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Abstract

Recent strides in computational structural biology have opened up an opportunity to

understand previously uncharacterised proteins. The under-representation of trans-

membrane proteins in the Protein Data Bank highlights the need to apply new and

advanced bioinformatics methods to shed light on their structure and function. A

protein’s structural information is crucial to understand its function and evolution.

Currently, there is only experimental structural data for a tiny fraction of proteins. For

instance, membrane proteins are encoded by 30% of the protein-coding genes of the

human genome, but they only have a 3.5% representation in the Protein Data Bank

(PDB). Membrane protein families are particularly poorly understood due to experi-

mental difficulties, such as over-expression, which can result in toxicity to host cells, as

well as difficulty in finding a suitable membrane mimetic to reconstitute the protein.

Additionally, membrane proteins are much less conserved across species compared to

water-soluble proteins, making sequence-based homologue identification a challenge,

and in turn rendering homology modelling of these proteins more difficult.

Until the structure of poorly characterised protein families can be elucidated experi-

mentally, ab initio protein modelling can be used to predict a fold allowing for structure-

based function inferences. Such methods have made significant strides recently due

to the availability of contact predictions, with these methods addressing larger targets

than conventional fragment-assembly-based ab initio methods.
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This study initially focusses on the structure and function transmembrane proteins

specifically in the process of autophagosome construction and demonstrates how co-

variance prediction data have multiple roles in modern structural bioinformatics: not

just by acting as restraints for model making and serving for validation of the final

models but by predicting domain boundaries and revealing the presence of cryptic

internal repeats not evidenced by sequence analysis. Furthermore, we characterised

a contact map feature characteristic of a re-entrant helix which may in future allow

detection of this feature in other protein families.

The recent innovations in computational structural biology were employed further

giving rise to an an opportunity to revise our current understanding of the structure

and function of clinically important proteins. Through the modelling of the transmem-

brane Pfam families and subsequent mining of their structural libraries we identified

the human Oca2 protein as a protein of interest. Oca2 is located on mature melanoso-

mal membranes and mutations of Oca2 can result in a form of oculocutanous albinism

which is the most prevalent and visually identifiable form of albinism. Sequence anal-

ysis predicts Oca2 to be a member of the SLC13 transporter family but it has not been

classified into any existing SLC families. The modelling of Oca2 with AlphaFold2

and other advanced methods shows that, like SLC13 members, it consists of a scaf-

fold and transport domain and displays a pseudo inverted repeat topology that in-

cludes re-entrant loops. This finding contradicts the prevailing consensus view of its

topology. In addition to the scaffold and transport domains the presence of a cryptic

GOLD domain is revealed that is likely responsible for its trafficking from the endo-

plasmic reticulum to the Golgi prior to localisation at the melanosomes and possesses

known glycosylation sites. Analysis of the putative ligand binding site of the model

shows the presence of highly conserved key asparagine residues that suggest Oca2

may be a Na+/dicarboxylate symporter. Known critical pathogenic mutations map to

structural features present in the repeat regions that form the transport domain. Ex-

ploiting the AlphaFold2 multimeric modelling protocol in combination with conven-
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tional homology modelling allowed the building of a plausible homodimer in both

an inward- and outward-facing conformation supporting an elevator-type transport

mechanism.
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1 | Introduction

It is now the fiftieth anniversary since the link between the protein amino acid

sequence and its three-dimensional structure was celebrated [1] by the awarding of a

Nobel prize to Anfinsen in 1972 for this important observation [2]. Anfinsen showed

that if a protein is heated it will unravel and fold back to its original state when

cooled, demonstrating that a protein’s native structure is determined by the

properties of the amino acids that it is composed of, rather than the folding being

carried out by intracellular machinery. This insight means that theoretically, a

protein’s structure can be predicted based on its amino acid sequence. Until the

structure of poorly characterised protein families can be elucidated experimentally,

ab initio protein modelling using sequence only can be used to predict a fold allowing

for structure-based function inferences [3, 4, 5, 6]. 1994 began the biannual CASP

(Critical Assessment of Structure Prediction) challenge [7] with the objective to

advance the computational methods of predicting protein structure from sequence. I

have had the fortunate opportunity to be an assessor on the fourteenth and fifteenth

CASP competitions [8]. This PhD thesis focuses on the prediction of specific putative

membrane transporter proteins utilising computational approaches to build models

and predict their function based on the ab initio structure.

1.1 Membrane Proteins

Lipid membranes form barriers around cells and membrane bound organelles. These

barriers have a thickness of around 35Å and are important for the regulation of
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molecular traffic across their surface. The cell membrane’s major constituents are

amphipathic lipids in the form of phospholipids, glycolipids, and sterols.

Additionally, biological membranes possess carbohydrates (mostly glycoproteins)

and a large content of proteins. The carbohydrates play an important role in

intracellular recognition especially in eukaryotes while membrane proteins have a

very diverse array of functions.

Membrane proteins are of considerable medical importance as 30% of the human

genome encodes for membrane proteins [9] and around 50% of drugs currently on

the market target these proteins [10]. Membrane proteins can be grouped according

to whether they are a permanent fixture of the cell membrane (integral membrane

proteins - IMPs) or whether they transiently interact with the cell membrane

(peripheral membrane proteins - PMPs). The temporary association of PMPs with the

plasma membrane, either with the lipid bilayer (amphitropic proteins) or an IMP,

define this class of membrane proteins. Some proteins such as G-proteins and certain

kinases are able interact with both the membrane and a IMP simultaneously [11]. The

association of PMPs with the cell membrane components is a result of non-covalent

hydrophobic and electrostatic interactions and therefore dissociate from the

membrane in the presence polar reagents. This transient association with the

membrane is important for a variety of cellular processes including cell signalling

regulation [12], protein-protein interactions [13] and protein activation through

conformational changes [14].

IMPs on the other hand are permanent fixtures of the cell membrane and are

either transmembrane proteins (TMPs) or integral monotopic proteins. TMPs take

the form of an α-helical structure (or sometimes a β-barrel in Gram-negative bacteria,

chloroplast and mitochondria [15]) and cross the full length of the lipid bilayer once

(bitopic membrane protein) or multiple times (polytopic transmembrane proteins).

This is in contrast to integral monotopic membrane proteins (or peripheral membrane

proteins) which are fixed to one side of the membrane only [16]. As TMPs are very

hydrophobic, the residues that cross the membrane forming the membrane spanning
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segments are mostly hydrophobic and therefore these proteins precipitate in water

and it is necessary to use nonpolar solvents or detergents in order to carry out their

isolation. Transmembrane regions are more likely to possess secondary structure as

the polar backbone carbonyls and amide of the residues form intramolecular

hydrogen bonds in a hydrophobic environment thus creating secondary structure.

The dielectric environment caused by the polar heads of the phospholipids at the

membrane interface region is more likely to hold aromatic residues like tyrosine and

tryptophan in addition to the presence of amphipathic α-helices [17].

1.2 The Function of Membrane Proteins

Membrane proteins carry out a wide range of essential functions: transport,

junctions, enzymes, receptors, signalling (including cell-cell recognition) and

anchoring (to the cytoskeleton and extracellular matrix). The largest family of

membrane proteins are the G-protein coupled receptors (which are also the largest

family of proteins) and membrane transporter proteins [18]. The research described

in this thesis focuses on the modelling of three distinct integral membrane proteins

that are involved in transport.

Membrane transport proteins control the movements of specific molecules across

the cell membrane. Membrane transport proteins are divided into two major groups;

channels and transporters. Channels create an aqueous pore through the membrane

bilayer that allow substances to cross the membrane passively down an

electrochemical or chemical gradient [19]. Sometimes the pore is gated and will only

open to allow this diffusional process to occur under certain conditions regulating

the traffic through the pore. Transporters on the other hand move specific molecules

against their concentration gradients by binding to the substrate and undergoing a

series of conformational changes releasing the substrate on the opposite side of the

membrane. The movement of the substrate by a transporter is an active process. The

conformational cycle a transporter undergoes is coupled with ATP hydrolysis or
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tethered to the presence of ion gradients. Both sides of the transporter possess a gate

that restricts access to the substrate binding site when closed with the alternate

confirmations ensuring that only one gate is open at any particular time. The

distinction between channels and transporters is not always clear [20] however. For

example, CLC (Chloride Channel) proteins are a family of membrane transport

proteins that mediate the chloride conductance across the cell membrane and were

once thought to be exclusively channels. It is now known that this family also

contain transporters that are driven by a proton current in the opposite direction of

the flow of chloride ions (proton antiporter). Indeed, five out of the nine human CLC

proteins utilise the antiporter transporter mechanism [21]. Additionally, palytoxin

reversibly converts the ATP hydrolysis coupled Na+/K+-ATPase pump into a

non-selective cation channel by rendering both gates to the open position [22].

1.3 Challenges of Membrane Protein Structure Determi-

nation and Prediction

A protein’s structural information is crucial to understand its function and evolution.

Currently, there is only experimental structural data for a tiny fraction of proteins

[23]. For instance, membrane proteins are encoded by 30% of the protein-coding

genes of the human genome [24], but they only have a 3.3% [9] representation in the

Protein Data Bank (PDB) (5785 membrane proteins out of 174507 PDB entries) [9].

Membrane protein families are particularly poorly understood due to experimental

difficulties, such as over-expression, which can result in toxicity to host cells [25], as

well as difficulty in finding a suitable membrane mimetic to reconstitute the protein

to allow expression of the native structure. Membrane proteins are more structured

compared to their soluble counterparts as the membrane imposes restraints on the

protein [26] and this leads to experimental difficulties as membrane mimetics have to

be used in order to allow the protein to fold properly. Membrane mimetics can take

the form detergents of lipid. Detergents possess a single fatty acid chain and form a
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micelle around the protein which can result in distortions in the protein structure.

Lipids form bicelles around proteins resulting in less chance of protein distortion.

Lipids in the form of nanodiscs can also be used where lipid bilayer is contained by

amphipathic molecules such as synthetic polymers or peptides [27]. A nanodisc is a

nanoscale model system. It is a self-assembled lipid bilayer disc stabilized by a belt of

membrane scaffold proteins (MSPs). Nanodiscs provide a more native-like

environment for studying membrane proteins compared to traditional detergent

micelles or liposomes. The structure of a nanodisc typically consists of a lipid bilayer

surrounded by two copies of an amphipathic membrane scaffold protein (MSP) that

forms a belt around the rim of the bilayer. The MSPs stabilise the nanodisc by

shielding the hydrophobic lipid tails from the surrounding aqueous environment.

Nanodiscs can be reconstituted with specific membrane proteins, allowing their

study in a more physiologically relevant lipid environment. The lipid composition of

the nanodisc can be customised to mimic the native membrane composition or to

modulate the properties of the membrane protein being studied. The method of

protein structure determination as well as the properties of the protein itself will

determine the membrane mimetic to utilise. Often a screening process is required to

identify the most suitable mimetic [28].

Crystallisation is difficult and may need extensive protein engineering for

example insertion of protein FAB (Fragment Antigen-Binding) fragments to allow

crystallisation . The removal of long flexible loops may also be required [29]. Another

experimental technique for determining protein structure is NMR (Nuclear Magnetic

Resonance). NMR spectroscopy relies on the principles of nuclear magnetic

resonance, which involves the interaction between the magnetic properties of atomic

nuclei and an external magnetic field. Further to the difficulties of crystallisation,

NMR is difficult as there is a size limit due to protein-detergent tumbling time (rate at

which the protein moves). Also, compared to soluble proteins, it is difficult to assign

the NMR spectrum to obtain the restraints for the structural data of membrane

proteins and calculate their structure. NMR relies on nuclear Overhauser
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enhancement (NOE) restraints that can only be measured at a 5Å threshold which is

satisfactory for intrahelical restraints but makes contacts between two helices

problematic and therefore fold determination difficult. NOE restraints are derived

from the observation of dipolar interactions between pairs of nuclei in close

proximity. These interactions provide valuable distance information that helps in

calculating the three-dimensional structure of a protein. However, the efficiency of

the NOE effect diminishes as the distance between the interacting nuclei increases.

The maximum distance at which NOE interactions can be reliably detected in NMR

experiments is typically around 5 Å. When it comes to interhelical contacts, the

distance between the nuclei involved in the NOE restraints can be larger than the 5 Å

threshold. Helices within a protein often have specific packing arrangements, and

determining the precise contacts between them is crucial for accurately determining

the protein’s overall fold. However, the limited detection range of NOEs makes it

challenging to obtain direct distance restraints for interhelical contacts [30]. The

problem can be overcome by identifying side chain assignments in the spectra to

measure the restraints but this is also very difficult. This is the explanation as to why

there are more β-barrel NMR structures compared to α-helical as it is much easier to

determine the restraints between the strands as they are within the 5Å threshold

[31].

Additionally, membrane proteins are much less conserved across species

compared to water-soluble proteins [32], making sequence-based homologue

identification a challenge, and in turn rendering homology modelling of these

proteins more difficult. Sequence similarity and how well the sequences are aligned

is positively correlated with homology model accuracy where a similarity of 70%

yields models with RMSDs (Root Mean Square Deviation) under 3Å and RMSDs

typically above 3Å for templates with sequence similarities of 25% [33]. Homology

modelling software such as MODELLER [34] takes the alignment and the template to

construct a model based of the template by satisfying its spatial constraints obtained

from the alignment. It has been demonstrated that given a high quality alignment

6



Shahram Mesdaghi (962096127)

and appropriate template MODELLER can construct accurate membrane protein

structures [35]. For proteins of sequence similarity of less than 25% threading tools

can be used to obtain models. Threading relies on a multiple sequence alignment of

templates which is scored against a knowledge based scoring function including

residue pairing. iTASSER, in conjunction with contact predictions, has been shown to

using threading methods to model G-protein coupled receptor membrane proteins

and achieve RMSDs of 3Å [36].

Molecular dynamics simulations have also been used to fold proteins. Molecular

dynamics (MD) is a computational simulation method used to study the motion and

behavior of atoms and molecules over time. In MD, the positions, velocities, and

forces of atoms or particles are numerically integrated to simulate their dynamic

behaviour. The simulations are based on classical mechanics and use interatomic or

intermolecular potential energy functions to describe the forces and interactions

between particles [37]. One of the early successful attempts of protein folding using

MD was demonstrated with acylCoA Dehydragenase where a 30ms simulation

folded the 80 residue soluble protein [38, 39]. Early endeavours to simulate the

folding of membrane proteins in a lipid bilayer were fraught with difficulties. The

complex bilayer environment resulted in multi-spanning transmembrane proteins

becoming snared in incorrect folds. The molecular dynamic simulations are very

computationally expensive with the number of atomic interactions becoming huge

with larger membrane proteins.

Finally, ab initio computational methods for predicting membrane proteins

structure is an alternative route to elucidate the structure and function of

uncharacterised membrane proteins. Theoretically, as a result of their smaller

conformational search space due to the restraints imposed by the membrane,

membrane proteins have an advantage for computational methods of prediction,

although the size of membrane proteins are generally larger than their soluble

counterparts. Older computational prediction methods such as Rosetta [33] struggled

with deriving accurate scoring functions as well as molecular force field parameters
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[40].

1.4 Secondary Structure and Transmembrane Span Pre-

diction

Transmembrane region prediction is an important process in the structural

characterisation of a membrane protein molecule; both experimentally and

computationally. The presence of hydrophobic patterns in the transmembrane

regions of TMPs is used by transmembrane topology prediction software to

anticipate the relative positions of transmembrane regions within a given membrane

protein sequence [41]. Early transmembrane span prediction software used

hydrophobicity values from a moving window average and were able to achieve 70%

accuracy [42]. Various hydrophobicity scales could be utilised which were derived

from experimental and predictive methods [42]. The accuracy to above 90% was

achieved with the introduction of Hidden Markov Models (HMMs), for example

TMHMM [41], and OCTOPUS which used machine learning to make residue level

predictions and HMMs to consolidate the predictions into a global model. OCTOPUS

is also trained to predict the presence of re-entrant loops and transmembrane

hairpins [43]. With different prediction tools utilising individual algorithms there can

be disagreements with the topology predictions and this has given rise to some tools

using a consensus method in an attempt to overcome this [44].

The above methods are for the exclusive prediction of transmembrane α-helical

bundles and obviously cannot identify the presence of β-barrels. Accurate methods

to make β-barrel predictions utilise both HMMs and machine learning algorithms.

TMbeta-Net [45] takes the artificial neural network approach while TMBHMM [46]

uses HMMs.

Additionally, bioinformatic software is available that predicts the orientation of

transmembrane protein models within the membrane bilayer. The predicted
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placement of transmembrane protein models within a cell membrane model is not a

straightforward task as the membrane possesses uneven polarity gradients as well as

a varying molecular organisation. Both PDBTM [47] and OPM [48] utilises an

algorithm to place proteins structures within membrane boundaries. Their

algorithms minimise the protein’s normalised non-polar accessible surface area

transfer energy from water to a hydrophobic region acting as an approximation to a

cell membrane [47, 48].

In addition to protein transmembrane span prediction, methods were developed

to predict protein secondary structure. The first tools to predict protein secondary

structure correlated secondary structure states with single residue statistics, however,

their accuracy was not much better than random [49]. Subsequently tools were

developed that obtained data from larger regions rather than single residues and

higher accuracies being obtained when artificial intelligence algorithms (specifically

machine learning algorithms) were introduced. PsiPred, being the most accurate and

widely used, utilises a multi layered artificial neural network that takes a position

specific scoring matrix to make an initial secondary structure prediction with

subsequent layers filtering noise [50].

1.5 Ab initio Membrane Protein Structure Prediction

Proteins function by folding into a native structure [33]. The native structure of

proteins are likely to possess the lowest global energy state for a given protein

sequence [33]. For most protein sequence there is an energy landscape determined by

the many different possible confirmations a protein can adopt. The native state is the

lowest energy state (Figure 1.1).

To model all proteins coded by the human genome would require identifying the

lowest energy structure for each of the fixed amino acids sequences for the 20 000

different proteins [51]. The protein folding research problem has been challenging for

a number of reasons. Firstly, a polypeptide chain can have a large number of
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Figure 1.1: Energy landscape.

different conformations; for each side chain in an amino acid in a protein there are a

number of rotatable bonds with each amino acid having three different

conformations leading to 3Nres (Nres being the number of residues) possible

conformations of every protein (Figure 1.2). Although the omega bond (peptide bond

between the carbonyl carbon (C=O) of one amino acid and the nitrogen (N-H) of the

adjacent amino acid in the peptide chain) is different as it is not really rotatable and

results in the cis and trans forms [52].

Calculating the energy profile of a target protein was traditionally performed by

searching through possible polypeptide chain conformations for a fixed sequence in

an analogous way to how a protein naturally folds. For example Rosetta [33]

simulates the actual process of folding to find the lowest energy structure rather than

sampling all possible conformations. The Rosetta folding takes place many times
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Figure 1.2: Side-chain conformations.

constructing ’decoys’ to build an energy landscape to identify the lowest energy

structure and therefore the most native-like structures. The folding algorithm utilises

the fact that in some organisms separate genes encode interacting proteins, whereas

in other organisms, their orthologues take the form of a single polypeptide chain [53].

Therefore the structure of the protein can be viewed as a number of fragments that

interact with specific kinetic and thermodynamic constraints. During the ab initio

folding process a Monte-Carlo search assembles these fragments with each assembly

being scored based on a knowledge-based scoring function derived from the kinetic

and thermodynamic constraints. The model needs to capture detailed interactions

between atoms therefore terms in the physics-based energy functions use

mathematical means of modeling molecular interactions which need to favour:
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• close atomic packing (Lennard-Jones Potential [54]);

• implicit solvation penalising buried polar atoms away from water;

• favour the formation of hydrogen bond interactions between polar atoms;

• model electrostatic interactions with the favourability of positive and negative

charges to be close;

• model bending/torsional preferences of the polypeptide chain.

The calculation of an energy estimate or scoring function also takes the form of a

knowledge-based function where statistical models define the properties of the

native-like conformation.

The method described greatly reduces the conformational search space. However,

additional strategies have also been employed to further reduce this search space.

Specifically for membrane proteins the Rosetta method was modified into a specific

flavour, RosettaMembrane, where the energy function was modified to include terms

that describe the interaction between target protein and the environment consisting

of the anisotropic membrane. The membrane is modelled implicitly with the energy

terms including the scoring function that penalises non-helical torsion angles and

non-spanning transmembrane helices within the membrane [55].

1.6 Contact restraints used for Structure Prediction

Contact-based modelling methods can address larger targets than conventional

fragment-assembly-based ab initio methods [56]. Contact-based modelling methods

have been proven successful previously in modelling membrane proteins [57].

Contact based restraints are determined by the introduction of co-variance data

which supplies the additional restraints for the model building process by inferring

residue-residue contacts. The utilisation of contact predictions allows the generation

of accurate ab initio models by guiding the folding process [58] . This method led to

the computational protein structure prediction for larger targets compared to what a
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solely fragment-assembly-based ab initio methods could construct [56]. Additionally,

contact-assisted ab initio modelling disposed of the need for membrane specialised

folding methods like RosettaMembrane as these modelling methods have been

proven successful previously in modelling membrane proteins [57, 59]. ab initio

methods made significant strides when contact predictions were made available as

modelling restraints [60]. The definition of a contact is when the Cβ’s (Cα in glycine)

of two residues in three dimensional space are less than 8Å apart. For modelling

purposes these binary contacts can be converted to distances, derived from

experimental data, imposing further restraints on the modelling process [61].

Prediction of residue-residue contacts relies on the fact that each pair of contacting

residues co-varies during evolution. The process of co-variation occurs as the

properties of the two residues complement each other in order to maintain structural

integrity of that local region and, consequently, its original functionality (Figure 1.3).

Therefore, if one residue from the pair is replaced, the other must also change to

compensate the variation and hence preserve the original structure [62].

Figure 1.3: How residues separate in two-dimensions come together in three-
dimensional space.

Interacting residues in a 3D structure compared to positions in a MSA displaying a
co-evolving relationship. Adapted from [63]. Co-evolutionary analysis used to infer contacts
between amino acids in a protein by analysing the patterns of correlated mutations across a
set of related protein sequences. a) The underlying assumption is that amino acids in close

proximity within the protein structure tend to co-evolve due to their functional or structural
interactions. b) Sequence Alignment: A multiple sequence alignment (MSA) is generated,

which represents the amino acid sequences of related proteins. The MSA provides a basis for
identifying patterns of conservation and variation across the protein family. c) based on the
identified pairs of co-evolving positions, contact predictions are made, suggesting that these

positions are likely in physical proximity within the protein structure. d) The inferred
contacts can be visualised as a contact map or used to guide the modeling of the protein’s

three-dimensional structure.
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Initially contact prediction accuracy was limited due to transitive correlations

where indirect covariation leads to a false positive contact generating noise in the

prediction. However, algorithms were developed where the link between two

residues can be then reliably be detected in multiple sequence alignments. Methods

included using a maximum entropy approach like direct coupling analysis (DCA)

[64] or building a precision matrix (inverse co-variance matrix) like in contact

prediction software PSICOV [65]. Early success with contact-assisted ab initio

modelling of membrane proteins was made with EVfold and made use of the DCA

approach in conjuction with Crystallography and NMR System (CNS) [66]. The use

of contacts in this case led to substantial improvements in model accuracy for

membrane proteins up to 360 residues in length and achieving RMSDs below 5Å

[57]. Additionally, machine learning algorithms were developed to predict contacts

[67] which was first observed in CONSIP2 [68] where evolutionary conservation was

coupled with a traditional neural network with a sliding window approach. Later

more advanced methods like RaptorX [69] utilised a deep learning convoluted neural

network (CNN). CNNs are specifically designed to automatically extract hierarchical

representations of input data by utilising convolutional layers, pooling layers, and

fully connected layers [70]. The latest methods such as TripletRes [71] exploit deep

residual neural networks. Deep residual neural networks (ResNets) are a type of

deep learning architecture that address the challenges of training very deep neural

networks [72]. Traditional deep neural networks suffer from the problem of

vanishing gradients (where gradients are the rate of change of a function), where the

gradients become very small as they propagate through many layers, leading to

difficulties in training. ResNets alleviate this problem by skipping one or more

layers, allowing the gradients to flow directly to the earlier layers during the training

process [72].

The predicted contacts can also be used for a range of analyses such as the

identification of domain boundaries by analysing contact density profiles [63, 73] and

as a quality measure for ab initio models [74]. Contacts can also be plotted into a
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two-dimensional contact map [63] and be supplemented with other data, such as

secondary structure prediction, for annotation [75].

Recent advances in contact predictions have meant more information can be

extracted from MSAs allowing the prediction of residue distances rather than binary

contacts. The resultant distogram reveals more specific information in regard to

predicted distances between residues in a target protein (Figure 1.4). The prediction

of inter-residue distances has dramatically improved the accuracy of ab initio

modelling by imposing more restraints for the folding process [76]. Initial attempts to

go beyond binary contact prediction and predict residue distances was difficult.

Methods were developed that attempted the use of regression to infer residue

distances as they are real value features and therefore intuitive. Advances were made

in distance predictions when the problem was tackled as a classification problem and

rather than inferring distances in Å a set of bins for discrete distance values works

much better with accuracy on par with contact predictions [77].

(a) Example contact map (b) Example distogram

Figure 1.4: Contact map and distogram comparison
Contacts are coloured black in the contact map; in a distogram each inter-residue pain is
coloured based on a spectrum relating to the predicted distance of each specific pair of residues
(in this case white to black)
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1.7 Use of Deep Learning Algorithms for Membrane Pro-

tein Structure Prediction

Classical protein structure prediction aimed, given a sequence, to search for the

three-dimensional fold that dominates the partition function (statistical likelihood)

and has the lowest free energy, making it the state most observed in nature. The

prediction of protein structure therefore possessed the twin core challenges of

conformation search, ruled by Levanthal’s paradox (identifying a protein’s native

fold by searching randomly takes an enormous amount of time yet a protein folds in

seconds), and the scoring challenge, adhering to Anfinsen’s dogma (the

three-dimensional fold is determined by the amino acid sequence). The well

established fragment assembly ab initio approaches described in the previous section

build protein models by utilising a function that models the postulates and theory

derived from experimental data. The fragment assembly methods, however,

consume a high amount of computing resources and have the drawback of requiring

native-like fragments being available. These methods, even with the inclusion of

contact derived restraints, were only able to output reliable models for a tiny fraction

of the protein universe and were especially poor for those with contact dense

topologies [26]. Converting the contact information into predicted distance geometry

constraints, similar to what is performed in NMR structure determination, is

computationally cheaper and has been shown to produce models that are closer to

their native state [78]. Recently, methods such as AlphaFold, AlphaFold2 and

RosettaFold have developed machine learning algorithms that predict distances

which are used to generate accurate models by generating minimised free energy

surface along the molecular coordinates (family-specific potentials of mean force).

The machine learning methods, or deep learning if the number of neural network

layers are greater than six, construct a function to build a model by extracting

features from an input data set and linking these to labels of the output data set.

Training the program involves it going back and forth in an automated fashion,
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taking the outputs and comparing to the inputs until a link between output and

input is established. This is similar to the classical approach where experimental data

was used to construct functions that make predictions, and if the prediction were not

accurate more data is gathered to refine the rules of the function; a very laborious

and time consuming process. With machine learning the function is built much more

quickly with the experimental data not being used explicitly but inferred through the

learning that has taken place by linking the input features of models in the PDB

(sequence) to the labels of the output structures (for example inter residue distances,

main chain hydrogen bond network and torsion angles)(Figure 1.5).

Figure 1.5: Comparison of the model function building between classical (a) and ma-
chine learning (b) methods

The deep learning methods such as AlphaFold [79], DMPfold [77] and trRosetta

[80] build predicted protein structures by predicting inter residue distances, main

chain hydrogen bond network and torsion angles. Benchmarking these methods has

demonstrated that they work just as well for membrane proteins as they do for

soluble proteins [77, 81]. DMPfold was shown to be able to model 26 of the 28

transmembrane proteins with a TM-score of at least 0.5 to the native structure and a

mean TM-score of 0.74 [77]. The accuracy of AlphaFold2 transmembrane protein

modeling has been tested by exploring the construction of structures from the ABC

protein superfamily. For these transmembrane proteins AlphaFold2 performed

exceedingly well when testing template-free structure prediction as well as
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attempting a new ABC fold, dimer modeling, and stability in molecular dynamics

simulations [81].

1.8 Exploitation of Advanced Methods

This thesis details the utilisation of the methods described to build models of three

intracellular organelle residing integral membrane proteins. Unusual structural

features are predicted during the investigation and subsequently methods for

screening membrane proteins possessing these features were implemented. The work

carried out during this PhD intersects with the unexpected acceleration in the field of

protein structure prediction initiated in CASP13 with the release of AlphaFold [79].

The release of the accurate deep learning protein structural prediction methods half

way through the PhD gave the opportunity to modify research plans in order to take

advantage of these fast and accurate methods. For example, in Chapter 3, a topology

was mapped for the protein Tmem41b using contact map analysis; with the release of

DMPfold, an accurate three dimensional model could be constructed which

displayed the re-entrant loops that fragment assembly methods could not build.

Furthermore, the release of the AlphaFold database [82] enabled a library of trRosetta

models to be enriched with the more accurate AlphaFold equivalents; this enabled us

to search for specific structural motifs within a library of high quality models that

had no experimental structures (Chapter 5). The field of protein structure is currently

moving at a very fast pace and I feel privileged to have been in this field, as a

researcher utilising these bioinformatic methods as well as my role as a CASP

assessor in CASP14, at this very important juncture.
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2 | General Experimental Methods

2.1 Choice of Methods

Initial methods utilised contact assisted (converted to distance restraints) fragment

assembly modelling tools, both general and membrane specific protocols, to perform

membrane protein structure prediction; Rosetta ab initio and RosettaMembrane. As

the PhD progressed, deep learning methods became available and these were

exploited to generate more accurate predicted structures; first DMPfold then

trRosetta followed by AlphaFold2 (prior to the release of AlphaFold2 AlphaFold

models from the AlphaFold database were used).

Accurate contact predictions were required to guide the fragment assembly

modelling process and distance predictions were required for modelling using the

deep learning methods. In order to obtain as accurate contact and distance

predictions as possible, multiple sequence alignments were required not only to be as

deep as possible but also sequences need to be as diverse as possible with both the

magnitude of depth and diversity being related to the length of the query protein

sequence [83]. The function relating these three variable is known as the Number of

Effective Sequences (Neff) and is the ratio of number of sequence clusters at an 80%

sequence identity clustering threshold to the square root of the protein length [83].

Neff has been shown to positively correlate with contact prediction and model

accuracy [84]. Attempts were made to increase Neff values of MSAs by generating

them using metagenomic sequence databases. When implemented, the Neff does
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indeed increase, however, in some cases the contact prediction derived from a

metagenomic database contained less detail compared to solely using Uniprot i.e

signals for some contacts were completely lost (Figure 2.1).

Figure 2.1: Comparison of contact maps constructed with (right) and without (left)
metagenomic sequence data.
Contact were derived using DeepMetaPsicov with the representative sequence for the Pfam

domain PF07639.

Additionally, the use of a metagenomic database made it difficult to maintain

annotations as they lack reliable source organism information therefore making the

use of phylogeny to link structure to function more difficult. Therefore any use of

metagenomics was considered carefully before implementation.

Results chapters 3 and 4 describe the structure-function investigation into two

different autophagy proteins. Chapter 5 describes the search for specific structural

motifs from a number of structural databases. Methods utilised that were common to

more than one chapter are described here with chapter specific methods detailed in

the relevant chapter.

Local installations and runs were made on a Ubuntu 18.04.6 workstation AMD

Ryzen Threadripper 2990WX 32 Core CPU (3.0GHz, 80MB CACHE). 64GB Corsair

VENGEANCE DDR4 2933MHz (8 x 8GB) was installed. GPU acceleration was not

used for the earlier model building and the graphic card installed was a PNY
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QUADRO P620 - 2GB GDDR5, 512 CUDA Cores - 4 x mDP. The required databases

were located over two 4TB SEAGATE BARRACUDA SATA-III 3.5" HDD, 6GB/s,

5400RPM, 256MB CACHE.

Model building for the Oca2 protein utilised a local instalation of ColabFold and

exploited GPU acceleration via the ASUS TUF GeForce RTX 3080 OC LHR 12GB

GDDR6X Ray-Tracing Graphics Card, 8960 Core, 1815MHz Boost.

2.2 Software

2.2.1 Pfam Database Screening

In order to screen the Pfam database with query sequences the HMM-HMM

comparison tool, HHpred [85] (Homology detection and structure prediction by

HMM-HMM comparison) was used. HHpred utilises Hidden Markov Models

(HMMs) and compares a query protein sequence against a database of profile

Hidden Markov Models. HHpred generates a profile Hidden Markov Model from

the query sequence. This profile HMM captures the statistical properties and patterns

of the query sequence. HHpred searches a database of profile HMMs, such as the

Pfam. It compares the profile HMM of the query sequence against the profile HMMs

in the database. HHpred performs a sequence-sequence alignment between the

query sequence and the database sequences that show significant similarity based on

the profile HMM comparison. HHpred then calculates consensus alignments and

generates alignment scores, such as the E-value (expectation value - is a statistical

measure that estimates the number of false positives expected to be found by chance

in a database search; the lower the more significant) and probability score, to assess

the significance of the matches. These scores indicate the likelihood of homology and

similarity between the query sequence and the matched protein structures. Typical

threshold values for probability in HHpred range from 90% to 95%, meaning that

only matches with a probability above the specified threshold are considered
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significant. The threshold for the E-value is typically set to a small value, such as 0.01

or 0.05, implying that only matches with E-values below the threshold are considered

significant.

Sequence based searches against the PDB and Pfam-A_v32.0 databases used the

locally installed HHPred v3.0 [86] with default parameters and eight iterations for

MSA generation in the HHblits [87] stage;

hhblits -p 20 -Z 10000 -loc -z 1 -b 1 -B 10000 -ssm 2 -sc 1 -seq 1

-dbstrlen 10000 -norealign -maxres 32000 -contxt /path/to/

context\_data.crf

2.2.2 Contact map predictions (Metagenomic)

The MSAs were generated using Jackhmmer v3.3 [88], default parameters with five

iterations against a custom metagenomic database. The metagenomic database was a

concatenation of: EupathDB [89], Uniref100 [90], the Marine Eukaryotic Reference

Catalogue (MERC) [91], the Soil Reference Catalogue (SRC) [91], MGnify [92]. Local

installations of DeepMetapsicov v1.0 [93] and ResPre [94] were used to generate

contact predictions with ConKit v0.12 [95] utilised to visualise the contact maps.

ConPlot was used to overlay additional prediction data [75].

2.2.3 Model Building

Model building: Rosetta Ab initio

Rosetta version 3.10 suite [96] was used for the initial Rosetta model building.

Rosetta uses the distribution of local structures in related sequences of solved

structures to approximate structures of fragments in the query protein. These short

structures are then assembled via a Monte Carlo search with a scoring function based

on conformational statistics; Rosetta energy function. The Rosetta energy function is

derived from statistical analysis of known protein structures and incorporates

various terms to estimate the energy associated with different aspects of protein
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conformation, such as bond lengths, angles, and non-bonded interactions [33].

The Rosetta flag file contains the paths for the fasta sequence, the PsiPred [97]

secondary structure prediction, 3mer/9mer fragments, and the restraint files.

Fragments for the Rosseta ab initio model building were generated using the local

installation of Rosetta Fragment Picker:

/path/to/fragment_picker.linuxgccrelease @best-frags.flags -in::

file::vall /path/to/vall.apr24 .2008. extended.gz

Restraint files were generated using python scripts available with the Rosetta

distribution; ’create_evfold_contact_map.py’ converts contact data (in EVfold [61]) to

a compatible format that is acceptable c to ’extract_top_cm_restraints.py’ [61] to

create a ’.cst’ file. The ’.cst’ file lists predicted distances generated from the contact

data that is used by Rosetta to read and implement the restraints.

/path/to/AbinitioRelax.linuxgccrelease @/flags_tmem41b

Model building: RosettaMembrane

The RosettaMembrane protocol [98] uses, in addition to the fasta sequence, PsiPred

secondary structure prediction [97], 3er/9er fragments, and the restraint files, a

membrane topology prediction file. An OCTOPUS [99] prediction file is processed

using the ’octopus2span.pl’ Perl script. The output file is then further processed into

a format acceptable to RosettaMembrane using the ’run_lips.pl’ script;

/path/to/run_lips.pl ../ tmem41b.fasta ./ tmem41b.span /path/to/

blastpgp /db_blast/nr /path/to/alignblast.pl

The script did have to be modified due to it attempting to run a CGI script

(lips.txt) that was no longer available remotely; the url is not run as a CGI (Common

Gateway Interface) script, it was just where the script could be downloaded from. A

CGI script allows interaction between a web server and other software applications,

enabling dynamic content generation and processing of user requests. CGI scripts are
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commonly used to perform tasks such as processing form data and interacting with

databases. When a user submits a request to a web server, the server can execute a

CGI script to process the request and generate a response. The CGI script can receive

input parameters from the user’s request, perform necessary computations or

operations, and generate an output. In this case as the CGI script was no longer

available the script was run locally by downloading

(http://tanto.bioe.uic.edu/lips/lips.txt), made executable and the run_lips.pl was

made to point at the local script rather than the url by modifying line 132 in order to

execute the local version of the script;

$data=‘curl -s $url -d sequence=’$sequences ’ -d num=$first_num ‘;

to

$data=‘/rosetta/lips.txt -d sequence=’$sequences ’ -d num=

$first_num ‘;

The RosettaMembrane is then executed with the appropriate flag file;

/path/to/membrane_abinitio2.linuxgccrelease @ ./ flags_membrane.txt

Clustering of Rosetta Decoys

SPICKER [100] (SPatial Clustering with Kernels) is a protein structure clustering

algorithm used to group similar protein structures based on their three-dimensional

coordinates. SPICKER takes a set of protein structures as input, typically represented

by their Cartesian coordinates (x, y, z) of atoms. SPICKER then calculates the

pairwise root-mean-square deviation (RMSD) distances between all pairs of

structures. RMSD measures the structural similarity between two protein structures

by quantifying the average distance between corresponding atoms after

superimposition. SPICKER employs a kernel density estimation technique to

estimate the density of structures in the multi-dimensional RMSD space. It constructs

a density function by assigning each structure a probability density value based on

its RMSD distance to other structures.v The density-based clustering algorithm
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DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is applied to

identify clusters in the estimated density function. DBSCAN groups structures that

have high density and are closely located in the RMSD space. Structures that are not

in any cluster are considered as noise. SPICKER selects the most representative

structure from each cluster based on the average RMSD distance to other structures

in the same cluster. This representative structure is often referred to as a "centroid" or

"medoid" and is used to represent the cluster.

SPICKER [100] was used to cluster the output models from Rosetta. SPICKER was

executed within the ccp4 suite which auto generates the required input files.

ccp4-python /path/to/spicker.py -e /path/to/spicker -m ./ models/

-t 50

Model building: trRosetta

Ab initio models were built using the trRosetta [56] local installation with default

settings utilising an MSA from HHblits in the ’.a3m’ format. Transform-restrained

Rosetta (trRosetta) is a Rosetta protocol that utilises predicted distances and

orientations as restraints that are derived from a deep residual-convolutional

network. The network takes an MSA as input and the outputs are used as energy

minimisation restraints in the Rosetta model building. This differs from Rosetta

contact assisted ab initio model building as in addition to the Cβ–Cβ distances the

orientations (defined by six parameters) are predicted which accurately describe the

relative positions of the backbone of two residues.

The predicted distances and side-chain orientations were generated using:

python ./ predict.py -m ./ model2019 example/T1001.a3m example/T1001

.npz

Models are constructed using trRosetta by:

python trRosetta.py T1008.npz T1008.fasta model.pdb
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Model building: DMPfold

DMPfold [77] utilises deep-learning to predict inter-residue distances, main chain

hydrogen bond network and torsion angles. These are then used in the model

building process. The ab initio models were built using a DMPfold local installation

with default settings utilising an MSA built by Jackhmmer. The alignments in ’.aln’

format is then used by a DMPfold script to generate distance restraints:

csh aln2maps.csh example/PF10963.aln

The restraints were then used to build the models:

/path/to/DMPfold/run_dmpfold.sh /w9dy28.fasta ../ output .21c ../

output.map ./ w9_1_84_models

Homology Modelling

Homology modeling, also known as comparative modeling, is a computational

method used to predict the three-dimensional structure of a protein based on its

sequence similarity to one or more known protein structures. It relies on the principle

that proteins with high sequence similarity share similar structures and functions. A

target protein, is selected for which the experimental structure is unknown but a

related template structure with known three-dimensional coordinates exists. Suitable

template structures are identified by searching sequence databases using algorithms

such as HHpred. Templates with high sequence similarity to the target are preferred,

ideally with sequence identity above a certain threshold (e.g., 30-40%). The target

protein sequence is aligned with the template sequence to identify corresponding

positions and regions. Using the sequence alignment as a guide, the

three-dimensional coordinates of the target protein are constructed by copying the

coordinates from the template structure. The quality and reliability of the homology

model are assessed using various validation criteria and scoring functions. This

study employed predicted contact satisfaction scores (see below). MODELLER [101]

is a software package widely used for homology modeling and comparative protein
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structure prediction and was used for the study of Atg9 (Chapter 4).

2.2.4 Transmembrane Region Prediction

Unless otherwise stated the transmembrane helical topology predictions were

obtained from the TopCons server [44]. TopCons combines multiple sources of

information, including predicted transmembrane helices, signal peptides, and

homologous proteins, to make accurate predictions. Based on this combined

information from signal peptide prediction, transmembrane helix prediction, and

homology-based prediction, TopCons generates a consensus prediction for the

presence and location of transmembrane regions in the protein sequence.

When confidence scores were required for individual transmembrane region

predictions TMHMM (TransMembrane Hidden Markov Model) was employed.

TMHMM employs a Hidden Markov Model (HMM) approach. TMHMM is trained

using a dataset of known transmembrane proteins with experimentally verified

transmembrane helices. The HMM is trained to recognize the statistical patterns and

properties associated with transmembrane regions.

Other transmembrane prediction software was utilised for comparison

purposes:

1. Octopus [102];

2. Spoctopus [103];

3. Philius [104] ;

4. Polyphobius [105] ;

5. SCAMPI [106];

2.2.5 Secondary Structure Prediction

Secondary structure predictions were made employing a local installation of PsiPred

v4.0 [97]. (Protein Structure Prediction Server). PsiPred employs a neural network to
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make its predictions. PsiPred Generates a position-specific scoring matrix (PSSM). A

PSSM is a matrix that encodes the sequence profile, which represents the frequency

and propensity of each amino acid at each position in the sequence. The PSSM is

generated by performing a sequence database search using tools like PSI-BLAST

[107]. The final output of PsiPred is a prediction of the secondary structure for each

residue in the protein sequence. This prediction is usually represented as a sequence

of letters corresponding to the predicted secondary structure states (H for alpha

helix, E for beta strand, and C for coil).

2.2.6 Conservation Mapping

Conservation was mapped on to the models using the ConSurf server [108].

To visualise the conservation as a spectrum using ConSurf’s conventional

spectrum the ConSurf processed PDB file (with updated with ConSurf colours -

PDB_FILE) and the python script, consurf_new.py, was downloaded from the server;

PyMol was then initialised and the processed PDB file was loaded with the

subsequent run of the consurf_new.py script (’run consurf_new.py’ in PyMol

terminal);

2.2.7 Visualisation of Models

Visualisation of models was achieved using PyMOL v2.3.0 [109]. Membrane planes

were visualised by downloading membrane_planes.py and

visualise_membranes.pml [110] from RosettaCommons. The python script

membrane_planes.py was placed in the same directory as the PyMol executable. A

translated version of a PDB file from PDBTM or a translated pdb generated from the

from the OPM server was visualised with membrane planes by initialising PyMol

from the command line in the following way;

/path/to/pymol/executable/ /path/to/translated/pdb/file/ /path/to/

pml/file
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2.2.8 Structural Alignments

Structural alignment methods aim to compare and align protein structures to identify

similarities, infer evolutionary relationships, and gain insights into their functional

and structural properties. There are many methods for assessing similarity

[111, 112, 113, 114] and commonly rely on comparing the sizes of shared

substructures, such as the length of alignment, where longer alignments are

considered more favorable. Additionally, a distance measure like RMSD (Root Mean

Square Deviation) is commonly used to evaluate the difference between these

substructures, with lower values indicating greater similarity. RMSD quantifies the

average distance between corresponding atoms in the two sets of coordinates. It is

calculated by aligning the structures and measuring the displacement of each atom.

The distance between each pair of corresponding atoms in the superposed structures

is calculated. The deviation or displacement of each atom is obtained by subtracting

the position of the corresponding atom in one structure from the position of the

corresponding atom in the other structure. The deviations are squared, and the

squared deviations are summed across all atoms in the structure. The summed

squared deviations are divided by the number of atoms, and the square root of the

result is taken to obtain the RMSD value [115].

RMSD =

√√√√√ n
∑

i=1
(xi − yi)2

n

• N is the total number of atoms.

• Xi and Yi denote the coordinates of the corresponding atoms in the two

compared structures.

• The summation ∑N
i=1 iterates over all the atoms.

• (Xi − Yi)
2 calculates the squared differences between the corresponding atom

coordinates.
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RMSD is expressed in units of length. A lower RMSD value indicates a closer match

between the structures, while a higher RMSD value suggests greater differences or

structural variation.

Local installation of Dali v4.0 [111] was used to structurally align the output

models and to query against the PDBTM [47]. Dali has high sensitivity in detecting

structural similarities identifying remote homologues and recognise similarities even

when sequence similarity is low. Dali is capable of handling both small and large

protein structures and can align multiple structures simultaneously, enabling the

detection of structural relationships among a set of proteins. Dali provides Z-scores

that assess the significance of the structural similarity. This statistical measure helps

evaluate the reliability of the alignments and distinguish true similarities from

random matches. Z-scores provide a measure of how well the observed similarity

score (DALI Z-score) compares to the scores obtained from random structure

alignments. First Dali generates random structural alignments by shuffling and

superimposing the secondary structure elements of the two proteins being compared.

This generates a distribution of similarity scores for random alignments. The

similarity score used in Dali is the Z-score-like score, which is based on the root mean

square deviation (RMSD) between aligned residues, the number of aligned residues,

and the length of the proteins. The Z-score is then calculated by comparing the

similarity score of the observed alignment with the distribution of scores obtained

from the random alignments. It represents the number of standard deviations the

observed score is away from the mean of the random distribution. A higher Z-score

indicates a higher level of significance for the structural similarity.

2.2.9 Precision

Precision score evaluation of models in relation to the predicted contacts at various

contact cutoff values were calculated and plotted using ConKit. A 70% precision cut

off for the top L contacts is suggestive of good quality models [74].
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2.2.10 Other prediction data

ConKit was also used to predict and visualise potential structural domain boundaries

[73][63]. Residue analysis of putative amphipathic regions were performed using

HELIQUEST [116] to determine the presence, direction and magnitude of any

hydrophobic moment.
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3 | In silico prediction of structure and

function for a large family of trans-

membrane proteins that includes hu-

man Tmem41b

3.1 Introduction

Recent strides in computational structural biology have opened up an opportunity to

understand previously uncharacterised proteins. The under-representation of

transmembrane proteins in the Protein Data Bank highlights the need to apply new

and advanced bioinformatics methods to shed light on their structure and

function.

Membrane proteins can be grouped according to their interaction with various

cell membranes: integral membrane proteins (IMPs) are permanently anchored

whereas peripheral membrane proteins transiently adhere to cell membranes. IMPs

that span the membrane are known as transmembrane proteins (TMEMs) as opposed

to integral monotopic membrane proteins that adhere to one side of the membrane

[117]. Membrane proteins also include various lipid-modified proteins [118].

Autophagy-related proteins (Atg) are responsible for the formation of

autophagosomes that traffic unwanted intracellular components to the lysosomes for
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degradation. Atg9 (Chapter 4) is the only established transmembrane Atg [119],

however, there is a growing body of evidence that two proteins belonging to the Pfam

PF09335 family may also be transmembrane Atgs; Tmem41b and Vmp1 [120].

In this chapter, the Pfam PF09335 family is linked to the PF06695 family and a

conveniently small archaeal sequence was identified. Subsequently, utilising state of

the art methods, structural predictions for not only the archaeal sequence but also for

two prominent members of the Pfam family PF09335 (Tmem41b and YqjA) were

made. In order to carry out these predictions, data derived from sequence,

evolutionary covariance and Ab initio modelling was exploited. The result of the

modelling indicated that both PF09335 homologues (DedA proteins) and PF06995

homologues contain re-entrant loops (stretches of protein that enter the bilayer but

exit on the same side of the membrane). Additionally, the predictions also anticipate

that the re-entrant loops form part of a pseudo-inverted repeat topology. The

predicted presence of both of these structural features strongly suggests that DedA

proteins are secondary active transporters for an uncharacterised substrate.

3.2 DedA Proteins

The family Tmem41 has two human representatives, namely Tmem41a and

Tmem41b; both share the PF09335 (’SNARE_ASSOC’/ ‘VTT‘/’Tvp38’/’DedA’) Pfam

[85] domain. The profile of Tmem41b has recently risen due to experimental

evidence pointing to its involvement in macroautophagy regulation (making it a

possible Atg protein, i.e. an autophagy related protein) and lipid mobilisation [121].

Other studies identify Tmem41b to be involved in motor circuit function, with

TMEM41B-knockout Drosophila melanogaster showing neuromuscular junction

defects and aberrant motor neuron development in SMN1 knockout zebrafish [122].

Also, it has been reported that in TMEM41B-knockout HeLa cells there is an

inhibition of Zika virus replication [123]. Tmem41b has also been identified as a host

cell factor for SARS-CoV-2 [124]. Tmem41b is the only common host cell factor
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identified for flaviviruses and coronaviruses and is the only autophagy-related

protein identified as a viral host factor [125].

Additionally, Tmem41b has been shown to be essential for mouse embryonic

development: homozygous knockout mice embryos suffer early termination of their

development after 7–8 weeks [126]. Tmem41b is a structurally uncharacterised

291-residue protein found in the endoplasmic reticulum (ER) localising at the

mitochondria-associated ER membranes [121]. Disruption of the PF09335 domain by

various residue substitutions [127] or its removal [121] results in inhibition of

autophagosome formation and impaired lipid mobilisation in human embryonic

kidney (HEK) cells.

Tmem41b homologues, hereafter referred to as DedA proteins [120], are present in

all domains of life [128]. The Pfam PF09335 domain was first identified in the

Saccharomyces cerevisiae protein Tvp38 [129], and the authors concluded that Tvp38

associates with SNARE proteins (SNAP REceptor). SNARE proteins are responsible

for the fusion of vesicles with a target membrane. Specifically, Tvp38 was shown to

associate with t-SNARE sub-types in Tlg2-containing compartments, suggesting a

role in membrane transport. Investigations into the bacterial and archaeal prevalence

of these proteins showed that 90% of bacterial species and 70% of archaeal species

encode proteins with the PF09335 domain [130]. Bacterial and archaeal

PF09335-containing proteins are collectively known as the DedA family [130, 131].

Detailed studies of the Escherichia coli DedA proteins have indicated that there are

eight E. coli representatives of the DedA family (YqjA, YghB, YabI, YohD, DedA,

YdjX, YdjZ, and YqaA) with overlapping functions [128, 130], with YdjX and YdjZ

being the most closely related to human Tmem41b in terms of sequence similarity

[130]. Phenotypically, DedA knock-out E. coli cells display increased temperature

sensitivity, cell division defects, activation envelope stress pathways, compromised

proton motive force, sensitivity to alkaline pH and increased antibiotic susceptibility

[130][132]. As E. coli expresses multiple DedA homologues, lethal effects are not

observed as long as at least one DedA is expressed [132][133]. Borrelia burgdorferi
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contains only one DedA protein in its genome and knockout cells display the same

phenotype as the E. coli knockout strains. The B. burgdorferi homologue is indeed

essential [134]. Interestingly, E. coli knockout cells can be rescued with the B.

burgdorferi homologue that shows only 19% sequence identity with YqjA. The

functions of DedA have also been studied in the pathogen Burkholderia thailandensis

where one family member was found to be required for resistance to polymyxin

[135].

3.3 Specific Methods

This PhD coincided with a rapid development in the field of ab initio structure

prediction. The most advanced methods at the time were always utilised and as new

methods and model databases were released these were employed to gather

additional structural information as well as to validate previous modelling

attempts.

3.3.1 Model building: trRosetta

In order to test whether the modelling software could accurately capture the

re-entrant loop-helix structural motif, a model representing the crystal structure of

6cb2 was constructed using both trRosetta and DMPfold [77]. The crystal of 6cb2 is

comparable in terms of size (293 residues) and has the common structural features

(inverted repeat with two re-entrant/TMhelix structures) to the Tmem41b and its

homologous proteins. The output structure was structurally aligned against the

crystal structure using DALI (server) and a gave Z-score of 35 for the trRosetta with

27.5 for the DMPfold equivalent. A significant Z-score indicates a higher level of

structural similarity between two protein structures than would be expected by

chance alone. In Dali, Z-scores greater than a certain threshold (typically around 2.0)

are considered statistically significant, indicating a meaningful structural similarity

between the compared proteins [111]. Therefore, scores leave no doubt that the
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correct fold was modelled (figure 3.1) and therefore added to the confidence of any

models constructed for PF09335 and PF06695 family members using trRosetta and

DMPfold.

Figure 3.1: 6cb2 Models
The crystal structure in green and the trRosetta model in magenta. The second image

highlights the re-entrant structural motif feature that became prominent during the course of
this investigation.

3.3.2 Dataset for custom re-entrant sequence database

A library of re-entrant loop sequences together with the putative re-entrant loop

sequences from the Mt2055, Tmem41b and YqjA models were clustered to establish

any visible relationships of the sequences. The library was built by obtaining a

non-redundant set of 56 re-entrant helix sequences by first retrieving all 714 TM

proteins that contain at least one re-entrant loop from the PDBTM [47] and removing

redundancy with a 40% identity threshold. The resulting 127 protein structures were

split into their component chains, eliminating any chain lacking a re-entrant loop.

The resulting set of 188 unique re-entrant loop sequences were then filtered removing
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any sequences of less than 10 residues and more than 20, thereby ensuring the

collection of sequences conformed to the length of typical [136] re-entrant loops. The

remaining 56 sequences were clustered, supplemented by candidate re-entrant

sequences from the proteins studied here. Clustering was performed using CLANS

v1.0 [137] with the BLAST [138] results used to calculate strengths of similarity.

3.3.3 Dataset for custom structural re-entrant database

In addition to the construction of the re-entrant sequence database a structural

database was also built for the re-entrant loops in the PDBTM. A library of re-entrant

loop PDB structures together with the putative re-entrant loop structures from the

Mt2055, Tmem41b and YqjA protein models were clustered on their structural

similarity. The library was built by obtaining a non-redundant (removing

redundancy with a 40% sequence identity threshold) set of 125 chains from the

PDBTM [47] that contain at least one re-entrant loop. 40% sequence identity

threshold is considered to be a reasonably stringent criterion for redundancy

removal. It ensures that the retained homologues have a significant level of similarity

with the query sequence, indicating a high likelihood of shared evolutionary

ancestry and potential functional conservation. As this investigation focuses on

re-entrant loops that are immediately preceded by a TM helix that is packed against

the loop, all re-entrant loops (boundaries defined by PDBTM) in addition to the

preceding 30 residues were extracted. The resulting 193 library entries,

supplemented with the re-entrant loop features (defined by the OMP server [48] and

accompanied by the preceding 30 residues) from the Ab initio modelling underwent

an all-against-all structural alignment using a local installation of Dali v4.0 [111]. The

Z-scores for these alignments were then used for clustering with CLANS v1.0 [137]

with a Z-score of 4.5 used as the cut-off threshold.
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Table 3.1: HHpred results for Tmem41b and homologues demonstrate homology be-
tween Pfam families PF09335 and PF06695.

PF09335
’SNARE_ASSOC’/
‘VTT ‘/’Tvp38’

PF06695
‘Sm_multidrug_ex’

Species UniProt
Code Length Probability E-Value Probability E-Value

Tmem41b Homo
sapiens Q5BJD5 291 99.4 9E-17 98.3 2E-10

Ydjx Escherichia
coli P76219 236 99.6 2.1E-17 99.1 9.9E-13

Ydjz Escherichia
coli P76221 235 99.6 1.1E-17 99.0 4.5E-16

Yqja Escherichia
coli P0AA63 220 99.62 5.6E-15 99.41 1.3E-12

Tvp38 Saccharomyces
cerevisiae P36164 337 99.4 7.9E-15 98.7 2.7E-10

Mt2055 Methanolobus
tindarius W9DY28 168 99.0 2.4E-10 99.8 1.8E-20

3.4 Sequence Analysis

HHpred [86] was used to screen a selection of DedA proteins against the Pfam

database [85]. Hits were observed in the same region against both PF09335 and the

Pfam domain PF06695 (‘Sm_multidrug_ex’) which is strongly indicative of

homology: a probability of 99.4% with an E-value of 9E-17 for the PF09335 hit and

98.3% and 2E-10 respectively for PF06695. An HHpred search against the Pfam

database using a member of PF06695 - the short archaeal sequence Mt2055 (UniProt

code W9DY28) [90] - returned similar results (Table 3.1 ). Figure 3.2 shows the MSA

for the same sequences along with the relative positions of the two Pfam domains

under investigation. The Mt2055 sequence originates from the unpublished draft

genome of the archaebacterium Methanolobus tindarius DSM 2278. For many of the

subsequent analyses, the shorter archaeal sequence was used initially but the clear

homology among this set of proteins means that inferences can be drawn across the

group.

There are no known experimental protein structures representing PF09335 or

PF06695, but both Gremlin and DMPfold have constructed ab initio models for these
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Figure 3.2: MSA for query protein selection listed in table 3.1.
Magenta highlights the regions matched by HHpred to the PF06695 Pfam domain while pur-
ple is used for additional residues included in the PF09335 Pfam domain matches. The black
boxed regions represent the locations of the putative re-entrant loops as identified by the mod-
eling of the respective proteins. The secondary structure for the archaeal W9DY29 sequence
(Mt2055) is also depicted with the relative positions of alpha helices shown as red blocks.

Pfam domains and have made them available in repositories [77, 84].

Analysis of the HHpred results obtained for the archaeal protein Mt2055 revealed

the presence of additional hits for both PF06695 and PF09335 Pfam domains, in

which the C-terminal half of the domains aligned with the N-terminal half of the

Archaea protein. For example, residues 1-69 of the archaeal protein aligned with

residues 52-117 of the Pfam PF09335 profile with a probability of 74.15%.

Interestingly, contact density analysis [73][139] supported the existence of a

domain boundary around residue 60, in broad agreement with the HHpred results

(Figure 3.3). Both the HHpred and contact density results therefore pointed to a

specific domain structure being present.

When the Mt2055 sequence was split at residue 60-61, the resulting N-terminal

region of 60 residues and the C-terminal section of 79 residues could be aligned using

HHalign [142] with a 78% probability and an E-value of 1.9E-3. Examination of the

map of predicted contacts for Mt2055 reveals features that are present in both the N-

and C-terminal halves of the protein (Figure 3.3c). Taken together, these data strongly
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Figure 3.3: Mt2055 domain analysis.
(a) Contact density profile constructed by ConKit [63] utilising DeepMetaPSICOV contact pre-
diction. Solid black line represents contact density and dotted red lines mark density minima
corresponding to possible domain boundaries. (b) HHalign alignments for the N-terminal
and C-terminal Mt2055 halves, formatted using Jalview [140] and coloured according to the
ClustalX [141] scheme. Red bars represent helical secondary structure. (c) Maps of predicted
contacts generated by DeepMetaPSICOV [93] and plotted using ConKit [95]; left is N-terminal
half (residues 1-84) and right is C-terminal half (residues 85-168). Black points represent pre-
dicted intramolecular contacts.

support the existence of a tandem repeat within the Mt2055 protein and hence across

the PF06695 and PF09335 protein families.
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Table 3.2: Predicted number of TM regions for PF09335/PF06695 homologs

TOPCONS OCTOPUS PHILIUS POLYPHOBIUS SCAMPI SPOCTOPUS TMHMM
Mt2055 4 4 4 4 4 4 4
Tmem41b 6 6 6 7 6 5 6
Ydjx 7 7 5 6 6 7 5
Ydjz 6 7 6 6 6 6 5
Tvp38 5 7 5 7 6 6 5

Interestingly, an equivalent sequence analysis with HHpred of other PF09335

homologues including Tmem41b itself does not reveal a repeat. However, inspection

of their corresponding predicted contact maps does reveal features repeated when N-

and C-halves of the protein are compared (Figure 3.4). Apparently, evolutionary

divergence has removed all trace of the repeat sequence signal in bacterial and

eukaryotic proteins, although the feature remains visible by evolutionary covariance

analysis.

In order to assess the composition of the repeat identified, transmembrane helical

topology predictions were carried out but gave inconsistent results for most proteins:

only for the archaeal protein Mt2055 did all methods agree that four transmembrane

helices were predicted to be present in the whole protein, two in each of the repeats

(Table 3.2).

Several authors have deposited structures of uncharacterised Pfam families in

databases [85]; however, Pfam domain boundaries for PF09335/PF06695, which

define the limits of these previous modelling exercises, do not reflect the conserved

structural domain that we predict. Given the fact that the available Ab initio models

were inconsistent with the transmembrane helix topology, secondary structure and

contact predictions, new models of Mt2055 as well as Tmem41b and YqjA were

built.

3.5 Initial Modelling

Initial modelling of DedA proteins centered around constructing DeepContact [143]

derived contact restrained Mt2055 models using Rosetta ab initio. The output models
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Figure 3.4: Tmem41b Contact map constructed using DeepMetaPSICOV and plotted
using Conkit.
The highlighted areas represent repeat units that have been revealed through evolutionary
covariance analysis.

were visually of very poor quality and could not possibly be stable within a

membrane. Subsequently, in an effort to improve the quality of the contact

information a metagenomics [84] sequence database was used to generate the

predicted contacts. The MapPred [144] server was used to trial the use of

metagnomics; for Mt2055 the Neff of the MSA was raised to 2687 from the 1648

Uniprot-derived MSA; for Tmem41b the Neff of the MSA was raised to 8874 from the
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2144 Uniprot derived MSA. The success at raising the Neff values of the MSAs for the

query proteins led to the construction of a custom metagenomics sequence database.

JackHMMER [88] was used to generate the MSAs and ResPre [94] to make the

contact predictions based on the metagenomics enhanced MSAs. With the custom

metagenomics database, for Mt2055 the Neff reached 7470 and for Tmem41b the Neff

increased to 88573. Figure 3.5 shows how the increase in Neff translated to local

sequence regions with the use of series of sequence coverage plots generated using

ConKit [95]; for example for Tmem41b, even though the metagenomic improved the

global Neff score dramatically, the MSA coverage profile does highlight the fact that

the metegenomics has little impact on the first one hundred residues.

Figure 3.5: MSA Sequence coverage profiles.
Column 1: Mt2055, Column 2: Tmem41b, Row 1: Uniprot derived, Row 2: MapPred derived,
Row 3: Custom metagenomics database derived.

Again, even with the metagenomic enhanced contact predictions, the poor model

quality could be visually identified (short transmembrane helices -less than 5 helical

turns- that could not possibly span the lipid bi-layer) and quantitatively measured

using a contact satisfaction profile plotted using ConKit (figure 3.6). Running these

models as well as the examples from the previous set against the PDB using Dali

[111] to identify possible structural homologues did not yield any significant results

43



Shahram Mesdaghi (962096127)

with the top Z-score being 3.5.

Figure 3.6: Rosetta Ab initio model with Precision Profile.
Left: Mt2055 Rosetta ab initio model utilising restraints derived from Respre (Li et al., n.d.) and
a metagenomic database for MSA construction; coloured with rainbow; blue C -terminal to
red N-terminal; right: precision profile depicting contact satisfaction at various contact cutoff
values where L = sequence length (rounded down to the nearest whole number of contacts).
The 50% precision cut of is shown (blue line) as a visual marker. A minimum of 70% contact
satisfaction for the top L contacts would be suggestive of good quality models [145]..

Building on the premise of utilising the contacts as restraints in the model

making, it was decided to switch to the Rosetta Ab initio Membrane protocol [146].

This version of Rosetta ab initio, in addition to the contact derived restraints, uses

membrane topology predictions as further restraints and are more heavily weighted

than the contact information. TopCons [44] was used to generate the membrane

topology predictions for the query proteins which were subsequently converted into

the Rosetta Membrane compatible OCTOPUS [99] format.

One thousand models were constructed. The output models from the

RosettaMembrane flavour were visually superior to the outputs from Rosetta ab

initio; these models possessed helices packed together in such a way that they could

conceivably sit in a membrane bi-layer. Screening the highest ranking model

(centroid of the largest cluster determined by SPICKER [100]) against the PDB using

DALI and filtering out globular proteins and all hits with a Z-score less than 5

resulted in a list of strong hits with Type VII ABC transporters (Table 3.3) with the

strongest hit against 5lilA (Figure 3.7).
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Table 3.3: DALI PDB hits with top model from first round of RosettaMembrane mod-
elling

Hit Z-Score RMSD lali Nres %ID Hit Name
5lil-A 8.8 3.8 131 615 12 MACROLIDE EXPORT ATP-BINDING/PERMEASE PROTEIN MAC
5lj6-A 8.3 5 132 600 8 MACROLIDE EXPORT ATP-BINDING/PERMEASE PROTEIN MAC
5lj7-B 8 4.9 132 599 8 MACROLIDE EXPORT ATP-BINDING/PERMEASE PROTEIN MAC
5lil-B 7.1 4.9 132 604 8 MACROLIDE EXPORT ATP-BINDING/PERMEASE PROTEIN MAC
5mal-A 7 3.9 104 234 14 LIPASE;
5lj7-A 6.7 4 125 592 11 MACROLIDE EXPORT ATP-BINDING/PERMEASE PROTEIN MAC
5mal-B 6.6 3.5 103 234 15 LIPASE;
5ws4-B 6.4 4 129 650 8 MACROLIDE EXPORT ATP-BINDING/PERMEASE PROTEIN MAC
6fpf-A 6.3 3.9 125 257 6 CHROMOSOME 16, WHOLE GENOME SHOTGUN SEQUENCE;
5ws4-A 6.3 4 129 650 8 MACROLIDE EXPORT ATP-BINDING/PERMEASE PROTEIN MAC
5gtm-B 6.2 6.2 92 522 12 INTERFERON-INDUCED GTP-BINDING PROTEIN MX1;
5nil-J 6.1 4.2 131 629 13 OUTER MEMBRANE PROTEIN TOLC;
5nik-J 6.1 4.2 131 629 13 OUTER MEMBRANE PROTEIN TOLC;
5gko-B 6.1 3.8 126 650 8 MACROLIDE EXPORT ATP-BINDING/PERMEASE PROTEIN MAC
5nik-K 5.9 4.4 133 629 12 OUTER MEMBRANE PROTEIN TOLC;
5nil-K 5.9 4.4 133 629 12 OUTER MEMBRANE PROTEIN TOLC;
5do7-C 5.8 5.3 129 579 7 ATP-BINDING CASSETTE SUB-FAMILY G MEMBER 5;

In an effort to identify a potentially stronger hit from the one thousand models,

the set of models were processed into a local DALI database and 5lilA was used to

query the library. However, the same model with a Z-score of 8.8 was picked out.

Consequently a further ten thousand RosettaMembrane models were constructed

and 5lil was screened against this new model set. A model with a Z-score of 9.9 was

identified.

Figure 3.7: Rosetta Membrane model structurally aligned with 5lilA.
Rosetta Ab initio Membrane model (magenta) structurally aligned with 5lil (green).
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Next the idea of refining the model based on use of contact restraints was

experimented with; the contacts from the model with the highest alignment Z-score

with 5lil were used as restraints to construct a further ten thousand new models. The

output models were again converted to a DALI database and 5lil was screened

against the new library. This additional refinement step did not produce models with

any higher alignment scores with 5lil. A comparison of the 5lil contact map and the

model contact map 3.8 clearly showed that they certainly shared the transmembrane

helical topology. Study of the structural alignment (figure 3.9) also confirmed this.

Additionally, both the model and 5lil possessed an amphipathic helix, albeit in the

opposite direction (although this would not have contributed to the DALI Z-score

calculation as only the aligned regions are used for this calculation).

5lil was an interesting structural hit. The fold and topology of the MacB

transmembrane and periplasmic domain is different from the six other ABC

transporter superfamilies and has an independent evolutionary origin from other

ABC transporters. 5lil has a four-transmembrane helix topology, periplasmic domain,

and stalk. 5lil forms a pump with TolC, this complex uses cytoplasmic ATP

hydrolysis to move substrates from the periplasm to the outside of the cell. 5lil is not

considered a transporter as the ATP hydrolysis is used to transmit a conformational

changes from cytoplasmic side of the membrane to the periplasmic side; TolC is

responsible for the movement of substrate from the periplasm to the outside of the

cell. It is the transmembrane domain of 5lil that is responsible for this

mechanotransmission [147].

In spite of the fact that the resultant RosettaMembrane models appeared visually

more promising; being more in line with transmembrane proteins and having good

structural alignments with crystal structures of Type VI ABC transporters; once again

when performing quantitative analysis of the ab initio models it resulted in poor

precision scores (Figure 3.10). The unsuccessful modelling attempts lead to the

detailed review of all sequence-based prediction data using custom visualisation

plots.
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(a) 5lilA contact map (b) Edited 5lil contact
map

(c) Top model contact
map

Figure 3.8: 5lil Contact map analysis
a) Blue box is periplasmic domain (residues 306-503) and red box is nucleotide binding
domain (residues 1-240). b) 5lilA contact map with periplasmic and nucleotide biding

domains removed. c) Rosetta membrane top model contact map.

3.6 Development of ConPlot

The poor precision scores of models built by Rosetta ab initio and RosettaMembrane,

along with evidence that the transmembrane topology predictions may contain false

positives (Table 3.2) led to the desire to visually cross-reference all available

prediction data for both Mt2055 and Tmem41b. ConKit [95], a python interface to

contact predictions, was chosen as a suitable platform to integrate various prediction

data. ConKit was already able to output contact predictions in the form of a contact

map where the contact predictions are visualised as a two-dimensional binary

matrices [148]. The contact maps traditionally have a blank space on and near the

diagonal axis as they exclude contacts between sequential near neighbours. The

ConKit software was adapted to parse other prediction data and output the data in a

visual format with the contact map (figure 3.11). The void in the diagonal of the

contact map has been used previously to hold a visualisation of secondary structure

information [149]. Various properties can be predicted by other sequence-based

methods such as membrane and disorder predictions as well as residue conservation

scores. By integrating this multitude of data a more complete and integrated

two-dimensional visual representation of the protein.

New scripts were integrated into the command line, IO, core and plot modules of
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Figure 3.9: Structural alignment analysis of 5lilA and model.
Cartoon: structurally aligned regions; Wire: non aligned regions. cyan: structural aligned

region of 5lil; Red: regions of model that are predicted to be transmembrane helices by
transmembrane topology prediction tools 3.2; Orange: regions of model where there is a lack
on consensus between transmembrane topology prediction tools; White: Regions of model

that are not predicted to to be transmembrane helices. a)5lilA schematic (adapted from [147]).
b)Highlighted with a black stick is the alignment of model transmembrane 1 with

transmembrane 1 of 5lilA (involved in dimer formation) along with the presence of the
amphipathic helix. c) highlighted with a black stick is the alignment of model

transmembrane 2 with transmembrane 2 of 5lilA (involved in dimer formation) Coupling
helix 1 (CH1) (involved in NBD interaction). d)Highlighted with a black stick is the

alignment of model transmembrane 3 with transmembrane 3 of 5lilA. e) Highlighted with a
black stick is the alignment of model transmembrane 4 with transmembrane 4 of 5lilA and

Coupling helix 1 (CH2) (involved in NBD interaction).

ConKit. The modifications to ConKit produced the desired output where all available

prediction data for a given protein was displayed visually (figure 3.11). (This visual

cross referencing functionality was later developed into the web based application

ConPlot [75]).

With the visualisation of membrane predictions (TopCons) and secondary

structure (PsiPred) for Mt2055, inspection of the enhanced ConKit output revealed

the possible presence of a re-entrant loop structure between residues 16–42 (Figure

48



Shahram Mesdaghi (962096127)

Figure 3.10: Precision profile for top RosettaMembrane model.
Precision score evaluation of the RosettaMembrane model in relation to the predicted

contacts at various contact cutoff values where L = sequence length (rounded down to the
nearest whole number of contacts). The 50% precision cut of is shown (blue line) as a visual

marker. A minimum of 70% contact satisfaction for the top L contacts would be suggestive of
good quality models [145].

Figure 3.11: Integration of new parsers into Conkit.
ConKit flow diagram showing prediction data types (left). Both the sequence data and

contact information are mandatory sets of data required to build the data visualisation map;
secondary structure (PsiPred format), membrane prediction (Topcons format), disorder

prediction (Iupred2a format) and individual residue conservation scores (ConSurf format are
optional data sets to be processed. New ConKit module scripts (middle) were constructed
and integrated into the ConKit software. New output with prediction data visualised on

diagonal (right) in the form of an interactive plot.

3.12); a predicted transmembrane region (red) with a break in the centre that

separates two distinct predicted helices (blue; from residues 16–25 and 28–42) in

contact with each other). The predicted contact map also highlights a second

re-entrant loop from residues 105–131, in accordance with the evidence that the

protein family resulted from a tandem duplication.
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Figure 3.12: Enhanced Mt2055contact map.
Mt2055 Contact map constructed using DeepMetaPSICOV predictions with TopCons

membrane prediction and PsiPred secondary structure predictions overlaid. The outer
diagonals show the TopCons membrane prediction (red regions being predicted TM helices,

green; inside cell, yellow; outside). The thin central diagonal is the secondary structure
prediction (orange, helix; blue, coil).

Such a prediction would more obviously be treated as indicative of some kind of

kink in the helix [150] but the explanation here is that these regions form re-entrant

helices. A similar contact map feature can be easily generated from three

transmembrane helices, however, this would result in a box feature of around 20x20

residues (and obviously reflected in the diagonal). Since the re-entrant loop is making

contact with itself this can only result in an approximately 10 residue antiparallel

feature on the contact map. Only approximately half of the transmembrane helix that

is packed with the re-entrant helix will be making contact with the re-entrant loop,

therefore, this would result in an additional 10 residue antiparallel feature in
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addition to a 10-residue parallel feature. Together with the diagonal these will

display an approximately 10x10 box feature (also reflected in the diagonal) on the

contact map rather than the 20x20 box feature that three transmembrane helices (1

parallel pair and two anti-parallel ones) would produce (Figure 3.13 ).

Figure 3.13: Re-entrant contact map.
Top: Three transmembrane helix bundle (right) with its respective contact map (left); bottom:

Re-entrant loop packed with a transmembrane helix (right) with its respective contact map
(left).

Similar contact map features, indicative of re-entrant loops packing against TM
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helices, can be seen clearly on the contact maps of other DedA proteins (data not

shown). The MSA in Figure 3.2 shows the relative positions of the re-entrant loops in

their respective sequences.

Examination of the equivalent data for Tmem41b as well as the yeast homologue

Tvp38 and two bacterial homologs YdjX and YdjZ revealed that all homologues

contain a core consisting of an amphipathic helix, re-entrant loop and

transmembrane helix in that order and inversely repeated (Figure 5.1).

(a) Predicted topology for Mt2055 (b) Predicted topology for Tmem41b

Figure 3.14: DedA predicted topology
a) Predicted topology for Mt2055 based on contact, secondary structure, membrane

amphipathic predictions; A1 – amphipathic helix 1; R1a (N-terminal half of re-entrant helix
1); R1a (C-terminal half of re-entrant helix 1; TM1- transmembrane helix 1; A2 – amphipathic
helix 2; R1a (N-terminal half of re-entrant helix 2; R2a (C-terminal half of re-entrant helix 2;

TM2- transmembrane helix 2. b) Proposed topology for Tmem41b; A1 – amphipathic helix 1;
R1a (N-terminal half of re-entrant helix 1; R1a (C-terminal half of re-entrant helix 1; TM1-

transmembrane helix 1; A2 – amphipathic helix 2; R1a (N-terminal half of re-entrant helix 2;
R2a (C-terminal half of re-entrant helix 2; TM2- transmembrane helix 2; with the presence of
two-additional TM helices compared to Mt2055; Grey TM helices are additional helices to the

core present in Tmem41b.

3.7 Advanced Modelling

Alternative modelling software was identified that was not bound to membrane

predictions and utilised a distance matrix approach rather than the use of the simpler

quantal contact matrix restraints. The modelling of Mt2055, Tmem41b and Yqja was

executed using a locally installed version of trRosetta [56] with default settings

(figure 3.15).

The Mt2055, Tmem41b and YqjA models had estimated TM scores of 0.633, 0.624

and 0.635 respectively, suggesting that they were likely to have captured the native
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fold of the family as a 0.5 cut off assumes generally the same fold [151]. An

all-against-all pairwise structural superposition of the models with DALI gave a

mean Z-score of 11.9 confirming their strong similarity. The satisfaction of predicted

contacts to validate the models (Figure 3.15) [63] was also used to assess model

quality. This showed that 80% of the top L predicted contacts (where L is the length

of the protein) were satisfied by the model contacts for both Mt2055 and YqjA and a

value of 60% was achieved for Tmem41b. The high contact satisfaction scores are

suggestive of good quality models [74].

Additionally, using ConPlot the superposition of the model contact map with the

predicted contact map visually highlights the how close in alignment the two sets of

contacts are (figure 3.16).

The models (Figure 3.15) confirmed the presence the predicted features: two

inversely symmetrical repeated units each possessing a re-entrant loop (orange)

packed with a TM helix (red). In addition to this, the models also revealed that each

repeating unit had a helix lying parallel to the membrane surface (green).

Further verification of local structures of the models was carried out. In order to

test for whether the membrane-parallel helices (green in Figure 3.15) were

amphipathic, an analysis of helical wheel diagrams for the fifteen residues preceding

the putative re-entrant loops was performed with HELIQUEST [116]. The

quantitative measures of the hydrophobic moment for the regions being analysed

(Figure 3.17) support that they are indeed amphipathic helices. The hydrophobic

moments ranged from 0.298 to 0.546 on a scale of 0-1.

The predicted presence of the amphipathic-re-entrant loop-TM helix features in

DedA domain proteins prompted a desire to map sequence conservation on to the ab

initio models. Using the ConSurf server to perform the mapping of sequence

conservation onto the query models, it revealed that the re-entrant loop sequences are

highly conserved. The high sequence conservation of re-entrant loops indicate that

they are likely to be functionally and/or structurally important (Figure 3.18).

Re-entrant loops were initially reported in the early 1990s in the cardiac Na+/Ca2+
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Figure 3.15: trRosetta Models
(a) trRosetta model of MT2055 - amphipathic helix (green) and a re-entrant loop (orange)
packed with a TM helix (red) (b) Superposition of DMP predicted contact map for Mt2055

and contacts from the Mt2055 model. Black points are matching contacts, red are mismatches
and grey are contacts predicted but not present in the model. Diagonal is a visual

representation of transmembrane helix and secondary structure prediction – central diagonal
is the visualisation of the TopCons transmembrane prediction (orange being a TM helix) and

the outer diagonals are the visual representation of the PsiPred secondary structure
prediction (pink – alpha helix and yellow – coil). Red boxes highlight the re-entrant loop and
TM helix packing contact map signature. c) trRosetta model of Tmem41b only showing the
conserved structural domain (residues 39-217) d) trRosetta model of YqjA only showing the

conserved structural domain (residues 14-176). e) Proposed topology

exchanger [152]. Since then re-entrant loops have been detected in other membrane

transporters and channels such as aquaporins [153], potassium channels [154] and

chloride channels [155]. The sequence-structure relationships of re-entrant loops

have been studied before [136] revealing that while TM helices have an even
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Figure 3.16: ConPlot Analysis
Superposition of DeepMetaPSICOV predicted contact map with contacts present in the

structure modelled with DMPfold. Black points indicate matches between the two maps, red
points indicate contacts present in the model but not predicted and grey points are contacts

predicted but not present in the model. Central track 0 in the diagonal is used for the
TopCons transmembrane prediction (blue—outside cell, yellow—inside cell, light

red—predicted transmembrane helix). PsiPred secondary structure prediction is visualized
by the tracks +1 and -1 adjacent to the centre of the diagonal (red—helix, green—coil). Tracks

+2 and -2 represent ConSurf sequence conservation prediction (blue gradient, darker
blue—more conserved, lighter blue—less conserved). Outermost tracks +3, -3, +4 and -4 were

added using a custom file in which the location of the suspected re-entrant loops is
highlighted in purple: between residues 16–42 and residues 105–131.

distribution of hydrophobic residues, re-entrant loops show an uneven distribution.

Indeed, examination of the putative re-entrant loop sequences identified an

inconsistent hydrophobicity distribution in both putative re-entrant loops of the

homologues studied here (Figure 3.19) with the C-terminal side being more

hydrophilic. Interestingly it is the residues around the turning points of the

re-entrant loops that more conserved (Figure 3.18).

Assessing the conservation across the sequence of PF09335/PF06695 homologues,

ConSurf highlights regions of strong conservation. The strongly conserved regions

are located in at the turning points of the re-entrant loops and the mid-points of the

tranmembrane helices that are packed against the re-entrant loops. These regions
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Figure 3.17: Helical wheel diagrams generated using the HELIQUEST server
Hydrophobic residues are shown in yellow, serine and threonine in purple, basic residues in
dark blue, acidic residues in red, asparagine and glutamine in pink, alanine and glycine in

grey, histidine in light blue and proline in green circles. Arrows represent direction and
magnitude of the hydrophobic moment and residue marked with ‘N’ is the N-terminal end of

the putative amphipathic helix with the residue marked ‘C’ being the C-terminal end. (a)
Mt2055 putative amphipathic helix 1 (hydrophobic moment of 0.298). (b) Mt2055 putative
amphipathic helix 2 (hydrophobic moment of 0.546). (c) Tmem41b putative amphipathic

helix 1 (hydrophobic moment of 0.471). (d) Tmem41b putative amphipathic helix 2
(hydrophobic moment of 0.420). (e). YqjA putative amphipathic helix 1 (hydrophobic

moment of 0.295). (f) YqjA putative amphipathic helix 2 (hydrophobic moment of 0.396).
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Figure 3.18: ConSurf conservation mapping
trRosetta models with ConSurf conservation mapping for (a) Mt2055 (b) Tmem41b (c) YqjA.

Conservation is shown as a spectrum from purple (highly conserved) to blue (not conserved).

come together in three-dimensional space.

In an effort to locate the presence of any functional residues the ConSurf data at

the regions of highest conservation were examined. As expected from the sequence

analysis, the conservation data identified the presence of proline residues at the

‘turning point’ of all putative re-entrant loops in the MSAs. Thus, the conserved

proline identified above is suggested by the models to have a structural role

providing the tight turn required for the approximate 20° (figure 3.20) angle making

up the re-entrant loop.

3.8 Clustering of re-entrant loops

The presence of re-entrant loops and the high density of conserved residues within

them prompted an examination of experimentally characterised re-entrant loops in

the PDBTM database. A total of 56 non-redundant re-entrant helices were identified

(see Methods). All 56 were clustered with the putative re-entrant loops from Mt2055

and four PF09335 homologues (Tmem41b, Tvp38, YdjX and YdjZ) using relative
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Figure 3.19: Re-entrant hydrophobic profiles
Smoothed hydrophobicity profiles for putative re-entrant loops of Mt2055 and Tmem41b.

Smoothed the hydrophobicity distribution using a sliding window of three residues. For each
position the mean hydrophobicity [156] of the three positions covered by the window is

calculated and assigned to the position at the center of the window. Positions are numbered
by assigning the central residue (proline; see later) as 0.

E-values derived from an all-against-all BLAST run in CLANS [137] with a 0.1

p-value cut-off. The largest cluster contained 14 sequences, of which four were

putative re-entrant sequences from the query proteins (Mt2055 C-terminal re-entrant,

YdjX C-terminal re-entrant, Ydjz N-terminal re-entrant and YdjZ C-terminal

re-entrant), seven (3org, 5tqq, 3nd0, 3det and 6coy) were re-entrant loop sequences

from Cl-/H+ antiporters, one was from a boron exchanger (5l25), one from an

electron transporter (2n4x) [albeit classified as a member of the lysine exporter

superfamily [157]] and one from a mechanogated channel (5z10).

Analysis of the Cl-/H+ antiporter structures show that they contain a similar
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Figure 3.20: Re-entrant angle measurements
Tight re-entrant turn of around 160° a) Mt2055 R1 b) Mt2055 R2 c) Tmem41b R1 d) Tmem41b

R2. Blue is C-terminal side of re-entrant loop, pink is N-terminal side of re-entrant loop,
yellow is position of the proline. It can be seen that the proline residue is slightly off set from
the turning point in some re-entrant loops possibly as a result of inaccuracy in the modelling.

inverted repeat as we infer for the DedA homologues, resulting in pseudo-2-fold axis

of symmetry running along the membrane [158]. Again similarly, the Cl-/H+

antiporter 3orgA also contains the amphipathic helices on the N-terminal side of the

re-entrant loops. The fact that the presence of the amphipathic helices is restricted

only to 3orgA and not found in all homologues suggest that these features are not

essential for function. A similar distribution of conservation is observed between the

putative pore region of Tmem41b and the Cl-/H+ antiporter 3orgA (Figure 3.21(d)).
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Analysing the sequence of all re-entrant loops of the top cluster (comprising

members of the Tmem41b family and the transporters) revealed that they all contain

a proline at the turning-point.

A second clustering exercise was implemented where all re-entrant loops in

addition to the proceeding 30 residues were extracted from a non-redundant

re-entrant loop containing subset of the PDB. The resulting 193 library entries,

supplemented with the re-entrant loop features from the ab initio models, underwent

an all-against-all structural alignment utilising Dali. The Z-scores for these

alignments were then used to cluster all the structures. This screen resulted in the

Mt2055, Tmem41b and YqjA re-entrant loop feature structures clustering with the

re-entrant loop features of Cl-/H+ antiporters; this was a similar result to the original

sequence-based clustering; as expected all six re-entrant structures from the query

models clustered together. The CLC transporter re-entrant structures of 3orgA

(re-entrant 1 and re-entrant 2), 7bxu and 5tqq also clustered with the queries.

Additionally, the re-entrant structure from an Undecaprenyl pyrophosphate

phosphatase (UppP) (6cb2) also clustered with the queries. UppP is an integral

membrane protein that recycles lipid and has structural similarities to CLC

transporters [159]. Contact maps derived from the PDB files of CLC and UppP

structures show the contact map signature corresponding to the re-entrant/TM helix

structural feature (data not shown). Interestingly, the UppP is more similar to the

PF09335 family being only 271 residues in length and having only 6 TM helices with

UppP being involved in phospholipid trafficking; a function possibly related to

autophagosome construction which Tmem41b has been shown to be involved with.

In order to test whether 6cb2 predictions would generate the same contact map

features as PF09335 and PF06695 homologues, a TopCons [44] topology prediction

was used to compare the predicted membrane topology of 6cb2 to its actual topology.

This exercise resulted in TopCons predicting false positive transmembrane helices at

the positions of the re-entrant loops, as what was proposed for Tmem41b and
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Figure 3.21: 3orgA Analysis
(a) Left - Predicted Contact map with repeating units highlighted in yellow boxes, contact

map signature of re-entrant loop packed with TM helix in red boxes.; Right - The
Experimental Contact map obtained from the PDB structure with repeating units highlighted
in yellow boxes, contact map signature of re-entrant loop packed with TM helix in red boxes.
(b) Actual 3orgA topology; grey: TM Helices that are additional to the core; red: TM helices

contributing to the formation of the core; orange; re-entrant loops contributing to the
formation of the core; green: amphipathic helices contributing to the formation of the core. (c)

The 2-fold pseudo symmetry of the amphipathic/re-entrant loop/TM helix core inverted
repeat structure of 3orgA with membrane positions shown as grey planes obtained from

PDBTM.(d) ConSurf conservation mapping on to the core inverted repeat structure of 3orgA.
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homologues. To investigate further, visual representations of the membrane topology

from TopCons and the PsiPred secondary structure prediction were plotted along the

diagonal of the contact prediction for 6cb2 (Figure 3.22). This clearly highlights that

the N- and C- halves of the TopCons false positive predicted transmembrane helices

in question were making contact with each other (by a length of around 10 residues).

Additionally, the secondary structure plot shows an interruption at the halfway point

of the predicted transmembrane helices which would account for the abrupt change

in direction of helix in the membrane.

A recent study has identified key residues (Figure 3.23) in the E. coli DedA protein

YqjA that, when replaced in site directed mutagenesis experiments, resulted in

properly folded (membrane localized) but non-functional proteins unable to

complement alkaline pH sensitivity of E. coli YqjA mutant and antibiotic sensitivity

of YqjA/YghB double mutant [135]. Highlighting the essential residues (E39, D51,

R130 and R136) on the YqjA model is striking as they come together in

three-dimensional space with the N-terminal side of the first re-entrant possessing

E39 and the C-terminal side possessing D51. R130 and R136 are similarly positioned

on the second re-entrant loop (Figure 3.23). Re-entrant loops are known to form

pores and here we have two proton-titratable residues (E39, D51) in close proximity

to essential basic residues (R130 and R136) within a putative pore. This

three-dimensional arrangement of key residues could serve a role in the coupling of

the protonation status with the binding of a yet to be characterised substrate as is

postulated for the multi-drug H+ antiporter MdfA [160] where these same residues

are located inside a central cavity.

3.9 Model Stability

As it can be seen on Figure 3.21(c) that 3org contains additional helices that surround

the interfacial helix - re-entrant loop - transmembrane motif. Indeed 3org forms a

dimer, where the dimer interfaces are formed by the re-entrant loops and the
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Figure 3.22: 6cb2 Contact map
Contacts for 6cb2 (black points) and a visual representation of the TopCons topology

prediction (green -outside, red – TM helix, yellow-inside, yellow boxes are the re-entrant
loop-TM-helix ‘signature’). Cross-referencing the first re-entrant contact map feature with the

TopCons topology prediction it is clear that the TopCons topology must be wrong; the first
TopCons predicted TM helix cannot be making contact with a region out-side of the

membrane. Indeed, examination of the crystal structure reveals that the contact feature
highlighted does in fact result from a re-entrant loop packed with a TMhelix .

additional transmembrane helices that surround this core. This arrangement ensure

the lipid embedded structure is energetically stable [134]. In the proposed model for

the PF09335 and PF06695 homologues, the re-entrant loops are not wrapped by other

helices thus lipids may interact them; this could be energetically unfavorable.

However, the shielding of the re-entrant loops produced by this wrapping could be

achieved in Tmem41b and other family members by a similar dimerisation as seen in
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Figure 3.23: Annotated Yqja model
Essential residues determined by SDM experiments highlighted in pink on a truncated YqjA

model

3org. Indeed, homodimers and higher oligomers have been detected experimentally

in E. coli YqjA [161, 162]. Furthermore, submission of all three of the final models to

the DeepHomo server [80] reveals the clustering of moderately strong contact

predictions (with a reliability > 0.5) that are not satisfied by the 3D monomeric

structure and hence are consistent with homomeric intermolecular interactions being

conserved across the family (figure 3.24).

3.10 AlphaFold2 Modelling

The recent release of AlphaFold2 (AF2) [79] provided another opportunity to model

Tmem41b and related proteins. AF2 constructed models that support the trRosetta

monomer predictions (Figure 3.25d); aligning each of the trRossetta models for

Mt2055, Tmem41b and YqjA with their respective AF2 counterparts yielded Z-scores

of 18.4, 21 and 19.4 respectively. Figure 3.25 provides a visual insight of how the

DedA domain modeling evolved during the period of this PhD; displaying the

output models from the three incarnations of Rosetta to an AF2 model.
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(a) DeepHomo results for Mt2055 (b) DeepHomo results for Tmem41b

Figure 3.24: DeepHomo Results
The figure depicts two identical monomers displayed side-by-side, highlighting two

corresponding residues involved in a contact. Summary of rankings and residue pairs for the
top 10 contacts are displayed. The predicted scores range from 0.0 to 1.0, where higher scores

indicate a higher likelihood of contact between the residue pairs.

Attempts to model homodimers of Mt2055 utilising the multimer mode of AF2

proved unsuccessful; chains of the output models did not come together to form an

interface.

AF2 also gave rise to the opportunity to make structural predictions for another

prominent member of the PF09335 family; Vmp1. Attempts to model Vmp1 with

Rosetta methods did not result in sensible models, even the DedA domain could not

be modeled within the context of Vmp1. Vmp1 is a 406 residue protein and

Tmem41b forms complexes in vitro and in vivo with this other possible Atg protein

[163]. Molecular interaction of Tmem41b is not detected with other Atg proteins.

Tmem41b knockout cells exhibit inhibition of autophagosome formation and

accumulation of lipid droplets [121] [164] Phenotypically Vmp1 knockout cells (KO)

resemble Tmem41b KO cells indicating functional redundancy. Exogenous

expression of the respective protein in the knockout cells restores function and the

overexpression of Vmp1 in Tmem41b knockout cells restores autophagic flux with

the reverse not being true [121].

Examination of the Respre predicted contact map for Vmp1 (figure 3.26) predicts

there is a bundle of three transmembrane helices on both the N-terminal and
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(a) Rosetta ab initio
Mt2055 model

(b) RosettaMembrane
Mt2055 model

(c) trRosetta Mt2055
model

(d) AF2 Mt2055 model

Figure 3.25: AlphaFold2 Modelling
Rainbow spectrum: N-terminal blue to C-terminal red.

C-terminal sides of the conserved DedA structural domain. Analysing the contact

features of the DedA domain indicates an atypical pattern when comparing the

equivalent region of the contact maps to other PF09335 homologues; the internal

symmetry is broken. In the case of the C-terminal side of the DedA domains of Vmp1

the contact map can be interpreted in line with other PF09335 homologues displaying

the common features as expected. However, the contact map features for the

N-terminal symmetric half show a thirty-residue insertion between the first

re-entrant loop and the proceeding transmembrane helix. Here it can be seen that the

TM helix simultaneously makes contact with the insertion and the C-terminal half of

the re-entrant loop. The insertion is highly conserved; this can be seen by the
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ConSurf conservation mapping on the diagonal of the Vmp1 contact map. The

existence of this insertion could explain why Vmp1 is able carry out its function in

the absence of Tmem41b while the reverse is not possible; the insertion may be a

structurally essential feature not present in Tmem41b. The experimental evidence

suggests that Vmp1 and Tmem41b oligomerise. It is possible that both

homo-oligomers and hetero-oligomers form but only those where Vmp1 is present

result in a functional protein.

Modelling of Vmp1 using AF2 produced a model where most regions have a high

pLDDT scores (Figure 3.28). The model reveals three transmembrane helices

upstream not in contact with each other and one downstream from the DedA

domain. This is in contrast to the predicted contact map where three transmembrane

bundles are expected on both sides of the DedA domain. The familiar DedA domain

features are clearly visible but with some differences. Firstly, the N-terminal side

amphipathic helix of the DedA domain is missing and an additional amphipathic

helix is present on the C-terminal side of the DedA structural domain. Secondly there

is a loop region between the first re-entrant loop and the proceeding transmembrane

helix, placing this region at the entrance of a putative channel. The loop region

corresponds to the insertion highlighted in the examination of the contact map,

however, as opposed to the interpretation of the predicted contact map, in the AF2

model the loop insertion is not in contact with the proceeding transmembrane helix

as the contact map suggested (Figure 3.27).

The discrepancy between the model and the interpretation of the ResPre predicted

contact map can be explained by the fact that if the protein exists in multiple

conformations, the contact map would be a superposition of all the alternative

conformations; the AF2 would be a representation of one of these conformations.

Additionally comparing predicated contact maps derived from alternative methods

show that there is a lack of consistency between the various algorithms being used to

generating co-variance data for Vmp1.
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Figure 3.26: Enhanced contact map for Vmp1
Vmp-1 contact map constructed using DeepMetaPSICOV with additional information

overlaid on the diagonal. The outer diagonals show the TopCons membrane prediction (red
regions being predicted TM helices, green; inside cell, yellow; outside). The thin central

diagonal is the secondary structure prediction (orange, helix; blue, coil). Additionally, there is
a blue spectrum diagonal which indicates levels of conservation from ConSurf [108] (the

darker the blue the higher the level of conservation). Also, the grey (ordered) and lime green
(disordered) diagonal utilises disorder predictions from IUPRED2a [165]. R1 is the

N-terminal re-entrant loop; R1b is the C-terminal half of the N-terminal re-entrant loop.

Further structural examination of the loop insertion modelled by AF2 was limited

as unfortunately the local quality pLDDT scoring for this region is low. ConSurf
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Figure 3.27: Topology of Vmp1 derived from the AF2 model
Grey: Helices that are additional to the established DedA core; red: TM helices

belonging to the established DedA domain; orange; re-entrant loops belonging to the
established DedA domain; green: amphipathic helices belonging to the established

DedA domain; Blue: Highly conserved DedA domain loop insert. a) Vmp predicted
topology derived from predicted contact map analysis. The presence of the

amphipathic helix cannot be extrapolated from the predicted contact map, it’s
presence here is assumed based on helical secondary structure prediction and

reference to the DedA domain topology to homologues. The absence, compared
other members of the DedA superfamily, of the N-terminal side amphipathic helix is
assumed to to the lack of helix secondary structure allocation in this region. b) Vmp

predicted topology derived from predicted AF2 structure analysis.

mapping of residue conservation for the insertion loop shows highly conserved

regions along this structure. HHpred was used to query the PDB with the sequence

making up the length of the mysterious loop, however, no hits were reported.

Examination of the N-terminal half contact map features of the AF2 Vmp1 model

does show poor correlation with the predicted contact of the same region (Figure

3.29). This indicates the N-terminal half may not be a valid structural prediction.

Vmp1 is part of the DedA family but with an atypical N-terminal domain. AF2 uses

the MSA to aid the modelling; any deep MSA will contain other members of the

DedA family thereby maybe introducing noise into the N-terminal domain. The
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Figure 3.28: Vmp1 AF2 model with ConSurf conservation mapping
Arrow indication to conserved loop region.

introduction of this noise could impact on modelling in this region. The introduction

of noise through generation of deep MSAs built using a metagenomic database

(during a separate piece of research - data not shown) has been shown result in

contact signal loss and consequent decrease in model accuracy.

3.11 Potential homology between the DedA family and

ABC transporters

Performing a HHpred search with the Tmem41b sequence against the full PDB

results in a strong hit against the Type I ABC transporter 3d31C. The hit has a 90%
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Figure 3.29: Vmp1 AF2 model contact map
Red boxes highlight missing three-helical bundles present on predicted contact map. Green

box highlights N-terminal half of DedA domain where the AF2 model contact features do not
correlate with the predictions.

probability and is across the whole length of the sequence. This finding along with

the ABC transporter structural hit with models where the re-entrant loop is forced

into a transmembrane conformation points to the possibility that DedA proteins

maybe related to ABC transporters. A similar link has been suggested for the

transmembrane autophagy protein Atg9 where the N- and C- terminal domains

share membrane and tertiary topology (i.e. have a repeat) with sequence similarity

identified locally around proline residues in the re-entrant loops and sequence

similarity to N- terminal region of the transmembrane domains of T1 ABC exporters

[166].

A comparison of the proposed topology of Tmem41b with the topology of 3d31C

(figure 3.30) does indeed support an evolutionary link between the two where one

side of the re-entrant loop has flipped forming a straight transmembrane helix or

alternatively one half of the transmembrane helix has flipped forming a V-shaped

re-entrant loop. This ’flipping’ has been shown previously in CPA/AT transporters
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[167].

Figure 3.30: Comparison of topologies of Tmem41b and 3d31C

However, analysis of the HHpred alignment (figure 3.31) does reveal that the

structural features do not correspond with each other in sequence indicating that the

HHpred hit was a chance hit.

Figure 3.31: Annotated HHpred alignments of Tmem41b and 3d31C
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3.12 Conclusions

Sequence, co-variance and ab initio modelling analyses show that the Pfam PF09335

and PF06695 domains are distantly homologous. These domains contain a structural

core composed of a pseudo-inverse repeat of an amphipathic helix, a re-entrant loop

and a TM helix. All PF09335 homologues contain this central core with additional

TM- helices flanking either side.

Since the publication of this material [9], the predictions made during this

investigation in regard to the presence of re-entrant loops have been experimentally

verified by cysteine accessibility method (SCAM) analysis for both Tmem41b [168]

and Yqja [162]. The presence of re-entrant loops in a transmembrane protein strongly

indicates a transporter or pore functionality since this structural feature has, hitherto,

only been found in proteins of this kind [136] . The structural similarities between the

DedA proteins and the Cl-/H+ antiporters raise the possibility that the families

studied here are, in fact, unsuspected distant homologues having several structural

features in common. In that regard it is relevant to recall a hypothesis that DedA

proteins are H+ antiporters as concluded from site-directed mutagenesis (SDM)

experiments [169] [170].

Querying the models against the PDB using DALI did not yield any significant

hits. However, analysis of the prediction data revealed two features of DedA proteins

that independently suggest that they are secondary transporters: both an inverted

repeat architecture and the presence of a re-entrant loop, which are both

independently and strongly associated with transporter function [158] [136].

Additionally, the fact that DedA proteins show structural similarities with H+

antiporters indicate that these proteins may also couple substrate transport with an

opposing H+ current. Indeed, the YqjA homologue also contains strategically placed

residues known to be involved in H+ antiporter activity. The ab initio models show

that the essential residues come together in the region that would be buried in the
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membrane potentially forming a substrate chamber consistent with the transport of a

specific substrate. Further research needs to be carried out to determine what this

substrate is and confirm the mechanism of transport.

The investigation into Tmem41b demonstrates how covariance prediction data

have multiple roles in modern structural bioinformatics: not just by acting as

restraints for model making and serving for validation of the final models but by

predicting domain boundaries and revealing the presence of cryptic internal repeats

not evidenced by sequence analysis. Furthermore, contact map features were

characterised and proven to be a re-entrant helix signal. This ability to characterise

contact map features in relation to re-entrant loops, was very exciting at the time as it

gave the possibility to allow detection of this feature in other protein families by

contact map analysis. However, the acceleration in the advancement of ab initio

modelling techniques such as AF2 has to some extent superseded the idea of using

contact map features to predict the presence of structural features in uncharacterised

proteins from contact maps; AF2 model databases can now be mined with query

structures using methods like DALI, making the search for the contact map features

obsolete.
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4 | Modelling of Atg9

4.1 Background

The use of covariance methods to successfully predict key structural features that are

possessed by the autophagy transmembrane protein Tmem41b and its DedA

homologues led to the identification of another transmembrane autophagy protein to

potentially structurally characterise; Atg9. Like Tmem41b and Vmp1, Atg9 has been

shown to function in the initiation stage of autophagasome formation at the

endoplasmic reticulum [171] and its structure and molecular physiological role was a

mystery.

In autophagy, Atgs are proteins involved in autophagosome construction. Atg9 is

the only transmembrane Atg protein and is the first protein of the core autophagy

machinery to arrive at the site of autophagosome construction. Atg2 receives lipids

from the endoplasmic reticulum (ER) and relays them to Atg9 which moves lipids

between outer and inner layers of liposomes resulting in growth of the phagophore

which develops into an autophagosome [172, 173]. Atg9 deficiency results in

phenotypical features including abnormal ER expansion [174], cellular growth

defects and impaired phagocytosis [175]. One copy of Atg9 is possessed by most

organisms, however, there are examples of species where Atg9 has not been

identified at all for example in Alveolata species [176, 177]. There are two human

Atg9 homologues; Atg9a and Atg9b. Atg9b is restricted to fetal tissues as well as

being present in placental tissues and tissues of the testes [178]. Atg9b has also be
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identified in certain cancer cell lines [179, 180]. Atg9a is the predominant form and

was the subject of the attempted structural characterisation described in this chapter.

Atg9 also functions as a regulator of the innate immune system where it attenuates

the actions of STING thereby depressing the immune PRR/TBK1/IRF3 axis pathway

[181].

Previous studies have shown that Atg9 is a multi-spanning transmembrane

protein and have indicated that both the N- and C-termini are cytosolic with

predictions that Atg9 possesses six transmembrane helices [182].

4.2 Specific Methods

4.2.1 Transmembrane prediction

TMHMM [41] was used to predict transmembrane helix regions of Atg9. Although

other methods such as TopCons are known to be more accurate [44], TMHMM

reports the probability that a region is in fact transmembrane rather than outputting

a binary ’yes/no’ designation. The probability reporting feature of TMHMM was

important here as there was the possibility of the presence of an unsuspected

transmembrane helix within the accepted topology of Atg9. TMHMM uses

algorithms for parameter estimation and transmembrane helix region prediction by

utilising hidden Markov models (HMMs) describing hydrophobicity, charge bias,

helix lengths, and grammatical constraints.

4.2.2 Homology modelling

The potential homology between Atg9 and the transmembrane domain of Type I

ABC transporters was used to construct homology models which provided

potentially useful 3-D structures. The software Modeller [101] was used to predict

the structure for Atg9 based on its sequence alignment with the transmembrane

domain of two HHpred hits of Type I ABC transporters. Modeller used the sequence
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alignments as an input in addition to the atomic coordinates of the transmembrane

domain of Type I ABC transporters, and a script file. The script file loaded the

’AutoModel’ class, created an ’AutoModel’ object, and set the parameters to guide

the model building procedure. The script also named the ’alnfile’ that contained the

Atg9-ABC alignment (in the PIR format) as well as defining the known ABC

structure in the alignment file. The last line of the script file called the make method

and constructed the models. The output of Modeller was a calculated model

containing all non-hydrogen atoms. The validity of the models were evaluated by

calculating the ResPre [183] predicted contact satisfaction for the top L contacts.

4.2.3 Screening PDB for ABC Transporters

A python script was written that search for and identified the key words ’ABC’ or

’CASSETTE’ in the title line of each of the PDB files of the PDB. This resulted in 51

ABC structures being detected and being the approximate number of ABC

transporters present in the PDB reported in the literature [81, 184].

4.3 Sequence Analysis

Initial HHpred screening of the Atg9 sequence against the PDB [185] using HHpred

[86] reveals strong hits for the transmembrane domain (TMD) region with a number

of several ABC transporters with the alignments covering the putative

transmembrane domain of Atg9. The HHpred probabilities ranged from 50-20%.

Additionally, all the ABC hits clustered at the top of the probability ranked

results.

ABC transporters are a large superfamily [186] of integral membrane proteins that

can be subdivided into a number of classes that show a high level of conservation in

their nucleotide binding domains (NBDs). The conservation of the NBD is in contrast

to the transmembrane domain regions where great diversity is present in terms of

both sequence and structure [186].
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Table 4.1: ECOD ABC Comparison

Domain ID X Group Name H Group Name T Group Name F Group Name Protein Name
e5w81A4 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane Cystic fibrosis TM conductance regulator
e4q4hA1 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane ABC transporter
e4f4cA3 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane Multidrug Resistance Protein PGP-1
e3b5xA3 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane LIPID A Export ATP-binding/Permease Protein MSBA
e5ko2A4 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane Multidrug resistance protein 1A
e5u1dA3 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane Antigen peptide transporter 1
e6bl6A2 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane Lipid A export ATP-binding/permease protein MsbA

In order to assess the similarity of the transmembrane domains from the cluster of

HHpred Atg9 ABC transporter hits, a Dali [111] all-against-all comparison for these

structures was performed. The resulting Z-scores ranged from 19.5-31.3, showing

clear structural similarity between these hits (figure 4.1) supporting the idea that the

Atg9 ABC transporter hits are probably not chance occurrences.

Figure 4.1: Structural Alignments of ABC Transporter Hits

Querying the ABC transporters identified by HHpred against the Evolutionary

Classification of Domain Boundaries (ECOD) database [187] indicated that all the

ABC transporter hits were of Type 1 (Table 4.1).

Type 1 ABC transporters have transmembrane domains that are MetI-like. The

transmembrane domains of some of this group of ABC transporters are separate

proteins [188] from the nucleotide binding domain: this is exemplified by the

methionine MetNI ABC transporter. This is in contrast to other type 1 ABC

transporters such as ModBC and MalFGK where the NBD and TMD are one complete

protein; these are generally larger and their subunits contain six transmemrane
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helices. The homologous link between the two types of type 1 ABCs is recognised as

the six helices correspond to the MetNI transporter where each MetI subunit is

organised around a core of five transmembrane helices. Utilising TMHMM, the Atg9

sequence was used to predict the number of TM helices (figure 4.11b). TMHMM

predicted six transmembrane helices, in line with type 1 ABC TMDs. It should be

noted that in addition to the strong predictions for the six TM helices, there was a low

probability transmembrane prediction signal around residue 250.

Figure 4.2: TMHMM Prediction for TMD of Atg9

The combination of the HHpred probability scores and a lack of other good

transmembrane protein matches in addition to the transmembrane topology

prediction indicates that the Atg9 transmembrane region could very well have a Type

1 ABC transporter transmembrane domain - like fold.

To validate an ABC transporter-like fold for the putative transmembrane region of

Atg9, the identification of any conserved key residues would be useful. Most ABC

are transporters (importers or exporters) and all possess a nucleotide binding domain

(NBD), at which hydrolysis of ATP provides the energy to drive the active transport.

Atg9 does not contain the NBD sequence motifs and therefore obviously lacks NBD

so unless it interacts non-covalently with an ATPase, Atg9 is not at least a

conventional ABC transporter. Conservation across the transmembrane domains of

ABC transporters whose presence could be cross-referenced against Atg9 to validate

the TMD ABC matches is not possible as the TMDs of the ABC superfamily are very

diverse. Relating the observation of Atg9 having an ABC-like fold to its possible

function is therefore not straightforward and cannot be accomplished by sequence
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analysis alone. Therefore, it was determined that three-dimensional modelling of

Atg9 would be performed. If modelled accurately, an ABC-like fold may be revealed,

validating the ABC transporter link.

4.4 Homology Modelling

Modeller was used to construct a homology model of the putative transmembrane

domain of Atg9. The transmembrane domain of the top two HHpred hits were used

as templates; 5w81 and 4q4h; with sequence similarities of 23% and 24% respectively.

The sequence alignment was generated using ClustalW [189].

5w81 is the anion channel cystic fibrosis transmembrane conductance regulator

CFTR. As with standard ABC transporters, CFTR is an active pump powered by ATP

hydrolysis and possesses two transmembrane domains and two nucleotide-binding

domains. CFTR is, however, atypical in that the channel gating in addition to ATP

hydrolysis also requires the phosphorylation of a cytosolic regulatory domain. CFTR

has two transmembrane and nucleotide-binding domains and is a single protein with

each transmembrane domain containing six transmembrane helices [190]. Figure 4.3

is the output 5w81 template homology model.

Figure 4.3: Homology model for Atg9 (5w81 template)

A second homology model was constructed utilising 4q4h as a template. 4q4h is

the crystal structure of TM287/288 ABC exporter and, like 5w81, possesses six

transmembrane helices in each TMD [191]. Figure 4.5 shows this output homology
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(a) Atg9-5w81 Homology Model Contact Map
(b) Superposition of Atg9 ResPre pre-
dicted contacts with the Atg9-5w81 ho-
mology model

(c) Precision profile of the Atg9 5w81 homology model

Figure 4.4: Atg9 5w81 Homology Model Quality Determination

Figure 4.5: Homology model for Atg9 (4q4h template)

model.

Performing the predicted contact satisfaction analysis [63] for both homology
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(a) Atg9 4q4h Contact Map
(b) Superposition of ResPre predicted con-
tacts with 4q4h homology model

(c) Precision profile of the Atg9 4q4h homology model

Figure 4.6: Atg9 4q4h homology model quality determination

models revealed a poor contact satisfaction profile indicating that the correct fold of

Atg9 was not achieved through the homology modelling exercise (figures 4.4c and

4.6c). In an effort to determine whether there were any local regions where the

modelling had captured the correct fold, the contact maps derived from the ResPre

[183] predictions and the homology models were superposed (figures 4.4b and 4.6b).

The superpositions did hint at common features (Figures 4.4b and 4.6b). The figures

use the homology model as the reference structure; grey points are homology model

contacts not present in the predicted contact map while black points are contacts

present in both model and prediction; red points are contacts present in the

prediction but not in the model. Analysis proved difficult; it was problematic to
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ascertain whether the contact map features were by virtue of alpha helical contacts

and therefore not indicative of homology or whether local structural features had

actually been actually correctly folded.

4.5 Ab initio Modelling

The unsuccessful Atg9 homology modelling trial led to an attempt to construct ab

initio models for Atg9 in an effort to test the hypothesis that Atg9 possesses an

ABC-like fold. A metagenomics-enriched database was employed to obtain as

accurate as possible covariance-based contact predictions. The use of the

metagenomics database to build the MSA for Atg9 was successful in raising the Neff

from 438 (using Uniprot) to 843 for the whole protein. The sequence coverage profile

showed that the number of sequences in the MSA covering the C-terminal side after

position remain low (Figure 4.7). The boundary at position 500 represents the end of

the first domain; indeed, HHpred alignments of Atg9 show the Type I ABC

transporters transmembrane domains matching with this first putative domain.

Calculating the Neff values for this first domain gave values of 554 when using

Uniprot and 1024 when utilising the metagenomics database. JackHMMER [88] was

then used to generate the MSAs and ResPre [94] to make the contact predictions

based on the metagenomics enhanced MSAs for the putative transmembrane domain

of Atg9. The predicted contact information was then used as restraints to construct

models using both Rosetta Ab initio and RosettaMembrane protocols. TopCons

transmembrane predictions were also used as restraints for RosettaMembrane model

building. One thousand models of each were constructed and each of the thousand

were clustered using Spicker; the centroid of the largest cluster was selected as the

top model. RosettaMembrane models contained a number of larger clusters with the

maximum cluster size being 200 and the smallest cluster being 68. This is in contrast

to the clustering of the Rosetta Ab initio models where cluster sizes were much

smaller with the maximum cluster size being five and the smallest clusters being only
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two, indicating that the output models did not converge on a consensus energetic

minimum.

(a) Atg9 Uniprot MSA coverage (b) Atg9 metagenomic MSA coverage

Figure 4.7: Atg9 MSA Sequence coverage profiles

The output models from the RosettaMembrane flavour appeared more plausible

compared to the outputs from Rosetta Ab initio; these models possessed helices

packed together in such a way that they could conceivably sit in a membrane

bi-layer. Indeed running the top model against the PDB using DALI did result in

three ABC transporter hits albeit of the Type II class; 6quz-D (z=3.9), 2lw1-A (z=5.4),

and 4MRN-B (z=6). Despite the fact that the resultant RosettaMembrane models

appeared visually promising and good PDB structural hits with ABC transporters,

quantitative analysis of both the Rosetta Ab initio and the RosettaMembrane

structural predictions resulted in poor precision scores (Figure 4.8) indicating that the

correct fold had not been predicted [74].

4.6 Contact Map Analysis

Efforts to obtain evidence of Atg9 and Type I ABC tranporter transmembrane

domain homology independent of the HHpred results using homology and Ab initio

modelling did not yield convincing data. In the case of Ab initio modeling this was to

be expected as trying to make accurate structural prediction for a 500 residue protein

was, at the time, uncommon as large complex proteins present a convergence

challenge for Ab initio structure prediction (Figure 4.18). The idea of successful Ab

initio modelling was relying heavily on the contact predictions acting as restraints.

Knowing that the contact predictions are very reliable an alternative tool was
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(a) Rosetta Ab initio
model of Atg9 TMD

(b) Precision profile of
Rosetta Ab initio model
of Atg9 TMD

(c) RosettaMembrane
model of Atg9 TMD

(d) Precision profile of
Rosetta Ab initio model
of Atg9 TMD

Figure 4.8: Ab initio modelling of Atg9
Precision score evaluation of the Rosetta Ab initio and RosettaMembrane model in relation to
the predicted contacts at various contact cutoff values are shown where L = sequence length
(rounded down to the nearest whole number of contacts). The 50% precision cut off is shown
(blue line) as a visual marker. A minimum of 70% contact satisfaction for the top L contacts

would be suggestive of good quality models [74].

identified that could screen the PDBTM utilising the contact information by passing

the need to structurally predict the structure of Atg9; MapAlign [84].

MapAlign was developed in 2017 by the Baker group as a tool to refine the

structures of Ab initio models. MapAlign was used to identify contact map feature

matches to known structures and aid the modelling of large and complex proteins

that otherwise would be a challenge for Ab initio structure prediction. MapAlign

exploits the fact that structural matches can be detected by covariance analysis in the

absence of detectable sequence similarity since structural similarity is retained over

larger evolutionary distances. MapAlign was used to screen predicted contacts

against of the PDB; performing contact-based structure matching by comparing

contact maps of the query and target and attempting to align predicted contacts with

the contact patterns of experimental structures then highlighting any structural

matches. In its original implementation, the matches were then used to refine the Ab

initio models. MapAlign compares two contact maps and returns an alignment that

attempts to maximize the number of overlapping contacts at the same time as

attempting to minimise the number of gaps.

MapAlign was employed to screen the predicted contacts of the putative

transmembrane domain of Atg9 against a library of non-redundant PDBTM
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Table 4.2: ECOD classification comparison of the ABC transporter MapAlign hits

Domain ID X Group Name H Group Name T Group Name F Group Name Protein Name
e5l22A2 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane ABC transporter (HlyB subfamily)
e5mkkA2 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane Multidrug resistance ABC transporter ATP-binding and permease protein
e5eg1A2 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane Microcin-J25 export ATP-binding/permease protein McjD
e4aywA2 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane ATP-BINDING CASSETTE SUB-FAMILY B MEMBER 10
e4mrnA1 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane ABC TRANSPORTER RELATED PROTEIN
e3wmfA2 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane ATP-binding cassette, sub-family B, member 1
e4ry2A3 Type II ABC exporter TMD fold Type I ABC exporter TMD fold Type I ABC exporter TMD fold ABC_membrane ABC-type bacteriocin transporter

structures. The input contact predictions for Atg9 were filtered to leave only the

medium (above six residues apart) and long range (above twelve residues apart)

contacts; this step was taken as the successful usage of MapAlign by the GREMLIN

group only utilised these sets of predicted contacts when employing this contact map

alignment tool [84] and therefore may have been optimised for these contact

categories.

MapAlign provided a list of the 25 top hits ranked by the MapAlign score (a

combination of contact satisfaction and gap penalties). The top 25 results listed

PDBTM hits that seemed not to be related in any way and there was no clustering of

related proteins at the top of the list. Within the top 25 hits there were, however, six

ABC transporter hits (Figure 4.2) that, according to the Evolutionary Classification of

Protein Domains (ECOD), were all of the Type II class.

The use of the contact map alignment method MapAlign again did not provide

definitive hits that would indicate a common co-evolutionary profile between Atg9

and Type I ABC transporter transmembrane domains.

A major issue with both the Ab initio modelling and attempted contact map

alignment methods is that even with good co-variance information the biologically

important contacts it reveals will be a superposition of contacts from different

conformational states and if it is an oligomer, intra- and inter-molecular contacts

would also be present; if Atg9 is indeed an oligomeric transporter then both of these

would result in noise when attempting to model or align contact maps.
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4.7 Analysis: Low Resolution CryoEM Model

During the investigation into Atg9 a low resolution (7.8Å) CryoEM structure of

Arabidopsis Atg9 was published [192]. The group combined contact prediction using

co-evolutionary data to construct a model and claim insight into the Atg9

architecture. The group concludes that Atg9 has six transmembrane α-helices and

forms a homotrimer where at the center, the protomers interact via their

membrane-embedded and C-terminal cytoplasmic regions.

The published material gave another possible avenue to determine the molecular

function of Atg9 and whether it is related to Type I ABC transporters. The conclusion

that Atg9 forms a homo-trimer is in conflict with the possibility of the ABC

transporter link as there are no ABC transporters that function by forming a trimer;

although this could still be possible if Atg9 is only distantly related to ABCs and not

explicitly a member of the ABC transporter super family. Careful examination of the

data presented in the paper indicate that the authors’ conclusions are speculative as

the experimental interpretation is dependent on the bioinformatics at this resolution.

The team utilised RaptorX [193] to generate the covariance-derived contact

predictions, again, the paper does not show the predicted contact map to

demonstrate the strength of the inter-helical predictions that are the key information

that allowed them to tentatively trace the transmembrane helices. Analysing the data

further presented in the paper the authors state that "the final model places Cα of the

pairwise residues are within 15 Å of each other in 43 out of the top 46 identified pairs,

with an average distance of 10.2 Å. The 7% violated Cα- Cα distance constraints is in

agreement with the observed false-positive rate in previous structure prediction

studies of known protein structures using evolutionary covariance."; 15Å was a very

generous threshold as contact prediction methods are usually bench-marked with Cβ

(not Cα) within 8Å. This analysis leads to the possibility that the resolution of the

EM-map coupled with information gained from the model of Atg9 was insufficient to

dock predicted model in the map as they based their speculation from only small
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amounts of data. For example, in the section titled the cytoplasmic region:

’Consequently, we ascribe the remaining density in our reconstruction to largely

represent the structured domains of the C-terminal regions. The estimated volume of

this region is 20% of the density of the entire protomer, which approximately

corresponds to the size of a 20 kDa polypeptide and is consistent with the calculated

mass of the structured domain (16 kDa). The C-terminal region forms three distinct

petal-shaped features around the three-fold axis where the middle loop is tucked

behind.’

The structure and the proceeding docking should have been verified; this could

have been achieved by using domain (N- or C- terminal) specific antibodies to label

these regions in the single particle reconstruction or alternatively use the tagging

before going onto structure prediction and docking; this may have improved the

particle alignments and resolution. Consequently the experimental data does not

offer much constrain to the structure prediction and docking therefore it is only as

good as the bioinformatic predictions that were applied.

In order to evaluate the bioinformatic predictions provided in the paper a

metagenomic enhanced ResPre contact map with the visualisation of embedded

prediction data was constructed and used to compare with the helical contacts

described in the Lai et al (2020) paper 4.9. The authors interpretation of their

low-resolution map use predicted contacts between transmembrane 1 and 2, 4 and 5 ,

3 and 6, and 1 and 4, all antiparallel. However, interpretation of the enhanced ResPre

contact map strongly supports an orientation between TM1 and 4 as parallel. Also,

the ResPre contact data shows a parallel signal between transmembrane 2 and 3.

Both the parallel assignments 2-3 and 1-4 are inconsistent with the straightforward

topology presented in the paper and suggests that the C- and N- termini are on

opposing sides of the membrane rather than the same side (Figure 4.10). This finding

prompted a further investigation into the experimental origins of the accepted

topology of Atg9 [182]. During the research by Young (2006) they obtained
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Figure 4.9: Atg9 ResPre TMD Contact map analysis
The Purple box groups predicted transmembrane helical contacts that are accounted for in
the Lai et al (2020) paper. Outside of the purple box are predicted transmembrane contacts

that the Lai et al (2020) model does not account for. The coloured outlines of the boxes
correspond to the positions of the contacts as annotated in the contact map.

experimental data for the topology of the N- and C-terminal domains using in vitro

translocation into microsomes, followed by protease protection. This was possible

because they had specific antibodies to the N- and C-terminus. The experimental

data supported a model of 6 transmembrane helices, with both termini in the cytosol.

However, the paper does highlight some property of the putative transmembrane

between TM2 and 3 which was determined not to be a transmembrane: Lai et al

(2020) also highlight this in their paper from the homology of the plant protein with

myosin proteins (Figure S6). This region is also of interest as it contains a large

number of conserved residues. Additionally, the data in Young (2006) is more

equivocal regarding the orientation of the C-terminus and not as robust as for the

N-terminus. This all gives a basis for a possible alternative topology for Atg9.
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Figure 4.10: Comparison of Lai et al. low resolution interpretation with our contact
data.

a) Comparison of helical contacts with ResPre predicted helical contact features; blue boxes
are helical contacts that are consistent with the proposed CryoEM model and green boxes are

helical contacts that are inconsistent with the CryoEM model. The coloured outlines of the
boxes correspond to the positions of the contacts as annotated in 4.9 contact map. ’A’ -

parallel, ’AP’ - Anti-parallel. b) Established Atg9 topology.

4.8 ABC Transporter Survey

The strong co-variance data supports an alternative to the accepted topology for

Atg9. The possible existence of an additional transmembrane helix between TM 2

and transmembrane 3 would satisfy the predicted contact map features. Submitting

the putative transmembrane domain sequence of Atg9 to the transmembrane helix

prediction tool TMHMM, does indeed show a weak signal for a predicted helix

between transmembrane 2 and transmembrane 3 (Figure 4.11b). The presence of the

weak TMHMM signal between predicted helices transmembrane 2 and 3 prompted

an investigation into the possible structural features that are responsible for these
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‘blips’. As HHpred predicted a evolutionary link between Atg9 and ABC

transporters, the sequences for experimentally solved ABC transporter structures

were screened for the presence of these weak signals using TMHMM. The

transmembrane domains of ABC transporters show low sequence conservation and

are structurally divergent, with this diversity being related to their distinct functions.

Screening the PDB (see specific methods) for ABC transporters resulted in 51 entries

which can be classified into eight ABC transmembrane domain folds; Pgp, ABCG2,

MalFG, BtuC, EcfT, LptFG, MacB, and MlaE [194]. The sequences for each of the 51

entries were submitted to a local installation of TMHMM. The TMHMM output

results for each sequence were visually inspected. The screening identified ten ABC

transporters with at least one weak transmembrane prediction TMHMM signal;

2ONK-C, 3WME-A, 4MRN-B, 4RYZ-A, 4TQV-A, 4TMS-C, 5DO7-A, 5MKK-B, 5NIK-J

and 6AN7-D. For each of these the TMHMM profile, predicted contact map and the

crystal structure were visually cross referenced in order to identify any structural

features that were the origin of the ’blip’ being reported by TMHMM (Figure 4.11

shows one example - 3wme). At the same time, contact features for the

transmembrane domain of the predicted contact map were annotated to identify

their representation on the actual crystal structure with the aim of cross referencing

these with any common contact map features present in the Atg9 predicted contact

map.

The ABC transporter screen identified three features in ABC transporters that are

responsible for a weak TMHMM transmembrane prediction signals; the nucleotide

domain binding Q-loop, the extra-cellular domain and certain periplasmic helices

(Figure 4.13); none of these structural features would be expected to be present in

Atg9 due to the absence of the nucleotide binding domain. Also, such as in 4tqu

(Figure 4.13b), a weak TMHMM was produced for a helix that has no specific

function stated in the paper [195]. Additionally, there are cases such as in 4yms

(Figure 4.13a) where the TMHMM prediction does not match the actual topology;

five transmembrane helices are present in the crystal structure but only three were
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(a) 3wme Experimental
Structure. Colour spectrum,
blue is N-terminal to red
C-terminal. Q-loop high-
lighted which corresponds
to the position of TMHMM
’blip’.

(b) 3wme TMHMM profile

Figure 4.11: Analysis of 3wme TMHMM profile. Red box highlighting ’blip’.

predicted.

Analysing the predicted contact map features of the transmembrane domain of

the ABC transporters in order to predict the structural feature representing the

TMHMM ’blip’ for Atg9 revealed that most of these features can be satisfied by the

interhelical interfaces in the three dimensional structure when comparing to the

contact map of the crystal. There are examples, however, where the features are not

satisfied by the structure; contacts responsible for dimer formation being present as

well as small contact features that cannot be satisfied by looking at the crystal

structure and are possibly as a result of an alternative conformation (Figure 4.12). In

conclusion, the ABC transporter survey did not provide a firm indication as to what

structural feature Atg9 possesses that would produce the TMHMM ’blip’.
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Figure 4.12: 3wme Predicted contact map analysis.
Transmembrane contact map features highlighted with red boxes. Red font indicates contacts
that are not present in the contact map of the experimental structure; black font indicates that

features are shared by the contact map of the experimental structure. P-parallel,
AP-antiparallel, I-inside, O-outside, M-membrane.

4.9 Analysis: High Resolution CryoEM Model

A second CryEM model of Atg9 was published (Figure 4.14) [119] and in contrast to

the previous published CryEM model it was high resolution at 2.9 Å. The model

revealed that Atg9 has a novel fold and is a domain-swapped homotrimer with the

N- and C-terminal halves of the transmembrane domain being pseudo repeats;

consisting of two transmembrane helices and one re-entrant loop with sequence

similarity identified locally around proline residues in the re-entrant loops. The

domain swapping involves a domain of one of the subunits that extends into another

subunit and interacts with the main domain of this subunit with this interaction

being synonymic to that of the same domain in the monomer. In Atg9 two

transmembrane helices from one monomer cross over and stack in parallel with two
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(a) 4yms

(b) 4tqu
(c) 5do7

(d) 6an7

Figure 4.13: Analysis of ABC TMHMM profiles by cross-referencing with experimen-
tal structures.

transmembrane helices from the neighboring monomer. The model also reveals an

intricate system of cavities that are consistent with its putative role lipid in lipid

transport. Also molecular dynamics simulations predict that Atg9 has

membrane-bending properties.

Comparing this high resolution accurate model to the bioinformatic work

conducted for Atg9, the model did not support a six transmembrane helix topology

for the transmembrane domain of Atg9. The CryoEM model shows four

transmembrane helices and two re-entrant loops. Transmembrane 1, 2, 4 and 5

(helices 2, 6, 14 and 15) were predicted correctly and transmembrane 3 and 6 (helices

11 and 19) were mis-classified and were actually revealed to be re-entrant loops. The

re-entrant loops present are atypical with the cytosolic N-terminal side extending out

of the membrane by approximately 6 helical turns and a proline present at the

membrane interface causing the helix to turn and run parallel before forming a loop

and leaving the membrane on the same cytosolic side (Figure 4.15).

In an effort to identify the mysterious ’blip’ on the TMHMM prediction and the

contact map features making contact with the ’blip’, the relevant regions of the model

were examined. The TMHMM ’blip’ was triggered by a short alpha helix (helix 9) on
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Figure 4.14: Atg9 High resolution CryoEM model
Atg9 monomer topology adapted from [119]. Spectrum: Blue-N-terminal to red C-terminal.

the cytosolic side of the membrane between transmembrane helix 1 and the first

re-entrant loop. The helix in question makes contact with the alpha helix that extends

out of the membrane from the first N-terminal side of the first re-entrant loop (Figure

4.16). Cross referencing transmembrane helical contacts in the cryoEM structure with
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Figure 4.15: Atg9 CryoEM Analysis
Left: Atg9 monomer topology adapted from [119]. Red helices are from and adjacent Atg9
forming the interface. Right: Atg9 trimer (blue are cytosolic regions, yellow are membrane

embedded regions, pink are luminal regions and green are interfacial helical regions
(boundaries for colouring and membrane planes obtained from the PDBTM [47]).

the predicted contact map features of the transmembrane domain confirms that they

are in agreement.

Figure 4.16: Atg9 CryoEM Analysis
Left: Atg9 monomer topology adapted from [119]. Right: Respre predicted contact map for

Atg9. Red boxes are regions of predicted transmembrane helices; green box is the region that
contained the TMHMM ’blip’; blue boxes are regions of high sequence conservation.
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The successful CryoEM structure determination of Atg9 resulted in two models in

alternate conformations. An attempt to utilise contact predictions to indicate the

plausibility of a third conformational state was carried out. The two contact maps

from the alternate PDB conformation structures were compared to the predicted

contact map in an effort to identify features that are present in the predicted map but

not in the PDB files. The presence of additional features might indicate that there is

another conformational state as the predicted contact map will show superimposed

contacts that are important from all conformational states. By subtracting away

contacts explained by the known structures and getting any leftover plausible,

consistent sets of strongly-predicted contacts would indicate further a biologically

important conformation or, of course, contacts relating to oligomeric interfaces.

Utilising ConKit the structural contacts sets of the two experimentally determined

PDB structures were combined and mapped against the Atg9 predicted contact

two-dimensional coordinates (Figure 4.17). The Figure 4.17a contact map on the left

shows grey points representing the predicted contacts for Atg9, black points are the

predicted contacts satisfied by structural contacts and red points are contacts present

in the structure but not present in the predictions. Three predicted contact features

(pink, yellow and blue boxes) in the same area of the contact map (green) not present

in the structures were identified. The corresponding regions were mapped on to

Atg9 (right). In the monomer these contacts could not be explained. Figure 4.17b

shows unsatisfied contacting regions from the predicted contacts mapped on to the

trimer; the trimeric state accounts for the three sets of contacts not satisfied by the

monomer.

Unfortunately, the evolutionary co-variance data did not provide any evidence for

a third conformation. The predicted contact map of Atg9 is a superposition of inter-

and intra-chain contacts. The PDB files contain the actual inter- and intra-chain

contacts. The contact predictions for Atg9 were all satisfied by the actual contacts

from the two Atg9 CryEM structures. Therefore, based on co-variance analysis there

were no additional contacts that would be required to suggest an additional

97



Shahram Mesdaghi (962096127)

(a) Superposition of CryoEM contacts for both conformations with pre-
dicted contact maps comparison. Green shaded area indicates trans-
membrane region where unaccounted contacts are present. Corre-
sponding colours of boxes on the contact map (left) are mapped on
to the Atg9 monomer (right) (these shaded regions mirrored across the
diagonal). In the monomer these contacts cannot be explained.

(b) Inter-chain contacts. Corresponding colours of boxes on con-
tact map (left Figure 4.17a) are mapped on to the Atg9 trimer.The
trimeric state accounts for the three sets of contacts not satisfied by
the monomer

Figure 4.17: Atg9 CryoEM Contact Analysis

conformation. However, examining the contact prediction map it can be seen that

there are very few contact predictions for the residues after position 600. Visualising

the actual contacts for 6wr4 it is true that there are few contacts for residues 600

onward, however, for the 6wqz conformation there are obviously contacts present

that were never predicted. Indeed examining the sequence coverage for both the

Uniprot and metagenomic MSAs used for the co-variance analysis to construct the

contact predictions for Atg9, figure 4.7 reveals that after residue 600 there is poor

sequence coverage. The poor sequence coverage for residues after 600 indicates that

there is not enough data to perform co-variance analysis here and to make contact
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predictions for the C-terminal end of Atg9. Therefore, the limitations in data quality

mean that a third conformation cannot be ruled out.

In terms of a predicted function or a predicted characterisation of a substrate for

this putative transporter further analysis was unable to determine any plausible

possibilities. Conservation was mapped on to the PDB structures and regions of high

conservation were visualised. The region between helix 7 and 9 along with helix 13

and 12 is highly conserved and therefore critical to structure or function (Figure

4.16).

4.10 Potential homology between the Atg9 and ABC trans-

porters

The availability of a high resolution model gave rise to the opportunity to further

examine the possibility of obtaining structural evidence to support the HHpred

determined sequence similarity to Type I ABC transporters. An attempted DALI

pairwise structural alignment could not align the top HHpred PDB hit Type I ABC

transporter 5w81 with Atg9. Subsequently both structures were visualised in PyMol

and the regions corresponding to HHpred alignment on both structures were

highlighted (Figure 4.18).

Assuming that Atg9 and Type 1 ABC transporters are distant homologues,

comparing the topologies of the highlighted regions on both models show that the

internal repeat unit of Atg9 is similar to the to the region between transmembrane 1

to transmembrane 3 in the ABC transporter; transmembrane 3 of the ABC transporter

is not a re-entrant loop (Figure 4.19) and the re-entrant loop has straightened forming

a transmembrane helix or alternatively one half of the transmembrane helix has

developed a major kink forming forming the unusual Atg9 re-entrant loop. A similar

observation of evolutionary modification of transporter helices has been shown

previously in CPA/AT transporters [167].
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Figure 4.18: Atg9 CryoEM comparison to 5w81
Cyan (on left image): regions of alignment of 5w81 with Atg9 (ribbon, non-aligned regions

shown as wire); Pink (on right image):regions of alignment of Atg9 with 5w81; Green:
non-aligned regions; Blue are highly conserved non aligned regions.

Figure 4.19: Comparison of Atg9 and 5w81 topology
Top: Transmembrane domain topology of Atg9; Bottom: Transmembrane domain topology of

typical Type 1 ABC transporter.

This structural observation is reinforced by performing a PDB search using

HHpred for the first repeat unit of Atg9 (residues 1-300). HHpred reported top scores

of 20%-45% probability matches with the N- terminal region of the transmembrane

domains of various Type I ABC exporters. The first two N-terminal transmembrane

helices of the ABC transporters aligned with the two N-terminal transmembrane

helices of Atg9. The third transmembrane helix of the ABC transporter, however, did
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not align with the N-terminal re-entrant loop; this could be because of a difficulty to

broaden the alignment due to the long insertion between transmembrane helix 2 and

the first re-entrant loop in Atg9.

The sequence and structural evidence supporting an evolutionary link between

Atg9 and Type I ABC transporters has recently been reported by another group [196]

who additionally superimposed the Type I ABC transporter, MsbA, bound to its

substrate LPS with the C-terminal half of Atg9; interestingly this places LPS in a

similar position to lipids bound to Atg9 [197].

4.11 Use of Deep Learning Methods

Modelling of Atg9 using traditional fragment based assembly methods, even with

meatagenomic derived contact information, was always going to be difficult due to

the immense conformational space resulting from Atg9 being a large protein. The

release of newer modelling methods utilising distances and side-chain orientations

such as DMPfold (Figure 4.20 and Figure 4.22) also struggled with Atg9 modelling

where contact satisfaction profiles were poor when compared against the high

resolution Atg9 CryoEM model (Figure 4.21 and Figure 4.23). This difficulty in

modelling could be related to the fact that Atg9 possesses a novel fold therefore the

trained neural networks would have difficulty in constructing a model for a new

fold.

The recent release of AlphaFold2 (AF2) [79] provided another opportunity to

model Atg9. AF2 was able to construct a highly accurate model (Figure 4.24);

aligning the model with the high resolution CryoEM structure 6wqz yielded a

Z-score of 50. This is a remarkable feet given that Atg9 has a new fold and AF2 was

trained on the PDB in April 2018 when Atg9 was not present. The ability to model

proteins where the fold has not been seen before has also been reported previously

[81].
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Figure 4.20: Atg9 TMD DMPFold Model 1

(a) Contact Map for
DMPFold Model 1

(b) Superposition of
Atg9 DMPFold Model
1 Contact Map with the
High Resolution Atg9
CryoEM contact map

(c) Precision profile
of the Atg9 DMPFold
model 1 against High
Resolution Atg9 Cry-
oEM Contacts

Figure 4.21: Atg9 DMPFold Model 1 Quality Determination

Figure 4.22: Atg9 TMD DMPFold Model 2
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(a) Contact Map for
DMPFold Model 2

(b) Superposition of
Atg9 DMPFold Model
2 Contact Map with the
High Resolution Atg9
CryoEM contact map

(c) Precision profile
of the Atg9 DMPFold
model 2 against High
Resolution Atg9 Cry-
oEM Contacts

Figure 4.23: Atg9 DMPFold Model 1 Quality Determination

Figure 4.24: Superposition of AF2 model with CryoEM Atg9 (6wqz)
AF2 model shown as rainbow (Blue: N-terminal to Red: C-terminal). CryoEM structure

shown as grey.

4.12 Conclusions

The aim of the investigation into Atg9 was to build on the success of the Tmem41b

study (Chapter 3) of using contact information to build plausible models and relate

features of the models to function. The attempt to structurally characterise Atg9

utilised contact information in three ways; comparing the crude homology models

obtained by assuming an ABC-like fold with the predicted contact map directly,

comparing the predicted contact map of Atg9 with actual contact maps of folds in the

PDB (in addition to recently released CryEM models) and in making models. Unlike

Tmem41b, Atg9 is a large complex protein and successfully exploiting the methods
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utilised for Tmem41b proved difficult. The eventual release of a high resolution

model for Atg9 showed structural parallels with Tmem41b; the presence of re-entrant

loops and a pseudo repeat. However, unlike Tmem41b these features could not be

deciphered through contact map analysis as Atg9 is much larger and complex in

comparison to the DedA domain of Tmem41b. A repeating set of contact map

features could not be identified in the contact map of Atg9 as opposed to Tmem41b

where a repeat in the form of contact map features is clearly visible. The re-entrant

loops present in Atg9 are very unusual and have not been reported in any other

solved structure. Like Tmem41b these re-entrant loops have a conserved proline at

their turning point and the residues on either side of this proline are highly

conserved. However, in contrast to Tmem41b where the angle between the

N-terminal and C-terminal halves of the re-entrant loops are around 20°, the

N-terminal and C-terminal helices of the re-entrant loops in Atg9 are much wider

apart and are not in contact therefore would not produce any contact map

features.

An evolutionary relationship between the transmembrane region of Atg9 and the

transmembrane region of Type I ABC transporters is a possibility given the sequence

and structural similarities. Failure of the homology modelling is explainable

knowing that two of the six ABC homologous transmembrane helices possess a large

kink resulting in the formation of re-entrant loops in place of the equivalent

transmembrane helices in Type I ABC transporters. It would be plausible to

hypothesise that Atg9 evolved from Type 1 ABC transporters given the much

broader species distribution of ABCs with Atg9 evolving much later.

Currently most phylogenies of ABC transporters rely on the most conserved part

of the protein which is the nucleotide binding domain and further investigation into

the similarity between Type I ABC transporters and Atg9 is required to fully

understand the evolutionary relationship between them.

Although a high resolution model now exists for Atg9, the availability of new
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highly accurate protein structure prediction methods such as AlphaFold2 will allow

the opportunity to model Atg9 protein-protein complexes to aid the understanding

of Atg9 behaviour. Atg9 is known to interact with a variety of proteins in the process

of autophagasome construction such as ULK1 and Atg2 [198]. Atg9 has also been

shown to modulate elements of the primary immune response through its interaction

with STING [198]. Attempted Alphafold modelling of these complexes may help to

provide evidence of whether these interactions are indeed direct or whether other

proteins mediate the interaction.
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5 | Re-entrant loop search

5.1 Introduction

The identification of re-entrant loop structures present in both the Tmem41b and

Atg9 targets prompted an investigation into how prevalent these specific structural

features are.

Historically it was thought that alpha helical transmembrane proteins form helical

bundles of parallel/antiparallel helices that cross the membrane in perpendicular

orientations. However, as more and more alpha helical membrane proteins were

solved, their structures revealed more complex structural topologies. One such

structural feature possessed by some alpha helical transmembrane proteins is the

re-entrant loop. Rather than entering the membrane orthogonally and leaving the

opposite side, the re-entrant loop enters the membrane on one side and then turns

back to the same side from which it originated and leaves (Figure 5.1). Re-entrant

loops were initially reported in the early 1990s in the cardiac Na+/Ca2+ exchanger

[152]. Since then re-entrant loops have been detected in other membrane transporters

and channels such as aquaporins [153], potassium channels [154] and chloride

channels [155].

Previous studies [136] have grouped re-entrant loops into three categories. The

classification was based on secondary structure distribution along the length of the

re-entrant loop. The re-entrant loops were classed as a helix–coil–helix, helix–coil,

coil–helix motifs or regions of entirely of irregular secondary structure [136]. It has
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Figure 5.1: An inverse pseudo repeat topology showing types of alpha-helical trans-
membrane structure motifs

Green: amphipathic helix, red: transmembrane helix, orange: re-entrant loop.

been demonstrated that smaller residues are over represented in re-entrant loops and

that the hydrophobicity distribution for re-entrant loops is not symmetric when

comparing to transmembrane helices [136].

Figure 5.2: Comparison of smoothed hydrophobicity profiles for protein sequences of
re-entrant loops and transmembrane helices.

Position 0 is the deepest residue embedded in the membrane (adapted from [136]).

Sequence methods have been developed which attempted to predict the presence

of re-entrant loops utilising hidden Markov models [43, 136]. These methods have

been used to predict that more than 10% of transmembrane proteins contain

re-entrant loops and that the their presence increases linearly with the number of
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transmembrane regions. These studies also indicate that re-entrant loops are most

commonly found in channel proteins and least commonly in signal receptors

[43].

The research into DedA proteins described in chapter 3 predicted that the

re-entrant loops present in these proteins form part of an inverse pseudo repeat

(Figure 5.2) where they face one another in the membrane with each re-entrant loop

in contact with a transmembrane helix. This architecture has also been highlighted

other proteins such as aquaporins [199], ion-coupled transporters (where the

re-entrant loops are responsible for recognising ions such as Cl− and Mg2+) [200],

and undecaprenyl-diphosphatase (UppP) (where they recognise head groups of

phospholipids) [201]. Face-to-face re-entrant loops are also known to recognise small

hydrophilic molecules such as uridine and glutamate [200]. It is common for the

re-entrant loops within these structures to possess a highly conserved proline at the

turning point (the residue embedded deepest in the membrane) [9] and display an

inconsistent hydrophobicity distribution where C-terminal side is more hydrophilic

in contrast with transmembrane helices where hydrophobicity distribution is more

consistent [136].

The subsequent research into Atg9 revealed the presence of two re-entrant loops

with topologies not reported previously. The high resolution CryoEM structure of

human Atg9 was shown to possess four transmembrane helices, and two re-entrant

loops (Figure 4.15). One re-entrant loop is seen to penetrate far into the membrane

with its C-terminal half being parallel to bilayer. The other re-entrant loop is

atypically long and the helix extends from the membrane far into the cytosol; this

forms a structural scaffold that makes contact with different parts of the oligomer.

The turning points of both re-entrant loops are formed by highly conserved proline

residues (Figure 5.3) [119].

The identification of the DedA re-entrant structural motif (re-entrant loop in

contact with its proceeding tranmembrane helix) as well as the unusual Atg9
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Figure 5.3: Atg9 Topology
Atg9 monomer topology adapted from [119]. Red helices are from and adjacent Atg9 forming

the interface.

re-entrant loops prompted an investigation into the prevalence of these structures

within Pfam [85] and the human proteome.

5.2 Specific Methods

5.2.1 Building the trRosetta Transmembrane Pfam Database

Phase 1

The following Pfam-A_v34.0 files were downloaded from Pfam server for local use:

other_reg.txt, pfamA.txt and pfamA_reg_seed.txt.

A ’transmembrane protein list’ was constructed by filtering the ’other_reg.txt’ file

to provide a list of ’pfamseq_acc’ numbers for all sequences with at least one

transmembrane region predicted by Phobius [202]. Each ’pfamseq_acc’ in the list was

cross-referenced with the ’pfamA_reg_seed’ table to obtain the Pfam accession

numbers of all seed sequences possessing at least one Phobius predicted
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transmembrane region. The resulting list was then filtered leaving one (random) seed

sequence for each Pfam domain. A final round of filtering was performed to remove

any sequences that had less than two predicted transmembrane regions within the

Pfam domain boundaries (Figure 5.4).

Figure 5.4: Pfam transmembrane filtering.

From a total of 18259 Pfam members, 14538 had no predicted Phobius

transmembrane regions; 1401 had at least one transmembrane region outside of the

Pfam domain; 944 had one transmembrane region within the Pfam boundaries; 1377

had a minimum of two transmembrane regions with the Pfam boundaries. The 1337

seed representatives were then modelled using a local installation of trRosetta.

The models then underwent a local Dali [111] all against all and the Z-scores were

used to cluster the models using CLANS [137] with the expectation that clusters

resembling Pfam Clans would form. A 0.1 attraction value was used and singletons

removed. Examination of the largest cluster revealed not only multiple members of

Pfam Clan CL0182 (Ion Transporter Superfamily) but additional Pfam members that

were not recorded members of the CL0182 Clan. Investigation into these potentially

new members of CL0182 revealed these proteins had multiple Pfam domains

resulting in strong structural alignments outside of the Pfam boundaries for the
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representative Pfam model (Figure 5.5).

Figure 5.5: Structural alignment of PF11874 model with model of CL0182 member
PF06808

Top: Contact density profile for trRosetta model PF11874 with estimated positions of
structural domain boundaries. Green represents CL0182 region. Orange represents PF11874

region. Bottom: Structural alignment of PF11874 trRosetta model with PF06808. Green
represents CL0182 region. Orange represents PF11874 region. Magenta is the additional Pfam

domain.

In order to overcome this issue the clustering of the models was

re-implemented.

Phase 2

Models that had only one Pfam domain annotation formed an initial library of 1076

entries. Each of the 261 models that possessed more than one Pfam label were were
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partitioned into their structural domains using SWORD (Swift and Optimized

Recognition of Domains) [203] rather than relying on Pfam domain boundaries as

these have been shown sometimes not to reflect the actual structural boundaries [9].

The SWORD output lists a number of partitioning solutions; the highest ranking

solution that possessed the whole Pfam domain in one partition was chosen. This

partition was then added to the library. SWORD was unable to partition 25 of the 261

proteins that possessed more than one Pfam domain, in which case the Pfam domain

boundaries were used to truncate the model (Figure 5.6).

Figure 5.6: SWORD output for model PF11874

Next, in order to provide validity to the trRosetta modelling of the Pfam domains,

available experimental structures were also added to the library. Of the 1337

transmembrane Pfam domains modelled, 306 had at least one experimental structure

(5215 structures in total). 2385 of these structures possessed only one Pfam domain

which represents 187 out of the 306 Pfam domains with an experimental structure.

These 2385 experimental structures were filtered to leave one representative for an

individual Pfam domain (highest resolution selected - if there were equal resolutions

both were selected, giving opportunity to include alternative conformations); 222 (for

187 transmembrane Pfam domains) experimental structures representing

transmembrane Pfam domains were added to the library.

The sequences of the trRosetta models from the library were then used to mine

the EBI AlphaFold database for homologues utilising MrParse [204]. For a query

sequence MrParse identifies and ranks homologues in the EBI AlphaFold database.

Models with the highest H-score (measure of structural quality; percentage of
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residues with a given pLDDT score) were selected. MrParse provided 865 models

that were truncated removing either side of the aligned region. The 865 AlphaFold2

models identified were used to supplement the library of trRosetta and experimental

models. 165 of the AlphaFold2 models had an experimental representative in the

library (Figure 5.7).

Figure 5.7: Transmembrane Pfam structural library construction

The library then underwent an all-against-all structural alignment using a local

installation of Dali. The Z-scores were then used to cluster the models in CLANS.

Initially the default 0.1 attraction value setting with a minimum of one link and

singletons were removed. Examination of the largest cluster revealed multiple

members of Pfam Clan CL0192 (Rhodopsin Superfamily). In order to determine the

optimal attraction value to use in the clustering process, members of the largest

cluster were surveyed when clustered using different attraction values. An attraction

value of 0.25 was deemed optimal; values above this resulted in loss of Pfam CL0192

members; values below this resulted in additional members of the cluster outside of

Pfam CL0192 membership that possessed Z-scores under 5 when aligned with

experimental representatives of CL0192. Also, lowering the attraction value resulted

in distribution of Z-scores to ebb towards the lower end (Figure 5.8). Utilising the
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attraction value of 0.25 resulted in the median Z-scores being greater than the mean

indicating that the distribution is negatively skewed i.e. the cluster is favouring

higher Z-scores.

(a) Z-score distribution for members
of the largest cluster at 0.25 attraction
value

(b) Z-score distribution for members
of the largest cluster at 0.2 attraction
value

Figure 5.8: Comparison of Z-score distribution for members of the largest cluster for
0.25 and 0.2 attraction values.
Violin plots visualising Z-score distribution for the largest cluster. Superimposed box-plot
indicates the range and interquartile range as well median for the Z-scores of the cluster. The
superimposed Swarm plot visualised the position within the distribution of Pfam model
self-hits (AlphaFold2 with trRosetta/AlphaFold2 with experimental/trRosetta with
experimental)

.

5.3 Re-entrant loop survey

A library of re-entrant loop sequences was built by obtaining a non-redundant set of

56 re-entrant helix sequences by first retrieving all 714 TM proteins that contain at

least one re-entrant loop from the PDBTM [47] and removing redundancy with a 40%

identity threshold. The resulting 127 protein structures were split into their

component chains, eliminating any chain lacking a re-entrant loop. As some chains

possessed more than one re-entrant loop it resulted in a set of 193 unique re-entrant

loop sequences.

The previous chapters highlighted the presence of proline at the turning points of

the re-rentrant loops possessed by the query proteins. The observation of the

presence of proline at this key region of re-entrant loops prompted a survey of the
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proline content of re-entrant loops. The survey analysed the sequences from the 193

re-entrant loop sequence library and revealed that 44% (85/193) of structures in the

library contained at least one proline residue. This proportion jumps to 76% (29/38)

when a filter of a minimum re-entant loop length of 18 is applied. This is in contrast

to transmembrane helices and interfacial helices (whose sequences were extracted

from the PDBTM) where only 39% (2386/6056) and 30% (215/712) respectively

contain at least one proline residue. Proline is an atypical amino acid as its side chain

is connected to the protein backbone twice which results in a five-membered

nitrogen-containing ring making it unable to form many of the main chain

conformations that can be adopted by the other amino acids [205]; consequently

proline is often located in tight turns where there is sharp change in direction. The

presence of proline can also cause kinks in alpha helices as it cannot form a normal

helical conformation. Furthermore, there is evidence that even for non-proline kinks,

it is proline that first introduced this conformation but subsequently became

redundant as tertiary contacts consolidated the structure [206]. Functionally, prolines

also prevent membrane protein misfolding [207]. Interestingly, there are examples

where the presence of proline in a re-entrant loop allows it to act as a pivot, enabling

the two segments of the loop to switch between states through a conformational

change [208, 209]. Even though the importance of prolines is well understood and

transmembrane sequences from the Human Gene Mutation Database [210] have one

of the highest phenotypic incidences for proline substitutions, their evolution is

poorly understood as proline substitutions are difficult establish resulting from the

dramatic structural changes that would occur [211]. Additionally it has been shown

that proline contributes to structural and thermodynamic transmembrane complex

stabilization [212].
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5.4 Pfam Re-entrant Screen

To screen Pfam for structures that possess the re-entrant/TM helix structural motif, a

library of transmembrane Pfam models was constructed (see 5.2.1). The library

contained a trRosetta representative model for each of the 1377 transmembrane Pfam

families in addition to being supplemented by 222 experimental structures and 865

AlphaFold2 models. The library underwent an all-against-all structural alignment

using a local installation of Dali. 164 of the transmembrane Pfam entries in addition

to the trRosetta model had a AlphaFold2 and experimental representative. As

expected, the comparison of the structural alignments of the AlphaFold2 and

trRosetta models with their corresponding experimental structure yielded mean

Z-scores of 19.5 with a range of 0.1-60 and 15 with a range of 0.1-40 respectively

(Figure 5.9).

Figure 5.9: Comparison of trRosetta and AlphaFold2.
Comparison of the trRosetta and AlphaFold2 structural alignments with their corresponding
experimental structure. Red: AlphaFold2; Blue: trRosetta.

Next the distribution of the Dali Z-scores with their corresponding experimental

structure was examined (Figure 5.10). For both AlphaFold2 and trRosetta the modal

class Z-score was 10-15 with AlphaFold2 being able to achieve Z-scores beyond 45,
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outperforming trRosetta.

Figure 5.10: Comparison of trRosetta and AlphaFold Structural alignment distribu-
tions
Comparison of the distribution of the trRosetta and AlphaFold2 structural alignment Dali
Z-scores with their corresponding experimental structure. Red: AlphaFold2; Blue: trRosetta.

The Z-scores were then used to cluster the models using CLANS with the

expectation that clusters resembling Pfam Clans would form. A 0.25 attraction value

was used with a minimum of one link and singletons removed.

Examination of the largest cluster revealed not only multiple members of Pfam

Clan CL0192 (Rhodopsin Superfamily) but additional Pfam members that were not

recorded members of the CL0192 Clan. The cluster consisted of a total of 100

members, capturing 39 out of the 45 Pfam representatives of CL0192 members (78

structures in total - trRosetta/AlphaFold2/experimental) as well as one out of the

CL0347 (Tetraspannin-like) members. Additionally 11 Pfam representatives (totalling

21) were present that did not belong to a Pfam Clan. Table 5.1 gives a breakdown for

the 20 largest clusters. Distributions of Z-scores for the 17 largest clusters that possess

Pfam domains outside of the dominant Pfam clan are shown in Figure 5.11

Cluster 9 was made up of experimental structures spanning 6 different Pfam

families. Visual inspection of the structural alignments showed that the structurally

diverse transmembrane regions possessed beta sheet architecture in common.

Analysis with HHpred against these beta sheet regions to detect homologous
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Table 5.1: Cluster composition of the 20 largest clusters (based on Z-score) of the model
library entries

Cluster Size Dominant Clan Other Clans Possible New Members
1 100 CL0192 (39/45) CL0347 (1/6) 11
2 47 CL0015 (20/23) N/A 3
3 37 CL0062 (15/20) N/A 1
4 32 CL0182 (19/19) N/A 3
5 30 CL0111 (16/19) N/A 5
6 27 CL0064 (12/13) CL0142 (1/7) 1
7 25 CL0184 (13/22) N/A 0
8 19 CL0375 (8/13) CL0396 (1/2) 2
9 14 All exp struct from 6 Pfam clans N/A N/A

10 13 CL0222 (5/7) N/A 1
11 12 CL0181 (8/17) N/A 1
12 12 CL0308 (3/3) CL0340 (2/4) 3
13 11 CL0062 (5/20) N/A 1
14 11 CL0176 (4/4) N/A 1
15 11 CL0315 (10/11) N/A 0
16 10 CL0322 (5/5) N/A 0
17 8 CL0307 (6/9) N/A 0
18 8 N/A N/A 5
19 8 CL0425 (2/3) N/A 2
20 7 N/A N/A 3

Values in the size column represent the total number of models in the cluster. Values in
parenthesis indicate the number of unique Pfam model accessions out of total established
members present in the cluster. Values in the possible new members column are the number
of unique Pfam model accessions present in the cluster that do not belong to the dominant
clan.
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(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4 (e) Cluster 5

(f) Cluster 6 (g) Cluster 8 (h) Cluster 9 (i) Cluster 10 (j) Cluster 11

(k) Cluster 12 (l) Cluster 13 (m) Cluster 14 (n) Cluster 18 (o) Cluster 19

(p) Cluster 20

Figure 5.11: Z-score distribution visualisations for the 16 largest clusters possessing
Pfam domains outside of the dominant Pfam clan
Violin plots: Z-score distribution. Box-plots: range/interquartile range/median. Swarm plot:
position within the distribution of Pfam model self-hits (AlphaFold2 with
trRosetta/AlphaFold2 with experimental/trRosetta with experimental)

.

domains showed that they were Ig-like domains.

Surveying the members of cluster 1, 6, 8, and 12 revealed that members of two

Pfam clans were present in addition to Pfam representatives not belonging to any

clan. For example, cluster 8 consisted of 19 members; 16 (8 unique Pfam members)

belonged to CL0375 (Transporter superfamily, four TM region of clan 13 members); 1

member (PF01284) belonged to CL0396 (The MAL and related proteins for vesicle

trafficking and membrane link (MARVEL) domain of 2 clan members); 2 (PF15108

and PF14985) did not belong to any Pfam clan. Visual inspection of the structural
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alignments between the crystal representative of CL0375 (PF00822 - pdb code: 4P79),

the CL0396 members and the Pfam models not belonging to a clan show strong

similarity that is indicative of homology (Figure 5.12).

Figure 5.12: Structural alignment for Cluster 8 members
Dali structural alignment for CL0375 member PF00822 - pdb code: 4P79 (green); CL0396
member, PF01284 (AF2 model) (magenta); PF15108 (AF2 model) (Orange); PF14985 (AF2
model)(cyan).

Both PF15108 and PF14985 do not currently belong to any Pfam clan. PF14985

(TMEM140) has been shown to suppress the viability, migration, and invasion of

cancer cells [213]. A HHpred screen of a PF14985 representative against Pfam show a

100% probability hit with PF15108 (as well as itself). PF15108, also known as

TMEM37, is a voltage-dependent calcium channel gamma-like subunit protein. The

γ subunits are a family of 8 protein subunits; type 1,6 are regulators for trafficking
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activation of muscle voltage dependent calcium channel (VDCC); types 2,3,4,8 are

involved in the AMPA glutamate receptor localisation in the brain; type 5 and 7 have

an unknown function [214].

Two of the clusters (18 and 20) contained Pfam families that were not labelled as

Pfam clans. Cluster 18 was composed of 5 bacterial DUFs (PF06790, PF04854,

PF06161,PF07264, PF09955). Cluster 20 was made up of 3 unique Pfam

representatives (PF00230, PF10136, PF01226) across 7 models. PF01226 (Major

intrinsic protein_MIP) and PF01226 (Formate/nitrite transporter) are both

transporters, however, PF10136 is labelled as ’Site-specific recombinase’. The

structural alignment of the trRosetta model of PF10136 from cluster 20 with an

experimental structure representative (PF01226, 3TDS) from the cluster (Figure 5.13)

shows obvious structural homology. This structural match contradicted its Pfam

annotated functions. Indeed, during this investigation Pfam was updated and the

new version included a new Clan linking PF00230, PF10136 and PF01226 together

(CL0716 - Aquaporin-like). Additionally further annotation for the PF10136 entry

states that there is no evidence that PF10136 is a recombinase and this may be a

misannotation.

Figure 5.13: Structural alignment between PF10136 and 3DTS
Dali structural alignment for PF10136 (magenta) and 3DTS (green)

In summary, the clustering of the transmembrane Pfam model library identified

homology beyond what sequence analysis can accomplish. The clustering was

successful in identifying new homology connections between Pfam members such as
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the PF15108 and PF14985 being structural neighbours to members of the CL0375

Pfam clan. The exercise also showed links between Pfam members that did not

currently belong to a Pfam clan; PF00230, PF10136 and PF01226. Furthermore, the

clustering exercise identified links between clans that were not previously known;

CL0375 and CL0396.

5.4.1 Pfam Re-entrant/TM helix structural motif Screen

Figure 5.14 shows the Re-entrant/TM helix structural motif motif (re-entrant loop in

contact with its proceeding trasmembrane helix) that was identified during the

investigation into the structure and function of the DedA protein family. These

motifs have only been reported in tranporter proteins. The identification of the DedA

re-entrant structural motif prompted an investigation into the prevalence of these

structures within Pfam [85] as well as to being able to infer transporter function for

Pfam families that have an unknown function.

Figure 5.14: Re-entrant/TM helix motif
Left: Re-entrant/TM helix motif contact map. Right: strutural model of Re-entrant/TM helix
motif (red: transmembrane helix, orange: re-entrant loop).

The re-entrant/TM helix structural motif library of 192 members (see Chapter 3

methods) underwent a pairwise screen against the Pfam transmembrane library

using a local installation of Dali.

An initial check looked at the hits for the N-terminal re-entrant/TM helix

structural motif from the eukaryotic CLC transporter 3ORG [134]. As expected the
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Table 5.2: Dali hits for 3org re-entrant loop/TM helix structural motif

Hit Name CLAN z Pfam Name Pfam Description

PF13194 NULL 5.2 Domain of unknown function (DUF4010)
This is a family of putative membrane proteins
found in archaea and bacteria.
It is sometimes found C terminal to Pfam:PF02308.

PF10852 NULL 4.6 Protein of unknown function (DUF2651) This family of proteins with unknown function appears
to be restricted to Bacillus spp.

PF06450 CL0182 4.4 Bacterial Na+/H+ antiporter B (NhaB) This family consists of several bacterial Na+/H+ antiporter B
(NhaB) proteins. The exact function of this family is unknown.

PF03606 CL0182 4.2 C4-dicarboxylate anaerobic carrier NULL
PF03806 CL0182 4 AbgT putative transporter family NULL

top hit with a Z-score of 6.1 was with the PF00654 (CLC transporter family) (Figure

5.15).

Figure 5.15: Structural alignment between PF00654 (CLC) and 3ORG re-entrant/TM
helix structural motif
Dali structural alignment for PF00654 (CLC) (magenta) and 3ORG N-terminal re-entrant/TM
helix structural motif (green).

Additionally, as expected, inspection of the re-entrant/TM helix structural motif

hits for PF09335 (SNARE_assoc - DedA domain) (Figure 5.16a) and PF06695

(Sm_multidrug_ex - member of the DedA superfamily) (Figure 5.16b) brought

together the re-entrant/TM helix structural motif of 3ORG, 5TQQ, 3ND0, 3DET,

6COY (all Cl-/H+ antiporters), 5l25 (boron exchanger), 2n4x (electron transporter -

albeit classified as a member of the lysine exporter superfamily [157]) and 5z10

(mechanogated channel), all with Z-scores between 4 and 6.1.

Next the Pfam model hits for the re-entrant loop/TM helix structural motif that

had a Z-score greater than 4 were examined (Table 5.2 ).

Three of the hits with the Chloride channel re-entrant loop/TM helix structural
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(a) Re-entrant/TM helix
structural motif hits for
PF09335 (SNARE_assoc -
DedA domain)

(b) Re-entrant/TM he-
lix structural motif hits
PF06695 (Sm_multidrug_ex
- member of the DedA
super family)

Figure 5.16: Re-entrant/TM helix structural motif hits for PF09335 and PF06695
Magenta - Pfam representative model; Green are the Re-entrant/TM helix structural hits.

motif belong to the Pfam clan CL0182 (Ion Transporter (IT) Superfamily). Members

of this family are known to possess re-entrant loops and have an pseudo inverse

repeat topology. A more detailed examination of this clan is detailed in Chapter 6.

Additionally two other significant hits were recorded; both being bacterial domains

of unknown function (PF13194 - DUF4010 and PF10852 - DUF2651). It can be seen

from visual inspection of the structural alignment of the PF10852 model and the

3ORG query motif that DUF2651 does not possess the re-entrant/TM helix motif and

was a false positive hit (Figure 5.17b). Inspection of the PF13194 structural alignment

(Figure 5.17a) verifies that DUF4010 does indeed possess the query motif.

A detailed inspection of the representative model of DUF4010 shows two

transmembrane domains where the N-terminal domain represents PF02308 and the

C-terminal domain represents PF10852. The PF10852 domain possess two

re-entrant/TM helix motifs facing each other in the membrane and contributes to a

pseudo inverse repeat architecture that is only known to be found in transporters. An

investigation into common domain organisation structures involving DUF4010

identified that DUF4010 is commonly found with MgtC (PF02308) which also has an

unknown function. MgtC is, however, known to be found in an operon with the
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(a) Structural alignment of
re-entrant/TM helix struc-
tural motif of 3ORG with
the PF13194 model

(b) Structural alignment of
re-entrant/TM helix struc-
tural motif of 3org with the
PF10852 model

Figure 5.17: Re-entrant/TM helix structural motif structural alignments with PF13194
and PF10852
Green - Pfam representative model; Magenta are the Re-entrant/TM helix structural motif
from 3org.

Mg2+ transporter ATPase protein MgtB [215]. The observation that PF10852

possesses re-entrant/TM helix motifs facing each other in the membrane and part of

a pseudo inverse repeat architecture suggests it is a transporter; the fact that PF10852

is commonly found in proteins with the Pfam domain MgtC which is transcribed

along side MgtB suggests that PF10852 is transporting a substrate relating to the

transport of Mg2+.
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5.5 Re-entrant/TM helix motif human AlphaFold database

Screen

The availability of the new highly accurate AlphaFold2 models gave the opportunity

to identify the presence of re-entrant/TM helix motifs in other proteins within the

human proteome. The human AlphaFold database [82] was screened with the both

the N- and C-terminal re-entrant/TM helix motif from a human, bacterial and

archaeal DedA representative; Tmem41b, YqjA and Mt2055, respectively. The screen

resulted in a list of 559 non redundant hits with a Z-score of more than 4. This list

was further filtered removing hits that were predicted not to possess a minimum of

one transmembrane helix. The structural alignments of the resulting 217 hits were

visually inspected for the presence of re-entrant loops (Figure 5.18).

(a) Mt2055 C-terminal
re-entrant/TM helix motif
(magenta) structural align-
ments with the AlphaFold2
Solute Carrier Family 2
Facilitated Glucose Trans-
porter (green)

(b) Self-hit of Tmem41b
C-terminal re-entrant motif
(magenta) structural align-
ments with the Tmem41b
C-terminal re-entrant motif
(green)

Figure 5.18: False positive hits.
False positive hits were mainly due to the re-entrant loop of the query structure aligning with
two transmembrane helices in contact with one another (a) as opposed to a true positive hit

where the query clearly has aligned with a corresponding re-entrant/TM helix structural
motif (b)
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Thirty proteins were determined to exhibit a re-entrant loop/TM helix motif

within the structurally aligned region. The OMP server was then used to place the

structures into a plasma membrane in order to determine whether the re-entrant

motif actually sits within the membrane bi-layer boundaries rather than being part of

a globular domain. Indeed, performing a re-entrant/TM helix motif screen against

the full PDB using PDBeFold [114] it can be seen that these structural motifs are also

found in globular proteins e.g. 4xrm (Figure 5.19a). Furthermore examination of the

hydrophobicity profile of the globular equivalent re-entrant/TM helix motif reveals

the same inconsistent hydrophobicity distribution as seen in transmembrane

re-entrant loops where C terminal side is more hydrophilic (figure 5.19b).

(a) 4xrm (green) superposi-
tion with 6cb2 (magenta) re-
entrant/TM helix motif

(b) 4xrm hydrophobic-
ity distribution. (ab-
scissa:residue position,
ordinate: smoothed hy-
drophobicity)

Figure 5.19: 4xrm comparison with 6cb2 re-entrant/TM helix structural motif

Subsequently, 27 of the 30 models were confirmed to possess the re-entrant

loop/TM helix motif within the membrane boundaries after visual inspection (see

example Figure 5.20a). Furthermore, the detailed visual inspection revealed that in 16

of the models although the re-entrant loop/TM helix motif was positioned within the

membrane bi-layer, the helices of the re-entrant loop were atypically long with 5-6

helical turns on the N- and C- terminal halves; helical re-entrant loops typically

display around three helical turns on both the N- and C- terminal halves with the

turning point at the membrane mid-point. This indicated that the structural
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alignments of those 16 models in question did not actually possess re-entrant loops

and were in fact membrane spanning transmembrane helices. Indeed, all of the 16

models were hits generated with the bacterial Yqja re-entrant loop/TM helix motifs;

the re-entrant loop boundaries determined by the OMP server for the Yqja motifs

were possibly inaccurate resulting in excessively long helical regions being included

in the re-entrant loop part of the re-entrant loop/TM helix motif (Figure 5.20b).

(a) Aminopeptidase Q (Q6Q4G3)

(b) Respirasome complex
assembly factor 1 (Q9BUV8)

Figure 5.20: Other false positive hits
a) Presence of Aminopeptidase Q (Q6Q4G3) (green) false positive re-entrant loop/TM helix
motif in relation to membrane bi-layer. The query (Yqja N-terminal re-entrant loop/TM helix
motif) is shown in magenta. b) Presence of Respirasome complex assembly factor 1
(Q9BUV8) (green) re-entrant loop/TM helix motif in relation to membrane bilayer. The query
(Yqja N-terminal re-entrant loop/TM helix motif) is shown in magenta.

The remaining nine models possessing the re-entrant loop/TM helix motif within

the membrane bi-layer included three self hits with the human DedA homologues

(Figure 5.21) as well as hits with transmembrane membrane proteins already known

to possess the query structural motifs; Na+ transporters, Cl- transporters and

members of the Solute carrier family 13 (see Chapter 6).

In summary the screening of the DedA re-entrant loop/TM helix motif against the

human AlphaFold database was able to identify known proteins that possess this

structural motif. Additionally, the screen also identified a hit that (Oca2) that is not

known to have this structural feature. Chapter 6 describes a detailed analysis of the
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Figure 5.21: Query DedA re-entrant loop/TM helix motif self hits
Query C-terminal re-entrant loop/TM helix motif from Tmem41b structurally alignments
with (from left to right): Tmem41b, Tmem41a, Vmp1.

predicted structure for Oca2 which contradicts the prevailing consensus topology of

this physiological important protein.

5.6 Atg9 re-entrant AlphaFold Database Screen

Atg9 possesses two re-entrant loops that have a structural role forming a kinked

surface that contributes to the formation of a triangular wedge that acts as the

inter-chain interface between each member of the trimer. The kinks of these

re-entrant loops are formed by highly conserved proline residues, Pro302 in the

N-terminal and Pro483 in C-terminal re-entrant loops [119]. These unusual re-entrant

loops have not been recorded previously. In an effort to identify other proteins that

potentially possess these atypical structural features; the N-terminal re-entrant loop

(residues 274-322) was extracted (Figure 5.22) and screened using the Dali server

against the Human AlphaFold database.

The hits from the Dali results (Table 5.3) showed little consistency in terms of the

classes and functions of the proteins. The hits did not include the expected self-hit for

Atg9. In order to investigate the lack of self hits from the human AlphaFold database

screen a pairwise Dali structural alignment was performed between the re-entrant

loop in question and the Atg9 protein from which it was extracted. Surprisingly Dali

could not structurally align the two. The inability of Dali being able to align the two
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Figure 5.22: Atg9 re-entrant isolated loop from CryoEM model with membrane planes

structures possibly indicates some kind of limitation in the Dali software itself.

Screening the hits generated by the Atg9 re-entrant loop screen by visually

inspecting the structural alignments relative to the positioning of the membrane

bilayer provided by the OMP server showed that even though accurate structural

hits were obtained, they were not re-entrant loop structures.

A more detailed inspection of the membrane channel hits was conducted as the

re-entrant loop query originated from a putative channel protein. Slc44a2 controls

platelet activation and thrombosis mediating choline conductance across the

mitochodrial membrane thereby regulating mitochondrial energetics [216]. It can be

seen in Figure 5.23 that the aligned region of the target does possess the correct fold

but is not positioned in the membrane bi-layer.

The simplicity of the re-entrant loop structure is probably responsible for the

absence of any positive structural hits for these unusual structural features. A search

involving the alignment of the Atg9 re-entrant loop with additional structural
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Table 5.3: Dali results for structural screen of the Atg9 Re-entrant loop (Z-scores above
4.0)

Z-Score Hit Name
4.8 HUMAN:AF-Q15051-F1 IQ CALMODULIN-BINDING MOTIF-CONTAINING PROTEIN 1;
4.7 HUMAN:AF-P55081-F1 MICROFIBRILLAR-ASSOCIATED PROTEIN 1;
4.7 HUMAN:AF-Q03135-F1 CAVEOLIN-1;
4.7 HUMAN:AF-Q7Z7H8-F1 39S RIBOSOMAL PROTEIN L10, MITOCHONDRIAL;
4.6 HUMAN:AF-Q9H307-F1 PININ;
4.6 HUMAN:AF-Q8IWA5-F1 CHOLINE TRANSPORTER-LIKE PROTEIN 2;
4.6 HUMAN:AF-H3BTG2-F1 TESTIS-EXPRESSED PROTEIN 46;
4.6 HUMAN:AF-Q96FZ7-F1 CHARGED MULTIVESICULAR BODY PROTEIN 6;
4.6 HUMAN:AF-Q9NST1-F1 1-ACYLGLYCEROL-3-PHOSPHATE O-ACYLTRANSFERASE PNPL
4.6 HUMAN:AF-Q9NS69-F1 MITOCHONDRIAL IMPORT RECEPTOR SUBUNIT TOM22 HOMOL
4.6 HUMAN:AF-Q8IVF4-F14 DYNEIN HEAVY CHAIN 10, AXONEMAL;
4.6 HUMAN:AF-Q8NCM8-F11 CYTOPLASMIC DYNEIN 2 HEAVY CHAIN 1;
4.5 HUMAN:AF-P04233-F1 HLA CLASS II HISTOCOMPATIBILITY ANTIGEN GAMMA CHANNEL
4.5 HUMAN:AF-Q8IZT6-F11 ABNORMAL SPINDLE-LIKE MICROCEPHALY-ASSOCIATED PRO
4.5 HUMAN:AF-Q9UNK0-F1 SYNTAXIN-8;
4.4 HUMAN:AF-O00471-F1 EXOCYST COMPLEX COMPONENT 5;
4.4 HUMAN:AF-Q8TE73-F13 DYNEIN HEAVY CHAIN 5, AXONEMAL;
4.4 HUMAN:AF-O75154-F1 RAB11 FAMILY-INTERACTING PROTEIN 3;
4.4 HUMAN:AF-P55268-F1 LAMININ SUBUNIT BETA-2;
4.4 HUMAN:AF-Q96T54-F1 POTASSIUM CHANNEL SUBFAMILY K MEMBER 17;
4.3 HUMAN:AF-Q9H3R5-F1 CENTROMERE PROTEIN H;
4.3 HUMAN:AF-P56817-F1 BETA-SECRETASE 1;
4.3 HUMAN:AF-Q7Z419-F1 E3 UBIQUITIN-PROTEIN LIGASE RNF144B;
4.3 HUMAN:AF-P24043-F6 LAMININ SUBUNIT ALPHA-2;
4.2 HUMAN:AF-Q8TC41-F1 PROBABLE E3 UBIQUITIN-PROTEIN LIGASE RNF217;
4.2 HUMAN:AF-Q9BZF9-F1 UVEAL AUTOANTIGEN WITH COILED-COIL DOMAINS
4.2 HUMAN:AF-Q9UIF8-F1 BROMODOMAIN ADJACENT TO ZINC FINGER DOMAIN PROTEI
4.2 HUMAN:AF-Q5VIR6-F1 VACUOLAR PROTEIN SORTING-ASSOCIATED PROTEIN 53 HO
4.2 HUMAN:AF-Q8WXX0-F8 DYNEIN HEAVY CHAIN 7, AXONEMAL;
4.2 HUMAN:AF-Q0VDD8-F7 DYNEIN HEAVY CHAIN 14, AXONEMAL;
4.1 HUMAN:AF-P06127-F1 T-CELL SURFACE GLYCOPROTEIN CD5;
4.1 HUMAN:AF-Q9Y6N6-F1 LAMININ SUBUNIT GAMMA-3;
4.1 HUMAN:AF-Q93074-F1 MEDIATOR OF RNA POLYMERASE II TRANSCRIPTION SUBUN
4.1 HUMAN:AF-Q9NQ34-F1 TRANSMEMBRANE PROTEIN 9B;
4.1 HUMAN:AF-Q14207-F1 PROTEIN NPAT;
4.1 HUMAN:AF-Q6TFL3-F1 COILED-COIL DOMAIN-CONTAINING PROTEIN 171;
4.1 HUMAN:AF-P02679-F1 FIBRINOGEN GAMMA CHAIN;
4.1 HUMAN:AF-Q9UI33-F1 SODIUM CHANNEL PROTEIN TYPE 11 SUBUNIT ALPHA;

131



Shahram Mesdaghi (962096127)

Figure 5.23: Human SCL44A2 AlphaFold2 model with Magenta highlighting Atg9 re-
entrant alignment region.

features (upstream and/or downstream from the re-entrant loop) could possibly

yield structural hits when this kind of mining exercise with simple structural regions

is performed. Structural information coupled with, for example, hydrophobic

distribution would provided additional mining criteria to identify equivalent

structural regions from a large database. In terms of the specific Atg9 re-entrant loop;

it could also be that this feature is unique to Atg9.

5.7 Conclusions

Large complex transmembrane proteins can be successfully be modelled with

AlphaFold2. The models can be used to infer homology in the absence of any

detectable sequence similarity. This can be seen, for example, the strong structural

alignments between representative models of PF00230, PF10136 and PF01226.

Additionally, these highly accurate structural predictions made by AlphaFold2 can

be mined to identify proteins possessing sub-structures of interest. The presence of

specific sub-structures can infer function of these proteins. Screening for simple
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sub-structures such as the Atg9 re-entrant loop proved difficult. However, screening

both a transmembrane Pfam model library as well as the human AlphaFold database

for a more complex sub-structure such as the re-entrant loop/transmembrane helix

motif proved more successful resulting in identifying proteins possessing the

re-entrant loop/transmembrane helix motif; as a result, the function of these proteins

were inferred confidently (see chapter 6 for the in depth analysis of Oca2).
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6 | Structural Insights into Pink-eyed

Dilution Protein (Oca2)

6.1 Introduction

Albinism is a hereditary condition affecting the synthesis of melanin. The most

prevalent and visually identifiable form of albinism is oculocutanous albinism.

Oculocutanous albinism is a recessive disorder where individuals have a phenotype

exhibiting melanin deficiency in the skin, hair, and eyes. Oculocutanous albinism

results from mutations in genes that code for proteins that are involved in melanin

production. The gene affected is used to classify the type of oculocutanous albinism

into one of the 7 subtypes (oculocutanous albinism 1-7); oculocutanous albinism type

1:TYR, oculocutanous albinism type 2:OCA2, oculocutanous albinism type 3:TYRP1,

oculocutanous albinism type 4:SLC45A2, oculocutanous albinism type 6:SLC24A5,

oculocutanous albinism type 7:LRMDA and oculocutanous albinism type 5 gene is

located on chromosome 4q24 [183]. Accurate diagnosis of the sub-type can only be

achieved by a genetic screen [217]. The most prevalent form of oculocutanous

albinism is oculocutanous albinism type 2 in which mutations in the OCA2 gene

cause changes in the transmembrane protein ’p-protein’ (Oca2) thereby impacting

melanin production. Polymorphisms of the OCA2 gene have been shown to be major

contributor to skin colour [218] and are thought to underlie blue eye colour in

humans [219]. Oca2 is expressed in melanocytes and retinal pigment epithelium
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(RPE) where it is restricted to melanosomes.

Melanosomes are “lysosome-related organelles” but are functionally and

morphologically distinct from lysosomes as they have an acidic luminal pH [220] and

possess cell–type-specific cargo proteins [221]. Trafficking pathways deliver these

cargo proteins to immature melanosomes which contributes to their maturation

[222]. Oca2 is located in the mature melanosomal membrane where it has been

shown to control chloride conductance across the lipid bilayer [223]. This chloride

conductance is coupled to proton motive force, and is related to maintenance of the

optimal luminal pH for the tyrosinase function involved in the production of melanin

[223]. The currently accepted model of Oca2, based on hydrophobicity profiles,

describes Oca2 as a 12 transmembrane helix protein with two luminal loops and an

N-terminal disordered cytoplasmic loop [224]. Oca2 is glycosylated in the N-terminal

luminal loop and the N-terminal cytoplasmic loop of Oca2 possesses dileucine

motifs; both of these features are important for the trafficking of Oca2 from the ER to

the melanosomes through a series of intracellular compartments [225].

This study employs deep learning modelling methods to argue for a revised

topology for Oca2. Deep learning methods such as DMPfold [77], trRosetta [56] and

AlphaFold2 [79] build predicted protein structures by predicting inter residue

distances, main chain hydrogen bond network and torsion angles and utilizing these

as restraints in the model building process. Benchmarking these methods have

demonstrated that they work just as well for membrane proteins as they do for

soluble proteins [77, 81]. DMPfold was shown to be able to model transmembrane

proteins with a TM-score of at least 0.5 to the native structure and obtain a mean

TM-score of 0.74 [77]. The accuracy of AlphaFold2 transmembrane protein modelling

has been tested by exploring the construction of structures from the ABC protein

superfamily. For these transmembrane proteins AlphaFold2 performed exceedingly

well when testing template-free structure prediction as well as attempting a new ABC

fold, dimer modelling, and stability in molecular dynamics simulations [? ].
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The modelling of Oca2 using AlphaFold2 predicts the presence of a pseudo

inverted repeat that forms a pore region flanked with two highly conserved

re-entrant loops. Additionally, a luminal loop proceeding the first transmembrane

helix is predicted to be GOLD-like domain that allows trafficking through the Golgi

from the endoplasmic reticulum to finally localise at the melanosomal membrane.

The newly proposed topology shares features with sodium-carboxylate transporters

(NaCT) which is supported by the obvious sequence homology.

6.2 Methods

Pfam database screening

Searches using the sequence of Oca2 were made against the PfamA_v35.0 [85]

database using the HHPred v3.0 server [86] with default parameters (-p 20 -Z 10000

-loc -z 1 -b 1 -B 10000 -ssm 2 -sc 1 -seq 1 -dbstrlen 10000 -norealign -maxres 32000

-contxt /path/to/context_data.crf) and eight iterations for MSA generation in the

HHblits [86] stage.

Structural database screening

Dali v5.0 server [111] was used to screen the PDB [185] and the AF human proteome

database [82] for structural homologues of Oca2. Pairwise alignments were also

performed by the Dali server.

Model building

An initial Oca2 model was obtained from the AFDB [82]. The construction of the

inward-facing homodimeric form and attempted alternate conformations was

performed by a local installation of ColabFold [? ].

The outward-facing monomers were constructed by first building a homology

model of Oca2 using an outward facing structure of a homologue. The HHpred

server was used to identify 6wtw as a close homologue (99.97% probability).
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Modeller [101] functionality of the MPI bioinformatics toolkit server was used to

build the homology model. The homology model as a template along with custom

MSAs of varying depths were used as inputs in a local installation of ColabFold. Five

models at each MSA depth were constructed and the model with the highest mean

pLDDT score was selected for examination.

The outward facing homodimer was constructed using a local installation of

ColabFold with the Modeller homology structure used as a template and an MSA

with depth of 15 sequences.

MSAs

MSAs were build using the HHblits server [86] using default settings. The reduction

in MSA depth, as a strategy to assist exploration of conformational diversity in AF

outputs, was achieved by randomly selecting sequences from the HHblits

output.

Docking

The Webina server [226] utilizing Autodock [227] was used to dock citrate into the

putative binding pocket of Oca2. A docking box size of 35x35x35 was used with the

default coordinates for the box center. Prodigy [228] was used to perform docking

re-scoring.

6.3 Results and Discussion

6.3.1 Oca2 is a member of the Ion Transporter (IT) Superfamily

Oca2 is an 838-residue transmembrane protein annotated in UniProt with the Pfam

domain CitMHS (PF03600). An HHpred search of the Pfam database reveals that

Oca2 also possesses strong sequence similarity to other members of the Ion

Transporter (IT) Superfamily with HHpred probability scores above 99.9% (Table
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Table 6.1: HHpred results for screen of Oca2 sequence against Pfam

Pfam Accession Pfam Name Probability E-Value Query HMM Template HMM
PF02040.18 ArsB 100 1.90E-26 334-831 2-422
PF00939.22 Na_sulph_symp 100 3.50E-25 324-837 23-473
PF06450.15 NhaB 100 1.20E-24 328-831 42-503
PF16980.8 CitMHS_1 99.9 2.30E-23 332-829 11-442
PF07399.14 Na_H_antiport_2 99.9 1.50E-22 328-826 1-413
PF06808.15 DctM 99.9 6.00E-20 339-830 1-410
PF02447.19 GntP_permease 99.9 9.70E-19 329-834 1-443
PF03600.19 CitMHS 99.9 8.00E-19 342-773 1-348

6.1).

ArsB protein is established as a bacterial arsenite efflux pump [229]. Although it is

common for ArsB to complex with the ATPase ArsA to form an ATP-driven pump

that expels arsenite [230] it has been shown that ArsB can function independently as

an arsenite efflux pump by coupling with proton motive force [231]. Although Oca2

shows no sequence similarity with Cl- transporters it has been demonstrated

experimentally that Oca2 is required for melanosomal anion efflux contributing to

the mediation of chloride-selective anion conductance which in turn modulates

melanosome pH thereby regulating melanin synthesis [223].

6.3.2 SLC13 members have a pseudo inverse repeat topology

The IT Superfamily is made up of both symporters and antiporters [232].

Experimental structures are available for some members, but no experimental

structures are available for Oca2. To identify experimental structures of close

evolutionary relatives to Oca2, the sequence was screened against the PDB using

HHpred. There were three hits above 99.9% probability comprising members of

Pfam families DASS (divalent anion sodium symporter) family sodium-coupled

anion symporter, Solute carrier family 13 member 5 and NaDC (Table 6.1).

Additionally, the AlphaFold2 model of Oca2 was screened against the full PDB using

Dali. All hits above a Z-score of 35 were Na+ symporters in the inward conformation

with the top hit being 7jsj, the Solute carrier family 13 member 5 and NadC (Table

6.3). Furthermore, the AlphaFold2 model of Oca2 was screened against the
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Table 6.2: HHpred results for screen of Oca2 sequence against PDB

Pfam Accession Pfam Name Probability E-Value Query HMM Template HMM
6WTW_B DASS family sodium-coup 100 5.00E-24 323-837 32-490
7JSK_B Solute carrier fam 13 mem 5 99.99 8.20E-24 327-836 31-552
5UL9_D Transporter, NadC famil 99.9 3.70E-23 326-832 23-444

Alphafold database of the human proteome using Dali; there were five hits above a

Z-score of 30 for the conserved Pfam domain (PF16980); Solute Carrier Family 13

Members 1,2,3,4 and 5 (Table 6.2). Thus, the results of HHpred sequence analysis and

Dali structural similarity searches both suggest that Oca2 is a close evolutionary

relative to members of Solute Carrier Family 13, sharing structural and potentially

functional features.

Table 6.3: Dali results for structural screen of Oca2 against PDB

Table 6.4: Dali results for structural screen of Oca2 against Human AlphaFold
database

Solute carrier (SLC) proteins are integral membrane transport proteins that are

classified into 66 families [233, 234]. Members within each family have greater than

20% sequence identity. However, the homology between solute carrier families
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maybe non-existent [235] as the basis for the introduction of a family as a solute

carrier protein is related to functionality rather than an evolutionary link. Currently

there is one structure available for a mammalian SLC13 protein; 562 residue long

sodium- dependent citrate transporter (NaCT), SLC13 member 5. NaCT displays

inverted repeat pseudo-symmetry relating the N-terminal half to the C-terminal half

[236] with each repeat containing a re-entrant loop packing against a broken

transmembrane helix, followed by a cytosolic amphipathic helix parallel to the

membrane plane, a second re-entrant loop packing against a broken transmembrane

helix then finally a transmembrane helix (Figure 6.1).

Figure 6.1: NaCT topology.
Shaded regions highlight the pseudo inverse repeat. Red: transmembrane helix; Orange:

re-entrant loop; Blue: broken helix; Green: amphipathic helix; Grey: extra-membrane helix.

6.3.3 Oca2 has a pseudo inverse repeat topology

Examination of the Oca2 AlphaFold2 model (Figure 6.2) reveals a more complex

topology compared to the currently accepted model of 12 transmembrane helices

with two luminal loops and an N-terminal disordered cytoplasmic loop (6.4).

The AlphaFold2 model shares topological features with NaCT: a pseudo inverse

repeat, each possessing a broken transmembrane helix, an amphipathic helix and a

re-entrant loop packing against a broken transmembrane helix. Extrapolating

functional annotations from homologues of Oca2 that have an experimental structure

identified from the HHpred PDB screen indicates that each repeat unit of Oca2

possesses a transport domain made up of a re-entrant loop packed with
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Figure 6.2: AlphaFold2 Oca2 model
a) Red: transmembrane helix; Orange: re-entrant loop; Blue: broken helix; Green:

amphipathic helix; Purple: ‘N-terminal luminal loop’- putative GOLD domain; Grey:
extra-membrane helix. b) Coloured by AlphaFold2 per-residue confidence score (pLDDT)

between 0 and 100. pLDDT>90 (blue) to pLDDT<50 (red).

transmembrane helix, where the transmembrane helix is broken in the centre. The

amphipathic helices of each unit link the transport domain to a scaffold domain

formed by the other helices of the conserved CitMHS domain. It has been shown in

the experimental homologues that during the transport cycle, the two amphipathic

helices are fixed in space with respect to the scaffold domain and cradle the transport

domain during the conformational transition between the outward- and

inward-facing states [232, 237]. The rigidity of the Oca2 amphipathic helices could be

achieved by salt bridges, between Glu403 with His668 as well as Asp408 with Lys614.

Indeed, mutations of the equivalent residues (Arg102 – Asp398 and Lys107 –

Glu305), in NaCT results in the abolition of substrate transport [236]. The distances

between the potential salt bridge forming residues in the Oca2 model are beyond the

4Å threshold distance for salt bridge formation although in both cases the residues
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are located adjacent to flexible disordered loops which may facilitate the potential

interaction for the residues forming a salt bridge (Figure 6.3).

Figure 6.3: Oca2 Possible Salt Bridges
Presence of possible salt bridges stabilising the scaffold domain. Magenta: NaCT salt bridges;

Left: Lys107 – Glu305, Right: Arg102 – Asp398. Green: Oca2 possible salt bridges; Left:
Asp408 - Lys614, Right: Glu403 with His668.

Further inspection of the model identified additional structural features outside of

the repeating units; a 171 residue long cytosolic N-terminal disordered region, a

luminal 130 residue forming an eight stranded beta sandwich and a 95-residue

cytosolic helical region separating the two inverse repeats (Figure 6.4).

6.3.4 Oca2 dileucine motifs responsible for melanosome localisation

are located on the disordered cytosolic N-terminal region

The model of Oca2 has an N-terminal disordered loop. AlphaFold2 models this loop

packed with transmembrane helices and when placed into a membrane bi-layer

using the OMP server the 170 residue long cytosolic N-terminal disordered region

crosses the membrane which is an obvious error. AlphaFold2 models this loop with
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Figure 6.4: Oca2 Topology
Top: Current consensus view of Oca2 topology [225]. Bottom: Proposed Oca2 Topology.

Shaded regions are the pseudo inverse repeat. Red: transmembrane helix; Orange: re-entrant
loop; Blue: broken helix; Green: amphipathic helix; Purple: ‘N-terminal luminal loop’; Grey:

extra-membrane helix.

very low confidence (pLDDT < 50) and packs it against the transmembrane helices.

As a result, when placed into a membrane bi-layer using the OMP server, the 170

residue long cytosolic N-terminal disordered region crosses the membrane which is

not energetically favourable. Packing of intrinsically disordered regions against the

main domain has been seen previously in models produced by AlphaFold2 [238].

Indeed, the quality metrics for the AlphaFold2 Oca2 structure within the

TMAlphaFold database highlight residues that are present in the membrane that

should not be.
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An AF2 remodeling exercise was performed in order to attempt to obtain a model

where the N-terminal disordered region does not transverse the membrane

boundaries as defined by the OPM server [48]. The output provided 5 new models.

The highest-ranking model with a pLDDT score of 72.9 showed the disordered loop

mostly on the cytosolic side of the membrane with the exception of a 5-residue region

(60-65) dipping into the membrane bi-layer (Figure 6.5).

Previous experimental studies have identified this loop to be cytoplasmic and

possesses three dileucine motifs that required for human Oca2 function. These motifs

have been shown to be essential for the targeting and localisation of Oca2 to the

melanosome membranes by interacting with members of the clathrin-associated

heterotetrameric adaptor protein family, AP-1 and/or AP-3 [225].

6.3.5 Oca2 possesses a GOLD-like domain

The AlphaFold2 model predicts that the first luminal 130 residue loop forms an eight

stranded beta sandwich. Examination of experimental PDB structures of other

members of the IT superfamily revealed that Oca2 is the only member of the

superfamily to possess this beta sandwich structure. Screening the 130-residue

sequence of the beta sandwich against the PDB using HHpred did not yield any

significant hits. In order to identify proteins possessing structurally similar regions,

the 130-residue beta sandwich region was extracted from the AlphaFold2 model of

Oca2 and screened, using Dali, against the full PDB. The results (Table 6.5) gave a top

hit with a Z-score of 10.3 for the central domain of tripeptidyl-peptidase 2 (TPP2)

which is involved in the oligomerisation of TPP2 [239]. The other top hits from the

screen are for proteins possessing the Golgi Dynamics (GOLD) domain and have

Z-scores above 9. Although this region shows no sequence similarity to known

GOLD domains, the identification of homology through structural information,

independent of sequence similarity, agrees with previous studies that indicate that

GOLD domains have low sequence identity even between family members [240].

The functions of the GOLD domain are largely unknown although there are
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indications that it is involved in the trafficking of proteins from the endoplasmic

reticulum to other subcellular compartments [240]. Oca2 is known to become

terminally glycosylated when it transits to a post-ER compartment to the Golgi [225].

Human Oca2 has three evolutionary conserved consensus N-glycosylation sites (Asn

214, 218, and 273) [225] within the putative GOLD domain [225] and it has been

demonstrated that some ER-resident proteins undergo GOLD domain

N-glycosylation which is important for their trafficking between the ER and Golgi

[241]. All of this suggests that the region previously termed the N-terminal luminal

loop in fact encodes a GOLD domain involved in the trafficking of Oca2 from the ER

to the Golgi prior to localisation at melanosomal membranes.

Table 6.5: Dali results for structural screen of beta sandwich region against PDB

6.3.6 Mutations in the Oca2 putative pore region results in severe

albinism

The pseudo inverse repeat - made up of a broken transmembrane helix, an

amphipathic helix and a re-entrant loop packing against the broken transmembrane

helix - forms a substrate-binding chamber possessing two flanking re-entrant loops

with the N-terminal half of the re-entrant loop containing highly conserved residues.

Consurf [108] analysis highlights this region as highly conserved. Mutations in Oca2

disrupt melanin production within the melanosome. The hindered melanin synthesis

has been linked to altered melanosome luminal pH which is correlated with reduced

chloride conductance across the melanosome membrane [223].

Positions of mutations that are characterised in vitro or in vivo were mapped onto

the AlphaFold2 model in order to provide a structural context. Mutations at
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positions V443 and K614 are known to result in oculocutaneous albinism type II as

well as inhibiting in vitro melanosome melanin content. Mapping these mutations

onto the Alphafold2 model reveals that V443 is present on the N-terminal re-entrant

loop of the first repeat unit and has a critical impact on chloride conductance across

the melanosome membrane. The position of this functionally critical residue on a

re-entrant loop is in accordance with other transporters where the re-entrant loop has

a role in channel specificity [9]. K614 is present on the predicted cytoplasmic loop

between the two inverse repeat units that would not contribute to any transport

functionality of the protein; this is in agreement with the fact that in vitro studies

show that K614 mutations have little effect on chloride conductance. K614 mutations

present in albino patients also possess additional Oca2 mutations [242], so that the

K614 change may itself not be of critical phenotypic importance. Furthermore,

mapping the 5-point mutation from Bellono et al (5mut: V443I, M446V, I473S, N476D,

N489D) shows that they are all present on the N-terminal re-entrant

loop/transmembrane helix structural motif of the first repeat. Again, these mutations

result in inhibition of chloride conductance and are present in the putative pore

region of the protein. Mapping of other known mutations that result in severe

albinism (F385, M395, N489, N679) [242, 243, 244] show that these critical residues are

present in either the N- or C-terminal transport domain region; F385 and M395 in the

first transmembrane helix of the N-terminal transport domain region, N489 in the

second transmembrane helix of the N-terminal transport domain region that packs

with the re-entrant loop and W679 in the first transmembrane helix of the C-terminal

transport domain region (Figure 6.5). The mapping of known Oca2 mutations show

that those present in the inverted repeat that forms the putative pore are more likely

to result in the severe oculocutanous albinism type 2 phenotype. Similarly, mutation

of Oca2 in regions important for melanosome localisation also results in the severe

phenotype of oculocutanous albinism type 2. However, in contrast, mutations

localised relatively distant to the putative pore region do not result in the severe

phenotypes of oculocutanous albinism type 2.
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(a) Oca2 topology with trafficking and example mutation sites
mapped.

(b) Oca2 model with example muta-
tion sites mapped (Na+ ions shown as
purple spheres)

Figure 6.5: Oca2 Mutation Sites.

6.3.7 Citrate docks at the putative binding site

Bellono et al speculate that Oca2 might be an accessory subunit of a Cl- transporter or

form a Cl- channel or carrier protein itself like the bacterial homologue ArsB. The

pseudo inverted repeat topology that includes re-entrant loops facing each other in

the membrane packed against transmembrane helices has been seen previously in

other chloride transporters such as CLC transporters [9, 134]. Attempts were made to

perform Oca2 docking a chloride ion. Docking of chloride was not successful;

chloride did not dock at the putative binding site and was placed outside of the
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transport domain. Consequently, as Oca2 has strong HHpred hits with SLC13

transporters, docking of the SLC13 substrate was considered.

SLC13 transporters are members of the larger divalent-anion sodium symporter

(DASS) family [245, 246, 247, 248]. Most DASS transporters are sodium-coupled

symporters that transport one substrate for each 2–4 sodium ions. However, some

DASS members are antiporters [249]. Sequence analysis and examination of

experimental models show that DASS symporters and antiporters share the same

fold [250]. The DASS antiporters possess surrogate residues (K,R or H) to

compensate for the absence of sodium ions. Examination of Oca2 at the surrogate

residue equivalent positions shows that the surrogate residues (K,R or H) that are

present in the experimental structure of the DASS antiporter 6wu1 (LaINDY) are not

present in Oca2. Furthermore, the substrate binding residues where the side chain is

involved in the binding of two sodium ions identified in the DASS symporter

experimental structure of 7jsk (NaCT) (Asn141 and Asn465) are present at the

equivalent positions in the Oca2 model (Asn442 and Asn741). Indeed, visualization

of the electrostatic surface view of Oca2 highlights a negatively charged region

corresponding to the putative Na+ binding site (Figure 6.6a).

(a) APBS electrostatic mapping sur-
face view of Oca2 (transport domain
only).

(b) APBS (Adaptive Poisson-
Boltzmann Solver) electrostatic
mapping surface view of NaCT.
Spectrum: Red (negative) to blue
(positive)

Figure 6.6: Oca2 Electrostatics

148



Shahram Mesdaghi (962096127)

In the human NaCT experimental structure [236] a density which appears to be

citrate is observed. There, in addition to Asn141 and Asn465, the authors propose

additional substrate binding residues that form a substrate binding motif for citrate

(Ser140-Asn141-Thr142 and Ser464-Asn465-Val466). The Oca2 model only possesses

the Asn equivalents. Webina [226] was subsequently employed in an attempt to dock

citrate at the equivalent position in Oca2 as seen in NaCT. The citrate does indeed

dock on Oca2 at the equivalent position as observed in NaCT (Figure 6.6).

Furthermore, docking of citrate to the AlphaFold2 model of NaCT results in docking

again at the equivalent position with similar scores (∆G -6.3 kcal/mol and -5.1

kcal/mol for NaCT and Oca2 respectively). To confirm this, a re-scoring exercise

using Prodigy [228] was performed for both Oca2 and NaCT; again, both NaCT and

Oca2 obtained similar scores of ∆G -5.4 kcal/mol and -5.5 kcal/mol respectively,

supporting the Webina binding affinity energy scores. Attempting to dock citrate on

to ArsB, however, does not result in docking of citrate at the putative binding site.

Indeed, conservation mapping using ConSurf highlights the putative ligand binding

residues as highly conserved.

These results suggest that citrate is a plausible substrate for Oca2, but this does

not align with the experimental observation that Oca2 is involved with chloride

conductance across the melanosome membrane. Dicarboxylates are known to have a

role in metabolic signaling. It is plausible that the movement of citrate (or another

dicarboxylate) in and out of the melanosome could modulate chloride conductance

across the melanosomal membrane downstream. Indeed, it has been shown that

citrate inhibits melanin synthesis via the GSK3β/β-catenin signaling pathway which

involves the regulation of tyrosinase transcription factors[251]; citrate may be

involved in the regulation of melanin synthesis at other key points in synthesis

pathway.
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Figure 6.7: Webina Oca2 docking of citrate
Yellow are the conserved Asn442/Asn741 and adjacent residues.

6.3.8 AlphaFold2 multimeric modelling protocol in combination with

traditional homology modelling was able to model Oca2 in al-

ternative conformations

Given that DASS proteins operate via an elevator-type transport mechanism [237]

and the obvious homology that Oca2 shares with DASS transporters it can be

confidently predicted that the Oca2 transport mechanism is also of the elevator type.

The elevator-type transport mechanism involves the sliding of the transport domain

through the bilayer as a rigid body while the scaffold domain remains fixed in order

to achieve the transitions between the outward- and inward-facing states [252].

During the transport cycle it has been demonstrated that DASS symporters

cotransport by binding sodium first and then their substrate, with the reverse

occurring during the release [253, 254, 255, 256, 257]. During the course of transition

between the outward and inward facing states the angle between the amphipathic

helices and the re-entrant loops change by approximately 30° allowing the movement
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of the transport domain (Figure 6.8); the presence of flexible hinge loops between the

amphipathic helices and the re-entrant loops facilitate transport domain movement

[236].

Figure 6.8: Elevator Mechanism
Blue: scaffold domain; Green: amphipathic helix; Orange: N- terminal of re-entrant loop.

Between the inward and outward states, the angles at amphipathic (green)/re-entrant loop
(only N-terminal side showing - orange) hinges (dark blue) change by around 30° resulting in

the movement of the transport domain (not shown) relative to the scaffold domain.

Examination of the AlphaFold2 model showed that it was in the inward facing

state where the angle between the N-terminal half of the re-entrant loop and the

amphipathic helix is approximately 30° for the N-terminal side and approximately

55° for the C-terminal side. As observed for the DASS transporters VcINDY and

LaINDY; the N-terminal angle increases by around 30° and the C-terminal angle

decreases by around 30° when the transporter switches to the outward facing state

[236]. Attempts were made to model Oca2 in an outward facing conformation;

building Oca2 locally using ColabFold resulted in 5 models all in the inward-facing

conformation. Application of strategies that have previously been successful in the

sampling of the conformational space of transporters were also employed; feeding

ColabFold with shallow multiple sequence alignments [258]. Implementing this

strategy also failed to generate models outside of the inward-facing conformational

state. Further attempts were made to model Oca2 in an outward facing conformation

by a combination of utilizing the VcINDY outward-facing structure as a template for

AlphaFold2 [? ] and by providing AlphaFold2 with reduced depth MSAs. However,

again, AlphaFold2 was only able to generate the inward-facing conformation. The
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inability to obtain the outward facing conformation may be due to there being only

one outward facing entry in the PDB with all others being a single DASS symporter

in a substrate-bound, inward-facing state; resulting in modeling to converge on the

inward facing state. Indeed, the AlphaFold2 prediction neural networks were trained

on all structures deposited in the PDB on or before April 30, 2018 [79] and many

DASS homologues in the inward facing state were deposited before this date with

the few outward facing examples being deposited in 2021 [236]. The failure to

generate Oca2 in an alternative by using previously known methods resulted in the

employment of a novel strategy. A homology model of Oca2 was built using the

VcINDY outward facing structure (6wtw) as a template for Modeller [101]. The

output structure had a Dali alignment Z score with 6wtw of 54.8, however, the Oca2

structural features that are not present in VcINDY such as the putative GOLD

domain were obviously not modelled. In order to rectify this, the Modeller model

was then used in ColabFold in conjunction with various custom MSAs of varying

depths to build a series of Oca2 structures (Table 6.6).

The output models displayed the characteristic inverse repeat architectures of the

scaffold and transport domains as seen in DASS transporters as well as the putative

GOLD domain as predicted in the earlier modelling of the inward facing state of

Oca2. Reducing the MSA depth did negatively influence the quality scores of the

output models but at the same time improved the Dali alignment Z score with

respect to the outward facing DASS transporter 6wtw thereby indicating more

outward-facing structures. Additionally, the measurement of the N-terminal

amphipathic/re-entrant hinge angle and C-terminal amphipathic/re-entrant hinge

angle showed the characteristic angle combinations of the outward facing state;

N-terminal angle being larger than the C-terminal angle (Figure 6.9).

AlphaFold2 is able to construct a plausible Oca2 homodimer in both

conformations when used in combination with traditional homology modelling. The

close homologues of Oca2 have experimental structures that form homodimers

[236, 259]. Therefore attempts were made to model Oca2 as a homodimer. First,
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Table 6.6: Z-scores, angles and quality scores for the Oca2 models
Scores and measures for: Row 1 AlphaFoldDB model of Oca2 in the inward facing state; Row

2 6wtw experimental structure of the Oca2 homologue VcINDY in the outward facing
conformation; Row 3 homology model of Oca2 when VcINDY in the outward facing

conformation is used as a template; ColabFold constructed models using the homology
model as a template at various MSA depths.

ColabFold was employed to build a homodimer without using a template and

utilizing the full MSA. This produced five models each of which were in the inward

facing conformation (Figure 6.10). Next the Modeller template and reduced MSA (15

sequences) were used to build a homodimer; this produced five models in the

outward facing conformation (Figure 6.10).

Pisa [260] was employed to determine the area of the interface which was

calculated as 55111.2Å2 for both models. This interface area is much larger than

NaCT; 21035.3 Å2. The presence of the putative GOLD domains in Oca2 contribute to

this dimerisation surface area resulting in this unusually large interface. To our

knowledge, dimerised GOLD domains have not been reported previously. Further

analysis of the homodimer interfaces of Oca2 revealed the presence of an interaction

between Trp679 of both monomers which could contribute to the stabilisation of the
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Figure 6.9: Alternative Conformations
Yellow: N-terminal amphipathic/re-entrant hinge; Orange: C-terminal

amphipathic/re-entrant hinge.

Figure 6.10: Alternative Dimer Conformations
Yellow: N-terminal amphipathic/re-entrant hinge; Orange: C-terminal

amphipathic/re-entrant hinge.

interface formed from the two scaffold domains resulting in a stable rigid structure in

the membrane (Figure 6.11); this same interaction can be seen in the dimer interface

of NaCT; Pi–Pi interaction between Trp408 and Trp408′ from the neighbouring
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protomers stabilizing the two scaffold domains together into a rigid framework

[236].

Figure 6.11: Homodimer interface Pi-Pi interaction
Potential Pi-Pi interaction between Trp679 and Trp679’ stabilising the Oca2 homodimer

interface.

6.4 Conclusions

Oca2 shows structural similarities to SLC13 proteins. The AlphaFold2 model has

provided the opportunity to revise the current consensus view of its topology. The

AlphaFold2 model of Oca2 strongly suggests that it shares the DASS family topology

and possesses a GOLD-like domain. The DASS family contains both symporters and

antiporters; Oca2 possesses symporter features. Although the molecular specificity of

Oca2 remains unclear, Oca2 possesses key citrate-binding residues as seen in NaCT

and citrate docks to Oca2 at the putative binding site as observed in NaCT. When
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clinically relevant and in vitro mutations are mapped on to the model it is seen that

they cluster on the transport domain of the structure. AlphaFold2 modelling of Oca2

has demonstrated that, like DAS transporters, Oca2 can exist in two plausible

conformations: inward- and outward-facing, supporting an elevator-type transport

mechanism.
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7 | Discussions and Conclusions

7.1 Discussion

The most obvious area where further work may be performed, especially for the

research covered in chapters 3 and 4, is the utilisation of models generated from the

latest methods. The field of protein structure prediction is developing at an incredible

pace with new methods becoming available on an almost daily basis. In terms of the

DedA fold, we believe we have captured this accurately and the topology has since

been experimentally verified [162, 168]. The question still remains, however, whether

the DedA models are stable within a membrane. It is clear that having the re-entrant

loop exposed to lipid bi-layer would not be stable. Experimental evidence is

available that these proteins exist as homodimers [162]. The homodimers could

plausibly shield the re-entrant loops from the hydrophobic environment of the

membrane. It is now possible using AlphaFold2 or specialist oligomerisation

software such as AlphaPulldown [261] to build potential homodimers. The stability

of these homodimer models when placed in a lipid bilayer could be tested using

molecular dynamic simulations. Additionally, further work needs to be carried out to

determine what the substrate is for both DedA proteins and Atg9 as well as to

provide validation that Oca2 transports a dicarboxylate such as citrate. Bioinformatic

methods for making ligand predictions based on deep learning methods are

beginning to emerge [262] and these could shed light on what these putative

transporters are actually translocating. Finally, the methodology for mining

databases for specific membrane protein sub-structures could have been made more
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efficient through the inclusion of additional structural attributes. For example,

identifying the re-entrant/transmembrane helix motifs could have been made more

efficient and sensitive if the transmembrane subset of the AlphaFold database had

first been processed with PDBTM’s TMDET [47] algorithm. TMDET would have

provided re-entrant loop annotation to the library of the transmembrane structures.

This would have eliminated the need to manually place structures into the

membrane using OPM [48] and visually inspect the membrane placed structures to

identify hits. An annotated transmembrane AlphaFold database could also be used

to perform a full census of proteins that possess re-entrant loops as well as investigate

other attributes of these regions such as residue composition or fold patterns that

re-entrant loops form with adjacent structures in three dimensional space.

This study employed searches of structural databases for specific re-entrant

structural motifs. Another key structural feature of the target proteins studied in

Chapters 3 and 4 is the tandem repeat. Additional work could be carried out to mine

for this interesting feature. Repeat proteins are commonly found across all domains

of life and harbour a wide range of functions [263]. The origin of these repeats

derives from gene duplication events [264] resulting from slipped-strand mispairing

during DNA replication [265] or through replication arising during the repairing of

double strand DNA breaks [265]. The length of the repeating sequence unit varies

considerably [264, 266] and can be used in conjunction with their tertiary structure to

group repeat proteins into five classes [267] a classification also adopted by the

RepeatsDB; crystalline aggregates, fibrous repeat, elongated repeat, closed repeat,

beads-on-a-string [268]. Many families of repeat proteins remain structurally

uncharacterised by experimental methods, yet they are particularly favourable

subjects for modelling: there is an expectation that each sequence repeat should

adopt the same structural configuration, a rule that provides a form of internal

validation.
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7.2 Conclusions

The past three years has seen an exponential improvement in protein structure

prediction owing to the implementation of deep learning methods into the model

building algorithms. Indeed, high accuracy protein modelling has historically been

associated with template based modelling where back in CASP2 [269], if a template

was available, the best models were obtaining GDT_TS scores of above 80%; without

a template the output models were considered random. Over the years some small

improvements were made to the accuracy of free modelling methods, especially for

smaller proteins, where fragments assembly algorithms such as Rosetta [33] were

implemented. By CASP11 [270] some further improvements in ab initio modelling

were observed where contact predictions had been incorporated into the model

building process. It wasn’t until CASP13 [271], with the use of deep learning for

distance predictions by Deepmind’s AlphaFold [272], that models without a

templates were scoring as well as template-based models. Furthermore, with the

introduction of AlphaFold2 [79] in CASP14, targets with or without available

templates, were achieving GDT_TS scores of above 90%; AlphaFold2 had been

re-engineered. Along side other significant modifications there was the introduction

of a key mechanism (attention algorithm) to reverse the tendency of the neural

network to prefer models with more secondary structure [79].

This PhD demonstrated how contacts could be used to aid the model building

process to output an accurate biologically relevant fold. Subsequently, the evolution

of utilising MSAs for the prediction of contacts to the prediction of distances has been

invaluable for highly accurate protein prediction. Historically contact prediction and

model construction were performed as independent stages in the model generation

process. The new generation of model building algorithms combine these steps,

predicting distances rather than binary contacts. These distances are used as

constraints which are refined as decoy models are built. The availability of highly

accurate protein models will be useful in the directing of experimental investigations
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where experimental structures are not available. Indeed our models of the DedA fold

were utilised in this way [162, 273, 274, 275]. Our work over the course of this PhD

has introduced novel tools that can be utilised in prediction data analysis (ConPlot)

as well as novel methods that can be employed to enhance protein model building

protocols (utilisation of homology models to sample conformations). The availability

of highly accurate models may also be used, bioinformatically coupled with mining

of curated sequence and structure databases, for inference of function and molecular

mechanism, as demonstrated with our work on Oca2. We have also demonstrated

that contact analysis still has a role to play in modern structural bioinformatics; in

model validation and conformation deciphering. Molecular dynamic simulations

were not taken advantage of during this PhD; great strides have also been made in

this area as a result of increased computing power utilising GPUs as well as

improved energy functions. In terms of studying membrane proteins specifically, all

of these developments give rise to the opportunity to understand how they interact

with other proteins, substrates, and membranes of various types. Deep learning

methods have brought about a new era in protein modelling with the outlook for

membrane protein modelling in the immediate future looking very bright

indeed.
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