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ABSTRACT: Agglomeration is an issue that causes many problems during secondary processing for pharmaceutical companies,
causing material to need further processing and costing additional time and resources to ensure a satisfactory outcome. A potential
source of agglomeration arises from the particle contacts established during filtration that lead to robust agglomerates forming during
drying, so that a necessary first step toward understanding agglomeration is to study the packing properties of filtration beds. Here,
we present two and three-dimensional models simulating the formation of packed bed structures during filtration. The models use
circular and spherical particles of different sizes, mimicking the bimodal particle size distributions sometimes encountered in
industrial practice. The statistics of packing and void formation, along with the distribution of interparticle contacts and percolation
structures, are presented and discussed in the context of filtration, drying, and agglomeration. The model paves the way for predictive
capabilities that can lead to the rational design of processes to minimize the impact of agglomeration.
KEYWORDS: agglomeration, modeling, size distribution, packing fractions, percolation

1. INTRODUCTION
Of the many issues that can occur during secondary processing
of Active Pharmaceutical Ingredients (APIs), agglomeration is
one that can result in significant inconvenience for
pharmaceutical companies.
Agglomeration can be defined as the process of single

particles gathering into an agglomerate, which is a cluster of
the individual particulate solids.1 This often occurs through the
forming of bridges between particles during drying, as shown
in Figure 1, when the solvent is evaporated leaving behind
dissolved impurities and API deposited at the points of contact
between the particles, holding them together.2,3

During drug processing, agglomeration can result in various
issues. It can cause large variations in particle size distribution
within the system, which negatively affects tableting as it
becomes more difficult to ensure a consistent amount of API in
each tablet.4,5 Maintaining content uniformity across the
tablets is essential6 and multiple studies to determine the

effectiveness of methods of ensuring content uniformity have
been carried out.7−13 Impurities14 and mother liquor15 can also
become trapped within agglomerates, which then require
additional processing to fix, resulting in increased difficulty
washing and drying agglomerates, and also contributing to
difficulties during later stages of processing. Sufficiently
hardened agglomerates can even damage the machinery used
during secondary processing.2

While multiple studies have investigated the causes of
agglomeration, little is still known about how to prevent it. If it
was possible to determine how best to decrease, or fully
eliminate, agglomeration within a system, it would be
extremely useful as it would reduce the amount of additional
processing needed to overcome the issues agglomeration
causes. In order to develop strategies to reduce agglomeration,
we first need to understand the relevant statistical properties of
the filtration beds, such as how particles are interconnected
and how this depends on the particle size distribution.
This paper discusses a two (2D) and three-dimensional

(3D) model that has been created to study particle bed
formation during the settling of particles under gravity of flow
in filtration process, aiming for insight into bed characteristics
and how they might affect secondary processing. Here, we
model beds formed from circular (2D) and spherical (3D)
particles for computational efficiency, noting that these choices
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Figure 1. Schematic illustration of a bridge formed between two
particles (redrawn from ref 1).
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align with experimental research being undertaken using glass
spheres to investigate agglomerate properties.16 The models
have been created in-house, instead of using pre-existing
modeling tools such as EDEM,17 allowing bespoke analysis.
This allows further investigation into agglomeration within the
structures created and suggest potential avenues to combat it.

2. METHODOLOGY
The methodology is broken up into two sections, the initial
section that creates the packed bed of particles and the
secondary section that performs various analyses on the
structures. FORTRAN18 has been used to code these models
and MatLab19 was employed for visualization.
2.1. Development of Model 2D Packed Beds.

2.1.1. Setup. 2D packed bed structures are built by the
sequential addition of particles. These particles are assumed to
be circular, with different radii permitted. The particles are
constrained by a box whose dimensions are determined by the
radii employed, so that the box length is 30× the largest
particle radius used in the simulation.
Particles are first placed at the bottom of the box, choosing

randomly from the desired particle radius distribution. The
particles are positioned to avoid overlap, with the maximum
separation ensuring that the smallest of the particles would not
be able to fit in the ensuing gap. The box has hard walls against
which the particles can rest, but they cannot overlap the walls.
Once this process has been completed, the setup of the box is
finished, and the box can then be filled through further
sequential particle placements.
2.1.2. Initial Placement of a Particle. Figure 2 shows the

main stages the model goes through when placing a new
particle on the bed. Initially, a random x coordinate for the
particle center is determined, with the lower bound being the
radius of the particle being entered, and the higher bound
being the x coordinate of the righthand edge of the box minus
the radius of the particle being entered. This is to ensure that
the particle being added is entirely contained within the box
and does not penetrate the walls.
The chosen x coordinate determines where on the pre-

existing bed of particles the new particle will impact if it were
to fall under gravity from above the bed, mimicking the
gravitational settling of particles during filtration. An image of
the area of impact is created using a grid with sites that overlap
existing particles in the bed considered full, and the rest empty.
The line of possible center points for the new addition is
created so that it touches the top of the bed. Of course, many
of these points will be unstable under gravity, so they must be
searched systematically to identify the grid point where the

particle will settle. Here, friction is neglected since we model
particles only under gravity.
To perform the search, the impacted bed particle is first

considered. If the center of the new particle is to the right of
the center of the impacted particle, it polls through the
aforementioned line of possible center points to the right, or
vice versa if the particle impacts on the left of the impacted
particle. The polling stops when the new particle would need
to move to a point higher than the one it is currently on,
signifying that it has reached a dip between two particles. This
is therefore the stable site chosen since it is closest to the point
of impingement having moved downhill under gravity.

2.1.3. Refinement of Particle Position. Up to this point,
integer coordinates on a grid of possible sites have been
employed to place the new addition. To identify the precise
location for the resting place of the new particle, simple
geometry is used as illustrated in Figure 3. Relevant angles

between the lowest particle of the two pre-existing particles
and the location of the new particle are determined using
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Figure 2. Stages the model completes when adding a new particle to the bed. (a, left): Bed prior to the addition of the new particle, showing the
initial x coordinate chosen. (b, center): Possible sites for the new particle center that contact the existing bed. (c, right): Bed with the new particle
having found its resting location.

Figure 3. Angles and lengths used to calculate the final resting point
of the new particle.
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where AB is the distance between particles A and B, etc., and
(dx, dy) are the difference in (x, y) coordinates between
particles A and B.
With the angles calculated, the gradients of the lines between

the particle centers can be determined. Knowing that the
distance is the sum of their two radii, the center point (x, y) of
the new particle can then be determined.
The model then runs its final checks to ensure that no

anomalous placements have occurred, i.e., ensuring that the
new particle is not overlapping with any pre-existing particles,
and that it is resting on two other particles. Once these final
checks have been carried out, the new particle’s data is saved;
the loop continues adding a new particle each time. When a
failed particle placement occurs, either due to the added
particle overlapping, being unbalanced, or being placed outside
of the box, a counter is incremented. When the counter
reaches a preset value, the box is considered full. At this point,
the bed growth simulation ends with particle location, radii,
and the contacts saved for the determination of statistical
measures of the bed.
2.2. 2D Bed Characteristics. 2.2.1. Number of Contacts

between Particles. As well as saving the positions of each of
the particles, the model also determines which particles are in
contact which each other and saves this in a separate file.
Particles are deemed in contact if the distance between them is
equal to the sum of their radii. The second section of the
model imports the packed bed data containing particle
positions and contacts, to determine the void shapes and
sizes that are present.
2.2.2. Voids. Each particle is processed in turn, searching

recursively through the list of its contacts until a loop back to
the original particle is found, as shown in Figure 4. Short loops

are sought first, increasing the allowed loop size until all the
relevant loops for the particle are found. The area enclosed by
the loops is checked to ensure that they do not contain another
particle center, and that all loops are unique.
For each valid loop, the area of the void inside is

determined; this is done by first calculating the area of the
polygonal shape defined by the centers of the particles, using

x y y x x y y x x y y x
area

( ) ( )... ( )

2
n n1 2 1 2 2 3 2 3 1 1=

+ +

(3)

where (xi, yi) are the coordinates of the ith particle in a loop
containing n elements.
The sector area of each of the particles on the inside of the

polygon are calculated, using

r
a

sector area
2

2= ×
(4)

where r is the radius of the particle and a is the angle
subtended by the lines drawn to neighboring particle centers in
the loop (see Figure 5).

The sector areas are then subtracted from the polygon area
to find the void area.

2.2.3. Percolation Structures. Determining the presence of
percolation structures is done using the same method as
searching for shapes in the grid; however, instead of looking to
loop back to the first particle in the chain, it instead aims to
reach the other side of the bed. Each particles’ contacts are
ordered so that the model checks the particles closest to its
destination first to reduce runtimes. Once a percolation chain
has been found, its length and the particles that it is made up of
are saved.

2.3. Modifications for 3D Beds. The three-dimensional
model algorithm runs on many of the same principles as the
two-dimensional version, with a few alterations, such as the
introduction of the z axis into all aspects of the model,
including the particle locations and the box size. Particles now
must come to rest upon three particles instead of two. The
three-dimensional algorithm does not use the equations
discussed in Section 2.1.3, instead using a stochastic
optimization method to precisely determine the new particle’s
final resting place based on its distance from the particles it
rests on. This algorithm works by taking the heatmap point
closest to the resting point and making small random
adjustments to the coordinates (in each dimension) until a
position is reached that satisfies the previous 2D algorithm
conditions, namely, resting on the correct number of particles
in between their center points; and being the correct distance
from the center of the particles and not overlapping with any
other particle in the bed. These position adjustments start off
large, scaling downward by a factor of 10 after every 500
adjustments. Once the distances between the position of the
new particle and each of the particles it rests on equal (to
within a tolerance of 10−8) the sum of the respective radii, the

Figure 4. Order of particle addition yielding a void.

Figure 5. Angles and lengths used to calculate the area of individual
voids.
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loop is exited, and the position saved. This method of
placement calculation is effective and reliable.
2.4. Production Runs. The 2D and 3D models were used

to produce 500 beds for each of the different bimodal size
distributions investigated (see Table 1). The radii of the

particles are in arbitrary units with respect to the grid used in
the growth algorithm. The chance of placing a particle of either
size was equal, so in the system with radius 10 and 20 particles
(henceforth referred to as rp = 10, 20), one rp = 10 would be
placed for every rp = 20 on average. The packing fraction and
particle contact numbers of each bed were then calculated.
In addition, 100 beds were created to determine individual

void sizes with different radii of particles as shown in Table 1.
100 beds for the 2D beds and 200 beds for 3D beds were
produced to gather percolation statistics.

3. RESULTS AND DISCUSSION
3.1. 2D Results. 3.1.1. Beds with Different Particle Radii

Present. The packed bed with only rp = 10 present shows a
mostly regular structure, as shown in Figure 6a, even with the
irregularity of the initial placement of particles at the bottom of
the bed. In the center of the bed, it can be seen that the
average number for the contacts is four, since each addition
contacts two existing particles, and a contact is shared by two
particles. However, there are significant edge effects with the
hard walls of the box.
The irregularity of the packing increases once the bed also

includes larger rp = 20, as shown in Figure 6b. As the rp = 10
are not small enough to fit inside the voids created by the rp =
20, they instead contribute to the increased irregularity in void
shape and size as they force the larger, rp = 20, to shift from a
quasi-regular packing structure to accommodate for the smaller
particles landing in between them.

This effect is still apparent in the bed containing rp = 10, 50,
however to a lesser extent, as shown in Figure 6c. Due to the
larger difference in particle size, the smaller particles can fit in
between the larger particles without greatly affecting the
placement of the particles landing above them. There are still
many instances of irregularity that spawn from the over-
abundance of smaller particles overfilling what might otherwise
be a void, thereby forcing the addition of the next large particle
to the side, preventing it from capping the putative void.
Note that the smaller particles filling in among the voids of

the larger particles would increase the difficulty of washing the
system, and the smaller particles forming clumps in between
the larger particles would help bind them together, increasing
the likelihood of agglomerates forming upon drying.

3.1.2. Packing Fractions. The packing fraction of a system
is calculated by first finding the total area of the system covered
by particles, by summing the area of each particle within the
system. This is then divided by the overall area of the system to
find the fraction of the system covered by particle.
There is a slight correlation between the sizes of the particles

present and the packing fraction. As shown in Table 2, the

lowest packing average fraction occurs in the systems with only
rp = 10, as while it produces the most regular structures, this
means that none of the voids between the particles are filled. In
contrast, in the systems that contain larger particles, the smaller
particles are able to sit in-between them, reducing the sizes of
the void and therefore increasing the packing fraction, as
shown by the rp = 10, 20 and rp = 10, 50 systems having higher
packing fractions than the rp = 10 systems. The higher average
packing fraction in the rp = 10, 50 systems, compared to the rp
= 10, 20 systems, is likely due to the order of the systems. As
the rp = 10, 50 systems are more regular due to the larger
difference between particle size, it creates a more ordered

Table 1. Packed Bed Systems Created with Different
Particle Radii Present

system radii present

1 10
2 10 & 20
3 10 & 50

Figure 6. Packed beds of particles across three systems with different radii particles present. (a, left): rp = 10. (b, middle): rp = 10, 20. (c, right): rp
= 10, 50. Note that the size of the bounding box increases with the largest particle dimension.

Table 2. Packing Fractions from 500 Runs of the 2D
Simulations with Different Particle Radii

packing fraction

particle radii minimum average maximum

10 0.747 0.766 ± 0.007 0.806
10 & 20 0.757 0.779 ± 0.004 0.792
10 & 50 0.770 0.781 ± 0.005 0.796
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system with the smaller particles filling in the voids. In
contrast, in the rp = 10, 20 systems, when the particles are of
similar sizes, the smaller particles are not able to easily fill
inside the gaps created by the larger particles, instead forming
larger, more irregular voids and increasing the void fraction.
When the particle radius ratio between smaller and larger
particles is ≤0.4142:1,20 the smaller particles can rest inside the
voids created by the larger particles.
Packing fractions have previously been investigated using

random sequential adsorption (RSA) models, which calculate
the maximum packing fraction to be roughly 0.547.21 Our
values exceed this by about 0.2; while the packed beds
presented here have a degree of randomness in the placement
of the particles, the particles settle under gravity to create
denser packing than with RSA, where particles are added at
random without overlap, and no settling under gravity, until no
more can be added.
The highest possible packing fraction for a bed of circular

particles of the same size is 0.9069
12

,22 so our values fall
comfortably below this. The model will almost never achieve
perfect packing in a triangular lattice due to the random nature
of the bottom layer of the structure, unless the base layer is
randomly placed perfectly next to each other.
3.1.3. Number of Contacts between Particles. The number

of contacts each particle has was also investigated. As shown in
Figure 7, across the different systems, particles will most often
only have two to five contacts. Particles with fewer contacts
than this are infrequent as having zero contacts requires being

one of the initial particles placed on the bottom of the box with
no particles lying on top, and one contact being a result of a
particle resting against a wall and one other particle.
In the systems with only rp = 10, there were very few

particles with six contacts. In a perfectly ordered system, each
of the particles would have six contacts as they would form a
triangular lattice arrangement. As our systems have a degree of
disorder within them due to the randomness of the particle
placements, it is overwhelmingly unlikely for a full triangular
lattice to occur randomly; however, it is possible for individual
sections of the bed to form this structure. The majority of
particles have four contacts, as expected, with two contacts
both above and below.
As larger particles are added into the system with the rp = 10,

the number of contacts the particles can have increases, as the
increased circumference of the larger particles allows for more
contact points with smaller particles. In Figure 7, the highest
number of contacts in the rp = 10, 20 systems was seven, and in
the rp = 10, 50 systems it was thirteen. Figure 8a shows the
frequency of each number of contacts for rp = 10 across each of
the systems created. Figure 8b shows the frequency of each
number of contacts for larger particles, rp = 20 and rp = 50,
present across each of the systems created.
When comparing the number of contacts of just the rp = 10,

there is a pattern across the different systems, with the majority
of particles having 3 or 4 contacts. The main difference
between systems is in the bed containing only rp = 10; there is
a large majority of particles with 4 contacts and very few with
3, compared to the other systems where the trend is reversed.

Figure 7. Frequency of the number of contacts each particle has across the 2D systems investigated.

Figure 8. Frequency of the number of contacts each of the particles have across the investigated 2D systems separated by size. (a, left): rp = 10. (b,
right): rp = 20 and rp = 50.
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This is because with only rp = 10 in the bed, the rectangular
structural motif, made up of groups of 5 particles with one in
the center, is maintained throughout. In contrast, in systems
with larger particles present, groups of solely smaller particles
occur only in smaller clusters (see Figure 6).
The high frequency of particles with two contacts in the rp =

10, 50 systems is due to small particles resting upon two others
however not having any particles resting on them due to a
larger particle capping the void above them.
3.1.4. Individual Void Areas. The size of the individual void

areas between particles in the system is another property of
interest. Five repeats were done for each of the systems shown
in Table 3 to get a good representation of the data.

As shown in Table 3, the size of the smallest void present
does not vary across the different beds, which is due to the
high likelihood of a triangle of rp = 10 existing in all the beds
formed, so that the smallest void will be the same size in all
cases.
The average and largest void sizes increase as the width of

the size distribution is increased, which is expected as there will
be voids formed by just larger particles therefore having larger
gaps in between them. To better compare these values, the
average void sizes were scaled to be proportional to the size of
the area of the largest particle present in system. Hence, for the
rp = 10 systems, its value was divided by 314.16, for the rp = 10,
20 systems, its value was divided by 1256.64, and for the rp =
10, 50 systems, its value was divided by 7853.98. As shown,
these scaled sizes decrease with increased size distribution, as
the voids between the particles are proportional to particle
area; however, the larger particles allow the smaller particles to
fit in between them filling up the gaps, whereas in the systems
with more similarly sized particles, the gaps remain empty.

3.1.5. 2D Percolation Structures. The existence of
percolating structures23,24 in the packed beds is relevant to
its structural properties. In Figure 9, structures formed with
varying proportions of rp = 20 to rp = 10 are shown.
Percolation pathways connecting large particles only from one

Table 3. Smallest, Average, and Largest Void Areas in Three
Simulations of the 2D Models Using Different Particle Radii
Distributions

0 void areas

particle
radii min. average max.

average void area scaled by
largest particle area

10 16 78 ± 1.81 930 0.25
10 & 20 16 190 ± 5.72 3300 0.15
10 & 50 16 610 ± 23.34 10,000 0.08

Figure 9. 2D rp = 10, 20 system with different proportions of large-to-small particles. (a, top left): 1:1, (b, top right): 1:1.5, (c, bottom left): 1:2, (d,
bottom right): 1:2.5.
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side of the box to the other are also shown where they exist.
Table 4 reports the results from 100 simulated beds to
determine the percentage of systems that contained a
percolating chain spanning the bed.

As shown in Table 4, as the proportion (by number) of
larger particles within the system decreases, it becomes more
difficult for percolation chains to form; however, even at the
lower ratios, there are still some chains present in our finite
systems. The site percolation threshold for a regular triangular
lattice is 0.523; however, due to the irregularity of our
structures and the addition of smaller blocking particles, the
threshold in these model bed structures could well be lower
than this. The average and maximum numbers of percolation
chains present also mainly decrease across the systems
analyzed. The round number of the maximum chains data is
due to there being a cap on the number of chains found per
starting particle, so that the model does not run for too long.
Table 5 shows data concerning how many particles made up

each percolation chain found, and, as expected, the length of

chains shortens as the proportion of smaller particles increases,
reflecting fewer available paths to take across the structure. The
minimum lengths remain consistent for the same reason as the
void sizes in Section 3.1.4; as the box has dimensions equal to
15 particles diameters, the minimum length of chain will be
slightly above this value as it is unlikely to form a perfect
straight chain across the bed.

3.2. 3D Results. Figure 10 shows some examples of 3D
packed beds, with different radii of particles present, that were
created using the model presented in Section 2.3.

3.2.1. Packing Fractions. The packing fractions determined
for the 3D systems, using sum of particle volumes divided by
box volume, follow a different pattern to that of the 2D
systems. As shown in Table 6, the systems become more

packed with the introduction of a larger sized particles, with
the system that contained rp = 10, 20 having a larger packing
fraction than the other systems. As with the 2D systems, the
smaller particles are able to fill in the voids between the larger
particles when they are present; however, the 1:1 addition ratio
of the particles sizes means that while the rp = 10, 50 systems
could have a higher packing fraction if the voids were filled
with smaller particles, there are not enough small particles
placed within the systems to fill the voids, thus leaving the rp =
10, 20 systems with a higher packing fraction.
These values are lower than the highest packing fractions

that have been calculated in systems of the same sized spheres.
There are two lattices that can occur to achieve the highest
packing fraction,26 which is 0.74048.

3 2
27 These two

lattices, as seen in Figure 11, are face-centered cubic (FCC)
and hexagonal close-packed (HCP).
Other examples of packing types and their maximum

densities are the following: random close packing, 0.6400;29

the tetrahedral lattice, 0.30413
16

;30 and the loosest

Table 4. Number of 2D Systems That Contained a
Percolation Structure with Various Proportions of Large-to-
Small Particles with Radii (rp) 10 & 20

particle
proportion
(large:small)

systems with
percolation
chains

present (%)

minimum
number of
percolation
chains
present

average
number of
percolation
chains
present

maximum
number of
percolation
chains
present

1:1 98 0 102.73 400
1:1.5 82 0 113.19 319
1:2 59 0 62.29 300
1:2.25 33 0 27.27 350
1:2.5 23 0 17.48 200

Table 5. Length of Percolation Chains Found in 2D Systems
with Different Ratios of Large:Small Particles

particle
proportion
(large:small)

minimum length of
percolation chain

present

average length of
percolation chain

present

maximum length
of percolation
chain present

1:1 18 66.28 108
1:1.5 16 41.98 81
1:2 17 32.10 66
1:2.25 17 32.69 62
1:2.5 18 30.04 59

Figure 10. Packed beds of 3D particles across three systems with different radii particles present. (a, left): rp = 10. (b, middle): rp = 10, 20. (c,
right): rp = 10, 50. Note that the size of the bounding box increases with the largest particle dimension.

Table 6. Packing Fractions in 3D Packed Bed Systems with
Different Particle Radii Present

packing fraction

particle radii minimum average maximum

10 0.434 0.460 ± 0.007 0.475
10 & 20 0.480 0.497 ± 0.006 0.513
10 & 50 0.452 0.468 ± 0.006 0.486
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possible density that has been found is 0.0555.31 Our values fit
between these as expected as they are lower than the more
packed systems due to our inherent randomness but more
packed than the more irregular systems due to the presence of
the simulated gravity forcing particles downwards to pack more
tightly.
3.2.2. Number of Contacts. In the FCC and HCP lattices

discussed above, the expected number of contacts for each
sphere is twelve, with three below, six on the same plane, and
three above. However even the slightest irregularity causes the
spheres on the same plane to be further away and no longer in
contact with each other. Therefore, we are expecting our
spheres to have six contacts on average, accounting for the
three touching spheres above and below.
As seen in Figure 12, the systems containing only rp = 10 do

show the most frequent contact number is six, however not by
a large margin. Due to the large amount of disorder in these
systems, the number of contacts ranges all the way from one to
ten contacts in the single particle size bed.

The beds with different sized particles present peaks at three
contacts, also with high occurrences of four to seven contacts.
These are still around the expected value of six, with the lower
ones being particles in contact with the edge of the box, due to
the finite size effect.25

The lower end of the contact values is also due to particles
that are in contact with the edges of the box as contacts
between particle and boundary are not counted as well as
smaller particles resting inside voids capped by larger particles.
In the future, we are aiming to include those in the calculations
to remove some of the finite size effect.
As shown in Figure 13a, there is a large variation in the

number of contacts the smaller particles have across the three
investigated systems. The increased number of particles with
one contact in the rp = 10, 20 and rp = 10, 50 systems is due to
the higher box area and therefore more small particles falling to
the bottom of the box, and only having a single contact with a
particle resting above them. The large number of small
particles with three contacts is due to a small particle resting on
three larger particles with the void then capped above by
another large particle, not allowing the smaller particle now
trapped inside the void to gain any more contacts.
Figure 13b shows the difference between the number of

contacts of the larger particles in the rp = 10, 20 and rp = 10, 50
systems. The rp = 10, 50 data in Figure 13b is similar to the rp
= 10 data in Figure 13a as they are both forming a relatively
ordered structure; however, the rp = 10, 50 graph has a slower
decline at the higher end of the number of contacts due to the
smaller particles that will also be resting upon them.

3.2.3. 3D Percolation Structures. We also investigated the
presence of percolation structures in the 3D systems. With the
addition of the third dimension, chains spanning the box in
either the x or z direction are sought using the same method as
discussed in Section 2.2.3 for the 2D structures.
The 3D data shown in Table 7 show the same pattern as the

2D data in Table 4, with a higher frequency of percolation
structures present when the number of large and small particle
present are similar. However, there are still many more
percolation structures present at higher ratios in the 3D
systems compared to the 2D systems, with only 59% of
systems containing a percolation structure in the 2D system
with a ratio of 1:2 large:small particles, but the 3D system with
the same ratio having 100% percolation presence. This is
because in 3D, the particles tend to have more contacts, giving
more options for the larger particles to connect to each other
across the system. As shown, even at a proportion ratio of 1:6,

Figure 11. FCC lattice (left) and HCP lattice (right) (redrawn from
ref 28).

Figure 12. The frequency of the number of contacts each particle has across the investigated 3D systems.
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the percolation threshold has not been found, and more
percolation chains are being found than in the 2D system with
a third of the ratio.
Again, as shown in Table 8, the minimum length of chain is

close to the minimum possible but slightly above, with the 3D

box dimensions being 6 particle diameters. The average chain
lengths across the different ratios are consistent, likely due to
the smaller size of the box resulting in much longer chains
being unable to form. The maximum chain lengths are also
relatively consistent compared to the 2D data, with a small
decline still, again likely due to the comparatively smaller box
size.

4. SUMMARY AND CONCLUSIONS
The models presented create a realistic representation of a
packed bed of circular (2D) or spherical (3D) particles formed
under gravity, with each particle coming to rest on the
previously formed bed in a stable position. The model runs

efficiently and can produce the particle bed systems rapidly,
though there is a small decrease in speed the larger the particle
array becomes.
The packing fractions in 2D systems created by the model

were found to increase with the size distribution between the
particle radii present within it, which is due to the smaller
particles more easily able to fill the gaps between the larger
particles. The 3D system packing systems were similar to this
pattern, with an overall increase with broader size distribu-
tions; however, the trend was not linear in nature; the beds
with rp = 10, 20 were more densely packed than those with rp =
10, 50.
When investigating the number of contacts for particles in

the 2D beds, it was found that the majority of smaller particles
had three or four contacts, as in the center of the bed each
particle will be resting on two particles, and then have an
additional particle or two resting on them. The larger particles
had mainly five or six contacts; as with the smaller particles
they would be resting on two others, however, with a larger
circumference, they were able to have multiple extra smaller
particles resting against them. The number of contact points in
the 3D model follows a similar pattern, with the small particles
having on average four to six contacts when on their own, but a
spike of one and three contacts when in systems with larger
particles. The larger particles have a higher average as their
larger surface area allows more small particles to be in contact
with them.
Percolation structures, comprising chains of large particles in

contact, have been found within the beds produced both in 2D
and 3D. The presence of percolating structures potentially
impacts the way in which the beds will break under shear
forces. The percolation threshold of a system could be a point
at which the cohesiveness of a structure is changed due to the
lack of percolation structures forming.
The ability to investigate these properties provides greater

insight into the structure of the beds and the voids within them
and will enable further research into secondary processing and
agglomeration, allowing us to better determine what steps can
be taken during filtration and drying to negate adverse effects,
such as through how the beds form with varying size
distributions or the effect percolation structures have on the
stresses developed under shear at individual contact points.
This model can also be used alongside experimental work, to
compare and contrast the model’s outputs, and help us to

Figure 13. Frequency of the number of contacts each of the particles have across the investigated 3D systems separated by size. (a, left): rp = 10. (b,
right): rp = 20 and rp = 50.

Table 7. Data on Percolation Structures in 3D Structures
Containing rp = 10, 20 Particles in Various Proportions

particle
proportion
(large:small)

systems with
percolation
chains

present (%)

minimum
number of
percolation
chains
present

average
number of
percolation
chains
present

maximum
number of
percolation
chains
present

1:1 100 7 15.46 26
1:2 100 2 11.04 27
1:3 98 0 6.91 26
1:4 84 0 3.63 14
1:5 59 0 2.01 19
1:6 36 0 0.89 9

Table 8. Length of Percolation Chains Found in 3D Systems
with Different Ratios of Large:Small Particles

particle
proportion
(large:small)

minimum length of
percolation chain

present

average length of
percolation chain

present

maximum length
of percolation
chain present

1:1 7 8.52 18
1:2 7 8.73 16
1:3 7 8.82 15
1:4 7 8.84 17
1:5 7 8.93 15
1:6 7 8.97 12
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control size distributions so that filter cakes can be processed
more efficiently.
In future work, we will run further simulations to investigate

how the ratio of large-to-small particles can affect the
distribution of forces between the particles in the packed
structures when they are stressed, exploring how cracks form
through the bed. We are also aiming to expand the model’s
capabilities to non-spherical particles so we can investigate
other packed bed structures relevant to filtration, drying, and
processing. On top of improving the model capabilities,
experimental work is underway that can be used to verify the
model outputs by investigating real systems and how particles
pack within them.
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