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Abstract

Influenza affects millions of people every year. It causes a considerable amount of medical

visits and hospitalisations as well as hundreds of thousands of deaths. Forecasting influ-

enza prevalence with good accuracy can significantly help public health agencies to timely

react to seasonal or novel strain epidemics. Although significant progress has been made,

influenza forecasting remains a challenging modelling task. In this paper, we propose a

methodological framework that improves over the state-of-the-art forecasting accuracy of

influenza-like illness (ILI) rates in the United States. We achieve this by using Web search

activity time series in conjunction with historical ILI rates as observations for training neural

network (NN) architectures. The proposed models incorporate Bayesian layers to produce

associated uncertainty intervals to their forecast estimates, positioning themselves as legiti-

mate complementary solutions to more conventional approaches. The best performing NN,

referred to as the iterative recurrent neural network (IRNN) architecture, reduces mean

absolute error by 10.3% and improves skill by 17.1% on average in nowcasting and fore-

casting tasks across 4 consecutive flu seasons.

Author summary

Modelling the prevalence of an infectious disease enables public health organisations to

prepare for and minimise its impact. However, traditional disease indicators are often

quite restrictive as they provide information with a significant delay. Recent research

efforts have provided evidence of the value of alternative information sources such as

Web search activity trends. Our work incorporates this information into influenza fore-

casting models to achieve state-of-the-art accuracy. In addition, the proposed Bayesian

neural network architectures also provide associated uncertainty estimates for the fore-

casts, positioning our methodology as a practical complementary tool for disease surveil-

lance and policy making.
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Introduction

Forecasting the spread of infectious diseases can inform public health policy decisions. The

potential impact of forecasting was highlighted during the COVID-19 pandemic where disease

incidence and mortality projections led governments to initiate lockdowns [1–3]. There con-

tinues to be a considerable interest in forecasting, particularly of influenza [4–21]. According

to the World Health Organization, influenza remains a strong candidate for a pandemic and is

typically responsible for 290, 000 to 650, 000 deaths worldwide each year. Forecasting its preva-

lence allows policy makers to, for example, identify when to recommend the prescription of

anti-viral drugs [22]. The United States of America (US), like many other countries, has a syn-

dromic surveillance network, coordinated by the Centres for Disease Control and Prevention

(CDC), that tracks the rate of influenza-like illness (ILI). Models for influenza forecasting con-

sidered by the CDC [23–25] incorporate associated uncertainty estimates as an essential com-

ponent for deployment within a decision support system. After all, an unexpected forecast

with high uncertainty is very different to an unexpected forecast with low uncertainty. The lat-

ter might trigger a public health intervention, while the former might be ignored.

Neural networks (NNs) have been shown to be competitive with the state-of-the-art in fore-

casting tasks [26–28]. However, their application to epidemic forecasting has been limited

[29], in part, because estimating uncertainty with NNs can be challenging. The uncertainty in

a forecast produced by a machine learning model is attributed to two sources [30]. Data or ale-

atoric uncertainty is inherent in the data, such as measurement noise. Model or epistemic

uncertainty deals with confidence in the model’s parameters [31]. In our work, we use Bayes-

ian neural networks (BNNs) to estimate the model uncertainty. We place a distribution over

the NN’s parameters (weights), and sample from that distribution to create model parameter

instances. The variation in outputs across the model instances is used to derive the model

uncertainty. Data uncertainty is estimated by outputting the parameters of the data distribu-

tion, that is a mean prediction and its variance, rather than a single point estimate. We then

combine the two uncertainty mechanisms.

At its simplest, a forecast may be based on its own historical values. However, in many

cases, better accuracy is achieved by incorporating additional exogenous data. Prior work has

demonstrated that the current influenza rate can be accurately estimated (nowcasted) from a

variety of different data sources, including social media posts and Web search activity [32–36].

These streams of information have very low latency. Their daily frequency can theoretically be

determined with a delay of about 24 hours, i.e. right after the completion of a day. In contrast,

syndromic surveillance networks for influenza (including CDC’s) report ILI rates with laten-

cies of about two weeks, i.e. the ILI rate today is not known until two weeks later. Hence meta-

data about online user activity, when used appropriately, can facilitate more timely disease rate

inferences, which perhaps is the most important factor for incorporating this exogenous infor-

mation into conventional epidemiological approaches. Our proposed NN architectures for dis-

ease rate forecasting can efficiently and effectively incorporate frequency time series of Web

search queries. We use the daily frequency of a variety of search terms (keywords or phrases)

related to ILI. These include symptoms, remedies, general advice seeking, and other relevant

categories (S1 Table).

However, the different latencies of health reporting and Web search activity can introduce

a level of confusion with respect to model configuration and evaluation. Generally in forecast-

ing we have a set of observed data points (samples) up to and including time (day) t0, and aim

to predict a future value (here a disease rate) at time t> t0. Due to the different data reporting

latencies, we can obtain historical ILI rates up to time t0 and exogenous data up to t0 + δ,

where δ is typically 14 days. When we refer to the number of days ahead to be forecast, i.e. the
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forecast horizon denoted by γ, we need to specify from what time. For that purpose, we can

either use t0 (time point of the last available ILI rate) or t0 + δ (time point of the most recent

exogenous information). Here, we adopt the convention from prior literature and use t0. As

such, a 7 days ahead forecast, i.e. for day t = t0 + 7, with a latency of δ = 14 days may actually

use exogenous data that is available after the forecast horizon (days t0 + 8, . . ., t0 + δ). This is a

curious situation, but we note that it is accepted practice within the ILI forecasting community

(often referred to as hindcasting), and hence we have chosen to include these results. Obvi-

ously, for forecast horizons greater or equal to δ, no “future” exogenous data is available,

which makes the outcomes of these experiments more relevant in practical terms.

We propose and evaluate the performance of three NN architectures, namely a simple feed-

forward network (FF) and two forms of recurrent neural networks (denoted SRNN and IRNN;

see Methods) all of which incorporate the frequency time series of various Web search terms

as exogenous variables, and provide uncertainty estimates by deploying BNN layers and infer-

ence techniques. The forecast targets are US national ILI rates as published by the CDC. Evalu-

ation is performed for the four flu seasons from 2015/16 to 2018/19 (both inclusive). For the

overall best performing NN model, IRNN, we also confirm that the incorporation of exoge-

nous data significantly improves performance. The best performing networks for each fore-

casting horizon, SRNN when γ = 7 and IRNN otherwise, are then compared with Dante [21], a

state-of-the-art conventional ILI forecasting model. Our experiments show that the proposed

NN architectures that incorporate Web search activity can significantly reduce forecasting

error and provide significantly earlier insights about emerging ILI trends.

Results

We first provide a comparative performance analysis of the NN-based models. Then, we com-

pare with the established state-of-the-art in ILI forecasting. Details about the models, training,

and evaluation can be found in the Methods section.

Forecasting performance of NNs

We investigate the performance of three Bayesian NN architectures, a feedforward network

(FF), a simple recurrent NN optimised for a single forecast horizon (SRNN), and an iterative

RNN which feeds back daily forecasts to itself up to and including the horizon window

(IRNN). We forecast the national level weighted ILI rate (wILI; see definition in the Methods

section) in the US over four flu seasons, namely 2015/16 to 2018/19 from late October until

June (exact dates are provided in S2 Table and corresponding ILI rates are displayed in S2

Fig). We evaluate our models for four forecast horizons γ = 7, 14, 21, and 28 days ahead from

the last available ILI rate. The input to all NNs is both past ILI rates as well as time series of

Web search query frequencies. In addition to that, for a more complete comparison, we also

report performance results for the best performing NN, IRNN, after excluding Web search

activity data. We deploy six metrics to compare estimated forecasts to reported ILI rates

(ground truth). Mean absolute error (MAE) and bivariate correlation (r) compare forecasts

without considering the associated uncertainty. Negative log likelihood (NLL), continuous

ranked probability score (CRPS) a generalisation of MAE, and Skill weight the error by its cor-

responding uncertainty. The (dis)advantages of the various weightings are discussed in S1

Appendix. For NLL, CRPS, and MAE a lower score is better, while for r and Skill higher scores

are better. When average metrics are calculated across several seasons or forecast horizons the

arithmetic mean is used for all metrics besides Skill, where the geometric mean is used [15].

Table 1 enumerates the performance metrics for the three NNs in each flu season and fore-

cast horizon. The IRNN performs best for all forecast horizons, except for γ = 7 days ahead
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where SRNN is the best performing model. As we detail in Methods, this is something

expected given the model design. IRNN, contrary to SRNN and FF, is not using future query

frequencies (from the 7-days following the target forecast date) for the hindcasting task (γ = 7).

Interestingly, we also observe that the performance of IRNN does not change for γ = 7 and 14,

something that can probably be explained by a model behaviour that gives significantly more

importance to the more recent inputs (search query frequencies are ahead of the past ILI rates

by δ = 14 days). IRNN, the most advanced NN that we propose, compared to the next best NN

architecture reduces error by 14.87% in terms of MAE, 20% in terms of CRPS, and improves

Skill by 32.48%, when averaged across all test seasons and forecasting horizons γ = 14, 21, and

28 days. IRNN yields further improvements in the rest of the metrics, although these have a

more limited interpretability. The fact that IRNN improves gains between MAE and CRPS (by

4.15 percentage points) means that it is also a better model for the uncertainty bounds com-

pared to FF and SRNN.

Fig 1 provides an alternative visual of the forecasting performance metrics of the different

NN models when averaged over the four flu seasons (NLL and MAE are depicted, the rest of

the metrics are displayed in S1 Fig). In addition to the three NNs, we also provide performance

metrics for an IRNN variant that does not use any search query frequency data (denoted by

IRNN0) as well as for a simple persistence model (denoted by PER; see S1 Appendix for a defi-

nition). IRNN consistently performs better than IRNN0, which confirms our hypothesis that

Web search activity information provides a significant performance improvement. On the

other hand, IRNN0 displays competitive performance when compared to SRNN or FF which

highlights that IRNN is a more suitable model for handling search query frequency time series.

Table 1. Regression performance metrics for three Bayesian NN models for four forecast horizons (γ = 7, 14, 21, and 28 days ahead). Negative log likelihood (NLL),

continuous ranked probability score (CRPS) and Skill compare the accuracy weighted by the uncertainty of forecasts. MAE is the mean absolute error, and r is the bivariate

correlation between forecasts and reported ILI rates. Best results for each metric and forecast horizon are shown in bold. The last three columns are performances averaged

over the four test flu seasons (from 2015/16 to 2018/19).

2015/16 2016/17 2017/18 2018/19 Avg (2015–19)

γ IRNN SRNN FF IRNN SRNN FF IRNN SRN FF IRNN SRNN FF IRNN SRNN FF

7 NLL 0.20 -0.38 -0.19 0.38 -0.29 -0.06 0.65 0.07 0.52 0.32 -0.49 0.12 0.39 -0.27 0.10

CRPS 0.18 0.09 0.10 0.24 0.12 0.14 0.31 0.17 0.33 0.21 0.08 0.19 0.23 0.12 0.19

Skill 0.73 0.95 0.89 0.59 0.85 0.78 0.49 0.77 0.54 0.62 0.95 0.70 0.60 0.87 0.72

MAE 0.26 0.13 0.13 0.33 0.18 0.20 0.37 0.25 0.49 0.28 0.11 0.27 0.31 0.17 0.27

r 0.85 0.97 0.97 0.92 0.99 0.99 0.98 0.99 0.98 0.93 0.99 0.97 0.92 0.98 0.98

14 NLL 0.18 0.35 0.49 0.36 0.53 0.46 0.64 3.28 0.94 0.30 0.27 0.64 0.37 1.11 0.63

CRPS 0.18 0.21 0.20 0.24 0.27 0.19 0.31 0.72 0.39 0.21 0.21 0.27 0.24 0.35 0.26

Skill 0.73 0.69 0.61 0.59 0.54 0.59 0.49 0.11 0.39 0.63 0.67 0.52 0.60 0.40 0.52

MAE 0.26 0.29 0.25 0.33 0.36 0.22 0.38 0.88 0.50 0.28 0.29 0.40 0.31 0.45 0.34

r 0.85 0.85 0.91 0.92 0.92 0.97 0.98 0.88 0.94 0.93 0.94 0.91 0.92 0.90 0.93

21 NLL 0.32 0.85 0.85 0.63 0.80 0.88 0.78 2.08 1.50 0.47 0.88 1.06 0.55 1.15 1.07

CRPS 0.23 0.33 0.28 0.31 0.29 0.30 0.42 0.70 0.61 0.27 0.33 0.38 0.30 0.41 0.39

Skill 0.65 0.51 0.45 0.49 0.46 0.42 0.43 0.15 0.24 0.56 0.45 0.37 0.52 0.36 0.36

MAE 0.32 0.45 0.36 0.42 0.39 0.35 0.56 0.90 0.79 0.37 0.46 0.53 0.42 0.55 0.51

r 0.81 0.68 0.77 0.85 0.89 0.93 0.94 0.89 0.86 0.88 0.85 0.84 0.87 0.83 0.85

28 NLL 0.53 1.07 1.07 0.73 1.19 1.09 1.32 3.82 1.80 0.54 0.98 1.27 0.78 1.76 1.31

CRPS 0.31 0.40 0.35 0.35 0.35 0.38 0.57 0.88 0.80 0.30 0.36 0.46 0.38 0.50 0.50

Skill 0.54 0.41 0.36 0.45 0.34 0.35 0.27 0.06 0.18 0.53 0.40 0.30 0.43 0.24 0.29

MAE 0.45 0.56 0.40 0.49 0.44 0.41 0.73 1.05 1.07 0.43 0.49 0.63 0.53 0.64 0.63

r 0.80 0.55 0.60 0.81 0.89 0.92 0.91 0.84 0.76 0.85 0.86 0.77 0.84 0.78 0.76

https://doi.org/10.1371/journal.pcbi.1011392.t001
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In S4 Table, we have also provided an additional baseline comparison with an elastic net [37]

model that, in line with our previous work [34], provides inferior performance (S4 Table and

S6 Fig). A fair comparison with Gaussian Processes models [38], that we have also deployed in

the past [36, 39], was not practically tractable given the high dimensionality of the task and the

relatively large amount of training samples. Finally, the persistence model baseline is always

inferior to at least one of the NN models.

Forecasts from IRNN in every season and forecast horizon are shown in Fig 2, whereas

forecasts from the FF and SRNN architectures are shown in the Supporting Information (S7

and S8 Figs, respectively). The expected decline in accuracy as the forecast horizon increases is

visually evident for all models. Interestingly, forecasts from the FF NN follow closely the esti-

mates of a persistence model (i.e. shifted ground truth), and also have quite pronounced

uncertainty bounds for γ = 21 and 28. SRNN provides smoother but generally flatter forecasts

that in principle may capture the underlying ILI trend. However, they quite often underesti-

mate the exact flu rate and are over-confident (tight uncertainty bounds). The IRNN makes

more independent forecasts that do not necessarily follow previous trends in recently observed

ILI rates. Uncertainty bounds increase slightly with γ, albeit we note that this model does not

directly differentiate between forecasting horizons. Overall, forecasts from IRNN have a better

correspondence to the ILI rate range and provide an early flu onset warning (in at least 3 of the

4 test seasons).

Fig 3 shows the calibration of the confidence intervals (CI) for each of the NNs. The x-axis

represents the expected frequency that the ground truth data will be present in a specified

region of confidence, while the y-axis represents the empirical frequency as measured from the

test results. Remember that each forecast has an associated uncertainty represented by a Gauss-

ian distribution. For a specified probability, ρ, we can determine the confidence region around

each forecast such that we expect the ground truth to fall within these regions with probability

ρ. ρ can be computed by ρ = cdf(n) − cdf(−n), where n is the number of standard deviations

away from the mean, and cdf denotes the cumulative distribution function. For a given

Fig 1. Negative log-likelihood (NLL) and mean absolute error (MAE) for each NN model averaged over all four

test flu seasons (2015/16 to 2018/19). Scores for different forecast horizons (γ) are shown. Lower values are better. We

also provide a comparison with IRNN trained without using any Web search activity data (IRNN0), and a simple

persistence model (PER). Note that NLL cannot be determined for PER as it does not provide an associated

uncertainty. S1 Fig shows the results for all metrics.

https://doi.org/10.1371/journal.pcbi.1011392.g001
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probability (on the x-axis), we compute the empirical probability for each of the four test sea-

sons. The diagonal line (y = x) represents perfect calibration, i.e. the expected and empirical

probabilities are the same. Points above the diagonal indicate that the uncertainty estimates

are too large. Conversely, points below it indicate that the uncertainty estimates are too low.

The shadow around the calibration curve shows the variation due to different initialisation

seeds over 10 NN training runs (see Methods for further details). Uncertainties produced by

the IRNN are closer to the diagonal (i.e. better estimates of uncertainty) for horizon windows

greater than 7. Overall, we see that FF is an under-confident model, SRNN an over-confident

model, and IRNN generally more balanced, but the error in confidence increases for the largest

forecast horizon (γ = 28).

Comparison with state-of-the-art

We compare our best model for each forecasting horizon i.e., SRNN for γ = 7 and IRNN for

γ� 14, to a state-of-the-art ILI rate forecasting model, known as ‘Dante’ [21]. Its original

implementation, Dante produces a binned forecast and does not permit comparison based on

CRPS or NLL (see S1 Appendix). Therefore, for this analysis we restrict the performance met-

rics to Skill, MAE, bivariate, and correlation.

To be consistent with prior published literature and conduct a fair comparison, we adopt

exactly the same training setup as proposed in the original paper that proposed Dante [21].

However, we would like to make the reader aware of various caveats in this comparison. First,

Dante’s national US ILI rate forecasts are based on ILI rates from 63 subnational US

Fig 2. IRNN forecasts for all 4 test seasons (2015/16 to 2018/19) and forecasting horizons (γ = 7, 14, 21, and 28). Confidence intervals (uncertainty estimates) are

shown at 50% and 90% levels, and are visually distinguished by darker and lighter colour overlays respectively. The influenza-like illness (ILI) rate (ground truth) is

shown by the black line.

https://doi.org/10.1371/journal.pcbi.1011392.g002
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geographical regions (50 US states, 10 Health and Human Services regions, the district of

Columbia, Puerto Rico, and Guam) as well as ILI rates at the national level. The NNs use only

national US ILI rates, augmented with a US national aggregate of Web search activity data.

The latter is more recent, i.e. search query frequencies are available until t0 + δ which is after

the last observed ILI rate (t0). To remove this temporal advantage, we do not use Web search

activity data generated after t0 when training models for comparing with Dante. Secondly,

Dante is trained using a leave-one flu season-out methodology, training on all other flu seasons

(past and future) but the test one. Thus, for example, for the test season 2016/17, Dante will

use historical data prior to 2016 and after 2016/17. We do not consider this appropriate as, in

practice, a deployed system has no knowledge of future seasons. However, for comparison pur-

poses, we train our models using leave-one flu season-out as well. We note that we were not

able to successfully train Dante when restricting training data to exclude future seasons;

Dante’s performance was much worse to be considered for a comparison. We emphasise that

training on dates after the test season is only done when comparing to Dante. Another caveat

is that Dante exploits regional ILI prevalence to come up with a national forecast—this can

sometimes provide an earlier warning as outbreaks will first be recorded sub-nationally. Our

models are not built this way, and cannot leverage from this information. The final remark is

that Dante performs retraining prior to conducting a forecast. Although that is possible for the

Fig 3. Calibration plots for the forecasts made by the three NN models (FF, SRNN, and IRNN) averaged over the four test periods (2015/16 to 2018/19) and

shown for the 4 forecasting horizons (γ). The lines show how frequently the ground truth falls within a confidence interval (CI) of the same level. To be more precise,

a point (x, y) denotes that the proportion y 2 [0, 1] of the forecasts when combined with a CI at the x × 100% level include the ground truth (successful forecasts). The

optimal calibration is shown by the diagonal black line. Points above or below the diagonal indicate an over- or under-estimation of uncertainty, and hence an under-

or over-confident model, respectively. The shadows show the upper and lower quartile of the calibration curves when the models are trained multiple times with

different initialisation seeds. The plot broken out into separate test periods is shown in the Supporting Information (S11 Fig).

https://doi.org/10.1371/journal.pcbi.1011392.g003
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NN models as well, running complete experiments (across many seasons, different NN archi-

tectures, and different initialisation seeds) with retraining every time prior to making a forecast

would have taken a considerable amount of time. Hence, NNs make forecasts for an entire flu

season without retraining.

Table 2 shows the metrics for the best NN for each forecast horizon γ, trained with leave-

one flu season-out and with search data from t� t0, and results for Dante taken on identical

forecast dates. When averaged over all forecasting tasks, the NNs have 11.93% higher Skill,

4.97% lower MAE, and 5.96% higher correlation than Dante. Dante has a better calibrated

uncertainty compared to IRNN, but this can be interpreted by its significantly larger uncer-

tainty estimates that sometimes are over 2 times greater than the ones produced by IRNN (S9

Fig). In general, a better calibrated uncertainty is less important when forecast error metrics

indicate an overall inferior performance. The last column (NNb) of Table 2 provides an

expanded comparison (full results are shown in S4 Table) whereby we have enabled training

with Web search activity data that maintain their actual latency (t0 + δ). As expected, the per-

formance benefits increase, obtaining 33.52% higher Skill, 14.37% lower MAE, and 8.78%

higher correlation compared to Dante. Disabling leave-one flu season-out training on our end

also results in a better performance compared to Dante that maintains its knowledge of future

flu seasons (see column NNa of Table 2).

Discussion

We have demonstrated the ability of neural networks to forecast ILI rates by incorporating

exogenous Web search activity data while providing uncertainty estimates. IRNN exhibits

superior performance (averaged over all test years) for forecast horizons greater than 7 days,

whereas SRNN is superior for the γ = 7 days ahead forecast horizon, a prediction task also

referred to as hindcasting. As discussed extensively (see Methods and Results), this is expected

because when γ = 7 days, SRNN is using all the available Web search activity data, which

extends 7 days beyond the target forecasting horizon. We have also demonstrated that the pro-

posed forecasting framework can provide very competitive performance that is better than the

established state-of-the-art in ILI rate forecasting.

Table 2. Forecasting performance metrics for the best-performing neural network (SRNN for γ = 7, IRNN for γ� 14) compared with Dante. The NNs are trained

using search query frequencies generated only up to the last available ILI rate (the 2-week advantage of using Web search data is removed). We use leave-one flu season-

out to train models, similarly to Dante. The best results for this comparison are shown in bold. The very last column (NNb) presents the average performance results of

NNs where the temporal advantage of Web search activity information is maintained (see also S10 Fig that depicts IRNN’s forecasts when leave-one flu season-out is

applied). The penultimate column (NNa) holds results for the same experiment as NNb with the addition of disabling leave-one flu season-out training.

Horizon Metric 2015/16 2016/17 2017/18 2018/19 Avg (2015–19)

γ Dante NN Dante NN Dante NN Dante NN Dante NN NNa NNb

7 Skill 0.67 0.75 0.63 0.53 0.45 0.53 0.62 0.61 0.59 0.60 0.85 0.88

MAE 0.22 0.26 0.19 0.35 0.39 0.38 0.21 0.28 0.25 0.32 0.18 0.17

r 0.88 0.81 0.96 0.91 0.97 0.98 0.97 0.90 0.94 0.90 0.98 0.98

14 Skill 0.54 0.74 0.54 0.53 0.29 0.53 0.52 0.61 0.46 0.59 0.55 0.59

MAE 0.38 0.28 0.32 0.35 0.64 0.39 0.33 0.28 0.42 0.33 0.35 0.34

r 0.64 0.79 0.91 0.91 0.90 0.98 0.92 0.90 0.84 0.89 0.89 0.89

21 Skill 0.44 0.64 0.48 0.43 0.21 0.30 0.46 0.52 0.38 0.45 0.47 0.48

MAE 0.48 0.37 0.38 0.45 0.86 0.62 0.40 0.44 0.53 0.47 0.48 0.46

r 0.36 0.67 0.87 0.83 0.82 0.94 0.89 0.82 0.73 0.81 0.81 0.81

28 Skill 0.37 0.53 0.46 0.38 0.17 0.14 0.42 0.45 0.33 0.33 0.37 0.40

MAE 0.54 0.47 0.39 0.50 1.06 0.85 0.45 0.58 0.61 0.60 0.61 0.58

r 0.23 0.63 0.88 0.79 0.76 0.92 0.86 0.79 0.68 0.78 0.78 0.79

https://doi.org/10.1371/journal.pcbi.1011392.t002
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Our experiments highlight the importance of including Web search activity for forecasting

ILI rates with or without their expected temporal advantage. This is consistent with previous

literature whereby the added value of online user-generated data streams (e.g. Web search, but

also social media) has been evaluated [5, 34, 40]. However, our experiments present the most

comprehensive analysis to date, assessing performance over 4 consecutive flu seasons, and uti-

lising an open-ended, non-manually curated set of search queries. In addition, we have cross-

examined accuracy with a number of different error metrics, including CRPS and NLL that can

incorporate the validity of uncertainty estimates. We have seen that adding Web search infor-

mation not only improves accuracy, but also provides better estimates of confidence (S1 Fig).

By examining ILI seasons in our training and test sets, we can deduce that the 2015/16 test

season is the least similar season to previously seen ones (mean bivariate correlation of 0.74),

whereas the 2018/19 is the most similar (mean bivariate correlation of 0.81). With that in

mind, we observe that in comparison to Dante the NNs that utilise Web search activity per-

form better when the flu season has a more novel prevalence trajectory (Table 2). As Dante is

utilising ILI rates only (including subnational ones), it is expected to be a more focused model

on previously seen ILI rate trajectories. In contrast, the search query frequency time series pro-

vide an opportunity to capture more complex underlying patterns, and hence seem to be a

more informative source during novel flu seasons.

From an epidemiological perspective, accurate forecast estimates might not always be the

sole determinant of model superiority. Although, our model performance analysis is com-

prehensive, and contrary to most of the related literature, provides a clean depiction of sea-

sonal forecasts, it does focus on the accuracy of a forecast and its associated uncertainty.

Table 3 attempts to address that partially by offering a few additional comparative insights

following aspects of a similar analysis for ILI rate nowcasting models in England [22].

Focusing on the most challenging forecasting horizons (γ = 21 and 28 days), we compute

the delay in forecasting the peak of the flu season as well as the difference in magnitude

between the predicted and the estimated peak ILI rate. We see that Dante is making either

Table 3. Meta-analysis of ILI rate forecasts around the peak of a flu season for Dante, NN (the best NN variant

when the temporal advantage of Web search activity data is removed), and NNb (same as NN but after reinstating

the temporal advantage of Web search activity data). δ-p denotes the temporal difference (in days) in forecasting the

peak of the flu seasons 2015/16, 2016/17, 2017/18, and 2018/19, respectively. Negative / positive values indicate an ear-

lier / later forecast; averaging δ-p across the 4 test flu seasons would remove this information and that is why we enu-

merate all 4 values. Avg. δ-yp measures the average magnitude difference in the estimate of the peak of the flu season

between a forecasting model and CDC. MAE-p is the MAE when the ILI rate is above the seasonal mean plus one stan-

dard deviation. SMAPE-p (%) is the symmetric mean absolute percentage of error for the same time periods. Outcomes

that yield an unfavourable interpretation for the underlying forecasting model are provided in bold. Detailed outcomes

for all NNs are shown in S5 Table.

Horizon γ = 21

Metric Dante NN NNb

δ-p (days) -70, 14, 14, 14 -49, 14, -14, -35 -49, 14, -28, -35

Avg. δ-yp 0.99 0.70 0.59

MAE-p 0.84 0.75 0.76

SMAPE-p (%) 20.19 15.57 15.69

Horizon γ = 28

Metric Dante NN NNb

δ-p (days) -70, 14, 7, 14 -42, -21, -21, -28 -42, -21, -21, -28

Avg. δ-yp 0.67 1.01 0.87

MAE-p 1.09 0.89 0.88

SMAPE-p (%) 26.24 17.72 17.57

https://doi.org/10.1371/journal.pcbi.1011392.t003
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very invalid early estimates (e.g. 70 days prior to the actual peak) or otherwise lags by 1 or 2

weeks (i.e. no early warning), whereas the NN models tend to always provide reasonable

early warnings of the peak. While there is no definitive winner in estimating the ILI rate

peak magnitude, by examining forecasts when the ILI rate was relatively high (above the sea-

sonal mean plus one standard deviation), we observed that Dante’s estimates were signifi-

cantly worse in terms of MAE and relative MAE (symmetric mean absolute percentage of

error). A similar analysis across NN variants is provided in S5 Table highlighting the

expected superiority of IRNN.

Existing disease forecasting frameworks are difficult to scale, and incorporating additional

features or more training data can result in excessive computational cost. This results in a

trade-off between model flexibility and the number of exogenous variables a model can handle

effectively [11, 41, 42]. An advantage of neural networks is that they are easy to scale; increas-

ing the amount of training instances often results in better overall performance [43]. Overfit-

ting issues, that become more apparent when working with relatively small data sets, are

alleviated to an extent by the deployment of a Bayesian layer which averages over parameter

values instead of making single point estimates [44]. A lingering disadvantage, however, is that

there is no current consensus on estimating uncertainty with NNs in a principled manner.

Our methodological approach, presented in the following section, has attempted to address

that by considering two modes of uncertainty (epistemic and aleatoric). In addition, given the

relatively restricted amount of samples of training neural networks, our experimental

approach provides novel insights for model derivation, training, and hyperparameter valida-

tion for similar time series forecasting tasks.

It is equally important to acknowledge the limitations of our methodological approach,

and more broadly, of this research task as a whole. We note that the retrospective analysis

provided in this paper cannot be the only determinant for model deployment within estab-

lished syndromic surveillance systems. This would also require real-time assessments during

ongoing influenza seasons in collaboration with public health organisations. Furthermore,

an ILI consultation rate is not always representative of the true influenza rate in a population.

It is a proxy indicator, and as such oftentimes it might be biased [45, 46]. Therefore, any

model that is trained and evaluated based on these rates is inherently limited by this prop-

erty. An additional factor that could arguably yield misleading inferences is the co-existence

of COVID-19 and influenza, given their similar symptom profiles. Although this is outside

the remit of this paper, early results from our ILI models for England during the 2022/23 flu

season have showcased that ILI rates can be accurately estimated during COVID-19 out-

breaks [47]. From a methodological perspective, we note that our approach in estimating

uncertainty can be improved—IRNN, the best performing NN, is currently not explicitly

aware of the actual forecasting horizon (γ) when conducting a prediction (see Methods).

Addressing this in an appropriate way will most likely result in better calibrated uncertainty

estimates. From an empirical evaluation perspective, our experiments have been conducted

on the US at a national level. Hence, although we expect that these results will generalise sub-

and inter-nationally, we have no evidence of this, apart from the fact that past research on

similar types of models has shown promise in various different US subregions or countries

[36, 39, 48–50]. Finally, the application presented in this paper relies on the existence of Web

search activity data. Access to this data is not assured as it both depends on sufficient Inter-

net usage rates as well as on the willingness of private corporations to provide this informa-

tion for research and epidemiological modelling. Nonetheless, the presented forecasting

models do provide a general machine learning approach applicable to different input (e.g.

social media activity, body sensors) and output streams of information (e.g. different disease

indicators).
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Methods

We first provide our ethics statement, then describe the data sets used, introduce the neural

network architectures we have deployed, and finally detail how training and validation was

performed.

Ethics

The project is using publicly available aggregate influenza-like illness rates obtained by the

website of CDC. It also uses aggregate (at the national level) search query frequencies obtained

by a private Google Health Trends API. Since we only access aggregated data, this project has

been exempted from an Ethics review by the department of Computer Science at University

College London.

Data sets. Influenza-like illness rates. CDC defines ILI as fever (temperature of

37.8˚ or greater) and cough and/or sore throat without a known cause besides influenza. The

prevalence of ILI is monitored through several surveillance efforts including the Outpatient

Influenza-like-Illness Surveillance Network (ILINet) which collects weekly state level ILI rates

from over 2, 000 healthcare providers from all states. The state level ILI rates are weighted by

population size to report the wILI at different geographic levels [51]. Our models use weekly

wILI rates for the flu seasons 2004/05 to 2018/19 inclusive, obtained from gis.cdc.gov/grasp/

fluview/fluportaldashboard.html. Note that this data is not final, i.e. it can be revised by the

CDC. To ensure reproducibility of our results, a copy of all the ILI data used can be found at

our Github repository github.com/M-Morris-95/Forecasting-Influenza-Using-Neural-

Networks-with-Uncertainty. A week in the CDC data represents a 7-day period that starts on a

Sunday and ends on a Saturday. We assume the weekly ILI rate is representative of Wednesday

(middle day) and use cubic interpolation (interpolate.interp1d from Python’s

SciPy library) to generate daily ILI rates. This not only increases the number of samples

(7-fold), but also provides an aligned time series with the daily temporal resolution of the Web

search activity data. The deployment of a cubic as opposed to a linear interpolation to generate

daily ILI rates resulted in slightly better forecasting accuracy on the test sets. We hypothesise

that this is because of the increased level of smoothness (see S5 Fig), but also note that we have

not fully assessed this data manipulation choice. For training the Dante forecasting model, we

have also obtained regional wILI rates for the 53 US states / locations and the 10 US Health

and Human Services regions. These were downloaded from the CDC for the same period

above and are also available on our Github repository.

Search query frequency time series. Search query frequencies for the US are obtained

from the Google Health Trends API similarly to other studies [36, 52]. A frequency represents

the fraction of searches for a certain term or set of terms divided by the total amount of

searches (for any term) for a day and a certain location. We initially downloaded the daily

search frequencies of a predetermined pool of 20, 856 unique health-related search queries for

the period from March 2004 to May 2019 inclusive for the US. Query frequencies are

smoothed using a 7-day moving average, and min-max normalisation is applied to each

query’s time series during training (i.e. without using any future data). For a given test season,

for each query, q, we compute the correlation score Rq with the ILI rate over the five seasons

preceding the test season. We also compute a semantic similarity score Sq that measures each

query’s similarity to a predefined flu concept as described in Lampos et al. (2017) [36]. Both

scores are then normalised between 0 and 1 and a composite score Uq ¼ R2
q þ S2

q for each

query is calculated. Only the m queries with the highest Uq are used, where m is a hyperpara-

meter (see “Hyperparameter optimisation”).
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Neural network architectures

The three NN architectures we have deployed are described next. Each NN outputs two values,

namely an ILI rate forecast estimate (ŷ) and an associated data uncertainty (ŝ). Each architec-

ture also has an additional Bayesian layer where the weights are specified by an associated

probability distribution. Multiple models are instantiated, based on sampling from the weight

distribution, and the outputs from these model instances are used to estimate the model

uncertainty.

Feedforward Neural Network (FF). The FF model has two hidden feedforward neural lay-

ers with a ReLU (max(0, x)) activation function, and a Bayesian layer (S12 Fig). The input to the

network is a window of τ + 1 days of ILI rates and m search query frequencies. There is an ILI

rate collection delay of δ days, in that at day t0 we know (CDC has published) the ILI rate of day

t0 − δ. The delay is assumed to be δ = 14 days throughout our experiments. Thus, at day t0, the

input to the network consists of ILI rates, Ft0 � t to Ft0 , and search query frequencies, Qt0þd� t

through Qt0 � d
. We ignore the temporal structure of the data and use an (m + 1) × (τ + 1) vector

as the input to the neural network. The output of the network is an estimate of the ILI rate and

corresponding data uncertainty γ days ahead.

Simple Recurrent Neural Network (SRNN). This is a recurrent neural network which

observes a time series of ILI rates and search frequencies (S13 Fig). The input to the network is

the same as for FF, but without flattening into a vector. We feed the (m + 1) × (τ + 1) input

matrix into a Gated Recurrent Unit (GRU) layer one day at a time. The final output of the

GRU is passed to a dense layer with a distribution over its weights.

Iterative Recurrent Neural Network (IRNN). This is a recurrent neural network which

makes forecasts of the ILI rate and search frequencies one day at a time. It bases forecasts on

its own previous forecasts. IRNN comprises a recurrent GRU layer and a feedforward Bayesian

layer as shown in Fig 4. We have also described how model training works with pseudocode in

the Supporting Information (S14 Fig). Given its special structure, IRNN does not incorporate

Fig 4. Diagram of the IRNN architecture where for the recurrent layers (RNN) we have used a Gated Recurrent Unit. An ILI rate, F 2 [0, 1], and m search query

frequencies, Q 2 Rm
�0

, beginning from time point (day) t0 − τ are fed into the network a day at a time. τ denotes the window size of past observations that we consider (τ
+ 1 = 56 days). The reporting delay of the ILI rates means that when an ILI rates are available up to day t0, search query frequencies are available up to day t0 + δ, where δ
= 14 days in our experiments. Dashed arrow lines denote that the model is called for multiple time-steps (where a time step is a day). For days t0 − τ to t0, IRNN enters a

warm-up phase where it sets the hidden states in the RNN layer without making any predictions. For days t0 to t0 + δ, we can observe search query frequencies, but we

cannot observe ILI rates. At this stage, IRNN performs nowcasting with respect to input Q. During nowcasting the estimated ILI rate F̂ t is combined with the true search

frequencies Qt use as the input for the next time step. The query search frequency estimates which are not used (as they are known to us) are shown by a faded box. For

days t0 + δ + 1 to t0 + γ, where γ denotes the forecasting horizon, IRNN conducts pure forecasting as neither search query frequencies nor ILI rates are known for that

period. Forecasted values for both of them are used as inputs for subsequent time steps. The full sequence of both predicted ILI rates and search query frequencies is used

in the training loss.

https://doi.org/10.1371/journal.pcbi.1011392.g004
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future (for a period of 7 days after the target forecast) search query frequencies when γ = 7.

Hence, for both γ = 7 and 14, the only minor difference may be due to the more recent past ILI

rate inputs. As a result, the difference in performance between γ = 7 and 14 is expected to be

minor given that search query frequencies are always the more recent information source (as

opposed to past ILI rates). This is also empirically confirmed by our experiments (see Table 1).

A caveat of the current formulation of IRNN is that the model is agnostic of the actual forecast

horizon and hence its uncertainty might be underestimated for larger forecasting horizons.

Uncertainty estimation using a Bayesian NN layer

We first describe the data uncertainty, then model uncertainty, and finally how the two uncer-

tainties are combined.

Data uncertainty. Data or aleatoric uncertainty is caused by noisy observations. It can be

further divided into homoscedastic (constant for all inputs) and heteroscedastic (dependent

on the input) uncertainty [53]. We estimate heteroscedastic uncertainty in the output layer of

the neural network by approximating the parameters of a Gaussian distribution [54]

fΦðxÞ ¼ N ðŷ; ŝÞ ¼ N ða1; softplusða2ÞÞ ; ð1Þ

where a1 and a2 are the outputs of the neural network. Softplus is defined by

ŝ ¼
1

s
lnð1þ ecþa2Þ ; ð2Þ

where s> 0 is a scaling factor, and c = ln (ex − 1) is an offset which makes the output equal to 1

when a2 = 0. All hyperparameters (insofar s and c) are jointly optimised using Bayesian optimi-

sation (see “Hyperparameter optimisation”). The network is trained by minimising NLL given

by

NLLðy; ŷ; σ̂Þ ¼
1

T

XT

t¼1

1

2ŝ2
t

ðyt � ŷtÞ
2
þ

1

2
log 2pŝ2

t

� �
� �

; ð3Þ

where y = {y1, . . ., yT} is a series of T flu rates (ground truth), ŷ ¼ fŷ1; . . . ; ŷTg is a series of T
forecasts, and σ̂ ¼ fŝ1; . . . ; ŝTg is a series of associated standard deviations (data uncer-

tainty). The first component of Eq 3 contains a residual term equivalent to the mean squared

error and an uncertainty normalisation term. The second component prevents the model

from predicting an infinitely large ŝ. Minimizing the NLL allows us to train an NN despite not

having ground truth estimates of the data uncertainty.

Model uncertainty. Model or epistemic uncertainty is inherent in the parameters of the

model. It is caused by having insufficient data to exactly set the model’s parameters. To esti-

mate model uncertainty, we deploy a BNN trained using variational inference [55]. BNNs have

a distribution over their parameters. For our purposes, we restrict the Bayesian component to

the last layer of a network, while preceding layers use deterministic weights and biases. We do

this as we found it to be more stable and faster compared to training using a distribution over

all the parameters of the model [56]. We use a Gaussian prior with a diagonal covariance

matrix pðΦÞ ¼ N ð0; spIÞ, where σp 2 [0.0001, 0.1] is a hyperparameter. The form of the distri-

butions is an implementation choice. We specify the posterior distribution to the same form

(Gaussian with diagonal covariance) as the prior, such that we have a conjugate prior [57]. The

mean μw and standard deviation σw of each weight in the posterior are learned. θ holds all the

layer’s parameters that are updated during training; the means in the posterior are half of its

parameters and the softplus of the standard deviations constitutes the other half. Instances of

the model are created by sampling the weights in the Bayesian layer. For each instantiation of
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the model, a forecast and associated data uncertainty are determined. The variation in the fore-

cast across the model instances provides an estimate of the model uncertainty.

Combining data and model uncertainty. Each time that we sample from the posterior

distribution of the model’s parameters (which in Experiments will be denoted by qθ(Φ)) we

create a model instance, k, that forecasts a mean ŷ 0k and standard deviation ŝ 0k. After drawing K
samples, the predictions are combined to create a single distribution. The mean ŷ is the mean

of the K forecasts, i.e.

ŷ ¼
1

K

XK

k¼1

ŷ 0k ; ð4Þ

and the variance is given by [31]

ŝ2 �
1

K

XK

k¼1

ŷ 02
k
�

1

K

XK

k¼1

ŷ 0
k

 !2

þ
1

K

XK

k¼1

ŝ 02
k
: ð5Þ

In Eq 5, the first two sum terms define the variance of the means, i.e. the model uncertainty.

The third term is the mean of the variances, i.e. the data uncertainty.

Experiments

We first introduce the training setup for a BNN, and the variations which are used for the dif-

ferent architectures, then we discuss hyperparameter optimisation, and finally how the evalua-

tion is performed in our experiments.

Training a BNN. Bayesian inference is used to learn the posterior distribution p(Φ|D)

over the model parameters Φ, where D is the training data containing inputs and targets. In

theory, the posterior can be derived by using Bayes rule, i.e.

pðΦjDÞ ¼
pðDjΦÞpðΦÞ

pðDÞ
; ð6Þ

where p(Φ) is a prior distribution which expresses prior belief about the parameter distribu-

tion before training data is observed. However, we cannot obtain an exact estimate of the pos-

terior due to the integral p(D) =
R
Φ p(D, Φ0)dΦ0, which is unavailable in closed form and

requires exponential time to compute [55]. We instead use variational inference, replacing Eq

6 with an optimisation task. The posterior p(Φ|D) is constrained to a family of distributions F
[55], and instead of finding the exact posterior, a variational distribution qθ(Φ) is used. θ is

used to describe the distribution [58] e.g., the mean and variance for a Gaussian. The goal of

training becomes to learn θ by minimising the Kullback-Leibler divergence (DKL) to the true

posterior p(Φ|D) as in

argmin
θ

DKL ½qθðΦÞjjpðΦjDÞ� such that qθðΦÞ 2 F : ð7Þ

The KL divergence represents the average number of bits required to encode a sample from p
(Φ|D) using qθ(Φ). To compute the KL divergence, p(D) is required. However, we can instead

maximise the evidence-lower-bound (ELBO) given by

ELBOðθÞ ¼ E ½log ðpðDjΦÞÞ� � DKL ½qθðΦÞjjpðΦÞ� ; ð8Þ

which is equivalent to Eq 7 up to a constant and is tractable. The first component of Eq 8 is

computed using Eq 3, and measures how well the model fits the training data. The second

component of Eq 8 is the KL divergence between the posterior and prior distribution. The KL
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divergence term behaves similarly to a regulariser and encourages the model to choose a sim-

ple qθ(Φ). When the ELBO is computed using minibatch gradient descent, the gradients are

averaged over each minibatch. Therefore, to compute the ELBO the KL divergence term is

weighted by the total number of minibatches during training [59]. We also use an additional

KL annealing term ξ, which limits the regularisation effect of the KL term. For the FF and

SRNN models this is equal to 1/M where M is the number of minibatches multiplied by KLw
[60]. For the IRNN model, M is the number of minibatches multiplied by γ = 28 and KLw. This

is because the model makes 28 outputs, and each requires calling the dense Bayesian layer. The

constant, KLw, is chosen by hyperparameter optimisation. Thus, Eq 8 becomes

ELBOðθÞ ¼ E ½log ðpðDjΦÞÞ� � xDKL½qθðΦÞjjpðΦÞ� : ð9Þ

When training the FF and SRNN models, each training step takes an [(m + 1) × (τ + 1)]-

dimensional input (where m denotes the number of search queries and τ + 1 denotes the win-

dow of days, from t0 and back, for which query frequencies and ILI rates are used) and pro-

duces a forecast estimate ŷt0þg containing both a mean and standard deviation for the ILI rate

for time (day) t0 + γ. The parameters Φ are updated by minimising Eq 9. During each training

step one sample is taken from qθ(Φ) and used to compute the ELBO. We use backpropagation

to compute gradients and update the parameters in both the Bayesian and non-Bayesian layers.

The model is retrained for each time horizon γ, where γ = 7, 14, 21 or 28 days, and for each

test period.

The output of the IRNN is a sequence of ILI rates and search frequencies. Although we

have search data from t0 to t0 + δ, we use the full sequence of estimated query frequencies

when backpropagating the ELBO (Eq 9) through time. When evaluating the model’s perfor-

mance we are only concerned with the model’s ILI rate forecasts. The Bayesian layer is called

once for each iterative prediction.

Hyperparameter optimisation. We use Bayesian hyperparameter optimisation [61] with

5-fold cross validation where each fold is a 365-day period covering a full flu season (see S3

Table and S3 and S4 Figs). We tune the hyperparameters once before the first test period, and

keep the same hyperparameters for all subsequent test seasons. For the FF and SRNN the

hyperparameters are re-tuned for each of the four forecast horizons. For the IRNN the hyper-

parameters are tuned once, considering all four forecasting horizons (the average NLL is com-

puted across them). The hyperparameters are the following: the size of the hidden NN layers 2

[25, 125], the number of queries m 2 [20, 150], the weighting of the KL divergence term in the

ELBO loss KLw 2 [0.0001, 1.0], the scaling factor of the output’s standard deviation s 2 [1.0,

100], the prior standard deviation σp 2 [0.0001, 0.1], the number of epochs 2 [10, 100], and the

learning rate 2 [0.0001, 0.01] for training the NNs. After the hyperparameters are tuned we re-

train the model using the full training set for the number of epochs chosen. The derived model

is then used for forecasting on the test set. Note that hyperparameters are not re-tuned for

comparing with Dante (when Web search activity data that are more recent that the last

observed ILI rate are removed), which may have disadvantaged our NN models.

Inference. When making an estimate with a BNN based on inputs X, and with training

data D, the goal is to compute an output ŷ for the entire distribution over Φ:

pðŷjX;DÞ ¼
Z

Φ
pðŷ 0jX;Φ0ÞpðΦ0jDÞdΦ0 : ð10Þ

In practice pðŷjX;DÞ is estimated using Monte Carlo sampling from p(Φ|D) [58]. At predic-

tion time, the posterior distribution over the weights is sampled K times, each giving a output

N ðŷ 0; s0Þ. The K estimates are combined using Eq 5 which makes an estimate for the
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combined model and data uncertainty. K is chosen by sampling until the final estimate of ŷ
stabilises. Initially we sample 10 times and produce an estimate using Eq 5. We then run the

model a further 10 times and produce a new estimate using the 20 samples. We repeat this pro-

cess until increasing K by 10 does not change the estimated mean by more than 0.1%. Despite

averaging over K instances of the model, we observed some instability in training the models.

To resolve this each model was trained 10 times with different initialisation seeds, i.e. the

seed controlling the initial parameter values of the NN. The mean of the 10 estimates of fore-

casts and associated variances are our final forecast and variance. We considered alternate

methods of combining estimates, such as Eq 5, and averaging the probability density func-

tions. Ultimately we found that averaging the means and variances gave the best final fore-

casts. Thus, the total number of samples for making a forecast is equal to
P10

i¼1
di � 10, where

i 2 {1, . . ., 10} denotes a different seed, and di� 20 is the number of samples required for

this seed to converge.

To make an estimate with the SRNN and FF models, the inputs are passed through the

model’s layers up to the Bayesian layer. The weights in the Bayesian layer are then sampled K
times, and the estimates from the K samples are combined with Eq 5 as discussed in the pre-

vious paragraph. Making an estimate with IRNN has three distinct phases: warm-up, now-

casting, and forecasting (S14 Fig). During the warm-up phase the model observes ILI rates

and m search queries from t0 − τ to t0. This sets the hidden states of the GRU layer based on

all ILI rates and search frequencies from the same days. The output of the GRU is fed into

the Bayesian layer (denoted by FCBNN in Fig 4), which estimates the input for the next time

step. The Bayesian layer estimates model and data uncertainty, and has 2 × (m + 1) units.

The first half of the units estimate the means of the query frequencies and ILI rate, the second

half of the units estimate the corresponding standard deviations. The estimated ILI rate is a

distribution which cannot be directly interpreted by a NN layer. Therefore, a sample from

this distribution is combined with the true search query frequencies and fed back into the

GRU layer. This is repeated from t0 to t0 + δ (nowcasting phase). After time t0 + δ, no more

search query frequencies are available. The estimated search query frequencies and ILI rates

from each time step are fed back into the model to make subsequent forecasts. The process

of making daily estimates can be repeated indefinitely, so γ, the forecasting horizon, could

increased arbitrarily.

Evaluation. We evaluate the performance for forecasting horizons γ = 7, 14, 21 and 28

days ahead. We choose weekly test dates starting from week 45 and lasting for 25 weeks. We

use the 2015/16, 2016/17, 2017/18 and 2018/19 flu seasons to evaluate our model. We did not

consider running experiments on data from 2019/20 or 2020/21 as flu prevalence has signifi-

cantly declined, and ILI rate estimates from CDC became less reliable due to the COVID-19

pandemic. We train models for the period 05/06/2004 until the Wednesday of the 33rd week

of the year in which the test flu season starts (around mid-August). We test the models on the

period from the Sunday of week 44 until the Saturday of week 23 in the following year. Exact

training and test periods are provided in the Supporting Information (S2 Table and S2 Fig).

To compare our NN models to Dante we evaluate the model scores on the same test weeks as

specified in Reich et al. (2019) [15]. When comparing the best performing NNs to Dante, the

training set included all seasons except the test season, i.e. it also included data after the test

season (models NN and NNb in Table 2). We did not re-tune hyperparameters to account for

training on future seasons. As discussed earlier, we do not consider training on data after the

test period to be appropriate, but it allows the most direct comparison to the training setup

used by Dante. We also report the performance of our best performing NNs when trained

using only data prior to the test season (model NNa in Table 2).
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Supporting information

S1 Appendix. Discussion of metrics and baseline persistence model. Appendix discussing

the multibin logarithm score, forecast skill score, continuous ranked probability score, mean

absolute error and bivariate correlation metric. As well as the persistence model used the base-

line.

(PDF)

S1 Fig. Average metrics for all models. Negative log-likelihood (NLL), continuous ranked

probability score (CRPS), Skill, mean absolute error (MAE), and bivariate correlation for each

NN model averaged over all four test flu seasons (2015/16 to 2018/19). Scores for different

forecast horizons (γ) are shown. We also provide a comparison with IRNN trained without

using any Web search activity data (IRNN0) and a simple persistence model (PER) wherever

applicable. This figure is a supplement to Fig 1 from the main manuscript.

(EPS)

S2 Fig. ILI rates for training and testing. National US ILI rates (as reported by the CDC) for

the training (black) and testing (red) periods for each of the 4 test folds that we used in our

experiments.

(EPS)

S3 Fig. Train and validation ILI rates. National US ILI rates (as reported by the CDC) that

we used for determining the hyperparameters of the NNs. We have denoted the 5 training and

validation periods with black and red colours respectively.

(EPS)

S4 Fig. Validation set diagram. Validation set diagram. Hyperparameters are validated using

5-fold cross validation, where the validation periods are the last five available seasons before

the test period. Error (NLL) is averaged over these validation periods. After hyperparameter

optimisation, the full training set is used.

(EPS)

S5 Fig. Cubic interpolation example. Cubic interpolation of weekly ILI rates (as reported by

the CDC for US) to produce pseudo-daily ones. Although cubic interpolation differs slightly

from linear interpolation (straight line), it does not distort the weekly signal significantly and

produces a more smoothed trend.

(EPS)

S6 Fig. Elastic-Net forecasts. Elastic-Net forecasts for all 4 test seasons (2015/16 to 2018/19)

and forecasting horizons (γ = 7, 14, 21, and 28). The influenza-like illness (ILI) rate (ground

truth) is shown by the black line.

(EPS)

S7 Fig. FF Forecasts. FF forecasts for all 4 test seasons (2015/16 to 2018/19) and forecasting

horizons (γ = 7, 14, 21, and 28). Confidence intervals (uncertainty estimates) are shown at 50%

and 90% levels, and are visually distinguished by darker and lighter colour overlays respec-

tively. The influenza-like illness (ILI) rate (ground truth) is shown by the black line. The flu

seasons are shown in different colours which correspond with the calibration plots on the

right. The calibration lines show how frequently the ground truth falls within a confidence

interval (CI) of the same level. To be more precise, a point (x, y) denotes that the proportion

y 2 [0, 1] of the forecasts when combined with a CI at the x × 100% level include the ground

truth (successful forecasts). The optimal calibration is shown by the diagonal black line. Points

above or below the diagonal indicate an over- or under-estimation of uncertainty, and hence
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an under- or over-confident model, respectively. The shadows show the upper and lower quar-

tile of the calibration curves when the models are trained multiple times with different initiali-

sation seeds.

(EPS)

S8 Fig. SRNN Forecasts. SRNN forecasts for all 4 test seasons (2015/16 to 2018/19) and fore-

casting horizons (γ = 7, 14, 21, and 28). Confidence intervals (uncertainty estimates) are

shown at 50% and 90% levels, and are visually distinguished by darker and lighter colour over-

lays respectively. The influenza-like illness (ILI) rate (ground truth) is shown by the black line.

The flu seasons are shown in different colours which correspond with the calibration plots on

the right. The calibration lines show how frequently the ground truth falls within a confidence

interval (CI) of the same level. To be more precise, a point (x, y) denotes that the proportion

y 2 [0, 1] of the forecasts when combined with a CI at the x × 100% level include the ground

truth (successful forecasts). The optimal calibration is shown by the diagonal black line. Points

above or below the diagonal indicate an over- or under-estimation of uncertainty, and hence

an under- or over-confident model, respectively. The shadows show the upper and lower quar-

tile of the calibration curves when the models are trained multiple times with different initiali-

sation seeds.

(EPS)

S9 Fig. Dante Forecasts. Dante forecasts for all 4 test seasons (2015/16 to 2018/19) and fore-

casting horizons (γ = 7, 14, 21, and 28). Confidence intervals (uncertainty estimates) are

shown at 50% and 90% levels, and are visually distinguished by darker and lighter colour over-

lays respectively. The influenza-like illness (ILI) rate (ground truth) is shown by the black line.

The flu seasons are shown in different colours which correspond with the calibration plots on

the right. The calibration lines show how frequently the ground truth falls within a confidence

interval (CI) of the same level. To be more precise, a point (x, y) denotes that the proportion

y 2 [0, 1] of the forecasts when combined with a CI at the x × 100% level include the ground

truth (successful forecasts). The optimal calibration is shown by the diagonal black line. Points

above or below the diagonal indicate an over- or under-estimation of uncertainty, and hence

an under- or over-confident model, respectively.

(EPS)

S10 Fig. IRNN Forecasts. IRNN forecasts with leave-one flu season-out and using all available

Web search data for all 4 test seasons (2015/16 to 2018/19) and forecasting horizons (γ = 7, 14,

21, and 28). Confidence intervals (uncertainty estimates) are shown at 50% and 90% levels,

and are visually distinguished by darker and lighter colour overlays respectively. The influ-

enza-like illness (ILI) rate (ground truth) is shown by the black line. The flu seasons are shown

in different colours which correspond with the calibration plots on the right. The calibration

lines show how frequently the ground truth falls within a confidence interval (CI) of the same

level. To be more precise, a point (x, y) denotes that the proportion y 2 [0, 1] of the forecasts

when combined with a CI at the x × 100% level include the ground truth (successful forecasts).

The optimal calibration is shown by the diagonal black line. Points above or below the diago-

nal indicate an over- or under-estimation of uncertainty, and hence an under- or over-confi-

dent model, respectively. The shadows show the upper and lower quartile of the calibration

curves when the models are trained multiple times with different initialisation seeds.

(EPS)

S11 Fig. Detailed calibration plots for neural network models. Calibration plots for the fore-

casts made by the three NN models (FF, SRNN, and IRNN) for each of the four test periods

(2015/16 to 2018/19) and forecasting horizons (γ). The lines show how frequently the ground
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truth falls within a confidence interval (CI) of the same level. To be more precise, a point (x, y)

denotes that the proportion y 2 [0, 1] of the forecasts when combined with a CI at the x × 100%

level include the ground truth (successful forecasts). The optimal calibration is shown by the

diagonal black line. Points above or below the diagonal indicate an over- or under-estimation

of uncertainty, and hence an under- or over-confident model, respectively. The shadows show

the upper and lower quartile of the calibration curves when the models are trained multiple

times with different initialisation seeds.

(EPS)

S12 Fig. Diagram of FF architecture. Diagram of the feedforward (FF) NN architecture with

dimensions of parameter matrices shown. L1 and L2 denote the number of units in fully con-

nected layers FC1 and FC2, respectively. FCBNN denotes a fully connected Bayesian layer with a

distribution over its weights.

(EPS)

S13 Fig. Diagram of SRNN architecture. Diagram of the Simple RNN (SRNN) architecture.

GRU (Gated Recurrent Unit) is a recurrent layer, and FC denotes a fully connected dense

layer. FCBNN denotes a fully connected Bayesian layer with a distribution over its weights.

Note that the query frequencies (Q) and the ILI rates (F) are temporally misaligned by δ days.

(EPS)

S14 Fig. IRNN pseudocode. Pseudocode describing how the IRNN model makes one

sequence of forecasts up to γ days ahead.

(EPS)

S1 Table. Example Web search queries. A demonstration of manually curated topics based

on the Web search queries used in forecasting models trained for and tested on the 2015/16 flu

season. Please note that we do not use query topics in our forecasting models.

(XLSX)

S2 Table. Rain and test intervals. The training and testing date intervals (all inclusive) for the

four flu seasons used to evaluate forecasting methods in our experiments. Dates given are the

days from which forecasts are made.

(XLSX)

S3 Table. Train and validation intervals. The training and validation date intervals of the 5

validation folds. These are used to validate and determine the hyperparameter values of the

NNs in our experiments.

(XLSX)

S4 Table. Performance metrics for best neural network models compared with Dante.

Forecasting performance metrics for the best-performing neural network (SRNN for γ = 7,

IRNN for γ� 14) compared with Dante (Dte) and Elastic Net (Eln). The NNs are trained

using search query frequencies generated only up to the last available ILI rate (the 2-week

advantage of using Web search data is removed). We use leave-one flu season-out to train

models, similarly to Dante. The best results for this comparison are shown in bold. NNb

denotes results where the temporal advantage of Web search activity information is main-

tained (compared to NN). NNa holds results for the same experiment as NNb with the addition

of disabling leave-one flu season-out training, i.e. training does not include data after the test

year. Eln uses the same data sets (inputs, targets) as the NNs. Therefore, it is trained using look

ahead and without leave-one flu season-out. Eln does not estimate uncertainty and hence, the

Skill metric is not available (empty cell). This Table supplements Table 2 in the main
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manuscript.

(XLSX)

S5 Table. Meta analysis performance metrics for neural network models. Meta-analysis of

ILI rate forecasts around the peak of a flu season for FF, SRNN, and IRNN. δ-p denotes the

temporal difference (in days) in forecasting the peak of the flu seasons 2015/16, 2016/17, 2017/

18, and 2018/19, respectively. Negative / positive values indicate an earlier / later forecast. Avg.

δ-yp measures the average magnitude difference in the estimate of the peak of the flu season

between a forecasting model and CDC. MAE-p is the MAE when the ILI rate is above the sea-

sonal mean plus one standard deviation. SMAPE-p (%) is the symmetric mean absolute per-

centage of error for the same time periods.

(XLSX)
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