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Abstract—Passively monitoring the spectrum for detection and
localisation of radar sources is ever more fraught with difficulty
due to the advent of low probability of intercept (LPI) radar
technology. A key aspect of LPI radar waveform design are the
spread spectrum modulation schemes, instead of concentrating
power over a narrow- bandwidth, this power can be spread
across a broad-bandwidth making the source difficult to detect
using conventional ESM methods. Such sources prompt the need
for new detection, and direction of arrival estimation methods.
Moreover, broadband antennas and their subsequent processing
systems are expensive in terms of both cost and power - forcing
a real world feasible limit on the number of antennas in a
system. In addition, a fine spacing is required for ambiguity
free direction of arrival estimation of higher frequency sources
while a wide aperture is required for sufficient resolution of
lower frequency sources. In this paper we present a novel sparse
broadband direction of arrival method based upon co-prime and
super-nested array geometries, using polynomial matrix methods
whereby a new virtual array is formed containing many more
virtual elements than in the physical array.

I. INTRODUCTION

Radar systems may utilise a broadband modulation scheme
for enhanced resolution capabilities [1], or alternatively to
avoid detection. A key characteristic of LPI radar waveforms is
spreading energy in both time and frequency [2]. By spreading
the energy of a pulse over time and frequency, the peak power
of the LPI waveform is low as compared to a conventional
radar system, reducing its probability of interception. Thus to
detect and locate such a source, a broadband direction of arrival
method could be utilised.

It has been shown that polynomial matrices provide an
attractive solution for broadband array processing problems,
such as detection, beamforming [3] and direction of arrival
estimation [4]. Other methods of broadband direction of arrival
involve coherent signal subspace methods [5],[6] whereby the
covariance matrices at each frequency bin are focussed onto a
single covariance matrix at the centre frequency. Such methods
however may be inappropriate in applications such as passive
monitoring, as there may be many sources of varying carriers
and bandwidths.

Spatial sparse sensing methods have gained significant
interest in recent years owing to the fact that up to O(N2)
degrees of freedom can be gained from just O(N) sensors
[7]. One method aiming to achieve such an increase is the
minimum redundancy array (MRA) [8]. However, calculating
the positions of these sensors is difficult task due to the MRA
having no closed form expression, and is thus not considered
in this paper.

Two popular sparse geometries are co-prime [9] and nested
arrays [7] as these have simple closed form expressions and

calculating sensor positions for arbitrary N is a problem of
easy solution. Nested arrays are the union of two uniform
linear sub-arrays; a dense Nyquist spaced uniform linear array
(ULA), and a sparse ULA. Such geometry yields a hole-
free co-array, but there are practical issues due to the dense
ULA, such as manufacturing difficulties and mutual coupling
between adjacent elements [10].

The co-prime array is also the union of two uniform linear
sub-arrays, and has exactly only two pairs of sensors at this
Nyquist spacing - but the co-array contains holes. The holes in
the co-array present difficulties in methods such as the co-array
MUSIC [11], and thus only the uniform section of this co-
array can be utilised, decreasing the overall degrees of freedom
which can be exploited.

More recently, a modified version of the nested array has
been introduced; the super nested array [10]. Such an array
has the advantages of the conventional nested array, however
by redistributing the dense elements along the array aperture,
there are significantly less sensors at Nyquist spacing, relieving
the array design of mutual coupling effects.

The remainder of the paper is structured as follows: Section
II discusses some properties and definitions of sparse arrays,
and introduces the co-prime, nested, and super nested array
geometries. Section III discusses the data model for broadband
sources illuming an antenna array. Polynomial matrices, the
formation of the Polynomial based virtual linear array, and the
idea of spatial smoothing based decorrelation with polynomial
matrices is covered in Section IV. Section V analyses the per-
formance of the super nested, and co-prime array geometries
in the sense of broadband direction of arrival estimation, and
is compared to a ULA of similar aperture. Finally, Section VI
summarises the paper, and provides ideas for future work in
this area.

Notation: vectors and matrices are denoted by bold lower-
and upper case variables, e.g. a and A. Polynomial matrices
are represented by the suffix of (z), and the super script P
denotes the parahermitian operator of a polynomial vector or
matrix, and is defined as AP (z) = AH(z−1).

II. SPARSE ARRAYS

Consider a set N of sensors placed on a uniform linear
grid of spacing d = λmin/2, λmin being the wavelength of
the highest frequency source to illuminate the array ensuring
unambiguous angle determination for all angle of arrival. The
sensor xn is placed at the physical location nd. The key to
sparse sensing is the difference set, defined as:

D = {xi − xj}, ∀i, j = 0, 1, . . . , N − 1 (1)
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The significance of this difference set is that it defines which
spatial lags the second order statistics can be estimated at,
which arises naturally when estimating a spatial covariance
matrix:

Rxx(τ) = E[x(n)xH(n− τ)] (2)

where τ denotes the temporal lag parameter, which is of-
ten only considered for τ = 0 in narrowband applica-
tions, and x(n) is the sampled array vector: x(n) =
[x0(n), x1(n) . . . , xN (n)]T . As an example, lets explore the
weight function of the difference set of a uniform linear array
of N = 21 sensors. The weight function w(u) is defined as
the number of times the spatial lag u occurs in the difference
set.

Figure 1: Difference set Weights for a 21 Element ULA

The cardinality of the unique elements in difference set
defines the degrees of freedom (DoF) in an array geometry. In
the case of a uniform linear array, there are 2N + 1 freedoms
in its difference set - with high weights for u, Figure 1
demonstrates the weight function of a 21 elements ULA. If
a difference occurs more than once, then this implies a loss in
cardinality and thus a decrease in DoF.

A. Co-Prime Array

The extended co-prime array geometry seen in Figure 2,
initially proposed in [11] involves the union of two uniform
linear arrays; one array being Sn, where there are N sensors
with Md spacing, and the other being Sm, where there 2M
sensors with Nd spacing, where M and N are co-prime
integers. Owing to this co-primality, they only share a sensor
at position 0, and there are thus 2M +N − 1 physical sensors
overall. As an example, lets consider the weight function of
a co-prime array where M = 3 and N = 4. Figure 3 shows

Figure 2: Extended co-prime array geometry for M=3,N=4

the weight function for the array geometry in Figure 2. It can
be seen that there are 35 distinct elements in the difference
co-array, however there are ‘holes’ in this difference co-array

Figure 3: Weight Function for M=3,N4 Co-Prime Array

and it is only contiguous in the region −(MN + M − 1)
to (MN + M − 1) for reasons stated in Section IV, the
method used in this paper requires a hole-free co-array, with
this extended co-prime array geometry, only 2(MN +M)−1
uniform degrees of freedom can be exploited.

B. Nested Array

Similarly to the co-prime array, the nested array is also
based upon two uniform arrays [7]. The first ULA is densely
spaced with N1 sensors spaced at d, and a sparse array with N2

sensors spaced at (N1 +1)d over an aperture of N2(N1 +1)d,
utilising N1 + N2 sensors overall. The geometry of such and
array can be seen in Figure 4, and its weight function can be
seen in Figure 5

Figure 4: Nested Array Geometry

Figure 5: Weight Function for the Nested Array

This geometry might have a slightly smaller aperture but it has
one less sensor and it contains a hole free difference co-array,
yielding 2(N2(N1 + 1)) uniform DoF. For traditional arrays it
well known that the physical aperture determines the resolution
and accuracy of the estimator, however in sparse arrays this is
determined by the uniform DoF [10].

However, due to the dense Nyquist spaced ULA practical
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issues may arise in such array geometries - such as difficul-
ties in manufacturing and mutual coupling between adjacent
sensors [10].

1) Super-Nested Array: Super nested arrays alleviate these
practical issues by redistributing the dense elements along
the entire array aperture, without affecting the attractive large
contiguous region of the conventional nested array, whilst
minimising the number of sensors spaced at distance d. By
utilising the method described in [10], a second order super
nested array for N1 = N2 = 4 is formed with the array
geometry displayed in Figure 6

Figure 6: Super Nested Array Geometry

Figure 7: Weight Function for the 2nd Super Nested Array

The weight function of the super nest in figure 7 has the
same cardinality of the conventional nested array, but with
reduced weights at Nyquist spacing, d (w(1) and w(−1)).
Thus this super nested array boasts the advantages of the
conventional, with less sensors spaced at Nyquist. The effect
of mutual coupling can be reduced even further by utilising
higher order super-nested arrays [12]

III. DATA MODEL

If a source is narrowband, then the time period of its
complex envelope is significantly greater than the time it
takes the wave front to traverse the array. Owing to this
narrowband approximation, the signal seen at each antenna
element is a phase shifted version at the carrier frequency,
yielding a relatively simple instantaneous mixture model. For
broadband sources, such an approximation is invalid, and the
inter-element delay must be modelled as a linear phase shift
across all frequencies. This motivates the following convolutive
mixture model:

x(n) =
L∑
l=1

[al � sl(n)] + ν(n) (3)

where there are L uncorrelated sources present, x(n) is the
received signal vector at sample index n, al is the broadband
steering vector of the lth source, comprising of ideal fractional

delay FIR filters [13], sl(n) the lth source signal, and ν(n) is
the noise vector, which is assumed to be uncorrelated Gaussian
and spectrally white.

Consider the case where Sai denotes the position of the
ith sensor in the set Sa, and placed on a linear grid of spacing
λmin/2, i.e. half the wavelength of the highest frequency
expected. The broadband steering takes the form:

al(k) =


δ[k − Sa1τl]
δ[k − Sa2τl]

...
δ[k − SaNτl]

 (4)

where δ[k − τ ] represents the ideal fractional delay filter for
delay τ (in samples), and τl represents the inter-element delay
at Nyquist spacing, and is the parameter dependant on the
direction of arrival such that τl = d sin(θl)/cTs, with θl being
the lth source’s direction of arrival, and Ts being the temporal
sample period.

IV. POLYNOMIAL MATRIX APPROACH

For both the co-prime and super nested array, the method
of forming the virtual array remains the same, and is covered
in this section. The motivation behind polynomial matrices
lies within the convolutive mixture model from (3), since
considering only instantaneous (τ = 0) temporal correlations
is now insufficient. It is now appropriate to consider a range
of temporal correlations in addition to the spatial, and thus the
definition of the following space time covariance matrix:

Rxx(z) =

∞∑
τ=−∞

Rxx(τ)z−τ (5)

where Rxx(τ) = E[x(n)xH(n − τ)] and is the covariance
matrix at lag τ , and Rss(τ) = E[s(n)sH(n−τ)] is the source
covariance matrix, which will be diagonal for uncorrelated
sources. Since this is assumed, this polynomial space time
covariance may be expressed as:

Rxx(z) =
L∑
l=1

[σ2
l (z)al(z)aPl (z)] + σ2

nI (6)

where σ2
l (z) represents the autocorrelation function of the lth

source, and σ2
n is the noise variance.

Recall the elements of the matrix contain all spatial dif-
ferences for sensor positions, i.e the component 〈Rxx(z)〉ij
represents the spatial auto- (for i = j) and cross-(for i 6= j)
correlations for spatial difference i − j, thus the space-time
covariance matrix contains correlations at all lags within the
difference set and by vectorising this matrix, a virtual array
with positions contained in the difference set is obtained.

γ(z) = vec(Rxx(z)) (7)

where γ(z) is the virtual array. From the weight functions
in Figures 3 and 7, it can be seen that there are ‘repeating’
elements of this virtual array, i.e. w(u) > 1. These repeating
elements are often referred to as redundant - but they can be
averaged into one virtual array sensor to potentially improve
the estimate of the correlation at that specific virtual sensor.
In reality, this may make little difference assuming a good
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estimate of Rxx(z) to begin with. This virtual array vector
may also be represented as:

γ(z) = vec
[ L∑
l=1

[σ2
l (z)al(z)aPl (z)]

]
+ σ2

n1̃ (8)

where 1̃ is the diagonalised identity matrix, i.e. a vector of
zeros, with ones at the positions denoting spatial autocorrela-
tions. Here, it can be reformulated into a more familiar array
processing problem:

γ(z) = B(z)s̃(z) + σ2
n1̃ (9)

where B(z) is the steering vector of the much larger virtual
array, and is:

B(z) = [a∗1(z)⊗ a1(z) . . .a∗L(z)⊗ aL(z)]T (10)

and s̃(z) is the source vector, containing the autocorrelation
functions of the L sources illuminating the array.

s̃(z) = [σ2
1(z), σ2

2(z) . . . σ2
L(z)] (11)

Since the new source vector contains the autocorrelation
functions, the matrix s̃(z)s̃P (z) will be singular, and thus all
sources will appear correlated.

A. Spatial Smoothing

A well known method of effectively restoring the rank of
the source covariance matrix is spatial smoothing, recently
extended to broadband scenarios via polynomials in [14]. Since
this method exploits the translational invariance of sub-arrays,
it is limited to array structures whereby the steering vector has
a Vandermonde structure, such as a uniform linear array.

Hence the virtual linear array from (9) must be truncated
and rearranged such that it is now a virtual uniform linear
array, i.e.

γ1(z) = A1(z)s̃(z) + σ2
nẽ (12)

where A1(z) is the broadband steering matrix for the virtual
linear array, and ẽ is a vector of zeros, with a one at the virtual
array position zero. In order to detect G coherent sources, the
virtual uniform linear array should be split into G overlapping
subarrays. However, we assume that the number of sources
are not known a priori - thus with no prior knowledge of
the number of sources, it is sensible to utilise half the virtual
aperture to ensure decorrelation. In the case of the co-prime
array this would involves D = MN + M − 1 overlapping
subarrays containing D elements, and for the super nested
virtual array this would involve D = N2(N1 + 1) + 1. The
virtual uniform linear array vector at the ith subarray takes
the form:

γ1i(z) = A1i(z)s̃(z) + σ2
nẽi (13)

and thus the space-time covariance at the ith subarray:

Ri(z) = γ1i(z)γP1i(z) (14)

The mean covariance matrix yields the spatially smoothed
space-time covariance matrix, which will be positive semidef-
inite for all lags [15].

R̂xx(z) =
1

D

D∑
i=1

Ri(z) (15)

The resulting polynomial matrix will yield an L dimen-
sional signal subspace, and can thus be used for subspace based
methods, such as the polynomial MUSIC algorithm [4], or
the polynomial root-MUSIC algorithm [16] for computational
advantages.

V. PERFORMANCE ANALYSIS

In this section we compare the direction of arrival esti-
mation capabilities of the co-prime, super nested and uniform
linear arrays of equal physical aperture . To anlalyse this, we
utilise the SMD-PEVD [17] [18], polynomial MUSIC, and the
polynomial root-MUSIC algorithms.

A. Polynomial Eigenvalue Decomposition

Similarly to a conventional eigenvalue decomposition, the
space time covariance matrix can be decomposed into its
polynomial eigenvalues and paraunitrary eigenvectors:

Rxx(z) = U(z)Λ(z)UP (z) (16)

Whereby the polynomial eigenvalue power spectral density:

Λ(ejΩ) = diag[Λ1(ejΩ),Λ2(ejΩ), . . . ,ΛL(ejΩ)] (17)

is spectrally majorised such that
Λ1(ejΩ) > Λ2(ejΩ) > . . . > ΛL(ejΩ). Similarly to
conventional eigenvalues, the number of significant polynomial
eigenvalues determines the dimensions of the signal, and
noise subspaces, and thus the number of sources, hence (16)
can be partitioned such that

Rxx(z) = [Us(z) Un(z)]

[
Λs(z)

Λn(z)

] [
Us

P (z)
Un

P (z)

]
(18)

and this algorithms such as Polynomial MUSIC and Polyno-
mial Root-MUSIC can be performed.

B. Spatio-Spectrum Estimation

The spatio spectrum is estimated via the polynomial MU-
SIC algorithm:

Pmu(θ,Ω) =
1

aPθ (z)Un(z)UP
n (z)aθ(z)

|z = ejΩ (19)

This spatio-spectrum contains information on the direction
of arrival of all L sources, in addition to their frequencies.
Figure 8 shows the performance of the spatio-spectrum esti-
mation at a 0 dB SNR. The ground truth of the sources can
be seen in Table I.

Table I: Simulation Parameters

Source No. Normalised frequencies (rad/s) DoA (◦)
1 Ω ∈ [0.50 0.80]π θ = −65
2 Ω ∈ [0.40 0.80]π θ = −43.3
3 Ω ∈ [0.51 0.81]π θ = −21.7
4 Ω ∈ [0.45 0.71]π θ = 0
5 Ω ∈ [0.53 0.83]π θ = 21.7
6 Ω ∈ [0.34 0.62]π θ = 43.3
7 Ω ∈ [0.47 0.75]π θ = 65
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(a) Second Order Super Nested Array,
N1 = N2 = 4 and thus 8 elements overall

(b) Extended Co-Prime array - M = 3, N = 4
and thus 9 elements overall

(c) 21 Element Uniform Linear Array

Figure 8: Spatio-Spectrum Estimation for super nested, co prime and uniform linear arrays. The ground truth frequency and DoA
parameters can be seen in Table I

C. Probability of Resolution

The probability of resolving two sources spaced at ∆θ =
θ1 − θ2 is found empirically in this section, using the spatial
only function of the polynomial MUSIC algorithm:

Pmu(θ) =

Nfh∑
i=Nfl

Pmu(θ, ejΩi) (20)

where Nfl and Nfh are the lowest and highest frequency bins
which contain significant energy. The sources are said to be
resolved if the following criteria is met:

Pmu(∆θ) ≤ 1

2
[Pmu(θ1) + Pmu(θ2)] (21)

Beyond this point, the spectrum starts to merge into one peak,
making the sources unresolvable [19]. Thus the probability of
resolution for a single run:

Pr(∆θ) =

{
1 if Pmu(∆θ) ≤ 1

2 [Pmu(θ1) + Pmu(θ2)]

0 otherwise
(22)

A Monte Carlo simulation of 100 runs per ∆θ is performed
with two identical sources, temporally separated such that there
is no overlap with normalised bandwidth of Ω ∈ [0.5π 0.8π]
rad/s at 10 dB SNR. The mean probability of resolution can
be seen in Figure 9. While all array geometries have a very
similar aperture, their uniform DoF vary - with the 21 element
ULA having 21 uniform freedoms, the N1 = N2 = 4 super
nested array having N2(N1 + 1) = 20 freedoms (after spatial
smoothing), with only 8 overall sensors, and the N = 4,M =
3 co prime array having only MN + M − 1 = 14 freedoms
(after spatial smoothing). This is reflected via the differences
in resolution in Figure 9. While it is easy to see that the dense
ULA outperforms both sparse arrays, it is worth noting that the

Figure 9: Probability of Resolution at 10 dB SNR

super nested array utilises only 38% of the sensors of the ULA,
and 42% for the co-prime. Clearly, this significant reduction
in the number of sensors comes at a cost of resolution in this
simulation.

D. Accuracy

In order to compare the estimation accuracy using all three
array geometries, A Monte-Carlo simulation of I = 100 runs
over a range of SNRs with a single source of fixed bandwidth
source, where the DoA is randomised for each run. For reduced
computation, the Polynomial Root-MUSIC algorithm [16] is
used. To compare the accuracy of the three geometries, the
mean squared error is analysed:

RMSE =

√√√√ I∑
i=1

[θ̂i − θ]2 (23)
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where θ̂ is the estimated DoA from the Polynomial Root-
MUSIC algorithm, and θ is the ground truth DoA. The results
can be seen in Figure 10 While all geometries perform well

Figure 10: Accuracy Comparison between the uniform, super
nested and co-prime arrays

at most SNRs, the super-nested array performs slightly worse
than the ULA of similar aperture but vastly more elements,
yet outperforms the co-prime geometry. This is expected due
to the differences in uniform DoF, as mentioned in Section
V-C

Lets consider the following scenario to add some perspec-
tive to these results. A source placed 10 km from the receiver
and the received SNR is 0 dB. From Figure 10 the RMSE
of the DoA capability of the ULA, super-nested and co-prime
arrays are 0.07◦, 0.08◦ and 0.09◦ respectively. Thus for the
location capabilities of these geometries of the source at 10
km, the errors would be roughly ±6 m, ±7 m and ±8 m.
Now assuming a 10 dB received SNR, from Figure 9, for a
90% chance of resolving sources, the minimum ∆θ is 1◦, 2.2◦

and 2.9◦ for the ULA, super-nested and co-prime geometries.
For the aforementioned scenario with an additional source of
identical bandwidth, the minimum distance between the two
sources for them to be resolvable would be 174 m, 384 m, and
506 m. While the ULA here does have the smallest error in
location estimation and smallest resolution angle, it is worth
remembering that this geometry utilises 13 more sensors than
the nested, and 12 more than the co-prime.

VI. CONCLUSION

In summary, we have extended the super-nested and co-
prime sparse array geometries to broadband scenarios via the
use of polynomial matrices to form the polynomial virtual
linear array. The performance of the spatio-spectrum, prob-
ability of resolution and accuracy of the array geometries is
analysed using both the Polynomial MUSIC, and Polynomial
Root MUSIC algorithms. It is clear that in the presented
scenarios, the super-nested array outperforms the co-prime
array whilst utilising one less sensor owing to the greater
uniform degrees of freedom in the co-array, and performs close
to a 21 element uniform linear array whilst utilising 61% fewer
sensors. Future work in this area involves research alternate
methods of decorrelation such that less virtual aperture is spent
on the spatial smoothing step, which could potentially improve
results further.
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