease, and therefore estimates of penetrance need 

to consider the presence of other genetic variants as well as potential 

environmental effects. Calculating the etiological fraction of rare variants in 

specific conditions may provide a useful way to evaluate the probability that a 

variant detected in an individual with disease is causative22,468, and disease-

specific variant classifiers may also be of use469. 

 

6.22 Screening of unselected populations 
As WGS becomes more common, individuals at risk of genetic disease will be 

identified earlier in life, potentially even from birth470 and often prior to the 

appearance of relevant phenotypes. This can have a positive impact on overall 

health, with individuals who have no family history but a previously unknown 
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high risk of disease being identified, enabling preventative screening or early 

treatment interventions. However, as seen across a number of population 

cohort studies, healthy individuals can harbour many potentially deleterious 

variants without ever developing any clinical symptoms. The effective use of 

genomic data requires a comprehensive understanding of functional genotype-

phenotype correlations, that goes beyond that of Mendelian inheritance 

patterns. The increase in sequencing of unselected populations, linked with 

electronic health records or other longitudinal phenotypic data, gives us 

unprecedented ability to identify and reclassify rare variants and calculate 

penetrance estimates for a wide range of diseases and genotypes. These large-

scale studies are crucial to inform the development of genomic screening 

programmes470,471 and the management of incidental or secondary findings. 

Discovery estimates of secondary findings vary from 1-3% of the population, 

with the majority of identified variants being those that confer susceptibility to 

cancer472,473. Incidental findings are predicted to be detectable at an appreciable 

level in individuals in the general population, many of whom never develop the 

corresponding disease, suggesting that more robust determinations of 

pathogenicity are needed, including penetrance estimates for those without a 

family history of the disease474.  

 

6.3 Conclusion 
Incomplete penetrance and variable expressivity are a significant concern for 

the correct interpretation of genetic variation and of diagnosing genetic disease. 

Correctly estimating penetrance and expressivity is challenging, with clinical 

cohorts and population studies both offering a different insight into its 

quantification. Although many monogenic disease-causing variants are fully 

penetrant, many are not and furthering our knowledge will involve WGS of 

population cohorts of increasing size and diversity, as well as functional studies 

of individual patients with specific clinical phenotypes. Achieving a mechanistic 

understanding of how incomplete penetrance and variable expressivity occur 

will help inform diagnostic and prognostic testing, clinical management, and 

accurate genetic counselling. To improve diagnostics and clinical interpretation 

of incompletely penetrant genotypes, a more sophisticated approach to disease 

genetics may be needed that integrates disease mechanism and specific 

variants with variation in levels of gene and isoform expression as well as other 
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genetic and non-genetic modifiers. Improving our knowledge of how variants 

exert their effects on genes, cellular pathways, and overall phenotypes will 

improve our understanding of disease and facilitate the development of new 

therapeutic interventions.  
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Appendix 
 

Tables and Figures for Chapter Three 
 
Appendix table 7.3.1: List of genes included in each subset  

Gene Name 599 Gene Set 325 Gene Set 125 Gene Set 25 Gene Set 

ABCC9 x        
ABL1 x        

ACAN x  x     

ACTB x  x     
ACTG1 x        

ACVR1 x        

ADAR x  x     
ADCY5 x        

ADNP x  x x x 

AFF3 x        
AFF4 x        

AGO1 x        

AHDC1 x  x x x 
ALDH18A1 x        

ALX4 x  x     

ANKH x  x     
ANKRD11 x  x x x 

ANKRD26 x        

AP2M1 x        
AP2S1 x        

ARCN1 x  x     

ARF1 x        
ARHGAP31 x  x     

ARHGAP35 x  x     

ARID1A x  x x   
ARID1B x  x x x 

ARID2 x  x x   

ASH1L x        
ASXL1 x  x x   

ASXL2 x  x     

ASXL3 x  x x x 
ATAD3A x        

ATN1 x        

ATP1A1 x        
ATP1A2 x  x     

ATP6V0A1 x        

ATP6V1B2 x        
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ATPA2 x        

AUTS2 x  x x   
BCL11A x  x x   

BCL11B x  x x   

BFSP2 x        
BHLHA9 x        

BICD2 x        

BMP2 x  x     
BMP4 x  x     

BNC2 x  x     

BPTF x  x     
BRAF x        

BRD4 x  x     

BRPF1 x  x x   
BRSK2 x  x     

CACNA1A x        

CACNA1C x        
CACNA1D x        

CACNA1E x        

CACNA1G x  x     
CAMK2A x  x     

CAMK2B x  x     

CAMTA1 x  x x   
CBL x        

CCDC78 x  x     

CCND2 x        
CD96 x  x     

CDH2 x        

CDK13 x        
CDK8 x        

CDON x        

CERT1 x        
CFC1 x  x     

CHAMP1 x  x x   

CHD1 x  x     
CHD2 x  x x   

CHD3 x    x   

CHD4 x  x     
CHD7 x  x x x 

CHD8 x  x x   

CHRNA4 x        
CHRNB2 x        

CIC x  x     

CLTC x  x x   
CNOT1 x        
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CNOT3 x  x x   

COG4 x        
COL10A1 x        

COL11A1 x        

COL11A2 x        
COL1A1 x        

COL2A1 x  x     

COL4A3 x        
COL6A1 x        

COL9A1 x        

COL9A2 x        
COL9A3 x        

COMP x        

CREBBP x  x x   
CRELD1 x        

CRX x  x     

CRYAA x        
CRYBA1 x  x     

CRYBA4 x        

CRYBB1 x  x     
CRYBB2 x  x     

CRYGC x  x     

CRYGD x        
CSNK2A1 x        

CSNK2B x  x x   

CTBP1 x  x     
CTCF x  x x   

CTNNB1 x  x x x 

CTNND1 x  x     
CTNND2 x  x     

CUL3 x        

CUX2 x        
DDX23 x        

DDX6 x        

DEAF1 x        
DEPDC5 x  x     

DHDDS x        

DHX30 x        
DLG4 x  x x   

DLL4 x  x     

DMPK x        
DNM1 x        

DNM1L x        

DNMT3A x  x x   
DPF2 x        
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DPYSL5 x        

DSPP x  x     
DSTYK x  x     

DVL1 x        

DVL3 x        
DYNC1H1 x        

DYRK1A x  x x x 

EBF3 x  x     
EDAR x    x   

EDN1 x  x     

EDNRA x        
EDNRB x  x     

EED x        

EEF1A2 x        
EEF2 x        

EFTUD2 x  x x x 

EHMT1 x  x x x 
EIF5A x        

ELN x  x     

EP300 x  x x x 
ERF x  x     

EXT1 x  x     

EXT2 x  x     
EYA1 x  x     

EZH2 x        

FAM111A x        
FBN1 x  x x   

FBN2 x        

FBXO11 x  x x   
FBXW11 x        

FBXW7 x        

FGF10 x  x     
FGF12 x        

FGF14 x  x     

FGF9 x  x     
FGFR1 x  x     

FGFR2 x        

FGFR3 x        
FLNB x        

FLT4 x        

FN1 x        
FOXC1 x  x     

FOXC2 x  x     

FOXE3 x  x     
FOXF1 x  x     
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FOXG1 x  x x   

FOXJ1 x  x     
FOXL2 x  x     

FOXP1 x  x x   

FOXP2 x  x x   
FTL x  x     

FZD5 x        

GABBR2 x        
GABRA1 x  x     

GABRB2 x        

GABRB3 x        
GABRG2 x  x     

GATA2 x  x     

GATA3 x  x x   
GATA4 x  x     

GATA6 x  x     

GATAD2B x  x x x 
GCH1 x        

GDF5 x  x     

GDF6 x        
GFAP x        

GIGYF1 x  x x   

GJA1 x        
GJA3 x        

GJA8 x        

GJC2 x        
GLI2 x  x     

GLI3 x  x     

GLMN x  x     
GLUD1 x        

GMNN x        

GNAI1 x  x     
GNAI3 x        

GNAO1 x  x     

GNAS x  x     
GNB1 x        

GNB2 x        

GREB1L x  x     
GRHL3 x  x     

GRIA2 x  x     

GRIN1 x        
GRIN2A x  x     

GRIN2B x  x x   

GRIN2D x        
GUCY2C x        
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H1-4 x  x     

HCN1 x        
HDAC4 x  x     

HECW2 x        

HESX1 x  x     
HIST1H1E x    x   

HIST1H2AC x        

HIST1H4C x        
HIVEP2 x  x x   

HK1 x  x     

HNF1B x  x     
HNF4A x  x     

HNRNPD x  x x   

HNRNPH1 x  x     
HNRNPK x  x x   

HNRNPR x  x     

HNRNPU x  x x   
HOXA13 x  x     

HOXD13 x        

HPD x        
HRAS x        

HSF4 x        

IFIH1 x        
IFITM5 x        

IGF1R x  x     

IHH x        
IRF2BPL x  x x   

IRF6 x  x     

ITPR1 x  x     
JAG1 x  x     

KANSL1 x  x x   

KAT6A x  x x x 
KAT6B x  x x x 

KBTBD13 x        

KCNA2 x  x     
KCNB1 x    x   

KCNC1 x        

KCNC3 x        
KCND3 x        

KCNH1 x        

KCNJ11 x        
KCNJ6 x        

KCNJ8 x        

KCNK3 x        
KCNK4 x        
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KCNN3 x        

KCNQ2 x  x     
KCNQ3 x        

KCNQ5 x  x     

KCNT1 x        
KCTD1 x        

KDM1A x        

KDM3B x  x     
KDM5B x  x x   

KDM6B x  x x   

KIDINS220 x  x x   
KIF11 x  x x   

KIF1A x        

KIF22 x        
KIF2A x        

KIF5C x        

KLF1 x        
KMT2A x  x x x 

KMT2B x  x x   

KMT2C x  x x   
KMT2D x  x x x 

KMT2E x  x x   

KMT5B x  x x   
KRAS x        

KRT74 x        

LEMD2 x        
LEMD3 x  x     

LHX4 x  x     

LMX1B x  x     
LRP5 x  x     

LZTR1 x        

MAB21L2 x        
MACF1 x        

MAF x        

MAFB x  x     
MAP2K1 x        

MAP2K2 x        

MAP3K1 x  x     
MAP3K7 x        

MAPK8IP3 x  x     

MAST1 x        
MATN3 x        

MBD5 x  x x   

MECOM x        
MED13 x  x     
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MED13L x  x x x 

MEF2C x  x x   
MEIS2 x  x     

MIB1 x  x x   

MIR17HG x  x     
MITF x  x     

MMP13 x        

MN1 x  x x   
MNX1 x  x     

MSL2 x  x x   

MSX1 x  x     
MSX2 x  x     

MTOR x        

MYCN x  x x   
MYH3 x        

MYH9 x        

MYRF x  x     
MYT1L x  x x   

NAA15 x  x x   

NACC1 x        
NALCN x        

NBEA x  x     

NDNF x  x     
NEDD4L x        

NF1 x  x     

NFIA x  x x   
NFIB x  x     

NFIX x  x x   

NIPBL x  x     
NKX2-1 x  x     

NKX2-5 x  x     

NODAL x  x     
NOG x  x     

NOTCH1 x  x     

NOTCH2 x        
NOVA2 x  x     

NPM1 x        

NR2F1 x  x     
NR2F2 x  x     

NR4A2 x  x     

NRAS x        
NRXN1 x  x     

NRXN2 x  x     

NSD1 x  x x   
NSD2 x  x x   
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NTRK2 x        

NUS1 x  x     
ODC1 x  x x   

OTX2 x  x     

P4HB x        
PACS1 x        

PACS2 x        

PAFAH1B1 x  x     
PAK1 x        

PAX2 x  x     

PAX3 x  x     
PAX6 x  x     

PAX8 x  x     

PAX9 x  x     
PBX1 x  x     

PCBP2 x        

PCGF2 x        
PDE10A x        

PDE4D x        

PDGFRB x        
PHACTR1 x        

PHF12 x        

PHF21A x  x x   
PHIP x  x x   

PHOX2B x        

PIEZO2 x  x     
PIGU x        

PIK3R1 x        

PIK3R2 x        
PITX1 x  x     

PITX2 x  x     

PITX3 x  x     
PLCB4 x        

POGZ x  x x x 

POLR1A x  x     
POLR1D x  x     

POLR2A x        

POU3F3 x    x   
PPM1D x  x x   

PPP1CB x        

PPP1R12A x  x     
PPP2CA x  x     

PPP2R1A x        

PPP2R5D x        
PPP3CA x        
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PRKAR1A x        

PRKD1 x        
PRPF8 x        

PRR12 x  x x   

PRRT2 x  x     
PSMC5 x        

PTCH1 x  x x   

PTDSS1 x        
PTEN x  x x   

PTH1R x  x     

PTHLH x  x     
PTPN11 x        

PUF60 x  x x   

PURA x  x x x 
QRICH1 x  x x   

RAB11A x        

RAB11B x        
RAB14 x        

RAC1 x        

RAC3 x        
RAD21 x  x     

RAF1 x        

RAI1 x  x x   
RARB x        

RBPJ x        

RERE x  x     
RHOBTB2 x        

RIT1 x        

RNF13 x        
ROBO4 x  x     

ROR2 x  x     

RORA x  x     
RPL11 x  x     

RPS19 x  x     

RPS23 x        
RPS26 x  x     

RRAS x        

RRAS2 x        
RUNX2 x  x     

SALL1 x  x     

SALL4 x  x     
SAMD9 x        

SATB1 x  x     

SATB2 x  x x x 
SCAF4 x  x     
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SCN11A x        

SCN1A x  x x   
SCN1B x  x     

SCN2A x  x x   

SCN3A x        
SCN4A x        

SCN8A x  x     

SET x  x x   
SETBP1 x  x x   

SETD1A x  x x   

SETD1B x  x     
SETD2 x  x x   

SETD5 x  x x x 

SF3B4 x  x     
SHANK1 x  x     

SHANK2 x  x     

SHANK3 x  x x x 
SHH x  x     

SHOC2 x        

SHROOM3 x  x     
SIK1 x        

SIM1 x  x     

SIN3A x  x x   
SIX1 x  x     

SIX3 x  x     

SIX5 x        
SKI x    x   

SLC1A2 x        

SLC25A24 x        
SLC25A4 x        

SLC2A1 x  x x   

SLC6A1 x  x x   
SMAD3 x  x     

SMAD4 x        

SMARCA2 x        
SMARCA4 x  x     

SMARCB1 x  x     

SMARCC2 x  x     
SMARCD1 x        

SMARCE1 x        

SMC3 x        
SNAP25 x        

SNRPB x  x     

SNRPE x        
SON x  x x   
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SOS1 x        

SOX10 x  x x   
SOX11 x    x   

SOX17 x        

SOX2 x  x     
SOX4 x        

SOX5 x  x x   

SOX6 x  x     
SOX9 x  x     

SPAST x        

SPECC1L x        
SPEN x  x x   

SPRED1 x  x     

SPTAN1 x        
SPTBN1 x        

SPTBN2 x        

SRCAP x    x   
SRP54 x        

SRRM2 x  x x   

SRSF1 x        
STAG1 x  x     

STX1B x  x     

STXBP1 x  x x x 
SUZ12 x  x     

SYNCRIP x        

SYNGAP1 x  x x x 
SYT1 x        

TAB2 x    x   

TAOK1 x  x x   
TBL1XR1 x  x x   

TBR1 x  x     

TBX1 x  x     
TBX18 x  x     

TBX20 x  x     

TBX3 x  x     
TBX4 x  x     

TBX5 x  x     

TCF12 x  x     
TCF20 x  x x   

TCF4 x  x x x 

TCF7L2 x  x x   
TCOF1 x  x     

TEK x        

TET3 x  x     
TFAP2A x        
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TFAP2B x        

TGFB1 x        
TGFB3 x  x     

TGFBR1 x        

TGFBR2 x  x     
TGIF1 x  x     

THRA x  x     

TINF2 x  x     
TLK2 x  x x   

TMEM63A x        

TNRC6B x  x     
TP63 x  x     

TPM2 x        

TRAF7 x        
TRIM8 x  x     

TRIO x        

TRIP12 x  x x   
TRPM3 x        

TRPS1 x  x     

TRPV3 x        
TRPV4 x        

TRRAP x        

TSC1 x  x     
TSC2 x  x     

TSHR x        

TUBA1A x  x     
TUBB x        

TUBB2A x        

TUBB2B x        
TUBB3 x        

TUBB4A x        

TUBG1 x        
TWIST1 x  x     

TWIST2 x        

U2AF2 x        
UBTF x        

UPF1 x  x     

USP7 x  x     
VAMP2 x        

VCP x        

WAC x  x x   
WASF1 x  x     

WDFY3 x  x     

WDR11 x        
WDR26 x  x x   
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WDR37 x        

WNT4 x        
WNT5A x        

WT1 x        

YAP1 x  x     
YWHAG x        

YY1 x    x   

ZBTB18 x  x x   
ZBTB20 x        

ZEB2 x  x x   

ZFHX3 x        
ZFHX4 x  x x   

ZIC1 x        

ZIC2 x  x     
ZMIZ1 x  x     

ZMYM2 x  x     

ZMYND11 x  x x   
ZNF148 x  x x   

ZNF292 x  x x   

ZNF462 x  x     
ZNF750 x  x     

ZSWIM6 x        
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Appendix 7.3.2: List of included CNVs  
 
 

Chromosome Start  End Size Name  Number of Individuals in UKB Number of Genes Overlapping 

CNV Deletions:             

1 145806438 146149533 0.3 TAR syndrome 71 17 
1 147101794 147921262 0.8 1q21.1 deletion  92 7 

2 57519361 61509361 4.0 
2p15-16.1 microdeletion 
syndrome  1 11 

2 96060525 97010536 1.0 2q11.2 duplication 26 20 
2 110625954 112335952 1.7 2q13 duplication 54 9 
3 87188160 87508160 0.3 3p11.2 (CHMP2B to POU1F1) 33 2 
3 191799517 193299517 1.5 3q28-29 (FGF12) 1 4 
3 195988732 197628732 1.6 3q29 duplication 8 24 
7 73328061 74727726 1.4 Williams syndrome duplication  1 24 
7 75332889 77032747 1.7 Wms-distal deletion  1 21 

10 48181951 50630234 2.4 10q11 duplication 52 28 
10 79930264 87180263 7.2 10q23.1 deletion 3 30 
12 64679953 68249953 3.6 12q14 microdeletion syndrome  2 20 
15 22784508 23074431 0.3 15q11.2 deletion  1345 4 
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15 24573760 28181259 3.6 Prader-Willi/Angelman  1 11 
15 30840505 32190507 1.4 15q13.3 deletion  39 6 
15 73720606 77840603 4.1 15q24 B to E deletion  1 56 
15 84595765 85155765 0.6 15q25.2  deletion 11 8 
16 15408642 16198642 0.8 16p13.11 deletion 101 9 
16 21931178 22451178 0.5 16p12.1 duplication  243 8 
16 28761178 29101178 0.3 16p11.2 distal deletion  48 10 
16 29641178 30191178 0.6 NF1 microduplication syndrome 104 31 
17 14165958 15595961 1.4 HNPP  220 10 
17 30838856 31888868 1.1 16p11.2 duplication  11 12 
17 36460073 37846263 1.4 17q12 deletion (HNF1B) 8 15 

22 21555711 23307813 1.8 
16p11.2-p12.2 microduplication 
syndrome  6 19 

CNV Duplications:             

1 145806438 146149533 0.3 TAR syndrome 320 17 
1 147101794 147921262 0.8 1q21.1 duplication  130 7 
2 96060525 97010536 1.0 2q11.2 deletion 16 20 
2 110625954 112335952 1.7 2q13 deletion 51 9 
3 195988732 197628732 1.6 3q29 deletion 2 24 
5 10000 11726888 11.7 Cri du Chat syndrome  1 50 
7 73328061 74727726 1.4 15q24 A to D duplication  11 24 

10 48181951 50630234 2.4 10q11 deletion 27 28 
10 79930264 87180263 7.2 10q23.1 duplication 6 30 
15 22784508 23074431 0.3 15q11.2 duplication  1616 4 
15 24573760 28181259 3.6 Prader-Willi/Angelman  14 11 
15 30840505 32190507 1.4 15q13.3 duplication  219 6 
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15 72670606 75720604 3.0 Williams syndrome deletion  3 49 
15 82513967 84070244 1.6 15q25.2 duplication  1 15 
15 84595765 85155765 0.6 15q25.2  duplication 11 8 
16 15408642 16198642 0.8 16p13.11 duplication 559 9 
16 21601178 29031178 7.4 22q11.2 distal deletion 1 69 
16 21931178 22451178 0.5 16p12.1 deletion  86 8 
16 28761178 29101178 0.3 16p11.2 distal duplication  77 10 
16 29641178 30191178 0.6 NF1 microdeletion syndrome 91 31 

17 2459956 3019956 0.6 
17p13.3 duplication (including 
PAFAH1B1) 1 4 

17 14165958 15595961 1.4 HNPP  111 10 

17 16805961 20576095 3.8 
Smith-Magenis syndrome 
duplication  2 52 

17 30838856 31888868 1.1 16p11.2 deletion  1 12 
17 36460073 37846263 1.4 17q12 duplication (HNF1B) 89 15 

22 19032487 20302477 1.3 
22q11.2dup/DiGeorge/VCFS 
duplication  152 28 

22 21555711 23307813 1.8 22q11.2 distal duplication 5 19 
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Appendix 7.3.3 (1): Gene panel association tests excluding individuals diagnosed with a childhood developmental disorder 

 

Dataset: Individuals with CNV Deletions Individuals with CNV Duplications Individuals with loss of function variants in 
599 gene set 

Phenotype - P Value Lower 
95% CI 

Upper 
95% CI 

- P Value Lower 
95% CI 

Upper 
95% CI 

- P Value Lower 
95% CI 

Upper 
95% CI 

Binary Traits:  Odds 
Ratio: 

      Odds 
Ratio: 

      Odds 
Ratio: 

      

In employment 0.764 1.908E-08 0.696 0.839 0.822 3.018E-06 0.757 0.892 0.917 2.824E-03 0.867 0.971 
Have a degree 0.661 5.170E-25 0.611 0.715 0.748 1.179E-16 0.698 0.801 0.833 1.402E-14 0.795 0.873 
Have an epilepsy 
diagnosis 

1.481 0.031 1.037 2.113 1.311 0.113 0.938 1.832 1.407 3.438E-03 1.119 1.770 

Diagnosed with Adult DD* 1.386 9.532E-05 1.176 1.633 1.392 8.270E-06 1.204 1.610 1.137 0.022 1.018 1.270 
Is unable to work 1.799 6.627E-14 1.543 2.098 1.589 2.201E-10 1.377 1.833 1.329 7.059E-07 1.188 1.487 
Continuous Traits: Beta:       Beta:       Beta:       
Fluid Intelligence -0.499 7.529E-17 -0.616 -0.382 -0.331 2.931E-10 -0.434 -0.228 -0.158 1.682E-06 -0.223 -0.094 
Number of years in 
education 

-0.942 3.403E-23 -1.128 -0.756 -0.745 9.829E-19 -0.911 -0.580 -0.385 1.676E-11 -0.497 -0.273 

Income -0.291 2.143E-36 -0.336 -0.245 -0.218 1.917E-26 -0.258 -0.178 -0.121 1.548E-18 -0.149 -0.094 
Reaction time 0.169 5.562E-21 0.134 0.204 0.076 1.789E-06 0.045 0.107 0.041 2.087E-04 0.019 0.062 
Pairs test score 0.192 1.919E-03 0.071 0.313 0.306 2.501E-08 0.198 0.413 0.111 3.139E-03 0.037 0.184 
Townsend Deprivation 
Index 

0.422 6.151E-14 0.312 0.533 0.468 6.938E-21 0.370 0.566 0.269 9.548E-16 0.203 0.334 

Age left education -0.173 3.355E-04 -0.267 -0.078 -0.211 1.269E-06 -0.296 -0.126 -0.105 5.849E-04 -0.165 -0.045 
Height -1.250 2.627E-25 -1.486 -1.015 -0.621 6.094E-09 -0.831 -0.412 -0.425 5.593E-09 -0.568 -0.282 
Reported a mental health 
issue 

0.083 8.682E-05 0.042 0.125 0.029 0.127 -0.008 0.065 0.043 7.923E-04 0.018 0.068 

Numeric memory score -0.210 7.158E-09 -0.281 -0.139 -0.047 0.151 -0.111 0.017 -0.067 1.423E-03 -0.108 -0.026 
BMI 0.136 5.683E-13 0.099 0.173 0.110 5.883E-11 0.077 0.143 0.037 1.341E-03 0.014 0.059 
Number of children 
fathered 

-0.174 2.067E-07 -0.240 -0.109 -0.095 1.413E-03 -0.154 -0.037 -0.059 5.408E-03 -0.101 -0.018 

Number of pregnancies -0.026 0.543 -0.108 0.057 -0.036 0.337 -0.109 0.037 -0.040 0.102 -0.088 0.008 
Number of stillbirths 0.004 0.481 -0.007 0.014 0.008 0.118 -0.002 0.017 0.004 0.209 -0.002 0.010 
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Appendix 7.3.3 (2): Gene panel association tests excluding individuals diagnosed with a childhood developmental disorder 
 

Dataset: Individuals with missense variants in 599 gene set Individuals with synonymous variants in 599 gene set 
Phenotype - P Value Lower 95% 

CI 
Upper 
95% CI 

- P Value Lower 
95% CI 

Upper 95% CI 

Binary Traits:  Odds 
Ratio: 

      Odds Ratio:       

In employment 0.990 0.593 0.956 1.026 1.008 0.514 0.984 1.033 
Have a degree 0.926 2.087E-07 0.899 0.953 1.029 5.892E-03 1.008 1.050 
Have an epilepsy diagnosis 1.094 0.276 0.931 1.286 0.915 0.142 0.814 1.030 
Diagnosed with Adult DD* 1.059 0.119 0.985 1.138 1.013 0.625 0.963 1.066 
Is unable to work 1.119 3.954E-03 1.037 1.207 0.989 0.695 0.936 1.045 
Continuous Traits: Beta:       Beta:       
Fluid Intelligence -0.086 2.739E-05 -0.127 -0.046 0.003 0.823 -0.025 0.031 
Number of years in education -0.179 6.733E-07 -0.250 -0.109 0.061 0.014 0.013 0.110 
Income -0.057 4.350E-11 -0.074 -0.040 0.011 0.058 0.000 0.023 
Reaction time 0.014 0.036 0.001 0.028 -0.006 0.238 -0.015 0.004 
Pairs test score 0.057 1.556E-02 0.011 0.103 -0.018 0.260 -0.050 0.014 
Townsend Deprivation Index 0.085 6.315E-05 0.043 0.127 0.019 0.205 -0.010 0.047 
Age left education -0.043 0.027 -0.082 -0.005 0.002 0.891 -0.025 0.029 
Height -0.232 4.343E-07 -0.322 -0.142 0.048 0.131 -0.014 0.110 
Reported a mental health issue 0.018 0.027 0.002 0.034 0.000 0.962 -0.011 0.011 
Numeric memory score -0.025 0.053 -0.051 0.000 -0.004 0.668 -0.021 0.014 
BMI 0.016 0.023 0.002 0.030 -0.002 0.618 -0.012 0.007 
Number of children fathered -0.012 0.389 -0.038 0.015 -0.009 0.312 -0.027 0.009 
Number of pregnancies -0.020 0.191 -0.051 0.010 0.006 0.604 -0.015 0.027 
Number of stillbirths 0.004 0.064 -2.126E-04 0.008 0.001 0.373 -0.001 0.004 
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Tables and Figures for Chapter Four 
 
Appendix Figure 7.4.1: Results from 74 SNP EA-PGS sensitivity analysis 
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Appendix Table 7.4.2: Results from 74 SNP EA-PGS sensitivity analysis 
 

Association Test Results for EA-PGS Sensitivity Analysis 

Trait Beta Standard Error P Value 95% CI I 95% CI II 

Fluid Intelligence      
Non-Carriers      
EA-PGS Quintile 1 -0.038 0.012 1.824E-03 -0.062 -0.014 
EA-PGS Quintile 2 0.004 0.013 7.573E-01 -0.021 0.030 

EA-PGS Quintile 3 . . . . . 

EA-PGS Quintile 4 0.013 0.013 3.124E-01 -0.012 0.039 
EA-PGS Quintile 5 0.059 0.013 2.581E-06 0.034 0.084 

Variant Carriers      
EA-PGS Quintile 1 -0.208 0.029 5.283E-13 -0.264 -0.151 

EA-PGS Quintile 2 -0.153 0.028 6.444E-08 -0.209 -0.098 
EA-PGS Quintile 3 -0.145 0.029 5.409E-07 -0.202 -0.089 

EA-PGS Quintile 4 -0.141 0.029 9.735E-07 -0.198 -0.085 

EA-PGS Quintile 5 -0.103 0.030 4.772E-04 -0.161 -0.045 

Years in Education      
Non-Carriers      
EA-PGS Quintile 1 -0.089 0.020 9.177E-06 -0.129 -0.050 
EA-PGS Quintile 2 -0.057 0.022 8.334E-03 -0.099 -0.015 

EA-PGS Quintile 3 . . . . . 

EA-PGS Quintile 4 0.042 0.022 5.527E-02 -0.001 0.084 
EA-PGS Quintile 5 0.107 0.021 3.139E-07 0.066 0.147 

Variant Carriers      
EA-PGS Quintile 1 -0.435 0.047 1.046E-20 -0.526 -0.344 
EA-PGS Quintile 2 -0.362 0.047 9.606E-15 -0.454 -0.270 

EA-PGS Quintile 3 -0.381 0.048 1.898E-15 -0.475 -0.287 

EA-PGS Quintile 4 -0.255 0.048 1.027E-07 -0.348 -0.161 

EA-PGS Quintile 5 -0.270 0.049 3.116E-08 -0.365 -0.174 

Income      
Non-Carriers      
EA-PGS Quintile 1 -0.015 0.005 1.359E-03 -0.025 -0.006 

EA-PGS Quintile 2 -0.009 0.005 7.777E-02 -0.019 0.001 

EA-PGS Quintile 3 . . . . . 
EA-PGS Quintile 4 0.003 0.005 5.344E-01 -0.007 0.013 

EA-PGS Quintile 5 0.020 0.005 4.793E-05 0.011 0.030 

Variant Carriers      
EA-PGS Quintile 1 -0.120 0.011 8.374E-27 -0.142 -0.098 
EA-PGS Quintile 2 -0.122 0.011 1.436E-27 -0.144 -0.100 

EA-PGS Quintile 3 -0.112 0.012 3.653E-22 -0.135 -0.089 

EA-PGS Quintile 4 -0.088 0.012 1.841E-14 -0.111 -0.066 

EA-PGS Quintile 5 -0.081 0.012 7.389E-12 -0.104 -0.058 

TDI      
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Non-Carriers      
EA-PGS Quintile 1 0.016 0.012 1.844E-01 -0.008 0.039 

EA-PGS Quintile 2 -0.009 0.013 4.915E-01 -0.034 0.016 

EA-PGS Quintile 3 . . . . . 
EA-PGS Quintile 4 -0.020 0.013 1.150E-01 -0.045 0.005 

EA-PGS Quintile 5 -0.025 0.012 4.142E-02 -0.049 -0.001 

Variant Carriers      
EA-PGS Quintile 1 0.217 0.028 3.341E-15 0.163 0.271 
EA-PGS Quintile 2 0.195 0.028 2.074E-12 0.140 0.249 

EA-PGS Quintile 3 0.223 0.028 3.916E-15 0.167 0.279 

EA-PGS Quintile 4 0.173 0.028 1.036E-09 0.117 0.228 

EA-PGS Quintile 5 0.190 0.029 4.391E-11 0.134 0.247 
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Appendix Table 7.4.3: ICD9 and ICD10 codes used to identify related HES information to categorize related clinical diagnoses 

Child DD ICD-10 
Codes Description 

Adult 
Neuropsychiatric 
ICD-10 Codes Description 

Mental Health 
ICD-10 Codes Description 

F70 Mild mental retardation F20 Schizophrenia F40 Phobic anxiety disorders 
F71 Moderate mental retardation F21 Schizotypal F41 Other anxiety disorders 
F72 Severe mental retardation F22 Persistant Delusional Disorders F42 OCD 

F73 Profound mental retardation F23 
Acute and transient psychotic 
disorders F43 Reaction to severe stress 

G403   F24 Induced delusional disorder F44 Dissociative disorders 

F80 
Developmental disorders of speech 
and language F25 Schizoaffective disorders F45 Somatoform disorders 

F81 
Developmental disorders of scholastic 
skills F26   F48 Other neurotic behaviours 

F82 
Specific developmental disorder of 
motor function F27   F50 Eating Disorders 

F83 
Mixed specific developmental 
disorders F28 

Other nonorganic psychotic 
disorders F51 Nonorganic sleep disorders 

F84 Pervasive developmental disorders F29 Unspecified nonorganic disorders F53 
Mental and behavioural disorders 
associated w/ the puerperium 

Q00-99 Congenital malformations F30 Manic Episode F54 
Psychological and behavioural factors 
associated with disorders elsewhere 

F78 Other mental retardation         
F79 Unspecified mental retardation F31 Bipolar affective disorder F99 Mental disorder, not otherwise specified 
F84 Autism F32 Depressive episode G47 Sleep Disorders 

F88 
Other disorders of psychological 
development F33 Recurrent depressive disorder R45  Emotional State 

F89 
Unspecified disorder of psychological 
development F34 Persistent mood disorder 

Mental Health 
ICD-9 Codes   

F90 Hyperkinetic Disorders F35   300 Neurotic disorders 
F91 Conduct Disorders F36   307 anorexia, etc 

F92 
Mixed disorders of conduct and 
emotions F37   308 stress reactions 

F93 Emotional disorders, childhood onset F38 Other mood affective disorders 309 adjustment issues 

F94 Social functioning, childhood onset F39 
Unspecified mood affective 
disorders 311 depressive disorder 

F95 Tic disorders G40 Epilepsy 780.5 sleep disturbance 
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F98 
Other behavioural and emotional 
disorders, childhood onset 

Adult 
Neuropsychiatric 
ICD-9 Codes     

R62 
Lack of expected normal physiological 
development 295 schizophrenia   

R48 Dyslexia 296 Manic depressive    

Z55 
Problems related to education and 
literacy 1289     

F90 ADHD 345 epilepsy   
Child DD ICD-9 
Codes       
299 Childhood psychoses     
317 mild mental retardation     
318 Other mental retardation     
319 Unspecified mental retardation     
740-759 Congenital malformations     
312 disturbance of conduct     
313 disturbance of emotions in childhood     
314 Hyperkinetic Disorders     
315 specific delays in development     
314 hyperkinetic     
299.0 infantile autism     
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Appendix 7.4.4: Continuous association results for rare variant carriers including and excluding missense variants: Rare variant burden 

association tests for individuals grouped by number of rare variants identified in their exome sequencing, for both individuals with any type of 

variant in these genes, and limited to those with a CNV deletion, duplication or LoF variant in any of these genes.  
Rare Variant Burden: Association Test Results for individuals with any variant in the 

DDG2P gene set (n= 54,445):                                                                                                                                                            
Continuous Trait Results   

Rare Variant Burden: Association Test Results for individuals with any LoF variant or CNV in 
the DDG2P gene set (n= 16,934):                                                                                                                                                            

Continuous Trait Results  

Trait Beta 
Standard 

Error P Value 95% CI I 95% CI II  Trait Beta Standard Error P Value 95% CI I 95% CI II 

Fluid Intelligence       Fluid Intelligence      
One Variant Only -0.133 0.014 2.377E-20 -0.161 -0.104  One Variant Only -0.216 0.024 4.230E-19 -0.263 -0.168 
Two Variants -0.229 0.048 2.291E-06 -0.324 -0.134  Two Variants -0.151 0.138 2.742E-01 -0.423 0.120 

Three + Variants -0.541 0.214 1.142E-02 -0.959 -0.122  Three Variants -2.943 0.851 5.448E-04 -4.611 -1.275 

Age Left Education Beta 
Standard 

Error P Value 95% CI I 95% CI II  Age Left Education Beta Standard Error P Value 95% CI I 95% CI II 

One Variant Only -0.088 0.013 2.156E-12 -0.113 -0.064  One Variant Only -0.127 0.021 7.773E-10 -0.167 -0.086 
Two Variants -0.145 0.043 8.177E-04 -0.230 -0.060  Two Variants -0.043 0.119 7.172E-01 -0.277 0.191 

Three + Variants -0.581 0.183 1.479E-03 -0.939 -0.223  Three + Variants -0.890 0.728 2.214E-01 -2.316 0.536 

Years in Education Beta 
Standard 

Error P Value 95% CI I 95% CI II  Years in Education Beta Standard Error P Value 95% CI I 95% CI II 

One Variant Only -0.307 0.024 1.170E-38 -0.354 -0.261  One Variant Only -0.506 0.039 6.742E-38 -0.584 -0.429 

Two Variants -0.409 0.081 4.205E-07 -0.567 -0.250  Two Variants -0.374 0.224 9.511E-02 -0.812 0.065 

Three + Variants -0.377 0.336 2.612E-01 -1.036 0.281  Three Variants 0.278 1.320 8.333E-01 -2.310 2.866 

Income Beta 
Standard 

Error P Value 95% CI I 95% CI II  Income Beta Standard Error P Value 95% CI I 95% CI II 

One Variant Only -0.091 0.006 1.213E-57 -0.102 -0.080  One Variant Only -0.152 0.009 2.049E-57 -0.170 -0.133 

Two Variants -0.153 0.020 5.627E-15 -0.191 -0.115  Two Variants -0.199 0.055 2.727E-04 -0.306 -0.092 

Three + Variants -0.207 0.083 1.244E-02 -0.368 -0.045  Three Variants 0.030 0.350 9.324E-01 -0.655 0.715 
Townsend Deprivation 
Index Beta 

Standard 
Error P Value 95% CI I 95% CI II  

Townsend 
Deprivation Index Beta Standard Error P Value 95% CI I 95% CI II 

One Variant Only 0.172 0.014 1.151E-34 0.145 0.199  One Variant Only 0.316 0.023 6.733E-42 0.271 0.362 
Two Variants 0.423 0.048 7.407E-19 0.329 0.516  Two Variants 0.625 0.133 2.383E-06 0.366 0.885 

Three + Variants 0.359 0.198 7.010E-02 -0.029 0.747  Three Variants 0.788 0.784 3.152E-01 -0.750 2.325 



 204 

Numeric Memory Beta 
Standard 

Error P Value 95% CI I 95% CI II  Numeric Memory Beta Standard Error P Value 95% CI I 95% CI II 

One Variant Only -0.035 0.009 5.396E-05 -0.052 -0.018  One Variant Only -0.056 0.015 1.363E-04 -0.085 -0.027 
Two Variants -0.039 0.029 1.809E-01 -0.097 0.018  Two Variants -0.104 0.084 2.150E-01 -0.268 0.060 

Three + Variants -0.247 0.125 4.825E-02 -0.493 -0.002  Three Variants -0.015 0.569 9.783E-01 -1.131 1.100 

Reaction Time Beta 
Standard 

Error P Value 95% CI I 95% CI II  Reaction Time Beta Standard Error P Value 95% CI I 95% CI II 

One Variant Only 0.036 0.004 1.118E-15 0.027 0.045  One Variant Only 0.063 0.007 4.050E-17 0.048 0.077 
Two Variants 0.073 0.015 1.617E-06 0.043 0.103  Two Variants 0.132 0.042 1.791E-03 0.049 0.215 

Three + Variants 0.026 0.063 6.839E-01 -0.098 0.150  Three Variants -0.043 0.250 8.634E-01 -0.532 0.446 

Time taken on Pairs Test Beta 
Standard 

Error P Value 95% CI I 95% CI II  
Time taken on 
Pairs Test Beta Standard Error P Value 95% CI I 95% CI II 

One Variant Only 0.106 0.015 7.060E-12 0.076 0.136  One Variant Only 0.183 0.026 9.366E-13 0.133 0.233 
Two Variants 0.170 0.053 1.178E-03 0.067 0.273  Two Variants 0.476 0.146 1.081E-03 0.191 0.762 

Three + Variants 0.538 0.218 1.374E-02 0.110 0.966  Three Variants 0.088 0.863 9.188E-01 -1.604 1.780 

Height Beta 
Standard 

Error P Value 95% CI I 95% CI II  Height Beta Standard Error P Value 95% CI I 95% CI II 

One Variant Only -0.325 0.030 2.361E-27 -0.384 -0.267  One Variant Only -0.532 0.050 1.436E-26 -0.630 -0.435 
Two Variants -0.520 0.102 3.784E-07 -0.720 -0.319  Two Variants -0.810 0.283 4.286E-03 -1.365 -0.254 

Three + Variants -1.167 0.425 5.993E-03 -1.999 -0.335  Three Variants -3.414 1.679 4.203E-02 -6.705 -0.123 
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Appendix table 7.4.5: Binary association results for rare variant carriers including and excluding missense variants  
Rare Variant Burden: Association Test Results for individuals with any variant in the 

DDG2P gene set (n= 54,445):                                                                                                                                                                     
Binary Trait Results   

Rare Variant Burden: Association Test Results for individuals with any LoF variant or CNV 
in the DDG2P gene set (n= 16,934):                                                                                                                                                                     

Binary Trait Results  

Trait Odds Ratio 
Standard 

Error P Value 95% CI I 95% CI II  Trait Odds Ratio 
Standard 

Error P Value 95% CI I 95% CI II 

Unable To Work       Unable To Work      
One Variant Only 1.221 0.029 1.687E-17 1.166 1.278  One Variant Only 1.413 0.051 1.123E-21 1.316 1.517 

Two Variants 1.299 0.101 7.526E-04 1.116 1.512  Two Variants 1.161 0.260 5.063E-01 0.748 1.800 

Three + Variants 1.414 0.440 2.651E-01 0.769 2.602  Three Variants 1.000 . . . . 

In Employment Odds Ratio SE P Value 95% CI I 95% CI II  In Employment Odds Ratio SE P Value 95% CI I 95% CI II 

One Variant Only 0.959 0.011 4.363E-04 0.937 0.982  One Variant Only 0.896 0.018 2.729E-08 0.862 0.932 
Two Variants 0.851 0.034 6.280E-05 0.786 0.921  Two Variants 0.827 0.093 9.216E-02 0.663 1.032 

Three + Variants 0.856 0.146 3.626E-01 0.613 1.196  Three Variants 3.931 2.621 4.001E-02 1.064 14.520 

Has a Degree Odds Ratio SE P Value 95% CI I 95% CI II  Has a Degree Odds Ratio SE P Value 95% CI I 95% CI II 

One Variant Only 0.890 0.009 3.373E-33 0.873 0.907  One Variant Only 0.811 0.013 5.463E-38 0.786 0.837 

Two Variants 0.841 0.028 2.133E-07 0.788 0.898  Two Variants 0.845 0.078 6.676E-02 0.705 1.012 

Three + Variants 0.878 0.121 3.451E-01 0.669 1.151  Three Variants 0.935 0.511 9.026E-01 0.320 2.731 
Has a Child DD 
Related Diagnosis Odds Ratio SE P Value 95% CI I 95% CI II  

Has a Child DD 
Related Diagnosis Odds Ratio SE P Value 95% CI I 95% CI II 

One Variant Only 1.277 0.042 1.084E-13 1.197 1.362  One Variant Only 1.664 0.080 3.218E-26 1.514 1.828 

Two Variants 1.662 0.163 2.250E-07 1.371 2.014  Two Variants 2.138 0.514 1.584E-03 1.334 3.425 

Three + Variants 2.139 0.771 3.495E-02 1.055 4.336  Three Variants 4.344 4.509 1.571E-01 0.568 33.224 
Has an Adult DD 
Related Diagnosis Odds Ratio SE P Value 95% CI I 95% CI II  

Has an Adult DD 
Related Diagnosis Odds Ratio SE P Value 95% CI I 95% CI II 

One Variant Only 1.125 0.026 2.824E-07 1.075 1.177  One Variant Only 1.218 0.045 7.212E-08 1.134 1.309 

Two Variants 1.299 0.095 3.297E-04 1.126 1.499  Two Variants 1.248 0.257 2.809E-01 0.834 1.868 

Three + Variants 1.725 0.463 4.202E-02 1.020 2.917  Three Variants 3.774 2.889 8.271E-02 0.842 16.917 
Has a Mental Health 
Related Diagnosis Odds Ratio SE P Value 95% CI I 95% CI II  

Has a Mental Health 
Related Diagnosis Odds Ratio SE P Value 95% CI I 95% CI II 

One Variant Only 1.107 0.021 5.860E-08 1.067 1.149  One Variant Only 1.170 0.036 2.221E-07 1.103 1.242 
Two Variants 1.149 0.072 2.712E-02 1.016 1.300  Two Variants 1.387 0.224 4.300E-02 1.010 1.904 
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Three + Variants 1.255 0.317 3.696E-01 0.764 2.060  Three Variants 2.319 1.774 2.714E-01 0.518 10.386 

Never a Parent Odds Ratio SE P Value 95% CI I 95% CI II  Never a Parent Odds Ratio SE P Value 95% CI I 95% CI II 

One Variant Only 1.107 0.014 2.000E-16 1.080 1.134  One Variant Only 1.183 0.024 7.203E-17 1.137 1.230 

Two Variants 1.319 0.053 3.915E-12 1.220 1.427  Two Variants 1.196 0.136 1.149E-01 0.957 1.493 

Three + Variants 1.452 0.234 2.088E-02 1.058 1.992  Three Variants 3.165 1.850 4.873E-02 1.006 9.951 

Never Pregnant Odds Ratio SE P Value 95% CI I 95% CI II  Never Pregnant Odds Ratio SE P Value 95% CI I 95% CI II 

One Variant Only 1.071 0.019 1.423E-04 1.034 1.110  One Variant Only 1.128 0.034 5.245E-05 1.064 1.196 
Two Variants 1.286 0.075 1.463E-05 1.148 1.441  Two Variants 1.064 0.181 7.146E-01 0.763 1.484 

Three + Variants 1.436 0.333 1.182E-01 0.912 2.262  Three Variants 4.119 3.215 6.972E-02 0.892 19.020 

Never a Father Odds Ratio SE P Value 95% CI I 95% CI II  Never a Father Odds Ratio SE P Value 95% CI I 95% CI II 

One Variant Only 1.139 0.019 1.469E-14 1.102 1.178  One Variant Only 1.232 0.034 2.447E-14 1.168 1.300 

Two Variants 1.351 0.075 5.121E-08 1.212 1.505  Two Variants 1.328 0.204 6.466E-02 0.983 1.796 

Three + Variants 1.455 0.328 9.660E-02 0.935 2.264  Three Variants 2.210 1.976 3.752E-01 0.383 12.749 
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Appendix table 7.4.6: Numbers of individuals in each rare variant carrier group excluding missense variants 
 

Overall: LoF and CNV Carriers Number of Individuals 
One Variant: 16,429 
EA-PGS Quintile 1 3461 
EA-PGS Quintile 2 3318 
EA-PGS Quintile 3 3227 
EA-PGS Quintile 4 3122 
EA-PGS Quintile 5 3301 
Two Variants: 491 
EA-PGS Quintile 1 100 
EA-PGS Quintile 2 97 
EA-PGS Quintile 3 93 
EA-PGS Quintile 4 105 
EA-PGS Quintile 5 96 
Three Variants: 14 
EA-PGS Quintile 1 4 
EA-PGS Quintile 2 2 
EA-PGS Quintile 3 0 
EA-PGS Quintile 4 4 
EA-PGS Quintile 5 4 
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Appendix table 7.4.7 (1): EA-PGS and rare variant association results across quintiles 
excluding missense variants: Continuous Results 

Association Test Results for individuals with LoF variants and CNVs only (n= 16,934):       
Continuous Trait Results 

Trait Beta Standard Error P Value 95% CI I 95% CI II 

Fluid Intelligence           

One Variant      
EA-PGS Quintile 1 -0.846 0.055 6.868E-54 -0.953 -0.739 

EA-PGS Quintile 2 -0.382 0.055 2.683E-12 -0.489 -0.275 

EA-PGS Quintile 3 -0.220 0.054 4.032E-05 -0.325 -0.115 

EA-PGS Quintile 4 -0.017 0.054 7.583E-01 -0.123 0.090 

EA-PGS Quintile 5 0.377 0.051 1.285E-13 0.277 0.477 

Two Variants      
EA-PGS Quintile 1 -0.734 0.352 3.711E-02 -1.424 -0.044 
EA-PGS Quintile 2 -0.160 0.293 5.867E-01 -0.735 0.416 

EA-PGS Quintile 3 -0.203 0.300 4.980E-01 -0.790 0.384 

EA-PGS Quintile 4 0.131 0.288 6.485E-01 -0.433 0.695 

EA-PGS Quintile 5 0.053 0.303 8.618E-01 -0.541 0.646 

Three Variants      
EA-PGS Quintile 1 -4.238 2.052 3.893E-02 -8.261 -0.215 

EA-PGS Quintile 2 0.000 . . . . 

EA-PGS Quintile 3 0.000 . . . . 

EA-PGS Quintile 4 -1.402 1.185 2.366E-01 -3.724 0.920 

EA-PGS Quintile 5 -4.639 1.451 1.392E-03 -7.484 -1.795 

Age Left Education Beta Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 -0.543 0.042 7.641E-39 -0.625 -0.461 

EA-PGS Quintile 2 -0.249 0.044 2.034E-08 -0.336 -0.162 

EA-PGS Quintile 3 -0.150 0.046 1.237E-03 -0.241 -0.059 

EA-PGS Quintile 4 0.140 0.049 4.671E-03 0.043 0.236 

EA-PGS Quintile 5 0.232 0.053 1.137E-05 0.128 0.335 

Two Variants      
EA-PGS Quintile 1 -0.432 0.267 1.058E-01 -0.955 0.091 

EA-PGS Quintile 2 -0.359 0.246 1.444E-01 -0.840 0.123 
EA-PGS Quintile 3 -0.065 0.263 8.050E-01 -0.580 0.450 

EA-PGS Quintile 4 0.484 0.271 7.417E-02 -0.047 1.015 

EA-PGS Quintile 5 0.081 0.297 7.846E-01 -0.501 0.664 

Three Variants      
EA-PGS Quintile 1 -1.292 1.544 4.025E-01 -4.318 1.733 

EA-PGS Quintile 2 -1.266 1.544 4.123E-01 -4.291 1.760 

EA-PGS Quintile 3 0.000 . . . . 

EA-PGS Quintile 4 -0.578 1.260 6.463E-01 -3.049 1.892 

EA-PGS Quintile 5 -0.727 1.544 6.379E-01 -3.753 2.300 

Years in Education Beta Standard Error P Value 95% CI I 95% CI II 

One Variant      
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EA-PGS Quintile 1 -2.084 0.086 4.550E-130 -2.252 -1.916 

EA-PGS Quintile 2 -1.088 0.087 9.398E-36 -1.258 -0.917 

EA-PGS Quintile 3 -0.542 0.088 8.539E-10 -0.715 -0.369 

EA-PGS Quintile 4 0.152 0.089 9.012E-02 -0.024 0.327 
EA-PGS Quintile 5 1.245 0.087 2.411E-46 1.074 1.415 

Two Variants      
EA-PGS Quintile 1 -1.160 0.493 1.864E-02 -2.126 -0.194 

EA-PGS Quintile 2 -1.766 0.495 3.634E-04 -2.737 -0.795 

EA-PGS Quintile 3 -0.649 0.506 1.999E-01 -1.640 0.343 

EA-PGS Quintile 4 0.556 0.476 2.431E-01 -0.377 1.489 

EA-PGS Quintile 5 1.272 0.503 1.150E-02 0.285 2.258 

Three Variants      
EA-PGS Quintile 1 -0.313 2.438 8.977E-01 -5.092 4.465 

EA-PGS Quintile 2 -6.537 3.448 5.796E-02 -13.295 0.221 
EA-PGS Quintile 3 0.000 . . . . 

EA-PGS Quintile 4 0.370 2.438 8.794E-01 -4.408 5.148 

EA-PGS Quintile 5 4.231 2.438 8.265E-02 -0.547 9.010 

Income Beta Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 -0.403 0.021 3.375E-82 -0.444 -0.362 

EA-PGS Quintile 2 -0.234 0.021 1.287E-28 -0.275 -0.192 

EA-PGS Quintile 3 -0.146 0.021 6.791E-12 -0.187 -0.104 

EA-PGS Quintile 4 -0.050 0.021 1.980E-02 -0.092 -0.008 

EA-PGS Quintile 5 0.118 0.021 1.879E-08 0.077 0.159 

Two Variants      
EA-PGS Quintile 1 -0.429 0.119 3.164E-04 -0.663 -0.196 

EA-PGS Quintile 2 -0.278 0.124 2.565E-02 -0.522 -0.034 

EA-PGS Quintile 3 -0.117 0.121 3.346E-01 -0.355 0.121 

EA-PGS Quintile 4 -0.175 0.115 1.293E-01 -0.401 0.051 

EA-PGS Quintile 5 0.072 0.125 5.651E-01 -0.174 0.318 

Three Variants      
EA-PGS Quintile 1 0.127 0.772 8.691E-01 -1.386 1.640 

EA-PGS Quintile 2 -1.179 1.092 2.803E-01 -3.319 0.961 

EA-PGS Quintile 3 0.000 . . . . 

EA-PGS Quintile 4 0.024 0.546 9.646E-01 -1.046 1.094 

EA-PGS Quintile 5 0.381 0.630 5.454E-01 -0.854 1.617 

Townsend Deprivation Index Beta Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 0.771 0.051 9.801E-52 0.671 0.871 

EA-PGS Quintile 2 0.483 0.052 1.059E-20 0.382 0.585 

EA-PGS Quintile 3 0.364 0.052 3.620E-12 0.262 0.467 

EA-PGS Quintile 4 0.177 0.053 9.122E-04 0.072 0.281 

EA-PGS Quintile 5 0.037 0.052 4.740E-01 -0.064 0.139 

Two Variants      
EA-PGS Quintile 1 1.001 0.291 5.708E-04 0.432 1.571 

EA-PGS Quintile 2 0.812 0.295 5.913E-03 0.234 1.391 
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EA-PGS Quintile 3 1.290 0.301 1.880E-05 0.699 1.881 

EA-PGS Quintile 4 0.449 0.284 1.134E-01 -0.107 1.005 

EA-PGS Quintile 5 -0.081 0.298 7.861E-01 -0.665 0.503 

Three Variants      
EA-PGS Quintile 1 0.002 1.452 9.989E-01 -2.844 2.848 
EA-PGS Quintile 2 6.233 2.054 2.404E-03 2.208 10.258 

EA-PGS Quintile 3 0.000 . . . . 

EA-PGS Quintile 4 -0.081 1.452 9.555E-01 -2.927 2.765 

EA-PGS Quintile 5 0.017 1.452 9.908E-01 -2.829 2.863 

Numeric Memory Beta Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 -0.185 0.035 1.018E-07 -0.253 -0.117 

EA-PGS Quintile 2 -0.122 0.034 3.179E-04 -0.188 -0.055 

EA-PGS Quintile 3 -0.106 0.033 1.527E-03 -0.171 -0.040 

EA-PGS Quintile 4 0.009 0.033 7.885E-01 -0.056 0.073 
EA-PGS Quintile 5 0.107 0.030 4.475E-04 0.047 0.167 

Two Variants      
EA-PGS Quintile 1 -0.058 0.226 7.966E-01 -0.501 0.384 

EA-PGS Quintile 2 -0.223 0.183 2.237E-01 -0.581 0.136 

EA-PGS Quintile 3 -0.099 0.189 6.018E-01 -0.470 0.272 

EA-PGS Quintile 4 -0.071 0.169 6.752E-01 -0.402 0.260 

EA-PGS Quintile 5 -0.043 0.180 8.124E-01 -0.395 0.310 

Three Variants      
EA-PGS Quintile 1 -0.703 0.984 4.748E-01 -2.632 1.225 

EA-PGS Quintile 2 0.000 . . . . 
EA-PGS Quintile 3 0.000 . . . . 

EA-PGS Quintile 4 -1.933 0.984 4.948E-02 -3.861 -0.004 

EA-PGS Quintile 5 2.602 0.984 8.160E-03 0.674 4.531 

Reaction Time Beta Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 0.093 0.016 1.397E-08 0.061 0.125 

EA-PGS Quintile 2 0.059 0.017 4.413E-04 0.026 0.091 

EA-PGS Quintile 3 0.058 0.017 5.915E-04 0.025 0.091 

EA-PGS Quintile 4 0.085 0.017 6.478E-07 0.052 0.119 

EA-PGS Quintile 5 0.048 0.017 4.344E-03 0.015 0.080 

Two Variants      
EA-PGS Quintile 1 0.327 0.094 4.885E-04 0.143 0.511 

EA-PGS Quintile 2 0.145 0.096 1.291E-01 -0.042 0.333 

EA-PGS Quintile 3 0.192 0.097 4.705E-02 0.003 0.382 

EA-PGS Quintile 4 -0.062 0.091 4.949E-01 -0.241 0.116 

EA-PGS Quintile 5 0.087 0.096 3.624E-01 -0.100 0.275 

Three Variants      
EA-PGS Quintile 1 0.140 0.466 7.638E-01 -0.774 1.054 

EA-PGS Quintile 2 -1.011 0.659 1.251E-01 -2.303 0.281 

EA-PGS Quintile 3 0.000 . . . . 

EA-PGS Quintile 4 -0.013 0.466 9.783E-01 -0.926 0.901 
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EA-PGS Quintile 5 0.234 0.466 6.158E-01 -0.680 1.148 

Time taken on Pairs Test Beta Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 0.221 0.057 9.342E-05 0.110 0.332 

EA-PGS Quintile 2 0.218 0.058 1.597E-04 0.105 0.331 
EA-PGS Quintile 3 0.211 0.058 3.057E-04 0.097 0.326 

EA-PGS Quintile 4 0.121 0.059 4.233E-02 0.004 0.237 

EA-PGS Quintile 5 0.121 0.058 3.609E-02 0.008 0.235 

Two Variants      
EA-PGS Quintile 1 0.226 0.325 4.858E-01 -0.410 0.863 

EA-PGS Quintile 2 0.367 0.330 2.660E-01 -0.279 1.013 

EA-PGS Quintile 3 1.054 0.337 1.762E-03 0.393 1.714 

EA-PGS Quintile 4 0.185 0.317 5.591E-01 -0.436 0.806 

EA-PGS Quintile 5 0.596 0.332 7.218E-02 -0.054 1.246 

Three Variants      
EA-PGS Quintile 1 1.941 1.622 2.316E-01 -1.239 5.120 
EA-PGS Quintile 2 -3.319 2.294 1.480E-01 -7.815 1.178 

EA-PGS Quintile 3 0.000 . . . . 

EA-PGS Quintile 4 0.697 1.622 6.674E-01 -2.482 3.876 

EA-PGS Quintile 5 -0.660 1.622 6.841E-01 -3.840 2.520 

Height Beta Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 -1.374 0.110 6.389E-36 -1.589 -1.159 

EA-PGS Quintile 2 -0.706 0.112 2.824E-10 -0.925 -0.487 

EA-PGS Quintile 3 -0.551 0.113 1.155E-06 -0.773 -0.329 

EA-PGS Quintile 4 -0.274 0.115 1.748E-02 -0.499 -0.048 
EA-PGS Quintile 5 0.354 0.112 1.581E-03 0.135 0.574 

Two Variants      
EA-PGS Quintile 1 -0.928 0.628 1.396E-01 -2.160 0.303 

EA-PGS Quintile 2 -0.768 0.638 2.284E-01 -2.018 0.482 

EA-PGS Quintile 3 -1.247 0.651 5.565E-02 -2.523 0.030 

EA-PGS Quintile 4 -0.357 0.613 5.602E-01 -1.559 0.845 

EA-PGS Quintile 5 -0.730 0.641 2.552E-01 -1.987 0.527 

Three Variants      
EA-PGS Quintile 1 -2.690 3.139 3.914E-01 -8.843 3.462 

EA-PGS Quintile 2 -12.299 4.439 5.595E-03 -21.000 -3.599 
EA-PGS Quintile 3 0.000 . . . . 

EA-PGS Quintile 4 0.981 3.139 7.546E-01 -5.171 7.133 

EA-PGS Quintile 5 -4.076 3.139 1.941E-01 -10.228 2.076 
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Appendix table 7.4.7 (2): EA-PGS and rare variant association results across quintiles 
excluding missense variants: Binary Results 

Association Test Results for individuals with LoF variants and CNVs only (n= 16,934):                
  Binary Trait Results 

Trait Odds Ratio Standard Error P Value 95% CI I 95% CI II 

Unable To Work      
One Variant      
EA-PGS Quintile 1 2.535 0.166 1.333E-45 2.229 2.883 
EA-PGS Quintile 2 1.487 0.123 1.457E-06 1.265 1.748 

EA-PGS Quintile 3 1.370 0.118 2.484E-04 1.158 1.622 
EA-PGS Quintile 4 1.357 0.119 5.220E-04 1.142 1.612 

EA-PGS Quintile 5 0.901 0.093 3.109E-01 0.736 1.103 

Two Variants      
EA-PGS Quintile 1 0.255 0.257 1.746E-01 0.035 1.834 
EA-PGS Quintile 2 2.248 0.890 4.076E-02 1.035 4.886 

EA-PGS Quintile 3 1.817 0.773 1.601E-01 0.790 4.182 
EA-PGS Quintile 4 1.501 0.691 3.777E-01 0.609 3.702 
EA-PGS Quintile 5 0.670 0.480 5.768E-01 0.165 2.731 

Three Variants      
EA-PGS Quintile 1 1.000 . . . . 
EA-PGS Quintile 2 1.000 . . . . 
EA-PGS Quintile 3 1.000 . . . . 

EA-PGS Quintile 4 1.000 . . . . 

EA-PGS Quintile 5 1.000 . . . . 

In Employment Odds Ratio Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 0.712 0.031 9.074E-15 0.654 0.776 
EA-PGS Quintile 2 0.950 0.042 2.487E-01 0.871 1.037 

EA-PGS Quintile 3 0.959 0.043 3.550E-01 0.879 1.048 
EA-PGS Quintile 4 0.855 0.039 5.701E-04 0.782 0.935 

EA-PGS Quintile 5 1.043 0.047 3.451E-01 0.956 1.139 

Two Variants      
EA-PGS Quintile 1 0.697 0.176 1.523E-01 0.425 1.143 
EA-PGS Quintile 2 0.796 0.201 3.653E-01 0.485 1.305 

EA-PGS Quintile 3 0.873 0.236 6.163E-01 0.514 1.484 
EA-PGS Quintile 4 0.676 0.163 1.049E-01 0.422 1.085 
EA-PGS Quintile 5 1.203 0.303 4.645E-01 0.733 1.972 

Three Variants      
EA-PGS Quintile 1 4.299 5.516 2.558E-01 0.348 53.165 
EA-PGS Quintile 2 1.000 . . . . 
EA-PGS Quintile 3 1.000 . . . . 

EA-PGS Quintile 4 1.000 . . . . 

EA-PGS Quintile 5 5.749 7.127 1.583E-01 0.506 65.298 

Has a Degree Odds Ratio Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 0.427 0.017 3.230E-104 0.395 0.461 
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EA-PGS Quintile 2 0.641 0.024 1.319E-32 0.595 0.690 

EA-PGS Quintile 3 0.771 0.029 2.963E-12 0.717 0.830 
EA-PGS Quintile 4 1.062 0.039 1.050E-01 0.988 1.142 

EA-PGS Quintile 5 1.711 0.063 7.561E-48 1.591 1.839 

Two Variants      
EA-PGS Quintile 1 0.549 0.119 5.456E-03 0.359 0.838 
EA-PGS Quintile 2 0.728 0.153 1.302E-01 0.483 1.098 

EA-PGS Quintile 3 0.681 0.148 7.655E-02 0.446 1.042 
EA-PGS Quintile 4 1.114 0.220 5.835E-01 0.757 1.641 

EA-PGS Quintile 5 1.531 0.324 4.409E-02 1.011 2.317 

Three Variants      
EA-PGS Quintile 1 1.224 1.237 8.417E-01 0.169 8.873 
EA-PGS Quintile 2 1.000 . . . . 

EA-PGS Quintile 3 1.000 . . . . 
EA-PGS Quintile 4 0.381 0.446 4.093E-01 0.038 3.775 

EA-PGS Quintile 5 3.987 4.650 2.357E-01 0.405 39.210 

Has a Child DD Related Diagnosis Odds Ratio Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 2.001 0.199 3.036E-12 1.647 2.432 
EA-PGS Quintile 2 1.937 0.200 1.382E-10 1.583 2.370 

EA-PGS Quintile 3 1.846 0.197 9.166E-09 1.498 2.276 
EA-PGS Quintile 4 1.533 0.179 2.612E-04 1.219 1.929 

EA-PGS Quintile 5 1.353 0.163 1.222E-02 1.068 1.713 

Two Variants      
EA-PGS Quintile 1 3.151 1.451 1.268E-02 1.278 7.771 
EA-PGS Quintile 2 1.238 0.886 7.652E-01 0.305 5.034 

EA-PGS Quintile 3 2.573 1.319 6.520E-02 0.942 7.026 
EA-PGS Quintile 4 1.695 0.995 3.688E-01 0.536 5.355 

EA-PGS Quintile 5 1.852 1.089 2.947E-01 0.585 5.863 

Three Variants      
EA-PGS Quintile 1 1.000 . . . . 
EA-PGS Quintile 2 1.000 . . . . 

EA-PGS Quintile 3 1.000 . . . . 
EA-PGS Quintile 4 1.000 . . . . 

EA-PGS Quintile 5 18.906 21.934 1.129E-02 1.946 183.718 

Has an Adult DD Related Diagnosis Odds Ratio Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 1.701 0.122 1.437E-13 1.478 1.958 

EA-PGS Quintile 2 1.396 0.111 2.813E-05 1.194 1.631 
EA-PGS Quintile 3 1.215 0.104 2.278E-02 1.027 1.436 
EA-PGS Quintile 4 1.092 0.100 3.352E-01 0.913 1.305 

EA-PGS Quintile 5 1.008 0.092 9.324E-01 0.842 1.206 

Two Variants      
EA-PGS Quintile 1 0.732 0.430 5.947E-01 0.231 2.313 
EA-PGS Quintile 2 1.044 0.535 9.330E-01 0.383 2.848 

EA-PGS Quintile 3 1.674 0.709 2.244E-01 0.729 3.841 
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EA-PGS Quintile 4 1.527 0.645 3.157E-01 0.668 3.493 

EA-PGS Quintile 5 1.683 0.712 2.186E-01 0.734 3.858 

Three Variants      
EA-PGS Quintile 1 1.000 . . . . 
EA-PGS Quintile 2 1.000 . . . . 

EA-PGS Quintile 3 1.000 . . . . 
EA-PGS Quintile 4 18.433 18.511 3.709E-03 2.575 131.943 

EA-PGS Quintile 5 1.000 . . . . 

Has a Mental Health Related Diagnosis Odds Ratio Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 1.624 0.096 3.174E-16 1.446 1.825 

EA-PGS Quintile 2 1.244 0.083 1.088E-03 1.091 1.419 
EA-PGS Quintile 3 1.138 0.080 6.679E-02 0.991 1.307 

EA-PGS Quintile 4 0.963 0.074 6.229E-01 0.828 1.120 
EA-PGS Quintile 5 0.989 0.073 8.781E-01 0.855 1.144 

Two Variants      
EA-PGS Quintile 1 0.635 0.324 3.738E-01 0.233 1.728 

EA-PGS Quintile 2 1.948 0.626 3.799E-02 1.038 3.656 
EA-PGS Quintile 3 1.385 0.514 3.796E-01 0.670 2.865 
EA-PGS Quintile 4 1.454 0.508 2.843E-01 0.733 2.886 

EA-PGS Quintile 5 1.771 0.594 8.828E-02 0.918 3.417 

Three Variants      
EA-PGS Quintile 1 1.000 . . . . 
EA-PGS Quintile 2 13.646 19.329 6.502E-02 0.850 219.114 

EA-PGS Quintile 3 1.000 . . . . 
EA-PGS Quintile 4 4.574 5.287 1.884E-01 0.475 44.074 

EA-PGS Quintile 5 1.000 . . . . 

Never a Parent Odds Ratio Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 0.996 0.047 9.394E-01 0.909 1.092 

EA-PGS Quintile 2 1.106 0.051 2.907E-02 1.010 1.211 
EA-PGS Quintile 3 1.280 0.058 4.285E-08 1.172 1.398 

EA-PGS Quintile 4 1.257 0.058 6.577E-07 1.149 1.376 
EA-PGS Quintile 5 1.400 0.061 1.118E-14 1.286 1.525 

Two Variants      
EA-PGS Quintile 1 1.191 0.297 4.846E-01 0.730 1.941 

EA-PGS Quintile 2 1.257 0.320 3.699E-01 0.763 2.071 
EA-PGS Quintile 3 1.494 0.366 1.008E-01 0.925 2.413 

EA-PGS Quintile 4 1.063 0.273 8.114E-01 0.643 1.757 
EA-PGS Quintile 5 1.049 0.285 8.610E-01 0.616 1.785 

Three Variants      
EA-PGS Quintile 1 9.782 12.150 6.634E-02 0.857 111.596 

EA-PGS Quintile 2 1.000 . . . . 
EA-PGS Quintile 3 1.000 . . . . 
EA-PGS Quintile 4 4.435 4.626 1.533E-01 0.574 34.255 

EA-PGS Quintile 5 2.036 2.391 5.448E-01 0.204 20.336 
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Never Pregnant Odds Ratio Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 0.848 0.063 2.545E-02 0.733 0.980 

EA-PGS Quintile 2 1.060 0.073 3.944E-01 0.926 1.214 
EA-PGS Quintile 3 1.261 0.084 4.838E-04 1.107 1.437 

EA-PGS Quintile 4 1.239 0.083 1.455E-03 1.086 1.414 
EA-PGS Quintile 5 1.312 0.082 1.425E-05 1.161 1.483 

Two Variants      
EA-PGS Quintile 1 0.453 0.237 1.297E-01 0.162 1.262 

EA-PGS Quintile 2 1.128 0.415 7.425E-01 0.549 2.320 
EA-PGS Quintile 3 1.959 0.668 4.845E-02 1.005 3.822 
EA-PGS Quintile 4 0.778 0.316 5.361E-01 0.351 1.724 

EA-PGS Quintile 5 1.386 0.491 3.567E-01 0.692 2.773 

Three Variants      
EA-PGS Quintile 1 3.996 5.751 3.357E-01 0.238 67.077 
EA-PGS Quintile 2 1.000 . . . . 

EA-PGS Quintile 3 1.000 . . . . 
EA-PGS Quintile 4 7.616 10.782 1.515E-01 0.475 122.108 

EA-PGS Quintile 5 3.197 3.997 3.526E-01 0.276 37.060 

Never a Father Odds Ratio Standard Error P Value 95% CI I 95% CI II 

One Variant      
EA-PGS Quintile 1 1.122 0.068 5.841E-02 0.996 1.265 

EA-PGS Quintile 2 1.141 0.071 3.570E-02 1.009 1.290 
EA-PGS Quintile 3 1.303 0.080 1.635E-05 1.155 1.470 

EA-PGS Quintile 4 1.280 0.081 9.529E-05 1.131 1.448 
EA-PGS Quintile 5 1.497 0.092 4.028E-11 1.328 1.688 

Two Variants      
EA-PGS Quintile 1 2.073 0.638 1.786E-02 1.134 3.788 

EA-PGS Quintile 2 1.380 0.494 3.675E-01 0.685 2.782 
EA-PGS Quintile 3 1.145 0.401 6.983E-01 0.577 2.274 

EA-PGS Quintile 4 1.377 0.466 3.440E-01 0.710 2.672 
EA-PGS Quintile 5 0.773 0.324 5.391E-01 0.340 1.759 

Three Variants      
EA-PGS Quintile 1 1.000 . . . . 

EA-PGS Quintile 2 1.000 . . . . 
EA-PGS Quintile 3 1.000 . . . . 
EA-PGS Quintile 4 2.431 3.458 5.325E-01 0.150 39.515 

EA-PGS Quintile 5 1.000 . . . . 
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Appendix table 7.4.8 (1): EA-PGS and rare variant association results across quintiles 
within the 325 gene subset: Continuous Results 

Individuals with any LoF variants in the 325 Gene Set: Continuous Trait Results (n = 5776) 

Fluid Intelligence Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 -0.801 0.093 9.055E-18 -0.984 -0.618 
EA-PGS Quintile 2 -0.434 0.091 1.973E-06 -0.613 -0.255 

EA-PGS Quintile 3 -0.215 0.090 1.648E-02 -0.391 -0.039 

EA-PGS Quintile 4 -0.055 0.091 5.443E-01 -0.233 0.123 
EA-PGS Quintile 5 0.202 0.085 1.791E-02 0.035 0.368 

Age Left Education Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 -0.575 0.070 1.873E-16 -0.712 -0.438 
EA-PGS Quintile 2 -0.258 0.073 3.688E-04 -0.401 -0.116 

EA-PGS Quintile 3 -0.159 0.078 4.053E-02 -0.311 -0.007 

EA-PGS Quintile 4 0.116 0.081 1.502E-01 -0.042 0.275 
EA-PGS Quintile 5 0.190 0.085 2.562E-02 0.023 0.358 

Years in Education Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 -2.382 0.144 2.050E-61 -2.664 -2.100 

EA-PGS Quintile 2 -1.308 0.144 9.713E-20 -1.590 -1.026 
EA-PGS Quintile 3 -0.710 0.148 1.578E-06 -1.000 -0.420 

EA-PGS Quintile 4 0.057 0.148 7.023E-01 -0.233 0.347 

EA-PGS Quintile 5 1.002 0.144 2.960E-12 0.721 1.283 

Income Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 -0.428 0.036 7.127E-33 -0.498 -0.357 

EA-PGS Quintile 2 -0.301 0.035 1.410E-17 -0.370 -0.232 
EA-PGS Quintile 3 -0.199 0.035 1.936E-08 -0.268 -0.130 

EA-PGS Quintile 4 -0.140 0.036 8.658E-05 -0.210 -0.070 

EA-PGS Quintile 5 0.061 0.035 7.691E-02 -0.007 0.129 

Townsend Deprivation Index Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 0.833 0.085 1.650E-22 0.666 1.000 

EA-PGS Quintile 2 0.622 0.085 3.320E-13 0.455 0.790 

EA-PGS Quintile 3 0.598 0.088 1.014E-11 0.426 0.770 
EA-PGS Quintile 4 0.419 0.088 1.939E-06 0.247 0.592 

EA-PGS Quintile 5 0.138 0.085 1.063E-01 -0.029 0.305 

Numeric Memory Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 -0.156 0.059 7.895E-03 -0.272 -0.041 

EA-PGS Quintile 2 -0.086 0.056 1.235E-01 -0.195 0.023 

EA-PGS Quintile 3 -0.133 0.055 1.648E-02 -0.242 -0.024 
EA-PGS Quintile 4 -0.133 0.055 1.632E-02 -0.242 -0.024 

EA-PGS Quintile 5 0.094 0.053 7.700E-02 -0.010 0.197 

Reaction Time Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 0.121 0.028 1.304E-05 0.066 0.175 
EA-PGS Quintile 2 0.083 0.028 2.431E-03 0.030 0.137 

EA-PGS Quintile 3 0.076 0.028 7.081E-03 0.021 0.131 

EA-PGS Quintile 4 0.107 0.028 1.604E-04 0.051 0.162 
EA-PGS Quintile 5 0.059 0.027 3.062E-02 0.006 0.113 
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Time taken on Pairs Test Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 0.159 0.095 9.510E-02 -0.028 0.345 
EA-PGS Quintile 2 0.304 0.095 1.415E-03 0.117 0.491 

EA-PGS Quintile 3 0.306 0.098 1.794E-03 0.114 0.499 

EA-PGS Quintile 4 0.271 0.098 5.825E-03 0.078 0.463 
EA-PGS Quintile 5 0.130 0.095 1.722E-01 -0.057 0.317 

Height Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 -1.480 0.184 1.034E-15 -1.841 -1.118 
EA-PGS Quintile 2 -1.151 0.184 4.382E-10 -1.513 -0.790 

EA-PGS Quintile 3 -0.666 0.190 4.523E-04 -1.039 -0.294 

EA-PGS Quintile 4 -0.497 0.190 9.020E-03 -0.869 -0.124 

EA-PGS Quintile 5 -0.135 0.185 4.657E-01 -0.497 0.227 
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Appendix table 7.4.8 (2): EA-PGS and rare variant association results across quintiles 
within the 325 gene subset: Binary Results 

Individuals with any LoF variants in the 325 Gene Set: Binary Trait Results (n = 5776) 

Unable To Work Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 2.801 0.293 8.391E-23 2.281 3.439 
EA-PGS Quintile 2 1.372 0.194 2.544E-02 1.040 1.810 

EA-PGS Quintile 3 1.605 0.217 4.561E-04 1.232 2.092 

EA-PGS Quintile 4 1.483 0.207 4.688E-03 1.129 1.950 
EA-PGS Quintile 5 1.032 0.166 8.428E-01 0.753 1.415 

In Employment Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 0.682 0.051 2.449E-07 0.589 0.788 

EA-PGS Quintile 2 0.848 0.063 2.569E-02 0.734 0.980 
EA-PGS Quintile 3 0.966 0.073 6.413E-01 0.833 1.119 

EA-PGS Quintile 4 0.806 0.062 4.848E-03 0.694 0.937 

EA-PGS Quintile 5 0.913 0.068 2.224E-01 0.790 1.056 

Has a Degree Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 0.435 0.029 1.320E-36 0.382 0.495 

EA-PGS Quintile 2 0.608 0.038 1.875E-15 0.538 0.687 

EA-PGS Quintile 3 0.755 0.047 7.289E-06 0.668 0.854 
EA-PGS Quintile 4 0.996 0.061 9.430E-01 0.883 1.123 

EA-PGS Quintile 5 1.484 0.089 5.272E-11 1.319 1.670 

Has a Child DD Related Diagnosis Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 2.727 0.392 2.983E-12 2.058 3.615 
EA-PGS Quintile 2 2.962 0.412 5.894E-15 2.255 3.890 

EA-PGS Quintile 3 2.715 0.405 2.149E-11 2.027 3.637 

EA-PGS Quintile 4 2.164 0.354 2.451E-06 1.570 2.983 
EA-PGS Quintile 5 1.940 0.325 7.798E-05 1.396 2.694 
Has an Adult NP Related 
Diagnosis  Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 2.093 0.230 1.964E-11 1.687 2.597 
EA-PGS Quintile 2 1.230 0.170 1.347E-01 0.938 1.614 

EA-PGS Quintile 3 1.310 0.182 5.181E-02 0.998 1.719 

EA-PGS Quintile 4 1.303 0.181 5.664E-02 0.993 1.710 
EA-PGS Quintile 5 1.357 0.179 2.113E-02 1.047 1.758 
Has a Mental Health Related 
Diagnosis  Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 1.644 0.162 4.927E-07 1.354 1.995 

EA-PGS Quintile 2 1.219 0.135 7.475E-02 0.980 1.514 
EA-PGS Quintile 3 1.170 0.136 1.788E-01 0.931 1.470 

EA-PGS Quintile 4 0.951 0.122 6.950E-01 0.740 1.222 

EA-PGS Quintile 5 1.337 0.144 7.087E-03 1.082 1.651 

Never a Parent Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 1.076 0.083 3.387E-01 0.926 1.252 

EA-PGS Quintile 2 1.206 0.091 1.288E-02 1.040 1.397 

EA-PGS Quintile 3 1.513 0.110 1.166E-08 1.312 1.744 
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EA-PGS Quintile 4 1.353 0.101 4.985E-05 1.169 1.565 
EA-PGS Quintile 5 1.377 0.099 8.204E-06 1.196 1.585 

Never Pregnant  Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 0.893 0.108 3.510E-01 0.704 1.133 

EA-PGS Quintile 2 1.131 0.127 2.710E-01 0.908 1.409 
EA-PGS Quintile 3 1.409 0.151 1.392E-03 1.142 1.739 

EA-PGS Quintile 4 1.241 0.136 4.902E-02 1.001 1.539 

EA-PGS Quintile 5 1.251 0.128 2.837E-02 1.024 1.529 

Never a Father Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 1.245 0.126 3.018E-02 1.021 1.517 

EA-PGS Quintile 2 1.269 0.129 1.938E-02 1.039 1.549 

EA-PGS Quintile 3 1.620 0.161 1.166E-06 1.333 1.967 
EA-PGS Quintile 4 1.468 0.150 1.736E-04 1.202 1.794 

EA-PGS Quintile 5 1.530 0.155 2.777E-05 1.254 1.866 
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Appendix 7.4.9 (1): EA-PGS and rare variant association results across quintiles within the 
125 gene subset: Continuous Results 

Individuals with any LoF variants in the 125 Gene Set: Continuous Trait Results (N = 2407) 

Fluid Intelligence Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 -0.996 0.151 4.135E-11 -1.292 -0.700 
EA-PGS Quintile 2 -0.548 0.141 1.027E-04 -0.825 -0.272 

EA-PGS Quintile 3 -0.214 0.135 1.129E-01 -0.478 0.051 

EA-PGS Quintile 4 -0.267 0.134 4.688E-02 -0.530 -0.004 
EA-PGS Quintile 5 0.141 0.136 3.003E-01 -0.126 0.408 

Age Left Education Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 -0.705 0.107 5.236E-11 -0.916 -0.495 
EA-PGS Quintile 2 -0.264 0.113 1.961E-02 -0.486 -0.042 

EA-PGS Quintile 3 -0.191 0.118 1.049E-01 -0.422 0.040 

EA-PGS Quintile 4 0.175 0.121 1.483E-01 -0.062 0.412 
EA-PGS Quintile 5 0.069 0.129 5.946E-01 -0.184 0.321 

Years in Education Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 -2.730 0.224 4.484E-34 -3.170 -2.291 

EA-PGS Quintile 2 -1.067 0.224 1.886E-06 -1.505 -0.628 
EA-PGS Quintile 3 -0.472 0.223 3.438E-02 -0.909 -0.035 

EA-PGS Quintile 4 -0.156 0.224 4.841E-01 -0.595 0.282 

EA-PGS Quintile 5 0.549 0.225 1.471E-02 0.108 0.991 

Income Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 -0.458 0.056 3.073E-16 -0.568 -0.348 

EA-PGS Quintile 2 -0.383 0.055 2.943E-12 -0.491 -0.276 
EA-PGS Quintile 3 -0.174 0.054 1.170E-03 -0.279 -0.069 

EA-PGS Quintile 4 -0.184 0.054 6.396E-04 -0.290 -0.079 

EA-PGS Quintile 5 -0.015 0.054 7.886E-01 -0.121 0.092 

Townsend Deprivation Index Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 1.100 0.133 1.203E-16 0.840 1.360 

EA-PGS Quintile 2 0.709 0.133 1.020E-07 0.448 0.971 

EA-PGS Quintile 3 0.663 0.132 5.413E-07 0.404 0.922 
EA-PGS Quintile 4 0.353 0.133 8.000E-03 0.092 0.613 

EA-PGS Quintile 5 0.122 0.134 3.606E-01 -0.140 0.384 

Numeric Memory Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 -0.279 0.099 4.930E-03 -0.473 -0.084 

EA-PGS Quintile 2 -0.073 0.091 4.199E-01 -0.250 0.104 

EA-PGS Quintile 3 -0.057 0.083 4.912E-01 -0.221 0.106 
EA-PGS Quintile 4 -0.181 0.081 2.613E-02 -0.340 -0.021 

EA-PGS Quintile 5 -0.024 0.087 7.877E-01 -0.195 0.148 

Reaction Time Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 0.204 0.043 2.548E-06 0.119 0.288 
EA-PGS Quintile 2 0.177 0.043 3.758E-05 0.093 0.262 

EA-PGS Quintile 3 0.053 0.043 2.089E-01 -0.030 0.137 

EA-PGS Quintile 4 0.161 0.043 1.645E-04 0.077 0.245 
EA-PGS Quintile 5 0.123 0.043 4.473E-03 0.038 0.207 
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Time taken on Pairs Test Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 0.232 0.148 1.171E-01 -0.058 0.522 
EA-PGS Quintile 2 0.224 0.149 1.318E-01 -0.067 0.515 

EA-PGS Quintile 3 0.106 0.148 4.742E-01 -0.184 0.395 

EA-PGS Quintile 4 0.540 0.148 2.749E-04 0.249 0.831 
EA-PGS Quintile 5 0.210 0.150 1.607E-01 -0.083 0.504 

Height Beta Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 -1.134 0.286 7.557E-05 -1.695 -0.572 
EA-PGS Quintile 2 -1.325 0.288 4.311E-06 -1.889 -0.760 

EA-PGS Quintile 3 -0.420 0.286 1.421E-01 -0.982 0.141 

EA-PGS Quintile 4 0.046 0.288 8.725E-01 -0.518 0.610 

EA-PGS Quintile 5 0.369 0.289 2.016E-01 -0.197 0.936 
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Appendix 7.4.9 (2): EA-PGS and rare variant association results across quintiles within the 
125 gene subset: Binary Results 

Individuals with any LoF variants in the 125 Gene Set: Binary Trait Results (N = 2407) 

Unable To Work Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 3.126 0.480 1.185E-13 2.313 4.225 
EA-PGS Quintile 2 1.913 0.371 8.134E-04 1.309 2.797 

EA-PGS Quintile 3 1.924 0.367 6.007E-04 1.324 2.796 

EA-PGS Quintile 4 1.325 0.292 2.014E-01 0.860 2.042 
EA-PGS Quintile 5 1.112 0.270 6.604E-01 0.692 1.789 

In Employment Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 0.677 0.078 7.354E-04 0.539 0.849 

EA-PGS Quintile 2 0.826 0.096 9.799E-02 0.658 1.036 
EA-PGS Quintile 3 0.976 0.110 8.302E-01 0.783 1.217 

EA-PGS Quintile 4 0.788 0.092 4.134E-02 0.627 0.991 

EA-PGS Quintile 5 0.858 0.100 1.878E-01 0.683 1.078 

Has a Degree Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 0.358 0.039 1.380E-21 0.290 0.442 

EA-PGS Quintile 2 0.599 0.059 1.632E-07 0.495 0.726 

EA-PGS Quintile 3 0.780 0.073 8.360E-03 0.649 0.938 
EA-PGS Quintile 4 0.931 0.087 4.461E-01 0.776 1.118 

EA-PGS Quintile 5 1.333 0.125 2.155E-03 1.109 1.602 

Has a Child DD Related Diagnosis Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 2.644 0.596 1.588E-05 1.700 4.112 
EA-PGS Quintile 2 2.140 0.533 2.245E-03 1.314 3.485 

EA-PGS Quintile 3 2.289 0.555 6.273E-04 1.424 3.680 

EA-PGS Quintile 4 1.723 0.471 4.625E-02 1.009 2.943 
EA-PGS Quintile 5 1.641 0.464 7.999E-02 0.943 2.858 

Has an Adult NP Related Diagnosis  Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 2.224 0.371 1.654E-06 1.604 3.083 

EA-PGS Quintile 2 1.480 0.295 4.931E-02 1.001 2.189 
EA-PGS Quintile 3 1.467 0.293 5.451E-02 0.993 2.170 

EA-PGS Quintile 4 1.740 0.321 2.671E-03 1.212 2.498 

EA-PGS Quintile 5 1.419 0.288 8.504E-02 0.953 2.113 
Has a Mental Health Related 
Diagnosis  Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 2.047 0.289 3.842E-07 1.553 2.700 

EA-PGS Quintile 2 1.492 0.238 1.194E-02 1.092 2.039 
EA-PGS Quintile 3 1.164 0.205 3.888E-01 0.824 1.645 

EA-PGS Quintile 4 1.139 0.204 4.667E-01 0.802 1.617 

EA-PGS Quintile 5 1.417 0.233 3.412E-02 1.026 1.956 

Never a Parent Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 1.196 0.139 1.238E-01 0.952 1.501 

EA-PGS Quintile 2 1.240 0.146 6.639E-02 0.986 1.561 

EA-PGS Quintile 3 1.620 0.175 8.233E-06 1.311 2.003 
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EA-PGS Quintile 4 1.401 0.156 2.489E-03 1.126 1.742 
EA-PGS Quintile 5 1.402 0.157 2.557E-03 1.126 1.746 

Never Pregnant  Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 0.989 0.183 9.512E-01 0.688 1.421 

EA-PGS Quintile 2 1.242 0.206 1.918E-01 0.897 1.720 
EA-PGS Quintile 3 1.466 0.234 1.665E-02 1.072 2.006 

EA-PGS Quintile 4 1.360 0.217 5.408E-02 0.995 1.861 

EA-PGS Quintile 5 1.174 0.195 3.344E-01 0.848 1.625 

Never a Father Odds Ratio Standard Error P Value 95% CI I 95% CI II 

EA-PGS Quintile 1 1.386 0.210 3.083E-02 1.031 1.864 

EA-PGS Quintile 2 1.230 0.204 2.134E-01 0.888 1.703 

EA-PGS Quintile 3 1.790 0.266 8.947E-05 1.338 2.396 
EA-PGS Quintile 4 1.439 0.224 1.962E-02 1.060 1.954 

EA-PGS Quintile 5 1.664 0.257 9.720E-04 1.230 2.253 
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Tables and Figures for Chapter Five 
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Appendix Table 7.5.1: Top KDM5B upstream variant predictions: 

        Predicted effect on 

chromosome position ref alt Transcribed regions Enhancer Promoter CTCF Transcription factors 

1 202812044 A G -1.063 -1.815 -1.175 -1.945 -16.211 
1 202803114 T C 2.692 -5.986 -4.512 -6.710 -14.680 

1 202812051 G C -0.647 -1.239 -0.757 -1.466 -11.498 

1 202810791 A C -1.744 -2.399 -1.118 -1.651 -10.947 
1 202803120 C T 4.372 -3.566 -3.193 -4.160 -10.770 

1 202810906 G A -2.271 -5.540 -10.367 -9.720 -10.348 

1 202810592 G A -0.452 -3.601 -4.071 -5.252 -7.689 
1 202815224 A G -0.631 -2.358 -1.207 -1.727 -7.603 

1 202810662 CCGG C -1.065 -3.206 -3.551 -4.489 -7.240 

1 202812017 C T -0.681 -1.512 -0.692 -1.082 -7.065 
1 202815224 A AG -0.769 -2.394 -1.117 -1.587 -6.999 

1 202803112 G C 3.339 -2.654 -2.441 -3.939 -6.768 

1 202815222 T G -0.410 -1.979 -1.064 -1.565 -6.560 
1 202815217 T TA -0.517 -1.647 -0.926 -1.355 -6.404 

1 202815219 A G -0.199 -1.496 -1.144 -1.598 -6.195 

1 202810589 T C -0.849 -3.240 -3.002 -3.757 -6.035 
1 202803116 G A 2.131 -1.941 -1.965 -2.918 -5.978 

1 202810792 C T -0.382 -0.386 -0.176 -0.442 -5.927 

1 202810786 T C -0.229 -0.208 1.048 0.716 -5.548 
1 202815226 C G -0.441 -1.155 -0.690 -1.048 -5.217 

1 202812669 G A -0.686 -1.390 -1.805 -2.553 -5.144 

1 202810810 T C -1.806 -2.416 -1.980 -2.023 -5.140 

1 202803339 A C 5.305 -0.517 -1.701 -2.381 -5.127 
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Appendix Table 7.5.2: Top KDM5B downstream variant predictions: 
        Predicted effect on 

chromosome position ref alt Transcribed regions Enhancer Promoter CTCF Transcription factors 

1 202713239 A G -1.637 -2.946 -2.301 -3.289 -16.933 

1 202713400 GCAAA G -0.953 -1.317 -1.448 -2.278 -15.367 

1 202719777 C T -2.806 -12.437 -8.270 -21.106 -14.789 

1 202732726 T A -0.069 -0.966 -0.237 -0.400 -11.177 

1 202713277 T C -1.157 -2.548 -2.008 -3.042 -10.466 

1 202732731 A C 0.177 -0.627 -0.156 -0.271 -9.488 

1 202732762 T A -0.220 -0.739 -0.195 -0.320 -9.326 

1 202713271 A T -1.126 -2.103 -1.729 -2.539 -8.918 

1 202710533 CGTGGGA C -1.926 -5.304 -4.995 -5.604 -6.838 

1 202732733 CAACTTTAAA C 0.059 -0.383 -0.136 -0.250 -6.134 

1 202713389 C G -0.690 -1.364 -0.656 -1.007 -5.775 

1 202710522 AGACCAAGCGGCGTGGGAGGGCGGG A -1.037 -3.199 -4.881 -5.030 -5.500 

1 202710585 GC G -1.829 -4.537 -3.620 -4.092 -5.301 

1 202710518 G A -1.213 -3.502 -4.614 -4.696 -5.296 

1 202732727 G A 0.536 -0.423 -0.158 -0.234 -5.151 

1 202722168 A G 0.131 -2.517 -1.326 -6.560 -2.633 

1 202736643 GTTT G -7.610 0.630 0.519 0.295 -0.106 

1 202726614 G T -7.059 -0.479 0.295 0.134 -0.937 

1 202728764 T TG -5.200 -0.400 0.151 0.002 -0.803 

1 202726651 T C -5.111 -0.376 0.197 0.091 -0.711 
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Appendix Table 7.5.3: Negative linear regression results for KDM5B association tests 

Fluid Intelligence Beta 
Standard 
Error P Value 95% CI I 95% CI II 

Negative Enhancer Variant 0.081 1.470 0.957 -2.903 3.064 
Negative Promoter Variant 1.065 1.972 0.593 -2.939 5.070 
Negative Transcribed Region Variant 0.788 3.268 0.811 -5.847 7.423 
Negative CTCF Variant 0.850 1.797 0.639 -2.798 4.499 
Negative TF Variant -0.839 0.696 0.236 -2.252 0.574 
Years in Education           
Negative Enhancer Variant -0.260 0.816 0.750 -1.873 1.352 
Negative Promoter Variant -0.229 0.816 0.780 -1.840 1.383 
Negative Transcribed Region Variant -0.515 0.825 0.533 -2.144 1.114 
Negative CTCF Variant -0.155 0.707 0.827 -1.552 1.242 
Negative TF Variant 0.079 0.316 0.802 -0.544 0.703 
Income           
Negative Enhancer Variant -0.037 0.186 0.843 -0.405 0.332 
Negative Promoter Variant -0.087 0.185 0.637 -0.453 0.279 
Negative Transcribed Region Variant -0.388 0.182 0.035 -0.748 -0.028 
Negative CTCF Variant -0.026 0.159 0.868 -0.341 0.288 
Negative TF Variant 0.041 0.070 0.565 -0.099 0.180 
Townsend Deprivation Index           
Negative Enhancer Variant -0.266 0.547 0.627 -1.346 0.814 
Negative Promoter Variant 0.122 0.547 0.824 -0.958 1.202 
Negative Transcribed Region Variant -0.235 0.553 0.672 -1.327 0.857 
Negative CTCF Variant 0.056 0.474 0.907 -0.880 0.992 
Negative TF Variant -0.064 0.211 0.762 -0.482 0.353 

 


