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Abstract 

 

The research question, “Can molecular dynamics be used to assess and screen the 

single-molecular binding properties of a candidate bioadhesive?" is answered in this 

thesis using molecular dynamics simulations. A ‘nearest-neighbour’ model was 

produced that related the candidate bioadhesive peptide nucleic acid’s (PNA’s) 

primary sequences with equilibrium binding enthalpies and could predict 

experimental binding enthalpies with an accuracy of 8.7%. In addition, the 

relationship between PNA rupture forces and loading rates at high loading rates was 

established for two distinct loading axes, and internal cohesive energies between 

two bound strands under external force were expressed as a function of 

displacements along unbinding coordinates. In addition, a novel coarse-grained 

model for ds-PNA that is natively integrable into other related coarse-grained 

models was produced and found capable of replicating both experimental structures 

and rupture forces as determined by all-atom models.  

 

This thesis presents the first time that the relationship between primary sequence 

and PNA binding energies have been derived. In addition, it presents the first time 

that the relationship between rupture force and loading rate has been established for 

PNA and the first time this relationship has been expressed in terms of inter-strand 

energies for PNA-containing nucleic acids. This thesis is of general interest for the 

development of a PNA bioadhesive by providing the single-molecular framework 

against which macroscopic observables can be interpreted and compared. In 

addition, the methods presented are broadly available and do not require specialist 

equipment, making them of interest to developing single-molecular interpretations 

of bioadhesive properties without significant financial or experimental investment.
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Chapter 1: Introduction 

1.1 Bioadhesion 

1.1.1 Methods and examples of bioadhesion 

Adhesion is an association between structures such as two surfaces typically 

mediated through microscopic interactions. Such interactions can arise from both 

mechanical and chemical interactions.1 Mechanical adhesion can arise from, for 

example, the interlocking of physical structures with one another such as in a hook-

and-loop fastener wherein a surface functionalised with hooks mechanically 

interlocks itself with a surface functionalised with loops. In doing so, the two 

surfaces are affixed such that their separation typically requires an external 

macroscopic force. 

 

Chemical adhesion, by contrast, is a result of either bonded or non-bonded chemical 

interactions between two surfaces at the nanometre or sub-nanometre resolution. In 

this thesis, non-bonded refers to all intermolecular interactions including hydrogen 

bonding. Bonded refers primarily to covalent bonding. Associations arising from 

bonded interactions are typically stronger than those arising from non-bonded 

interactions.1 This can be demonstrated by epoxy resins, which are typically liquids 

containing chains of epoxy polymers that interact with one another through non-

bonded chemical interactions. Before curing, an epoxy resin administered between 

two surfaces provides only a limited adhesive force. During curing, which can be 

achieved by mixing with a hardener, for example, the strength of adhesion increases 

significantly because of the formation of covalent crosslinks between the polymer 

strands.2 

 

Both non-bonded and bonded methods of adhesion are also observed in nature. This 

bioadhesion can either refer to the adhesion between surfaces wherein at least one 

of the surfaces is biological in nature3 or can refer to the adhesive substance itself 

being of biological origin. This definition has been extended to include synthetic 
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substances that are biologically inspired. Bioadhesion has been observed in both 

microscopic organisms, for example in the colonisation of surfaces in a host 

organism by pathogenic bacteria, and in macroscopic organisms, for example in the 

strong associations between marine organisms like mussels and limpets with 

surfaces in the tidal environment.4 Like epoxy adhesion, mussel adhesion also 

involves both bonded and non-bonded interactions.5 

 

The non-bonded element of mussel adhesion is achieved using hydroxyl functional 

groups in the ‘adhesive pad’ of the mussel (Figure 1-1). These hydroxyl groups are 

present in a novel amino acid, 3,4-dihydroxy-L-phenylalanine (dopa) and enable the 

adhesive pad to strongly interact with inorganic surfaces. At the same time, 

oxidation of the dopa molecules results in the formation of even stronger covalent 

bonds with organic surfaces, though at the expense of decreasing the bonding 

strength with inorganic surfaces. Mussels consequently use a combination of both 

bonded and non-bonded interactions to fine-tune their associations with surfaces in 

the marine environment.5 

 

 

Figure 1-1: Skeletal formula of a dopa amino acid used in non-bonded and bonded 

mussel adhesion.  
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The forces required to rupture the interactions between a single dopa molecule and 

its surface have been measured to be approximately 0.8 and 2.2 nN for non-bonded 

and bonded (oxidised dopa) interactions respectively. A dissociation energy of 22.2 

kcal/mol for the non-bonded case has also been determined. In epoxy adhesion, a 

continuous chain of covalent bonds is formed, and observed single-molecule 

rupture behaviours would differ depending on which covalent bond failed. These 

may also differ depending on how the epoxy was cured. For example, for an epoxy 

resin hardened with ethylenediamine, new C-N and C-O bonds are created, and the 

bond dissociation energies of these have been reported as 72.90 and 85.56 kcal/mol 

respectively. This suggests them to be several times stronger than the nonbonded 

dopa interaction.6 Studies on the macroscale suggest that, depending on how mussel 

adhesives are cured, their maximum tensile strengths can range from approximately 

0.3 to 1.0 MPa.7 By contrast, maximum tensile strengths for epoxies have been 

reported between 30 and 40 MPa, suggesting them to be at least an order of 

magnitude stronger than mussel adhesives.8 

 

Though mussel bioadhesion is only one example of a bioadhesive its properties are 

similar to other available bioadhesives. For example, its maximum tensile strength 

is comparable to that of a commercially-available fibrin bioadhesive,7 and its non-

bonded single-molecule rupture force is in the same order of magnitude as a 

carbohydrate-carbohydrate interaction involved in cell-to-cell adhesion (190 – 310 

pN vs. 800 pN).9 Despite their lower tensile strengths relative to epoxy adhesives, 

however, bioadhesives such as fibrin have found use in medicine, indicating that 

there are applications for bioadhesives wherein tensile strengths comparable to 

traditional alternatives like epoxies are not critical.10  

 

Though bioadhesion in nature is often facilitated through proteins and 

carbohydrates, a nucleic acid bioadhesive based on the formation of 

deoxyribonucleic acid (DNA) complexes from individual strands of DNA has been 

demonstrated.11 In a DNA bioadhesive interactions arise from the non-bonded 

association between the individual strands, though despite the lack of bonded 
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interactions macroscopic adhesive gels have been demonstrated. A unique property 

of DNA bioadhesives is the formation of ‘sequence-specific’ associations wherein 

sequence refers to the order and position of individual DNA ‘nucleotide’ monomers 

in the complex. These monomers preferentially associate with ‘complementary 

bases’ on the opposing strand, meaning that a single strand of DNA interacts most 

strongly with an opposing strand with the exact ‘complementary sequence.’ Due to 

this, it has been demonstrated that DNA can be used to form bioadhesive colloids 

only when beads functionalised with one strand are introduced in solution to beads 

functionalised with the exact complement.11 This contrasts with other bioadhesion, 

like mussel adhesion, which can occur between the organism and a variety of 

organic or inorganic surfaces. 

 

1.1.2 Advantages of bioadhesion over traditional adhesion 

Bioadhesives typically have two primary advantages relative to traditional 

adhesives, like epoxies. These are biocompatibility, meaning the bioadhesive 

produces minimum toxicity to the host organism, and their lower environmental 

impact, accounting for aspects such as biodegradability and effect on human health. 

As a result of the biocompatibility of many bioadhesives they have been applied in 

clinical applications as alternative methods of wound closure relative to invasive 

methods such as suturing. Various surgical bioadhesives have been demonstrated to 

have low immunogenicity, to have anti-inflammatory or antibacterial properties, to 

undergo reversible but tough adhesion, and to act as scaffolds for the delivery and 

localisation of pharmaceutical molecules into cells.12,13 

 

The lower environmental impact is the second major advantage of bioadhesion 

relative to traditional adhesion. Life-cycle analysis (LCA) is a method that 

characterises the various avenues of environmental harm caused by a material 

throughout its use and expresses these values numerically using normalisation and 

weighting. LCAs conducted on traditional petrochemical adhesives, such as 

epoxies, and bioadhesives suggests that, over each material’s lifetime, 
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petrochemical adhesives have a more negative impact on the environment. This 

assessment was in part due to the significantly lower fossil fuel use of bioadhesives, 

but also accounted for their reduced negative impacts on human health relative to 

petrochemical adhesives.14 

 

1.1.3 Screening molecules using modelling 

Since bioadhesives have human health and environmental benefits relative to 

traditional adhesives, methods for the inexpensive selection of candidate 

bioadhesives could be advantageous for long-term human and environmental health 

by assisting in the replacement of petrochemical adhesives with biological ones 

when possible. Regardless of the bioadhesive or its use case, the interaction strength 

of the bond is a relevant selection criterion since an adhesive is, by definition, a 

substance used to hold together two structures, particles, or surfaces. Consequently, 

the interaction strength is relevant to screening candidate bioadhesives and an 

inexpensive computational approach to this screening is therefore explored in this 

present work. 

 

Given that bioadhesives are a broad category of molecules including proteins, 

carbohydrates, and nucleic acids, then a general modelling technique that does not 

need to be drastically adapted or redeveloped for new molecule types is appropriate. 

All-atom molecular dynamics is a suitable method which meets this requirement 

since it represents molecules using their atomic structures and models the system 

according to the behaviours between these atoms.15  Consequently, the variable 

molecular structures of different candidate bioadhesives are intrinsically accounted 

for by their differing atomic structures and the method is thereby extensible 

regardless of molecular structure. In addition to this, by basing the model on the 

atomic, single-molecular scale, the ‘baseline’ stability of any bioadhesive, separated 

from additional effects such as density, macromolecular composition, and similar, 

can be established. This baseline stability is a necessary starting point for a rigorous 

study on the efficacy of a bioadhesive since in the absence of a single-molecular 
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understanding any observations on the effect of molecular structure, which is what 

is changed when a new bioadhesive is screened, on the bond stability can not 

necessarily be separated from other macroscopic contributions.  

 

1.1.4 Research question 

Bioadhesives have favourable properties and can theoretically be studied using 

computational modelling. The intention of this present work is to perform a method 

for studying the baseline, single-molecular stabilities of a candidate bioadhesive 

such that observations can be separated from macroscopic effects. Consequently, an 

all-atom molecular dynamics approach is used. The central research question is 

therefore: 

 

“Can molecular dynamics be used to assess and screen the single-molecular binding 

properties of a candidate bioadhesive?" 

 

This central research question will be discussed with respect to three technical 

research questions relating to Chapters 4, 5 and 6 respectively. These are, in order: 

 

(1) “Can molecular dynamics be used to generate a model that allows binding 

properties to be predicted from structure alone, and what quantities contribute to the 

binding stability of the candidate bioadhesive?” 

(2) “Can molecular dynamics be used to assess the single-molecular properties of a 

candidate bioadhesive under external force, and what quantities contribute to this?” 

(3) “Can coarse graining be used to replicate properties observed in atomic 

molecular dynamics simulations?” 

 

Technical research question (1) is proposed since a model that relates structure with 

binding is a screening tool that enables a user to select or eliminate candidate 
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molecules based on how likely they are to have the desired binding properties. 

Technical research question (2) is proposed since the purpose of an adhesive is to 

couple structures such that the relative displacement of the structures by an external 

force is resisted. It is therefore important that molecular dynamics can be used to 

assess the properties of a bioadhesive under external force. Technical research 

question (3) is proposed since there are computational resource limitations to all-

atom simulations. Coarse graining can be used to overcome these limitations by 

representing the bioadhesive in a simplified form.  

 

These research questions are discussed in this thesis in relation to the example 

candidate bioadhesive, peptide nucleic acid (PNA). This is since the ability of its 

naturally occurring counterpart, deoxyribonucleic acid (DNA), to form adhesive 

gels has already been demonstrated.11 PNA was selected over DNA for the present 

work since it has several advantageous properties with regards to the stability of its 

bound complex relative to DNA. The nature of these molecules, and the current 

state of the literature on their single molecular binding properties, is presented in 

subchapters 1.4, 1.5 and 1.6. Subchapters 1.2 and 1.3 introduce the theoretical and 

methodological background relevant to interpreting the available literature.  

 

1.2 Binding energies and external forces 

1.2.1 Binding energy 

A molecule has kinetic energy, from the movement of atoms, and potential energy 

from the relative position of its atoms. These kinetic and potential energies together 

equal the total energy of the molecule, but this energy fluctuates with time since, at 

the molecular level, particles are constantly experiencing thermal motion. This total 

energy is consequently distributed around a mean value called the internal energy U 

of the system.16 
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When a molecule is coupled thermally and mechanically to its surroundings its 

energy is affected by the external pressure P and temperature T. The total energy of 

the system fluctuates around the Gibbs free energy G (Equation 1-1), the change in 

which, ∆G, approaches zero as the system approaches equilibrium. When two 

molecules bind, ∆G between the initial (unbound) and final (bound) states is called 

the binding free energy. The binding free energy is routinely used as a measure of 

the interaction strength of bound complexes.   

 

[Eq. 1⎼1]         G = U + PV − TS 

 

Where V is the volume and S the entropy. U + PV is equivalent to the enthalpy H. 

 

1.2.2 Binding energies under external forces 

According to classical transition state theory, the bound and unbound states are 

separated from one another by a transition barrier with an energy ∆G‡ at some 

distance 𝑥‡ (Figure 1-2).17 This barrier must be surmounted for bond rupture to 

occur. In 1978, Bell observed that external force affected the rate of escape 𝑘 over 

this transition barrier in biomolecules, demonstrating that the stability of 

biomolecular interactions was a force-dependent phenomenon.18 This relationship 

between the rupture force, this being the force needed to rupture a biomolecular 

interaction, and loading rate, this being the rate of application of external force in 

Newtons per second, is described by a force-loading curve (Figure 1-3). 
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Figure 1-2: A bound state A is separated from an unbound state B by a barrier with 

height ∆G‡ and distance from the bound state 𝑥‡. Particles move over the barrier ‡ 

with an escape rate 𝑘. 

 

 

Figure 1-3: Loading rate 𝑟 dependence on most probable rupture force 𝐹 showing 

the transition between two regimes as loading rate increases. Reprinted from Evans 

and Ritchie, Copyright (1997), with permission from Elsevier (License No.: 

5559281509342).19  

 

The existence of the force-loading curve has implications for the comparability of 

stabilities under external force. Namely, it means that the equilibrium binding free 
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energy ∆G is not sufficient for comparing the stabilities of complexes at varying 

loading rates. A different approach based on fitting phenomenological models 

which relate the force-loading curve to the underlying free energy landscape can be 

used instead. Evans and Ritchie were the first, in 1997, to use the force-loading 

curve to derive free energy landscape parameters (Equation 1-2).19  

 

[Eq. 1⎼2]          𝐹 =
𝑘𝐵𝑇

𝑥‡
ln
𝑟𝑥‡

𝑘𝐵𝑇𝑘
 

 

Where 𝑟 is the loading rate and 𝐹 the most probable rupture force at that loading 

rate. The barrier height ∆𝐺‡ can be calculated from the rate of escape 𝑘 in the 

absence of external force (Equation 1-3). 𝑘𝐵 is the Boltzmann constant. 

 

[Eq. 1⎼3]          − ∆𝐺‡ = 𝑘𝐵𝑇 ln
𝑘ℎ

𝑘𝐵𝑇
 

 

Where ℎ is Planck’s constant. Other solutions to this problem have been presented 

to address some of the limitations, such as its assumption of linearity which does 

not hold for higher loading rates, 20,21 of the above ‘Bell-Evans’ model. For 

example, Dudko, Hummer and Szabo proposed a generalisation of the Bell-Evans 

model,22,23 though their model is itself limited in that, in the limit of infinitely high 

rupture forces (and hence loading rates), the rate of escape approaches zero, which 

is explicitly non-physical.24   

 

Models like the Bell-Evans and Dudko-Hummer-Szabo model are called ‘force 

spectroscopy’ models. They enable the comparison of the stabilities of different 

binding complexes under conditions of external force to be evaluated in a loading-

rate independent manner. However, the quantities associated with these models are 

only apparent, relying on assumptions such as a single transition barrier, or a barrier 
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with a particular curvature, and have therefore been demonstrated to produce 

impossible quantities such as picometre barrier widths for large biomolecular 

complexes.21,22 

 

1.2.3 Thermodynamic energies have statistical meaning 

Microscopic potential and kinetic energies are associated with atomic positions and 

momenta, and a particular configuration of atomic positions and momenta is called 

a microstate. Each microstate has an energy and a probability. Therefore, just as 

internal energy can be thought of as the mean value of the sum of microscopic 

kinetic and potential energies, it can equally be calculated by summing the energies 

of each microstate weighted by their probability (Equation 1-4).16 

 

[Eq. 1⎼4]          𝑈 =∑𝐸𝑖𝑝𝑖
𝑖

 

 

The probability of each microstate at equilibrium is dependent on its energy 

(Equation 1-5). 16 

 

[Eq. 1⎼5]        𝑝𝑖 ∝ 𝑒
−𝐸𝑖
𝑘𝐵𝑇 

 

The probability distribution of a system’s energy at equilibrium is called the 

Boltzmann distribution. It is obtained by dividing the right side of Equation 1-5 by 

the sum of the probabilities of all possible microstates (Equation 1-6). This 

normalisation term, 𝑍, is otherwise known as the partition function.16  

 

[Eq. 1⎼6]        𝑝𝑖 =
𝑒
−𝐸𝑖
𝑘𝐵𝑇

𝑍
=

𝑒
−𝐸𝑖
𝑘𝐵𝑇

∑ 𝑒
−𝐸𝑖
𝑘𝐵𝑇𝑖

=
𝑒
−𝐸𝑖
𝑘𝐵𝑇

∫ 𝑒
−𝐸𝑖
𝑘𝐵𝑇 𝑑𝑞 
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The discrete sum form of the partition function can also be represented as the 

integral form on the right-hand side. This integral is taken over a volume in ‘phase 

space’ which refers to a coordinate system with axes for both the positions and 

momenta of the particles, represented by the vector 𝑞  in that phase space. 

 

The free energy of the system can be calculated from the partition function 

(Equation 1-7).16 

 

 [Eq. 1⎼7]        𝐺 = −𝑘𝐵𝑇 ln 𝑍 

 

And the free energy difference between two states 𝑖 and 𝑗 can be calculated from the 

ratio of partition functions (Equation 1-8). 

 

[Eq. 1⎼8]         ∆𝐺𝑖𝑗 = −𝑘𝐵𝑇 ln
𝑍𝑖
𝑍𝑗
= −𝑘𝐵𝑇 ln

(∫ 𝑒
−𝐸𝑖
𝑘𝐵𝑇 𝑑𝑞 )

𝑖

(∫ 𝑒
−𝐸𝑖
𝑘𝐵𝑇 𝑑𝑞 )

𝑗

 

 

All of this is to say, if the energy of all microstates are known, then these energies 

can be used to calculate the probabilities of all microstates at equilibrium and the 

free energy. This means that, if a chemical system can be atomically rendered and 

its microscopic energy distributions accurately simulated, then it is theoretically 

possible to derive useful quantities related to the stability of biomolecular 

interaction. 
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1.3 Methods to quantify binding stabilities 

1.3.1 Molecular dynamics 

Computer simulations can directly compute microscopic potential and kinetic 

energies from atomic positions, enabling the derivation of quantities associated with 

binding stability, such as the binding free energy.25  Using simulations can avoid 

experimental difficulties like reagent acquisition and financing since chemical 

structures are essentially just text files with a specific format. Online repositories 

like the Protein Data Bank26 further trivialise this by enabling the direct download 

of biomolecular crystal structures. In combination with accelerations in computing 

power, simulations have become fast and accurate methods for the study of 

biomolecular interactions.  

 

Simulations, in general, make compromises between accuracy and resource 

consumption. Highly accurate quantum mechanical ab initio methods simulate 

chemical systems entirely from first principles but are expensive to compute, often 

scaling with 𝑁4 or higher where 𝑁 can be thought of as a system’s size or its 

degrees of freedom.27,28 Molecular dynamics is a simulation process that 

approximates atoms as points in space with discrete charges and solves the 

evolution of their positions over time using Newtonian, as opposed to quantum, 

mechanics.25 Files containing force constants, distances and other parameters 

associated with interatomic interactions, called molecular mechanics force fields, 

allow the forces on all the atoms to be calculated.29,30 

 

Any molecular dynamics simulation follows the same general workflow:25 

(1) Firstly, input conditions are initialised from structure and topology files. 

Structure files contain atomic positions and topology files contain 

information about the molecular mechanics forcefield. The combination of 

atomic positions and the forcefield allow the potential energy to be computed 

as a function of atomic positions since the forcefield encodes force constants 

for bonded and non-bonded interactions.  
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(2) Secondly, the force on an atom is computed from the gradient in the 

potential energy surface 𝐹𝑖 = −𝜕𝑉 𝜕𝑟𝑖⁄  where 𝐹𝑖 is the force on the 𝑖𝑡ℎ atom 

and 𝑟𝑖 its position vector, with 𝑉 being the potential energy.  

 

 

(3) Thirdly, the force on any atom results in an acceleration vector according to 

Newton’s second law of motion 𝐹 = 𝑚𝑎. This results in a position update 

since atoms have moved, and steps 2 and 3 repeat until… 

 

(4) The output step where atomic positions, energies and so forth are written into 

an analysable data file. 

 

Though the general case for molecular dynamics is simplistic, there is significant 

nuance in how each step is calculated. For example, the choice of the molecular 

mechanics forcefield directly affects the potential energy. Not only that, but the 

experienced forces also depend on parameters such as the set cut-off distance (how 

far atoms need to be before their forces on one another are ignored) and 

environmental factors such as how the coupling of the simulation’s temperature and 

pressure to an external bath is defined. Another quirk of molecular dynamics is that 

time is discrete instead of continuous, and consequently the position update step 

requires Newton’s equations of motion to be solved over discrete timesteps on the 

order of femtoseconds. These numerical solutions to Newton’s equations of motion 

over discrete time are achieved by algorithms called integrators, and the choice of 

integrator affects how the system evolves over time.25  

 

A completed molecular dynamics simulation containing its positional and velocity 

data is called a trajectory. Trajectories can be analysed to determine quantities such 

as free energies along reaction coordinates of interest, rupture forces of 

biomolecular associations at varying loading rates, and enthalpies and entropies. 

The analysis of molecular dynamics trajectories is therefore an appropriate method 
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by which to calculate quantities associated with binding stabilities. The methods of 

trajectory analysis vary and are discussed at length in Chapter 2: Theory and 

Methods.  

 

1.3.2 Thermal melting experiments 

Beyond trajectory analysis, the binding free energy can also be experimentally 

measured using thermal melting experiments. By measuring the heat absorbed by a 

bound complex, calorimetry can determine thermodynamic quantities like binding 

enthalpy, entropy and free energy, for example. For nucleic acids it is also possible 

to obtain these quantities using optical melting experiments. During optical melting 

experiments, the amount of light absorbed by a solution containing nucleic acids is 

measured as the temperature is raised. Since single-stranded nucleic acids, which 

are the individual binding partners in a double-stranded nucleic acid complex, 

absorb more light at a 260nm wavelength than the double-strand, then the melting 

of double-stranded into single-stranded nucleic acids as temperature increases can 

be measured (Figure 1-4).31,32 

 

 

Figure 1-4: Normalised absorbance curve for an optical melting experiment. 𝛼 is the 

normalised absorbance. The melting temperature 𝑇𝑚 is defined as the point at which 

𝛼 = 0.5. 
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From this absorbance curve, the melting temperature of the complex can be 

obtained from the midpoint when the normalised absorbance 𝛼 = 0.5. The melting 

temperature of a double-stranded nucleic acid is the temperature at which half of the 

double-stranded complexes in a system have dissociated into single strands. 

Likewise, an equilibrium constant, which is the ratio of products to reactants 

(melted to un-melted complexes) can be determined (Equation 1-9).31  

 

[Eq. 1⎼9]          𝐾 =  
𝛼

(
𝐶
𝑛
)
𝑛−1

(1 − 𝛼)𝑛
 

 

𝑛 is the number of binding partners which is two for a bimolecular reaction, such as 

the formation of ds-DNA from ss-DNA. 𝐶 is the total concentration of the binding 

partners so long as each binding partner is present in equal concentration.  

 

This equilibrium constant is related to the binding entropy and enthalpy through a 

linear form of the van’t Hoff equation (Equation 1-10),32,33 allowing binding 

enthalpies, entropies and therefore free energies to be determined from optical 

melting experiments.  

 

[Eq. 1⎼10]         𝑙𝑛 𝐾 = −
∆𝐻

𝑅𝑇
+
∆𝑆

𝑅
 

 

1.3.3 Atomic force microscopy 

Rupture forces can be measured at different loading rates using an atomic force 

microscope (AFM).34,35,36,37 The AFM is able to measure forces on a surface using a 

probe with a well-defined spring constant. When the probe encounters a surface, the 

two exert a force on one another which deflects the probe. By shining a laser onto 
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the back of the probe, and reflecting this laser into a detector, the force on the probe 

can be measured by the movement of the laser since the spring constant of the probe 

is known (Figure 1-5).38 

 

 

Figure 1-5: Schematic of an AFM in force spectroscopy mode. 

 

In force spectroscopy mode the force on the probe is measured over a cycle 

consisting of an approach to and a retraction from the surface (Figure 1-6).38 

Typically, the probe is functionalised with one binding partner, and the surface with 

another. When the probe and surface come into contact a binding event theoretically 

occurs between the two binding partners, and this bond must then be broken during 

retraction. Hence, during retraction, a pull-out force is measured corresponding to 

the breakage of the specific interaction, and this corresponds to the rupture force of 

the bound complex.  
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Figure 1-6: Example force spectroscopy experiment reproduced from Lyubchenko 

under a Creative Commons Attribution License.39 From points A to B to C the 

probe approaches, contacts, and finally ruptures from, the surface. 

 

The results of force spectroscopy experiments can be fitted to force spectroscopy 

models such as the Bell-Evans model, enabling the approximation of parameters 

associated with the underlying free energy surface and thereby the rate-independent 

comparison of different biomolecular complexes. Methods such as force 

spectroscopy, thermal melting experiments and molecular dynamics can and have 

been applied to the study of nucleic acid complexes. Such complexes are discussed 

in the following chapter and are used in the present work as example candidate 

molecules for the study of single-molecular adhesion via molecular dynamics 

simulations. 
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1.4 Peptide nucleic acids 

1.4.1 Structure of deoxyribonucleic acid 

The discovery of the structure of a deoxyribonucleic acid (DNA) salt was famously 

presented by F. Crick and J. Watson in their 1953 paper ‘Molecular Structure of 

Nucleic Acids: A Structure for Deoxyribose Nucleic Acid’. The double-helical 

structure they demonstrated, with binding between two backbones facilitated by the 

sequence-specific pairing of chemical bases, is a foundation of modern genetics 

(Figure 1-7). In their own words, “the specific pairing that we have postulated 

immediately suggests a possible copying mechanism for the genetic material.”40 

  

 

Figure 1-7: Visual Molecular Dynamics (VMD)41 cartoon of a short DNA double-

helix.42 Each chain is highlighted in a different colour and nucleobases are 

represented by rods. 

 

The specific pairing that Crick and Watson refer to is the pairing between the 

nucleobases adenine (A) with thymine (T), and guanine (G) with cytosine (C), in 
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the DNA double-helix (Figure 1-9).43 Each pair consists of a double-ringed purine 

structure (A, G) and a single-ringed ‘pyrimidine’ (T, C). These base pairs are 

connected in sequence to one another through a negatively charged deoxyribose 

phosphate backbone. This backbone has a directionality and, by convention, is read 

from its 5’ to 3’ terminus (Figure 1-8). 

 

 

Figure 1-8: Left: VMD image of the A:T and G:C nucleobase pairs with hydrogen 

bonds indicated by dashed lines.41 Right: VMD image of two repeating units of the 

deoxyribose phosphate backbone running from the upstream 5’ to downstream 3’ 

terminus.41 H, C, N, O, P elements coloured white, black, blue, red, and yellow 

respectively. 

 

Pairing between complementary bases is favoured relative to pairing between non-

complementary bases, for example A with C. Resultantly, a strand of DNA with a 

particular sequence of nucleobases, called its primary sequence, encodes its 

opposing strand. The copying mechanism that Crick and Watson suggest, now 

understood as the process of DNA replication, is implied from this since, if one 
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strand encodes another, then strands act as templates to produce their own opposing 

strands. 

 

The DNA double-helix formed by the pairing between base sequences is described 

by a set of helical parameters. A particular set of these parameters constitutes a form 

of DNA, for example the B-form (Figure 1-7, Table 1-1), which is the form 

typically taken by DNA in aqueous solutions. 

 

Table 1-1: Approximate B-form values of select helical parameters.44 

Helical Parameter Approximate B-form value 

Helix rotation per base pair 34.3° 

Base pairs per turn (360° rotation of helix) 10 – 11  

Rise (distance along axis between base pairs) 0.332 nm 

Pitch (distance along axis per turn) 3.320 – 3.652 nm 

Helical diameter 2.000 nm 

Handedness (direction of rotation)  Right 

 

1.4.2 Stability of deoxyribonucleic acid 

Structural factors such as the length of the helix, its base composition, and the 

position of the bases in sequence all affect the double-helix’s melting temperature. 

The dependence of stability on length can be understood by longer sequences 

having a greater surface area over which to form stabilising interactions. Similarly, 

the effect of composition can be understood in that G:C pairs have more stabilising 

hydrogen bonds than A:T pairs, and hence, per unit of interacting area, G:C pairs 

contribute more to stability.45  

 

The effect of position is explained by the existence of another stabilising interaction 

in the double-helix. When bases are oriented parallel and adjacent to one another, as 

in the double-helix, a hydrophobic stacking interaction arises between their ring 
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systems (Figure 1-9).44 Consequently, the stability provided by a base in sequence 

also depends on the bases adjacent to it, resulting in a positional effect on stability. 

These stacking interactions occur in both single-stranded (ss-) and double-stranded 

(ds-) DNA between bases (ss-stacks) and base pairs (ds-stacks) respectively.   

 

 

 

Figure 1-9: VMD image of an ss-stack with a dashed grey line indicating the 

stacking interaction.41   

 

The stability of the DNA double-helix is highest near physiological conditions of 

0.2M ionic strength and pH 7 and decreases towards the extremes of these 

variables.46,47 The dependence on ionic strength is a consequence of the negatively 

charged backbone of DNA, since in the absence of counterions these negative 

backbones repel one another in the double-helix, leading to destabilisation in pure 

water. Similar reductions in stability occur due to the presence of nucleic acid 

degrading enzymes called nucleases, which break down DNA in organisms, 

reducing bioavailability and resulting in low serum half-lives.48  
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1.4.3 Structure of peptide nucleic acid 

The function of DNA as a hereditary molecule requires that it performs sequence-

specific recognition. Physical laws do not exclude other chemical structures from 

potentially performing the same function. Nucleic acid analogue molecules that 

perform sequence-specific recognition but also have additional desirable properties 

have therefore been produced. These include the locked nucleic acids (LNAs) and 

phosphorodiamidate morpholinos (PMOs). For both LNA and PMO, backbone 

monomers consist of carbon ring systems adjoined to a phosphorus centre in a 

manner similar to biologically occurring nucleic acids.49 Relative to DNA, both 

have a higher thermal stability50 though PMO additionally forms stable double-

helices in pure water at pH 7 since its backbone is neutrally charged under these 

conditions.51 

 

Peptide nucleic acid (PNA) is another nucleic acid analogue, except that unlike 

LNA or PMO its backbone is not composed of ring systems and phosphorus 

centres. Instead, its backbone has been entirely substituted with a neutrally charged 

pseudopeptide called N-(2-aminoethyl)glycine (Figure 1-10). Whereas the 

directionality of DNA is by convention read from the 5’ to 3’ carbon of the pentose 

ring, the directionality of PNA proceeds from an N-terminal amine to the C-

terminal carboxyl like a polypeptide.52 

 

 

Figure 1-10: Skeletal formula of an N-(2-aminoethyl)glycine monomer.  
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Whereas double-stranded DNA (ds-DNA) forms a B-form helix, double-stranded 

PNA (ds-PNA) forms a P-form helix (Figure 1-11). Unlike the B-form, which has a 

preferred helix handedness, the P-form exists as a mixture of right- and left-handed 

double helices since the PNA backbone is itself achiral,53 meaning mirror images of 

the backbone monomers are superimposable. The P-form is also wider (2.8nm) than 

the B-form helix (2.0nm) and has a greater pitch of 18 base pairs against the 10 – 11 

of the B-form.54 Like the B-form, the bases are oriented normal to the longitudinal 

axis of the P-form helix, though the rise of the helix per base pair is slightly lower 

in the P-form than the B-form (Table 1-2).55,56,57 Single-stranded PNA (ss-PNA) can 

form heteroduplexes by binding to single-stranded DNA (ss-DNA), producing a 

helix with a structure intermediate of the B- and P-forms.54  

 

 

Figure 1-11: VMD licorice image41 of the P-form helix from the perspective of the 

major groove (left) and the minor groove (right). 
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Table 1-2: Approximate P-form values of select helical parameters.54-57 

Helical Parameter Approximate P-form value 

Helix rotation per base pair 20° 

Base pairs per turn (360° rotation of helix) 18 

Rise (distance along axis between base pairs) 0.29 nm 

Pitch (distance along axis per turn) 5.22 nm 

Helical diameter 2.80 nm 

Handedness (direction of rotation)  Indiscriminate 

 

1.4.4 Stability and solubility of peptide nucleic acid 

The stability of ds-PNA across a range of solvent conditions is well-

reported.58,59,60,61,62 Firstly, its stability is independent of the concentration of ions in 

the solvent due to its neutral charge,58,59 resulting in no net like-charge repulsion 

between its backbones, similarly to PMO.60 Secondly, in human serum, PNA was 

found to resist proteolytic enzymes and experienced no significant degradation in 

conditions that significantly degraded peptides.61 Like both PMO and LNA, PNA 

also resists hydrolysis by nucleolytic enzymes,59,60 making it biostable against both 

typical protein-degrading and nucleic acid-degrading enzymes despite having 

structural properties of both proteins (amide bonds) and nucleic acids (bases). 

Thirdly, PNA resists degradation at low pH, unlike DNA which loses purine bases 

under acidic conditions.59 Finally the melting temperature of ds-PNA only decreases 

slightly for an increase in organic co-solvent concentrations up to 70%, raising the 

possibility of stable PNA binding in organic solvent conditions.62 Compared with 

DNA or RNA, however, and as indicated by its tolerance to organic conditions, the 

solubility of PNA in aqueous solutions is lower, though a charged lysine tag can be 

incorporated to mitigate this.63 Given these properties, it is plausible that a PNA 

bioadhesive could have improved performance relative to the DNA-based 

bioadhesives11 demonstrated in prior research. 
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The stability of PNA across a broad range of solvents contributes to its versatility. 

Not only is ds-PNA stable across these conditions, but it is also more stable than 

both ds-DNA and another naturally occurring nucleic acid, double-stranded 

ribonucleic acid (ds-RNA), under standard conditions. The melting temperature of a 

ds-nucleic acid 10-mer was determined to be more than 30K higher in ds-PNA 

(347.0K) than in ds-RNA (314.6K).64 Another 10-mer has reported ds-PNA melting 

temperatures of 369.1,65 362.358 and 368.2K62 against ds-DNA melting temperatures 

of 334.2, 341.0, 333.8K respectively. The melting temperatures of hybrid 

PNA:DNA heteroduplexes are intermediate of these.58,62,65 This represents a 

significant increase in the stability of PNA-containing relative to solely DNA- or 

RNA-containing duplexes. 

 

The above properties of ds-PNA drove its selection over ds-DNA for the present 

work since broader environmental stabilities and higher melting temperatures 

indicated that it could have improved properties relative to ds-DNA in relation to 

adhesion. This is since, for adhesion, the stability of the bound complex is related to 

the efficacy of the adhesive because a more stable bound complex can theoretically 

resist more external force.  

 

In addition to the theoretical applications of ds-PNA in adhesion, PNA-containing 

heteroduplexes have been studied for in vivo applications. For example, PNA can 

perform strand invasion, meaning it can bind to ds-DNA to form a triple helix, or 

triplex.66 This has led to their design as gene therapeutics in which an ss-PNA is 

encoded such that it invades a particular gene, binding with the ds-DNA to hinder 

the transcription of that gene. This strand invasion into ds-DNA makes ss-PNA an 

antigene drug, meaning a drug that works by targeting nuclear DNA to 

downregulate the function of a particular gene.67,68 By modifying PNA chemistry, 

for example, by using synthetic nucleobases, the ability of PNA to downregulate 

genes can be further enhanced such as by introducing cross-linking between itself 

and the target gene.69 
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Since PNA also stably binds RNA, it has found applications as an antisense 

therapeutic as well.68 Antisense technologies work by targeting cellular messenger 

RNA (mRNA) to regulate its function. Since mRNA, which is transcribed from 

DNA, is transported from the nucleus to be translated by ribosomal assemblies into 

proteins, antisense PNAs act upstream of antigene PNAs. By binding to the 

translational start sites of mRNAs, PNAs can sterically block recognition of the 

mRNA by the ribosomal assembly, or by binding further along the sequence they 

can arrest the process of translation before completion.70 As with antigene therapies, 

antisense therapies using PNA are advantageous due to a combination of their 

binding strength and sequence selectivity, limiting off-site effects whilst resulting in 

strong targeted inhibition.71 

 

Beyond antisense and antigene applications, PNA has potential in diagnostic assays 

by sensing target sequences of nucleic acids in real-time.72 This has been 

demonstrated as potentially advantageous in cancer diagnoses, for example,73 since 

they have a high signal-to-noise ratio. By printing PNAs onto surfaces, they have 

also been used for the development of microarrays that can quantify a range of 

target sequences from crude extracts. Like other biosensors, PNAs can be modified 

with fluorescent labels to enable ease of visualisation and as such have even been 

applied in vivo to detect target sites in lung cancer cells and for the detection of 

specific mutations in melanoma samples.71 Lastly, their stable binding with DNA 

has been further utilised for the development of highly sensitive PNA-based 

polymerase chain reaction (PCR) kits for the sequence-specific amplification of 

minute quantities of DNA with no cross reactivity.74  

 

1.5 The nearest-neighbour binding model 

1.5.1 The binding energies of peptide nucleic acids 

Tomac et al.,58 Ratilainen et al.,75 Nielsen and Sen,62,65 and Schwarz, Robinson and 

Butler76 have all reported binding energies for PNA heteroduplexes across a variety 

of aqueous, ionic and organic conditions. In aqueous conditions, it was typically 
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observed that PNA:DNA duplexes had lower enthalpies of binding than ds-DNA, 

though this was sequence dependent. In some cases, binding enthalpy was higher, 

though this was typically compensated by a higher binding entropy such that the 

heteroduplex was more stable than ds-DNA despite its higher binding enthalpy. 

This enthalpy-entropy compensation75 has been attributed to the release of ions 

upon binding of the two strands, since the negatively charged ss-DNA is associated 

with counterions that are released upon binding with ss-PNA.58  

 

Another important parameter of PNA hybridisation with DNA or RNA is how well 

it discriminates mismatched pairs. Hence, the effects of mismatching on PNA 

heteroduplexes have been quantified. Jensen et al. measured the melting 

temperatures of 12 mismatched sequences, each having a single different mismatch 

relative to a control.77 For PNA:DNA pairs they found that any mismatch, at a 

minimum, decreased the melting temperature by 8K and resulted in rates of 

dissociation that were, in most cases, an order of magnitude higher than for the 

control sequence. For PNA:RNA a similar high sensitivity to mismatching was 

demonstrated. This sensitivity to mismatching is crucial to PNA’s function as an 

antigene and antisense technology since limiting off-site effects reduces the 

likelihood of unintended patient outcomes.66,68,70 

 

Alongside quantifying PNA heteroduplex binding energies, many of the studies also 

quantified the melting temperatures and binding energies of ds-PNA. Regardless of 

sequence length, composition or the nature of the solvent, ds-PNA always had a 

higher melting temperature than ds-DNA, ds-RNA and PNA heteroduplexes. 

Extremely high melting temperatures of 382K (84°C)77 and 386K (88°C) were 

reported for 15- and 17-mer ds-PNAs respectively.78 An 8-mer ds-PNA had a 

reported melting temperature of 353K (55°C)78 approximately equal to that of a 15-

mer ds-DNA which had a lower melting temperature of 351.5K (53.5°C) despite 

being almost half its sequence length.77 These melting temperatures are reflected in 

the across-the-board lower binding free energies of ds-PNA (Table 1-3). 
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Table 1-3: Aqueous ds-PNA binding free energies against ds-DNA binding free 

energies determined by a predictive model.79 Values and standard errors are either 

averages from the literature when multiply-sourced or are directly obtained.  

Sequence 
−∆𝑮𝑷𝑵𝑨 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

−∆𝑮𝑫𝑵𝑨 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

TGATCTAC 13.1078 6.97 

GTAGATCACT 18.99 ± 0.8758,62,65,75,78,80 9.71 

TGTTACGACT 21.08 ± 1.0064 10.89 

AGGTAACCAG 18.76 ± 0.6065 10.85 

AGTGAAGCAG 19.02 ± 0.8265 11.52 

GTAGATCACTGT 21.4078 12.64 

GTAGATCACTGTCAC 26.4078 17.04 

GTAGATCACTGTCACAG 28.7078 19.80 

GTAGATCACTGTCACAGAT 36.3078 21.83 

 

The absolute value of the binding free energy of ds-PNA from the literature is 

anywhere from approximately 50% greater, for longer sequences, to twice as large 

for shorter sequences, representing a significant improvement in the stabilisation of 

these double helices under aqueous conditions. In addition, whereas PNA:DNA has 

been reported to have higher binding entropies in aqueous conditions than ds-DNA 

due to the release of counterions from the DNA backbone,58 binding entropies for 

ds-PNA are typically equal to or lower than ds-DNA binding entropies.58,75,65 This 

indicates that, whereas PNA:DNA heteroduplexes may partly be stabilised relative 

to ds-DNA due to entropic contributions, ds-PNA may instead be stabilised more on 

account of its lower binding enthalpy. In this sense, ds-PNA may experience 

enthalpy-entropy compensation in the opposite way to PNA:DNA heteroduplexes 

with a lower binding entropy being compensated for by a lower binding enthalpy, 

though with only limited sequences tested this conclusion is tenuous.  
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1.5.2 Historical development of a predictive binding model 

Directly comparing the binding energies of different nucleic acid sequences, though 

useful for demonstrating the increased stability of PNA-containing complexes 

relative to ds-DNA, does not allow any predictions of stability based on primary 

sequence to be made.  

 

An early step in predicting binding energy from sequence was made by Privalov et 

al. in 1965 when they measured the heats of absorption of ds-DNA in solutions at 

different pH and ionic concentrations.46 In doing so they measured the melting 

enthalpy of the ds-DNA, which they translated into an enthalpy per base pair by 

dividing by sequence length. In 1969, they extended their research by predicting the 

per base pair binding free energy, this being the negative of the per base pair 

melting free energy since it is the opposite process, of ds-DNA to be −1.22 kcal/

mol under physiological conditions.81 

 

In 1959, however, Marmur and Doty had already noted that there was a linear 

relationship between the melting temperature of ds-DNA and its base composition 

with a 1K rise in the melting temperature of ds-DNA correlating with a 2.5 mole-% 

increase in the G:C content of a sequence.82 This relationship, expanded in 1962 

using 40 samples,83 demonstrates that the per base pair melting enthalpy of Privalov 

et al. is insufficient since it fails to account for the effect of base composition (% 

G:C or inversely % A:T). A similar study by Bunville et al. in 1965, this time 

tabulating the mole-% G:C values against the enthalpies of denaturation of ds-DNA 

sequences, found that enthalpy was similarly correlated with the G:C content.84  

 

A scheme that decomposes binding energies by length and composition, however, 

fails to account for the impact of base stacking, since stacking emerges as a result of 

a base pair’s position in the sequence relative to other pairs. Bunville et al. were 

already aware of this when they themselves stated that, “There have been many 

suggestions… that hydrophobic interactions are important in stabilizing the DNA 
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helical structure”.84 In 1970, Wells et al. stated that “DNA’s which have the same 

base composition but different nucleotide sequences (sequence isomers) do not 

show identical helix-coil transitions”,85 referring to the transition during DNA 

melting. Their results demonstrated that both base composition and position were 

important in determining the melting temperatures of ds-DNA, with the positional 

effect being due to stacking. 

 

The dual positional and compositional effects of sequence on binding energy results 

in the nearest-neighbour model of ds-DNA binding energy. In the nearest-neighbour 

model the binding energy of a ds-DNA is calculated from a linear superposition of 

ds-stacks, where a ds-stack consists of two base pairs in sequence. The prefix ds- is 

used to emphasise that such a stack accounts for both pairing and stacking energies 

by highlighting its double-stranded nature, as opposed to an ss-stack which would 

account only for the stacking energy between nucleobases on the same strand. 

Using the nearest-neighbour model, the binding energy of the sequence 

GATC:CTAG would be calculated from the sum of the ‘incremental energies’ of 

the ds-stacks GA:CT, AT:TA and TC:AG, for example.79  The ds-stacks are 

superimposed since the first pair of the following stack is the latter pair of the 

preceding stack, for example A:T from AT:TA is the same pair as A:T from 

GA:CT. Bases separated by a colon refer to the paired bases of the opposite strand 

whereas bases not separated by a colon are in sequence on the same strand.  

 

In 1973, Tinoco et al. demonstrated that incremental free energies could be used to 

predict the most stable secondary structure taken by that sequence.86 In that sense, 

the primary sequence of a nucleic acid directly predicted its secondary structure, 

opening the way for the design of RNA sequences with desired secondary 

structures. This was the first case of the nearest-neighbour model being used to 

understand structure-function relations of nucleic acid molecules. In 1978, 

Filmonov and Privalov established the incremental enthalpies of some DNA ss-

stacks,87 followed by Gotoh and Tagashira in 198188 and Marky and Breslauer in 
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198289 both determining the incremental enthalpies of all DNA ds-stacks in fully 

complementary duplexes. 

 

Marky and Breslauer went on to demonstrate that incremental enthalpies could 

predict the binding enthalpy of ds-DNA from its primary sequence in 1986.90 They 

incorporated a helix initiation energy, this being a base-independent energy 

associated with the initiation of helix formation. In 1996 SantaLucia Jr. et al. 

additionally differentiated this initiation energy depending on whether the helix had 

a terminal A:T pair or not, hence accounting for the end-stabilisation of the helix by 

G:C-only termini.91 The binding energy of a double-helix can then be expressed as a 

sum of its occurrence-weighted incremental energies and termini-dependent helix 

initiation energy. The various values assigned to these energies from different 

authors were eventually compiled into a unified model by SantaLucia Jr. in 1998 

(Table 1-4).79 

 

Table 1-4: Unified nearest-neighbour binding energies and entropies at 310K 

reproduced from SantaLucia. Jr, 1998.79 The symmetry term accounts for an 

additional entropic correction needed for self-complementary ds-DNA. 

Parameter 
−∆𝑯 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

−∆𝑺 

(𝐜𝐚𝐥 𝐊−𝟏𝐦𝐨𝐥−𝟏) 

−∆𝑮 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

AA:TT 7.9 22.2 1.00 

AT:TA 7.2 20.4 0.88 

TA:AT 7.2 21.3 0.58 

CA:GT 8.5 22.7 1.45 

GT:CA 8.4 22.4 1.44 

CT:GA 7.8 21.0 1.28 

GA:CT 8.2 22.2 1.30 

CG:GC 8.6 27.2 2.17 

GC:CG 9.8 24.4 2.24 

GG:CC 8.0 19.9 1.84 
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Initiation (GC) −0.1 2.8 −0.98 

Initiation (AT) −2.3 −4.1 −1.03 

Symmetry 0 1.4 −0.43 

 

 

Equation 1-11 below is a master equation for the nearest-neighbour model, 

describing how a binding free energy, entropy or enthalpy, generalised as ∆𝜒, is 

calculated from incremental and initiation energies or entropies. To distinguish 

them from the total ∆𝜒, incremental values are denoted ∆𝑥. 

 

[Eq. 1⎼11]        ∆𝜒 =  𝑎∆𝑥𝑖𝑛𝑖𝑡.𝐺𝐶 + 𝑏∆𝑥𝑖𝑛𝑖𝑡.𝐴𝑇 +∑𝑗𝑖∆𝑥𝑖
𝑖

+ 𝑐∆𝑥𝑠𝑦𝑚. 

 

Where ∆𝑥𝑖𝑛𝑖𝑡.𝐺𝐶 is the helix initiation energy if there are no terminal A:T and 

∆𝑥𝑖𝑛𝑖𝑡.𝐴𝑇 is the helix initiation energy if there is an A:T terminus. ∆𝑥𝑠𝑦𝑚. is a 

symmetry correction term for self-complementary ds-DNA. ∑ 𝑗𝑖∆𝑥𝑖𝑖  is the sum of 

the occurrence-weighted 𝑗𝑖 incremental energies or entropies ∆𝑥𝑖 for each ds-stack 𝑖 

where the occurrence is the number of times a ds-stack appears in a sequence. 𝑎 and 

𝑏 evaluate to 1 if there are no terminal A:Ts or there is at least one terminal A:T 

respectively, else they evaluate to 0. 𝑐 evaluates to 1 for self-complementary 

sequences and otherwise 0.33,79 

 

1.5.3 Molecular dynamics of pairing and stacking energies 

Given that molecular dynamics can estimate thermodynamic quantities, it is 

theoretically possible that it can calculate the nearest-neighbour parameters for 

nucleic acid hybridisations. The first steps to showing the application of molecular 

dynamics in calculating nearest-neighbour parameters were taken in 2015 when 

Sakuraba, Asai and Kameda measured the difference in free energy between RNA 

complexes.92 By numerically converting one RNA primary sequence (state A) to 
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another (state B), achieved by smoothly interpolating structure and topology 

information, they could measure the difference in binding free energy of the two 

strands using a thermodynamic cycle (Figure 1-12). This process of interpolating 

topologies is called an alchemical transformation, and the calculation of free energy 

using it an alchemical free energy calculation (Chapter 2.4), though this method is 

limited in that it is computationally expensive.93  

 

 

Figure 1-12: Thermodynamic cycle for the calculation of the binding free energies 

of ss-RNA into ds-RNA. By calculating ∆𝐺𝑠𝑠𝐴→𝐵 and ∆𝐺𝑑𝑠𝐴→𝐵, the difference in 

binding free energies can be obtained as ∆𝐺𝐴 − ∆𝐺𝐵 = ∆𝐺𝑑𝑠𝐴→𝐵 − ∆𝐺𝑠𝑠𝐴→𝐵. 

Reproduced with permission from Sakuraba et al.92 Copyright 2015 American 

Chemical Society. 

 

Using the same method for a large range of sequences in 2019, Nishida, Sakuraba, 

Asai and Hamada determined the incremental energies for RNA secondary structure 

prediction94 similar to the work of Tinoco et al. in 1973.86 The maximum absolute 

difference between their computationally and experimentally derived incremental 

free energies was 0.25 kcal/mol. In 2020, Sakuraba and Asai et al. also determined 

incremental energies for non-standard inosine-cytosine base pairs using the same 

approach.95 
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In 2021, Golyshev, Pyshnyi and Lomzov96 used a computationally inexpensive but 

approximate method,97 called the molecular mechanics Poisson-Boltzmann 

[Generalised Born] surface area approach (MM-PB[GB]SA) (Chapter 2.5), to 

derive incremental energies for ds-RNA and RNA:DNA binding. The authors 

demonstrated that ds-RNA experimental binding enthalpies, but not binding free 

energies and entropies, were well approximated for ds-RNA, though all three were 

poorly approximated for DNA:RNA heteroduplexes. Since their computational 

method differed more substantially from the experimental data than was observed 

for Nishida et al. with an alchemical method, the authors applied a correction. Much 

of the variance between the computational and experimental binding energies could 

be accounted for using a linear correction of the form ∆𝜒𝐸 = 𝑎∆𝜒𝐶 + 𝑏 to the 

computational data. After calculating ∆𝜒𝐸 for all sequences according to this 

equation they then calculated incremental energies using multiple regression 

according to Equation 1-11. Their reported incremental enthalpies had standard 

errors that often overlapped with incremental enthalpies for ds-RNA obtained via 

experimental methods. 

 

The linear correction of Golyshev et al. has a non-trivial effect on the incremental 

binding energies, however. According to Equation 1-11, a binding energy is given 

by a linear sum of its occurrence-weighted incremental energies, plus the helix 

initiation energies and symmetry terms. Ignoring symmetry and grouping the 

initiation terms for brevity, the correction ∆𝜒𝐸 = 𝑎∆𝜒𝐶 + 𝑏 is then equivalent to 

(Equation 1-12).  

 

[Eq. 1⎼12]      (∑𝑗𝑖∆𝑥𝑖 + ∆𝑥𝑖𝑛𝑖𝑡)
𝐸
= 𝑎 (∑𝑗𝑖∆𝑥𝑖 + ∆𝑥𝑖𝑛𝑖𝑡)

𝐶
+ 𝑏 

 

If a linear correction is used then the 𝑖𝑡ℎ incremental energy (∆𝑥𝑖)𝐸 is equal to 

𝑎(∆𝑥𝑖)𝐶 . The consequence of this is that the theoretical equality ∆𝐺𝐸 = ∆𝐻𝐸 −

𝑇∆𝑆𝐸 for the 𝑖𝑡ℎ ds-stack only holds when 𝑎𝐺∆𝐺𝐶 = 𝑎𝐻∆𝐻𝐶 − 𝑎𝑆𝑇∆𝑆𝐶 where 𝑎𝐺, 

𝑎𝐻 and 𝑎𝑆 are the slope coefficients of the linear corrections for free energy, 
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enthalpy and entropy respectively. This is not the case for their study and so the 

application of the linear correction by Golyshev et al. lead to the inequality ∆𝐺𝐸 ≠

∆𝐻𝐸 − 𝑇∆𝑆𝐸 which is not compatible with the broadly accepted theory outlined in 

Chapter 1.2.1.  

 

In addition to determining incremental energies for developing a nearest-neighbour 

model, molecular dynamics has been used to reconstruct free energy surfaces 

associated with stacking and pairing coordinates. In 1995 Norberg and Nilsson98 

reconstructed one-dimensional free energy surfaces for the unstacking of different 

ss-stacks (Figure 1-13), providing more detailed evidence of the higher stacking 

energies of purine bases. In general, ss-stacks involving only pyrimidines were 

characterised by a broad and shallow global minimum in the free energy along this 

coordinate whereas ss-stacks involving purines, especially adenines, were deeper 

and narrower. Since the free energy surface has a statistical meaning, this implies 

that pyrimidine-containing ss-stacks are more likely to exist in an open, or frayed, 

conformation than ss-stacks containing only purines.16  

 

 

Figure 1-13: Free energy landscapes for four ss-stacks GA, GC, GG and GT as 

continuous, dashed, dashed-and-dotted and dotted lines respectively. Reproduced 

from Norberg and Nilsson, Copyright (1995), with permission from Elsevier 
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(License No.: 5559291250394).98 ξ is the reaction coordinate distance and ΔG the 

free energy change. 

 

Similar studies have been demonstrated for the base pairing coordinate. In 1999, 

Stofer, Chipot and Lavery restrained isolated base pairs in the Watson-Crick pairing 

conformation.99 The reaction coordinate was defined as the distance between the N1 

atom of the purine and the N3 atom of the pyrimidine and the free energy landscape 

along this one-dimensional pairing coordinate (Figure 1-14) for both A:T and G:C 

pairs was reconstructed. Both landscapes were characterised by deep and narrow 

wells at approximately 0.3nm separated from a local minimum at approximately 

0.5nm by a free energy barrier. This local minimum arises due to the insertion of a 

water molecule between the unbinding pair, bridging the gap between the two with 

additional water molecules. From the plateau in the free energy landscape at longer 

distances, Watson-Crick pairing free energies of −4.3 and −5.8 kcal/mol were 

determined for A:T and G:C pairs respectively, corroborating the G:C pair’s higher 

contribution to the stability of the double-helix. 
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Figure 1-14: Free energy landscapes for the separation of A:T along the Watson-

Crick hydrogen bonding coordinate. Each line is a replicate. ξ is the reaction 

coordinate distance and ΔG the free energy change. Reprinted with permission from 

Stofer et al. Copyright (1999) American Chemical Society.99 

 

Since both pairing and stacking affect the free energy landscapes of unbinding base 

pairs, one-dimensional free energy landscapes cannot provide a complete picture of 

the unbinding process. Not only that, but studies have reported that the free energy 

landscape along one coordinate can be affected by sampling states associated with 

other coordinates. For example, in studies of the Watson-Crick pairing coordinate, a 

stacked state where two bases in a pair slip over one another has been demonstrated 

to affect the overall binding free energy of the pair, and so these states usually have 

to be manually excluded with additional restraints.100 A more appropriate 

alternative, then, would be to reconstruct a two-dimensional free energy surface 

containing both the stacking and pairing coordinates, though this requires additional 

sampling and is therefore more resource intensive.  
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In 2017, Lindahl, Villa and Hess demonstrated the reconstruction of such a two-

dimensional landscapes.100 Defining the stacking coordinate as being between the 

centres of geometry of the 6-membered rings of paired nucleobases within a double-

helix, and the pairing coordinate as being between the N1 and N3 atoms of purines 

and pyrimidines respectively, they produced a landscape with three minima (Figure 

1-15). In their landscape, a global Watson-Crick bound state minimum at a low 

N1:N3 distance and an intermediate 6-ring distance is separated from the metastable 

stacked state at an intermediate N1:N3 and low 6-ring distance by a saddle point in 

the free energy landscape. The relative stability of the two states can be assessed, 

with the free energy of the stacked state having an approximately 10 kBT higher 

free energy than the Watson-Crick bound state. In addition, a shallow minimum at 

high N1:N3 and 6-ring distances corresponds to an open state where the bases have 

slipped outside of the helix. By producing a more complete picture of the free 

energy landscapes associated with base pairing and stacking, the authors were able 

to determine that, when the stacked conformation was excluded, the total opening 

free energy would increase by approximately 1 kBT . 

 

 

Figure 1-15: Two-dimensional free energy landscape for a ds-DNA base pair with a 

stacking coordinate on the 𝑦 axis and a pairing coordinate on the 𝑥 axis. 

Reproduced from Lindahl et al under a Creative Commons Attribution License.100 

Distance given in Ångstrom (Å) with 1Å = 0.1nm, 
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1.5.4 State of nearest-neighbour models for peptide nucleic acids 

The nearest-neighbour model has been shown to predict the binding energies and 

entropies of DNA and RNA with high accuracy. The conclusions that can be made 

from the nearest-neighbour model are arguably more general since they are 

applicable regardless of sequence. Previous binding energy studies of peptide 

nucleic acid complexes have drawn conclusions based on direct comparisons 

between individual sequences, for example by comparing the same sequence in ds-

DNA and ds-PNA, but this doesn’t necessarily allow comparisons to be made 

between these molecules in general. For example, in PNA:DNA heteroduplexes, 

sometimes enthalpy-entropy compensation is observed in that a higher binding 

enthalpy is mitigated by a higher binding entropy, but for other cases this is not 

observed. Developing a nearest-neighbour model for PNA-containing molecules 

would undoubtedly be a useful tool to predict and differentiate energies for the 

general case.  

 

In 1998 Giesen et al. provided an empirical formula for calculating the melting 

temperatures of PNA:DNA duplexes using a linear model of their length, 

normalised pyrimidine content between zero and unity, and the corresponding ds-

DNA melting temperature as evaluated by the ds-DNA nearest-neighbour model.101 

Fitting the model to 316 melting temperatures revealed an R2 of 0.87 with 90% of 

the evaluated melting temperatures being within 5K of their experimentally-

determined values. Similar results made by dividing binding parameters by 

sequence length were determined by Ratilainen et al.102 who determined average 

standard binding free energies, enthalpies and entropies of −1.56 kcal/mol, 

−7.17 kcal/mol and −18.84 cal/K mol per base pair respectively. Though neither 

of these are nearest-neighbour models, they do enable useful general comparisons 

with ds-DNA. For example, for ds-DNA, Privalov et al. determined −1.22 and 

−9.65 kcal/mol standard per base pair binding free energies and enthalpies 

respectively.47 Since the average per base pair enthalpy for PNA:DNA was greater, 
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but the average per base pair free energy was lower, than their equivalents for ds-

DNA, this supports the hypothesis of enthalpy-entropy compensation in PNA:DNA.  

 

There have additionally been direct attempts to develop a nearest-neighbour model 

for PNA:DNA hybridisation. Griffin and Smith authored one such model in 1998, 

determining incremental enthalpies between −5.8 and −11.9 kcal/mol and 

incremental free energies between −0.9 and −3.6 kcal/mol. These values cover a 

broader range than their ds-DNA equivalents (Table 1-4) but were able to 

accurately fit a total of 13 DNA:PNA melting temperatures.103 However, and as 

highlighted by Giesen et al.,101 their model was parameterised using only 11 

melting temperatures over a very narrow range of sequence lengths, raising the 

possibility that the model is overfitted to this small sample of sequences and that its 

incremental energies are not representative of a more diverse set of PNA:DNA 

binding energies. The validity of a nearest-neighbour model for PNA:DNA 

heteroduplexes was also tested by Sugimoto et al. in 2001, who studied the 

differences in binding energies of different sequences with otherwise identical 

lengths and occurrences of unique ds-stacks.104 

 

Despite both Griffin and Smith and Sugimoto publishing articles relating to nearest-

neighbour models for PNA:DNA hybrids, publications of exact incremental 

energies based on a broader range of PNA:DNA experimental energies are lacking 

in 2023. Though a 2019 study by Ghosh and Sugimoto et al.105 states that nearest-

neighbour models have been used to predict the stabilities of “duplexes formed by 

peptide nucleic acid (PNA) and DNA” they reference only the Sugimoto et al. 

2001104 study which presents no new incremental energies and makes no predictions 

based on such. In contrast to the initial steps in developing these models that have 

been made for heteroduplexes, there had been no attempts to determine a nearest-

neighbour model for ds-PNA prior to the current body of work. 
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1.6 Nucleic acids under external force 

1.6.1 Two distinct loading directions 

In ds-DNA there are two primary modes of melting under external force: shear and 

unzipping.106 In the shear mode the direction of pulling is parallel to the 

longitudinal axis of the double-helix whereas in the unzipping mode the direction of 

pulling is normal to this axis. Experimentally, for shearing, this is achieved by 

pulling from the 5’ or 3’ terminus of one strand and the same terminus of the other 

strand in antiparallel ds-DNA. The unzipping mode is studied by pulling from the 5’ 

terminus of one strand and the 3’ terminus of the other strand in antiparallel ds-

DNA (Figure 1-16).  

 

 

Figure 1-16: Cartoon of the two main modes of ds-DNA rupture reprinted with 

permission from Mosayebi et al. Copyright (2015) American Chemical Society.106 
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1.6.2 The de Gennes model for shearing short oligonucleotides 

In 2001 Nobel laureate Pierre-Gilles de Gennes produced a foundational theory to 

understanding the effect of force on ds-DNA in the shearing mode by arguing that, 

as the length of a ds-DNA primary sequence approached infinity, the rupture force 

would approach an asymptotic value.107 Two years earlier, in 1999, Strunz et al. had 

already demonstrated that the ds-DNA rupture force was a non-linear increasing 

function of sequence length108 and the de Gennes model provided the basis for 

understanding this non-linearity. In 2008, Hatch et al. demonstrated results for 

oligonucleotides under 100 base pairs in length which were consistent with the de 

Gennes theory: rupture force increased linearly until approximately 20 base pairs 

but was already within 5% of the asymptotic rupture force by 32 base pairs.109 In 

2015, Mosayebi et al. reviewed this work and accounted for sequence composition 

by fitting the data of Hatch et al. to a model involving the average free energy per 

base pair, showing that the asymptotic rupture force increased with average base 

pair free energy.106  

 

For short oligonucleotides, the de Gennes model therefore argues that the rupture 

force measured during shearing experiments of nucleic acids is an increasing 

function of length and average base pair free energy until a critical length at which 

the relationship flattens. This asymptote likely arises from the fact that, according to 

both Hatch et al. and Mosayebi et al., force is mostly distributed across 

approximately 10 base pairs near the pulling terminus during shearing.106,109 

Resultantly, according to the de Gennes model, an infinitely long ds-nucleic acid 

under shear force experiences loading on a finite number of terminal base pairs, 

hence leading to a length-independence in rupture force beyond a certain length.  

 

1.6.3 Overstretched deoxyribonucleic acid 

Several studies have demonstrated that, during the stretching of longer ds-DNA 

molecules, if the force on the molecule exceeds roughly 65 pN then the helix enters 

an ‘overstretched’ or S-form conformation with the distance per base pair being 
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approximately 1.7 times greater than in the B-form.110,111,112,113 In 1994, for 

example, Lee et al. evidenced the S-form in 241 nm ds-DNA by observing that 

rupture forces were preceded by an elastic region in the force curve.114 Danilowicz 

et al. argue that this is incompatible with the de Gennes theory115 since the S-form 

has a higher length per base pair, resulting in a lower stacking energy and hence 

lower effective spring constant. For the S-form, then, force would theoretically be 

distributed across a greater number of base pairs than the terminal 10 pairs predicted 

by the de Gennes theory. For sequences longer than 500 base pairs, Danilowicz et 

al. demonstrated this incompatibility by observing that rupture force increased 

logarithmically with the loading rate but did not plateau, though the authors did note 

that they could not discount an asymptote for sequences longer than 10,000 base 

pairs.115  

 

Though the overstretched form was observed in long chains this does not 

necessarily preclude overstretching in short chains should the force on such chains 

be able to exceed 65 pN. One of the limitations of both molecular dynamics and 

force spectroscopy experiments is that they each can only partly characterise the 

force-loading curve.20,116 Notably, force spectroscopy is limited to lower loading 

rates,117  whereas molecular dynamics is limited to higher rates. Since rupture force 

is a function of loading rate, this raises the possibility for overstretched ds-DNA 

conformations to be demonstrated in short sequences at high loading rates where the 

rupture force exceeds the 65 pN force of overstretching.  

 

A 1999 molecular dynamics study by MacKerell Jr. and Lee118 corroborated the 

1994 experimental study by Lee et al.114 that an elastic intramolecular region during 

shearing precedes a rapid intermolecular rupture event using a shorter nucleic acid. 

This indicated the existence of an overstretching conformation, and subsequent 

molecular dynamics studies demonstrated definitively its existence in 

oligonucleotides shorter than 30 base pairs at high loading rates (Figure 1-17).117 

This highlights an interesting use case for molecular dynamics in that, for some 
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molecules, it can explore conformations that are inaccessible to experimental 

setups.  

 

 

Figure 1-17: Snapshots of a ds-DNA molecule during the process of shearing, with 

increasing force from left to right. Near the right end the extended S-form 

conformation is evident. Reproduced from Naserian-Nik et al., Copyright (2013), 

with permission from RSC Publishing (License No.: 1360504-1).117   

 

In addition to demonstrating the existence of the S-form in short oligonucleotides 

from structural analysis, MacKerell Jr. and Lee reconstructed the free energy 

landscape during shearing.118 They showed that this elastic region is characterised 

by a near-constant free energy surface and that, at the maximum stretching distance, 

a steep and narrow barrier is encountered in the free energy surface which must be 

surmounted for rupture to occur.  This elastic region represents the process of 

overstretching until a critical distance at which rupture occurs. 

 

1.6.4 The length independence of unzipping 

During shearing, the rupture force is dependent on length and loading rate. During 

unzipping, however, it has been argued that the rupture force is independent of both 

length and loading rate.119 This is arguable since unzipping can be thought of as the 
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sequential breaking of single base pairs, and so any force accumulating on the 

molecule is constantly dissipated meaning the maximum force reached does not 

increase with length. Because base pairs break sequentially, it has also been 

demonstrated that these forces are directly sequence-dependent.120,121  

 

According to the force spectroscopy models, however, the rupture force of each 

individual base pair in the sequence is theoretically still a function of the loading 

rate.19 As it turned out, the process of unzipping was more nuanced than simply 

being entirely independent of length or loading rate, bringing it in line with the 

theoretical models. In 2001, Cocco, Monasson and Marko demonstrated that the 

rupture force was dependent on the sequence length and loading rate for rates below 

approximately 10−8 Ns−1, but lost this dependence at intermediate loading rates of 

about 10−5 Ns−1.122 At even higher rates, the rupture force again became a function 

of loading rate only because the nucleic acid could not respond to the force before it 

became large. The authors reported a rate- and length-independent rupture force of 

approximately 12 pN, which is lower than the forces reported in shearing ds-DNA 

such as the 65 pN force needed to stretch B-form DNA into the S-form. This 

demonstrates that unzipping in ds-DNA requires less force to occur than shearing. 

 

Force spectroscopy models have been fitted to unzipping studies of a DNA hairpin 

secondary structure in ss-DNA. During the process of unzipping, a nonlinear 

relationship between the unzipping time and force, expressed as a voltage, was 

observed, meaning the full curve could not be fitted by the Bell-Evans formula. 

Instead, a Dudko-Hummer-Szabo fit was conducted, revealing a transition barrier 

height of ∆𝐺‡ of 7.05 kcal/mol.123 Since, in the process of unzipping, base pairs 

rupture sequentially and the highest stability individual ds-stack has an incremental 

free energy of only 2.24 kcal/mol in the unified model (Table 1-4), then this result 

reveals the existence of a large transition barrier opposing base pair rupture that is 

much greater than the incremental free energies of the ds-stacks themselves. 
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1.6.5 State of peptide nucleic acid external force studies 

Similarly to the state of PNA:DNA nearest-neighbour models, there are only limited 

studies on the rupture of PNA:DNA hybrids under shear load. For example, a study 

on the rupture of a PNA:DNA 6-mer revealed that even such short lengths formed 

stable complexes with detectable rupture forces. This contrasts with ds-DNA which 

cannot form stable strands under standard conditions for sequences shorter than 8 

base pairs.124 This higher stability during shearing was also noted by Dutta, 

Armitage and Lyubchenko in 2016 for a 10-mer sequence.125  

 

Of potential interest to the overstretching of PNA:DNA hybrids is that rupture 

forces of approximately 65 pN for PNA:DNA were reported at low, experimentally-

obtainable loading rates.125 Assuming the existence of a PNA:DNA S-form, and 

assuming the transition to said form occurs at a similar stretching force of 65 

pN,110,111,112,113 this raises the possibility of studying overstretching in short 

PNA:DNA hybrids using loading rates available to atomic force microscopes. 

 

Mirroring the absence of nearest-neighbour studies for ds-PNA, the literature search 

did not reveal any force spectroscopy studies for PNA homoduplexes. 

  

1.7 Project aims 

1.7.1 Gaps in the current literature 

To establish a baseline for the single-molecular study of ds-PNA as a candidate 

bioadhesive using molecular dynamics, the extent of current understanding on its 

binding stabilities should be assessed. Theories to quantify the binding stability of 

biomolecular associations are well established from the equilibrium binding free 

energy16 to rupture forces to non-equilibrium force spectroscopy models.19,22,24 

Computational methods to quantify these equilibrium and non-equilibrium 

quantities are well established. These computational tools, discussed at length in the 
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following chapter, form the foundation for the present work on the equilibrium and 

non-equilibrium binding stabilities of ds-PNA.  

 

Regarding ds-DNA and ds-RNA, a clear, consistent research effort in deriving 

binding stability quantities is evident. A key development in equilibrium binding 

stability studies specific to nucleic acids is the decomposition of binding entropies, 

enthalpies and free energies into primary sequence parameters, as per the nearest-

neighbour model.79 Similar key developments in non-equilibrium studies for nucleic 

acids is the overstretching of ds-DNA for shear forces exceeding 65 pN110,111,112,113 

and the significantly lower peak forces during unzipping.122 Extensions of the 

current literature on ds-DNA could involve simulations of overstretched ds-DNA in 

shorter oligonucleotides, due to the higher accessible loading rates, and derivation 

of incremental energies for synthetic nucleobases.  

 

There have been attempts to replicate the equilibrium and non-equilibrium binding 

studies of DNA and RNA with PNA, for example in the derivation of incremental 

energies for PNA heteroduplexes103 or in the decomposition of binding enthalpies 

by sequence length.102 PNA heteroduplexes have been sheared, and peak forces near 

the overstretching regime of ds-DNA observed.125 Notably absent from that study, 

however, is any discussion of overstretching in PNA heteroduplexes. Similarly 

absent from the literature are any studies of external forces, and any derivations of 

incremental energies, for ds-PNA. 

 

In general, although there were a spur of studies recording the binding energies and 

entropies of PNA hetero- and homo-duplexes in the late 1990’s and early 

2000’s,75,76,101,102,103,104 interest has seemingly waned since. There are probably two 

reasons for this: firstly, interest in PNA’s applications continues. For example, 

studies on duplex invasion wherein an ss-PNA binds to a ds-DNA duplex for a 

potential therapeutic purpose are reported, and so focus may have simply 

shifted.49,50,70 Secondly the binding energies of PNA-containing duplexes were 
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largely published by the same personalities. For example, Peter E. Nielsen, who 

first developed the synthetic analogue, has appeared 15 times in the references at 

this point with only 2 sources dated after 2005. Nielsen’s publications since then 

indicate a shift in focus towards applications, and where kinetic and thermodynamic 

data is available it is for individual sequences without mention of generalising data 

into a binding model.126,127 Likewise, Sugimoto or Griffin and Smith, who studied 

the validity of a nearest-neighbour model104 or developed one with a limited sample 

size,103 have not pursued it in future research. Ghosh and Sugimoto’s 2019 quote105 

that nearest-neighbour models have been used to “study the stability” of PNA-

containing duplexes, without referencing any such model, may even indicate that 

they consider the matter closed. 

 

The lower interest in ds-PNA may be because, whereas heteroduplexes have clear 

applications in antigene or antisense technologies,68,70,71 the applications of ds-PNA 

are less clear. ds-PNA as a candidate bioadhesive as proposed in the present work is 

an example application with a literature search failing to reveal any prior 

suggestions of this. 

 

1.7.2 Project aims 

By addressing the literature, the research question, “Can molecular dynamics be 

used to assess and screen the single-molecular binding properties of a candidate 

bioadhesive?", can be answered. Firstly, the property of binding stability is assessed 

in terms of the binding energy, as was addressed in subchapter 1.2. Secondly, the 

equilibrium binding energies of ds-nucleic acids can be decomposed into primary 

sequence parameters according to the nearest-neighbour model, as was addressed in 

subchapter 1.5. Thirdly, the binding stability of nucleic acids under external force 

can be quantified by the force-loading curve or the underlying free energy 

landscape. Therefore, to answer the research question, the efficacy of molecular 

dynamics in deriving binding energies, force-loading curves and underlying free 

energy landscapes of the candidate bioadhesive ds-PNA must be assessed. 
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To quantify the binding stability of ds-PNA the present work therefore achieves the 

following goals:  

(1) A complete nearest-neighbour model for predicting ds-PNA binding energies 

from primary sequence is developed. This is presented in Chapter 4 and 

addresses technical research question (1). 

(2) The free energy landscapes associated with base pairing and stacking during 

shearing are derived. The contributions of different energy terms, such as 

torsional angle energies, during the processes of unzipping and shearing are 

presented. The force-loading relationship during shearing and unzipping at 

high loading rates is expressed. This is presented in Chapter 5 and addresses 

technical research question (2). 

(3) A new computational model for ds-PNA allowing a broader force-loading 

curve to be derived is created. This is presented in Chapter 6 and addresses 

technical research question (3). 

 

1.7.3 How the literature informed methods in the present work 

To develop the nearest-neighbour model the method outlined by Golyshev, Pyshnyi 

and Lomzov in 202196 to use MM-PB[GB]SA to measure binding energies and 

entropies, is used given its accuracy and inexpensiveness. This was since, as 

discussed in criticisms of Griffin and Smith’s work101, a large number of sequences 

of different lengths would need to be tested, and alternative methods like alchemical 

free energy calculations, as used by Sakuraba, Asai and Kameda92, were more 

resource intensive. Unlike Golyshev, Pyshnyi and Lomzov, however, a linear 

correction would not be used due to the ∆𝐺 ≠ ∆𝐻 − 𝑇∆𝑆  inequality it introduces 

for the incremental energies and entropies of binding. 

 

Since the de Gennes’ model of ds-DNA indicated that external force in shear loads 

mostly onto the terminal 10 base pairs,107 this provided justification for the 

sequence selection used in this work. Namely, due to the available computational 
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power, a single ds-PNA sequence was selected for all studies of ds-PNA under 

external force. Since GTAGATCACT is the most well-characterised ds-PNA 

sequence in the literature58,62,65,75,78,80 in terms of its binding properties it would be 

the most natural pilot sequence for all force studies, and by also being 10 base pairs 

long this selection is further justified by the suggestion from the de Gennes model 

that a sequence of this length would be capable of capturing the impact of loading 

on structure.  

 

To extend the possible simulation timescales, a new ‘coarse-grained’ model of ds-

PNA is developed in this work. This coarse-grained model is based on the Martini 

framework (Chapter 2.1) for other nucleic acids128,129 and allows longer simulation 

timescales to be achieved by clustering atoms into beads to reduce the degrees of 

freedom of the simulation.  

 

Finally, the results of molecular dynamics simulations are validated against binding 

energies and entropies obtained from the literature. 

 

1.7.4 Outline of future chapters 

Chapter 2 introduces the theory and methods of the computational approaches used 

in the current work. During molecular dynamics it is important for systems to be 

properly equilibrated and for computed structures to represent experimental data, so 

Chapter 3 presents equilibration and structural data including the helical parameters 

for ds-PNAs used in the present work. Chapter 4 presents the derivation of the 

nearest-neighbour model for ds-PNA using MM-GBSA. Chapter 5 presents external 

force studies on all-atom ds-PNA alongside base pairing and stacking energy 

landscapes during shearing. Chapter 6 presents the derivation of the Martini model 

for ds-PNA and a partial force-loading curve from the shearing of Martini ds-PNA 

including its overlap with all-atom simulations data. Chapter 7 discusses the 

significance of these results and their place within, and contributions to, the 

literature on equilibrium and external force studies of ds-PNA. In addition, Chapter 
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7 reflects on the extensibility of the present results as a useful metric on the 

stabilities of bioadhesives of different chemical makeup and on the macroscale.  
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Chapter 2: Theory and methods 

2.1 Molecular mechanics forcefields for nucleic acids 

2.1.1 All-atom peptide nucleic acid forcefields 

The results of molecular dynamics simulations are directly dependent on the 

forcefield parameters of the studied molecule. For PNA, a study directly evaluated 

the effect of changing various terms, such as torsional force constants or atomic 

charges, on results.1 Minor changes of ±10% to atomic charges or torsional force 

constants could elicit changes in the free energies of binding of PNA dimers up to 

around 4 kcal/mol, though in most cases changes were smaller (around 

1 kcal/mol).  These results reflect the importance of accurate parameterisation of 

forcefields prior to interpretation. 

 

All-atom molecular mechanics forcefields atomically render molecules and 

represent each atom as a point in space with a charge and mass subject to bonded 

and non-bonded potentials between itself and other atoms. For peptide nucleic acids 

the latest developments in all-atom forcefields were released in 2018 and provided 

up-to-date parameters for the CHARMM and Amber forcefields.2 Both forcefields 

utilise the same general potential energy function (Equation 2-1).3,4 

 

[Eq. 2⎼1]          𝑉

= ∑ 𝑘(𝑏 − 𝑏0)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘(𝜃 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝑘[1 + cos(𝑛𝜙 − 𝛿)]

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

+ 휀𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 

 

Where 𝑘 is a force constant, 𝜃 is an angle, 𝑏 is a bond length, 𝜙 is a torsional angle, 

𝑛 is the dihedral multiplicity, 𝛿 is the phase shift and 휀𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 is a sum of the van 
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der Waals and Coulomb interactions between that atom and all other atoms. 

휀𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 is discussed in Chapter 2.2.3 and 2.2.4.  

 

CHARMM and Amber differ in that the CHARMM forcefield splits the torsional 

angle term into ‘proper dihedrals’ of the type seen in Equation 2-1 and ‘improper 

dihedrals’ which are harmonic functions similar to the bond and angle potentials,3 

though these improper functions can equally be achieved by proper dihedrals with a 

multiplicity of one. Both forcefields are capable of modelling a variety of 

biomolecules.5,6,7,8 The selection of one over the other for the present work is 

discussed in Chapter 3.  

 

2.1.2 The Martini nucleic acid forcefield  

Coarse-grained molecular mechanics forcefields, such as the Martini forcefield,9 

represent molecules not as systems of atoms but as systems of atom clusters called 

beads. Martini forcefields enable faster computation times for equivalent systems to 

be achieved by reducing the degrees of freedom and by enabling timesteps typically 

10-fold higher (20 fs) than those regularly used in all-atom simulations (2 fs). 

Martini forcefields are parametrised against all-atom data by matching the 

distributions of, for example, bonds or angles, against the distributions of those 

same bonds and angles in all-atom simulations.10  

 

To enable the study of larger nucleic acids over longer durations, models based on 

the Martini framework have been developed. In these models, purines are 

represented by four beads and pyrimidines by three, and the phosphoribose 

backbone is represented by two uncharged beads for (deoxy)ribose and a charged 

phosphate bead (Figure 2-1).10,11 Free energy landscapes obtained along the base 

pairing and stacking coordinates demonstrate that these models overestimate the 

energy between stacked bases and underestimate the pairing free energy.10 This is 
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possibly partly a consequence of the Martini framework since it does not model 

directional hydrogen bonding, as in base pairing, at the expense of faster 

computation rate.10 In addition, double-helical DNA and RNA is poorly 

approximated by the CG model, forcing the use of a harmonic elastic network to 

maintain a conformation similar to the all-atom structure.10,11 In using an elastic 

network, however, it is not possible to study the rupture forces of double-stranded 

DNA or RNA using the current Martini models since the elastic network introduces 

artificial energy barriers to dissociation. 

 

 

Figure 2-1: Beads, in translucent blue, of Martini DNA overlayed on top of all-atom 

structures. Bead types indicated by text. Dotted lines indicate bonds. Reproduced 

from Uusitalo et al., Copyright (2015), with permission from the American 

Chemical Society under an ACS AuthorChoice usage agreement.10  
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2.2 Molecular mechanics parameter selection 

2.2.1 Integrators 

Integrators compute how positions and velocities evolve over discrete time. All 

molecular dynamics systems in the present work are conducted using Gromacs,15 

which implements a default ‘leap-frog’ integrator (Equation 2-2). 

 

[Eq. 2⎼2a]          𝒗 (𝑡 +
1

2
Δ𝑡) = 𝒗 (𝑡 −

1

2
Δ𝑡) +

Δ𝑡

𝑚
𝑭(𝑡) 

[Eq. 2⎼2b]          𝒓(𝑡 + Δ𝑡) = 𝒓(𝑡) + Δ𝑡𝒗 (𝑡 +
1

2
Δt) 

 

Where 𝒗, 𝒓 and 𝑭 are the velocity, position and force vectors. The velocity vector at 

time 𝑡 +
1

2
Δ𝑡 is calculated by updating the velocity at time 𝑡 −

1

2
Δ𝑡 using the force 

at time 𝑡. The position at time 𝑡 + Δ𝑡 is calculated by updating the position at time 𝑡 

using the velocity at time 𝑡 +
1

2
Δ𝑡. Since the velocity at time 𝑡 +

1

2
Δ𝑡 is computed 

from the force at time 𝑡, which in molecular dynamics is solely due to the potential 

energy, and hence position at time 𝑡, 𝒓(𝑡),  then the positions update the forces 

which update the velocities which in turn update the positions, and the positions and 

velocities ‘leap-frog’ over one another.12,13 

 

In the present work, this standard leap-frog integrator is used during equilibration, 

and for all Martini simulations, but for production all-atom simulations a stochastic 

integrator is used. A stochastic integrator is as accurate as the above integrator but 

includes a friction term that enables the efficient and theoretically rigorous 

implementation of temperature coupling,14 as discussed in the succeeding 

subchapter.  
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2.2.2 Temperature and pressure coupling 

Thermodynamics is a study of systems at equilibrium, and so for the accurate 

computations of energies like the free energy, molecular dynamics systems must be 

at equilibrium. For the calculation of the Gibbs free energy this involves the 

coupling of the system to an external bath at constant temperature and pressure. The 

temperature is calculated from the kinetic energy of the system (Equation 2-3).12 

 

[Eq. 2⎼3]          
1

2
𝑛𝑘𝐵𝑇 = 𝐸kinetic =

1

2
∑𝑚𝑖𝑣𝑖

2

𝑖

 

 

Where 𝑛 is the degrees of freedom of the system (for example, for a point in three-

dimensional space there are 3 degrees of freedom from its translational 𝑥, 𝑦 and 𝑧 

motion). 𝑚 and 𝑣 are the masses and velocities of the 𝑖𝑡ℎ atom and 𝑇 is the 

temperature in Kelvin. 

 

The coupling of this temperature to an external bath can be achieved via a 

Berendsen thermostat (Equation 2-4).15 The Berendsen thermostat is suitable for 

equilibrating systems towards the target temperature because of its efficient 

implementation. 

 

[Eq. 2⎼4]          
𝑑𝑇

𝑑𝑡
=
𝑇0 − 𝑇

𝑡
 

 

For production runs, however, the Berendsen thermostat is unsuitable since it 

improperly suppresses fluctuations in the kinetic energy.12 For accurate sampling of 

the system’s kinetic energy, needed for theoretically rigorous production runs, more 

computationally expensive alternatives are implemented. In the present work, this is 

achieved using stochastic dynamics,14 since the random motion of particles in the 
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system, which through Equation 2-3 can be used to express the temperature, results 

in friction. Though stochastic dynamics innately incorporates this, it can also be 

explicitly implemented in a temperature coupling algorithm should a non-stochastic 

integrator be used.16,17 Alternatively, velocity can be rescaled at each step to account 

for this effect using a velocity rescaling thermostat.18 

 

Similar to temperature coupling, pressure coupling is achieved by coupling the 

system to an external bath of constant pressure.15 A Berendsen barostat (Equation 2-

5) can be implemented though suffers from the same suppression of fluctuations as 

the Berendsen thermostat.12 

 

[Eq. 2⎼5]          
𝑑𝑃

𝑑𝑡
=
𝑃0 − 𝑃

𝑡
 

 

Parrinello-Rahman pressure coupling is used for production runs in the present 

work since fluctuations are accurately characterised.19 Using a combination of a 

theoretically rigorous thermostat with the Parrinello-Rahman barostat allows 

quantities such as the free energy to be derived from production simulations since 

fluctuations in the system’s energy, which contribute to the probability distribution 

of the system’s energy from which the free energy is determined, are accounted for.  

 

2.2.3 Van der Waals potentials 

In both the CHARMM and Amber forcefields, there is a nonbonded component to 

the potential energy consisting of an uncharged van der Waals term and a charged 

Coulomb term. The van der Waals term is most often computed as a Lennard-Jones 

potential (Equation 2-6).20 
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[Eq. 2⎼6]         𝑉𝐿𝐽 = 4𝜖 [(
𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

] 

 

Where 𝜖 is the depth of an energy minimum, 𝑟 is the distance and 𝜎 is the closest 

distance of approach. The Lennard-Jones potential consists of attractive −(𝜎/𝑟)6 

and repulsive (𝜎/𝑟)12 contributions to the total potential energy, with 𝜎 being the 

distance closer than the equilibrium distance (at which the potential energy is 

minimised) wherein the attractive and repulsive terms exactly cancel out (Figure 2-

2).12 

 

 

Figure 2-2: Schematic of a Lennard-Jones potential. ΔE is the energy change in 

arbitrary units and ξ is the reaction coordinate distance. ΔE approaches 0 at large ξ, 

representing the unbound state. ΔEb is the energy change upon binding and is the 

minimum in the curve. ξb is the distance along ξ of the bound state and ξr is the 

distance along ξ at which the potential becomes repulsive (ΔE > 0). 
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To improve computational efficiency, molecular dynamics simulations often 

employ a cut-off which sets the energy to zero at a user-defined distance. To 

eliminate inconsistencies such as jumps in the potential energy to this zero point, 

potential switching functions are often employed that modify Equation 2-6 such that 

the potential energy smoothly transitions to zero by the cut-off point.12,21 

 

2.2.4 Coulomb potentials 

The second half of the nonbonded term is the Coulomb potential (Equation 2-7), 

which accounts for the energy between charged particles.12 

 

[Eq. 2⎼7]          𝑉𝑒𝑙 =
𝑞𝑖𝑞𝑗

4𝜋휀0𝑟
 

 

Where 휀0 is the dielectric constant of a vacuum, known as the vacuum permittivity. 

𝑞𝑖 and 𝑞𝑗 are the charges of the 𝑖𝑡ℎ and 𝑗𝑡ℎ interacting atoms. If an implicit solvent 

is used, meaning solvent atoms are not simulated and instead the solvent is treated 

as a homogeneous medium with a single dielectric constant, then 휀𝑟 is included in 

the denominator of Equation 2-7 to model the screening of the Coulomb potential 

by this medium. 휀𝑟 is also used in Martini simulations to model this screening and 

for these has an explicit value of 15.22  

 

Like the van der Waals potential, the Coulomb potential can be smoothly tuned 

towards zero at a cut-off distance by modifying Equation 2-7 with a potential switch 

function. Instead of using a cut-off, the long-ranged Coulomb potential can also be 

modelled using a ‘particle mesh Ewald’ (PME)23,24 which interpolates atomic 

charges over a grid. Long-ranged interactions are expensive to compute by direct 

summation, and the PME provides a comparatively inexpensive alternative since the 
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potential energy converges more rapidly.12 The PME therefore prevents artefacts 

from cutting off the potential or from artificially smoothing towards zero at the cut-

off point.  

 

2.3 Free energy along physical coordinates 

2.3.1 Steered molecular dynamics 

Steered molecular dynamics (SMD) 25 is a method by which molecules can be 

forced along physical coordinates in molecular dynamics simulations. In an SMD 

simulation, a moving, typically harmonic, potential is applied to a bound complex 

such that, over time, it pulls one binding partner away from another along a specific 

reaction coordinate (Figure 2-3).15,26,27 SMD traces demonstrate the existence of 

loading-rate dependent rupture forces consistent with force spectroscopy 

models.28,29 In contrast to force spectroscopy, however, the loading rates used are 

typically orders of magnitude higher since lower loading rates require longer, 

resource intensive simulations.30 This is problematic for the fitting of force 

spectroscopy models like the Bell-Evans model which fail in the limit of high 

loading rate.31 In general, the fitting of any force spectroscopy model requires the 

characterisation of a ‘near-equilibrium’ regime at loading rates lower than those 

accessible using molecular dynamics, and if such a regime is not fitted the 

equilibrium free energy cannot be accurately derived.32 

 



82 

 

 

 

 

Figure 2-3: Schematic of steered molecular dynamics where a binding partner in 

blue is pulled from one in red using an external potential that moves from the 

position in red to the position in blue along the reaction coordinate 𝜉. The moving 

potential is represented by a minimum in the energy E.  

 

2.3.2 Umbrella sampling 

The free energy landscape underlying SMD simulations can be numerically solved 

using umbrella sampling (US).33 This can overcome issues such as the inability to 

fit force spectroscopy models to high loading rate regimes since parameters such as 

barrier heights can be directly obtained from the free energy landscape.34 During 

US, snapshots of the system during the unbinding process, for example at specific 

distances along the reaction coordinate, are obtained. These snapshots are used to 

sample the equilibrium free energy centred at different distances along the reaction 

coordinate, and the overlapping of these free energy estimates from these 

‘windows’ allows reconstruction of the complete free energy landscape along the 

coordinate (Figure 2-4). 
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Figure 2-4: Umbrella sampling allows the free energy change ΔG along a reaction 

coordinate 𝜉 to be reconstructed from the biased distributions in 𝑝𝜉. Each 

distribution is from a simulation centred at some distance in 𝜉 and contains all 

distances sampled in that window. Since the free energy is related to these 

distributions as discussed in Chapter 1.2.3, it is possible to construct the free energy 

change along 𝜉, ΔG. 

 

The free energy difference between two states, from Equation 1-8, is given by the 

ratio of partition functions, which are in turn derived from the probability 

distribution of energies at those states. In Figure 2-4, the probability distributions on 

the left are biased and need to be converted into an unbiased estimate for ∆𝐺𝜉  to be 

calculated, which can be done via the weighted histogram analysis method 

(WHAM).35,36 The purpose of WHAM (Equation 2-8)  is to convert biased 

distributions in 𝑝𝜉 to unbiased distributions by determining the statistical 

uncertainty of unbiased distributions until the uncertainty converges on a minimum 

value. The unbiased distribution with the minimum uncertainty can then be used to 

calculate the free energy as described in Chapter 1.2.3. 

  

[Eq. 2⎼8]           𝑝𝜉unbiased =
∑ 𝑔𝑖

−1ℎ𝑖𝑖

∑ 𝑛𝑗𝑔𝑗
−1 exp (

1
𝑘𝐵𝑇

𝑤𝑗 − 𝑓𝑗)𝑗
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Where 𝑔 is the ‘statistical inefficiency’ of umbrella window 𝑖 or 𝑗, ℎ𝑖 is the 𝑖𝑡ℎ 

histogram achieved by binning the continuous biased distributions in Figure 2-4 

into discrete histograms, 𝑛𝑗 is the number of samples of the 𝑗𝑡ℎ histogram, 𝑤𝑗 is the 

biasing ‘umbrella’ potential used to maintain the system in the umbrella window 

and 𝑓𝑗 is the unknown free energy of the 𝑗𝑡ℎ histogram. Sums are taken over all 

histograms. 

 

Since both 𝑓𝑗 and 𝑝𝜉unbiased
 are unknown these are iteratively solved until Equation 

2-8 converges at values for them which minimise the statistical uncertainty. 

 

2.3.3 Accelerated weight histograms 

SMD simulations must assume that the chosen reaction coordinate is physically 

relevant for useful interpretations of its free energy landscape to be made. This 

method might be appropriate for unbinding systems with a physically relevant, 

narrow unbinding coordinate, but even in such cases SMD can force systems into 

improbable, physically irrelevant states.37 An alternative method is the accelerated 

weight histogram (AWH) method.38 In AWH, a target distribution centred at some 

distance along a coordinate 𝜉, or multiple coordinates, is estimated using an 

adaptive biasing potential 𝑔𝜉  (Equation 2-9). The free energy estimate 𝐺𝜉 with that 

target distribution 𝑝𝜉 is, in turn, used to estimate the adaptive potential.  

 

[Eq. 2⎼9]         𝑝𝜉 =
𝑒−𝐺𝜉+𝑔𝜉

𝑍
 

 

The free energy and the bias are both initially unknown and so must be iteratively 

solved. A probability histogram containing the biased probability distributions of 

the system’s energy is maintained and this histogram is used to adaptively tune the 
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bias function.37,38 A core advantage of AWH over US is that, by adaptively 

adjusting the bias function, improbable high-force states can be avoided, increasing 

simulation convergence. It is also practically easier to implement since a single 

simulation containing the entire reaction coordinate and history can be used, 

whereas US requires multiple sampling windows, and is therefore favoured over US 

in the present work.  

 

2.4 Free energy along non-physical coordinates 

2.4.1 Free energy perturbation  

The binding free energy of two biomolecules doesn’t have to be obtained by 

transformation along a physical coordinate. Computer simulations have the 

advantage in that atomic, non-bonded and bonded parameters can be tuned during 

simulation, effectively changing a molecule’s identity or erasing it entirely. This 

kind of alchemical transformation can be used to: (i) determine the absolute binding 

free energy of two biomolecules by turning their interactions with one another off, 

or (ii) determine relative binding free energies, such as between two candidate drug 

molecules, by transforming one molecule into another.  

 

According to the Zwanzig equation (Equation 2-10),39 the free energy of state B can 

be obtained from a simulation taken at state A so long as the two states are similar 

enough that a simulation of one can sample the other.40 When the two states are 

distinct, as might be the case for ds-DNA and ds-PNA, for example, a non-physical 

coordinate must be established which interpolates the bonded, non-bonded and 

atomic parameters of states A and B. During free energy perturbation (FEP) this 

non-physical coordinate connecting state A with state B is established using 

numerous intermediate states  0 < 𝜆𝑁 < 1  with interpolated parameters where 

𝜆𝐴 = 0 and 𝜆𝐵 = 1.93 The intermediate states are not physically relevant but allow 
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the Zwanzig equation to be incrementally applied across them such that the 

difference in free energy between state A and B can be obtained. 

 

[Eq. 2⎼10]         ∆𝐺 = −𝑘𝐵𝑇 ln 〈𝑒
−
𝐸𝐵−𝐸𝐴
𝑘𝐵𝑇 〉𝐴  

 

The angled brackets denote an average taken from a simulation at state A. 

 

2.4.2 Thermodynamic integration 

FEP allows the free energy difference between state A and B to be obtained using 

discrete intermediate states. An alternative method, thermodynamic integration (TI), 

allows the free energy difference to be computed by integration across a 

continuously changing 𝜆 (Equation 2-11).41 Whilst FEP can be applied in 

equilibrium since each intermediate has a constant 𝜆, TI technically cannot since 𝜆 

is changing, meaning 𝑑𝜆 must be sufficiently small that a quasi-equilibrium is 

established. 

 

[Eq. 2⎼11]         ∆𝐺 = ∫
𝜕𝐺

𝜕𝜆

𝜆=1

𝜆=0

𝑑𝜆 

 

2.4.3 Bennett acceptance ratio 

A related method to FEP is the Bennett acceptance ratio (BAR).42 Whereas FEP 

requires all high-probability states of state B to be sampled by state A (where state 

A and B can be intermediates), BAR samples over both state A and state B 

(Equation 2-22), requiring less strict overlap than is required for FEP. 
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[Eq. 2⎼12]          ∑
1

1 + 𝑒
(ln(

𝑛𝑖
𝑛𝑗
)+
∆𝐸𝑖𝑗−∆𝐺

𝑘𝐵𝑇
)

𝑛𝑖

𝑖=1

−∑
1

1 + 𝑒
(ln(

𝑛𝑗
𝑛𝑖
)+
∆𝐸𝑗𝑖−∆𝐺

𝑘𝐵𝑇
)

𝑛𝑗

𝑗=1

= 0 

 

Where 𝑛𝑖 and 𝑛𝑗 are the number of samples 𝑖 and 𝑗 at state A and B respectively. 

Bennett arrived at this conclusion from Equation 1-8, which can equivalently be 

represented as Equation 2-13.42 

 

[Eq. 2⎼13]         ∆𝐺𝑖𝑗 = −𝑘𝐵𝑇 ln
〈𝑀𝑒

−𝐸𝑖
𝑘𝐵𝑇〉𝑗

〈𝑀𝑒
−𝐸𝑗
𝑘𝐵𝑇〉𝑖

 

 

Where angled brackets represent an average taken over all configurations. For 

example, the numerator in Equation 2-13 is an average of all 𝑀exp(−𝐸𝑖 𝑘𝐵𝑇)⁄  

taken at state 𝑗, meaning Equation 2-13 holds the same assumptions as the Zwanzig 

equation that state 𝑗 can adequately sample the energies of state 𝑖 and so must 

overlap. 𝑀 is the metropolis function, 𝑀 = min{1, exp(−𝑥)}. Curly brackets 

denote a set, and min refers to the minimum value of this set which contains 1 and 

exp(−𝑥). The purpose of 𝑀 is to draw samples from the known Boltzmann 

distribution exp(−𝐸𝑖 𝑘𝐵𝑇)⁄  at 𝑗. Bennett developed Equation 2-12, requiring less 

strict assumptions than the Zwanzig equation or Equation 2-13, by finding the value 

of 𝑀 that minimised the variance in the free energy.42 

 

2.5 Poisson-Boltzmann and Generalised Born approximations 

Free energy differences obtained using US, AWH or FEP can be intensive since 

they require sampling of either the physical or non-physical coordinate connecting 

the two states. Molecular mechanics Poisson Boltzmann surface area (MM-PBSA) 

and molecular mechanics generalised Born surface area (MM-GBSA) allow binding 
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free energies to be approximated from end-points without simulating intermediate 

states, reducing resource consumption at the expense of accuracy. In both cases, the 

binding free energy is calculated in the same general way (Equation 2-14).43,44,45 

 

[Eq. 2⎼14]         ∆𝐺 = ∆𝐸𝑀𝑀 + ∆𝐺𝑠𝑜𝑙𝑣 − 𝑇∆𝑆 

 

With ∆𝐸𝑀𝑀 being calculated from the difference in bonded and non-bonded 

energies between the initial and final states (Equation 2-15) which could be, for 

example, ds-PNA versus two ss-PNAs. 

 

[Eq. 2⎼15]         ∆𝐸𝑀𝑀 = ∆𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + ∆𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 

 

Both terms on the right-hand can be further subdivided and are ultimately all 

obtained from the molecular mechanics forcefield, hence the ‘MM’ in MM-

PB[GB]SA. The PB and GB methods differ in the evaluation of ∆𝐺𝑠𝑜𝑙𝑣, which is 

divided into polar and non-polar terms (Equation 2-16). 

 

[Eq. 2⎼16]         ∆𝐺𝑠𝑜𝑙𝑣 = ∆𝐺𝑝𝑜𝑙𝑎𝑟 + ∆𝐺𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟 

 

∆𝐺𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟 is approximated from a linear function of the accessible surface areas 

of the initial and final states, hence the ‘SA’ in MM-PB[GB]SA (Equation 2-17). 

 

[Eq. 2⎼17]         ∆𝐺𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟 = 𝑚𝑆𝐴 + 𝑏 
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Where SA is the solvent-accessible surface area of the solute. In the unbinding of 

two nucleic acid strands, for example, it is likely to increase since the buried surface 

area between the two strands is exposed. The polar solvation energy ∆𝐺𝑝𝑜𝑙𝑎𝑟 is 

calculated differently depending on whether the PB or GB method is used, with GB 

being itself an approximation of the PB equation.43 The PB equation is 

computationally much more expensive to solve, and since prior research has shown 

comparative or even higher accuracy in resolving nucleic acid binding energies with 

the GB equation,46 the GB approximation of ∆𝐺𝑝𝑜𝑙𝑎𝑟 (Equation 2-17) is used in the 

present work.47  

 

[Eq. 2⎼17]         ∆𝐺𝑝𝑜𝑙𝑎𝑟 = (1 −
1

𝜖
)
1

2
∑

𝑞𝑖𝑞𝑗

𝑓𝐺𝐵
𝑖𝑗

 

 

Where 𝜖 is the dielectric constant of the solvent, 𝑞 is an atomic charge, and 𝑓𝐺𝐵 is a 

function of the Born radius, which is the spherically-averaged distance between an 

atom of the solute, such as a protein, and the solvent.44 𝑓𝐺𝐵 differs depending on the 

exact implementation of the GB equation used, with example implementations such 

as 𝑖𝑔𝑏 = 548 in the Gromacs molecular dynamics suite having well-documented 

applicability to proteins and nucleic acids. The purpose of 𝑓𝐺𝐵 is to reflect the 

screening of polar interactions between solute and solvent molecules by distance, 

charge, and other atoms in the solute.  

 

2.6 References

 
1 Bachmann, S.; Lin, Z.; Stafforst, T.; van Gunsteren, W.; Dolenc, J. On the Sensitivity of Peptide Nucleic 

Acid Duplex Formation and Crystal Dissolution to a Variation of Force-Field Parameters. J. Chem. Theory 

Comput. 2014, 10, 391-400 
2 Jasiński, M.; Feig, M.; Trylska, J. Improved Force Fields for Peptide Nucleic Acids with Optimized 

Backbone Torsion Parameters. J. Chem. Theory Comput. 2018, 14, 3603-3620 
3 MacKerell Jr., A.; Bashford, D.; Bellott, M.; Lunbrack, R.; Evanseck, J.; Field, M.; Fischer, S.; Gao, J.; 

Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.; Mattos, C.; Michnick, S.; Ngo, T.; 

Nguyen, D.; Prodhom, B.; Reiher, W.; Roux, B.; Schlenkrich, M.; Smith, J.; Stote, R.; Straub, J.; Watanabe, 



90 

 

 

 

 
M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-Atom Empirical Potential for Molecular Modeling 

and Dynamics Studies of Proteins. J. Phys. Chem. B. 1998, 102, 3586-3616 
4 Ponder, J.; Case, D. Force fields for protein simulations. Adv. Prot. Chem. 2003, 66, 27-85 
5 MacKerell Jr., A.; Banavali, N. All-atom empirical force field for nucleic acids: 1) parameter optimization 

based on small molecule and condensed phase macromolecular target data. J. Comp. Chem. 2000, 21, 86-104 
6 Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.; Grubmüller, H.; MacKerell Jr, A. 

CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods, 

2016, 14, 71-73 
7 Pérez, A.; Marchán, I.; Svozil, D.; Sponer, J.; Cheatham, T.; Laughton, C.; Orozco, M. Refinement of the 

AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Confomers. Biophys. J. 2007, 92, 

3817-3829 
8 Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple 

AMBER force fields and development of improved protein backbone parameters. Proteins. 2006, 65, 712-

725 
9 Marrink, S.; Risselada, H.; Yefimov, S.; Tieleman, D.; de Vries, A. The MARTINI Force Field: Coarse 

Grained Model for Biomoleculer Simulations. J. Phys. Chem. B. 2007, 111, 7812-7824 
10 Uusitalo, J.; Ingólfsson, H.; Akhshi, P.; Tieleman, D.; Marrink, S. Martini Coarse-Grained Force Field: 

Extension to DNA. J. Chem. Theory Comput. 2015, 11, 3932-3945 
11 Uusitalo, J.; Ingólfsson, H.; Marrink, S.; Faustino, I. Martini Coarse-Grained Force Field: Extension to 

RNA. Biophysical Journal 2017, 113, 246-256 
12 Abraham, M.; Alekseenko, A.; Bergh, C.; Blau, C.; Briand, E.; Doijade, M.; Fleischmann, S.; Gapsys, V.; 

Garg, G.; Gorelov, S.; Gouaillardet, G.; Gray, A.; Irrgang, M.; Jalaypour, F.; Jordan, J.; Junghans, C.; 

Kanduri, P.; Keller, S.; Kutzner, C.; Lindahl, E. GROMACS 2023 Manual (Version 2023). Zenodo. 2023. 

https://doi.org/10.5281/zenodo.7588711 
13 Berendsen, H.; van Gunsteren, W. Practical algorithms for dynamics simulations. Molecular-Dynamics 

Simulation of Statistical-Mechanical Systems. 1986. 43-65. 
14 Goga, N.; Rzepiela, A.; de Vries, A.; Marrink, S.; Berendsen, H. Efficient Algorithms for Langevin and 

DPD Dynamics. J. Chem. Theory Comput. 2012, 8, 3637-3649 
15 Berendsen, H.; Postma, J.; van Gunsteren, A.; DiNola, J.; Haak, J. Molecular dynamics with coupling to an 

external bath. J. Chem. Phys. 1984, 81, 3684-3690 
16 Hoover, W. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 1985, 31, 1695-

1697 
17 Martyna, G.; Klein, M.; Tuckerman, M. Nosé-Hoover chains: The canonical ensemble via continuous 

dynamics. J. Chem. Phys. 1992, 97, 2635-2643 
18 Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 

2007, 126, 014101 
19 Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. 

J. Appl. Phys. 1981, 52, 7182-7190 
20 Lennard-Jones, J. Cohesion. Proceedings of the Physical Society. 1931, 43, 461-482 
21 De Jong, D.; Baoukina, S.; Ingólfsson, H.; Marrink, S. Martini straight: Boosting performance using a 

shorter cutoff and GPUs. Comp. Sci. Comm. 2016, 199, 1-7 
22 Marrink, S.; Risselada, H.; Yefimov, S.; Tieleman, D.; de Vries, A. The MARTINI Force Field: Coarse 

Grained Model for Biomolecular Simulations. J. Phys. Chem. B 2007, 111, 7812-7824 
23 Hockney, R.; Goel, S.; Eastwood, J. Quiet High Resolution Computer Models of a Plasma. J. Comp. Phys. 

1974. 14. 148-158. 
24 Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald. An Nlog(N) method for Ewald sums in large 

systems. J. Chem. Phys. 1993. 98. 10089-10092. 
25 Kamberaj, H. Molecular Dynamics Simulations in Statistical Physics: Theory and Applications. Springer 

Nature 2020, ISBN 978-3-030-35701-6 
26 Park, S.; Schulten, K. Calculating potentials of mean force from steered molecular dynamics simulations. 

J. Chem. Phys. 2004, 120, 5946 
27 Isralewitz, B.; Gao, M.; Schulten, K. Steered molecular dynamics and mechanical functions of proteins. 

Current Opinion in Structural Biology 2001, 11, 224-230 
28 Evans, E.; Ritchie, K. Dynamic Strength of Molecular Adhesion Bonds. Biophysical Journal 1997, 72, 

1541-1555 
29 Posch, S.; Aponte-Santamaría, C.; Schwarzl, R.; Karner, A.; Radtke, M.; Gräter, F.; Obser, T.; König, G.; 

Brehm, M.; Gruber, H.; Netz, R.; Baldauf, C.; Schneppenheim, R.; Tampé, R.; Hinterdorfer, P. Single 

molecule force spectroscopy data and BD- and MD simulations on the blood protein von Willebrand factor. 

Data in Brief 2016, 8, 1080-1087 
30 Sheridan, S.; Gräter, F.; Daday, C. How Fast Is Too Fast in Force-Probe Molecular Dynamics Simulations? 

J. Phys. Chem. B. 2019, 123, 3658-3664 



91 

 

 

 

 
31 Dudko, O.; Hummer, G.; Szabo, A. Intrinsic Rates and Activation Free Energies from Single-Molecule 

Pulling Experiments. Phys. Rev. Lett. 2006, 96, 108101 
32 Noy, A.; Friddle, R. Practical single molecule force spectroscopy: How to determine fundamental 

thermodynamic parameters of intermolecular bonds with an atomic force microscope. Methods 2013, 60, 

142-150 
33 Park, S.; Schulten, K. Calculating potentials of mean force from steered molecular dynamics simulations. 

J. Chem. Phys. 2004, 120, 5946 
34 You, W.; Tang, Z.; Chang, C. Potential Mean Force from Umbrella Sampling Simulations: What Can We 

Learn and What Is Missed? J. Chem. Theory Comput. 2019, 15, 2433-2443 
35 Hub, J.; de Groot, B.; van der Spoel, D. g_wham – A Free Weighted Histogram Analysis Implementation 

Including Robust Error and Autocorrelation Estimates. J. Chem. Theory. Comput. 2010, 6, 3713-3720 
36 Roux, B. The calculation of the potential of mean force using computer simulations. Comp. Phys. Comm. 

1995, 95, 275-282 
37 Lindahl, V.; Lidmar, J.; Hess, B. Accelerated weight histogram method for exploring free energy 

landscapes. J. Chem. Phys. 2014, 141, 044110 
38 Lidmar, J. Improving the efficiency of extended ensemble simulations: The accelerated weight histogram 

method. Phy. Rev. E. 2012, 85, 056708 
39 Zwanzig, R. High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. J. Chem. 

Phys. 1954, 22, 1420 
40 Beveridge, D.; DiCapua, F. Free Energy Via Molecular Simulation: Applications to Chemical and 

Biomolecular Systems. Annu. Rev. Biophys. Biophys. Chem. 1989, 18, 431-492 
41 Kästner, J.; Senn, H.; Thiel, S.; Otte, N.; Thiel, W. QM/MM Free-Energy Perturbation Compared to 

Thermodynamic Integration and Umbrella Sampling: Application to an Enzymatic Reaction. J. Chem. 

Theory Comput. 2006, 2, 452-461 
42 Bennett, C. Efficient Estimation of Free Energy differences from Monte Carlo Data. J. Comput. Phys. 

1976, 22, 245-268 
43 Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. 

Expert Opin. Drug Discov. 2015, 10, 449-461  
44 Bashford, D.; Case, D. Generalized Born Models of Macromolecular Solvation Effects. Annu. Rev. Phys. 

Chem. 2000, 51, 129-152 
45 Onufriev, A.; Case, D. Generalized Born Implicit Solvent Models for Biomolecules. Annu. Rev. Biophys. 

2019, 48, 275-296 
46 Golyshev, V.; Pyshnyi, D.; Lomzov, A. Calculation of Energy for RNA/RNA and DNA/RNA Duplex 

Formation by Molecular Dynamics Simulation. Molecular Biology 2021, 55, 927-940 
47 Goodman, J.; Attwood, D.; Kiely, J.; Coladas Mato, P.; Luxton, R. Modeling Peptide Nucleic Acid 

Binding Enthalpies Using MM-GBSA. J. Phys. Chem. B. 2022, 126, 9528-9538 
48 Onufriev, A.; Bashford, D.; Case, D. Exploring Protein Native States and Large-Scale Conformational 

Changes With a Modified Generalized Born Model. Proteins 2004, 55, 383-394 



92 

 

 

Chapter 3: Production and validation of 

CHARMM structures 

3.1 Introduction 

3.1.1 Forcefield selection 

In the present work, numerous atomic structures of PNA were simulated. This 

requires the selection of an appropriate forcefield for these molecules, and a method 

by which the atomic structures of these molecules can be generated. This chapter 

thereby presents the forcefield selection using for all-atom simulations in the 

present study, the method of structure production, and finally routine validation 

procedures that are used throughout the rest of the study whenever molecular 

dynamics simulations are conducted. 

 

Jasiński et al. presented the most recent forcefield parameters for peptide nucleic 

acids in 2018.1 These parameters were developed for both the CHARMM and 

Amber all-atom molecular mechanics forcefields and, in both cases, had root mean 

square atomic deviations (RMSDs) for ds-PNA after 1 μs of approximately 0.12 

nm. RMSD is a quantity reflecting the structural accuracy of a simulated 

biomolecule and measures the average distance of its atoms over time with their 

equivalent superimposed experimental crystal structure.2 Typically, RMSDs of a 

couple Ångstrom (~ 0.2nm) are considered acceptable, though this depends on the 

use case and is somewhat arbitrary.2 For Amber, the RMSD reported by Jasiński et 

al. was an order of magnitude better than for the previous Amber models, though 

for CHARMM the RMSD was reduced by only 0.01 nm for ds-PNA given the 

already low RMSDs of prior CHARMM models. Since these were the most recent 

available parameters and both had stable and low RMSD traces for ds-PNA, it was 

simply a matter of selecting which of the two, Amber or CHARMM, was most 

appropriate. 
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According to the authors, both Amber and CHARMM forcefields replicated the 

structure of PNA-containing helices well, though Amber reproduced the helical 

parameters of ds-PNA better than CHARMM. Contrastingly, CHARMM 

reproduced basic structural parameters like torsional angles more accurately than 

Amber as well as more accurately distinguishing helical parameters in PNA:DNA 

and PNA:RNA heteroduplexes. For the present study, CHARMM was selected as 

the molecular mechanics forcefield for all-atom studies for two reasons. Firstly, by 

more accurately representing heteroduplexes, the present work on ds-PNA could be 

extended to those systems. Secondly, since nucleic acids under external force are 

distorted from their equilibrium double-helices, accurately representing the P-form 

as in the Amber model would be less important than accurately reproducing basic 

structural parameters like torsional angles. This is since these basic structural 

parameters could influence the unbinding behaviour under external force. 

 

3.1.2 Structure generation 

Molecular dynamics simulations of ds-PNA require structure and topology files. 

The structure file and the forcefield are combined to produce a topology containing 

the force constants, equilibrium distances, and so forth for the potentials between 

atoms of the chosen structure. Structure files can be obtained from databases, such 

as the protein data bank (RCSB PDB).3 An exact-match search for “peptide nucleic 

acid” in the RCSB PDB yielded 16 structures at the start of the current body of 

work, with a similar search for “PNA” yielding approximately 50. In the latter case, 

39 of the submissions were either protein-nucleic acid complexes or false positives 

containing only proteins, and in both cases many of the PNA complexes were 

heteroduplexes or otherwise contained strand modifications such as lysine tags. 

 

The proto-Nucleic Acid Builder (pNAB)4 allows for the generation of ds-PNA 

structure files based on helical parameters inputted by the user, enabling a large 

number of structures with different sequences to be generated. This provided a more 

attractive alternative to the RCSB PDB since more total ds-PNA structures could be 
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acquired, additional modifications could be excluded, and sequences could be 

specified by the user. All simulated structures used in the current body of work, 

with the exception of one (PDB ID: 3MBS)5 for validation purposes, were 

resultantly produced using initial helical parameters and a subsequent 

conformational search via the pNAB. 

 

3.1.3 Equilibration runs 

Before a production run, from which study outputs are collected, is conducted in 

molecular dynamics, equilibration runs are typically conducted. The purpose of 

equilibration is to ensure data is being collected under the desired conditions, for 

example constant temperatures and pressures representative of biological systems. 

In addition, thermodynamic quantities like the free energy are obtained from 

systems at equilibrium, when the free energy is related to the Boltzmann 

distribution.  

 

All results from molecular dynamics simulations in the present work were obtained 

from equilibrated systems, with exact protocols being in the methods sections of the 

relevant chapters. 

 

3.2 Methods 

Molecular dynamics simulations were conducted on the ds-PNA 3MBS for the 

purpose of validating the simulation conditions used against previous data from the 

literature. This is because Jasiński et al.’s 2018 study1 used the 3MBS5 ds-PNA 

crystal structure to validate the structural accuracy of their forcefield parameters. A 

crystal structure of 3MBS was obtained from the RCSB PDB and imported into 

Gromacs using the CHARMM forcefield parameters developed by Jasiński et al. 

3MBS was placed in a dodecahedral box and energy minimised using a steepest 

descent algorithm over 50,000 simulation steps before being solvated in spc216 

water and minimised in the same manner as before. Solvated 3MBS was then 
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equilibrated at constant temperature using a velocity rescaling thermostat,6  and then 

at constant pressure using a Berendsen barostat,7  over 10 ns. 50 ns production runs 

were then obtained using a stochastic integrator8 with pressure coupling handled by 

a Parrinello-Rahman barostat.9 

 

During production runs the temperature and pressure were monitored. From 

production trajectories the RMSD between 3MBS and its crystal structure could 

also be obtained. The helical parameters of 3MBS were obtained and compared to 

the available literature.  

 

3.3 Results 

3.3.1 Temperature and pressure equilibration 

Temperature (Figure 3-1) and pressure (Figure 3-2) traces of 50 ns 3MBS 

production runs demonstrate that temperature and pressure were well-coupled at 

298 K and 1 bar respectively, indicating the system to be in temperature and 

pressure equilibrium. Consequently, the molecular dynamics parameters and the 

CHARMM forcefield discussed above can produce stable, well-equilibrated ds-

PNA systems. Similar traces are obtained for all future molecular dynamics 

simulations for routine validation though are not shown. 
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Figure 3-1: Temperature of a properly equilibrated simulation of the ds-PNA 3MBS 

taken over 50 ns.  

 

 

Figure 3-2: Pressure of a properly equilibrated simulation of the ds-PNA 3MBS 

taken over 50 ns.  
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3.3.2 RMSD and helical parameters 

To confirm that simulation conditions used in the current work were representative 

of the literature, it was important that the structure of the ds-PNAs reproduced 

published structural parameters. Three 50 ns production replicates of the 3MBS 

right-handed helix produced an average RMSD of 0.124 nm (Figure 3-3). This is 

essentially identical to the value of 0.122 nm recorded by Jasiński et al.1  

 

 

Figure 3-3: RMSD of a 3MBS replicate taken over one 50 ns simulation.  

 

Similar agreement between the present study and the 2018 study by Jasiński et al. 

was seen in the helical parameters for right-handed 3MBS ds-PNA. The complete 

helical parameters (Figure 3-4) were measured over the three 50 ns production runs 

for all non-terminal base pairs, as described in the 2018 study, and averaged (Table 

3-1). 
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Figure 3-4: Schematic of different ds-nucleic acid parameters, reproduced from Ho 

and Carter.10 

 

Table 3-1: Helical parameters for right-handed 3MBS from its published crystal 

structure5 and using the Jasiński et al.1 CHARMM 2018 forcefield in both their 

original publication and in the present work. ± indicate standard deviations. 

Parameter Experimental Jasiński et al. Present work 

Stretch (Å) −0.10 ± 0.00 −0.11 ± 0.12 −0.06 ± 0.19 

Shear (Å) 0.00 ± 0.10 0.00 ± 0.42 −0.03 ± 0.74 

Stagger (Å) 0.10 ± 0.10 0.05 ± 0.34 0.08 ± 0.59 

Propeller twist (⸰) −5.00 ± 3.60 −12.52 ± 6.48 −13.01 ± 7.22 

Buckle (⸰) −0.20 ± 1.70 −0.01 ± 7.51 0.02 ± 8.49 

Inclination (⸰) 2.20 ± 11.30 15.59 ± 15.11 14.91 ± 13.08 

x-displacement (Å) −7.70 ± 0.80 −6.08 ± 1.92 −6.40 ± 2.13 

y-displacement (Å) −0.40 ± 1.40 0.00 ± 1.56 0.00 ± 1.89 

Rise (Å) 3.20 ± 0.10 3.35 ± 0.27 3.34 ± 0.30 

Slide (Å) −2.50 ± 0.40 −1.77 ± 0.42 −1.81 ± 0.41 

Shift (Å) 0.10 ± 0.30 0.00 ± 0.41 0.02 ± 0.37 

Helical twist (⸰) 19.50 ± 0.60 24.34 ± 3.38 24.58 ± 3.79 

Roll (⸰) 0.60 ± 3.70 6.29 ± 6.15 5.90 ± 7.51 

Tilt (Å) −0.40 ± 1.40 −0.00 ± 3.89 0.00 ± 3.44 

 

Unsurprisingly, given that the same molecular mechanics forcefield was used, the 

helical parameters from Jasiński et al.’s 2018 publication were well-reproduced in 
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the present work. In general, a slightly larger standard deviation was measured over 

the base pairs in the three replicates though in all cases the standard deviations are 

overlapping. For both the present work and Jasiński et al.’s publication the 

inclination and roll angles are most different from the experimental work, being 

approximately an order of magnitude greater in both cases, though the low RMSDs 

with respect to the 3MBS crystal structure indicate that the difference in these 

angles is not crucial to replicating an accurate crystal structure. Deviation between 

the present work and the prior study is most likely since shorter 50 ns simulations 

were used in the present study due to the available computational resources, 

whereas 1 μs replicates were used in the 2018 study.  

 

In general, these structural results indicate that the simulation protocols used in the 

present work accurately reproduce the available prior data and provide justification 

for the use of molecular dynamics simulations for the characterisation of ds-PNA 

complexes. Like temperature and pressure, RMSDs were regularly monitored 

throughout the present work and should be considered a routine part of each 

protocol.  
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Chapter 4: Nearest-neighbour model for peptide 

nucleic acids 

4.1 Introduction 

Chapter 4 is in part a reproduction of the published article, “Modeling Peptide 

Nucleic Acid Binding Enthalpies Using MM-GBSA” produced as part of the 

present body of work.1 Authorship rights for this article are jointly owned by the 

candidate J. Goodman, their supervisors D. Attwood, R. Luxton and J. Kiely, and P. 

Coladas Mato.  

 

This chapter presents the development of the first nearest-neighbour model for ds-

PNA. Using this model, the binding enthalpies of ds-PNAs can be predicted based 

on their primary sequences with a mean error of 8.74%. This model was developed 

by first defining a ‘benchmarking set’ of unique ds-PNA binding energies and 

entropies obtained from both the literature and from experimental data. The nearest-

neighbour model was then developed in the following steps. Firstly, MM-GBSA 

was used to estimate the computational binding energies and entropies of the 10 

sequences of the benchmarking set to determine whether MM-GBSA could 

accurately reproduce the experimental binding energies and entropies. Once it was 

determined to what extent MM-GBSA could reproduce these energies and entropies 

for the 10 sequences of the benchmarking set, an additional 39 sequences were 

simulated so that a total of 49 sequences were simulated. MM-GBSA was used to 

obtain binding energies and entropies for all 49 sequences, and these were then 

subject to a multiple linear regression model to decompose them, via the 

occurrences of each ds-stack, into incremental energies according to Equation 1-11. 

These incremental energies could then be reconstituted into binding energies of 

unknown sequences using only their primary sequence information.  

 

By developing a nearest-neighbour model for ds-PNA, comparisons between the 

factors which contribute to the equilibrium stability, expressed by binding energy, 
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of ds-PNA and ds-DNA could be made. Quantification of these factors, expressed 

as the incremental enthalpies of ds-stacks, enables a more informed design of ds-

PNAs with desired binding properties, and by comparison to ds-DNA an 

understanding of how the chemical structure of ds-PNA promotes higher stability in 

aqueous solutions can be developed.  

 

4.2 Methods 

4.2.1 Creating the benchmarking set 

Seven ds-PNA sequences with binding energies and entropies from thermal melting 

experiments were compiled from the available literature.2,3,4,5,6,7,8 Experimental 

conditions varied between the publications, namely regarding the concentration of 

sodium ions and the presence of a lysine tag. Hence, it was necessary either to 

determine whether this variance affected their published binding energies or 

entropies, or to exclude publications using conditions different to those used in the 

present work. Excluding, however, would have limited what was already a limited 

dataset of available ds-PNA binding energies and entropies. Since these would be 

necessary to benchmark the simulation data to determine the accuracy of the ds-

PNA nearest-neighbour model, it was preferable to use all of the publications 

regardless of the experimental conditions if possible.  

 

Since the concentration of sodium ions is consistently reported as having a 

negligible effect on binding energy in the literature, this factor was ignored.2,9,10 To 

determine that lysine tagging did not affect binding energies, occurrences in the 

literature of the sequence GTAGATCACT, which appeared the most times and so 

could be used for comparing the publications, were categorised according to 

whether they used a lysine tag or not. The binding energies and entropies for 

unmodified sequences were all within one standard error of the mean binding 

energies and entropies for the tagged sequences (Table 4-1). 
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Table 4-1: Standard binding energies and entropies at 298 K for GTAGATCACT 

from the literature. ± indicates standard error.  

Category 
−∆𝑯 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

−∆𝑺 

(𝐜𝐚𝐥 𝐊−𝟏𝐦𝐨𝐥−𝟏) 

−∆𝑮 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

All 86.92 ± 5.00 227.97 ± 14.48 18.99 ± 0.87 

No lysine 89.36 ± 2.73 236.15 ± 8.28 18.85 ± 0.85 

Lysine 85.45 ± 6.59 221.42 ± 18.83 19.70 ± 1.16 

 

The seven unique ds-PNA binding energies and entropies were therefore grouped 

into a single data set regardless of the experimental conditions used, since lysine 

tagging had a negligible effect on these values. 

 

To complete the benchmarking set, three additional ds-PNA binding energies and 

entropies were obtained through thermal melting experiments. These were 

purchased from Eurogentec at 95% purity (Cat. Number BA-PN010-005) as 

determined by high-performance reverse-phase and ion-exchange liquid 

chromatography. The three ds-PNA samples were diluted to a concentration of 1 

μM in deionised water and were then melted via an electric heater in a water bath 

from which samples were taken at 2 K intervals between 293 and 343 K after 5-

minute equilibrations at the target temperature. Using a Cary 60 UV-vis 

spectrophotometer, light with a wavelength of 260 nm was shone through a quartz 

cuvette containing the PNAs at the target temperature and the amount of absorbed 

light was measured. As temperature increased so did the absorbance, since the ss-

PNAs produced during melting are hyperchromic (absorb more light) at 260 nm 

relative to ds-PNA. 

 

For each of the three PNA sequences tested, three replicates were obtained. The 

absorbances for each PNA sequence were normalised between zero and one where 

𝛼 = 1 corresponds to a sample containing only ds-PNA and 𝛼 = 0 corresponds to a 

sample containing only ss-PNA. The melting point was taken at 𝛼 = 0.5. The 
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equilibrium constant 𝐾 was then derived according to the two-state assumption, 

meaning PNA was either ds-PNA or ss-PNA with no metastable states in-between. 

In general, this assumption allows the equilibrium constant to be derived according 

to Equation 1-9, though for self-complementary helices this reduces to Equation 4-

1.11 

 

[Eq. 4⎼1]          𝐾 =  
𝛼

2𝐶(1 − 𝛼)2
 

 

Where 𝐶 is the total strand concentration. The natural logarithm of the equilibrium 

constant was then plotted against the reciprocal temperature to derive standard 

enthalpies and entropies according to a linear form of the van’t Hoff equation12 as 

expressed in Equation 1-10. The binding free energy is then calculated according to 

the constant temperature and pressure equation ∆𝐺 = ∆𝐻 − 𝑇∆𝑆. 

 

The binding energies and entropies of the three ds-PNAs obtained from thermal 

melting experiments were combined with the seven unique ds-PNA binding 

energies and entropies from the literature to produce a benchmarking set consisting 

of ten unique ds-PNA binding energies and entropies. 

 

4.2.2 Simulation parameters 

Atomic ds-PNA structures were generated using the proto-Nucleic Acid Builder 

(pNAB).13 A set of initial helical parameters14,15,16 were obtained from published 

crystal or NMR structures. A weighted Monte Carlo conformational search was 

conducted to generate chemical structures based on these initial parameters and on 

thresholds such as bonding energies and interatomic distances set by the user. The 

structures generated by this were imported into the Gromacs program using the July 

2021 edition of the CHARMM36m forcefield17,18 and the N- and C- termini were 
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acetylated and amidated respectively. All molecular dynamics simulations in the 

present work were conducted using the open-source Gromacs software.  

 

Simulated homoduplexes were energy minimised in vacuum over 50,000 

simulation steps using a steepest-descent algorithm. Structures were then solvated 

in explicit waters in dodecahedral boxes using the Simple Point Charge (SPC) water 

model spc216.19 The distance between any atom of the solute and the edge of the 

box was set to a minimum of 15 Å. Periodic boundary conditions20 were enforced to 

imitate bulk solvent and solvated structures were energy minimised using steepest-

descent minimisation over 50,000 simulation steps.  

 

For each unique ds-PNA, three replicates were obtained from this point onwards. 

Each replicate was heated from 30 to 298K over 500 ps and Newton’s equations of 

motion were integrated using a leap-frog integrator.21,22 Temperature was weakly 

coupled to an external bath using a velocity rescaling23 algorithm. Harmonic 

restraints of 24 kcal mol−1 Å−1 were applied to non-hydrogen atoms whereas 

hydrogen atoms were constrained using a LINCS24 algorithm. During this and for 

all future simulations the van der Waals interactions were handled using a switched 

cut-off scheme with switching to zero occurring from 10 to 12 Å. The electrostatic 

nonbonded interactions were treated using a particle mesh Ewald (PME)25,26 

algorithm with quartic interpolation and a grid spacing of 1 Å. The short-ranged 

component of the PME was computed to 10 Å and long-ranged components were 

handled using the fast Fourier transform library FFTW.27 

 

After heating, position restraints were halved every 2 ns with the equations of 

motion and temperature coupling thereon handled by a stochastic integrator which 

incorporated friction and noise terms.28 After 10 ns of simulation the non-hydrogen 

restraints were removed entirely and structures were equilibrated for 10 ns in the 

canonical ensemble. They were then equilibrated for a further 10 ns in the isobaric-

isothermal ensemble with pressure coupling at 1 bar handled by a Berendsen 
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barostat.29 100 ns production runs were then carried out for each of the three 

replicas of each sequence using Parrinello-Rahman pressure coupling.30 Simulation 

convergence was demonstrated by RMSD histograms and agreement between later 

MM-GBSA derived enthalpies, entropies and free energies as a function of 

simulation length (Appendix A.1).  

 

Simulation conditions, such as the switching and cut-off distances, LINCS 

algorithm, and integrator, were chosen to closely reflect previous simulations of ds-

PNA by Jasiński et al. whilst balancing the available computational resources.3,31 

The above molecular dynamics protocol can be visualised in the general process 

diagram (Figure 4-1). This general process is repeated in future chapters though 

exact parameters at each step may differ.  

 

 

Figure 4-1: Process diagram for a general molecular dynamics simulation protocol 

as carried out in the present work. 

 

4.2.3 Trajectory analysis using MM-GBSA 

Trajectories were analysed by gmx_mmpbsa, which enables MM-GBSA 

estimations of enthalpy, entropy and free energy to be calculated.32 The free energy 

of a molecule computed using MM-GBSA33,34,35 is given by the average molecular 

mechanics potential energy 𝐸𝑀𝑀, the solvation energy 𝐺𝑠𝑜𝑙𝑣 and the entropic term 

𝑇𝑆 according to Equation 2-14. 𝐸𝑀𝑀, which accounts for the bonded and non-
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bonded energy terms according to Equation 2-15, was obtained for all PNAs from 

snapshots of the simulation trajectories in vacuum.  

 

To evaluate ∆𝐸𝑀𝑀 in the present work, a single-trajectory approach (STA) was used 

to save computation time. In this approach, only the ds-PNA is simulated, and the 

energies of the ss-PNAs are estimated based on this simulation. In the STA, the 

difference in bonded energy between ss-PNA and ds-PNA is zero. The STA 

therefore assumes that the conformation of a PNA strand in the duplex is identical 

to a free PNA strand in solution for the benefit of being computationally less 

expensive. To determine that this approach was valid, three multiple-trajectory 

approach (MTA) trials were conducted, meaning ss-PNAs were separately 

simulated to obtain their energies. For STA to be valid, the conformational enthalpy 

∆𝐻𝑐𝑜𝑛𝑓, this being the difference between the enthalpy of ss-PNA determined from 

STA and MTA respectively, must be negligible. 36,37 For all three of the MTA trials, 

∆𝐻𝑐𝑜𝑛𝑓 was limited (~1% of the total energy) and hence considered negligible 

(Table 4-2). 

 

Table 4-2: Enthalpies of ss-PNA as determined by STA and MTA. The 

conformational enthalpy ∆𝐻𝑐𝑜𝑛𝑓 is the difference between the two.  

Category 
−𝑯𝒔𝒔−𝑷𝑵𝑨,𝑺𝑻𝑨 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

−𝑯𝒔𝒔−𝑷𝑵𝑨,𝑴𝑻𝑨 

(𝐜𝐚𝐥 𝐊−𝟏𝐦𝐨𝐥−𝟏) 

−∆𝑯𝒄𝒐𝒏𝒇 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

CGATCG 657.43 ± 2.97 658.48 ± 1.62 1.05 

GTAGATCACT 1027.47 ± 6.64 1038.52 ± 1.38 11.05 

CATCTAGTGA 943.32 ± 6.86 951.88 ± 2.25 8.56 

 

The solvation energy difference ∆𝐺𝑠𝑜𝑙𝑣 from Equation 2-16 is the sum of non-polar 

and polar energies. In the present work, it was calculated using a continuum solvent 

model which approximates the explicit water solvent as a homogeneous medium 

with a dielectric constant of 78.5 at 298 K 38 The final contribution to the free 
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energy change according is then 𝑇∆𝑆 which was evaluated in this study using a 

quasi-harmonic (QH) approximation39, which is natively integrated into the 

functions of gmx_mmpbsa.32 In the quasi-harmonic approximation, a covariance 

matrix 𝑪 of atomic coordinates is obtained from the simulation trajectory. It is 

assumed that 𝑪 is related to 𝑯, this being a matrix of the second derivatives of the 

system’s energy (Equation 4-2). 𝑯 is then related to the system’s energy surface 

through a Taylor series terminating at the second order, which is a harmonic 

approximation. In doing this, the quasi-harmonic approximation relates 𝑪, which in 

turn relates to the fluctuations in atomic coordinates, with a harmonic 

approximation of the system’s energy surface.  

 

[Eq. 4⎼2]          𝑪 = (
1

𝑘𝐵𝑇
𝑯)

−1

 

 

A standard state correction was applied to the free energy differences to correct for 

the box volumes and thereby standardise the concentrations (Equation 4-3). 

 

[Eq. 4⎼3]          ∆𝐺° = ∆𝐺 − 𝑅𝑇 ln (
𝑉com
𝑉°
) 

  

Where 𝑉° = 1661 Å3 and 𝑉com is the volume of the simulation box.40 

 

4.2.4 Multiple regression model 

A nucleic acid duplex can be thought of as a series of overlapping ds-stacks as 

discussed in Chapter 1.4.2. This is known as the nearest-neighbour model.41,42,43 

The binding energy or entropy, generalised as 𝜒, can be written in matrix form 

(Equation 4-4). 
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𝝌 is a 1 × 𝑁 column matrix containing either the mean enthalpies, entropies or free 

energies of hybridisation of PNA homoduplexes. 𝑺 is an 𝑁 × 𝑣 matrix containing 

the occurrences 𝑗 of all ds-stacks and the initiation terms. 𝛆 is a 1 × 𝑣 column 

matrix containing the unknown incremental energies or entropies. These unknowns 

are then evaluated by solving the linear least-squares problem which minimises the 

sum of the square of the residuals of 𝝌 with respect to 𝑺. 

 

The multiple regression problem is generalised by weighting each observable ∆𝜒 by 

its reciprocal standard error (Equation 4-5). 

 

[Eq. 4⎼5]           𝝈−𝟏 ∙ 𝝌 = 𝝈−𝟏 ∙ 𝑺 ∙ 𝛆 

 

Where 𝝈−𝟏 is an 𝑁 × 𝑁 diagonal matrix containing the reciprocal standard errors of 

each observable with non-diagonal elements of zero. The estimate 𝛆 obtained by 

solving the multiple linear regression problem thus contains the error-weighted 

least-squares estimates of the incremental energies or entropies. 

 

Equation 4-5 was used in the present work to decompose the binding energies and 

entropies obtained by MM-GBSA into their incremental energies or entropies. 
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4.2.5 Hydrogen bonding analysis 

The 100 ns production trajectories were analysed using gmx_hbond to compute the 

number of Watson-Crick hydrogen bonds between the base pairs over time. 

Hydrogen bonds were defined as bonds between the atom triplets involved in 

Watson-Crick bonding with distances between donor and acceptor of less than 

0.325 nm and angles of hydrogen-donor-acceptor of less than 30 degrees. The 

purpose of hydrogen bonding analysis was to demonstrate that the incremental 

initiation enthalpies were corroborated by the structure and dynamics of ds-PNAs.  

 

4.3 Results and Discussion 

4.3.1 Benchmarking 

The purpose of the benchmarking set (Table 4-3) was to determine how accurately 

MM-GBSA replicated binding energies and entropies obtained from thermal 

melting experiments. This benchmarking set consisted of 7 binding energies and 

entropies from the literature,2-8 and 3 from optical melting experiments from the 

current work. The melting curves of the 3 ds-PNA sequences TAGCTA, AACGTT 

and CGATCG (Figure 4-2) obtained from optical melting experiments were 

determined to be 313.5 ± 0.4, 316 ± 0.4 and 319.7 ± 0.8K respectively. Full 

curves were processed according to Equation 4-1, and binding energies and 

entropies were obtained according to Equation 1-10. The standard errors of the 

binding enthalpies and entropies overlapped, whereas the binding free energy for 

CGATCG was more negative, suggesting it was stabilised relative to the other two 

as was corroborated by its higher melting temperature.  
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Table 4-3: Benchmarking set of experimental binding enthalpies, entropies and free 

energies (left to right). Standard errors obtained from the literature or averages of 

the literature. Standard errors from the present work are from triplicates. 

ds-PNA Sequence 
−∆𝑯 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

−∆𝑺 

(𝐜𝐚𝐥 𝐊−𝟏𝐦𝐨𝐥−𝟏) 

−∆𝑮 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

 From the present work 

CGATCG 58.78 ± 4.09 151.42 ± 12.89 13.64 ± 0.25 

AACGTT 52.05 ± 5.30 132.24 ± 16.45 12.64 ± 0.39 

TAGCTA 55.08 ± 3.85 143.41 ± 11.95 12.34 ± 0.29 

 From the literature 

GTAGATCACTa,b,c,d,e,f 86.92 ± 5.00 227.95 ± 14.48 18.99 ± 0.87 

TGTTACGACTg 92.60 ± 5.70 240.00 ± 16.11 21.08 ± 1.00 

AGGTAACCAGc 83.30 ± 2.80 216.60 ± 7.40 18.76 ± 0.60 

AGTGAAGCAGc 82.15 ± 4.56 211.85 ± 12.86 19.02 ± 0.82 

TGATCTACe 60.90 224.70 13.10 

GTAGATCACTGTe 97.10 253.80 21.40 

GTAGATCACTGTCACe 117.10 304.30 26.40 

aTomac, S.; Sarkar, M.; Ratilainen, T.; Wittung, P.; Nielsen, P.; Nordén, B.; Gräslund, A. Ionic Effects on the 

Stability and Conformation of Peptide Nucleic Acid Complexes. J. Am. Chem. Soc. 1996, 118, 5544-5552. 

bSen, A.; Nielsen, P. On the stability of peptide nucleic acid duplexes in the presence of organic solvents. 

Nuc. Acid. Res. 2007, 35, 3367-3374. cSen, A.; Nielsen, P. Unique Properties of Purine/Pyrimidine 

Asymmetric PNA-DNA Duplexes: Differential Stabilization of PNA-DNA Duplexes by Purines in the PNA 

Strand. Biophys. J. 2006, 90, 1329-1337. dRatilainen, T.; Holmén, A.; Tuite, E.; Haaima, G.; Christensen, L.; 

Nielsen, P.; Nordén, B. Hybridization of Peptide Nucleic Acid. Biochemistry. 1998, 37, 12331-12342. 
eTotsingan, F. Synthesis and Applications of PNA and Modified PNA in Nanobiotechnology. Ph.D. Thesis, 

University of Parma, Parma, Italy, 2007. fSforza, S.; Haaima, G.; Marchelli, R.; Nielsen, P. Chiral Peptide 

Nucleic Acids (PNAs): Helix Handedness and DNA Recognition. Eur. J. Org. Chem. 1999, 197-204. 
fJasiński, M.; Miszkiewicz, J.; Feig, M. Trylska, J. Thermal Stability of Peptide Nucleic Acid Complexes. J. 

Phys. Chem. B. 2019, 123, 8168-8177. 
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Figure 4-2: Normalised melting curves for the three ds-PNA hexamers TAGCTA, 

CGATCG and AACGTT as measured by optical melting. Melting points are shown 

by dashed vertical lines. Points represent the means of independent triplicates and 

were obtained at 2 K intervals. 

 

Molecular dynamics simulations of all 10 sequences from the benchmarking set 

were conducted. Using MM-GBSA, their binding energies and entropies were 

determined by analysis of simulation trajectories. Means and standard errors were 

obtained from triplicates. Simple linear regression of the binding enthalpies of the 

10 sequences obtained from MM-GBSA against those of the benchmarking set (i.e., 

from thermal melting experiments) produced an R2 of 0.93 indicating that they were 

well-correlated (Figure 4-3). A high R2 would be anticipated given that there were 

few sequences of the same length, meaning a positive correlation requires only that 

the simulation and reality both report, in general, a lower binding enthalpy for 

longer sequence lengths, which was what was observed. The mean absolute 
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difference, taken as the error of the prediction, between the binding enthalpies from 

MM-GBSA and from thermal melting experiments was 7.87 kcal/mol and the 

mean relative error was 10.01%. 

 

 

Figure 4-3: Correlation analysis for the binding enthalpy of ds-PNAs of the 

benchmarking set from thermal melting experiments and from MM-GBSA analysis.  

 

The simple linear regression 𝑦 = 𝑎𝑥 + 𝑏 between experimental and MM-GBSA 

binding enthalpies yielded a slope coefficient 𝑎 = 0.74 and a shift coefficient 𝑏 =

−17.50. The large shift coefficient indicated a deviation between the thermal 

melting and MM-GBSA analysis. This was likely a combination both of 

assumptions made during simulation, such as in the MM-GBSA analysis’ 
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approximation of solvation energy from a linear function of surface area, and of the 

small size of the benchmarking set since it was only 10 sequences long which could 

lead to the shift being determined by only a few points. Regardless, it could at least 

be said that, for the 10 sequences of the benchmarking set, MM-GBSA was a good 

predictor of their binding enthalpies due to its small relative error of 10% being in 

the range of experimental variance.  

 

In contrast to the binding enthalpy, binding entropy and free energy were worse 

estimated though remained well correlated with R2 of 0.84 and 0.86 respectively. 

The mean absolute and relative errors were 31.49 kcal/mol and 50.14% for 𝑇∆𝑆 

and 35.95 kcal/mol and 102.68% for ∆𝐺 (Figure 4-4). These errors are 

significantly higher and indicate that MM-GBSA could not accurately evaluate the 

binding entropy or free energy of ds-PNA with the simulation parameters and 

approach used in the present work. The obvious cause for this is the evaluation of 

the binding entropy since the binding enthalpy was well estimated and so the source 

of error for the binding free energy must be a result of the binding entropy term. 

Since this entropy term was determined by the QH approximation, this likely means 

that the assumption of harmonicity for the energy minimum of ds-PNA does not 

hold, and that atomic coordinates are better described by a complex energy surface 

at the energy minimum.  
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Figure 4-4: Correlation analysis for the binding free energy of ds-PNAs of the 

benchmarking set from thermal melting experiments and from MM-GBSA analysis. 

 

According to the prior work of Golyshev et al.44 a linear correction of the form 𝑦 =

𝑎𝑥 + 𝑏 can reduce the absolute and relative errors between MM-GBSA and thermal 

melting estimates. Using the slope, 𝑎 = 0.74,  and shift, 𝑏 = −17.50, coefficients 

for the binding enthalpy, reduced the relative and absolute error to 4.12 kcal/mol 

and 5.25% respectively. Similarly, using the slope 𝑎 = 0.22 and shift 𝑏 = −5.87 

for the binding free energy reduced the absolute and relative errors to 

1.16 kcal/mol and 6.53% respectively, representing an order of magnitude 

improvement. As discussed in Chapter 1.5, however, basing a nearest-neighbour 

model from linearly corrected MM-GBSA data has a non-trivial effect on the 

validity of the incremental binding energies and entropies by introducing the 
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inequality ∆𝐺 ≠ ∆𝐻 − 𝑇∆𝑆. Since the purpose of the present work is to quantify the 

factors that influence the binding stability of ds-PNAs, it was deemed improper to 

correct these factors using the slope and shift coefficients. This is since these 

coefficients represent computational error and are not physically relevant.  

 

The correction of Golyshev et al.44 is therefore not used in the present work and raw 

MM-GBSA estimates are used instead. Consequently, since the benchmarking set 

revealed raw binding free energy and entropy to be poorly approximated by the 

MM-GBSA method used, a nearest-neighbour model was developed only for the 

binding enthalpies of ds-PNA in the present work since the relative error of 10.01% 

was within the range of experimental variance. 

 

4.3.2 The ds-PNA nearest-neighbour model 

An additional 39 sequences were simulated using molecular dynamics and their 

binding energies and entropies estimated by MM-GBSA, producing a total of 49 

simulations of unique ds-PNAs, each of which had three replicates. It is necessarily 

assumed that the errors of the raw MM-GBSA estimates for the benchmarking set 

are representative of the errors of the remaining 39 sequences. Trajectory analysis 

of all 147 simulations, containing 49 unique ds-PNA simulations, by MM-GBSA 

produced the binding enthalpies (Appendix A.2) which were used to solve the 

multiple linear regression problem of Equation 4-5. In solving this problem, 

incremental binding enthalpies for ds-PNAs were derived (Table 4-4).  
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Table 4-4: Incremental binding enthalpies for ds-PNAs as determined from MM-

GBSA analysis. ± is the standard error of the mean. 

Parameter 
−∆𝑯 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

−〈∆𝑯〉 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

AA:TT 8.65 ± 0.16 

8.76 ± 0.31 AT:TA 8.28 ± 0.32 

TA:AT 9.34 ± 0.32 

CA:GT 10.31 ± 0.17 

9.72 ± 0.46 
GT:CA 8.90 ± 0.19 

CT:GA 10.64 ± 0.27 

GA:CT 8.91 ± 0.35 

CG:GC 11.71 ± 0.34 

10.91 ± 1.12 GC:CG 8.69 ± 0.30 

GG:CC 12.32 ± 0.19 

Initiation (GC) 3.89 ± 0.35  

Initiation (AT) 2.27 ± 0.46  

 

All parameters from Table 4-4 were significant to 𝑝 < 10−5 in solving the multiple 

linear regression problem. Each ds-stack was categorised according to the number 

of Watson-Crick hydrogen bonds. These were six for GG, GC and CG; five for AG, 

GA, AC and CG; and four for AA, AT, and TA. On average, the incremental 

enthalpy became more negative as the number of hydrogen bonds increased, which 

was in line with expectations since these hydrogen bonds stabilise the duplex.  

 

The nearest-neighbour parameters in Table 4-4 can be used to estimate the binding 

enthalpies of ds-PNA according to Equation 4-5, with the symmetry term excluded 

since it is zero for the binding enthalpy. These parameters were used to predict the 

binding enthalpies of the ds-PNAs of the benchmarking set (Table 4-5). These then 

had a mean relative error of 8.74%, which is lower than the 10.01% mean relative 

error from direct comparison between MM-GBSA estimates and thermal melting 
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data. Since the nearest-neighbour model was based on a total of 49 sequences, this 

indicated that the accuracy of the prediction was increased by accounting for 

unrelated sequences and that the model was therefore generalised without a loss of 

accuracy.  

 

Table 4-5: Experimental binding enthalpies ∆𝐻𝑒𝑥𝑝 for ds-PNA against the nearest-

neighbour binding enthalpies ∆𝐻𝑁𝑁 predicted from the incremental enthalpies 

estimated in the current work. Relative difference given as a percentage. 

Category 
−∆𝑯𝒆𝒙𝒑 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

−∆𝑯𝑵𝑵 

(𝐜𝐚𝐥 𝐊−𝟏𝐦𝐨𝐥−𝟏) 
% Difference 

CGATCG 58.78 ± 4.09 53.40 9.15 

AACGTT 52.05 ± 5.30 49.07 5.73 

TAGCTA 55.08 ± 3.85 50.91 7.57 

GTAGATCACT 86.92 ± 5.00 87.09 0.20 

TGTTACGACT 92.60 ± 5.70 85.24 7.95 

AGGTAACCAG 83.30 ± 2.80 92.28 10.78 

AGTGAAGCAG 82.15 ± 4.56 89.95 9.49 

TGATCTAC 60.90 67.55 10.92 

GTAGATCACTGT 97.10 106.30 9.47 

GTAGATCACTGTCAC 117.10 136.03 16.17 

 

4.3.3 Comparison with ds-DNA 

The incremental enthalpy of a PNA ds-stack is typically lower than its counterpart 

for DNA (Table 4-6)43 with the exception of the GC:CG stack. The lower 

incremental enthalpies are unsurprising, given that previous literature has 

demonstrated that ds-PNA’s binding enthalpies are often lower than those of ds-

DNA for the same sequence.2,4,5  

 



118 

 

 

Tabled 4-6: Incremental binding enthalpies for ds-PNAs and ds-DNAs, from the 

unified model.43 ± is the standard error of the mean. 

Parameter 
−∆𝑯𝑫𝑵𝑨 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

−∆𝑯𝑷𝑵𝑨 

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

AA:TT 7.9 8.65 ± 0.16 

AT:TA 7.2 8.28 ± 0.32 

TA:AT 7.2 9.34 ± 0.32 

CA:GT 8.5 10.31 ± 0.17 

GT:CA 8.4 8.90 ± 0.19 

CT:GA 7.8 10.64 ± 0.27 

GA:CT 8.2 8.91 ± 0.35 

CG:GC 8.6 11.71 ± 0.34 

GC:CG 9.8 8.69 ± 0.30 

GG:CC 8.0 12.32 ± 0.19 

Initiation (GC) −0.1 3.89 ± 0.35 

Initiation (AT) −2.3 2.27 ± 0.46 

 

For ds-stacks with the same number of Watson-Crick hydrogen bonds, the 

difference in their incremental enthalpies is due to stacking. Within each cluster of 

ds-stacks with the same number of hydrogen bonds, the order of stabilities differs 

between DNA and PNA. In addition, whereas DNA ds-stacks with the same number 

of hydrogen bonds had incremental enthalpies typically within 1 or 2 kcal/mol of 

one another, this variance was higher in PNA, being up to 4 kcal/mol. This 

suggests that stacking in PNA plays a larger role in the stabilisation of the double 

helix. This is supported by the average P-form helix having a smaller rise per base 

pair,16,45,46,47 indicating increased stacking interaction strength. It is important to 

note, however, that the 42 non-literature sequences were manually selected, and 

bias may have been introduced if many ds-stacks were accounted for by a 

disproportionately small cluster of sequences.  
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Arguably the most distinct differences between the incremental enthalpies of ds-

PNA and ds-DNA are the initiation enthalpies. For ds-DNA, regardless of the 

terminal base pair makeup, these initiation enthalpies destabilise the helix. In ds-

PNA, however, these initiation enthalpies are negative and are stabilising in both 

cases. Since the helix initiation energy indicates a baseline energy of association 

between the two strands and is therefore related to the sequence independent 

interactions between the backbones,43 this suggests that ds-PNA’s neutral backbone 

results in a significantly lower enthalpy barrier for the association between two 

strands. This is well supported by the structure of ds-PNA since, compared to ds-

DNA, there is no electrostatic barrier to association from net like-charge repulsion 

between the backbones.  

 

4.3.4 Hydrogen bonds corroborate incremental enthalpies 

Like with ds-DNA, helix initiation with only terminal G:C pairs is preferable to 

helix initiation with at least one terminal A:T pair present. This indicates that 

terminal A:T pairs are likely to be less stable than terminal G:C pairs, which could 

have structural implications.  

 

To demonstrate the connection between the incremental enthalpies of Table 4-4 

with structure, a hydrogen bonding analysis was carried out. The number of 

Watson-Crick hydrogen bonds between terminal and 3rd-position, classed as 

internal, base pairs were tracked. The number of hydrogen bonds was expressed as a 

percentage of the total number of possible bonds, this being three for G:C and two 

for A:T base pairs. These percentages were averaged over the simulation durations 

and for simulations involving sequences of the same length (Table 4-7). 
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Table 4-7: Mean normalised number of hydrogen bonds expressed as a percentage 

of terminal and internal A:T and G:C base pairs of varying sequence lengths. ± is 

the standard deviation. 

Length (base pairs) % H-Bonded 

 A:T G:C 

 Terminal 

6 70.4 ± 27.1 83.3 ± 4.3 

8 74.4 ± 12.0 88.4 ± 2.9 

10 84.7 ± 13.2 89.1 ± 2.1 

12 79.3 ± 10.6 83.2 ± 7.1 

14 80.3 ± 7.8 84.1 ± 6.5 

16 68.4 ± 29.4 88.4 ± 1.7 

18 67.6 ± 20.6 82.9 ± 3.9 

 Internal 

6 90.2 ± 2.4 95.7 ± 0.3 

8 90.9 ± 0.5 94.0 ± 1.5 

10 91.7 ± 0.9 95.3 ± 0.5 

12 89.9 ± 1.6 96.0 ± 0.9 

14 91.6 ± 0.7 96.0 ± 0.7 

16 91.1 ± 0.4 95.0 ± 0.9 

18 89.6 ± 2.4 95.8 ± 0.4 

 

The percentage of unbroken bonds, from Table 4-7, is independent of sequence 

length and always, on average, higher for internal than terminal base pairs. Terminal 

A:T hydrogen bonds were broken more often than terminal G:C hydrogen bonds, 

though both spent most of their time in the bound state. Additionally, the standard 

deviation in the percentage of unbroken bonds was greater, most often by around 5-

fold but in one case over 15-fold, for terminal A:T than G:C base pairs. This 

indicated that the terminal A:T hydrogen bond behaviour was characterised by 

fluctuations between bound and melted states. 
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To determine the nature of these fluctuations, the duration of the melting events was 

plotted against the occurrence, per nanosecond, of a melting event of that duration 

being initiated (Figure 4-5). A melting event was defined as an uninterrupted period 

of time with at least one hydrogen bond broken.  

 

 

Figure 4-5: Occurrences per nanosecond of an individual melting event of at least a 

duration in picoseconds initiation for terminal G:C base pairs, in blue, and terminal 

A:T base pairs, in red.  

 

From Figure 4-5 it was observed that, for both A:T and G:C terminal base pairs, 

melting events of a duration less than one nanosecond were similarly common. By 

contrast, melting events longer than this were more common for terminal A:T than 

G:C pairs. This indicated that the large deviations in the number of unbroken bonds 
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for the terminal A:T pairs were likely a consequence of long, persistent melting 

events as opposed to short-lived ones. Since long melting events of this manner may 

destabilise the duplex and increase its binding enthalpy, this may partly explain why 

the helix initiation enthalpy is greater if a terminal A:T pair is present. 

 

4.4 Conclusions 

These MM-GBSA studies of 49 ds-PNA sequences, which totalled to 147 100 ns 

production run simulations, effectively addressed the technical research question (1) 

“Can molecular dynamics be used to generate a model that allows binding 

properties to be predicted from structure alone, and what quantities contribute to the 

binding stability of the candidate bioadhesive?” with the following conclusions: 

 

(1) The incremental binding enthalpies decrease with number of hydrogen bonds 

demonstrating that, as with other nucleic acids, G:C base pairs provide a 

greater contribution to helix stability.  

 

(2) The increased variability of incremental binding enthalpy within a cluster of 

ds-stacks with the same number of pairs indicates that stacking interactions 

may play a more dominant role in base pair stability in ds-PNA than they do 

in ds-DNA.  

 

(3) The negative helix initiation enthalpies show that, whereas association 

between strands must overcome an energetic barrier in ds-DNA due to net 

backbone repulsion, strand association does not present an enthalpic barrier 

for ds-PNA, which may drive association. 

 

(4)  The higher incremental enthalpy for helix initiation with A:T termini 

indicates that terminal A:T base pairs destabilise ds-PNA, which is explained 

via hydrogen bonding analysis as mostly arising from long, persistent 

melting events in excess of one nanosecond.  
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(5) The nearest-neighbour model developed for ds-PNA is capable of accurately 

predicting experimental binding enthalpies from primary sequence 

(structural) parameters alone with an error of 8.74% 
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Chapter 5: Atomic simulations of ds-PNA under 

external force 

5.1 Introduction 

Technical research question (2) “Can molecular dynamics be used to assess the 

single-molecular properties of a candidate bioadhesive under external force, and 

what quantities contribute to this?” can be in part answered by deriving the 

relationship between energy and a reaction coordinate associated with an external 

force. Knowing how ds-PNA energies are affected by external forces could aid in 

the design of other nucleic acid analogues which optimise these energies along an 

unbinding coordinate. For example, if ds-PNA were exploited in a nucleic acid 

adhesive, as has been demonstrated for ds-DNA and as its intrinsic higher stability 

makes it suitable for,1 then its response to an external force is critical to predicting 

and optimising its function.  

 

These all-atom molecular dynamics simulations are partly validated since enthalpy 

was shown to be well-approximated by the molecular mechanics potential energy in 

Chapter 4. In molecular dynamics simulations, force is conservative, meaning it is 

only a function of the potential energy gradient and atomic positions, and therefore 

an accurate characterisation of potential energy implies an accurate characterisation 

of force. An additional validation step was taken, however, for the ds-PNA 

sequence studied by determining its binding free energy using AWH. AWH was 

additionally used to construct free energy landscapes for base pairing and stacking, 

as has been done for ds-DNA,2 at different distances during shearing to evaluate the 

effect of external force on the pairing and stacking energies. 

 

To study ds-PNA under external force the ds-PNA sequence GTAGATCACT, with 

its complementary strand implied, was selected to be the pilot sequence for all-atom 

SMD simulations using Jasiński et al.’s CHARMM parameters.3 This was since it: 

(i) was the most well-studied ds-PNA in the literature, (ii) was a suitable length for 
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studying shearing according to the de Gennes model, and (iii) had the most 

accurately evaluated binding enthalpy from the MM-GBSA study in Chapter 4, 

indicating that the molecular mechanics forcefield, which largely determines this 

enthalpy, was well-parameterised. Using SMD, rupture forces at varying loading 

rates were obtained. Averages were then conducted over forces, displacements, van 

der Waals, electrostatic and torsional angle energies so that the behaviour during 

shearing and unzipping could be derived and generalised.  

 

5.2 Methods 

5.2.1 Defining the unbinding coordinates 

An atomic antiparallel P-form structure of the ds-PNA GTAGATCACT was 

selected for the SMD simulations. At the C-terminus, the pulling atom is the 

terminal carbonyl carbon atom, and at the N-terminus it is the terminal nitrogen 

atom (Figure 5-1).  

 

 

Figure 5-1: Atomic structure of a PNA monomer showing only heavy atoms.  
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Since the ds-PNA used is antiparallel, each double-stranded terminus is composed 

of an N- and a C- terminus from the two individual strands. For shearing, the two 

single strands are pulled away from one another along the helical axis defined by 

the distance between the N-terminal pulling atoms of each strand, whereas for 

unzipping the two single strands are pulled away from one another along a 

perpendicular axis defined by the distance between an N-terminal pulling atom of 

one strand and the C-terminal pulling atom of the other (Figure 5-2). 

 

 

Figure 5-2: The unzipping (u) and shearing (s) reaction coordinates in blue and red 

respectively. 

 

For both unzipping and shearing, the reaction coordinates are aligned with the 

longest axis of a cuboidal simulation box since, in Gromacs, if the pulling distance 

exceeds half the box length, then the simulation crashes.4,5  
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5.2.2 Equilibration with restraints 

The same all-atom structure of GTAGATCACT ds-PNA generated previously via 

the pNAB was imported into Gromacs and placed in a cuboidal simulation box with 

short 𝑥 and 𝑦 axes and a long 𝑧 axis with which the reaction coordinates as defined 

in Figure 5-2 were aligned. The N- and C- termini were acetylated and amidated 

respectively. The structure was energy minimised in vacuum over 50,000 steps 

using a steepest descent algorithm before being solvated in explicit spc216 water.6  

The system was then again energy minimised over 50,000 steps of the same steepest 

descent algorithm. 

 

After minimisation, the structure was heated from 30 to 298 K over 500 ps with 

position restraints and Newton’s equations of motion were integrated using a leap-

frog integrator.7,8  Temperature was weakly coupled to an external bath using a 

velocity rescaling9 algorithm. Harmonic restraints of 24 kcal mol−1 Å−1 were 

applied to non-hydrogen atoms whereas hydrogen atoms were constrained using a 

LINCS10 algorithm. The van der Waals interactions were handled using a switched 

cut-off scheme with switching to zero occurring from 10 to 12 Å. The electrostatic 

nonbonded interactions were treated using a particle mesh Ewald (PME)11,12 

algorithm with quartic interpolation and a grid spacing of 1 Å. The short-ranged 

component of the PME was computed to 10 Å and long-ranged components were 

handled using the fast Fourier transform library FFTW.13 

 

After heating, position restraints were halved every 2 ns, being removed entirely at 

10 ns, with the equations of motion and temperature coupling hereon handled by a 

stochastic integrator which incorporated friction and noise terms.14 Unlike with the 

MM-GBSA study, position restraints on the pulling atoms were kept such that the 

reaction coordinate remained aligned with the longest box vector. The positional 

and velocity information at the end of this stage was used as the starting point to 

separately equilibrate 50 independent systems. 
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Each of the 50 systems was equilibrated in the same manner as with the MM-GBSA 

study. That is, they were equilibrated for 10 ns at constant temperature followed by 

10 ns with pressure coupling at 1 bar handled by a Berendsen barostat.15 These 

equilibrated systems were then used as the starting points for the production 

simulations, and 3 replicates would be obtained for each of the 50 separately 

equilibrated systems at each of the 4 loading rates (Figure 5-3). 

 

 

Figure 5-3: Process diagram for the general simulation protocol used in these SMD 

simulations. Numbers in the top left arrow indicate the number of replicates. 

 

For the above process diagram, technical replicates are obtained at the production 

stage from 50 separately equilibrated systems. At the production stage, external 

force is provided using SMD. This process diagram is applied to both the unzipping 

and shearing coordinates.  
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5.2.3 Force constant selection 

To ensure that the force constant did not introduce bias or instabilities into the 

simulations it was important to demonstrate that the reaction trajectory was 

consistent for different values of the constant. This was done by conducting 

shearing SMD simulations, described in Chapter 5.2.4, at 1 m/s pulling velocities 

with force constants ½, twice and four times the magnitude of the 0.174 N/m 

constant used. This 0.174 N/m constant was initially selected since it was the 

average force constant of the available in-house SNL-10 AFM cantilevers, which 

are designed for soft biological samples, and consequently opens the possibility for 

the present work to be consistently extended to real-world experiments. The force 

constant was determined to be appropriate since reaction trajectories demonstrated a 

well-defined unbinding event and trajectories collapsed to the same line, determined 

by the retraction velocity, regardless of the constant used (Figure 5-4).  

 

 

Figure 5-4: Time versus normalised reaction coordinate distance for the ds-PNA 

GTAGATCACT under shearing force  
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Lower spring constants take longer to rupture, but rupture occurs at the same 

displacement, indicating that the changing spring constant has no effect on the 

critical extension require for rupture to occur. In all cases, a well-defined unbinding 

step is evident, and unbound states collapse to the same line 𝑦 = 𝑥 given by the 

retraction velocity of 1 m/s. Since it was the case that the force constant did not 

visually bias the trajectories, it was determined to be an appropriate force constant 

for the present work. 

 

5.2.4 Steered molecular dynamics at variable loading rates 

During the pulling simulations, the position restraint on the terminal atom of the 

complementary strand CATCTAGTGA was removed. A harmonic potential was 

added with an energy minimum at the initial starting distance between the two 

pulling atoms. The harmonic potential was then moved with a constant velocity 

along the vector connecting the two atoms such that the distance between them 

would be increased. Velocities of 1, 5, 10 and 50 m/s were selected, with velocities 

lower than these being inaccessible with the computational resources available since 

lower velocities resulted in lower loading rates, requiring more total simulation 

time. These velocities corresponded with loading rates of 0.174, 0.870, 1.740 and 

8.700 N/s respectively.  

 

For each loading rate, 50 independently equilibrated pulling simulations with 3 

replicates each were conducted for both shearing and unzipping. Simulations were 

terminated when the distance between the two pulling atoms was equal to half the 

longest box length. During these production runs, pressure was coupled using 

Parrinello-Rahman pressure coupling.16 Each simulation trajectory outputted a 

force-time and distance-time graph, and the van der Waals and electrostatic energies 

between the strands, and the torsional energies of their backbones, were similarly 

tracked.  
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5.2.5 Defining the most probable rupture force 

The most probable rupture force is obtained from the peak in the distributions of 

rupture forces obtained from all 150 runs at each loading rate. For shearing, this 

rupture force corresponds with a singular rupture event when the two strands 

separate, as will be demonstrated in Chapter 5.3. For unzipping, however, rupture is 

not a singular event but a series of rupture events for the individual base pairs, as 

was discussed with ds-DNA and as will again be demonstrated in the present work 

for ds-PNA. Resultantly, it is hard to define a ‘rupture force’ for the unzipping of 

the entire ds-PNA strand since there are multiple rupture events. In 

acknowledgement of this, a maximum force is defined in the present work instead, 

which for shearing is equal to the rupture force but for unzipping does not 

necessarily represent any particular rupture event.  

 

5.2.6 Shearing distances for pairing and stacking AWH 

During shearing, ds-PNA extends towards a normalised distance, between the two 

pulling atoms, of approximately 4.0 nm before the rupture event, as seen in Figure 

5-4. In Chapter 5.3 the nature of this extension will be further investigated. As will 

be later demonstrated, this ‘rupture’ distance of 4 nm, in addition to another 

distance of 2.5 nm, which will be found to be associated with a transition region in 

Chapter 5.3, may be structurally significant to the shearing process. 

 

To investigate the effect of shearing on base pairing and stacking energies, 

equilibrium AWH simulations are conducted. Since the conformations at 2.5 nm 

and 4 nm may be structurally significant to the shearing process, snapshots of these 

structures were obtained from the pulling simulations. Position restraints of 24 

kcal mol−1 Å−1 were enforced on the pulling atoms of these snapshots, which were 

then re-equilibrated as before, producing equilibrated ds-PNA structures with 0 nm, 

2.5 nm and 4.0 nm normalised shearing distances. Three replicates were obtained at 

each distance, and these replicates were used as the starting points for AWH 

production runs. 
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5.2.7 AWH pairing and stacking production runs 

Terminal and internal G:C base pairs were studied at the 0, 2.5 and 4 nm extensions 

using AWH. The terminal base pairs were taken at the N-terminus of 

GTAGATCACT. The internal base pairs were taken as close to the 3rd-position, 

from the N-terminus, as possible, which for a G:C base pair was the 4th position. 

This decision was made to keep the definition of ‘internal base pair’ as close to the 

definition used in the MM-GBSA study as possible, but since GTAGATCACT did 

not have any 3rd-position G:C base pairs from either terminus the 4th position was 

the closest. Terminal and internal A:T base pairs were not studied since pulling 

from the A:T terminus was not studied, as this would have doubled the 

computational resource requirements. 

 

Using AWH, the free energy surface at N1:N3 and 6-ring distances (Figure 5-5) 

were sampled for distances between 0.25 and 0.65 and 0.35 and 0.80 nm 

respectively, as was demonstrated in the previous literature for ds-DNA.17 Since the 

N1:N3 distance is representative of the base pairing coordinate, and the 6-ring 

distance representative of the stacking coordinate,17 the two-dimensional free 

energy surface produced by AWH characterises contributions to stability from both 

pairing and stacking. A cut-off value for the free energy of 100 kj mol−1 was used 

to prevent the system being forced into non-physical high-force conformations.  
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Figure 5-5: Reaction coordinate definitions for AWH simulations for G:C (top) and 

A:T (bottom) base pairs. 6-ring distance indicated by red arrows. N1:N3 distance 

indicated by black arrows.  

 

5.2.8 AWH to determine binding free energy for validation 

In addition to deriving free energy landscapes associated with pairing and stacking 

during shearing, AWH was used to determine the binding free energy of the ds-

PNA GTAGATCACT. A reaction coordinate was defined as the distance between 

the two strands, which were pulled apart along a coordinate representative of neither 

shearing nor unzipping. This was done since, for both shearing and unzipping, the 

unbinding process results in an end-to-end alignment of the two strands and a very 

long unbinding coordinate between the two pulling termini, requiring very long box 

lengths. If the two strands are pulled apart in an effectively uniform manner along a 

coordinate perpendicular to their helical axis, with force applied to all atoms 

simultaneously, they do not align end-to-end and the box length in the pulling 

direction could be decreased approximately three-fold. 
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Deriving a free energy landscape along a very long reaction coordinate is 

computationally intensive, and by reducing the box length this limiting factor could 

be mitigated. This, however, means the free energy landscape is not representative 

of shearing or unzipping. However, since free energies are functions of state, the 

difference in the free energy (i.e., the binding free energy) between the bound and 

unbound states are theoretically equivalent regardless of the path taken. Since this 

reaction coordinate can derive the binding free energy as the difference in the free 

energy between bound and unbound states, even if intermediate states do not 

represent shearing or unzipping, it is a suitable and computationally achievable 

coordinate for further validation, alongside the results of Chapter 4, since the 

binding free energy of GTAGATCACT is well-reported in the literature.  

 

To obtain the free energy along this coordinate, an external potential was applied to 

the centres of mass of all atoms of each strand, which were adaptively pulled apart 

along a reaction coordinate perpendicular to the longitudinal axis of the ds-PNA, for 

100 ns. The free energy as a function of the normalised displacement between these 

centres of mass, obtained from 3 replicates, was plotted. The binding free energy 

was taken as the difference between the initial and final free energy at a normalised 

displacement of 4 nm. 

 

5.3 Results and Discussion 

5.3.1 Force-distance curves at variable loading rates 

As hypothesised based on the prior literature for the shearing and unzipping of ds-

DNA,18,19,20 the shearing and unzipping coordinates for ds-PNA were similarly 

distinguished from one another. For shearing, a single rupture event occurs beyond 

a critical distance that rapidly dissipates the force, whereas for unzipping the force-

distance traces demonstrate a continuous dissipation of force resulting in an 

approximately flat force-distance relationship after a sharp initial rise. The 

exception to this is that, at a loading rate of 8.700 N/s, the force-distance 
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relationship increases much more rapidly during unzipping, resulting in much 

higher maximum forces. 

 

Averages over forces will be discussed in Chapter 5.3.3, whilst this subchapter 

highlights differences between individual force traces to demonstrate how these 

traces change appearance with increasing loading rate. For shearing (Figure 5-6), 

and as predicted by the force spectroscopy models, the peak force is an increasing 

function of loading rate but the extension at which the peak force occurs is 

approximately constant, being between 4 and 5 nm. After rupture, force returns to a 

baseline, though only for the lowest loading rate, 0.174 N/s, was this observed in 

the present work. This is since, when peak force was higher, force decreased over a 

longer distance after rupture and the maximum observable distance was 11 nm 

because of the box size.  

 

In all shear force-distance curves a change from a low linearly increasing to a high 

linearly increasing gradient was observed at approximately 2.5 nm extensions. This 

was more prominent for lower loading rates, indicating a potential change in the 

dynamics of shearing beyond these extensions. The increased prominence of this 

observation at lower loading rates may be since, at higher loading rates, the rate at 

which force builds is too large for internal rearrangements in ds-PNA to occur. The 

issue of large loading rates on steered molecular dynamics simulations has been 

discussed in the literature. A similar observation, that under high retraction 

velocities the force does not propagate through the complex, and so intramolecular 

rearrangements cannot occur, was made.21  
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Figure 5-6: Example force-distance curves for the pulling of ds-PNA at 0.174, 

0.870, 1.740 and 8.700 N/s in the shearing configuration in green, blue, red and 

black respectively.  

 

In contrast to shearing, the maximum forces observed for unzipping are lower, 

peaking between 1100 and 1200 pN for the maximum pulling rate as opposed to 

between 1600 and 1800 pN for shearing. Force increases sharply on the strands 

until 0.6 nm displacements, after which it decreases for the lowest 2 loading rates 

before remaining approximately constant. This initial decrease occurs due to the 

first rupture event, corresponding to the rupture of the terminal base pairs, or a 

cluster of pairs, at the pulling terminus. For the 1.740 N/s loading rate, however, 

force decreases only slightly after the initial rupture before increasing again towards 

a higher, approximately flat region in the force trace. The 8.700 N/s trace is distinct 

from the other three in that force remains an increasing function of distance, 

excluding short flat regions. At this highest loading rate, visual inspection of the 
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trace would suggest that ds-PNA is unable to dissipate force through base pair 

rupture and therefore the trace does not stabilise but continuously increases. 

 

 

Figure 5-7: Example force-distance curves for the pulling of ds-PNA at 0.174, 

0.870, 1.740 and 8.700 N/s in the unzipping configuration in green, blue, red and 

black respectively.  

 

For both shearing and unzipping, the highest loading rate indicates a change in the 

dynamics of the system wherein the external potential dominates the internal 

attractive forces in ds-PNA. In shearing, this is evident in the occlusion of internal 

rearrangements (the gradient shift at 2.5 nm), and in unzipping this is evident in the 

inability of internal rearrangements i.e., base pair rupture, to mitigate the external 

forces.  
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5.3.2 Maximum force distributions 

Example force-distance curves provide a visual demonstration of how loading rate 

affects the dynamics of ds-PNA under external force. For a more informed 

discussion, it is necessary to generalise these observations using averages or 

distributions. For shearing, the most probable rupture forces at 0.174, 0.870, 1.740 

and 8.700 N/s loading rates are 1660.54, 1095.22, 971.77 and 747.84 pN 

respectively. Forces were distributed around these most probable values and 

histograms were approximately 500 pN wide at their base (Figure 5-8). According 

to the Bell-Evans force spectroscopy model, the most probable rupture force is a 

linear function of the natural logarithm of the loading rate,22 though for the present 

work this is not the case. This reproduces the expected nonlinearity in force-loading 

curves at high loading rates and demonstrates the inapplicability of the Bell-Evans 

model to the force-loading curves obtainable for all-atom molecular dynamics 

simulations. This is because, in general, loading rates attainable using molecular 

dynamics are much higher than those used in the parameterisation and fitting of 

force spectroscopy models.23 
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Figure 5-8: Histogram distributions of the shearing rupture force for the loading 

rates 0.174, 0.870, 1.740 and 8.700 N/s in blue, red, green and purple respectively. 

Overlapping histograms result in intermediate colouration.   

 

Similarly to the shearing rupture force distributions, the maximum force 

distributions for unzipping (Figure 5-9) show a jump between the first and second 

highest loading rate, though the jump is visually more distinct in the unzipping case. 

The maximum force distributions are also narrower. This is likely since, whilst the 

rupture force of sheared ds-PNA corresponds to a singular rupture event, sampled 

once per trace, the maximum unzipping force is associated with a plateau in the 
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force trace and so the maximum force region is continuously sampled within the 

same trace, which could result in averaging and hence narrowing of the 

distributions.  

 

 

Figure 5-9: Histogram distributions of the unzipping maximum force for the loading 

rates 0.174, 0.870, 1.740 and 8.700 N/s in blue, red, green and purple respectively. 

Overlapping histograms result in intermediate colouration.   
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These maximum force distributions demonstrate that ds-PNA resists the application 

of external force more effectively in the shearing configuration, which has 

implications for loading configuration selection in technologies which maximise ds-

PNA’s resistance to bond rupture, for example as an adhesive.1 In addition, these 

results agree with the prior observations that, for ds-DNA, the shearing maximum 

forces exceed the maximum forces recorded during unzipping.18,24 It should be 

noted however that, since all-atom molecular dynamics simulations are limited to 

high loading rates, then these results reflect only the relationship between rupture 

force and loading rate in the high-force, highly non-equilibrium regime. At lower 

loading rates, nearer equilibrium conditions, it is plausible that rupture forces could 

converge.  

 

5.3.3 Mean force and structure as functions of displacement 

By averaging force-distance traces for a given loading rate it is possible to derive 

details in the unbinding process previously obscured due to fluctuations in the 

measured forces on a single trace or limited sampling. Since force only returns to 

the baseline for the example curves at the lowest loading rate, and since it has been 

suggested that velocities greater than 1 m/s may obscure internal rearrangements, 

then these mean force traces were produced only for the 0.174 N/s case (Figure 5-

10). 
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Figure 5-10: Mean force traces for shear (top) and unzipping (bottom) unbinding 

processes at 0.174 N/s. In the shear trace the overstretching region is indicated 

between the two blue dashed lines. The second dashed line is the rupture distance. 

In the overstretching trace the rupture events are indicated by the shaded regions A, 

B, C and D for the 1st, 2nd, 3rd and 4th rupture event respectively. The magnitude of 

each rupture event is indicated by the arrows in the direction of the mean force axis. 

These are 34, 10, 12 and 58pN for rupture events A, B, C and D respectively. 
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From Figure 5-10 it is evident that, for the shearing case, there is a rapid increase in 

gradient at approximately 2.5 nm extensions. The initial length of the energy-

minimised ds-PNA structure along this reaction coordinate, representing the end-to-

end distance between the two pulling atoms, is 2.7 nm. For B-form ds-DNA, an 

extension of 1.7 times the initial end-to-end distance represents stretching from the 

B-form to the S-form. 20,24 A similar factor, 1.9, connects the initial end-to-end 

distance in P-form ds-PNA in these pulling simulations with the distance at which 

the 2.5 nm gradient shift occurs, potentially indicating a similar transition from a 

double-helical P-form to an overstretched form of ds-PNA. By mapping the atomic 

structure during the shearing process (Figure 5-11) this overstretching can be 

demonstrated. 

 

 

Figure 5-11: Atomic structure representations of ds-PNA under shearing force. 

Normalised 0 nm, 2.5 nm and 4.0 nm extensions are indicated. 
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Figure 5-11 shows that, at the 2.5 nm extension associated with the gradient shift, 

the ds-PNA adopts an overstretched ladder-like conformation similar to the S-form 

ds-DNA. In the overstretched form, the once-perpendicular base pairs become tilted 

in the pulling direction as seen in the middle pairs of the 2.5 nm image of Figure 5-

11. This overstretched form demonstrates fraying, though remains stabilised by the 

tilted, complementary pairs in the middle of the ladder. At the 4 nm extension these 

complementary base pairs are now mostly gone, with the structure held together 

partly by non-specific associations between the bases immediately prior to the 

rupture event. These structural snapshots suggest that the sharp increase in the force 

gradient associated with overstretched ds-PNA is since extension can no longer be 

achieved by further unwinding of the double-helix. The transition to the 

overstretched form at this 2.5 nm extension is the justification for the selection of 

this extension for the later AWH study, as was discussed in Chapter 5.2.6. 

 

For unzipping (Figure 5-12), averaging over the forces at 0.174 N/s has enabled 

individual rupture events to be resolved, which correspond to individual or 

sometimes doublets or triplets of base pairs. A sharp initial decrease in the force that 

bottoms out at 2 nm occurs when, usually, multiple base pairs rupture at once. This 

is rupture event A in Figure 5-10. Three other distinct peak-trough pairs are evident 

in the trace, with the largest difference between a peak and trough being the final 

rupture event, D. The heights of these events may be sequence dependent, though 

all individual base pair rupture forces are not resolved at the loading rate used since 

only 4 events are observed for a sequence with a length of 10 base pairs, 

demonstrating that, on average, between 2 and 3 base pairs rupture simultaneously. 

The largest rupture event, D, being the final indicates that the largest number of 

pairs are likely ruptured simultaneously at that point, suggesting that, below a 

minimum remaining length, the sequence is no longer able to resist the external 

potential through its cohesive forces and undergoes a rapid dissociation.   
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Figure 5-12: Atomic structure representations of ds-PNA under unzipping force. 

From top to bottom: equilibrated P-form structure, early unzipped structure after 

initial rupture event, late unzipped structure immediately prior to final rupture 

event. 

 



147 

 

 

The smallest two rupture events, the B and C, are near 10 and 12 pN respectively. 

The first event, A, at 34 pN, is approximately three-fold these values, whereas the 

final event, D, at 58 pN, is roughly five-fold. If the 2nd and 3rd rupture events are 

assumed to represent individual base pairs, then all ten base pairs can be accounted 

for. This is since the heights of the first and final rupture events are integer 

multiples (assuming slight variation depending on the position and composition of 

different pairs) that account for 3 and 5 bases respectively, totalling 10. This force 

trace is in slight disagreement with unzipping models which characterise unzipping 

as a base pair by base pair process,25 since this is only likely the case for the 4th and 

5th base pairs, given by the 2nd and 3rd rupture events, in the present work. Instead, 

these results indicate that, during unzipping, the P-form PNA resists the initial 

application of force until several pairs break at once. This is likely both a result of 

the higher inherent stability of ds-PNA compared to ds-DNA and the high loading 

rates testable in all-atom molecular dynamics simulations since the force increases 

to a large enough value to rupture several pairs very rapidly. At lower loading rates, 

unzipping may still be a base pair by base pair process.  

 

5.3.4 Mean energies as functions of displacement 

The structural changes, such as overstretching, discussed in the previous subchapter 

affect the unbinding process of ds-PNA. Similarly, inter-strand energies like van der 

Waals and Coulomb forces stabilise the double-helix and resist unbinding under the 

external potential. Also, intra-strand forces like the torsional forces of the backbone 

monomers may explain unbinding behaviour, particularly under shear force, given 

that torsional energies can be affected by unwinding of the double helix.  

 

The inter-strand Coulomb energies over all 150 simulations at each loading rate 

were averaged for both shearing and unzipping (Figure 5-13). During shearing, the 

electrostatic forces of attraction between the two strands are unaffected for small 

extensions up to around 1.5 nm before increasing rapidly in a logistic-like manner 

that is steeper with increasing loading rate. The overstretched form of ds-PNA, 



148 

 

 

however, between 2.5 nm and the critical distance, occurring between 4 and 5 nm, 

experiences a rapidly increasing Coulomb energy. This suggests that whereas the 

initial unwinding of the helix does not decrease the electrostatic force of attraction, 

indicating that base pairing is still in a near-native, favourable conformation, the 

overstretching of the ds-PNA distorts these interactions. This is evident in the 

structural snapshots of ds-PNA, which demonstrate fraying in the overstretched 

form. At the critical distance at which rupture occurs, there are still significant 

Coulomb forces between the two strands, though since distance along the reaction 

coordinate increases rapidly at this point these forces likely arise from temporary 

interactions between the two strands as they slide past one another. 

 

Contrastingly, during unzipping, the Coulomb energies increase in a mostly linear 

manner that is independent of the loading rate. Linearly increasing regions occur for 

displacements that correspond to rupture events in the unzipping mean force trace in 

Figure 5-10 and are indicated on Figure 5-13. These linearly increasing regions are 

separated by plateau regions, the least prominent of which is between the B and C 

rupture events. The Coulomb energy trace for the unzipping case thereby indicates 

that base pair rupture events result in a loading-rate independent increase in the 

Coulomb energy as complementary base pairs are pulled apart, with plateau regions 

indicating metastable distances prior to the rupture of the next pairs in line. 
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Figure 5-13: Mean inter-strand Coulomb energies for shearing (top) and unzipping 

(bottom) as a function of reaction coordinate distance. Regions of interest including 

the overstretching region in the shear trace and the four rupture regions in the 

unzipping trace are indicated. 
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A similar loading-rate dependence on energy traces during ds-PNA shearing is 

observed for the van der Waals energies between the strands (Figure 5-14). At low 

extensions, the van der Waals energy decreases towards a minimum that is deeper 

and shifted to the right for higher loading rates. At higher extensions, the van der 

Waals energy increases rapidly to the point of rupture and then levels off towards 

zero as strands slide past one another. The initial decrease in the van der Waals 

energy suggests that it initially acts to stabilise the double-helix during the shearing 

process, possibly due to the compression of the two strands such that non-specific 

forces of attraction are increased. This stabilisation is mitigated by an increase in 

the Coulomb energy. For example, for the lowest loading rate, the 2.5 nm 

overstretched form is associated with a −37.7 kJ/mol stabilisation due to van der 

Waals energies, taken as the difference between the energy at 0 nm and 2.5 nm 

extensions, but a +87.8 kJ/mol destabilisation due to Coulomb energies. The 

deepening of the well for higher loading rates may suggest that, under extreme 

shearing forces, the ds-PNA is compressed more extensively and these non-specific 

forces are further maximised, in part accounting for the higher shearing forces under 

higher loading rates. 

 

For unzipping, a similar case to the Coulomb energy traces is observed, with the 

van der Waals energy being an approximately linearly increasing function of the 

reaction coordinate distance. Again, the van der Waals energy traces are not 

functions of the loading rate, and similarly to the Coulomb energy trace there are 

‘plateaus’ in the curve that correspond to the displacements intermediate of two 

rupture events, though in the case of the van der Waals energy these are less 

prominent. Combined with the Coulomb energy trace, this trace suggests that 

unzipping is a process of approximately base-pair-by-base-pair rupture events 

wherein each base pair cluster, prior to its rupture, is associated with a plateau or 

near-plateau region in the Coulomb or van der Waals energy.  
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Figure 5-14: Mean inter-strand van der Waals energies for shearing (top) and 

unzipping (bottom) as a function of reaction coordinate distance. Regions of interest 

including the overstretching region in the shear trace and the four rupture regions in 

the unzipping trace are indicated. 
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Shearing and unzipping are similarly distinct with regards to their dihedral energy 

traces (Figure 5-15). These dihedral energies are associated with the torsional 

angles of the backbone,4 and hence during unwinding, wherein the backbone is 

twisted, it is arguable that they would be expected to increase. During shearing, at 

low extensions, these dihedral energies are observed to increase slightly in a 

loading-rate independent manner. Since this region corresponds with the unwinding 

of ds-PNA towards an overstretched form, these higher energies reflect that change. 

Beyond the 2.5 nm overstretching distance, however, a loading rate dependence can 

be observed, and the dihedral energies peak rapidly towards a maximum between 4 

and 5 nm at the point immediately prior to rupture. Of the three measured energy 

traces, the dihedral energies during shearing provide the most obvious visual 

indication of when rupture is likely to occur since the gradient peaks and then 

rapidly flattens before decreasing at the same pulling displacements at which the 

maximum force is reached.  

 

For the three lower loading rates, the unzipping dihedral energy traces, as with the 

van der Waals and Coulomb energies, are mostly not functions of the loading rate. 

By contrast, for the highest loading rate, the maximum dihedral energy is distinctly 

higher than the maxima for the previous rates. This may partly explain the large 

jump in the most probable maximum force for the highest loading rate during 

unzipping, as seen in Figure 5-9. Since the dihedral energy reaches a significantly 

larger value when unzipping under the highest loading rate, this may indicate that 

greater twisting forces are being applied to the backbone of ds-PNA. This could 

mean that, at the highest loading rates, the process of unzipping is more complex 

than a base pair by base pair decomposition. Instead, the higher dihedral energies 

indicating more twisting of the helix could indicate a change in the dynamics of 

unzipping that may explain the jump in the rupture force at the highest rate.  
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Figure 5-15: Mean ds-PNA dihedral energies for shearing (top) and unzipping 

(bottom) as a function of reaction coordinate distance. Regions of interest including 

the overstretching region in the shear trace and the four rupture regions in the 

unzipping trace are indicated. 
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In general, these energy traces suggest that not only are shearing and unzipping 

distinct with regard to their force traces, but that these force traces can be explained 

in terms of energies. For shearing, an initial van der Waals stabilisation, possibly as 

a result of strand compression, accommodates for rising forces during unwinding of 

the double-helix to the overstretched form. The overstretched form, relative to P-

form PNA, is characterised by increased backbone torsional and Coulomb energies, 

but is partly stabilised by increased non-specific forces of attraction, possibly due to 

compression. Further stretching causes the attractive Coulomb and van der Waals 

forces to rapidly decrease as base pairs unbind and slide past one another, and 

dihedral energies rise sharply as tensile force increases in the direction of the now 

parallel backbones. The final rupture of the ds-PNA occurs immediately after a peak 

in the dihedral energies, making this peak a useful predictor of when rupture is 

likely to occur. 

 

For unzipping, by contrast, the approximately linearly increasing energies in all 

three cases represent the fact that unbinding is a continuous process consisting of 

multiple rupture events, as opposed to a singular event as in shearing. The exception 

to this is that, under the highest loading rate, the dihedral energy trace suggests 

twisting of the backbones, which could explain the large jump in the rupture force 

distributions at the highest rates since the dynamics of dissociation are different. 

Additionally, whereas the van der Waals and Coulomb energies have distinct 

plateaus in their traces that correspond to base pair clusters prior to their rupture, 

these are not present in the dihedral trace.  

 

5.3.5 Base pairing and stacking landscapes during shearing 

For shearing, as opposed to unzipping, force ‘builds’ on ds-PNA before a rupture 

event occurs. Using AWH, it was possible to produce two-dimensional base pairing 

and stacking landscapes to demonstrate the effect of shear force on pairing and 

stacking energies (Figure 5-16). These free energy landscapes were obtained under 
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equilibrium conditions wherein structures part-way through shearing were re-

equilibrated but with their pulling atoms restrained at the intended shearing 

distance. 

 

Figure 5-16: Two-dimensional free energy landscapes for internal and terminal base 

pairs as a function of shearing distances of 0, 2.5 and 4.0 nm from top to bottom. A, 

B and C refer to the Watson-Crick pairing, open and stacked states respectively. 

Colour bars indicate the free energy and the 6-ring distance and N1:N3 distance are 

on the 𝑦 and 𝑥 axes respectively.  
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In Figure 5-16, recolouring was used to indicate the change in scale for internal base 

pairs at 2.5 and 4.0 nm extensions. Terminal base pair landscapes were unobtainable 

at 4.0 nm extensions since terminal base pairs were fully ruptured at this point and 

both distances were outside the coordinate ranges in Figure 5-16. 

 

In P-form ds-PNA, at 0 nm extensions, there are three main populated regions in the 

terminal base pair free energy landscape:  

(A) A Watson-Crick pairing energy minimum at 0.30 nm N1:N3 distance and 

0.55 nm 6-ring distance. 

 

(B) An open region at high N1:N3 and 6-ring distances with shallow minima at, 

for example, a 0.50 nm and 0.60 nm N1:N3 and 6-ring distance respectively. 

In the open region, one base has slipped outside of the helical axis. 

 

 

(C) A stacking region at 0.35 nm for both distances separated from the Watson-

Crick state by a saddle point. In the stacking region, base pairs have slipped 

on top of one another within the helical axis. 

 

For the terminal pair at 0 nm extensions, the energy cost of moving from A to C 

over the saddle point is approximately 8 kBT. For the internal pair at 0 nm, the 

stacking state C has an energy cost more than double this and is not a local 

minimum. This suggests that base pair stacking is less favourable for the internal 

than terminal base pair. During stacking, two previously paired bases shift out of 

plane to sit on top of one another. At the terminus, this may disrupt nearby bases 

less, since there is no other pair on top of the stacked base pair, whereas for internal 

bases stacking increases the effective height of that base pair within the sequence 

which may disrupt adjacent pairs through steric effects.  
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At the 2.5 nm extensions there is a global flattening of the free energy landscape for 

both terminal and internal base pairs. The open region around B becomes more 

accessible in both cases but particularly for the terminal base pair. Since the 2.5 nm 

extension is representative of overstretched ds-PNA, this corroborates structural 

observations, since snapshots of overstretched ds-PNA demonstrate fraying of the 

terminal base pairs. For internal base pairs the energy landscape is arguably more 

similar to a terminal base pair free energy landscape than its own at 0 nm. In this 

case, the entire free energy landscape is flatter, with the energy cost of entering 

stacking or open conformations being approximately half relative to the 0 nm case 

for the internal base pair. This is particularly evident when the original scale is used 

(Figure 5-17). 

 

 

Figure 5-17: Two-dimensional free energy landscapes for an internal base pair in 

2.5 nm overstretched ds-PNA.  
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At an extension of 4 nm, prior to the rupture event, the free energy landscape 

experiences further flattening. In particular, a metastable minimum within the open 

state B becomes more energetically favourable. This may be since that, immediately 

prior to the point of rupture, previously internal base pairs have become effectively 

terminal due to the relative displacement of the strands. In such a case, fraying may 

be observed, which could result in the stabilisation of the metastable open state B. 

In general, the effect of shearing on internal and terminal base pairs is to flatten free 

energy landscapes such that the open state B is more stable, though for the internal 

base pairs a more global flattening is observed that also decreases the energy cost of 

populating the stacking state C.  

 

5.3.6 Binding free energy  

The free energy landscape along a perpendicular reaction coordinate between the 

centres of mass of both strands was determined (Figure 5-18). The binding free 

energy was determined to be ∆𝐺 = −23.71 kcal/mol, taken as the negative of the 

difference between the initial and final free energy from Figure 5-18. Applying the 

standard state correction to the binding free energy from Equation 5-3 yielded ∆𝐺 =

−32.15 kcal/mol. The literature average of the binding free energy of the ds-PNA 

GTAGATCACT presented in Chapter 4 was −18.99 kcal/mol, meaning the 

molecular dynamics estimate, using the CHARMM molecular mechanics forcefield, 

significantly stabilised the helix by a factor of 1.69 relative to experimental data. A 

similar stabilisation factor of 1.72 when using this forcefield was observed for the 

binding free energy for the ds-PNA TGTTACGACT in prior research.26 These 

factors represent a reasonable quantitative agreement between experimental and 

computational data, though equally demonstrate a stabilisation that should not be 

discounted given that it may result in changes to the dynamics of dissociation 

discussed in this chapter relative to experimental data. 

 

In general, however, since the binding free energy was a reasonable quantity well 

within the expected order of magnitude, and since these simulations demonstrated 
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structural transitions, such as overstretching, that are consistent with experimental 

results for other nucleic acids and which are visible in the force curves, it is 

arguable that the CHARMM molecular dynamics forcefield provides a reasonably 

accurate assessment of the shearing and unzipping of the ds-PNA GTAGATCACT.  

 

 

Figure 5-18: Free energy landscape for the unbinding of the ds-PNA 

GTAGATCACT along a perpendicular coordinate representative of neither shearing 

nor unzipping. Structures at points (1), (2) and (3) are overlayed on the curve and 

the regions from which these structures were obtained are indicated.  

 

5.4 Conclusions 

These all-atom molecular dynamics simulations provide a structural and energetic 

understanding of how the application of external force affects factors associated 

with the stability of ds-PNA. Technical research question (2), “Can molecular 

dynamics be used to assess the single-molecular properties of a candidate 
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bioadhesive under external force, and what quantities contribute to this?”, is 

addressed through the following conclusions: 

 

(1) For the unzipping coordinate, the primary contribution to the stability of 

ds-PNA under external force comes from individual or clusters of base 

pairs. These rupture events can be depicted in both the mean force and 

van der Waals or Coulomb energy traces. 

 

(2) For the unzipping coordinate the van der Waals and Coulomb energies 

between strands increase near-linearly as a function of reaction 

coordinate distance and are near-independent of loading rate. 

 

(3) For the shearing coordinate, unwinding and extension of the ds-PNA 

stabilises it under external force. 

 

(4) For the shearing coordinate, a dip in the van der Waals energy at low 

displacements stabilises the double-helix and opposes the increasing 

torsional and Coulomb energies. 

 

(5) For the shearing coordinate, most of the resistance to the external force is 

contributed to by the overstretched state, which was observed in ds-PNA 

for the first time, since the force-extension gradient is steepest for this 

region.  

 

(6) Torsional energies play a large role in shearing, since shearing 

necessarily results in the unwinding and then stretching of the backbone 

torsional angles.  

 

(7) For ds-PNA, larger maximum forces are observed during shearing than 

unzipping, indicating this to be the most resistive reaction coordinate. 

 

Whereas under equilibrium conditions, the nearest-neighbour model of Chapter 4 

suggests stability can largely be predicted from pairing and stacking energies alone, 
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stability under external force is more complex since the reaction coordinate affects 

which factors contribute to stability.  
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Chapter 6: Coarse-grained model for ds-PNA 

6.1 Introduction 

The purpose of a Martini model is to enable higher simulation times to be 

conducted on the same molecular system for the same duration of real time. This is 

achieved firstly by clustering atoms to reduce the degrees of freedom of the system. 

Secondly, higher simulation timesteps can be used since Martini was parametrised 

for simulation timesteps between 20 and 40 fs.1 These timesteps are partly 

accessible as a result of the larger masses of the beads, with recent literature 

suggesting that using the smallest type of Martini bead can limit timesteps to 25 fs.2 

 

Martini beads fall into the tiny (T), small (S) or normal size categories. Martini 

beads also have 4 main interaction categories which are themselves split into 

subcategories. These main categories are charged (Q), polar (P), nonpolar (N) and 

apolar (C). A bead’s ‘type’ is given by both its size and its category. The categories 

are used to form an interaction matrix (Table 6-1)1 with levels of nonbonded 

interaction between all subcategories based on interactions between the atomically 

defined chemical groups the subcategories were developed from. These interactions 

are modelled using Lennard-Jones potentials. For the charged (Q) category there are 

additional Coulomb interactions. 
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All interaction levels except for IX have a closest distance of approach 𝜎 in the 

Lennard-Jones potential of 0.47 nm. IX has a 𝜎 of 0.62 nm.1 This parameter 

effectively determines how closely beads will associate and so a higher distance 

means beads will repel one another from further away. The lowest interaction level 

IX is reserved for interactions between charged beads (i.e., ions) and the least polar 

solvents (e.g., long chain hydrocarbons). At the other end, level O is reserved for 

solid compounds, such as ionic lattices, or to represent hydration shells around 

charged beads. In peptide nucleic acids at neutral pH there are no explicit charges, 

and so Coulomb potentials are not present in Martini simulations of these 

molecules.  

 

In addition to the nonbonded potentials, Martini models use bonded potentials. 

Bonds and angles between beads are represented by harmonic potentials and so 

covalent bond rupture is not modelled since an infinite force is encountered at an 

infinite displacement. Torsional angles are generally represented by trigonometric 

proper dihedral functions, with multiple energy minima determined by the 

multiplicity (for example, a multiplicity of 2 has 2 minima), or improper harmonic 

functions with a single energy minimum.1 In addition to these general forms, 

Gromacs makes available other forms for the bonded interactions such as the 

restricted bending angle potential (Equation 6-1).3,4 This potential is useful when 

the angle between three beads, determined from atomic distributions of those 

clusters, is near 180°,3 since a singularity that causes simulation termination arises 

in the general form of the torsional potential when three beads become ‘collinear’. 

The restricted potentials prevent this collinearity from occurring and are used in the 

present work. 

 

[Eq. 6⎼1]          𝑉𝑅𝐵 =
1

2
𝑘
(cos 𝜃 − cos 𝜃0)

2

sin2𝜃
 

 



166 

 

 

In Equation 6-1, a cosine-based angle potential (as opposed to harmonic) with an 

energy minimum at 𝜃0 and force constant 𝑘, is divided by sin2𝜃. The denominator 

produces a very repulsive region near to 180°.  

 

In this chapter, a Martini model for PNA is developed with the hypothesis that such 

a model would allow lower loading rates in pulling simulations to be reached since 

these lower loading rates require higher simulation times with existing hardware. 

This Martini model for PNA is in part based on the Martini model for DNA. There 

have been previous coarse-grained models for nucleic acids but the majority of 

them are unable to simulate interactions with other biomolecules and therefore lack 

versatility.5 In addition, features such as sequence specificity, crucial for the 

function of nucleic acids as genetic carriers of information, can be lost.6 The Martini 

forcefield is a particularly advantageous mode of developing a coarse-grained 

model since it uses a universal framework of beads. Each bead’s nonbonded 

interactions with others are already determined from the interaction matrices or 

Coulomb potentials, and so newly parameterised molecules need only to have their 

bead types selected and bonded parameters determined. These new additions will 

then belong to a growing set of Martini models7,8,9 with compatible topologies that 

can interact with one another. For PNA this is particularly important since 

PNA:DNA heteroduplexes are the major target of new PNA technologies.10,11,12 

Though there have been cases where new bead types have been developed for 

particular molecule classes,13 the standard types are used in the present work since 

native compatibility with other nucleic acids was determined to be more important 

given the aforementioned significance of PNA:DNA heteroduplexes. 

 

In the Martini models of DNA5 and RNA,14 the nucleobase beads are of the tiny (T) 

size, the effect of which is to reduce the 𝜎 to 0.32 nm in the Lennard-Jones potential 

between other tiny (T) beads. The same goes for small (S) beads, though to a lesser 

extent with 𝜎 = 0.43 nm. Tiny (T) beads interact with small (S) and regular beads 

using 𝜎 = 0.43 nm. Small (S) beads interact with regular beads using the standard  

𝜎 = 0.47 nm.1 The purpose of the tiny (T) beads for the nucleobases is to allow the 
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ring systems to pack into their flat, coplanar arrangement, since the rise of 0.33215 

nm in B-form DNA is smaller than the closest distance of approach in normal-sized 

beads. In addition to this, tiny (T) beads typically model only 2 atoms, as opposed 

to the usual 3.5,14 Since these nucleobase bead arrangements are well described in 

DNA5 and RNA,14 and the chemical structure of the nucleobases in PNA is 

identical, their bead sizes and types are used for PNA as well.  

 

For DNA, the authors described numerical instabilities arising for ds-nucleic acids, 

which were simulated with 10 fs timesteps, without the use of an elastic network.5 

Consequently, a similar elastic network is used in the present work. In addition, a 

Morse potential model of hydrogen bonding,16 similar to the Lennard-Jones 

potential and natively integrated into Gromacs,3 is used in the present work for the 

development of the Martini PNA model. This is since directional hydrogen bonding 

is lacking in current Martini nucleic acids.5,14 The Martini PNA model is hence 

similar to the Martini DNA or RNA models in that it uses the same philosophy of 

tiny (T) bead types for the nucleobase rings but differs in its backbone 

parameterisation and the use of additional Morse potentials to capture hydrogen 

bonding. The development, validation, and application of this model for the 

modelling of the force-loading curve is discussed in this chapter. 

 

6.2 Methods 

6.2.1 Equilibration and recommended simulation parameters 

Energy minimisations and equilibrations were conducted for all-atom reference 

simulations (CHARMM) in the same manner as described for previous all-atom 

simulations. That is, minimisations were conducted using steepest descent 

algorithms with 50,000 steps in both vacuum and in solvent, after which systems 

were gradually warmed to the target standard temperature of 298 K under position 

restraints. These restraints were gradually released over 10 ns and the systems were 

equilibrated under constant temperature, and then constant temperature and 

pressure, conditions for 50 ns each. Newton’s equations of motion were integrated 
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using a stochastic integrator17 and van der Waals and Coulomb interactions were 

handled using a switched cut-off scheme from 10 to 12 Å and a PME18,19 to 10 Å 

with long-ranged components handled by FFTW20 respectively.  

 

For the coarse-grained simulations, parameters were adjusted since specific values 

for parameters like the cut-off distances for van der Waals and Coulomb 

interactions are needed for the correct implementation of the Martini forcefield.1 

Minimisation was conducted using a steepest descent minimisation in vacuum and 

in solvent over 50,000 steps in the same manner as with the all-atom simulations. In 

the original Martini paper, different parameters to what are used in the present work 

are used since more recent research demonstrated improvements with a new set of 

parameters.21 Namely, a standard leap-frog integrator, 22,23 as opposed to stochastic, 

is used and temperature and pressure are coupled using velocity rescaling and 

Parrinello-Rahman pressure coupling respectively. The main difference between the 

Martini molecular dynamics parameters and the all-atom parameters are in the 

calculation of van der Waals and Coulomb interactions. Van der Waals interactions 

were switched to zero at 11 Å using a potential modifier so that the potential 

smoothly approaches zero at this distance without jumping, as occurs without a 

potential shift at such a low cut-off distance. Coulomb interactions were treated 

using a reaction field which smoothly switches to zero at 11 Å, again removing 

artifacts that arise from jumping to zero at a short cut-off distance.24 These 

parameters were carried forth into the production simulations. 

 

During the parameterisation of Martini PNA, different simulations including 

isolated backbone monomers, isolated base pairs in solution (e.g., A:T), short ss-

PNA sequences (e.g., TTTT), and finally whole sequences of GTAGATCACT: 

CATCTAGTGA, were conducted. Dodecahedral simulation boxes were used and 

minimum distances between solute atoms or beads and box edges of 1.5 nm were 

enforced. During SMD simulations, a cuboid box was used with an extended axis in 

the pulling direction. 
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6.2.2 Defining the beads  

Since the nucleobase bead types were already determined from the DNA and RNA 

models (Table 6-2), only the bead types for the backbone needed to be determined. 

For the nucleobases, 2 or 3 atoms are clustered into individual tiny (T) beads, with 4 

beads per purine and 3 beads per pyrimidine. For the PNA model, these beads are 

named, where the name is used for clarity and is separate from the type, from NU1 

to NU4 for purines and from NU1 to NU3 for pyrimidines where the NU is 

shorthand for ‘nucleobase’. The name of the nucleobase is prefixed in lowercase 

before the bead name, for example ‘g’ for Guanine. Backbone beads were selected 

such that the nucleobase was connected to the backbone through a central bead, 

allowing the planarity of the ring systems to be enforced using torsional and angle 

potentials above and below the ring. Backbone beads are labelled BB1, BB2 and 

BB3 from the N- to the C- terminus, where BB is short for ‘backbone’ (Figure 6-1). 

 

Table 6-2: Bead names and types for the nucleobases Guanine (g), Adenine (a), 

Cytosine (c) and Thymine (t). Atom numbers are the ring positions with side-chain 

atoms indicated by asterisks.  

Name Type (Table 6-1) Atoms (Fig. 1-8) 

gNU1 TN0 9, 4 

gNU2 TP1 3, 2, N2* 

gNU3 TP2 1, 6, O6* 

gNU4 TNa 5, 7, 8 

aNU1 TN0 9, 4 

aNU2 TN0 3, 2 

aNU3 TP1 1, 6, N6* 

aNU4 TNa 5, 7, 8 

cNU1 TN0 1, 6 

cNU2 TP2 3, 2, O2* 

cNU3 TP1 5, 4, N4* 

tNU1 TN0 1, 6 

tNU2 TP2 3, 2, O2* 

tNU3 TNa 5, C5*, 4, O4* 
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Figure 6-1: Bead assignments for the Martini model of PNA. Translucent blue 

circles represent beads connected by dotted lines.  

 

BB2 is a cluster of four atoms including the tertiary, central nitrogen atom of the 

backbone and the complete carbonyl methylene linker. BB1 and BB3 by contrast 

form each ‘half’ of the amide bond. Since capping was used in the all-atom 

simulations, end-effects are limited, and the atom clusters that BB1 or BB3 

represent can be considered the same regardless of position so long as it is 

acknowledged that the Martini PNA model is explicitly capped at the termini. 

Under these conditions, whilst BB2 is chemically similar to dimethyl ethanamide, 

BB1 and BB3 are always chemically similar to ethyl amine and acetaldehyde 

respectively. 

  

To determine BB bead types, the partitioning free energies for backbone monomers 

were calculated between pure water and octanol, and pure water and 
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dichloromethane, for both the coarse-grained and all-atom cases. These partitioning 

free energies provide a metric of relative solubilities in solvents with different 

polarities, and matching the partitioning free energies of atomic simulations with 

Martini simulations is the primary method by which bead types are selected since 

these relative solubilities are in turn a metric of the solute’s polarity.5,14 Production 

simulations were conducted on backbone monomers that had been solvated with 

either water, dichloromethane or octanol. The all-atom solvent topologies were 

those provided by the CHARMM36m forcefield,25 whereas solvent topologies from 

the Martini forcefield21 were used in the coarse-grained simulations. The 

partitioning free energies are obtained for both, and bead types adjusted until the 

free energies obtained via Martini most closely match those obtained via 

CHARMM. 

 

To obtain partitioning free energies, production simulations of backbone monomers 

in the different solvents were conducted. During these production simulations, the 

monomers were decoupled from the solvent in discrete steps, and the free energy of 

this de-solvation process obtained by the Bennet acceptance ratio (BAR)26, which is 

implemented in Gromacs using gmx_bar.3 That is, Equation 2-12 was applied over 

discrete alchemical steps 0 ≤ 𝜆 ≤ 1. State A, at 𝜆 = 0 was defined such that all 

interactions between the backbone and solvent were ‘switched on’ and state B, at 

𝜆 = 1 was defined such that all interactions with the solvent were switched off, 

which corresponds to the vacuum state. From this, it is possible to obtain the 

partition free energy between the two solvents through a thermodynamic cycle 

(Equation 6-2).5 

 

[Eq. 6⎼2]          ∆𝐺𝑠1→𝑠2 = ∆𝐺𝑠1→Ø − ∆𝐺𝑠2→Ø 

 

Where ∆𝐺𝑠1→𝑠2  is the partitioning free energy between solvent 1 𝑠1 and solvent 2 𝑠2 

and Ø is the vacuum state. The exact number of discrete steps in decoupling as used 

for prior studies on DNA were replicated in the present work.5 For the Martini 
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backbones, since there are no charges, the equilibrated and solvated monomer’s 

interactions with the solvent were decoupled over 11 evenly split simulations 

wherein the van der Waals interactions between the monomer and solvent were 

gradually switched off. Each simulation was 100 ns long and 20 fs timesteps were 

used. Gromacs was used to implement the soft-core parameters sc_alpha = 0.5 and 

sc_power = 1, as was done for DNA.5 These soft-core potentials are necessary 

since, when 𝜆 ≈ 0, corresponding to the near-vacuum state, atoms can approach 

very closely, resulting in large fluctuations in potential energy. Soft-core potentials 

solve this by preventing the atoms from approaching too closely, hence preventing 

singularities from superposition from occurring.3, 27   

 

For the all-atom simulations, since there are charged interactions, Coulomb 

interactions must also be decoupled from the solvent, and this was achieved over 6 

evenly spaced 20 ns simulations. Coulomb interactions are decoupled first since 

oppositely-charged atoms do not repel one another through the Coulomb potential, 

resulting in atom superposition without the van der Waals force. The van der Waals 

interactions were then decoupled over 11 evenly spaced 20 ns steps, with both 

stages using 2 fs timesteps and hence the total simulation times being 

accommodatingly lower. Soft-core potentials with the same parameters as with the 

Martini backbones were again used.  

 

Partitioning free energies were obtained from three replicates of these decoupling 

processes in different solvents for both all-atom and Martini backbone monomers. 

Martini bead types were changed in an iterative process until the partitioning free 

energies most accurately reflected the all-atom partitioning free energies. Initial 

guesses on the backbone types were made based on their chemical similarity to the 

reference chemical structures against which the Martini standard bead types were 

defined.1   
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6.2.3 Fitting distributions 

Whereas non-bonded interactions, given by the bead types, are determined by 

partitioning free energies, bonded interactions are determined by matching the 

distributions of bonds, angles and dihedrals from coarse-grained with all-atom 

simulations. 10 short ss-PNA sequences (Appendix A.3) were selected based on the 

protocol outlined by the prior literature,5 and 50 ns production simulations were 

carried out on all-atom representations of these sequences using the 

CHARMM36m25,28 forcefield. The molecular dynamics parameters, outlined in 

Chapter 6.2.1, namely stochastic integration and switched cut-off and PME schemes 

for van der Waals and Coulomb interactions respectively, were used for these all-

atom simulations and three replicates were obtained for each ss-PNA. The centres 

of geometry of the clusters of atoms representing each bead were tracked over these 

runs and the distances, angles and dihedral angles between different clusters were 

exported as reference distributions.  

 

These reference distributions were used to set initial distances, angles, force 

constants and multiplicities for Martini PNA. 50 ns production runs with these 

initial guesses were then conducted using the Martini molecular dynamics 

parameters outlined in Chapter 6.2.1, and the distributions were compared against 

the reference distributions. The bond, angle and dihedral parameters were iteratively 

refined until the all-atom distributions were well-reproduced by the coarse-grained 

simulations, which was determined by visual inspection as was done in the prior 

literature.5 Since this process was done by manual refinement, it is not necessarily 

the case that the final distributions were the distributions which maximised the 

overlap between the all-atom and coarse-grained data, and user bias is present in the 

selection. However, the same general process of manual refinement was used for all 

distributions to ensure a cohesive methodology was undertaken. Parameters were 

‘walked up’ towards increasing overlap between distributions until overshooting, 

after which the previous parameters for a specific bond, angle or dihedral were 

selected as the final values for bonded terms in Martini PNA. 
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6.2.4 Accelerated weight histograms for Morse potentials 

The lack of directional hydrogen bonds in Martini has presented problems for the 

development of accurate nucleic acid secondary structures in the past. To solve this, 

Uusitalo et al. specifically tuned the nonbonded interactions between the beads 

involved in base pairing in Martini DNA from the values in Table 6-1, namely by 

increasing the interaction strength between complementary beads and decreasing 

the strength between non-complementary beads.5 Free energy landscapes along base 

pairing and stacking coordinates indicated that these parameters enabled the 

stacking coordinate’s shape to be well-approximated but its stability to be 

overestimated. Crucially, however, their model of Martini DNA underestimates the 

stability of base pairing, assumes a much broader minimum, and places this 

minimum at closer base-pairing distances. The authors argue that since Martini 

potentials are spherically symmetric, these broad minima are necessary to better 

approximate stacking, but given that the two-dimensional free energy landscapes for 

ds-PNA base pairs in Figure 5-14 demonstrate that the Watson-Crick bound state 

makes the largest contribution to base pair stability, it was decided that improving 

the accuracy of Watson-Crick pairing at the expense of stacking was more 

appropriate for ds-PNA. 

 

In the present work, Morse potentials were introduced between the bases in the 

complementary base pairs of ds-PNA to address these issues. Unlike the harmonic 

potentials used to define most covalent bonds in molecular dynamics simulations, 

the Morse potential is anharmonic and, at infinite displacements, has zero force. In 

that manner, the Morse potential is similar to the Lennard-Jones potential and is 

typically applied to represent covalent bond stretching.3 Compared to the Lennard-

Jones potential, the Morse potential overestimates the attractive part of the potential 

curve and decays faster towards zero, with the two being identical at equilibrium.29 

Using Morse potentials for the hydrogen bonding interaction has been described in 

the literature in the past30 though was found to be unnecessary in the all-atom case 

since hydrogen bonds were already well-approximated by the van der Waals and 

Coulomb potentials.31 Since hydrogen bonds are not well approximated by these 
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potentials in Martini,5 practically by the very definition of the forcefield in that it 

lacks hydrogen atoms,1 this is not the case in the present work.  

 

The Morse potential energy between two atoms 𝑖 and 𝑗 is determined by its well 

depth 𝐷, in kJ/mol, equilibrium distance 𝑟0 and steepness 𝛽, in nm−1 (Equation 6-

3).  

 

[Eq. 6⎼3]          𝑉𝑖𝑗 = 𝐷(1 − 𝑒
−𝛽(𝑟−𝑟0))

2
 

 

Well depth, equilibrium distance and steepness parameters for the Morse potentials 

used in Martini PNA base pairing were optimised by matching the base pairing and 

stacking free energy landscapes of all-atom reference simulations of isolated A:T 

and G:C base pairs. A virtual site was introduced between the beads NU2 and NU3 

to represent base pairing distance. A virtual site is a point in space inheriting its 

positional data from other atoms that does not interact with any other atoms unless 

explicit pair potentials are introduced.3 This virtual site was positioned along the 

bond connecting NU2 and NU3 and was equidistant of them.  

 

50 ns long all-atom reference simulations were conducted on pairs using these 

virtual sites. AWH with a 100 kj mol−1 cut-off was used to map the free energy as 

a function of the distance between the two virtual sites. If additional restraints are 

not used to force rings to remain coplanar, they are free to rotate in space and the 

reaction coordinate reflects a mostly stacking coordinate.5,32 Consequently, to 

capture the pairing coordinate as well, the base pairs were aligned such that the 

pairing coordinate, defined as the line connecting the two virtual sites of coplanar 

rings, was aligned with the 𝑧 axis. Movement along this 𝑧 axis was unrestrained, but 

position restraints with force constants of 418.4 kcal/mol were applied to 

movement along the 𝑥 and 𝑦 axes. For both pairing (restrained) and stacking 
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(unrestrained) coordinates, three 50 ns replicates were used to obtain reference 

CHARMM free energy landscapes for both A:T and G:C base pairs. 

 

These reference free energy landscapes were compared to those obtained via 

Martini. In the Martini simulations, the free energy landscapes of pairing and 

stacking coordinates were obtained also obtained using AWH, though using the 

Martini molecular dynamics parameters of Chapter 6.2.1. 8 different simulations, 

each consisting of 3 replicates, were conducted. Firstly, Martini A:T and G:C base 

pairing free energy landscapes were obtained using the restraints as described in the 

previous paragraph, and then Martini A:T and G:C base stacking free energy 

landscapes were obtained for the unrestrained case. The remaining 4 simulations 

then repeated these but with an additional Morse potential, to represent hydrogen 

bonding, introduced between the virtual sites (Figure 6-2). Initial guesses for the 

potential were based on the all-atom reference free energy landscapes and were then 

iteratively optimised. CHARMM reference curves had three major regions: the 

bound state, the transition region, and the unbound state. The Martini Morse 

potentials were optimised such that the energy of all three of these states was as 

accurately modelled as possible. If it was not possible to reproduce all three states 

accurately, an appropriate compromise such as an overestimation of the transition 

state and an underestimation of the unbound state, would be selected.  
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Figure 6-2: Virtual site (VS) in green introduced between guanine (G) and cytosine 

(C). Black dots are Martini beads and green dots are the virtual sites. The dashed 

line shows the Morse potential, representing hydrogen bonding, between the sites. 

 

During the process of force-induced rupture, it is possible for strands to become 

displaced relative to one another, meaning complementary base pairs could arise 

between bases which are distant in the initial structure but which are brought into 

proximity by directional pulling (Figure 6-3). To account for this, during later 

external force studies of ds-PNA, Morse potentials between distant and 

complementary bases in the pulling direction are explicitly defined. That being said, 

the results of all-atom simulations on the shearing of ds-PNA indicated that it is not 

a process of gradual relative strand displacement but of stretching and then rapid 

displacement. In particular, Figure 5-16 shows that the Watson-Crick bound state 

for internal base pairs remains the most stable state at up to 4 nm displacements, 

demonstrating that, during the process of overstretching, the most highly populated 

conformations are those wherein internal base pairs remain in their initial 

complementary configurations. It is consequently the case that the majority of the 

dynamics of shearing may be modelled without explicitly defining hydrogen bonds 

between distant but complementary bases, with these hydrogen bonds likely mostly 
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occurring temporarily as strands slide past one another near the critical rupture 

distance. Regardless, these distant Morse potentials were still defined since the 

additional computational load is limited for the short sequences tested in the present 

work (for GTAGATCACT, only 8 additional Morse potentials need to be defined to 

account for possible hydrogen bonding from bases displaced in the pulling 

direction). 

 

 

Figure 6-3: Schematic demonstrating the necessity of defining explicit Morse 

potentials between distant bases which are not in association in the bound state. 

Complementary base pair in displaced strand indicated by rectangle.  

 

 

 

 

 



179 

 

 

6.2.5 Defining the elastic network 

Uusitalo et al. describe the necessity of an elastic network to replicate the structure 

of ds-DNA from the Martini model even when all-atom bond, angle and dihedral 

distributions are well-replicated by Martini distributions. In their elastic network, 

harmonic bonds are introduced between beads and other, distant beads in the 

structure. The equilibrium distance of these harmonic bonds was determined by 

their equilibrium distances from all-atom simulations.5 

 

In the present work, a similar elastic network is used. The purpose of the Martini 

ds-PNA model developed in the present work is to study bond rupture events, and 

the study of these rupture events is not possible when an elastic network is used. So, 

the current work presents the Martini model of ds-PNA as a choice between 

accurate structure, in using an elastic network, and the possibility of external force 

studies, in not using it. It would be theoretically possible to use an anharmonic 

elastic network to enable both, though in the inclusion of an anharmonic network of 

additional potentials the magnitude of rupture forces would be vastly overestimated, 

as will be demonstrated by rupture forces obtained in the absence of such a network, 

and so the harmonic network was used due to its simpler implementation. Since the 

harmonic network is necessary to extend simulation timesteps due to numerical 

instabilities in its absence,5 external force studies without it were limited to 10 fs 

timesteps, and simulations with it were numerically stable with 20 fs timesteps. 

 

The elastic network was introduced in a similar manner as was initially proposed for 

proteins,33 with each bead being connected via harmonic bonds to all other beads 

within a given distance, which for the present work was chosen to be 0.6 nm since 

this is approximately equal to 2 base pairs in either direction from a bead. This 

shorter distance was opted for given that ds-PNA is flexible, and so base pairs 

distant from one another should not be connected via rigid bonds so that their 

positions are not highly correlated. Force constants for the harmonic bonds of 1000, 

200, 50, 10 and 0 were tested, and the average RMSD over 100 ns production 
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simulations for each force constant of a Martini GTAGATCACT ds-PNA was 

compared against that of an all-atom reference model. 

 

6.2.6 Steered molecular dynamics of ds-PNA 

A Martini representation of the ds-PNA GTAGATCACT was placed in a 

simulation box with a minimum distance of 1.5 nm between any atom of the solute 

and a box edge, and oriented such that the line connecting the N-terminal BB1 

atoms of each strand was aligned exactly with the 𝑧 axis of the simulation box, 

which was extended in that direction. Energy minimisation of vacuum and then 

solvated structures, using Martini water, was conducted over 50,000 simulation 

steps before the systems were gradually heated from 30 to 298 K under position 

restraints. These restraints were switched to zero over 10 ns, excluding the N-

terminal BB1 atoms, before being equilibrated for 50 ns each under constant 

temperature and then pressure using velocity rescaling and Berendsen temperature 

and pressure couplers respectively. Production simulations were then obtained by 

removing the BB1 restraint from the N-terminus of the complementary strand 

AGTGATCTAC and applying a moving external harmonic potential in the direction 

of increasing reaction coordinate distance, defined as the distance between the N-

terminal BB1 atoms. The loading rates (8.7, 1.7, 0.87 and 0.17 N/s) used in the 

CHARMM simulations of Chapter 5 were then applied over 50 replicates of 3 

independently equilibrated Martini simulations. In addition to these, 50 replicates 

each of these 3 independently equilibrated systems were conducted at loading rates 

of 0.087, 0.017 and 0.0017 N/s. Only 1 simulation was conducted for each 

independently equilibrated system for a 0.00017 loading rate, since at this loading 

rate elapsed real times nearing a week were needed for each production run.  

 

The force on ds-PNA was monitored over all simulations, allowing the force-

loading relationship of Martini ds-PNA to be established for the tested loading 

rates.  
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6.3 Results and Discussion 

6.3.1 Bead definitions for the PNA backbone 

As discussed in 6.2.2, the backbone bead types need to be defined for Martini PNA 

such that the partitioning free energies between different solvents are accurately 

approximated. Bead types are assigned based on chemical similarity, and so since 

BB1, BB2 and BB3 are chemically similar to ethyl amine, dimethyl ethanamide, 

and acetaldehyde respectively, then initial guesses for the bead types were made to 

match these chemical groups using the bead type guidelines outlined in Marrink et 

al.’s original publication on the Martini force field.1 For BB1, the closest bead type 

would likely be P1 (1-propanol) or Nda (1-butanol) to represent the decreased 

hydrophilicity of ethyl amine relative to P2 (ethanol). For BB2, the closest bead 

type would likely be of similar hydrophilicity, with an upper bound being P2 given 

that P3 is based on a related but more hydrophilic chemical structure, methyl 

formamide. For BB3, Na would be an appropriate initial guess since the closely 

related propionaldehyde is an example of an Na bead.  

 

Initial guesses of P1, P1 and Na for BB1, BB2 and BB3 were made, and the 

partition free energies between water and dichloromethane and water and octanol 

for both CHARMM (all-atom) and Martini representations of the backbone were 

calculated using BAR. This initial guess underestimated both partition free energies 

and so given that BB2 could theoretically be represented by a P2 bead, the 

experiment was repeated with this assignment (Table 6-3). 

 

Table 6-3: Partition free energies calculated according to Equation 5-5 for the 

transfer of individual backbone monomers) from pure water to dichloromethane 

(DCM) or pure water to octanol. ± is the standard error from three replicates. 

Forcefield ∆𝑮𝒘𝒂𝒕𝒆𝒓 → 𝑫𝑪𝑴 (𝐤𝐜𝐚𝐥/𝐦𝐨𝐥) ∆𝑮𝒘𝒂𝒕𝒆𝒓 → 𝒐𝒄𝒕𝒂𝒏𝒐𝒍 (𝐤𝐜𝐚𝐥/𝐦𝐨𝐥) 

CHARMM 3.06 ± 0.35 2.33 ± 0.23 

Martini 3.92 ± 0.85 1.97 ± 0.91 
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Table 6-3 demonstrates that, using a bead assignment of P1, P2 and Na for BB1, 

BB2 and BB3, the partition free energies between water and dichloromethane and 

water and octanol agreed, within one standard error, of these same energies 

obtained from the all-atom simulations. In general, the backbone of Martini PNA 

slightly overestimates the solubility of the backbone in octanol and underestimates 

it in dichloromethane. The standard errors for the partition free energies are higher 

in the Martini case. This is possibly because, in Martini, the clustering of atoms into 

beads means there are fewer total interactions between solvent and solute meaning 

that the solvation energies are accounted for by fewer total molecules. Resultantly, 

fluctuations in the positions of individual molecules may have a larger effect on the 

measured partition free energy, resulting in the larger standard errors.  

 

Given this agreement, bead assignments of P1, P2 and Na for BB1, BB2 and BB3 

were selected as the optimal assignments for Martini PNA backbones. The first and 

latter of these were later updated after distributions were fitted since the distance 

between BB1 and BB3 was, on average, lower than the 0.47 nm 𝜎 of the Lennard-

Jones potential between regular-sized beads. This led to difficulties in matching the 

all-atom distribution of the BB1, BB2, BB3 angle, but after updating both BB1 and 

BB3 to the small (S) type beads SP1 and SNa, this difficulty was resolved.  

 

6.3.2 Bond, angle and dihedral distributions 

Once all bead types are assigned, it is necessary to model the bonded potentials 

between them. This involves explicitly defining bond, angle and dihedral force 

constants and equilibrium points such that the distributions of bonds, angles and 

dihedrals obtained using the Martini PNA accurately match the distributions 

obtained using CHARMM PNA. The CHARMM distributions of bonds, angles and 

dihedral angles between the centres of geometry of clusters of atoms representing 

Martini beads were obtained from all-atom simulations of the ss-PNA sequences in 

Appendix A.3. These distributions were then matched by conducting equivalent 
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simulations on Martini representations of these same sequences. These distributions 

were matched (Figure 6-4) to the all-atom distributions by iteratively adjusting force 

constants, equilibrium bond distances and angles, and multiplicities, until the 

distributions overlapped.  

 

 

Figure 6-4: Example bond, angle and dihedral (top to bottom) distributions for 

CHARMM atom clusters and Martini beads. CHARMM distributions are in black 

and Martini are in blue. 
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A full set of all 68 distributions is included in Appendix A.4. Figure 6-4 

demonstrates that, whereas in some cases distributions have well-defined unimodal 

peaks, and can be fitted with simple harmonics, as is the case for example for the 

BB2, gNU1, gNU2 distribution, other distributions are multimodal or otherwise 

more complex. For example, in the BB2, BB3, +BB1 distribution, where the + 

refers to the BB1 bead belonging to the next monomer in sequence, two peaks are 

present. These peaks were found to be independent of the position in sequence and, 

for any individual simulation, the angle between the centre of geometry of the 

clusters of atoms representing BB2, BB3, +BB1 was distributed between these two 

peaks, though the cause of this is not known. One possibility is that a better bead 

assignment, for example clustering atoms in another way, could reduce this 

multimodality, though given that this is the only angle distributed in this manner 

this suggests that, in all other cases, the bead assignment is appropriate. The 

approach to CHARMM distributions like the BB2, BB3, +BB1 angle which cannot 

be completely fitted with a simple harmonic angle was to select an equilibrium 

point at an angle between the two peaks determined by the ratio of their heights, 

thereby weighting the distribution in favour of the more populous peak. In addition, 

lower force constants were used in such cases so that the distribution was also 

smeared in the direction of the smaller peak. An issue with this approach, however, 

is that the relatively unpopulated intermediate angles or distances are 

overrepresented in the Martini model. 

 

In addition, Figure 6-4 demonstrates the narrow Martini peaks for the bond distance 

cNU3, cNU1. This was the case for all bonds between nucleobase beads and is 

intentional. The narrow distribution arises from the fact that nucleobase bead bond 

distances are not fitted using a simple harmonic but instead a constraint algorithm 

which periodically resets the bond length to an equilibrium value. This same 

methodology was used in the Martini models for DNA and is the recommended 

approach to parameterising ring systems with Martini beads given that constraints 

better reflect the rigidity of the ring systems.5  
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For the dihedral distributions in the bottom row of Figure 6-4, a narrow and well-

defined multimodal distribution can be seen in the left panel. In the right panel, a 

distribution mostly defined by a single, broader peak is present. To fit the 

distributions, torsional angle potentials with varying multiplicities can be overlayed 

on top of one another, with narrower peaks achieved using higher force constants. 

Alternatively, improper dihedral potentials, these being just simple harmonic 

potentials, can be used to fit unimodal distributions. In general, as few torsional 

angle potentials as possible were used in the parameterisation of the Martini model, 

and when distributions were mostly dominated by an individual peak corresponding 

to almost all of the area, then these were fitted with improper dihedrals as is the case 

in the bottom right panel of Figure 6-4.  

 

By fitting distributions, it was possible to derive a full set of Martini PNA bonded 

parameters (Table 6-4) which, in combination with the nonbonded parameters 

determined by the bead types SP1, P2, SNa for the backbone beads BB1, BB2 and 

BB3, and for the nucleobases as presented in Table 6-2, allows the construction of 

Martini PNA topology files for conducting coarse-grained molecular dynamics 

simulations. Hydrogen bonding Morse potentials, as presented in Chapter 6.3.3, and 

elastic networks, in Chapter 6.3.4, can additionally be included for external force 

and equilibrium studies respectively.  
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Table 6-4: Parameters for all constraints, bonds, angles and dihedrals used in the 

final Martini PNA model. 𝒇 is the function type, as implemented in the 2021 edition 

of Gromacs. 𝒓𝟎 and 𝜽0 are the equilibrium distances and angles respectively. 𝒌 is 

the force constant in kJ/mol/nm2, kJ/mol/rad2 or kJ/mol for the bonds, angles 

and dihedrals respectively. 𝒎 is the multiplicity. 

Constraint 𝒇 𝒓𝟎   

aNU1, aNU2 1 0.229   

aNU2, aNU3 1 0.266   

aNU3, aNU4 1 0.288   

aNU4, aNU1 1 0.162   

gNU1, gNU2 1 0.295   

gNU2, gNU3 1 0.295   

gNU3, gNU4 1 0.285   

gNU4, gNU1 1 0.161   

cNU1, cNU2 1 0.220   

cNU2, cNU3 1 0.285   

cNU3, cNU1 1 0.268   

tNU1, tNU2 1 0.217   

tNU2, tNU3 1 0.322   

tNU3, tNU1 1 0.265   

Bond 𝑓 𝑟0 𝑘  

BB1, BB2 1 0.316 18000  

BB2, BB3 1 0.341 5000  

BB3, +BB1 1 0.275 30000  

BB2, aNU1 1 0.288 25000  

BB2, gNU1 1 0.290 25000  

BB2, cNU1 1 0.286 25000  

BB2, tNU1 1 0.290 25000  

Angle 𝑓 𝜽0 𝑘  

BB1, BB2, BB3 1 77.0 40  

BB2, BB3, +BB1 1 105.0 50  
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BB3, +BB1, +BB2 1 98.0 100  

BB1, BB2, aNU1 10 125.0 400  

BB3, BB2, aNU1 10 147.0 250  

BB1, BB2, gNU1 10 125.0 300  

BB3, BB2, gNU1 10 150.0 150  

BB1, BB2, cNU1 10 118.0 300  

BB3, BB2, cNU1 10 165.0 350  

BB1, BB2, tNU1 10 114.0 250  

BB3, BB2, tNU1 10 165.0 100  

BB2, aNU1, aNU2 10 110.0 250  

BB2, aNU1, aNU4 10 125.0 400  

BB2, gNU1, gNU2 10 110.0 200  

BB2, gNU1, gNU4 10 125.0 300  

BB2, cNU1, cNU2 10 92.0 240  

BB2, cNU1, cNU3 10 146.0 700  

BB2, tNU1, tNU2 10 97.0 150  

BB2, tNU1, tNU3 10 149.0 700  

aNU1, aNU2, aNU3 1 85.0 200  

aNU2, aNU3, aNU4 1 74.0 200  

aNU3, aNU4, aNU1 1 98.0 200  

aNU4, aNU1, aNU2 1 125.0 200  

gNU1, gNU2, gNU3 1 69.5 200  

gNU2, gNU3, gNU4 1 84.0 200  

gNU3, gNU4, gNU1 1 94.0 200  

gNU4, gNU1, gNU2 1 125.0 200  

cNU1, cNU2, cNU3 1 61.0 200  

cNU2, cNU3, cNU1 1 47.0 200  

cNU3, cNU1, cNU2 1 71.0 200  

tNU1, tNU2, tNU3 1 55.0 100  

tNU2, tNU3, tNU1 1 42.0 100  

tNU3, tNU1, tNU2 1 83.0 100  

Dihedral 𝑓 𝜽0 𝑘 𝑚 
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BB1, BB2, BB3, +BB1 9 -25.0 5 1 

 9 -80.0 5 4 

BB2, BB3, +BB1, +BB2 9 -140.0 11 1 

 9 140.0 8 4 

BB3, +BB1, +BB2, +BB3 9 -30.0 5 1 

 9 90.0 2.5 6 

BB1, BB2, aNU1, aNU2 2 -123.0 22 - 

BB1, BB2, aNU1, aNU4 2 107.0 30 - 

BB1, BB2, gNU1, gNU2 2 -115.0 20 - 

BB1, BB2, gNU1, gNU4 2 105.0 30 - 

BB1, BB2, cNU1, cNU2 2 -122.0 50 - 

BB1, BB2, cNU1, cNU3 2 178.0 50 - 

BB1, BB2, tNU1, tNU2 2 -123.0 22 - 

BB1, BB2, tNU1, tNU3 2 152.0 25 - 

 

In Table 6-4 restricted bending potentials, 𝑓 = 10, were used for all angles 

connecting bases with the backbones. This was particularly important for 

pyrimidines, since high dihedral angles of 178.0 and 152.0 were present for BB1, 

BB2, cNU1, cNU3 and BB1, BB2, tNU1, tNU3 respectively. During 

parameterisation, these high torsional angles routinely led to numerical instability, 

which was largely mitigated by the application of restricted bending potentials.  

 

6.3.3 Mimicking hydrogen bonding with a Morse potential 

Both bonded and non-bonded terms had been parameterised according to all-atom 

data, but Martini PNA, as with other Martini models, lacked the directional 

hydrogen bonding crucial to the function of ds-nucleic acids. To address this, virtual 

sites as illustrated in Figure 6-3 were implemented for pre-equilibrated CHARMM 

structures of isolated A:T and G:C base pairs in water. Base pairing and stacking 

free energies between these virtual sites were then measured using AWH as a 

function of the distance between the sites, and these were used to produce reference 

free energy landscapes against which Martini simulations could be iteratively 
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refined. Martini simulations were conducted on coarse-grained representations, 

using the parameters presented in Table 6-4, of the same isolated A:T and G:C base 

pairs in water. The same free energy landscapes were obtained both with and 

without the introduction of a Morse potential between the virtual sites, and 

simulations were repeated with Morse potential depth, steepness and equilibrium 

distance modified (Table 6-5) until further changing these parameters only 

decreased agreement between the Martini and CHARMM free energy landscapes 

(Figure 6-5) 

 

Table 6-5: Final equilibrium distance 𝒓𝟎, well depth 𝑫 and steepness 𝜷 for Morse 

potentials between A:T and G:C virtual sites respectively.  

Base pair 𝒓𝟎 (𝒏𝒎) 𝑫 (𝒌𝑱/𝒎𝒐𝒍) 𝜷 (𝐧𝐦−𝟏)  
A:T 0.440 6.50 29 

G:C 0.405 7.00 25 
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Figure 6-5: Free energy as a function of virtual site distance in ds-PNA. Cartoon 

insets represent the tested reaction coordinate which, for the top row, is the stacking 

coordinate, and for the bottom row is the pairing coordinate. 

 

The CHARMM simulations in Figure 6-5 are in excellent agreement with the 

CHARMM simulations for free nucleobases determined by Uusitalo et al.5 despite 

the reaction coordinate being slightly different (since a virtual site is used in the 

present work). In the present work, the CHARMM stacking coordinate has a broad 

minimum that gradually increases towards a plateau at 4 or 4.4 kBT for A:T and 

G:C pairs respectively as the distance between the bases increases. The CHARMM 

pairing coordinate has a narrower, steeply increasing minimum at a greater distance, 

with a secondary minimum present at approximately 0.7 nm due to the insertion of 

a water molecule between the unbinding base pairs. In the pairing coordinate, the 

higher stability of the G:C base pair is evident in free energy differences between 

bound and unbound states of 7.2 kBT  as opposed to 5.6 kBT for the A:T pair. For 

DNA, similar free energy differences between the bound and unbound states of 5.5 
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and 6.6 kBT were measured by Uusitalo et al.5 for CHARMM simulations along the 

base-pairing coordinate for A:T and G:C pairs respectively.  

 

The inclusion of a Morse potential, as seen in Figure 6-5, was found to improve the 

agreement between Martini and CHARMM ds-PNA base pairing free energies but 

the results on the stacking free energies were mixed. The original Martini model in 

blue represents the breadth, shallowness and position of the stacking minima more 

accurately. The Martini model including the Morse potential, in red, estimates the 

free energy difference between initial and final states more accurately than the 

original model without it. Both Martini models predict a transition region along the 

reaction coordinate. However, for the Martini model with the Morse potential in 

red, this transition region is especially overestimated. This could result in the 

overestimation of the stability of the base stacking configuration.  

 

Compared to the stacking coordinate, the Morse potential was found to result in 

significant improvements in the agreement between the CHARMM and Martini 

simulations along the base pairing coordinate. Both the position and steepness of 

the minima were more accurately estimated, as shown in red in Figure 6-5. At very 

low displacements the Morse potential exactly replicates the CHARMM model. 

This is expected since the Morse steepness parameter was manually adjusted until 

its steepness reflected the steepness of the repulsive region. At intermediate 

displacements, the gradient in the free energy is shallower for the Morse potential 

than for CHARMM. In addition, the Morse potentials accurately estimate the height 

of a transition region in the pairing coordinate but overestimate the breadth and 

position of this transition region. Similarly to the accurate estimation of transition 

barrier height, the Morse potentials also estimate similar free energies for the 

unbound states, though more accurately for the A:T than G:C base pair. 

 

The agreement between the CHARMM and Martini base pairing free energies is 

significantly improved when a Morse potential is implemented relative to prior 
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models, which modified the bead types involved in base pairing instead. The prior 

results of Uusitalo et al. demonstrate an underestimation of the base pairing free 

energy minima for both A:T and G:C pairs compared to the results presented in 

Figure 6-5.5 For the base stacking free energy coordinates, however, the Morse 

potentials in Figure 6-5 are less accurate. That said, they do produce a similar curve 

to that observed by Uusitalo et al. for DNA using the modified bead types method5 

since both predict a large transition barrier not present in the CHARMM 

simulations. Using a Morse potential thereby increases the similarity of the base 

pairing Martini coordinate with the CHARMM reference model without 

significantly affecting the stacking coordinate. Hence, the use of a Morse potential, 

as opposed to using modified bead types, to represent Watson-Crick hydrogen 

bonding between complementary base pairs is preferred in the present work.  

 

6.3.4 RMSD of ds-PNA with different elastic networks 

The Martini ds-PNA model has been parameterised to account for nonbonded, 

bonded and now explicit hydrogen bonding interactions. The next step in 

parameterisation involved analysing how well the Martini ds-PNA replicated the 

CHARMM reference structures, as determined via RMSD. The RMSD of Martini 

beads were compared against the centres of geometry of the atom clusters 

representing those beads, in CHARMM, over 100 ns production simulations. To 

determine the contributions of elastic networks to the accurate replication of 

structure, RMSDs were obtained using these networks also (Figure 6-6). In the 

elastic networks, each bead is bonded to all beads within 0.6 nm, excluding beads to 

which it is already bonded, with force constants of 1000, 200, 50, 10 and 0 

kJ/mol/nm2. 10 fs timesteps were used for the Martini simulations, and 2 fs 

timesteps for CHARMM simulations. 
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Figure 6-6: RMSD, in nm, of CHARMM and Martini simulations of the ds-PNA 

GTAGATCACT. Force constant, 𝑘, in units of kJ/mol/nm2. 

 

In the absence of an elastic network, the structure of Martini ds-PNA deviates 

quickly from the stable CHARMM RMSD trace of between 0.1 and 0.2 nm. For the 

stiffest elastic network, 𝑘 = 1000, the CHARMM structure is completely retained 

by the Martini simulation, with a slightly softer network at 𝑘 = 200 still providing 

a very good approximation. Snapshots of final ds-PNA structures, taken after 100 ns 

of simulation (Figure 6-7), demonstrate the effect of increasingly releasing the 

elastic bond network.  
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Figure 6-7: Increasingly softening the elastic network from force constants of 1000 

to 0 kJ/mol/nm2 increasingly affects the secondary structure of ds-PNA after 100 

ns of simulation. 

 

For the highest force constant, the structure at 100 ns is almost indistinguishable. A 

similarly good representation of the P-form helix is present when the force constant 

is reduced to 200 kJ/mol/nm2. However, increasing structural artefacts are 

demonstrated with further softening of the elastic network, with the structure at 50 

kJ/mol/nm2 showing terminal base fraying in addition to bases slipping outside of 

the helical axis, and the structure at 10 kJ/mol/nm2 having an overall structure 

very different from the P-form helix. Without the elastic network at all, however, no 

helix is present, which is expected since the bonds, angle and dihedral distributions 
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are parameterised from ss-PNA and these distributions can be replicated without 

necessarily reproducing the P-form helix, as demonstrated by comparison of Figure 

6-7 with Figure 6-4. In the absence of the network, then, the ds-PNA minimises its 

potential energy by forming close associations with one another that maximise its 

forces of attraction. This results in a linear structure wherein the nucleobase ring 

systems are pressed ‘flat’ to one another to maximise stacking interactions, which is 

possible to do in Martini without negatively affecting pairing interactions given that 

the interactions of the Martini beads are spherically symmetric.1  

 

6.3.5 Martini ds-PNA force spectra 

The Martini ds-PNA model’s ability to extend the force-loading curve to simulation 

timescales inaccessible to the CHARMM model was tested using SMD along the 

shearing coordinate in the absence of the elastic network. Force spectra were 

obtainable at loading rates from 8.7 to 0.00017 N/s (Figure 6-8) and demonstrate 

the absence of a defined rupture event for loading rates beyond 0.17 N/s, likely 

since the high forces experienced prevent the relaxation of the system towards a 

baseline force within the box lengths used. At the lowest loading rates used, a clear 

rupture event like that observed for the CHARMM simulations is evident, though 

force traces indicate that rupture proceeds in two stages, particularly at the lowest 

rate.  
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Figure 6-8: Example force spectra for the rupture of the ds-PNA GTAGATCACT 

modelled using Martini, with loading rates decreasing from dark purple to pink. 

 

The secondary rupture event in the Martini model indicates the existence of a 

metastable state along the shearing coordinate despite the relative displacement of 

the two strands, which could suggest that the Martini model discriminates less with 

regard to non-complementary base pairing than the CHARMM model. For the all-

atom simulations, well-defined rupture events are demonstrated only for loading 

rates below 1.7 N/s, which is an order of magnitude higher than with the Martini 

model. This suggests that the Martini model is more sensitive to high loading rates 

causing distinct rupture events to be occluded in the traces than with the CHARMM 

model. In addition, the two differ in that, when their mean force is plotted as a 

function of shearing distance (Figure 6-9), the Martini model lacks the distinct 

overstretching transition demonstrated in the CHARMM model. 
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Figure 6-9: Mean force during shearing at 0.17 N/s, chosen for comparison with 

Figure 5-10, obtained from 150 total replicates of the Martini ds-PNA 

GTAGATCACT. 

 

The absence of the overstretching transition in Martini ds-PNA is unsurprising, 

since without an elastic network, the equilibrium conformation of Martini ds-PNA 

is not double-helical but instead linear, meaning that when external force is applied 

longitudinal to the ‘helical’ axis there is no initial unwinding stage, as with 

CHARMM ds-PNA. In addition, the peak force in Martini ds-PNA exists over a 1.5 

nm plateau region in the mean force curve, whereas in the mean force curve for 

CHARMM ds-PNA this distance is < 0.5 nm. Snapshots of Martini ds-PNA at 4 nm 

displacements (Figure 6-10) suggests this additional stabilisation at high force could 

be due to the formation of an ordered, non-complementary stacking structure that is 

not present in CHARMM ds-PNA, as seen in Figure 5-10. This ordered stacking 

structure could stabilise the strands as they slide past one another, in effect delaying 
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the final rupture event by the additional ~ 1 nm seen in comparison of Figures 5-9 

and 6-9.  

 

 

Figure 6-10: Martini ds-PNA bead representation demonstrating the existence of 

two ‘ordered stacking’ regions separated by a gap. Backbone, nucleobase, and 

virtual sites are grey, blue, and green respectively.  

 

This ordered stacking structure at high displacements along the shearing coordinate 

corresponds to the metastable state in the force curves observed in Figure 6-8. It 

reinforces the conclusions that it exists as a result of the Martini ds-PNA not 

discriminating between non-complementary nucleobase associations since these 

stacked states are oriented in a non-pairing, and thereby non-specific, manner. This 

state is likely possible for the same reason that base pairing is poorly integrated into 

Martini; spherically symmetric potentials make coplanar stacking in the direction of 

the helix favourable since it can be achieved without significantly destabilising base 

pairing given that the pairing potential is spherically symmetric.5  

 

6.3.6 The force-loading curve 

The structure of Martini ds-PNA during loading in shear does not model the 

structure of CHARMM ds-PNA accurately, demonstrating the existence of an 

ordered stacking state at high force and a linearly parallel ‘helix’ at the initial 

displacement. However, it may still be possible for the force-loading curve to be 

approximated using this Martini model. This since, according to the nearest-

neighbour model, nucleic acid stabilities can largely be accounted for by pairing and 
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stacking energies, which as per Figure 6-5 are well-replicated by Martini ds-PNA. 

Though other elements such as torsional potentials also influence the stability along 

the reaction coordinate, these are accounted for by matching the distributions of 

bonded potentials as described in Chapter 6.2.3. Under the assumption that pairing, 

stacking and bonded distributions in equilibrium can account for much of the 

behaviour of ds-PNA under external force, it is not unreasonable to suggest that the 

force-loading curve can be approximated by Martini (Figure 6-11). Contrastingly, 

however, if it is assumed that global structure contributes significantly towards the 

force-loading behaviour, then Martini ds-PNA cannot accurately model force-

loading behaviour, or at the very least models it only as a result of error 

compensation, since global RMSDs in the absence of an elastic network are poorly 

replicated as in Figure 6-6.  

 

 

Figure 6-11: Martini ds-PNA force-loading curve in red, and the CHARMM ds-

PNA force-loading curve in black.  
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At the highest loading rates, the most probable rupture force for Martini ds-PNA is 

equivalent to the maximum force, since no distinct rupture events were observed, as 

seen in Figure 6-8. In general, the Martini force-loading curve slightly 

overestimates the rupture force relative to the CHARMM curve, with this deviation 

increasing with loading rate. At the lowest loading rates accessible with the 

CHARMM model, however, the Martini and CHARMM models agree considerably 

with one another. The standard errors for the Martini model are lower than their 

equivalent CHARMM errors, demonstrating that the Martini model is more 

consistent in its evaluation of the most probable rupture force. This convergence 

indicates the Martini model replicates more similar shearing dynamics in repeat 

simulations than the CHARMM model arguably due to its decreased complexity 

limiting the model’s ability to capture nuances in the unbinding pathway. 

Alternatively, since the maximum force is sampled over a greater distance, as 

demonstrated in the mean force trace of Figure 6-9, these lower errors could occur 

since the peak force region is more extensively sampled in each simulation than 

with CHARMM ds-PNA. Since the Martini model is an approximation of the all-

atom model, which is itself an approximation of a real system, the lower errors are 

not a result of more accurate modelling of the real system and thereby do not reflect 

better convergence on some true value. 

 

The loading rates used were orders of magnitude higher34 than those typically 

needed to characterise the near-equilibrium regime of the force-loading curve, 

preventing the fitting of Figure 6-11 to force spectroscopy models since fits at these 

high loading rates would produce inaccurate assessments of thermodynamic 

parameters such as the binding free energy.35 Despite these results not being fitted 

to force spectroscopy models, the force-loading curve in Figure 6-11 demonstrates 

that the Martini model replicates the expected linear-to-nonlinear transition in the 

force-loading behaviour at high loading rates. The Martini model succeeds in that it 

can characterise a broader force-loading curve than is attainable with the 

CHARMM model for the ds-PNA GTAGATCACT. In addition, it agrees 

considerably with the CHARMM model at the lowest rates attainable with 

CHARMM. However, it is stressed that this force-loading curve has been attained 
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for only a single sequence, and therefore it is not necessarily the case that all 

CHARMM ds-PNA force-loading curves would be well-replicated by Martini.  

 

6.4 Conclusions 

The Martini PNA model enables longer simulation timescales to be used and thus a 

broader force-loading curve can be produced. In theory, this force-loading curve 

could be combined with experimental data to produce a complete curve, enabling 

force spectroscopy models such as the Bell-Evans or Dudko-Hummer-Szabo model 

to be fitted and thereby to allow energy landscape properties to be modelled. The 

technical research question (3), “Can coarse graining be used to replicate properties 

observed in atomic molecular dynamics simulations?”, is addressed through the 

following conclusions: 

 

(1) For the pilot GTAGATCACT sequence, the force-loading curve using 

Martini ds-PNA overlapped with the CHARMM simulations at the lowest 

loading rates achievable with CHARMM, though overestimated rupture 

forces at the highest loading rates. Consequently, Martini ds-PNA may be an 

appropriate simplistic model for rupture force prediction at these loading 

rates. 

 

(2) Since the CHARMM model cannot be extended to lower rates, it is unknown 

whether the CHARMM and Martini force curves diverge at lower loading 

rates decrease.  

 

(3) When an elastic network is used its RMSD agrees well with the RMSD from 

CHARMM simulations, as is the case for other Martini nucleic acid models. 

 

(4) The model accurately evaluates base pairing free energies using a novel 

Morse potential representation of the hydrogen bond. 
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(5) Error compensation may result in the observed results since, in the absence 

of the elastic network, the secondary structure of ds-PNA is very poorly 

approximated despite the base pairing coordinate being well replicated, and 

hence the latter may be compensating for the former.  

 

(6) Fitting of multimodal angles with simple harmonics, as seen in Figure 6-4, 

overestimates the occurrence of angles intermediate of the peaks. 

 

The Martini ds-PNA model herein is the first coarse grained model of ds-PNA 

known to the candidate. Though it succeeds in accurately characterising base pair 

free energies, it is limited in its inaccurate evaluation of secondary structure in the 

absence of an elastic network, as with all Martini nucleic acid models. Since ds-

PNA stabilities can be well-described by the nearest-neighbour model (Chapter 4) 

of pairing and stacking energies, and the pairing and stacking energies of Martini 

PNA bases are well-estimated by a Morse potential, this does not necessarily 

exclude Martini PNA from external force studies.  
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Chapter 7: Discussion and future work 

7.1 Discussion  

7.1.1 To what extent has the research question been addressed? 

The purpose of this thesis is to answer the central research question: 

 

“Can molecular dynamics be used to assess and screen the single-molecular binding 

properties of a candidate bioadhesive?" 

 

This was addressed by answering the three technical research questions using ds-

PNA as the candidate bioadhesive: 

 

(1) “Can molecular dynamics be used to generate a model that allows binding 

properties to be predicted from structure alone, and what quantities 

contribute to the binding stability of the candidate bioadhesive?” 

 

(2) “Can molecular dynamics be used to assess the single-molecular properties 

of a candidate bioadhesive under external force, and what quantities 

contribute to this?” 

 

(3) Can coarse graining be used to replicate properties observed in atomic 

molecular dynamics simulations?” 

 

Technical research question (1) has two parts: (a) was a predictive model 

generated? and (b) what quantities contribute to stability as per the model? These 

were answered by the application of a nearest-neighbour model to molecular 

dynamics simulations of ds-PNA for the first time. The nearest-neighbour model 

produced in the present work was able to characterise the contributions to the 

binding stability of ds-PNA in equilibrium in terms of incremental stacking 
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enthalpies. Using this scheme, it was possible to calculate the binding enthalpies of 

ds-PNA sequences with an average error of 8.7% when compared against the 

enthalpies obtained from real-world experiments in the literature.  

 

According to the model, the incremental binding enthalpies of ds-PNA were always 

negative, including the initiation terms, regardless of terminal identity. This 

contrasts with biologically occurring nucleic acids wherein helix initiation is 

enthalpically unfavourable.1,2 This demonstrated that the association between two 

complementary ss-PNAs may be inherently enthalpically favourable, since helix 

initiation enthalpies were negative. This is likely since there is no net like-charge 

repulsion between the backbones.3,4  

 

In addition to the helix initiation enthalpy, incremental enthalpies for ds-PNA were 

always more negative than their equivalent for ds-DNA except for the GC:CG ds-

stack. This corroborates conclusions from the prior literature that the binding 

enthalpies of ds-PNAs are more negative than equivalent sequences of ds-DNAs.4,5,6 

It is plausible that selection bias could influence the magnitudes of these 

incremental enthalpies, which may explain the GC:CG discontinuity. However, it is 

also possible that the stacking enthalpy between base pairs plays a more significant 

role in ds-PNA since stacks with the same pairs, but different positions, are split 

between a higher and lower binding enthalpy member. This can be seen in Table 4-

6. In such groupings, since the pair composition is the same, the difference in 

incremental enthalpies is due to stacking, and since in ds-DNA the incremental 

enthalpies of such groupings are closer together, this could suggest that stacking 

plays a larger role in differentiating ds-PNA stabilities than it does in ds-DNA. 

 

The final quantity that affects the binding stability of the ds-PNA candidate 

bioadhesive, according to the model, is the terminal A:T pair. Whereas terminal 

G:C and A:T pairs both alternated between bonded and frayed states, for terminal 

A:T pairs longer, more persistent melting events were demonstrated. This suggested 
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that the terminal instability seen in the higher initiation enthalpy with terminal A:T 

pairs results from persistent melted states as opposed to short-lived ones.  

 

The present work has thereby addressed technical research question (1) by 

demonstrating that the stability of ds-PNAs in equilibrium is a function of its 

sequence, expressed in terms of ds-stacks, and that stacks with more Watson-Crick 

hydrogen bonds, in general, contribute most to equilibrium stability. Additional 

information, such as the possibility of base stacking playing a larger role in ds-PNA 

stability, may also be interpreted. A key difference between ds-PNA and other 

nucleic acid binding enthalpies is evident in the higher stability floor due to the 

absence of like-charge repulsion. This is reflected in the negative helix initiation 

enthalpies. The nearest-neighbour model, which interprets the binding enthalpy of 

ds-PNA as per these assumptions, has an average error (8.7%) below typical 

experimental error.7 Consequently, as per technical research question (1), a model 

has been produced that predicts a binding property of a candidate bioadhesive (ds-

PNA) and the quantities associated with this stability have been expressed. 

However, technical research question (1) could have been more fully met had it 

been possible to resolve binding free energies with the method used, though this 

was not possible due to an inaccurate approximation of the binding entropy. 

 

Technical research question (2) is answered if single-molecular properties of ds-

PNA under external force can be resolved. By monitoring structure, forces, and 

energies during the application of external force via SMD along two primary ds-

PNA unbinding coordinates, it was possible to resolve some of these single-

molecular properties. The choice of reaction coordinate significantly affected the 

behaviour of ds-PNA under external force, with the shearing coordinate tolerating 

higher maximum forces prior to a rupture event.  

 

The higher stability of ds-PNA along the shearing coordinate is possibly due to 3 

factors: (i) an initial unwinding step wherein the P-form helix deforms into a linear 
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overstretched form, (ii) a compression of the strands indicated by a decrease in the 

van der Waals energy at intermediate displacements, and (iii) ‘storage’ of applied 

force in the ds-PNA backbone during stretching. The third point is suggested from a 

peaking torsional energy immediately prior to the point of rupture followed by a 

decline as ss-PNA strands rewind, indicating that potential energy is stored in the 

unwinding of the backbone. Since external force accumulates through compression 

and unwinding until a single, dramatic rupture event, the behaviour of ds-PNA 

under external shearing forces is unlike at equilibrium since it cannot simply be 

characterised based on individual base pair clusters as per the nearest-neighbour 

model. This single rupture event explains the larger maximum forces observed 

during shearing, since most of the external force is accumulated and then dissipated 

in a single event. 

 

By contrast, during unzipping ds-PNA rupture involves several rupture events 

corresponding to single, or small clusters of, base pairs. This results in lower 

maximum forces and narrower distributions in the force histograms since the 

maximum force is repeatedly sampled in a single trace. In contrast to shearing, 

wherein the van der Waals, Coulomb and torsional energy traces were all functions 

of the loading rate, having deeper and broader wells, steeper exponential regions, 

and taller peak energies respectively, for unzipping these traces were mostly rate 

independent. The exception to this was the torsional energy. Particularly at the 

highest loading rate, torsional energy peaks at a higher value, which could partly 

explain a jump in the maximum force histograms at the highest rate. This jump 

could emerge if the dynamics of unzipping changed at the highest loading rate. 

Since the torsional energy trace is distinct at this rate, it is plausible that the 

dynamics of unzipping differ due to twisting forces, thereby explaining the jump in 

the rupture force. 

 

Snapshots of ds-PNA during shearing were obtained at 0, 2.5 and 4.0 nm 

displacements and free energy surfaces reconstructed. These surfaces demonstrated 

the opening and flattening of the free energy landscapes for terminal and internal 
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base pairs respectively. At a 2.5 nm extension, for example, the free energy 

landscape for an internal G:C base pair flattens towards a landscape more like that 

of a terminal base pair than an internal pair at equilibrium. This indicates that the 

overstretching of ds-PNA could result in an internal-to-terminal like transition in 

the pairing and stacking energies of the sequence. Since the overstretched form of 

ds-PNA, as with ds-DNA, is approximately 1.7 times longer8,9 than the equilibrium 

form, this flattening of the free energy landscape potentially arises from the 

increased distance between coplanar Watson-Crick base pairs.  

 

Technical research question (2) was therefore addressed by demonstrated that the 

properties contributing to the stability of a ds-PNA candidate bioadhesive under 

external force are reaction coordinate and rate dependent. It was found that 

molecular dynamics could characterise and quantify these binding properties. 

 

Technical research question (3) was answered by developing a novel coarse-

grained model of ds-PNA based on the Martini framework. This question is 

successfully addressed if this novel model can replicate observables in the all-atom 

simulations. This model was produced by matching bond, angle, and dihedral 

distributions against all-atom data, and by using an elastic network in addition to 

this the all-atom structure is accurately reproduced under equilibrium conditions. 

However, for the purpose of external force studies, it is not possible to 

simultaneously use a harmonic elastic network and dissociate the molecules under 

external force given that the elastic network provides an unphysical contribution to 

the stability of the complex. Despite that, by accurately characterising base pairing 

free energy traces using a morse potential, the Martini ds-PNA force-loading curve 

overlaps with the CHARMM ds-PNA force-loading curve. This indicates that the 

Martini model may be acting as a simplistic, higher throughput method for 

modelling the single-molecular rupture of ds-PNA than the CHARMM model. 
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The central research question is then answered by stating that, since all technical 

research questions could be addressed, then it is the case that the single-molecular 

properties of a candidate bioadhesive, ds-PNA, were resolvable using molecular 

dynamics simulations. The choice to approach the problem of screening 

bioadhesives from the single-molecular perspective was based on the necessity that 

the approach be generalisable to other systems. This necessitated that all properties 

of the model, except for the specific coarse-grained model developed here for ds-

PNA, arose from atomic information such that any new candidate bioadhesive can 

be tested in the same manner simply by changing the input atomic structure. It is 

acknowledged, however, that this relies on the assumption that single-molecular 

information is useful for the development of bioadhesives. An argument in favour 

of this usefulness is that, by characterising the single-molecular properties of a 

bioadhesive, observations at the macroscale can be interpreted in terms of this 

molecular understanding. In addition, by characterising the single-molecular 

behaviour this may ease future research since the non-specific contributions to 

stability that are a consequence of macromolecular properties such as composition 

or impurities may be more readily separated from the specific contributions made at 

the single-molecular level. 

 

The present work has demonstrated that molecular dynamics can screen and assess 

a candidate bioadhesive based on single-molecular properties and so the central 

research question has been answered. In addition, it is believed that answering this 

central research question is of commercial or industrial significance to the 

development of bioadhesives as per the argument in the preceding paragraph.  

 

7.1.2 Successes of the present work 

The present work succeeds in advancing understanding of ds-PNA binding 

stabilities, as discussed in the previous subchapter. Significantly, the present work is 

the first time that the overstretched form of ds-PNA has been evidenced, and the 

overstretching transition occurs at a remarkably similar relative length to that 
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observed with ds-DNA,8,9 suggesting uniformity in the overstretching transitions of 

nucleic acids with varying backbone character. Similar agreement between ds-DNA 

and ds-PNA unbinding dynamics are evidenced in the unzipping coordinate also, 

since unbinding in the unzipping coordinate is an approximate ‘per base pair’ 

process.10,11 This observation suggests that mean force traces during ds-PNA 

unzipping could be used to predict sequence identities since integer multiples of 

single base pair rupture forces can be demonstrated. The ‘reading’ of nucleic acid 

primary sequences from unzipping mean force-distance traces has been 

demonstrated previously in ds-DNA.10 

 

In the process of completing this thesis, two new tools were developed for the 

modelling of ds-PNAs. The first of these tools is the nearest-neighbour model for 

predicting ds-PNA binding enthalpies, which in theory enables a user to predict the 

binding enthalpy of a ds-PNA from its primary sequence alone. This tool can be 

used for sequence selection prior to time or financial investments by eliminating or 

selecting sequences from a study based on stability criteria. As an example, a study 

correlating the melting temperatures with binding enthalpies of ds-PNAs would 

benefit from using the nearest-neighbour model developed herein by allowing users 

to select ds-PNAs with well-distributed predicted binding enthalpies. In addition to 

the development of this nearest-neighbour model, the present work also highlighted 

the limitations of using a linear regression to correct MM-GBSA7 data to 

experimental data by demonstrating that doing this results in the inequality ∆𝐺 ≠

∆𝐻 − 𝑇∆𝑆 in the incremental enthalpies. This is a necessary consideration in the 

experimental design of future MM-GBSA studies on nucleic acids. 

 

The second tool produced for the present work is the Martini model of ds-PNA, 

which to the awareness of the candidate is the first coarse-grained model of PNA 

ever developed. The model’s bond, angle and dihedral distributions are modelled 

against those of the CHARMM model for ds-PNA of Jasiński et al.12 Differently to 

prior Martini representations of nucleic acids, which use non-standard bead types to 

model complementary base pairing,13,14 a Morse potential15 between two virtual 
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sites is used. Relative to the non-standard bead type method, the pairing free energy 

is better approximated by the Morse potential. As with all Martini nucleic acid 

models, the absence of an elastic network significantly compromises the structure of 

the double-helix,13,14 and so the Martini model for ds-PNA provides users with a 

tool for either external force or structural studies, but not both simultaneously.  

 

The Martini ds-PNA model could be used, for example, to study long sequences of 

ds-PNA over timescales inaccessible to all-atom simulations, and since it is 

parameterised using standard Martini beads16 it is innately compatible with coarse-

grained models of proteins17 and nucleic acids.13,14 It can thereby be used to study 

PNA:DNA, PNA:RNA or PNA:protein complexes. 

 

ds-PNA was used as an example candidate bioadhesive for the present work. This 

was so that the single-molecular methods of obtaining sequence-independent 

binding properties and other force-loading properties could be presented with an 

example. It is still worth discussing, however, how ds-PNA itself actually 

performed as a candidate bioadhesive. This thesis has detailed rupture forces for ds-

PNA in shear between approximately 0.4 and 2.2 nN at loading rates from 

approximately 10-4 and 10 N/s. At the highest loading rate, the 2.2 nN rupture force 

is comparable to that of a single covalent bond,18 though the nonbonded interactions 

between ds-PNA strands are advantaged over the covalent bond system in that they 

are reversible and sequence-specific. That being said, a rupture force for an entire 

ds-PNA complex comparable to a single covalent bond, and only at the highest 

loading rate, indicates that a ds-PNA bioadhesive would have a significantly lower 

bond density and thereby likely be outperformed, in terms of its strength, by an 

adhesive composed of covalently-bonded units such as an epoxy. However, since 

fibrin bioadhesives with single-molecular rupture forces in the sub-nanoNewton 

range are used in commercial applications, then it is likely that the rupture forces 

described in this thesis for ds-PNA may be sufficient for similar applications.19 
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7.1.3 Limitations of the chosen methodology 

External force studies were conducted using the pilot sequence GTAGATCACT, 

and so it is assumed that ds-PNAs with different primary sequences behave 

similarly under external force. This limitation was imposed due to the availability of 

computational resources, with molecular dynamics simulations conducted in 

parallel using a 16 core AMD Ryzen 9 5950X processor with acceleration provided 

by a GTX 3090Ti GPU. Using this setup, simulation speeds of hundreds and 

thousands of nanoseconds per day were achievable for all-atom and coarse-grained 

simulations respectively. Distributed computing alternatives such as Microsoft 

Azure or distributed computing at the University of the West of England were 

pursued though were ruled out due to high costs and inferior computing power 

given that access to the in-house machine was unshared and unrestricted.  

 

Since force-loading curves are constructed from histograms to determine the most 

probable rupture force, and typically hundreds of samples are used per histograms, 

this resulted in the single pilot sequence being selected.20,21,22 However, it is likely 

that the same behaviours would be demonstrated with different primary sequences 

under external force and so the use of a pilot sequence may not be as limiting as 

initially suspected. The justification for this is since: 

(1) For other nucleic acids, force-loading behaviours are conserved regardless of 

sequence identity, with overstretching below a critical force of 65 pN being 

consistently identified,23,24,25 and for unzipping the existence of single base 

pair rupture events in the force traces of different sequences are 

demonstrated.10,11  

 

(2) The backbone monomers of different sequences have identical chemistry 

regardless of nucleobase identity, making it unlikely for a changing primary 

sequence to affect the response of the backbone torsional angles to external 

force.  
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(3) The de Gennes model26,27 suggests that a 10 base-pair sequence is long 

enough to capture the principal effects of shearing force on ds-PNA.  

 

(4) The mean force trace during unzipping demonstrates no other rupture events 

than the integer multiple rupture events that correspond to the length of the 

pilot sequence. It may then be reasonable to suggest that the effect of 

primary sequence would simply be to change the height and position of these 

events, with this assumption additionally being supported by the sequential 

per base pair model of unzipping described for ds-DNA.  

 

(5) Two-dimensional free energy landscapes for internal and terminal base pairs 

in the pilot ds-PNA sequence demonstrate the existence of all three 

populated regions present in an unrelated ds-DNA sequence.28 This indicates 

the conservation of these properties not only for different sequence lengths, 

but between nucleic acids of different backbone identity. This suggests that 

individual base pair free energy landscapes are likely to express similar 

populated regions for different possible test sequence.  

 

A limitation of using only computational data, apart from the thermal melting 

experiments conducted in Chapter 4, is that ‘a model is just a model’. With any 

computational study, experimental validation is important since the model can 

deviate from reality and error compensation may play a role in agreement even in 

the absence of deviation. Consequently, the present work is validated against 

experimental data structurally, enthalpically, on the basis of free energy and in its 

replication of force-loading behaviour consistent with theory: 

(1)  Structurally, the present work reproduces the base pairing and stepping 

parameters from previous literature,1,12,29 as seen in Table 3-1. In addition, a 

low RMSD between CHARMM models of the 3MBS29 ds-PNA structure and 

its experimentally obtained crystal structure is observed. Likewise, the 

Martini model of the ds-PNA GTAGATCACT has a similarly low RMSD 
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when compared against its equivalent CHARMM model, as discussed in 

Chapter 6. 

 

(2)  Enthalpically, the MM-GBSA studies used in the present work can predict 

experimental data with an error of 8.7% as discussed in Chapter 4.  

 

(3) On the basis of free energy, the binding free energy of GTAGATCACT 

determined using AWH (−32.15 kcal/mol ) is in reasonable agreement with 

the experimental data from Table 1-3 or Table 4-3 (−18.99 kcal/mol).  

 

(4) Finally, force spectroscopy models predict a transition to a nonlinear force-

loading curve at high loading rates, and this nonlinearity is demonstrated in 

the present work for both CHARMM and Martini models. 

 

Beyond validation and the use of a single pilot sequence, the present work is limited 

in that lower loading rates were inaccessible with both the CHARMM and Martini 

models, preventing the fitting of force spectroscopy models. Fitting at these lower 

loading rates is useful since, at high loading rates, the force-loading curve covers 

only a far-from-equilibrium regime whereas the near-equilibrium regime must be 

characterised for accurate determination of parameters like the equilibrium free 

energy.30 Initially, the present work intended to incorporate atomic force 

microscopy as a primary tool to characterising these lower loading rate regimes, but 

access to this equipment was lost within the first several months of the present work 

due to equipment failure. This equipment failure is what motivated the shift to a 

computational project since molecular dynamics enabled the replication of force 

spectroscopy experiments through simulation. 

 

7.1.4 Position within the established literature 

Previous literature on ds-PNA binding properties have, to the awareness of the 

candidate, exclusively focused on the derivation of the equilibrium binding 

properties of individual strands. This has included the acquisition of binding 
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entropies, enthalpies and free energies from thermal melting experiments,4,5,6 the 

determination of the effect of mismatching on these stabilities,31 and structural 

studies such as the induction of backbone chirality.32 

 

The present work expands on this previous literature on ds-PNA binding properties 

in that it: 

(1) Provides a model for the prediction of binding stability, in this case the 

binding enthalpy, as a function of ds-PNA primary sequence alone. This 

work is therefore the first time that conclusions about the binding stabilities 

of ds-PNA have been made from quantities conserved between unrelated ds-

PNA sequences. In this case, these quantities are the incremental binding 

enthalpies. 

 

(2) Demonstrates the application of this nearest-neighbour model to ds-PNA 

oligonucleotides for the first time.  

 

(3) Details the first ever force-loading curves for ds-PNA. This includes the first 

time that shearing and unzipping have been differentiated for ds-PNA and 

the first time that individual base pair rupture events have been demonstrated 

in the force traces during unzipping of a PNA-based oligonucleotide. 

 

(4) Demonstrates evidence of overstretching in ds-PNA for the first time. 

 

(5) Describes how the effect of external force on ds-PNA can be understood in 

terms of van der Waals, Coulomb and torsional energy contributions. 

 

In consideration of the above points, the present work is the first comprehensive 

study of the dynamics of ds-PNA molecules under external forces at varying 

loading rates and on different axes. 
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The present work belongs to a number of studies on the derivation of nucleic acid 

nearest-neighbour models using computational methods, such as the study by 

Nishida et al. which used BAR to predict RNA secondary structures.33 In particular, 

the present work exists in contrast to the study of Golyshev et al. by arguing that 

their linear correction is an inappropriate tool to derive incremental energies from 

whole-sequence energies derived using MM-PB[GB]SA.7 In addition, the present 

work used AWH in a manner inspired by Lindahl et al.28 who determined two-

dimensional pairing and stacking free energy landscapes for internal base pairs in 

ds-DNA. By extending the method of Lindahl et al. to free energy landscapes at 2.5 

nm and 4 nm extensions along a shearing reaction coordinate, the present work 

demonstrates the applicability of AWH to the study of conformations driven far 

from the native state. Like Lindahl et al., the present work demonstrated the same 

three populated regions in these free energy landscapes. 

 

The largest contribution to any individual computational method made by the 

present work is arguably its provision of an entirely new molecule type to the 

existing Martini forcefields. The present work details bead assignments and types 

for the construction of a coarse-grained model of ds-PNA for Martini and, in Table 

6-4, provides all bond, angle and dihedral equilibrium positions, force constants, 

multiplicities and types for the implementation of a Martini ds-PNA model into 

Gromacs. The standard bead types presented in the original Martini paper16 are 

utilised for direct compatibility with the other Martini models.13,14,17 The present 

work’s Martini model for ds-PNA utilises the same elastic network method 

described in the prior literature,13,14 though differs from this existing body of work 

by implementing a Morse potential15 for the more accurate derivation of base 

pairing free energy landscapes. 

 

Finally, the present work validates the all-atom CHARMM model of ds-PNA 

developed by Jasiński et al.12 first by demonstrating the reproducibility of their 

helical parameters and then by demonstrating that their model can capably 

reproduce binding enthalpies (Chapter 4) and free energies (Figure 5-18) from 
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experimental data. The present work then extends their CHARMM model by 

demonstrating its application to SMD simulations for the first time. 

 

7.2 Future work 

There are two main avenues by which the present work can be extended. Firstly, it 

can be extended by further characterising single-molecular properties. Secondly, it 

can be extended by scaling these observations into the macroscale and carrying out 

real-world experiments on a ds-PNA bioadhesive. 

 

Regarding further work on the single-molecular properties: 

(1) The partial force-loading curve in Figure 6-11 could be completed using 

atomic force microscopy. This would enable the near-equilibrium regime 

necessary for the fitting of force-spectroscopy models to be fitted,30 and 

would therefore allow the apparent transition barrier heights and widths 

along the shearing coordinate to be studied. It would also provide an 

additional means of validation by demonstrating the degree of overlap 

between the experimental and computational partial force-loading curves. 

This was the initial intention of the present work, though could not be 

completed given the unavailability of the in-house atomic force microscope. 

 

(2) SMD simulations with different ds-PNA sequences than GTAGATCACT 

could be conducted. This is since the present work relies on the assumption 

that the properties of ds-GTAGATCACT are transferable to other sequences. 

The validity of this assumption was argued for, however, in subchapter 7.1.3. 

Testing other pilot sequences could enable the generalisation of rupture 

forces as a function of primary sequence in the spirit of the nearest-

neighbour model. This would involve the simulated pulling of a number of 

different primary sequences, the acquisition of their rupture forces and 

loading rates, and then solving a multiple linear regression model of the form 

in Equation 4-4. To the awareness of the candidate, the nearest-neighbour 
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model has never been applied in this manner and using it in such a way could 

be extremely beneficial in the design of nucleic acid bioadhesives34 by 

allowing the prediction of force-loading curves as a function of primary 

sequence without experimentation.  

 

Regarding further work on scaling beyond the single-molecular properties, the 

scalability of single-molecular interactions has been studied in the past.35 An 

approximately linear scaling of the specific single-molecular interactions towards 

the mesoscale was identified, though there were also non-specific effects. The 

advantage of having already conducted the single-molecular experiments is that 

such an experiment on ds-PNA could be more readily achieved. This could involve 

measuring the rupture force between surfaces of known area functionalised with 

complementary ds-PNA at a known density and then deriving a relationship 

between ds-PNA density, single-molecular rupture force and multi-molecular 

rupture pressure.  

 

In addition to adhering two flat surfaces with ds-PNA, a similar implementation to 

the DNA adhesive gels could be explored. In the DNA adhesives, beads were 

functionalised with complementary binding partners to form a colloid.34 This 

enabled complex formation to be studied using optical measuring equipment, for 

example by fluorescently labelling the beads and then visualising them using 

fluorescence microscopy. 

 

Currently, the present work on ds-PNA is far removed from the intended 

application as a candidate bioadhesive. However, since the single-molecular 

properties have been resolved, experiments on the macroscale can now be 

conducted on ds-PNAs and interpretations can be made with respect to their single-

molecular behaviour. This protocol of characterising single-molecular properties 

using molecular dynamics is affordable and available given the contemporary broad 

accessibility of computational power and does not rely on specialist equipment. 
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Consequently, greater understanding of bioadhesives can be achieved by adopting a 

similar molecular dynamics approach, enabling quantities that contribute to the 

binding stability of these bioadhesives under external force to be derived. These 

quantities, in turn, may be used to inform experimental design or to screen 

bioadhesives for particular properties.  

 

7.3 Conclusion 

This thesis has presented advancements in the understanding of the binding 

stabilities of ds-PNA under equilibrium and external force. These understandings 

are both generally relevant to the development of ds-PNA technologies and of direct 

interest to the characterisation of other candidate bioadhesives using broadly 

available technology. In addition to the presentation of new knowledge on the 

single-molecular properties of ds-PNA, two new tools have been presented. The 

first of these is the nearest-neighbour model for ds-PNA. The second is the coarse-

grained Martini model for ds-PNA. The nearest-neighbour model expedites 

sequence selection by allowing ds-PNA binding enthalpies to be predicted from 

primary sequence alone. The Martini model allows longer simulation timescales and 

larger simulation volumes to be studied and can replicate the rupture force vs 

loading rate behaviour of an all-atom representation of Martini ds-PNA for the high 

loading-rate regime.  

 

The central research question, “Can molecular dynamics be used to assess and 

screen the single-molecular binding properties of a candidate bioadhesive?", was 

answered. Molecular dynamics was able to assess a candidate bioadhesive, this 

being ds-PNA, and a model was developed from these simulations such that ds-

PNAs can be screened on the basis of their binding enthalpy. The nuance to this 

research question is that it assumes that understanding these single-molecule 

binding properties is useful to developing a candidate bioadhesive. It is argued here 

that this is the case since these properties are necessarily resolved for 
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distinguishments between single-molecular specific and macromolecular non-

specific effects to be made in any candidate bioadhesive. 

 

This thesis has generated new insights regarding the stabilities of ds-PNA at 

equilibrium and under external force and new tools that enable the rapid collection 

and interpretation of these insights. This thesis is of general interest to the 

development of PNA technologies by characterising their single-molecular 

behaviour using structural properties that are conserved regardless of sequence 

identity and by demonstrating how external force affects their binding properties. In 

addition, this thesis challenges previous assumptions by refuting the applicability of 

a linear MM-GBSA correction7 for the derivation of the nearest-neighbour model 

and by introducing an alternative Morse parameterisation in the Martini model13,14 

to characterise base pairing free energy curves more accurately.  

 

Finally, the methods used in this thesis may be extended to other bioadhesives 

which are missing single-molecular characterisations though their exact 

implementation may differ. For example, a protein bioadhesive does not adhere in 

the same manner as a nucleic acid and decomposing its binding properties into 

monomeric (amino acid) contributions, as per the nearest-neighbour model, may not 

be useful. The results of this thesis can be used to inform the development of ds-

PNA bioadhesives by providing a single-molecular framework through which 

macroscopic observables may be understood.  
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Appendix 

A.1 Chapter 4: Convergence metrics  
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Figure A-1: RMSD distribution histograms for each sequence overlayed with its 

replicas. Independent runs are coloured differently. Sequence names are those of 

one strand and refer to a duplex whose opposing strand is its exact complement.  
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Figure A-2: Convergence of MM-GBSA analysis of binding free energy for 

sequences of different length against the number of frames used. 40,000 frames 

corresponded to 80 ns of simulation.  
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Figure A-3: Convergence of QH analysis of binding entropy for sequences of 

different length against the number of frames used. 40,000 frames corresponded to 

80 ns of simulation. 
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Figure A-4: Convergence of MM-GBSA analysis of binding enthalpy for 

sequences of different length against the number of frames used. 40,000 frames 

corresponded to 80 ns of simulation. 
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A.2 Chapter 4: Binding enthalpies of all 49 ds-PNAs 

 

Table A-1: MM-GBSA binding enthalpies, entropies and free energies for all 

simulated homoduplexes. Standard errors obtained from triplicates.  

ds-PNA Sequence 
−∆𝐆𝟐𝟗𝟖

𝐨   
(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏) 

−∆𝐇𝟐𝟗𝟖
𝐨   

(𝐤𝐜𝐚𝐥 𝐦𝐨𝐥−𝟏)) 
−∆𝐒𝟐𝟗𝟖

𝐨  

(𝐜𝐚𝐥 𝐊−𝟏𝐦𝐨𝐥−𝟏) 

AACTAGATACAGTAATTA 96.87 ± 1.45 161.00 ± 2.63 227.03 ± 0.81 

AAGGCCTT 47.62 ± 0.86 72.98 ± 0.37 94.87 ± 1.99 

AATGGCAGTCGT 69.54 ± 0.49 108.36 ± 0.67 141.00 ± 1.26 

AGGATTCGCCTGCCAGTG 125.67 ± 1.30 173.80 ± 2.10 175.52 ± 1.70 

AGGTTCATGATTTG 88.73 ± 0.22 125.46 ± 0.41 134.44 ± 0.69 

AGTAGA 34.02 ± 0.74 49.99 ± 0.17 51.08 ± 10.0 

ATCTAATTAG 58.88 ± 0.30 85.28 ± 0.29 98.88 ± 0.69 

CAAGTTCAAGTC 74.06 ± 1.16 106.08 ± 0.97 118.31 ± 2.05 

CCAGCGGAAG 69.93 ± 0.98 97.89 ± 0.55 104.15 ± 1.76 

CGTAATGCCGTAGG 96.10 ± 1.06 134.36 ± 2.44 139.62 ± 2.31 

GCCGGC 42.46 ± 0.27 57.80 ± 0.58 58.96 ± 12.9 

GGAACTAGTTGACGGC 108.71 ± 0.63 152.37 ± 0.51 157.98 ± 1.59 

GTAGATCACT 60.34 ± 0.62 87.45 ± 0.66 101.19 ± 0.97 

GTCGAGTT 46.84 ± 0.61 68.60 ± 0.16 82.83 ± 1.88 

GTCGTCGTCGTCGTCGTC 118.60 ± 0.65 168.97 ± 0.56 180.82 ± 1.25 

TAGCGGCCATTATT 92.43 ± 0.52 129.39 ± 0.26 135.20 ± 1.35 

TAGTTGCAGATCCTAT 102.62 ± 0.96 144.36 ± 1.08 151.52 ± 2.08 

TCAGGTAACTTGCCGT 108.21 ± 1.81 150.012 ± 2.47 151.71 ± 3.48 

TGCAGTCC 50.05 ± 1.28 72.56 ± 1.03 85.30 ± 3.49 

TGCGGGATATAT 77.87 ± 1.03 109.42 ± 0.19 116.68 ± 2.81 

TGTTACGACT 49.00 ± 1.17 85.23 ± 0.84 131.83 ± 2.92 

CGAACGATA 50.94 ± 0.75 78.99 ± 0.05 103.27 ± 2.50 

ATTTATTTACGT 65.30 ± 0.73 101.84 ± 0.35 132.69 ± 2.51 

GCTTGCTTATT 63.95 ± 0.73 95.03 ± 0.13 114.10 ± 3.69 

TTACGGGATT 63.68 ± 7.13 92.16 ± 0.44 105.04 ± 4.94 

AGAGCGAGCGCGCTTTT 105.22 ± 1.04 157.66 ± 0.88 186.88 ± 0.59 

CAATCAGGATATGCCG 103.24 ± 0.64 150.92 ± 0.17 170.85 ± 1.91 

ATCGGCCGTGTATATCCGAT 129.83 ± 0.51 189.45 ± 0.40 211.47 ± 1.17 

TCGTATTACTA 64.01 ± 1.27 95.44 ± 0.76 115.27 ± 3.10 

CATATATGGCGGATTA 101.06 ± 0.90 147.51 ± 0.39 166.71 ± 1.69 

GTGCTGGTGGC 74.16 ± 0.87 105.21 ± 0.82 113.98 ± 4.26 

TGCAAGCTTACACA 85.38 ± 1.83 126.30 ± 0.09 147.82 ± 7.02 

CGATTCGAGGCCAGTACG 122.22 ± 0.33 174.14 ± 0.67 185.38 ± 0.71 

GCGGCATGTACGGC 92.61 ± 0.57 134.69 ± 0.30 151.78 ± 1.92 

TCATGCAGGCCGGCCGCG 127.66 ± 0.80 181.31 ± 1.93 191.14 ± 2.87 

TCGTATAGCTCATATT 95.53 ± 1.59 141.82 ± 0.34 166.18 ± 3.58 

GCGGCTAAC 56.61 ± 0.79 83.37 ± 0.35 98.97 ± 1.62 

CGATCG 34.72 ± 0.75 53.08 ± 0.21 69.94 ± 2.04 

AACGTT 28.94 ± 1.57 48.34 ± 0.58 73.48 ± 5.34 
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TAGCTA 32.13 ± 0.49 50.40 ± 0.97 69.62 ± 2.14 

AGGTAACCAG 64.33 ± 0.03 94.98 ± 0.53 112.32 ± 1.94 

AGTGAAGCAG 61.37 ± 0.86 92.00 ± 0.33 112.24 ± 1.77 

TGATCTAC 43.82 ± 1.47 68.02 ± 0.41 90.05 ± 6.30 

GTAGATCACTGT 71.33 ± 1.78 106.82 ± 0.69 129.15 ± 1.20 

GTAGATCACTGTCAC 90.83 ± 1.67 135.41 ± 0.47 160.28 ± 1.17 

GTAGATCACTGTCACAG 108.15 ± 1.99 157.30 ± 0.17 175.91 ± 1.78 

GTAGATCACTGTCACAGAT 117.26 ± 0.46 173.53 ± 0.65 200.04 ± 5.23 

GGAAGCTT 46.95 ± 0.53 70.69 ± 1.41 88.51 ± 2.06 

AGCCGGC 45.58 ± 0.46 67.20 ± 0.64 81.03 ± 0.67 

 

A.3 Chapter 6: ss-PNA sequences for bonded distributions 

 

Table A-2: ss-PNA strands used to determine the bond, angle and dihedral 

distributions in all-atom and Martini PNA. 

ss-PNA Sequence 

AAAA 

ACAC 

AGAG 

ATAT 

CCCC 

GCGC 

GGGG 

GTTG 

TGGT 

TTTT 
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A.4 Chapter 6: Martini and CHARMM bonded distributions 
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Figure A-5: Bond distributions of CHARMM and Martini simulations.  
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Figure A-6: Angle distributions of CHARMM and Martini simulations.  
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Figure A-7: Dihedral distributions of CHARMM and Martini simulations.  
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A.5 Published article: Modeling Peptide Nucleic Acid Binding 

Enthalpies Using MM-GBSA 
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