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Abstract

Biomedical imaging is a fascinating, rich and dynamic research area,
which has huge importance in biomedical research and clinical practice
alike. The key technology behind the processing, and automated anal-
ysis and quantification of imaging data is mathematics. Starting with
the optimisation of the image acquisition and the reconstruction of an
image from indirect tomographic measurement data, all the way to the
automated segmentation of tumours in medical images and the design of
optimal treatment plans based on image biomarkers, mathematics appears
in all of these in different flavours. Non-smooth optimisation in the con-
text of sparsity-promoting image priors, partial differential equations for
image registration and motion estimation, and deep neural networks for
image segmentation, to name just a few. In this article, we present and re-
view mathematical topics that arise within the whole biomedical imaging
pipeline, from tomographic measurements to clinical support tools, and
highlight some modern topics and open problems. The article is addressed
to both biomedical researchers who want to get a taste of where math-
ematics arises in biomedical imaging as well as mathematicians who are
interested in what mathematical challenges biomedical imaging research
entails.

1 Biomedical imaging

Vision being the primary human sense, it is no surprise that an image became a
preferable way of representing spatially varying information and medical imag-
ing is no exception. Indeed, biomedical imaging is the main mean for us to look
into the human body in a non-invasive way. What we see ranges from the very
small to the very big. From electron tomography for analysing atomic structures
of molecules on lengthscales of a couple of Angstroems [76], to light-microscopy
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Figure 1: Exemplar biomedical imaging pathway. From left to right: One CT
projection measurement; 2D slice of reconstructed 3D CT volume; segmenta-
tion of cancerous lesions (different colours correspond to different tumour types);
statistical analysis which could include image features such as size and shape
parameters of segmented lesions, texture features within leasons, etc; and finally
the prediction based on the statistical analysis which could for instance be re-
sponse to chemotherapy treatment. CT data and segmentation are courtesy of
Evis Sala and Romana Woitek. Parts of this image have been obtained by the
authors from the Pexels website where it was made available under the Pexels
License. It is included within this article on that basis.

for tissue and cell analysis [89, 79], to x-ray and computed tomography (CT)
[75], and molecular imaging such as Magnetic Resonance Imaging (MRI) [7] and
Positron Emission Tomography (PET) [90], to wave-imaging such as ultrasound
[94], to optical and photo-acoustic tomographic (PAT) imaging techniques [9, 5].
The main use-cases for medical imaging are

(i) medical research: where images are used to investigate diseases and de-
rive novel biomarkers for cancer, cardiovascular diseases, cognitive decline,
etc., through cohort analysis and individual stratification;

(ii) clinical practice: where medical imaging is used for preventive screening,
diagnosis, treatment planning and image-guided clinical interventions.

The trend is clear. The variety of image data that is being collected at in-
creasing spatial and temporal scales clearly goes beyond capabilities of manual
interpretation. Automated algorithms (AI techniques) are needed to interpret
these images, and must be developed taking into account the four Vs of big data
(quoting IBM’s categorisation1). The first V is volume, with the increasing res-
olution and dimensionality of images as hardware is improving and affordable
emerging imaging techniques make their way into the clinic. The second V is
variety, spanning various imaging modalities mentioned before. The third is
velocity, the steadily increasing speed and rate at which the data is acquired,
enables new applications (such as e.g. imaging of change) as well as more com-
prehensive screening. The final V is veracity, considering uncertainty, noise

1 https://www.ibmbigdatahub.com/infographic/four-vs-big-data

2

https://www.pexels.com/license/
https://www.pexels.com/license/
https://www.ibmbigdatahub.com/infographic/four-vs-big-data


and artefacts in the image data. The modern day biomedical imaging path-
way navigates the process from data acquisition (measurements), through to
the formation of an image (image reconstruction), the extraction of biomarkers
(also called image analysis or image quantification), and eventually image-based
statistics for prediction and further analysis. With digital images basically just
being a bunch of numbers stored in a possibly high-dimensional vector, each
of these processing and analysis steps has mathematics at its core, each in its
different way. The mathematics involved with image data is challenging as im-
age sizes and properties vary, hence require bespoke mathematics designed for
the particular data-type, and because image data is big with biomedical images
easily featuring a million unknowns.

Outline In what follows, we will investigate each step of the biomedical imag-
ing pathway and discuss its mathematical challenges in sections 2-5. In sections
6, 7 and 8 we pick out and discuss in more detail three modern topics in biomed-
ical imaging which depict the recent trend in bioimaging of intra- and inter-
stage task fusion, as well as deep learning as a powerful mean to model images
and their information content. We close in section 9 with a short discussion of
how mathematics can continue to aid imaging in particular in the advent of AI
techniques making their way into healthcare.

With this perspectives piece we aim to address both biomedical researchers
with a keen interest to find out where mathematics enters biomedical imaging
research and development, and mathematicians who want to get a flavour for
the kind of mathematical problems that appear in biomedical imaging. To serve
both audiences, our discussion is a mix of conceptual explanations that include
some name dropping and references for further reading for the mathematically
interested reader, and a more direct exemplified mathematical description for
the modern research topics discussions in sections 6-8.

2 How to image

Every biomedical imaging task initiates with a question: what do we want to
observe, what qualities of the image do we require and how to acquire such
image. This is possibly the most interdisciplinary task of the biomedical imag-
ing framework as it requires clinical understanding of the condition/pathology,
expertise in the underlying biological processes and interaction of the imaging
agent with the biology of the object, knowledge of the physics of the deployed
modality to model the image formation process, engineering skills to construct
a device and finally mathematics to formulate, analyse and solve the image re-
construction problem. In practice, we do not have the luxury to go through this
process on a task by task bases, but groups of tasks are targeted and new tasks
are continuously identified as the technology evolves. As a result most of the
time we consider available modalities first and attempt to compensate for their
limitations with adjusted imaging protocols, combining different technologies
and mathematics.
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The choice of the technology is usually based on various factors:

(i) Individual features of different imaging techniques, such as CT or MRI
for visualising anatomical structures, PET for metabolic activity, and mi-
croscopy for small tissue sample imaging of biopsies. Often, more than one
imaging modality is used in medical research and clinical practice. Multi-
modality imaging is a major topic in mathematical imaging, where it gives
rise to new ways of image reconstruction (see also section 6) with research
focussing on proposal of new image priors (regularisers) that model corre-
lations between the different modalities [48, 47], challenges around image
fusion with new models that are based on image registration [71], decon-
volution and interpolation [24], and further analysis of these fused images
based on high-dimensional statistics, functional data analysis and machine
learning [23, 82] (compare also to the discussion of image biomarkers in
section 4).

(ii) Trade-off between availability and cost of an imaging technique – e.g. x-
ray and ultrasound imaging are widely-spread imaging techniques that can
be found in every clinic and even some GP or specialist medical practices,
while MRI is expensive and usually only available in larger clinics.

(iii) Medical imaging is complicated by the fact that the resolution of the image
does not only depend on the hardware but also on the acquisition time and
radiation dose. The challenge here is to produce a high quality description
of patients and their ailments from data which is necessarily limited by
the capability of scanners and the need to image fast, and minimise ex-
posure to harmful radiation. In MRI, for example, the measurements are
– roughly speaking – Fourier coefficients of the image intensity function
that represents the anatomical structure of the imaged body part. One
can imagine now, that the resolution of the image (number of unknowns
representing the image intensity function) is correlated with the amount
of Fourier samples acquired by the machine. Acquiring Fourier samples,
however, takes time, as the measurement device needs to excite the water
molecules in different ways to trigger different frequency responses [7]. The
discovery of compressed sensing [45, 29], i.e., the nonadaptive compressed
acquisition of data, gave rise to efficient numerical algorithms which al-
low one to sense/acquire only the essential features of signals, and in turn
to recover them by very sparse sampling of Fourier coefficients in MRI
[68]. The latter also naturally led to research into where best to sample
in Fourier space with both theoretical contributions in applied harmonic
analysis [63, 18, 1] and practical solutions in applied analysis and optimi-
sation [36, 20, 91], cf. also Figure 2.
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Uniform random Reconstruction Learned Reconstruction

Figure 2: The importance of a good choice of sampling pattern in Fourier space
(fltr): uniform random pattern as suggested by the classical compressed sensing
literature [29] and total variation reconstruction (cf. section 6) on a test image,
and an equally sparse pattern learned with the algorithm in [91] and visually
similar to sampling patterns coming out of a revised compressed sensing theory
[1] and total variation reconstruction for the same test image.

3 From measurements to an image

Once it is decided how to image, we face the task of turning the measurements
into an image, cf. Figure 3. Apart from optical imaging where an image is
formed by the device sensors, for all other medical imaging techniques such as
CT, MRI, ultrasound, PAT, etc., the image is indirectly captured (or hidden)
in the measurements and an ‘inversion’ of the data is required before we can see
an image. That is, measurements f and their relationship to the image u can
be described by f = A(u) + n, where A is a linear or nonlinear so-called for-
ward operator that models the measurement process, and n stands for random
corruptions in the data. In CT, for instance, the detectors roughly speaking
measure the intensity of the x-rays after having travelled through the body and
being attenuated by the various tissues they pass through on the way. This
constitutes the ‘forward problem’ of CT and mathematically can be modelled
by A being the Radon transform. To see an image of the tissue attenuation A
has to be inverted [75]. Another example is PAT, which belongs to the group of
coupled-physics inverse problems. Here, the forward model A that connects the
image to the measurements is given by a coupled system of partial differential
equations (PDEs), one describing the optical part with a diffusion-type equa-
tion, and the other describing the acoustical part with a wave-type equation
[6]. Such tomographic inversion is one of the main topics in the mathematical
field of inverse problems, and is characterised by its usual ill-posedness due to
the lack of a continuous inverse of A, incompleteness of and noise in the mea-
surements. Often, there are multiple possible images that fit the measurements
equally well. Robust solution strategies for inverse problems, therefore, involve
careful physical modelling, functional analytic regularisation [49, 17] and/or
statistical, in particular Bayesian, inversion models that can also provide uncer-
tainty quantification [60, 93], applied harmonic analysis and compressed sensing
[41, 69, 45, 29], and stable and scalable computational optimisation schemes [33].
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Figure 3: Demonstration of the principle of x-ray tomography. Measurements
correspond to x-ray intensities detected after travelling through the imaged
object along lines at different angles (left in the picture); the reconstructed
image from such measurements is the linear attenuation coefficient of tissues.
Figure courtesy of Samuli Siltanen. For an animated demonstration of x-ray
tomography see https://www.youtube.com/watch?v=newxZbw7YAs.

Recently, also deep neural networks have been investigated for this task, with a
clear outcome that such approaches can work very well in biomedical imaging
context, but only in combination with physical models and thorough mathe-
matical scrutiny [8], see also section 8. Also for image reconstruction, a close
dialogue of researchers developing image reconstruction techniques and radiol-
ogists is important, see for instance this recently published online platform for
MRI reconstruction [102] which aims to facilitate this collaboration.

4 From image to biomarkers

With increasing algorithmic capabilities, today, biomedical images are acquired
not only for their qualitative analysis by a biomedical researcher or clinician who
wants to study a disease or diagnose a patient, respectively, but for quantifi-
cation purposes. Indeed, image analysis is a huge topic in healthcare analytics
and - for it to be done at scale - requires accurate and fast automation pro-
cedures. Biomedical image analysis encompasses a number of mathematical
areas: optimisation – as many image analysis tasks eventually amount to the
solution of a large numerical optimisation problem; differential equations (in
particular PDEs) and variational calculus [34, 88] – as derivatives of the im-
age intensity function describe local changes and in particular image edges, and
differential equations are frequently used for modelling of kinetics, while PDEs
also underpin forward modelling of many nonlinear inverse problems e.g. elec-
trical impedance tomography or ultrasound tomography; differential geometry
and geometric measure theory [12, 22, 21] – as shapes of objects can be char-
acterised by the length, curvature, tangent space etc. of the object’s boundary
such as in Chan-Vese segmentation [35] as exemplified in section 7, compare
also (3); statistics and harmonic analysis – as multi-scale image structures can
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be represented by multi-scale function spaces e.g. wavelets [41, 69], or random
fields [98]; functional data analysis [81, 10] – as image data is spatially and pos-
sibly time dependent, i.e. a function of position and possibly time, in contrast
to most other types of data which are scalar; and machine learning – particu-
larly deep neural networks that can be used to derive and represent data-driven
image features trained on a large number of training examples [53]. Important
image analysis and processing tasks that can be solved by one or more of the
mathematical techniques above include

(i) Image segmentation or clustering aims to segment one or more objects
of interest in an image, also under the presence of noise and blur. A
large community of researchers including mathematicians, engineers and
computer scientists have investigated image segmentation, proposing and
analysing models for this task. The methodologies used span a wide range,
from machine learning to geometric measure theory [74, 35, 34, 86]. Seg-
mentation tasks for biomedical imaging include delineation of lesions or
individual organs in cancer therapy, for image-guided biopsies or generally
for image-guided surgery [61, 72]. Compare also section 7 for a segmen-
tation example using elements from geometric measure theory, embedded
within a multi-tasking framework.

(ii) Classification is a specification of clustering, as it does not only create indi-
vidual clusters but also assigns these with a class label. Classification can
be done on a pixel-level – decomposing an image into different classes, e.g.
cancerous tissue, margin, normal tissue – or an image-level – decomposing
a dataset of images into different classes, e.g. tumour grades 1,2 and 3.
Classification is the fundamental principle of patient or disease stratifica-
tion based on healthcare data. In the context of image-data, classification
is done based on features derived from images. Deep neural networks con-
stitute the state of the art for many biomedical classification tasks [65, 50],
but also other machine learning methods such as support vector machines
(SVMs) [16]. A major challenge for image classification algorithms is the
usual lack of clean annotated data and hence classification methods with
minimal supervision requirements, such as semi-supervised graph cluster-
ing & classification [15, 14] are being developed, cf. also Figure 4.

(iii) When acquiring images of an individual with different imaging modali-
ties, e.g. MRI and PET, or at different times, or when comparing images
from different individuals with each other, an important image processing
task is the alignment of images and the fusion of information coming from
different images. Image alignment or image registration [71], is particu-
larly challenging for aligning images from different modalities as these can
express very different features, making finding the correlations between
them that can be used for the alignment difficult. Mathematical concepts
involved here are based on differential geometry and non-convex optimi-
sation. Once the images are registered the so-created multi-dimensional
pixel array has to be processed further, e.g. feeding this into the seg-
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Figure 4: GraphXNet [15, 14]: graph classifier with minimal supervision for
classifying chest x-rays into different pathologies.

mentation or classification tasks from above. To do so, the appropriate
fusion of information from each image is needed, which possibly involves
a dimension reduction in the form of PCA or alike [51].

(iv) Bespoke enhancement of images in terms of contrast as well as in terms
of resolution or for highlighting certain image features is another big topic
in the image analysis part of the pipeline. This might involve customised
filtering of the image, e.g. the edge enhancement can be realised via the
classical Canny edge detector [31] as well as nonlinear PDEs [78], or scale-
dependent filtering of images via novel spectral decompositions based on
nonlinear eigenvalue problems [27]; or – the very timely and extremely
difficult topic of – super-resolution or deconvolution for increasing spatial
resolution of the image [99, 44].

(v) In the context of dynamic, or more generally spatio-temporal imaging,
motion plays a major role, either as valuable additional information con-
tained in the data or as a nuisance in which case it becomes a source of
image artifacts. In the former case, motion estimation denotes the task of
estimating velocity vectors for moving objects from a video-like sequence.
Popular approaches include particle tracking (PIV) [80] and PDE-based
approaches where the motion is modelled as a transport equation such
as optical flow [58, 11], or recently also deep neural networks [46]. Mo-
tion features are important in biomedical imaging for the qualitative and
quantitative analysis of, for instance, cardiac [13] or joint motion [43]. On
the other hand, motion can also be a nuisance in tomographic imaging
when interested in a static image which takes long enough to acquire so
that e.g. respiratory motion cannot be suppressed via breath holding, or in
functional imaging such as functional MRI [77]. Here, motion correction
is crucial.

The outputs of the above processing steps are the source of new imaging
biomarkers based on different imaging modalities and subsequent prediction,
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and the basis for image-guided biopsies, treatment and surgeries (e.g. which
need automated detection and segmentation of objects from biomedical imaging
data).

5 From image to answers

The final goal of the imaging enterprise can be a classification (stratification)
of individuals into different groups for diagnosis, treatment recommendation
or prediction in medical research or in the clinic, or target identification in
drug discovery (here a drug target is meant as a protein or gene that interacts
with, and whose activity is modulated by, a particular compound). This final
step collates all the information that has been extracted from the imaging data
in the previous steps and brings it forward to a statistical analysis, either on
the imaging data itself, or on features extracted from the data. This leads
to high-dimensional statistical problems [96] that require bespoke processing
and analysis, e.g. sparse PCA [97] or high-dimensional classification [30], and
statistical analysis of longitudinal (time-dependent) data [40, 56].

Let us now highlight three exemplar case studies in biomedical imaging re-
search that touch upon recent developments and offer perspectives towards fu-
ture research trends in this field.

6 Multi-modal image reconstruction

Magnetic resonance imaging is a highly customisable modality with a number
of contrasts routinely measured in clinical practice. Among the most popular
are the so called T1, T2 images obtained by weighting with the corresponding
relaxations times while other common contrasts include fluid-suppressed images
(FLAIR), diffusion and susceptibility weighted images and post-contrast images
revealing function.

However, by the nature of sequential k-space (Fourier domain) sampling,
each MRI scan is relatively slow to acquire, the scan time depending on the
size of the region being scanned. The main bottle neck is caused by the mag-
netic gradients used for selecting the point in the k-space, which cannot change
indiscriminately fast due to physical and physiological constraints. As a conse-
quence, while many properties of the tissue can be measured, there is a trade-off
to be made between the scanning time, which is directly related to the image
resolution, but also potential data deterioration due to e.g. motion if the patient
cannot remain completely still over such a long period of time.

An analogous problem arises in dual/multi- energy x-ray CT. The presence
of two images at different energy levels allows to untangle the attenuation coef-
ficient into atomic number and density [4] facilitating material decomposition.
In most scanners this comes at a cost of higher dose of ionising radiation de-
livered to the patient due to acquisition of low and high keV images which is
a primary concern. The recent development of the photon counting detectors
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enables multi-energy (also called spectral or colour) x-ray imaging without need
of multiple irradiation via a posterior binning of the energies of the collected
photons. An example of such a detector is Medipix3/Medipix4 technology de-
veloped at CERN for high resolution, multi-energy and low noise imagery which
made its way into medical imaging2.

The above examples have in common that each of the contrasts can be mea-
sured essentially with the same resolution. Another category are problems where
one contrast can be acquired with higher resolution than the other, examples
include PET-MRI, SPECT-CT. In both cases however, the underlying anatomy
is the same which underpins the mathematical approach to multi-modal recon-
struction.

Such joint reconstruction of multiple contrasts based on an assumption of
high correlation between the images originating from the same object have re-
cently attracted attention of the inverse problems community with the goal to
obtain same quality reconstruction from an, per contrast, incomplete set of mea-
surements. Many joint reconstruction algorithms make a supposition that the
multiple contrast images share a common (sub)set of edges which is motivated
by the underlying anatomic features. This strategy underpins the parallel level
set approach developed in [48] relying on smooth optimisation formulation and
the directional total variation approach proposed in [47] cf. Figure 5, which is
essentially a non-smooth convex analog to the parallel level sets. These ap-
proaches result in a biconvex optimisation problem for the joint reconstruction
formulation, i.e. only convex if considered as a reconstruction of one unknown
contrast u : Ω → R (where Ω is a rectangular grid of image pixels) informed by
another known contrast v : Ω → R. Such structure guided convex reconstruction
problem can be mathematically formulated as

u = arg min
u ≥0

1

2
∥Au− f∥22 + α dTVv(u), (1)

where A is the subsampled Fourier transform, f the corresponding noisy un-
dersampled k-space data and the regularisation parameter α > 0 strikes the
balance between the data fit and regularisation, here the directional total vari-
ation derived from known contrast v = (vn)n∈Ω is defined as

dTVv(u) :=
∑
n∈Ω

|Pξn∇un|, Pξnx := x− ⟨ξn, x⟩ξn (2)

with the structure encoded using the vectorfield

ξn =
∇vn√

|∇vn|2 + η2
: 0 ≤ |ξn| < 1, η > 0.

See here for the associated code and testdata https://github.com/mehrhardt/
Multi-Modality-Imaging-with-Structure-Promoting-Regularizers

2 https://medipix.web.cern.ch
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Figure 5: Demonstration of the importance of exploiting the coherences between
contrasts on an example of MRI: reconstruction of subsampled T1 given full data
reconstruction of T2 [47]. Top row: T1, T2 images (original source: BrainWeb
[37]), subsampling scheme applied to T1. Bottom row: direction of the edges
derived from T2, T1 reconstruction exploiting T1 & T2 coherence via directional
total variation regularisation with edge directions derived from T2 image, T1
reconstruction agnostic to T1 & T2 coherence using isotropic total variation
regularisation. Excerpts from Figures 1 and 6 from [47].
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Another family of approaches is based on total nuclear norm minimisation
proposed in e.g. [57] and extended to multi-energy x-ray CT in [83] which results
in a convex problem for the joint reconstruction.

At this point we would like to take note of potential dependencies generated
by considering a joint (as opposed to separate) reconstruction problem onto the
imaging pipeline at large:

(i) backward : the optimal set of measurements to acquire for each of the
contrasts depends on the assumed coherence such as e.g. assumption of
the common set of singularities;

(ii) forward : the assumed coherence should be transparently fed into the
following image/statistical analysis and assisted or automated prognosis
stages.

7 Multi-tasking in biomedical imaging

Each of the stages of the biomedical pipeline in Figure 1 is usually completed
and the results fed into the next. This modularity is a result or artefact of how
the pipeline has historically developed and has many advantages: each stage
has defined familiar outputs and it can be independently declared success or
failure according to some established criteria, each stage of the pipeline can be
altered without impacting the others, methodology for each stage can therefore
be independently developed by different research communities with minimal
communication overheads. However, at each stage independent potentially un-
accounted for in the following stages or even conflicting assumptions are being
made which can, if not deteriorate the final result, then at least render the
results sub-optimal and make their rigour hard to argue.

With the advances constantly being made throughout the stages of the
pipeline, each individual stage is becoming more and more customisable calling
the validity of the present solution increasingly into question and demanding
alternatives.

In view of this, there are several attempts towards linking up these individual
steps and design a holistic, all-in-one approach for biomedical imaging. The
idea of such an approach is to make use of the full information in the measured
data in every step of the analysis pipeline, e.g. in the image reconstruction,
the segmentation, classification, prediction etc., very much in contrast to the
sequential approach which can only optimise each step independently of the
next resulting in possible biases, carried forward in each step, and sub-optimal
solutions overall.

Some examples of such approaches are task-adapted reconstruction with
deep learning [2], motion-enhanced reconstruction [26, 25], joint reconstruction
and motion correction [38], joint reconstruction and segmentation [62, 92, 28,
39] and joint reconstruction and classification [70]. In [39], for instance, the
authors consider a non-smooth and non-convex optimisation approach for joint
reconstruction and segmentation from MRI data. Mathematically, given the
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under-sampled and noisy k-space data f , we want to recover the image u : Ω →
R (where Ω is a rectangular grid of image pixels) and compute its segmentation
v in ℓ disjoint regions, by solving the following problem

(u, v) = arg min
u,v

1

2
∥Au− f∥22 + αTV(u)︸ ︷︷ ︸

reconstruction

+ δ

n∑
i=1

ℓ∑
j=1

vij(cj − ui)
2 + β TV(v) + ıC(v)︸ ︷︷ ︸

segmentation

,
(3)

where A is the subsampled discrete Fourier transform, and ıC(v) is the character-

istic function over C := {v : Rn → Rℓ | vij ≥ 0,
∑ℓ

j=1 vij = 1,∀i ∈ {1, . . . , n}}.
The total variation (TV) regularisation is a well-known edge-preserving smooth-
ing functional for images, first introduced by Rudin, Osher and Fatemi in [87]
for image denoising. The TV regularisation is the 1-norm penalty on a discrete
finite difference approximation of the two-dimensional gradient∇ : Rn → (R2)n,
that is ∇u(i, j) = (∇1u(i, j),∇2u(i, j))

T , i.e.

TV(u) = ∥∇u∥2,1 =
∑

(i,j)∈Ω

√
|∇1u(i, j)|2 + |∇2u(i, j)|2.

Moreover, the segmentation in (3) is modelled using the so-called Chan-Vese
approach [35] which is a special case of the Mumford-Shah model [74]. The
parameters α, β, δ > 0 determine the relative weighting of the functionals in
the optimisation problem. Figure 6 demonstrates the effectiveness of the joint
reconstruction and segmentation model in (3) in comparison with a sequen-
tial approach of first reconstructing an image and subsequently segmenting it.
Comparing the resulting segmentations with the ground-truth, the superior-
ity of the joint solution pipeline is visible. See here https://github.com/

veronicacorona/JointReconstructionSegmentation for the implementation
and exemplar test data.

The bottleneck of approaches such as (3), however is the non-smoothness
coupled with the non-convexity of jointly solving the tasks, and the dependence
of minimisers on the choice of the free positive parameters α, β and δ. The
latter can be handled through parameter choice rules such as the discrepancy
principle [73] or through bilevel optimisation [42]. The non-smoothness and
non-convexity are inherent to the approach and cannot be easily remedied. A
promising direction for lifting this computational bottleneck is the idea of com-
bining the idea of multi-task learning [32] with deep neural networks [2], which
– once trained – are just a concatenation of a relatively small number of explicit
operations applied to the input data.
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(a) Groundtruth (b) Sequential reconstruction (c) Joint reconstruction

(d) Sampling matrix (e) Sequential segmentation (f) Joint segmentation

Figure 6: Sequential approach (centre) versus unified approach from [39] (right).
Combining reconstruction and segmentation in a single unified approach im-
proves both the reconstructed image and its segmentation. Figure 1 from [39].

8 Deep learning revolution in biomedical imag-
ing

The deep learning revolution also had a huge impact on biomedical imaging
and biomedical image analysis. Deep learning is strongly based in mathemat-
ics as neural networks are nothing but a concatenation of a finite number of
linear and nonlinear operations, and their training amounts to the solution of
large-scale non-convex optimisation problems. Indeed, see here for an overview
of the mathematics of deep learning [54]. Many success stories appeared in the
literature that were reporting results to biomedical image analysis tasks which
were previously unthinkable. For example, in a collaboration between Deep-
Mind, Moorfields Eye Hospital and Google Health researchers have developed a
deep learning model that when fed with OCT imaging data of the retina could
predict the development of exudative AMD (exAMD), a serious form of age-
related macular degeneration (AMD). They demonstrated that their system is
able to perform as well as, or better than, clinicians at predicting whether an
eye will convert to exAMD in the next 6 months [101]. Another example is the
effect of deep learning on medical image reconstruction as introduced in Section
3. Here, in the presence of appropriate training data, deep learning has quickly
overtaken more classical approaches such as variational models from Section
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Figure 7: (fltr) Filtered backprojection reconstruction, Reconstruction with to-
tal variation regularisation similar to (1), Reconstruction with a deep neural
network regularisation [67].

6. Tying in with the mathematical approaches seen so far a relatively natural
extension featuring deep learning, is the idea of replacing a handcrafted regu-
larisation such as (2) by a regularisation that is parametrised by a deep neural
network and optimised with appropriate training data [67, 64]. The idea in [67],
for example, is to train a neural network regulariser in an adversarial fashion.
More precisely, the adversarial learning framework trains the regulariser to dis-
criminate between a distribution of ground-truth images π1 and a distribution
of baseline reconstructions π2 using the following loss function

min
R∈1−Lipschitz

EX∼π1
R(X)− EX∼π2

R(X).

Using the resulting regulariser R∗ for reconstructing an image from sparse an-
gle and low-dose CT measurements, gives the result in Figure 7. See here for
downloadable code for a convex variant of the adversarial regulariser https://
github.com/Subhadip-1/data_driven_convex_regularization. Neural net-
work regularisers are only one example of how deep learning entered biomed-
ical image reconstruction approaches. Others are, for example, learned post-
processing [59], learned unrolling (or learned iterative schemes) [3, 55, 52] or
plug-and-play regularisation [95, 85], see also [8] for a recent review article on
the topic.

From these examples is seems that, with only the right training data - which
usually means enough high-quality training examples - deep learning offers a
magic key into problems that we considered almost unsolvable.

As time progressed, however, also the challenges and quite critical hurdles
of translating deep learning into biomedical imaging practice became clear. For
the claim of George Hinton in 2016 that ’Radiologists would be out of a job in
5-10 years,’ to become true there are many more problems for machine learning
and biomedical imaging researchers to overcome.

One of these certainly is the need for more mathematical guarantees for
deep learning based image analysis and processing. While perhaps it is natural
that mathematical theory needs to catch-up with numerical evidence for new
methodological paradigms such as deep learning, it is also crucial for delivering
efficient, safe and interpretable AI tools for biomedical imaging. We are defi-
nitely seeing many advances in this direction, with more general mathematical
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theory for deep learning being developed [54] and in particular for biomedical
imaging [8], but there are still many more miles to go when compared to the
mathematical foundations of more established approaches discussed earlier.

Another big hurdle that needs to be overcome before a large roll-out of these
tools can happen is their dependence on large and high-quality training data or
in other words, the inability of deep learning based approaches to generalise well
from one dataset to another. In particular, while deep neural networks generalise
surprisingly well to unseen images from the same underlying distribution (e.g.
MRIs of healthy individuals, imaging the same field of view, all acquired in the
same way by the same scanner manufacturer), they are struggling when applied
to out-of-distribution images (e.g. a neural network trained on MRIs of healthy
knees applied to MRIs of knees suffering from osteoarthritis, or trained on MRIs
acquired by Siemens and applied to MRIs acquired by General Electric, etc.).
This stands in stark contrast with medical practice where datasets of biomedical
images are usually moderately sized and where sharing of data still requires sig-
nificant effort. The COVID pandemic has just showcased this and several other
issues related to the development and deployment of AI tools for healthcare and
biomedical image analysis in particular [84]. It is hard to give exact numbers
for required dataset sizes here because they depend on many factors such as
heterogeneity of the underlying data distribution. From experience, however,
most available biomedical imaging datasets right now are orders of magnitude
too small for the requirements of deep learning algorithms. This will certainly
change, and it is changing, with increasing efforts in collaborative data cura-
tion between institutions and hospitals, such as UK Biobank [19], as well as, on
the machine learning end, promising developments of semi-supervised, weakly
supervised, and un- and self-supervised deep learning approaches for medical
imaging, see for instance [66], and interesting new research into the simulation
of synthetic training data [100], but there is still way to go.

9 The way ahead

Biomedical imaging offers a myriad of opportunities for mathematicians to con-
tribute. All of the stages of the pipeline are lined with beautiful mathematical
theory and methodology, each with its own challenges and varying mathematical
principles involved. The provision of AI methods that offer an automated and
robust analysis of imaging data on a large scale, and integrating them with non-
imaging data such as patient demographics, blood biomarkers and genomics, is
what is needed for optimising healthcare procedures and making them more
personalised. Developing such purposeful AI tools for clinical practice requires
a close collaboration between mathematicians, statisticians, computer scientists,
biomedical researchers and clinicians. The success of deep neural networks as
current state-of-the-art techniques for many of the tasks we encountered along
the biomedical imaging pathway seems to render them ideal candidates such AI
healthcare methods should be based on. To prepare them for their application
to sensitive decision making in the clinic, however, the gap between the empir-
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ically demonstrated deep learning capabilities and their lack of robustness and
explainability needs to be closed first, through rigorous mathematical treatment
of these techniques.
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