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ARTICLE INFO ABSTRACT

Article history: The prowess that makes few-shot learning desirable in medical image analysis is the
efficient use of the support image data, which are labelled to classify or segment new
classes, a task that otherwise requires substantially more training images and expert
annotations. This work describes a fully 3D prototypical few-shot segmentation algo-
Keywords: few-shot learning, multi-class rithm, such that the trained networks can be effectively adapted to clinically interesting
segmentation, image registration, pelvic structures that are absent in training, using only a few labelled images from a different
MRI institute. First, to compensate for the widely recognised spatial variability between in-
stitutions in episodic adaptation of novel classes, a novel spatial registration mechanism
is integrated into prototypical learning, consisting of a segmentation head and an spa-
tial alignment module. Second, to assist the training with observed imperfect alignment,
support mask conditioning module is proposed to further utilise the annotation available
from the support images. Extensive experiments are presented in an application of seg-
menting eight anatomical structures important for interventional planning, using a data
set of 589 pelvic T2-weighted MR images, acquired at seven institutes. The results
demonstrate the efficacy in each of the 3D formulation, the spatial registration, and the
support mask conditioning, all of which made positive contributions independently or
collectively. Compared with the previously proposed 2D alternatives, the few-shot seg-
mentation performance was improved with statistical significance, regardless whether
the support data come from the same or different institutes.

© 2023 Elsevier B. V. All rights reserved.

1. Introduction sis, treatment, and monitoring, and remains a research interest.
Diagnosis of varieties of diseases can be assisted by quantify-
ing the morphology, or its change, of multiple structures. For
example, brain disorders, including Alzheimer’s disease (Pe-
trella et al., 2003) and Parkinson (Hutchinson and Raff, 2000),
*Corresponding author: E-mail: yiwen.li @st-annes.ox.ac.uk associates with abnormal volumes or shapes of neurological re-

Multi-structure segmentation is one of the fundamental com-
puting tasks in medical imaging applications, found in diagno-
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gions. Identifying brain structures is the key to many quanti-
tative studies, such as functional activation mapping and brain
development analysis (Han and Fischl, 2007). Minimally in-
vasive treatments often benefit from careful planning of both
interventional instruments and guidance imaging, with respect
to segmented patient-specific anatomical structures. In endo-
scopic pancreatobiliary procedures, as previously reported, im-
age guidance that displays registered anatomical models outside
the endoscopic field of view helps the surgeon during targeting
and navigation (Howe and Matsuoka, 1999).

This work is primarily concerned with segmenting mul-
tiple organs and urologically interesting structures on T2-
weighted MR images from prostate cancer patients, to plan
targeted biopsy, focal therapy, and, increasingly, other thera-
peutic procedures such as radiotherapy. Accurate segmentation
of these structures help with targeting suspected cancerous re-
gions found in multiparametric MR imaging with respect to the
prostate gland and avoiding vulnerable surrounding structures,
such as rectum, bladder and neurovascular bundles, for min-
imising risks in infection, impotence and other potential injury
and complications (De la Rosette et al., 2010).

The data-driven representation learning enabled by deep
neural networks has led to promising segmentation results in
multi-structure segmentation tasks, for example, in neuroimag-
ing (Henschel et al., 2020) and abdominal organs (Weston
et al., 2019). Automating this task reduces the current require-
ment of manual segmentation which is often associated with
costs in expertise and intra- and inter-observer variations (Fior-
ino et al., 1998). However, recent supervised segmentation
methods mostly rely on large data sets with full annotations,
subject to the similar limitations in labelling, albeit only with
training. On the other hand, few-shot image learning aims
to classify unseen classes using only a few labelled exam-
ples (Snell et al., 2017; Sung et al., 2018). For medical image
segmentation, such novel classes may represent new types of
organ or anatomical regions, whose expert annotations are not
available for large training data sets. Using our intended inter-
ventional planning application as an example, different biopsy
or therapy procedures may require different anatomical struc-
tures and pathological regions to be annotated during the plan-
ning stage. Prostate zonal structures, if not routinely segmented
for MR-planning of radiotherapy, may provide more precise tar-
get localisation in registration-assisted ultrasound-guided focal
ablation or a new therapy.

The now well-recognised performance loss in cross-institute
generalisation of deep learning models (Gibson et al., 2018) has
motivated a body of research such as domain adaptation (Ren
et al.,, 2018; Meyer et al., 2021) and federated learning (Li
etal., 2021a). This work focuses on few-shot segmentation with
the practically important cross-institution context (as shown in
Fig. 1), which aims to segment a novel class from a query im-
age, given only a few support images and their binary masks
of the novel class, from a novel institution where the limited
labelled data are available. In other words, the model should
be able to simultaneously adapt to both novel classes and novel
institutions.

To improve the inter-class and inter-institute generalisation,
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Fig. 1. Visualisation of the proposed cross-institution few-shot segmen-
tation task. As shown in (a), the task aims to train a model on the base
data set including images from base institutions with corresponding masks
on base classes and generalise to novel institution as well as novel classes.
The model is evaluated on se; ting novel classes from query images ac-
quired by novel institutions, while support images comes from either base
or novel institutions, respectively shown in (b) and (c).

this work first examines the manifestation of the performance-
reducing inter-institute variability in prototypical few-shot im-
age segmentation algorithms. In particular, we investigate the
impact of spatial alignment, or the lack thereof, between sup-
port and query data from different institutes, a key component
in such prototypical learning paradigm, on the few-shot seg-
mentation accuracy.

First, addressing one of the previously identified challenges
of spatial inconsistency (Tian et al., 2020), also found in med-
ical image applications (Guo et al., 2021; Sun et al., 2022), we
develop a spatial registration mechanism to align the support
and query images prior to the comparison between the two.
This spatial registration mechanism consists of a segmentation
head and a spatial alignment module, trained end-to-end, and
is motivated by medical-image-specific observations of the dif-
ference between intra- and inter-institution data characteristics,
due to different scanners and local imaging protocols, discussed
further in Section 4.4.

Second, we propose an additional support mask conditioning
module, also trained end-to-end, to enforce the conditioning on
the available novel class labels. The conditioning module is
empirically designed to work together with the spatial registra-
tion mechanism, to maximise utilisation of the few and prized
support masks.

In addition to the evaluation of efficacy due to each proposed
component, this work also demonstrates the benefit of the pro-
posed 3D formulation, replacing existing 2D neural network-
based few-shot segmentation approaches (Feyjie et al., 2020;
Ouyang et al., 2020; Roy et al., 2020; Abdel-Basset et al., 2021;
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Guo et al., 2021; Tang et al., 2021; Yu et al., 2021; Sun et al.,
2022).

One widely identified problem in both developing and eval-
uating multi-structure segmentation algorithms is the lack of
a sizable labelled data set. To the date of submission of this
paper, there were no multi-structure annotations publicly avail-
able for pelvic MR images. Through this work, all of our man-
ual labels from open data sets have been made available at
https://zenodo.org/record/7013610, for aiding the re-
producibility of this work and, potentially, for other urologic
or radiologic tasks concerning multiple pelvic anatomical struc-
tures.

Our preliminary results were recently presented (Li et al.,
2022), contributions from this paper include 1) a more detailed
description and discussion of the spatial registration mecha-
nism, 2) a new support mask conditioning module, 3) a sub-
stantially larger and fully labelled data set, and 4) more abla-
tion comparison experiments. These are also summarised as
follows.

o We introduced the cross-institution few-shot segmentation
task to address the data scarcity problem specifically faced
in medical applications.

e We first proposed to extend prototypical neural network to
3D for few-shot multi-class segmentation, which requires
fewer parameters while achieving similar performance to
its 2D counterpart.

e We developed an spatial registration mechanism and a sup-
port mask conditioning module, directly addressing the
observed limitations in medical image few-shot segmen-
tation, for improving generalisation across data from dif-
ferent institutions.

e We presented extensive ablation studies to investigate the
impact of the proposed individual components, the in-
creasing number of support data, the varying size of the
training set, and the permutations in the available insti-
tutes.

e We published all expert annotations based on public image
data sets at https://zenodo.org/record/7013610,
which includes full segmentation of eight distinctive male
lower pelvic structures on 589 3D MR images (including
178 3D MR images from our preliminary work (Li et al.,
2022)).

e The code implementing the proposed algo-
rithms has also been made publicly available
at https://github.com/kate-sann5100/

CrossInstitutionFewShotSegmentation.

2. Related Work

2.1. Few-shot segmentation

The few-shot segmentation task was first introduced in com-
puter vision applications (Shaban et al., 2017) where the goal
is to segment the novel class in a query image in the presence

of a few support images having the same class labelled. Using
episodic training which takes both query and support images as
input, Shaban et al. (2017) demonstrated a better performance
compared to the common fine-tuning methods, which fine-tunes
the models on the support images per novel class. In 2018,
Dong and Xing (2018) proposed prototypical episode learning
that represents the novel class in the support image with a single
prototype vector and compares it with query features to perform
segmentation. This strategy was later adopted in many further
research works (Zhang et al., 2019; Liu et al., 2020; Li et al.,
2021b).

Due to the common challenges in data collection, few-shot
segmentation was also adapted to different medical images, in-
cluding CT (Roy et al., 2020), MRI (Mondal et al., 2018), ultra-
sound (Guo et al., 2021), etc. The early methods applied fine-
tuning strategy and addressed the over-fitting on support images
with multi-tasking (Mondal et al., 2018; Cui et al., 2020) and
data augmentation (Zhao et al., 2019; He et al., 2020; Wang
etal., 2021). Roy et al. (2020) was one of the first that adopted
prototypical learning in medical imaging, reporting promising
performance. Ouyang et al. (2020) and Yu et al. (2021) ex-
tracted multiple prototype vectors and performed a location-
guided comparison, with the assumption of similar spatial lay-
outs between the query and support images. However, in cross-
institution scenarios, regions of interest may be located differ-
ently between queries and supports, as shown in Fig. 9. In this
work, we proposed an integrated spatial registration mechanism
to address such inconsistency.

In addition to data scarcity, higher-dimensional data in med-
ical imaging often poses practical challenges in neural network
training. Roy et al. (2020) proposed to use 2D neural networks,
that pre-trained on large data sets such as ImageNet, and per-
formed slice-by-slice inference when applied to 3D medical im-
ages. This strategy was also adopted by most of the follow-up
prototypical methods (Feyjie et al., 2020; Ouyang et al., 2020;
Abdel-Basset et al., 2021; Guo et al., 2021; Tang et al., 2021;
Yu et al., 2021; Sun et al., 2022). Kim et al. (2021) integrated
a bidirectional gated recurrent unit to process 2D features ex-
tracted from adjacent slices. Zhou et al. (2021) proposed 3D
pyramid reasoning modules (PRMs) to model the anatomical
correlation between query features at each location and all sup-
port features at neighbouring corresponding locations. To re-
duce computational cost, a relatively small number of channels
were used for each convolutional kernel. The proposed method,
in contrast, reduced the number of comparisons by extracting a
single prototype vector for each spatial window.

To the best of our knowledge, there has been no prior work
that successfully deployed 3D neural networks that receive and
output 3D image volumes directly, using prototypical training
for few-shot segmentation in medical imaging applications. In-
vestigating the 3D formulation is not only technically inter-
esting, but may also lead to potentially superior performance
and/or efficiency in this inherently 3D segmentation task.

2.2. Cross-institution learning

The proposed cross-institution few-shot segmentation task
aims to segment a novel class in images from a novel institu-
tion, with support images and labels from the same novel or
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other non-novel institutions. Although the objective is also to
generalise on novel data, it differs from federated learning and
domain adaptation due to their constraints on data privacy, ac-
cessibility, and availability. However, an optimal gain in effi-
cient use of labelled data could be achieved by combining these
methods with few-shot learning.

Federated learning is a learning paradigm that targets the
problem of data governance and privacy by training algorithms
collaboratively without the need for physically exchanging the
data themselves, sometimes requiring the compliance of vary-
ing access policy (Rieke et al., 2020). It has been used in dif-
ferent medical imaging applications (Li et al., 2021a), but the
focus is mainly on improving performance in trained classes
without the need for generalisation in a novel class.

There exist three different domain adaptation methods: su-
pervised, unsupervised, and semi-supervised. While sharing
the same overarching objective, i.e. generalising to new do-
mains such as novel classes, the supervised domain adapta-
tion (Hosseini-Asl et al., 2016) does not explicitly focus on the
data scarcity as few-shot learning. Unsupervised methods (Per-
one et al., 2019), on the other hand, often assume large-scale
data set from the novel institution but without labels, thus pay-
ing a different attention from that of cross-institution few-shot
learning. Combining both techniques, semi-supervised meth-
ods (Fu et al., 2019; Xia et al., 2020) can leverage labelled and
unlabelled data sets more efficiently.

Despite the distinct focuses, techniques and methodologies
from federated learning and domain adaptation have indeed
been considered in developing our cross-institute few-shot seg-
mentation approach. For example, the spatial normalisation and
divergence between features have commonly been adopted in
federated learning (Li et al., 2020) and feature-level domain
adaptation (Tomar et al., 2021), respectively.

3. The Cross-Institution Few-Shot Segmentation Task

Consider a set of classes and institutions, C and U, respec-
tively. For each institution u € U, I, denotes the set of all
images. All classes have been segmented for each image: given
a class ¢ € C, M(l,, c) represents the corresponding mask for
the image I, € I, from the institution u.

The classes C and the institutions U are split into disjoint
sets (Chase> Cnovel) and (Ubase; Unovel), respectively. The images
7, of each institution u are also separated into disjoint training
and test subsets 7541 and 7. A base data set Dyyse is formed
with training images and the corresponding labels of the base
classes from all the base institutions.

Dwe= | U Ut maon). M

u€Upase [eTM €Chase

Similarly, test images and the corresponding labels of novel
classes from all base institutions form another data set,

Doseinsnoneias = ) () (J (@ MTen), @

u€Upase 1€ cE€Crovel

together with the data set of images from the novel institutions
and the novel classes’ labels,

U U U (U, ML, c)}, (3

u€Unovel 1€, c€Crovel

Diovel.ins_novelcls =

a novel data set is built focusing on novel classes:

Dnovel = Z)basejnsmovel,cls U Z)novel,inLnovel,cls~ (4>

Therefore, the cross-institution segmentation task aims to
train a model on the base data set Dy, and generalise to the
novel data set D,ove; Which contains novel classes on both base
and novel institutions. Specifically, following the few-shot set-
ting described in Roy et al. (2020) and Ouyang et al. (2020), the
model is tasked to segment a novel class ¢ € Cpgye in a query
image Il acquired from a novel institution u € U, With only
K support examples {(Z}; ., M(I}, ., c))},{i | from the same or dif-
ferent institutions. The predicted query mask M(IZ, c) is com-
pared with the label M(I,c) with a segmentation metric such
as the Dice score (Sudre et al., 2017). Such evaluation proce-
dure is named an episode with K-shot, which is also detailed in
Algorithm 1.

4. Method

4.1. Episodic Few-shot Training

This work adopts the common episodic training paradigm
(detailed in Algorithm 2) that simulates the few-shot task dur-
ing training. Each episode consists of query (19, M(14,c)) and
K support {(I}, M(I}, c))}f=l image-label pairs, for a base class
¢ sampled from Cyyse. In this work, K = 1 during training and
the model is trained to predict the query mask M9(c) given the
query image /9 and one support image-label pair, denoted as
I°, M*(c)).

4.2. Prototypical Network

A prototypical network (Dong and Xing, 2018) first defines
a prototype feature vector per class, extracted from the embed-
ded features of the labelled voxels, in the support image, corre-
sponding to the class. The feature vector is then compared with
the query image voxel-wise in the embedded feature space for
segmentation prediction.

Specifically, the query and support images, denoted by /* and
14 respectively, are encoded by a shared feature extractor into
support and query feature maps of the same shape, F* and F,
respectively. The class prototype /. and the background pro-
totype hg are then derived by averaging F* over voxels of the
class ¢ (where label M*(c) equals 1) and background (where la-
bel M*(c) equals 0), respectively, i.e., h, = f(F°®, M*(c)) and
hy = f(F*,1 - M*(c)), where

Z F(x,yA,z)M(x,y.z)
FEM =2 ®)
’ Z M(x.,y,z) ’
(x,y.2)

with (x,y, z) iterating over all voxels in F along X, y and z axes.
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Fig. 2. Overview of the proposed method. A shared feature extractor outputs query/support features from query/support images. The spatial registration
mechanism spatially registers support feature/mask towards query. Foreground/background similarity maps are derived through local prototypical com-
parison, concatenated with the aligned support mask and processed by the support mask conditioning module to make the final prediction

The similarity between each query voxel and class (or back-
ground) is calculated through cosine similarity between the
voxel feature map F? and the class prototype feature vector A,
(or hy for background):

F' . -h
sim(x) = — )T ©)
IFL Jla Nz

where *x € {c, 0} represents the class or background, and - rep-
resents the dot product between vectors.

4.3. Local Prototypical Network

To extract location-sensitive local prototypes (Yu et al.,
2021), images of spatial size W x H x D are partitioned into
overlapping windows g € G of size ,,\W X a,H X ayD with
the equidistant spacing between window centres being half of
the window size. As shown in Fig. 2, for each window g € G,

two local prototype feature vectors Af and Af are calculated via
Eq. (5) by iterating (x,y,z) over the voxels inside the window
g hf = f(FS,M*(c), ) and hf = f(F*,1 — M*(c),g), where

Z F(x,y,z)M(x,y,z)
(x,y.2)eg

JF M, 8) = )

M,
(x.y.0)€g

For each query voxel (x,y,z), G, denotes the set of all
windows that contains the voxel: G, = {g | (x,¥,2) € g}.
The local similarity between this voxel and the class (or back-
ground) is then calculated using the maximum cosine similarity
over windows g € G, with the corresponding local proto-
type feature vectors {hf}seg,,.., and {hi}eeg,,,. !

q 8
max F(x,y.z) ) h*
eeGr IFE, I W11

X,

sim(x) =

®
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Algorithm 1: Evaluation Procedure

Input : Neural network ¢y with parameters

Images 7' for all base institutions u € Upgye
Images 7, for all novel institutions u € U,pyer

Masks for all novel classes in Cyoyel

Output: Dice scores for all, novel, and base institutions:
ALL_DICE, NOVEL_DICE, and BASE _DICE

ALL_DICE_SUM =0
ALL_DICE_COUNT =0
NOVEL_DICE_-SUM = 0
NOVEL_DICE_COUNT =0
BASE_DICE_SUM = 0
BASE_DICE_COUNT =0
for 19 € Uueqy ., 1, do

novel

for u € U, do

Sample I° € 7, such that I* # 4

for ¢ € C e do

Denote the mask of ¢ in I* as M*(c)
Denote the mask of ¢ in 19 as M%(c)
Predict M4(c) = (14, I*, M(c))
Evaluate dice = Dice(M4(c), M4(c))
Update ALL_DICE_SUM += dice
Update ALL_DICE_COUNT += 1
Update NOVEL_DICE_SUM += dice
Update NOVEL_DICE_COUNT += 1

end

end

for u € Uyys do

Sample [* € T

for ¢ € Cpye; do

Denote the mask of ¢ in I* as M*(c)
Denote the mask of ¢ in 19 as M%(c)
Predict M4(c) = ¢o(1%, I, M(c))
Evaluate dice = Dice(M4(c), M4(c))
Update ALL_DICE_SUM += dice
Update ALL_DICE_COUNT += 1
Update BASE DICE_SUM += dice
Update BASE_DICE_COUNT += 1

end
end

end

_ _ALL_DICE.SUM
Compute ALL _DICE = 11555 count

Compute NOVEL DICE = SOV bIE s,

Compute BASE _DICE = —B/‘i‘;é%[)clg%%%%T

Algorithm 2: Episodic Training Procedure

input : Neural network ¢, with parameters 6.
Learning rate .
Images 7' L”‘i“ for all base institutions u € Upyse-
Masks for all base classes in Cpyse.
output: Trained model ¢y.
while Training do
Sample ¢ ~ Cpgse
Sample 1%, I° € Uyeqq,,., 7540, such that I, # I,
Denote the mask of c in I° as M*(¢)
Denote the mask of ¢ in 17 as M9(c)
Predict M4(c) = ¢g(I9, I*, M*(¢))
Compute loss: L
Update model parameters: 6 = 6 — aVyL
end

with x € {c, 0} representing the class or background. The fore-

ground/background probability map is derived by:
exp(sim(x))

exp(sim(0)) + exp(sim(c))

Mi(x) = )

with * € {c, 0} representing the class and background. The
model is trained to minimise the Dice loss between the pre-
dicted and ground-truth mask:

2 By MO ey MU ® ey
) 2 2
*€{0,c} Z(.\zy,z) M q(*)(x,y,z) + Z(x,yvz) M q(*)(x,y,z)
(10)

Ltewshot = 1 =

where M?(0) = 1 — M%(c)

4.4. Spatial Registration Mechanism

As discussed in Section 1, the differences in intra- and inter-
institution variations pose challenges in the local prototypical
network due to the varying image sizes, orientations, and voxel
dimensions of the acquiring institution. The target structure
in the query and support images can be distant (as in Fig. 9).
Therefore, they may not be included inside of the same or even
adjacent windows, and this results in erroneous comparison be-
tween the query voxels of the structure, thus irrelevant proto-
type vectors. However, while the absolute locations of target
structures varies among images, the relative position between
different structures remains consistent. This observation moti-
vated spatial alignment of the query and the support images, /4
and /°, illustrated in Fig. 2, before extracting the local prototype
feature vectors. This spatial registration process is conjectured
to alleviate the discrepancy between different institutions and
therefore reduce the amount of cross-institution training data
required for generalisation.

In this work, we consider an affine transformation to account
for the above-discussed spatial difference with potentially un-
certainties due to variable imaging positioning, signal sampling
and scanner calibration, although higher-degree transformation
will also be of interest. Furthermore, to avoid repeated feature
map extraction, we propose to apply the transformation directly
on feature maps (F? and F*), rather than on images (/¢ and I*).



Yiwen Li er al. / Medical Image Analysis (2023) 7

Query Mask
M(c

Few Shot Loss

~few shot

Query Feature
FY
Similarity Maps Predicted Query Mask
Feature sim(c), sim(0) M(c)
Extractor Support
i shared Mask
i weight onditioning .
Feature Module
q —) e 2 Query Feature Path
=3 Support Feature Path
Supp. Ismage Supp. Fseature Combined Feature Path
I F =3 Loss Computation
| 4
Supp. Mask Query Feature Predicted Query Seg Query Seg
M*(c) F? g M Align Loss
base base
Lajign
e I TR Uiy Gtk ' ARShRELCEILLEELLLELCLEIIL LRI
J A """"""" " Affine Transform Parameters
ai @12 413 @14
patial
Base-class Seg Loss @ Alignment ! a1 @ ags asy

Supp.;seature

base

base seg Module
Segmentation
oz - -

Predicted Supp. Seg
5

asz) azz G33 G34

e

»
| Transform

Supp. Seg Aligned §upp. Seg
Miose 7 base
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The affine transformation prediction consists of two stages.
Firstly, a shared base class segmentation head segments all base
classes from the query and support feature maps, F¢ and F*, re-
spectively. The multi-class predictions are denoted as Mgase and
Mg s> for the query and support images, respectively. During
evaluation, these predictions are concatenated and passed into
the spatial alignment module, illustrated in Fig. 2, which pre-
dicts an affine transformation matrix T € R>* of 12 degrees of
freedom. During training, as illustrated in Fig. 3, base classes
segmentation masks Mgase and My, are used for alignment pre-
diction. Secondly, alignment 7 is applied to the support feature
map F* and the label M}, to obtain the aligned support fea-
ture map F = 7 o F¥ and the aligned support label for all base
classes My, . = 7o Mg, respectively. These aligned feature
maps are then used to generate the local prototypes (as detailed
in Section 4.3) for segmentation.

Two losses are defined for training the spatial registration
mechanism. First, a Dice loss is defined for the multi-class seg-

mentation:

— 74 q 7S s
Lbase seg — Lmulti—class(Mbase’ Mbase) + Lmulti-class(Mbase’ Mbase)’

(11)
where the multi-class Dice loss is defined as:
Lmulti-class(Ms M)
23 evey M) ey ey M)
1 Dey.) MOy M(K)(ry,2) a2

Y 2 2
weComaut0) ey MOV oy + Dy MO

with M (%), and M (%)(xy,) Tepresenting the ground truth and
the predicted probability of a base class or background * at
(%, ,2).

The second loss aims to optimise alignment by minimising
the Dice loss between the query label Mgase and the aligned
support label M’ 5,&: a0 Of all base classes:

Lalign = Liulti-class (Mq M‘i,base)' (13)

base’

In theory, the transformation could be applied the other way
around, i.e. by applying the reverse alignment 7~' to the query
feature map F? resulting in the aligned query feature map
FZ,, = 77! o F4, to achieve spatial alignment between query
and support features. A cycle-consistent two-way registration
may also apply. However, once the aligned query mask 1\7[3,] is
predicted, it needs to be inverted, in order to obtain the mask of
the original query image M9 = 7 o M;’,l. The mechanism was
adopted in this work for its computational efficiency without
additional resampling in practice.

4.5. Support Mask Conditioning Module

During the prototype feature vector extraction using the
novel class mask in the support image, the voxel-wise infor-
mation may be made invariant to the transformation during the
aggregation in Eq. (5) and (7), which is designed for “normal-
ising” cross-institution data, but may also result in large spatial
variability in the prediction. Therefore, a simple yet effective
support mask conditioning module is proposed.
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Table 1. The ber of i acquired from each institution.
institution
1 2 3 4 5 6 7/ total

# of images | 321 45 74 82 24 24 19| 589

The support mask conditioning module takes as input a con-
catenation of the class similarity sim(c), the background sim-
ilarity sim(0) and the aligned mask of the class in the support
image M;(c), for the final prediction M4(c). Unlike the multi-
plication of support mask to support features for prototype cal-
culation (in Eq. (5) and (7)), the direct use of support mask here
provides a more direct route for the novel class information
to the final segmentation task, similar to commonly designed
shortcut layers for skipping networks.

Different from 3D medical segmentation algorithms using
mask predicted from downsampled image to provide context
information for high-resolution patches, the proposed method
uses the segmentation of query image with location and shape
information of the support mask.

4.6. Loss

Both the spatial registration mechanism and support mask
conditioning module are trained with the original local proto-
typical network, with an overall training loss function used in
this study as follows:

L = Lewshot + Lpase seg T Lalign (14)

4.7. Multiple-shot Evaluation

Due to memory limitation, the training was carried out in
one-shot paradigm, i.e. K = 1. During the evaluation, for the
query image /9 and each of the K support images /;, the base
class segmentation is predicted from the base class segmenta-
tion head, denoted by M? and M respectively. Among

base base,k’

the K support images, only the support image that is the most
similar to the query image in terms of the cosine similarity on
base class segmentation prediction, denoted by /7, is chosen to
calculate the local prototypes in (7). Precisely,

M‘I

base

(7s
~ Mbase,k '
k = argmax ———————— - >
ko IMy e ill2 1My Il

base

; 15)

where the dot product and norm are calculated on the flat-
tened predictions. The local prototypes are then calculated us-
ing the selected support example, hf = f(Fg, M(Ig,c), g) and
hg = f(F]::, 1- M(Iif, ¢), g) for each window g.

5. Experiments

5.1. Data Set

The data set includes 589 T2-weighted images acquired
from the same number of patients collected by seven stud-
ies, INDEX (Dickinson et al., 2013), the SmartTarget Biopsy
Trial (Hamid et al., 2019), PICTURE (Simmons et al., 2014),
TCIA Prostate3T (Litjens et al., 2015), Promisel2 (Litjens

Table 2. The eight structures are randomly divided into 4 folds.
structures

fold 1 bladder, central gland
fold 2 bone, rectum
fold 3| obturator internus, seminal vesicle

fold 4 | transition zone, neurovascular bundle

et al., 2014), TCIA ProstateDx (Diagnosis) (Bloch et al., 2015)
and the Prostate MR Image Database (Choyke et al., 2016).
Further details are reported in the respective study references.

These images were divided into seven subsets based on the
acquiring institution. The number of images acquired from each
institution is anonymously summarised in Table 1. The cross-
institution imaging protocols contain multiple scanners (two
manufacturers with a mixed 1.5 and 3T field strengths), vary-
ing field-of-view and anisotropic voxels, in-plane voxel dimen-
sions ranging between 0.3 and 1.0 mm and out-of-plane spacing
between 1.8 and 5.4 mm.

For each image, eight anatomical structures of planning inter-
est, including bladder, bone, central gland, neurovascular bun-
dle, obturator internus, rectum, seminal vesicle, transition zone
were labelled (as shown in Fig.4). All segmentations were man-
ually annotated by eight biomedical imaging researchers, with
experience ranging from 2 to 10 years in the annotation of med-
ical image data, each annotating a mixed-institution subset us-
ing an institution-stratified sampling. Each annotation has been
reviewed at least once.

The full segmentation masks and the derived intensity ar-
rays from T2-weighted sequences, after pre-processing, used
to produce the results in this study, are available at https:
//zenodo.org/record/7013610.

The eight lower-pelvic structures were randomly divided into
four folds as shown in Table 2. In a cross-validation exper-
iment, the classes contained in each fold were considered as
novel classes, the other three folds representing base classes.
The images of each institution # were then randomly sampled
into training and testing subsets in a 3:1 ratio. A further vali-
dation set was formed with 12 images, 2 from each institution,
randomly chosen from the novel data set D,,,,.;. Those images
were excluded from the testing. Unless otherwise specified, the
same data partitioning was used for all the results presented.
All statistical conclusions are reported using paired Student’s
t-tests at the significance level of @, = 0.05.

5.2. Implementation Details

All images were normalised, resampled and centre-cropped
to an image size of 256 x 256 x 48, with a voxel dimension
of 0.75 x 0.75 X 2.5 during pre-processing. Random rotation,
translation and scaling were adopted for data augmentation dur-
ing training.

The best training episode was chosen based on the perfor-
mance on the validation sets. During evaluation, all images
from the novel institution were considered query images for
evaluation for each of the fold-specified novel classes. A binary
Dice score for this novel class was calculated for each query im-
age based on a sampled support image from each of the seven
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Fig. 4. Qualitative result achieved by ‘3d_finetune’ and ‘2d’ baselines (detailed in Section 5.3) and our proposed method.

institutions, excluding the query. As described in Algorithm 1,
the results were reported when support images from 1) all in-
stitutions, 2) base institutions, and 3) novel institutions. The
institution where the support image comes from is denoted as
‘support ins’.

A 3D UNet was adopted as the feature extractor, whose
architecture is detailed in Fig. 5. @, = an = % and
ay = 1 were selected for local prototypical comparison
as detailed in Section 4.3. As shown in Fig. 6, the sup-
port mask conditioning module was made up of two convo-
lutional layers. For the spatial registration mechanism, the
base class segmentation head was a single convolutional layer,
and the spatial alignment module was a GlobalNet (Hu et al.,
2018a) as specified in Fig. 7. The models were trained us-
ing an Adam optimiser starting at a learning rate of 107*
with a minibatch size of 1. The implementation code has
been released at https://github.com/kate-sann5100/
CrossInstitutionFewShotSegmentation.

5.3. Compared Baseline Networks

For comparison, we report the results of the following base-
line networks.

1. The ‘3d_finetune’ network - The ‘3d_finetune’ baseline im-
plemented the same UNet as the feature extractor. It was
pre-trained on the base data set to segment all base classes
for 100 epochs using an Adam optimiser starting at a learn-
ing rate of 107*. During evaluation, for each query, the
pre-trained model is fine-tuned on the support images for
10 iterations before testing. This baseline provides a ref-
erence as a “lower-bound” performance, using a simple
transfer learning strategy.

2. The ‘2d’ network - LSNet (Yu et al., 2021) was adopted
as the 2D episodic baseline. It adopted the same local-
prototype comparison approach as detailed in Section 4.3
but using a 2D backbone based on ResNet-50 pre-trained
on ImageNet, instead of 3D networks. To the best of our
knowledge, this is the prototypical network closest to our
work that has been proposed for medical image segmenta-
tion.

3. BiGRU (Kim et al., 2021) - Another recent few-shot med-
ical segmentation method with a UNet-like network for
2D slice prediction and a bidirectional gated recurrent unit
(GRU) for adjacent slices consistency.

4. The ‘localnet (unsupervised)’ network for multi-atlas seg-
mentation - A non-rigid registration network, Local-
Net (Hu et al., 2018b), trained on the base data set images
with no organ label supervision. Given a support-query
pair, the model is trained to predict a dense displacement
field that warps the support towards the query. For n-
shot evaluation, n dense displacement fields are predicted,
each registering a support example towards the query. n
query mask predictions are derived by warping each sup-
port mask using the corresponding predicted dense dis-
placement field. The final prediction is made through
majority voting by the n query mask predictions. The
implementation was based on the open-source repository
MONAI (Cardoso et al., 2022).

5. The ‘localnet (supervised)’ network for multi-atlas seg-
mentation - A non-rigid registration network, Local-
Net (Hu et al., 2018b), trained on the base data set with
masks from all classes including novel classes. Sim-
ilar to the ‘localnet(unsupervised)’ network, the query
mask is the warped support mask using the registration-
predicted support-to-query dense displacement field. The
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Fig. 5. Feature extractor architecture.
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Fig. 6. Support mask conditioning module architecture.

implementation was based on the open-source repository
MONAI (Cardoso et al., 2022).

6. The ‘3d_supervised’ network - A fully supervised 3D
model was trained on the base data set images with masks
from all classes. The results on the novel institution im-
ages are reported as an “upper-bound” performance.

5.4. Ablation Studies

Ablation on different modules To assess the effectiveness of
different modules in the proposed method, we report the results
of the following variations.

1. The ‘3d’ network variant - The proposed 3D local proto-
typical network, detailed in Section 4.3 and Fig. 8(a), with-
out the support mask conditioning or spatial registration.
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Fig. 7. Spatial alignment module architecture.

2. The ‘3d_con’ network variant - The ‘3d’ version with the
support mask conditioning, but without the spatial regis-
tration, described in Section 4.5 and Fig. 8(b)).

3. The ‘3d_align’ network - The ‘3d’ version of the pro-
posed network (detailed in 8(c)) with the spatial registra-
tion mechanism, without the support mask conditioning.

4. The ‘3d_con_align’ network - The “complete” version of
the proposed network with both the support mask condi-
tioning module and the spatial registration mechanism, as
shown in Fig. 2.

Ablation study on the number of shots We report model
performance when different number of support trios available
in each episode.

Ablation on varying training data availability To inves-
tigate the dependency of our proposed method on the train-
ing set, we report the performance of the proposed model
(3d_con_align) trained on various availability in training sets.
The ‘half’ and ‘quarter’ experiments respectively includes %
and i of the training subset D" for each base institutions
u € Upyse, in order to test the impact of the training data set
size on the few-shot segmentation performance. The same ratio
between institutions was maintained in these experiments. Ad-
ditionally, the ‘half_single_ins’ experiment tests the same num-
ber of images as the ‘half” experiment, but all the images are
sampled from the same institution (Institution 1).

To assess and compare the intra- and inter-institution generli-
sation, results are also reported when all the institutions, only
the base institutions and only the novel institutions were used
as support institutions, denoted as ‘all’, ‘base’ and ‘novel’, re-
spectively.
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6. Results

The Dice score and 95% Hausdorft distance achieved by vari-
ations of our proposed method as well as the baseline networks
are presented for comparison. Table 3 and 4 summarise the net-
work performances, with respect to different folds and the mean
of all folds using institution 3 and 4 as the novel institution, re-
spectively. Other institutions were not used as novel institution
as they have either too many or too few samples such that the
training or test set size will be too small. When Institution 3
is used as the novel institution (Table 3), the proposed method
with both support mask conditioning module and spatial regis-
tration mechanism (‘3d_con_align’) outperformed ‘BiGRU’ by
16.34%, 16.16% and 17.44%, and outperformed the ‘2d’ base-
line by 11.39%, 11.79% and 8.95% in absolute Dice improve-
ment when support images came from all, base and novel insti-
tutions, respectively. While the ‘3d_finetune’ baseline achieved
higher Dice than the ‘2d’ baseline, its 95% Hausdorff distance
is more than double of the 2d’ baseline. This could be related
to the commonly appearing false positive predictions as shown
in Fig. 4. Dice may still have small yet distant false positive pre-
dictions which caused higher Hausdorft distance. We refer the
reader to our recent study for a discussion on this particular is-
sue (Yan et al., 2022). Similar improvements have also been ob-
served when Institution 4 was adopted as the novel institution.
8.64%, 8.55% and 9.15% absolute Dice improvements over the
2d’ baseline were achieved by the proposed method, as support
images came from all, base and novel institutions, respectively
(Table 4). The relative difference between performances when

support images come from base and novel institutions, denoted
as performance gap A, are also summarised in Table 3 and Ta-
ble 4. While achieving better performance overall, the proposed
method reported smaller performance gap.

support

aligned support

G.T. 3d_con 3d_con_align

(b)

Fig. 9. Qualitative results achieved by ‘3d_con’ and ‘3d_con_align’ on a

isaligned query-support pair. (a) visualises the original query and sup-
port, as well as the support aligned towards query through the spatial
registration meck (b) visualises predictions made by ‘3d_con’ and
‘3d_con_align’ based on the same support-query pair.

Adding support mask conditioning module alone (‘3d_con’)
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Table 3. Dice score (%) and 95% Hausdorff distance achieved when institution 3 was adopted as the novel institution. ‘support ins’ refers to the institution
from which the support images were sampled from. A refers to the percentage difference between predictions made with support images from the base

and novel institutions.

model support Dice (%) 95% Hausdorff distance (mm) #param
ins fold1 fold2  fold3 fold4  mean foldl fold2 fold3 fold4 mean | (million)
all 48.07 4478 4392 2925 4150 | 61.47 69.78 60.33 57.02 62.15
base | 4574 39.81 41.69 26.02 3832 | 63.22 73.42 62.33 59.24 64.55
3d_finetune 5.75
novel | 62.03 7456 5731 48.63 60.63 | 50.98 47.96 48.32 43.72 47.74
A 26.26% 46.60% 27.25% 46.48% 36.80% |-24.02% -53.09% -28.99% -35.51% -35.21%
all 44,05 43.08 29.61 2097 3443 | 23.70 33.67 23.60 22.83 25.95
BiGRU base | 44.05 4274 2921 20.62 34.15 | 23.73 34.06 23.85 23.20 26.21 18.85
novel | 44.03 4511 3201 23.12 36.07 | 23.49 31.30 22.12 20.60 24.38 o
A -0.06% 5.26% 8.75% 10.80% 5.30% | -1.04% -8.82% -7.83% -12.59% -7.52%
all 49.23 4451 3634 2744 39.38 | 24.03 30.86 29.51 30.77 28.79
2 base | 48.80 4292 3552 26.83 38.52 | 24.12 31.93 30.30 31.54 29.47 23.63
novel | 51.80 54.07 41.28 31.08 44.56 | 23.52 24.39 24.83 26.13 24.72 ’
A 5.80% 20.62% 13.94% 13.68% 13.55% | -2.54% -30.92% -22.03% -20.72% -19.24%
all 4779  52.06 34.81 26.16 40.20 | 31.60 30.68 32.95 31.71 31.73
3d base | 47.89 51.07 34.12 2544 39.63 | 31.69 31.03 33.35 32.19 32.07 575
novel | 4722 58.00 3896 3049 43.67 | 31.07 28.54 30.54 28.81 29.74 ’
A -1.42% 11.94% 12.44% 16.58% 9.25% | -2.00% -8.73% -9.20% -11.73% -7.82%
all 58.34 46.11 4043 3094 4396 | 27.31 27.15 27.33 26.38 27.04
3d_con base | 5825 4358 39.87 29.80 42.88 | 27.69 28.34 28.03 27.06 27.78 575
N novel | 5884 6130 4381 37.78 5043 | 25.04 20.02 23.14 22.30 22.63 ’
A 1.00% 2891% 8.99% 21.12% 14.98% |-10.56% -41.54% -21.12% -21.31% -22.76%
all 50.80 51.56 32.39 30.89 4141 27.33 36.29 32.63 29.93 31.55
3d_align base | 50.60 51.17 3125 30.82 4096 | 27.35 36.82 33.01 3042 31.90 2734
- novel | 51.97 53.88 3922 3133 44.10 | 27.20 33.15 30.34 26.96 29.41 '
A 2.64% 5.04% 2031% 1.62% 7.12% | -0.55% -11.08% -8.78% -12.84% -8.46%
all 59.36  60.38 4573 37.60 50.77 | 22.66 29.63 27.92 26.41 26.66
3d_con_align base | 59.11 59.80 45.06 37.28 50.31 22.69 30.30 28.38 26.89 27.06 2735
- novel | 60.86 63.87 49.77 39.54 5351 22.49 25.63 25.19 23.54 24.21 '
A 2.89% 637% 947% 570% 598% | -091% -18.21% -12.65% -14.26% -11.79%
localnet all 25.64 3899 21.83 11.20 2442 | 28.74 27.21 24.78 26.97 26.93
base | 24.16 3643 21.03 1035 2299 | 2943 28.48 25.39 27.89 27.80 5.04
(unsupervised) novel | 3452 5437 26.61 1634 3296 | 24.60 19.55 21.10 21.47 21.68 :
A 30.01% 33.00% 20.98% 36.67% 30.25% |-19.63% -45.70% -20.32% -29.93% -28.22%
localnet all 72770 7214 5284  42.65 60.08 19.36 22.81 21.78 24.00 21.99
base | 71.80 70.11 51.21  41.65 58.69 | 20.29 24.69 23.07 25.11 23.29 5.04
(supervised) novel | 78.11 8433 62.61 48.61 638.42 13.77 11.57 14.03 17.29 14.17 ’
A 8.09% 16.86% 18.20% 14.31% 14.21% |-47.33% -113.31% -64.37% -45.26% -64.39%
3d_supervised | N/A | 89.01 91.68 81.44 7030 83.11 4.73 5.14 591 6.83 5.65 5.75

led 3.76%, 3.25% and 6.76% absolute increase in Dice score
comparing to ‘3d’, when support images came from all, base
and novel institutions, respectively. Qualitatively, it predicted
more “compact” segmentation with smoother boundary as
shown in Fig. 9. However, it also resulted in a higher A -
a greater improvement was achieved when support and query
came from the same institution, possibly because of its sensi-
tivity to support-query (mis)alignment.

This was mitigated by the spatial registration mechanism
which not only further improved the Dice score by 6.81% but
also reduced A by 9.00%. Fig. 10 shows an example where
the target structure of the query and support were misaligned,
resulting in segmentation failure. Aligning the support to-
wards query, the spatial registration mechanism considerably
improved the performance.

Interestingly, when spatial alignment mechanism was avail-
able, the support mask conditioning module led to a further im-

provement - 9.36%, 9.35% and 9.41% absolute increase in Dice
score from ‘3d_align’ to ‘3d_con_align’ when support images
came from all, base and novel institutions, respectively.

It is also important to report that the proposed 3D network
‘3d’” without the support mask conditioning module and the spa-
tial registration mechanism contained 5.7 million parameters.
It achieved comparable performance to the “2d’ baseline with
23.5 million parameters, resulted in around 75% reduction in
number of parameters. For reference, the complete version of
our proposed method ‘3d_con_align’ had contained 27.3 mil-
lion parameters (16% more parameters compared with 2d’),
had achieved 28.9% of relative Dice improvement over ‘2d’.

Furthermore, Table 6 and Table 7 report the mean Dice score
achieved by ‘2d’ and ‘3d_con.align’ from different support-
query institution combinations, when institution 3 is the novel
institution. Better performance was often achieved by both
methods when support images come from the query institution.



Yiwen Li et al. / Medical Image Analysis (2023) 13

Table 4. Dice score (%) and 95% Hausdorff distance achieved when institution 4 was adopted as the novel institution. ‘support ins’ refers to the institution
from which the support images were sampled from. A refers to the percentage difference between predictions made with support images from the base

and novel institutions.

model support Dice (%) 95% Hausdorff distance (mm)
ins foldl fold2  fold3 fold4 mean foldl fold2 fold3 fold4 mean
all 37.61 2923 33.06 20.25 30.04 | 59.83 71.87 50.66 51.62 58.49
3d_finetune base | 36.72 2833 31.11 20.02 29.05 | 60.77 73.85 52.09 52.02  59.68
novel | 4296 34.63 4473 21.63 3599 | 54.16 59.97 42.09 4920 51.36
A 14.53% 18.17% 30.45% 7.43% 19.29% |-12.21% -23.13% -23.75% -5.74% -16.22%
all 42.09 29.00 3249 2446 32.01 29.52 42.65 28.04 3197 33.05
2d base | 41.83 2851 32.09 2447 31.73 | 29.62 42.39 28.08 3193 33.01
novel | 43.64 3192 3485 2441 3371 28.90 44.18 27.80 3219  33.27
A 4.14% 10.68% 7.92% -0.26% 587% | -2.50% 4.05% -1.00% 0.80% 0.79%
all 5758 37.42 3742 30.18 40.65 | 23.02 37.56 30.22 28.52 29.83
3d_con_align base | 57.71 36.74 36.70 29.97 40.28 | 22.90 38.37 30.74 28.52  30.13
novel | 56.83 4146 4170 3140 4285 | 23.75 32.72 27.12 2851 28.02
A -1.54% 11.39% 11.99% 4.56% 6.00% | 3.58% -17.26% -13.36% -0.04% -7.52%
3d_supervised | N/A 88.31 8844 8049 70.78 82.00 5.14 7.72 6.49 6.71 6.51

A two tailed t-test is performed per query institution between
the Dice scores where support institution equals query institu-
tion and the maximum Dice scores achieved when support in-
stitution differs from the query institution. Such observation is
consistent with the hypothesis that the domain shift is smaller
between support-query pairs within the same institution, lead-
ing to better performance.

Table 5 reports the performance of the proposed model
(‘3d_con_align’) and baseline methods on novel classes, when
both query and support come from base institutions while insti-
tution 3 is used as the novel institution. We report results when
support come from the same institution as query, a different in-
stitution from query, and over all base institutions. The pro-
posed method outperformed all baseline methods in few-shot
setting, including two state-of-the-art methods - BiGRU (Kim
et al., 2021) by 17.01%, 16.88% and 16.9% and LSNet (Yu
et al., 2021) (which is adopted as our ‘2d’ baseline) by 9.39%,
13.37% and 12.88% absolute Dice, when support come from
the same institution as query, different institution from query
and all base institutions respectively, proving its efficacy even
when no novel institution is involved during evaluation. More-
over, better performance was achieved when query and sup-
port came from the same institution than different institutions,
with the performance gap reported as A. The proposed method
achieved smaller mean A compare to baseline few-shot meth-
ods, suggesting its ability to mitigate domain shifts from cross-
institution query and support data.

Table 8 reports the performance achieved by the proposed
method (‘3d_con_align’) as training set varies. The performance
dropped as the number of images inside the training set reduced.
Notably, model trained on ‘half_single_ins’ performed worse
than model trained on ‘quarter’, which had only half the size of
‘half_single_ins’. This suggests that the cross-institution few-
shot task can be sensitive to the number of institutions available
in the training set. To quantify this sensitivity is an interesting
future research question.

Table 9 reports the performance of the proposed method
‘3d_con_align’ and ‘3d_finetune’ baseline, using 1 to 4 support
examples (denoted as # shot). Performance improved for both

methods, as the number of support examples increased. While
‘3d_finetune’ is more sensitive to the number of support exam-
ples, the proposed method still outperformed ‘3d_finetune’ us-
ing 1 to 4 support examples.

7. Discussion

While both the spatial registration mechanism and the sup-
port mask conditioning were motivated by the observation on
multiple structure types found in the multi-institution data set
used in this study, they may be promising to be beneficial for
wider image types and anatomical regions as similar challenges
were found in the few-shot segmentation of other types of non-
medical data.

The labels used in this study were annotated by a mixture of
clinicians and experienced medical imaging researchers. The
estimated time for completing this task was more than one thou-
sand observer-hours, a practically challenging task for most lo-
cal hospitals if an alternative supervised learning was adopted
for adopting or validating a segmentation tool. This further jus-
tifies the clinical relevance for the proposed few-shot segmen-
tation approach.

It is noteworthy that the reported segmentation performance
results were based on as few as 1 - 4 labelled training examples
of the regions of interest, which had not been labelled in the
model training stage.

Though challenging, cross-institutional few-shot segmenta-
tion could benefit situations when limited number of annotated
data are available. Potential applications, although not investi-
gated in this study due to relevant data availability, include spe-
cific pathology detection and segmentation with rare instances
without previously observed occurrence in training institutions
and longitudinal analysis with available within-subject data
from individual patients.

Research questions remain for future research include the
achievability or conditions to fill the gap to the upper-bound
performance from supervised learning. For example, whether
other types of data variance, such as scanner, imaging protocol
and intensity in addition to the spatial domain studied in this
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Table 5. Dice score (%) achieved when query and support both came from base institutions while institution 3 was adopted as the novel institution.
‘support ins’ here denote if the support and query come from the same institution, different institutions or all base institutions are counted.

support Dice(%) #param
model ins query institution (million)
insl ins2 ins4 ins5 ins6 ins7 mean

same | 41.67 45.03 34.16 38.25 36.63 2743 37.20
. diff | 3540 34.00 31.60 34.09 36.77 2576 32.94
BiGRU all 36.18 3538 3192 3461 36775 2597 3347 pr-85
A 15.06% 24.49% 7.49% 10.88% -037% 6.09% 11.45%

same | 4841 49.15 39.00 5349 4433 3452 4482
2 diff | 39.14 37.89 33.15 3874 3883 3094 3645 2363
all 40.30 3930 33.88 40.58 3951 3138 3749 ’

A 19.15% 22.91% 15.02% 27.58% 12.42% 10.38% 18.68%

same | 53.76 57.74 50.73  61.14 52.02 49.85 5421
3d_con_align diff | 49.55 5039 47.64 5373 5138 4622 @ 49.82 2735
all 50.08 5130 48.03 5465 5146 46.67 50.37

A 7.83% 12.73% 6.08% 12.12% 123% 729% 8.10%

same | 3642 48.05 27.66 39.53 2651 1994  33.02

localnet diff | 27.50 3088 2177 2028 2900 2088 2505 | .,
(unsuperviseqy| A1 | 2862 3303 2250 2269 2869 2076 2605
A |24.49% 3573% 2130% 48.69% -937% -4.68% 24.13%
Tocalnet same | 7305 6465 4141 7338 6887 4044 60.30
diff | 6248 5876 S0.72 6192 60.79 5128 ST.66 | .,
. all | 63.80 5950 4956 6335 61.80 4992 57.99 :
(supervised)

A 1447% 9.11% -22.49% 15.62% 11.74% -26.81% 4.38%
3d_supervised | N/A | 86.77 84.08 80.75 8636 80.16 80.69 83.14 5.75

Table 6. Mean Dice score (%) achieved at different (s_ins, ¢_ins) combinations by ‘2d’ when Institution 3 was adopted as the novel institution, where s_ins
and q-ins respectively refers to the institution from which the support and query were sampled from. Best performance for each query institution were
bolded. p-values were derived from paired t-test performed between the Dice scores where support institution equals query institution and the maximum
Dice scores achieved when support institution differs from the query institution.
s-ins std mean p-value
insl ins2 ins3 ins4 ins5 ins6 ins7
insl | 48.41 44.67 39.78 33.23 43.89 42.28 29.84|6.11 40.30 8.14e-16
ins2 | 46.42 49.15 37.66 27.39 42.35 43.05 29.09|7.74 39.30 5.38e-04
ins3 |41.60 38.36 44.56 37.14 40.34 37.30 36.37|2.73 39.38 1.62e-16
g-ins ins4 |34.39 32.12 35.46 39.00 31.11 29.77 35.28|2.89 33.88 0.71
ins5|43.91 44.63 32.26 3596 53.49 46.44 27.39|8.39 40.58 0.87
ins6 |41.83 44.59 39.03 29.64 46.39 44.33 30.79|6.27 39.51 4.51e-03
ins7|32.75 30.87 33.62 35.53 28.12 24.28 34.52|3.69 31.38 0.09

Table 7. Mean Dice score (%) achieved at different (s_ins, ¢-ins) combinations by ‘3d_con_align’ when Institution 3 was adopted as the novel institution,
where s_ins and q.ins respectively refers to the institution from which the support and query were sampled from. Best performance for each query
institution were bolded. p-values were derived from paired t-test performed between the Dice scores where support institution equals query institution and
the maximum Dice scores achieved when support institution differs from the query institution.

s_ins std mean p-value
insl ins2 ins3 ins4 ins5 ins6 ins7
insl | 53.76 53.31 50.63 46.46 50.77 47.78 47.83|2.62 50.08 1.06e-15
ins2 | 54.26 57.74 50.07 44.42 51.97 52.05 48.62|3.91 51.30 0.08
ins3 | 51.11 50.17 53.51 49.41 5225 47.25 51.67|1.90 50.77 2.04e-16
g-ins ins4 |48.23 44.70 49.95 50.73 47.09 44.02 51.47|2.70 48.03 1.40e-05
ins5 | 54.70 52.88 54.38 54.14 61.14 50.56 54.77|2.98 54.65 0.15
ins6 | 52.10 55.89 51.69 44.23 5270 52.02 51.61|3.26 51.46 9.47e-03
ins7 | 46.46 45.81 48.77 48.78 45.45 41.57 49.85|2.60 46.67 0.20

work, need to be considered to improve cross-institution gener- ble. These may yet be crucial in achieving clinically required
alisability. Future work should aim to address these challenges accuracy for potential adoption in specific applications.
for better performance, which we believe is very much plausi-
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Table 8. Dice score (%) and 95% Hausdorff distance achieved by ‘3d_con_align’ with various training data availability when Institution 3 was adopted
as the novel institution. ‘support ins’ refers to the institution from which the support was sampled from. A refers to the percentage difference when the

support image comes from the base and novel institutions.

training «ins Dice (%) 95% Hausdorff distance (mm)
data - foldl fold2  fold3 fold4d mean | foldl fold2 fold3 fold4 mean
all | 59.36 60.38 4573 37.60 50.77 | 22.66  29.63 27.92 26.41 26.66
whole base | 59.11 59.80 45.06 37.28 5031 | 22.69 30.30 28.38 26.89 27.06
novel | 60.86 63.87 49.77 39.54 53.51 | 2249 25.63 25.19 23.54 24.21
A |289% 6.37% 947% 5.70% 5.98% |-0.91% -18.21% -12.65% -14.26% -11.79%
all | 5538 57.16 4254 3414 4730 | 2598  29.37 31.65 29.00 29.00
half base | 55.08 5549 41.82 3375 46.54 | 26.04 30.13 32.17 29.37 29.43
novel | 57.16 67.17 46.88 3646 5191 | 2556 24.81 28.52 26.84 26.43
A |3.63% 17.38% 10.79% 7.41% 10.36% |-191% -21.45% -12.82% -9.43% -11.35%
all | 5285 5746 31.31 20.39 40.50 | 26.84 29.38 3541 33.89 31.38
half single.ins base | 52.17 56.06 30.55 19.63 39.60 | 26.93  29.93 36.04 3441 31.83
novel | 56.90 65.87 35.85 2493 4589 | 2629 26.10 31.65 30.75 28.70
A |832% 14.89% 14.79% 21.24% 13.69% |-2.44% -14.63% -13.88% -11.89% -10.90%
all | 5090 55.87 4478 3198 45.88 | 27.90 29.61 28.87 29.48 28.96
quarter base | 50.35 54.54 43.64 31.61 45.03 | 27.90 30.22 29.43 29.84 29.35
novel | 5424 63.86 51.61 3417 5097 | 27.88 2592 25.50 27.27 26.64
A |717% 14.60% 1545% 7.49% 11.65% |-0.05% -16.60% -1541% -9.43% -10.15%

8. Conclusion

This paper described the first 3D prototypical learning al-
gorithm for medical image segmentation, applied on multiple
structures on pelvic MR images from different institutes. Sub-
stantial validation was based on clinical data from 589 patients,
with full segmentation of eight anatomical classes made avail-
able to the scientific community. The demonstrated novelty,
efficacy, and clinical applicability of the proposed algorithm
suggested an interesting direction for addressing the cost of ex-
pert labelling and cross-institute generalisation of current deep
learning-based segmentation applications.
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Highlights

Cross-institution few-shot segmentation task to address the data scarcity
problem tested on real clinical images.

First 3D neural networks using prototypical few-shot multi-class segmen-
tation for medical images.

Novel spatial registration mechanism and support mask conditioning mod-
ule to improve generalisation across ROIs and institutions.

Full segmentation of eight pelvic structures from 589 3D MR images made
publicly available, in addition to open source implementation.
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