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ALGRNet: Multi-relational Adaptive Facial Action
Unit Modelling for Face Representation and

Relevant Recognitions
Xuri Ge, Joemon M. Jose, Pengcheng Wang, Arunachalam Iyer, Xiao Liu, Hu Han

Abstract—Facial action units (AUs) represent the fundamental activities of a group of muscles, exhibiting subtle changes that are
useful for various face analysis tasks. One practical application in real-life situations is the automatic estimation of facial paralysis.
This involves analyzing the delicate changes in facial muscle regions and skin textures. It seems logical to assess the severity
of facial paralysis by combining well-defined muscle regions (similar to AUs) symmetrically, thus creating a comprehensive facial
representation. To this end, we have developed a new model to estimate the severity of facial paralysis automatically and is inspired
by the facial action units (FAU) recognition that deals with rich, detailed facial appearance information, such as texture, muscle status,
etc. Specifically, a novel Adaptive Local-Global Relational Network (ALGRNet) is designed to adaptively mine the context of well-
defined facial muscles and enhance the visual details of facial appearance and texture, which can be flexibly adapted to facial-based
tasks, e.g., FAU recognition and facial paralysis estimation. ALGRNet consists of three key structures: (i) an adaptive region learning
module that identifies high-potential muscle response regions, (ii) a skip-BiLSTM that models the latent relationships among local
regions, enabling better correlation between multiple regional lesion muscles and texture changes, and (iii) a feature fusion&refining
module that explores the complementarity between the local and global aspects of the face. We have extensively evaluated ALGRNet
to demonstrate its effectiveness using two widely recognized AU benchmarks, BP4D and DISFA. Furthermore, to assess the efficacy
of FAUs in subsequent applications, we have investigated their application in the identification of facial paralysis. Experimental findings
obtained from a facial paralysis benchmark, meticulously gathered and annotated by medical experts, underscore the potential of utilizing
identified AU attributes to estimate the severity of facial paralysis.

Index Terms—Facial paralysis estimation, Facial action units detection, Facial action units, Skip-BiLSTM, Fusion&Refining

✦

1 INTRODUCTION

Deep learning based facial analysis tasks, such as facial
recognition and facial expression recognition, aim to extract
facial visual features that capture the intricate facial appear-
ance and texture information using well-crafted Convolu-
tional Neural Networks (CNNs). Many existing methods [1],
[2], [3], [4] directly extract a global facial representation from
an entire face image through CNNs to perform subsequent
recognition tasks. However, accurately localizing the rele-
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vant muscle regions that contribute significantly becomes
challenging, thus hindering the utilization of potentially
responsive muscle regions in specific facial analysis tasks,
such as facial paralysis estimation.

Recently, facial action units (AUs) have been defined to
represent the precise muscle activities that capture detailed
facial information. Initially, AUs are used in the Facial
Action Coding System (FACS) [5], which can manually
code nearly any anatomically possible facial expression via
different groups of specific AUs. However, these earlier
methods relying on hand-crafted features, which have two
significant defects: (i) shallow hand-crafted features lack
discrimination in representing facial morphology, and (ii)
existing AU-based applications focus primarily on emotion-
related facial actions, disregarding other decision-making
processes.

On the one hand, deep learning based AU recognition
methods [6], [7], [8], [9], [10] have been explored to enhance
the AU’s feature representation for face analysis. To obtain
rich and detailed facial representations, existing facial AU
recognition methods [6], [8], [9], [10] combine local features
from multiple independent AU branches, each correspond-
ing to a separate AU patch. However, as shown in Fig. 1 (a),
grid-based deep learning methods [6], [7] that divide the
image into fixed grids fail to accurately correspond patches
with AU muscle regions. Multi-branch combination-based
methods [10], [11], [12] refine AU-related features by fusing
global or local features from independent AU branches
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Fig. 1. Illustration of the different schemes for AU detection: (a) the tra-
ditional grid-based feature extraction and classification, (b) the popular
multi-branch combination-based detection methods, and (c) ALGRNet
method: ALGRNet, in comparison with (a) and (b), adaptively adjusts
the AU areas in terms of different individuals based on detected land-
marks, exploits mutual facilitation and inhibition of region-based multiple
branches through a novel bidirectional structure with skipping gates and
refines their irregular representations guided by the global facial feature.

based on pre-defined muscle regions, as shown in Fig. 1 (b).
Nevertheless, these methods overlook the inter-relationship
between multiple AU areas and the local-global context of
each face. The multiple patches related to individual AUs
may have a strong positive or negative latent correlation in
different face states. Here, if multiple AUs jointly affect the
target AU category, it is defined as a positive correlation
(mutual assistance), otherwise a negative correlation (mu-
tual exclusion). For example, adjacent AU2 (“Outer Brow
Raiser”) and AU7 (“Lid Tightener”) will be activated si-
multaneously when scaring and non-adjacent AU6 (“Cheek
Raiser”) and AU12 (“Lip Corner Puller”) will be activated
simultaneously when smiling. Several recent works [13],
[14], [15], [16] have focused on capturing the interactions
among different AUs for local feature enhancement, consid-
ering the relationship of multiple facial patches to achieve
better robustness than using a single patch. For instance, the
studies in [17], [18], [19] incorporated AU knowledge-graph
derived from statistical benchmarks to provide additional
relational guidance for enhancing facial region representa-
tion. Another study [20] utilized the spectral perspective of
graph convolutional network (GCN) to model the AU re-
lationship, requiring an additional AU correlation reference
extracted from EAC-Net [21]. Despite the improvement by
the introduced AU relationship modelling, these methods
rely on the prior knowledge of AU correlation to define a
fixed graph to exploit useful information from correlated
AUs. Other studies [16], [22] employed an adaptive graph
to model AU relationships based on global features, but
they overlooked the local-global feature interactions that
enhance the distinguishability of AUs by exploiting the
complementary global details. Furthermore, these methods
ignored the physiological phenomenons that adjacent re-
lated muscles often exhibit high potential correlation due to
muscle linkage, and the relationship between non-adjacent
related muscles may vary across different expressions and

Partial Facial Action Units
Description Facial Muscle

Inner brow raiser
Outer brow raiser

frontalis (pars medialis)
frontalis (pars lateralis)

Brow lowerer corrugator supercilii
Cheek raiser orbicularis oculi

Nose wrinkler

Upper lip raiser

Lip corner depressor
Lip corner puller

levator labii superioris 
alaeque nasi

mentalis
triangularis

levator labii superioris
zygomaticus major

Chin raiser
Lips part orbicularis oris

Fig. 2. The descriptions and corresponding facial muscles of the partial
facial AUs. The first row of images is the definitions of AU centers based
on the detected landmarks on facial AU detection methods [9], [10], [23]
and the second is a facial paralysis patient with the detected bounding
boxes of potential muscle lesions from [24]. It is clear to observe that the
AU regions can cover most areas of potential muscle lesions.

individuals.
On the other hand, AUs offer independent interpretation

and accurate localization, making them valuable for vari-
ous higher-order decision-making processes beyond facial
expression recognition, such as mental disease diagnosis
[25], depression analysis [26], and deception detection [27].
As depicted in Fig. 2, AUs capture fine-grained facial be-
haviours and possess inherent properties of symmetry and
flexibility, inspiring exploration in higher-order decision-
making tasks. For instance, previous works [26] evaluated
the impact of depression on facial response using FACS-
based [5] methods but relied on shallow hand-crafted AU
features. Similarly, automated FACS-based systems anal-
ysed facial actions in neuropsychiatric patients [28] but
overlooked the relational dependence and physiological
phenomenon of natural linkages between multiple muscle
groups. However, these inherent properties of AUs play cru-
cial roles in real-world face analysis applications, including
facial paralysis estimation, which remains underexplored.
As shown in Fig. 2, facial paralysis is the temporary or
permanent weakness or lack of movement affecting the
muscles on one side of the face, where most AU regions can
cover the potential muscle lesions. Therefore, AU-based au-
tomatic facial paralysis recognition can leverage rich facial
representation and inherent properties of AUs in symmetry
and flexibility by combining well-defined muscle regions
(similar to AUs), one of the facial biometrics’ challenging
and meaningful applications.

Motivated by the aforementioned considerations, we
present a novel approach utilizing a flexible and innovative
model for automatically estimating facial paralysis based
on a novel facial action unit (AU) detection. Our method
introduces two key advancements. Firstly, we propose an
adaptive local-global relational network (ALGRNet) that
operates in an end-to-end manner. This network achieves
exceptional performance in AU detection, highlighting its
impressive representation abilities and its potential to be
seamlessly applied to facial paralysis estimation. To accom-
modate facial variations across individuals, we introduce an
adaptive region learning module that detects landmarks and
corresponding offsets. This aspect becomes crucial due to
individual facial differences, especially when dealing with
symptoms of facial paralysis which often involve displace-
ment changes such as muscle sagging. Drawing inspiration
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from physiological phenomena, which suggest that adjacent
related muscles tend to exhibit high potential correlation. In
contrast, non-adjacent corresponding muscles may display
variations in different expressions and individuals. To this
end, we design a skip-BiLSTM to capture implicit interactive
information exchange among patch-based branches (each
AU corresponds to one branch) via multiple connections,
i.e. sequential and skipping connections. These connections
effectively capture the potential relationships of assistance
and exclusion among the sequential branches, with the
ability to adjust transfer within the BiLSTM [29] for adjacent
patches, while distant patches are connected via skipping-
type gates. As each AU branch is treated independently and
equally, this skip connection method minimizes information
loss compared to traditional BiLSTM. Subsequently, we
introduce a novel feature fusion and refining module to
enhance the local features obtained from the skip-BiLSTM,
guided by global grid-based features. In contrast to previous
basic feature fusion methods [10], [30], our gated fusion
architecture in the feature fusion and refining module ef-
fectively supplements global information, including non-
AU region information, for each local AU region. This is
crucial because different AUs may prioritize different global
information. Secondly, the features learned by ALGRNet can
be utilized either for AU recognition through a multi-branch
classification network or seamlessly integrated into a facial
paralysis estimation classifier with minimal adjustments to
the AU positions. We are the pioneers in investigating the
effectiveness of an end-to-end deep learning-based AU de-
tection model for predicting the severity of facial paralysis.
The intrinsic characteristics of AUs, such as their ability to
represent facial features vigorously, exhibit a degree of sym-
metry and flexibility, making them suitable for aiding in the
automated diagnosis of patients with facial palsy. Existing
methods [31], [32] have demonstrated the feasibility of this
approach, but they lack robust AU recognition capabilities.

Our contributions can be summarized as follows:

• We propose a novel end-to-end AU detection model
that combines adaptive local facial muscle features,
their relationships, and local-global contexts to im-
prove facial representation. This model offers flex-
ibility and applicability in face paralysis diagnosis,
which is a pioneering effort in developing a well-
designed model for this purpose.

• A new adaptive region learning module is proposed
to improve the accuracy of muscles corresponding
to action units and accommodate symmetric muscle
region biases due to individual or lesion differences,
thereby further improving the robustness and flexi-
bility of the model.

• We propose a novel skip-BiLSTM module based on
the natural physiological phenomenons to improve
the representation of local AUs by modelling the mu-
tual assistance and exclusion relationships of indi-
vidual AUs via multiple inter-muscular connections,
i.e. sequential and skipping. And a new gated feature
fusion&refining module, filtering information that
contributes to the target AU, even non-defined AU
areas, is further designed to facilitate more discrimi-
native local AU feature generation.

• The proposed ALGRNet achieves new state-of-the-
art on two AU detection benchmarks, i.e., BP4D
and DISFA, without any external data or pre-trained
models in additional data. Notably, we achieve su-
perior performance to baselines on a collected facial
paralysis dataset (named FPara), which validates
the potential of our ALGRNet for facial paralysis
estimation.

Compared to the AU detection method in our conference
version [23], we propose a new adaptive region learning
module in Section 3.2 to improve muscle regions’ accuracy
and accommodate symmetric muscle region biases due to
lesions or individual differences. In particular, the adaptive
region learning module contains learning of scaling factors
to change the size of the corresponding muscle regions and
offset learning to adjust landmark differences for different
individuals and disease presentations slightly. This suggests
that adaptive region learning could help the model to focus
accurately on the muscle region changes corresponding to
each AU and to obtain better robustness and generalization
ability. In addition, we did not evaluate the generalizability
and transferability of the AU detection presented in the
previous version, unlike in this study. In this study, we
innovatively explore and apply the proposed ALGRNet to
facial paralysis estimation, which improves the effectiveness
of facial paralysis recognition and estimation by focusing on
activation features of multiple symmetrical muscle regions
and global facial information. Specifically, we exploit a facial
paralysis dataset that medical professionals annotate to four
grades of facial paralysis degrees, i.e. normal, low, medium
and high grade. For facial paralysis estimation, we focus on
the muscle areas as newly defined PAUs that are preferred
in the facial paralysis ratings to the AU predefined muscle
regions in traditional AU detection tasks. Due to the inde-
pendent interpretation of AUs, the flexible changes in AU
positions do not affect the representation capability of the
face features. Finally, we combine the multiple symmetrical
muscle region features enhanced by the interaction, and the
useful global information, to obtain the final facial features
for the facial paralysis grade classification. To the best of
our knowledge, there has yet to be any existing work in
the literature on estimating facial paralysis using a well-
designed AU detection model. Compared with our earlier
work [23], we also provide more quantitative evaluations to
show the effectiveness and transferability of our ALGRNet
in facial paralysis estimation.

2 RELATED WORK

2.1 Facial Action Units Detection

Automatic AU detection is a task that detects the movement
of a set of facial muscles. Recently, patch-learning based
methods are the most popular paradigms for AU detection
[33], [34], [35], [36], [37]. For instance, [38] used CNNs and
BiLSTM to extract and model the image regions for AUs,
which are pre-selected by domain knowledge and facial
geometry. However, all the above methods need to pre-
defined the patch location first. To address these issues, [9]
proposed to jointly estimate the location of landmarks and
the presence of action units in an end-to-end framework,
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where landmarks can also use to compute the attention map
for each AU separately. Recent works [13], [14], [15], [16],
[39] explicitly take into consideration the linkage relation-
ship between different AUs for AU detection, which relies
on action unit relationship modelling to help improve recog-
nition accuracy. Typically, [40] exploited the relationships
between AU labels via a dynamic Bayesian network. [18]
embedded the relations among AUs through a predefined
graph convolutional network (GCN). [17] integrated the
prior knowledge from FACS into an offline graph, which can
construct a knowledge graph coding the AU correlations.
However, these methods require prior connections by count-
ing the co-occurrence probabilities in different datasets. [16],
[19], [22] applied an adaptive graph to model the relation-
ships between AUs based on global features, ignoring local-
global feature interactions.

The most relevant previous studies to our work are [9],
[10], which combine AU detection and face alignment into
a multi-branch network. Different from these methods, our
proposed ALGRNet can adaptively adjust the target muscle
region corresponding to each AU and utilizes the learned
mutual assistance and exclusion relationships between the
target muscle and other muscle regions to enhance the
feature representation of the target AU. Doing so allows us
to provide more robustness and interpretability than [10].

2.2 Facial Paralysis Estimation
Facial paralysis estimation has recently attracted extensive
research attention [32], [41], [42], due to the significant
psychological and functional impairment to patients. Not-
tingham system [43] is a widely accepted system for the
clinical assessment of facial nerve function, which is similar
to House-Brackmann (H-B) [44]. In addition, over twenty
other methods of recognizing and assessing facial paralysis
are available in the literature. However, these methods are
about facial paralysis by medical professionals and are time-
consuming and subjective. More recently, deep learning
has been widely applied for facial analysis, including face
recognition, face alignment, etc. [45] and [46] proposed two
efficient quantitative assessments of facial paralysis based
on the detected key points. [47] proposed to obtain the
facial paralysis degree by calculating the changes in the
surface areas of a specific facial region. [48] considered
both static facial asymmetry and dynamic transformation
factors in evaluating the degree of facial paralysis. However,
most existing methods only use deep learning methods to
pave the way for physical computation and do not directly
model and predict the depth features of a face image.
In addition, they exploit hand-crafted features and post-
processing to obtain the final result. Although this increases
the potential for interpretation, handcrafted features are not
discriminative enough to represent facial morphology due
to their shallow natures. In addition, we intend to trigger
the signs that a patient may have the disease as early as
possible so that the patient can be further diagnosed by
a medical professional, which will facilitate the potential
patient receiving treatment earlier. Recently there are many
new approaches [1], [2], [3], [4] extracted facial appearances
with high-level semantic features as input to the classifier
via popular convolutional neural networks in an end-to-
end model. However, while these methods extracted coarse

facial representations with the help of robust convolutional
neural networks, they lacked fine-grained information [49],
[50] about accurate muscle regions.

In contrast to these existing methods, we utilize a novel
end-to-end framework (ALGRNet) to predict the grade of
facial paralysis, which takes into account local AU locations,
features, inter-relationships, and local-global contexts.

3 APPROACH

The framework of the proposed ALGRNet is presented in
Fig. 3, which can perform AU detection and facial paralysis
estimation. ALGRNet is composed of four main modules,
i.e., adaptive region learning module (Subsection 3.2) for
adaptive muscle region localisation, a skip-BiLSTM mod-
ule (Subsection 3.3) for mutual assistance and exclusion
relationship modelling, a feature fusion&refining module
(Subsection 3.4) for refining features of irregular muscle
regions, and a multi-classifier module (Subsection 3.1) for
predicting the grade of facial paralysis.

3.1 Overview of ALGRNet
For AU detection or facial paralysis estimation, our method
uses a multi-branch network [9], [10], [51], where each
branch corresponds to a specific predefined AU or PAU
(defined in Fig. 4). Due to patient confidentiality, we display
data for AU detection using a generic image in Fig. 3.) In
contrast to previous methods, we are exploiting the relation-
ship between multiple AUs related to symmetrical muscle
areas, which plays a crucial role in building a robust facial
palsy detection model. In addition, due to the diversity
of expression, lesion extent, and individual characteristics,
we also attempted to learn adaptive muscle region offsets
and scaling factors for each muscle region. To this end,
we design three modules (adaptive region learning module,
skip-BiLSTM module, and feature fusion&refining module)
based on the established multi-branch network that can
fully exploit inter-regional and local-global feature interac-
tions.

We first adapt a hierarchical and multi-scale region learn-
ing network from [9] as our stem network, which extracts
the grid-based global features and the local region features.
However, unlike [9], we add two simple linear-based net-
works combined with the previous face alignment network,
named adaptive region learning module (detailed in Section
3.2), to learn the offsets and scaling factors for each region
adaptively. After that, local patches A = {A1, A2, ..., An}
are computed from the learned locations and their features
V = {v1, v2, ..., vn} can be extracted through the stem
network, where n is the numbers of selected patches. For
the sake of simplicity, we do not repeat here the detailed
structure of the stem network [9].

In our ALGRNet, and contrast to the traditional se-
quence spreading of LSTM, we design a novel skip-BiLSTM
module (detailed in Section 3.3) to address the lack of suffi-
cient delivery of local patch information between individual
branches, which can transmit information in two ways
(sequential delivery and skipping delivery) in both two
directions (forward and backwards). The sequential delivery
of information enables full exploration of the contextual re-
lationships between adjacent patches. The skipping delivery
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Fig. 3. The overall architecture of the proposed ALGRNet for facial paralysis estimation or AU detection. The location definition of salient muscle
regions (as new PAUs) for facial paralysis estimation is detailed in the Fig. 4 and the definition used for AU detection is from [10]. We utilize a
simple landmark localization network to detect the landmarks and two linear-based network to learn the offsets and scaling factor of AU centers,
which are used to compute local AU patches. We then feed the features into the novel multi-branch network with a skip-BiLSTM module and a
feature fusion&refining module, with each branch corresponding to an AU (each AU contains two relatively symmetrical muscle areas). The skip-
BiLSTM module explores positive and negative relations among different AU branches by different information delivery options. And the feature
fusion&refining module in each branch helps the local AU region to fit irregular shape guided by the global grid-based feature. Finally, a multi-label
binary-classifier for AU detection is employed to predict individual AU activation probabilities and a multi-class classifier for facial paralysis estimation
is used to predict the grade of facial paralysis.

highlights the interaction of information from non-adjacent
related patches. After skip-BiLSTM, we get a set of the local
patch features S = {s1, s2, ..., sn}, which are expected to
have all the valuable information from adjacent and non-
adjacent patches.

Furthermore, to deal with irregular muscle areas, a novel
feature fusion&refining module (detailed in Section 3.4) is
developed to refine the local patches to obtain salient micro-
level features for the global facial feature G. Finally, the new
patch-based representations R = {r1, r2, ..., rn} for AUs
are obtained by integrating local muscle features and global
facial features.

This work integrates face alignment and AU detection
(or facial paralysis estimation) into an end-to-end learning
model. We aim to learn all the parameters jointly by min-
imizing face alignment loss and facial paralysis estimation
loss (or facial AU detection loss) over the training set. The
face alignment loss is defined as:

Lalign =
1

2d2o

m∑
i=1

[(xi − x̂i)
2 + (yi − ŷi)

2], (1)

where (xi, yi) and (x̂i, ŷi) denote the ground-truth (GT)
coordinate and corresponding predicted coordinate of the
i-th facial landmark, and do is the ground-truth inter-ocular
distance for normalization.

In this paper, following [10], we also regard facial AU
recognition as a multi-label binary classification task. It
can be formulated as a supervised classification training

objective as follows,

Lau = − 1

n

n∑
i=1

wi[pilogp̂i + (1− pi)log(1− p̂i)], (2)

where pi denotes the GT probability of occurrence for the
i-th AU, which is 1 if occurrence and 0 otherwise, and p̂i
denotes the predicted probability of occurrence. wi is the
data balance weights, which is employed in [9]. Moreover,
the loss of facial paralysis estimation is formulated as:

Lpar = −wiqLog(q̂), (3)

where q and q̂ are the label and predicted probability
for the facial paralysis grades, respectively. wi is the data
balance weights obtained by counting the different classes
in the training set. Finally, we optimize the whole end-to-
end network by minimizing the joint loss function L =
Lau(or Lpar) + λLalign over the training set.

3.2 Adaptive Region Learning Module
Instead of the predefined muscle regions based on land-
marks, and given the nonconformity of facial areas, es-
pecially with facial palsy, we use two simple, fully con-
nected networks to adaptively learn the offsets and scaling
factors for all muscle regions, respectively. Specially, we
utilize an efficient landmark extraction network after the
stem network to extract the landmarks L = {l1, l2, ..., lm}
(m is the numbers of landmarks) similar to [10], includ-
ing three convolutional layers connected to a max-pooling
layer. Simultaneously, two networks containing two fully-
connected layers are used to get the adaptive offsets O =
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Fig. 4. New definitions for the 12 locations of muscle centers of facial
paralysis estimation, which are marked in red or mixed red. The de-
tected landmarks are marked in white or mixed red. “Scale” denotes the
distance between two inner eye corners.

{o1, o2, ..., o2n} and scaling factors E = {e1, e2, ..., en}, re-
spectively. According to the learned landmarks, offsets and
scaling factors, local patches A are calculated. In particular,
we first use the same rules in [10] to get the locations of
target muscle area centers based on the detected landmarks
and then update the locations by adding the learned offsets.
Please note that, we change the predefined muscle region
centers according to clinical diagnosis experience to better
fit the high-potential lesion regions of facial paralysis, as
shown in Fig. 41, based on the detected landmarks when
we apply ALGRNet on facial paralysis estimation. When
defining the new salient muscle regions as new PAUs (note
that each PAU contains two muscle regions and the number
of PAUs is the same with AUs.), we maintain its roughly
symmetrical distribution on faces. For a clearer description, we
do not distinguish between AUs and PAUs in the follow-up, and
default to PAUs for facial paralysis estimation. Different from
[10], we make the scaling factor E learnable rather than a
fixed value, where ei is the width ratio between the region
of AUi and whole feature map. After that, we generate an
approximate Gaussian attention distribution for each region
following [9]. Finally, based on the learned regions, local
patch features V are extracted via the stem network.

3.3 Skip-BiLSTM

Fig. 3 (b) shows the detailed structure of our skip-BiLSTM
module for contextual and skipping relationship learning.
Specifically, we extract a set of local patch features V =
{v1, v2, ..., vn} from the stem network, and feed them to
skip-BiLSTM. Distinct from the prior works [8], we regard
the multiple patches as a sequence structure from top to
bottom, which can transfer information by a Bi-directional
LSTM based model [29] with our skipping-type gate. Differ-
ent from the traditional BiLSTM or tree-LSTM [52], [53], our
skip-BiLSTM can directly calculate the correlation between
a target AU and all other AUs. For the t-th patch (t > 1),
the extracted feature vt is used to learn the weights with
forward hidden states H = {h1, ..., ht−1} by the skipping-
type gates, which can determine the correlation coefficient
between past AUs and current AU. And then the new states
Ĥ = {ĥ1, ..., ĥt−1} and vt are fed into the t-th forward cell
in the skip-BiLSTM to learn the association weights, which

1. Due to patient confidentiality agreements, we cannot show real
patients with facial palsy. This example image is from BP4D.

N l! Normal C Conv2D + Sum⊙ σ SigmoidProduct

Fig. 5. The architecture of our feature fusion&refining module guided by
global face feature.

can promote the transfer of relevant AUs information. The
above process can be formulated as:

−→
ht = Cell(

t−1∑
j=1

−→
ĥj , vt), (4)

−→
ĥj =

−→
hjfj , (5)

fj = σ(GAP(Wj(
−→
hjvt))), (6)

where Cell(·) indicates the basic ConvLstm cell [54], and
GAP denotes the global average pooling operation. Wj is
the parameters of mapping function, in which we used
Conv2D. σ denotes sigmoid function. We obtain the t-
th patch feature for backward delivery, which follows the
identical forward method as:

←−
ht = Cell(

n∑
j=t+1

←−
ĥj , vt), (7)

In order to fully promote the information interactive
among individual AUs, the final representation for each
patch is computed as the average of the hidden vectors in
both directions, as well as the original patch feature:

st = vt + (
−→
ht +

←−
ht)/2, (8)

3.4 Feature Fusion&Refining Module

To exploit the useful global face feature, we design a gated
fusion architecture and a refining architecture (F&R) that can
selectively balance the relative importance of local patches
and global face grids. We add these two architectures on
each local branch because different local muscles may fo-
cus on different global details. The grid-based global face
feature G is extracted using a simple CNN with the same
structure as the face alignment network [10]. As shown in
Fig. 5, after obtaining the learned t-th local patch feature, it
is fused with the grid-based global feature G by the fusion
architecture, which can be formulated as:

α = σ(C
′

gG+C
′

lst), (9)

r̂t = α⊙ ||CgG||2 ⊕ (1− α)⊙ ||Clst||2, (10)

where σ is the sigmoid function, and || · || denotes the l2-
normalization. C

′

∗ and C∗ denote the Conv2D operation.
⊕ denotes the element-wise weighted sum of ||CgG||2 and
||Clst||2 according to the learned gate vector α.

The final local fusion feature st for t-th patch refined
by our F&R module is shown in Fig. 5. F&R module con-
tains three blocks. Each block consists of two convolutional
layers and a maxpooling layer. Then multi-patch features
R are fused into a multi-class classifier for the paralysis
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TABLE 1
Overview information of our collected facial paralysis dataset.

Grade Normal Low Medium High

Num. of Video 20 29 20 20

Num. of Frame 9049 16970 11019 10547

grade estimation or sent to a multi-label binary classifier
to calculate the occurrence probabilities of individual AUs
for AU detection.

4 EXPERIMENTS

4.1 Dataset

We evaluate the effectiveness of the proposed approach
for facial AU detection on popular BP4D [56] and DISFA
[57] datasets. BP4D consists of 328 facial videos from 41
participants (23 females and 18 males) who were involved in
8 sessions. Similar to [10], [12], we consider 12 AUs and 140K
valid frames with labels. DISFA consists of 27 participants
(12 females and 15 males). Each participant has a video
of 4, 845 frames. We also limited the number of AUs to 8,
similar to [9], [10]. Compared to BP4D, the experimental
protocol and lighting conditions deliver DISFA to be a
more challenging dataset. Following the experiment setting
of [10], we evaluated the model using the 3-fold subject-
exclusive cross-validation protocol.

To evaluate the effectiveness of our ALGRNet for facial
paralysis severity estimation, we exploited a facial paralysis
dataset from the NHS, Scotland, named FPara (the details
in Table 1), which consists of 89 videos of facial paralysis pa-
tients performing various types of facial paralysis exercises
inline with the House-Brackmann (H-B) scale [44]. Each
video consisted of facial paralysis patients performing exer-
cises, such as raising eyebrows, closing eyes gently, closing
eyes tightly, scrunching up their face and smiling, etc. Please
note that all videos do not include patient rest time and
remove some pauses, thus ensuring that our frame-based
classification method can be fully applied. They were part of
a previous study on facial paralysis with patient consent for
research [58]. These videos are assigned an H-B scale from
1 to 6, one normal and six severe with no body movements.
We then further split into four grades, such as normal (H-B
score=1), low (H-B score=2), medium (3≤H-B score≤4) and
high (5≤H-B score≤6) grades. FPara data is summarised
in Table 1. All facial paralysis grades are evaluated using
subject-exclusive 3-fold cross-validation, where two folds
(about 80%) are used for training, and the remaining one
is used for testing (about 20%).

4.2 Implementation Detail

Our model is trained on a single NVIDIA Tesla V100 GPU
with 32 GB memory. The whole network is trained using Py-
Torch [59] with the stochastic gradient descent (SGD) solver,
a Nesterov momentum [60] of 0.9 and a weight decay of
0.0005. The learning rate is set to 0.01 initially, with a decay
rate of 0.5 every two epochs. The maximum epoch number
is set to 20. Aligned faces are further randomly cropped into
176× 176 and horizontally flipped to enhance the diversity

of training data. Regarding the face alignment network and
stem network, we set the value of the general parameters
to be the same with [10]. The filters for the convolutional
layers in refining architecture are used 3 × 3 convolutional
filters with a stride one and a padding 1. In our paper, all of
the mapping Conv2D operations used 1 × 1 convolutional
filters with a stride one and a padding 1. The dimensionality
of the hidden state in ConvLstm cell is set to 64. The filters
for the convolutional layers in ConvLstm cell are the same
as the refining architecture. λ is set to 0.5 for jointly optimiz-
ing AU detection (or facial paralysis estimation) and face
alignment. The ground-truth annotations of 49 landmarks
of training data is detected by SDM [61]. Different from
JÂA-Net [10], we averaged the predicted probability of the
local information and the integrated information as the final
predicted activation probability for each AU, rather than
simply using the integrated information of all the AUs. The
main difference between our ALGRNet applying to facial
palsy and AU detection lies in the final classifier, where
facial paralysis is four categories, and AU detection is two
categories per AU.

4.3 Performance Metric.
We evaluate the performance of all methods in terms of the
F1 score (%), which has been widely used for classification.
The F1-frame score is the harmonic mean of the Precision
P and Recall R, calculated by F1 = 2PR/(P + R). For
comparison, we calculate the F1 score for all facial paralysis
grades on FPara and for all the AUs on DISFA and BP4D
and then average them (denoted as Avg.) separately with
“%” omitted.

4.4 Overall Performance of Facial AU Detection
We compare the proposed ALGRNet for AU detection with
several single-image based baselines in Table 2 and Table 3.
The performances of the baselines in Table 3 and 2 are their
reported results.

For a more comprehensive display, we also show meth-
ods (marked with ∗) [16], [22], [55] that use additional
data, such as ImageNet [62] and VGGFace2 [63], etc, for
pre-training. Since our stem network only consists of a
few simple convolutional layers, even if we pre-trained on
additional datasets, it is unfair compared to pre-training
on deeper feature extraction networks, such as ResNet50
[64]. Our results are still excellent compared with theirs,
which demonstrates the superiority and effectiveness of our
proposed learning scheme. We omit the need for additional
modal inputs and non-frame-based models [65], [66].

Quantitative comparison on BP4D: We report the per-
formance comparisons between our ALGRNet and baselines
on BP4D in Table 2. As it can be observed, our ALGRNet
significantly outperforms all the other methods in terms
of F1-frame score and achieves the first and second places
for most of the 12 AUs annotated in BP4D. Our ALGRNet
achieves 1.1% higher average F1-frame score compared with
the latest state-of-the-art method JÂA-Net.

Quantitative comparison on DISFA: We also report the
performance of our proposed ALGRNet on DISFA. Table
3 shows the performance of our ALGRNet is the best in
terms of average F1 score compared with all baselines. And
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TABLE 2
Performance comparisons on F1-frame score of diverse AU detection for 12 AUs on BP4D. All values are in %. * means the method employed

pretrained model on additional dataset, such as ImageNet and VGGFace2, etc, so we do not compare. The first and second places are marked
with the bold font and underline, respectively.

Method
AU Index

Avg.
1 2 4 6 7 10 12 14 15 17 23 24

DSIN [51] 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.8 38.8 41.6 58.9
LP-Net [8] 46.9 45.3 55.6 77.1 76.7 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0
ARL [12] 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 55.4 61.1

JÂA-Net [10] 53.8 47.8 58.2 78.5 75.8 82.7 88.2 63.7 43.3 61.8 45.6 49.9 62.4
HMP-PS* [16] 53.1 46.1 56.0 76.5 76.9 82.1 86.4 64.8 51.5 63.0 49.9 54.5 63.4

DML* [55] 52.6 44.9 56.2 79.8 80.4 85.2 88.3 65.6 51.7 59.4 47.3 49.2 63.4
ALGRNet (Ours) 51.2 48.2 57.3 77.9 76.4 84.9 88.2 64.8 50.8 62.8 47.6 51.9 63.5

TABLE 3
Performance comparisons on F1-frame score of diverse AU detection for 8 AUs on DISFA. All values are in %. The first and second places are

marked with the bold font and underline, respectively.

Method
AU Index

Avg.
1 2 4 6 9 12 25 26

DSIN [51] 42.4 39.0 68.4 28.6 46.8 70.8 90.4 42.2 53.6
LP-Net [8] 29.9 24.7 72.7 46.8 49.6 72.9 93.8 65.0 56.9
ARL [12] 43.9 42.1 63.6 41.8 40.0 76.2 95.2 66.8 58.7

JÂA-Net [10] 62.4 60.7 67.1 41.1 45.1 73.5 90.9 67.4 63.5
HMP-PS* [16] 21.8 48.5 53.6 56.0 58.7 57.4 55.9 56.9 61.0

DML* [55] 62.9 65.8 71.3 51.4 45.9 76.0 92.1 50.2 64.4
ALGRNet (Ours) 63.8 65.4 73.6 44.5 54.1 74.0 94.7 69.9 67.5

TABLE 4
Performance comparisons on F1-frame score (in %) of diverse facial

paralysis estimation for 4 grades on FPara.

Method
Facial Paralysis Grades

Avg.
Normal Low Medium High

ResNet18 [64] 99.8 50.7 47.7 67.9 66.5

ResNet50 [64] 99.9 53.9 54.7 71.4 70.0

Transformer-based [67] 100 63.0 58.6 68.7 72.6

JÂA-Net [10] 100 55.9 62.8 72.5 72.8

ALGRNet (Ours) 100 55.9 72.1 73.2 75.4

our approach significantly outperforms all other methods
for most of the 8 AUs annotated in DISFA. Compared
with the existing end-to-end feature learning and multi-
label classification methods DSIN [51] and ARL [12], the
average F1-frame score of our proposed ALGRNet get 13.9%
and 8.8% higher, respectively. Moreover, compared with
the multi-branch combination-based state-of-the-art method
JÂANet [10], our ALGRNet achieves 4.0% improvements in
terms of average F1-frame score.

4.5 Overall Performance of Facial Paralysis Estimation

Different from facial AU detection, the existing deep-
learning-based facial paralysis estimation methods are rare,
so we apply currently popular deep-learning classification
methods, such as the ResNet [64] and Transformer [68],
on our collected facial paralysis dataset (FPara). Besides,
we also compare it with the state-of-the-art AU detection

approach, JÂA-Net [10]. Specially, we evaluate the following
methods:

• ResNet18 and ResNet50 [64]: These methods use
different depth layers based on ResNet to model the
input face images, which are similar to [69].

• Transformer-based method [67]: This baseline is mo-
tivated from self-attention and uses the Transformer
[68] architecture. The output of the Transformer-
based encoder [67] is treated as the latent representa-
tion for the input of the multi-label AU classifier.

• JÂA-Net [10]: This is a recently proposed multi-
branch combination-based AU detection method,
which can extract precise local muscle features
thanks to a joint facial alignment network.

The first and second places are marked with bold font and
“ ”, respectively.

Quantitative comparison on the collected FPara: Facial
paralysis estimation results by different methods on our
FPara are shown in Table 4. It has been shown that our
ALGRNet outperforms all its competitors with impressive
margins. Specifically, JÂANet is the latest state-of-the-art
method that combines AU detection and face alignment into
an end-to-end multi-label multi-branch network. Compared
to the facial paralysis estimation model based on the state-
of-the-art AU detection method JÂA-Net [10], our ALGR-
Net achieves 2.6% improvements in terms of average F1
score. The main reason lies in our ALGRNet overcomes the
problem of non-transferable information between branches
in the JÂA-Net and adaptively adjusts the muscle regions
corresponding to the AUs. Moreover, the average F1 score
of our ALGRNet gets 2.8% higher compared to the popular
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TABLE 5
Ablation study of ALGRNet for 8 AUs on DISFA and for 4 grades on FPara. All values are in %.

Methods
Setting AU Index

Avg.
Paralysis Grade

Avg.
S-B F&R Ada 1 2 4 6 9 12 25 26 Nor. Low Med. Hig.

w/o full 47.1 61.1 66.3 44.7 52.2 74.9 92.2 66.2 63.1 99.8 54.6 64.1 70.9 72.3
w/o F&R

√
62.6 64.2 72.4 42.3 49.9 76.1 93.5 72.6 66.7 100 54.7 66.2 72.6 73.3

w/o S-B
√

58.7 65.2 73.5 43.9 53.5 72.2 94.1 64.7 65.7 99.9 55.1 65.3 71.3 72.9
w/ Bi

√
61.1 58.4 70.9 45.5 47.9 74.9 92.5 70.8 65.2 99.8 57.1 67.3 72.8 74.3

w/o Ada
√ √

62.6 64.4 72.5 46.6 48.8 75.7 94.4 73.0 67.3 100 57.8 68.7 72.0 74.6
ALGRNet

√ √ √
63.8 65.4 73.6 44.5 54.1 74.0 94.7 69.9 67.5 100 55.9 72.1 73.2 75.4

Transformer-based approach [67], although slightly inferior
in low-grade recognition. We notice that our method is
lower than that of [67] on the set with low facial paral-
ysis grade. The main reason is due to the significantly
imbalanced data distribution of the facial paralysis dataset,
i.e., much more patients with low grade than those with
medium- and high-grade. In this case, the average F1 score
can better reflect a model’s performance over the whole
grade range.

The eventual experimental results of our ALGRNet
demonstrate that it is successful in boosting AU detection
accuracy on BP4D and DISFA and having high generaliza-
tion ability on our new facial paralysis dataset.

4.6 Ablative Analysis

To fully examine the impact of our proposed adaptive re-
gion learning module, skip-BiLSTM module and feature fu-
sion&refining module, we conduct detailed ablative studies
to compare different variants of ALGRNet for AU detection
on DISFA and facial paralysis estimation on FPara.

4.6.1 Effects of adaptive region learning module
To cancel out the adaptive region learning (indicated w/o
Ada), we follow the same experiment setting as [10] (It
means each scaling factor e is set to 0.14.) to predefined
muscle region based on the detected landmarks for each
AU/PAU. In Table 5, ALGRNet decreases its F1 score to
74.6% and 67.3% on the collected FPara and DISFA re-
spectively. Our whole ALGRNet may show slightly lower
accuracy than the method without using adaptive region
learning. This is because of the severe data imbalance issues
of individual classes. After using adaptive region learning,
our method may sacrifice the accuracies of a few AUs (or
grades) while improving the overall accuracy.

4.6.2 Effects of skip-BiLSTM
In Table 5, when the skip-BiLSTM module is removed
(indicated by w/o S-B), ALGRNet (without adaptive region
learning module) shows an absolute decrease of 1.7% and
1.6% in the average F1 score for facial paralysis estima-
tion on FPara and AU detection on DISFA, respectively.
In addition, to explicitly validate the effectiveness of our
skipping operation, we use the basic BiLSTM [29] (indicated
by w/ Bi) instead of skip-BiLSTM for information sequential
transfer across different branches in the ALGRNet (also with
Fusion&Refining module), ALGRNet obtains lower average
F1 scores of 74.3% and 65.2% on FPara and DISFA, re-
spectively. The performance reduction verifies that roughly

TABLE 6
Mean error (lower is better) results of different face alignment models

on BP4D, DISFA and FPara. All values are in %.

Methods BP4D DISFA FPara

JÂA-Net 3.80 3.87 5.15

ALGRNet 3.78 3.29 5.18

defining the relationships between branches related to AU
symmetry regions from top to bottom may not be the best
way to model the real relationships between AUs. Notably,
skipping operation can significantly improve performance,
suggesting that our skip-type gates play an important role
in our model.

4.6.3 Effects of feature fusion&refining module

Without the fusion&refining module (indicated by w/o
F&R in Table 5 for facial paralysis estimation and AU
detection, respectively), we directly conduct classification
over the output of skip-BiLSTM. The average F1 score
drops significantly from 74.6% to 73.3% on FPara and from
67.3% to 66.7% on DISFA, due to the lack of supplementary
information from the global face for each patch. In addition,
we simply fuse the global features to the local AU features
following [9], [10], due to the lack of effective information
filtering, the average F1 score drops from 74.6% to 73.9% on
FPara and from 67.3% to 66.9% on DISFA. This suggests
that the refined local region features from the proposed
fusion&refining module, guided by the grid-based global
features, significantly contribute to our model.

Finally, after simultaneously removing all the proposed
adaptive region learning module, skip-BiLSTM and fu-
sion&refining module (marked by w/o full in Table 5),
a significant performance degradation in facial paralysis
estimation and AU detection can be observed, i.e., a 3.1%
drop on FPara and a 4.4% drop on DISFA in terms of average
F1 score. This sufficiently demonstrates that the potential
mutual assistance and exclusion relationships between the
adaptive AU patches, complemented by the global facial
features, can significantly improve the performance of facial
AU detection. Furthermore, for facial paralysis estimation,
the adaptive local-global interaction based on symmetrical
muscles (PAUs) greatly enhances the semantic representa-
tion of facial context, obtaining accurate semantic informa-
tion from potential lesion regions and contextual relational
help from the global face.
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Fig. 6. Class activation maps that show the discriminative regions for
different patients with different expressions on FPara datasets. Due
to patient confidentiality agreements, we process patient images with
strong transparency.
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Fig. 7. Class activation maps that show the discriminative regions for
different AUs in terms of different expressions and individuals on DISFA
and BP4D datasets.

4.7 Results for Face Alignment

We integrate face alignment and facial paralysis estima-
tion into our end-to-end ALGRNet, which can benefit each
other as they are coherently related. For example, detected
landmarks can help the model focus on the exact location
of regions with high probability of muscle lesions as PAU
patches. As shown in Table 6, compared with baseline
method JÂA-Net [10], our ALGRNet performs comparably
to baseline on FPara and better on BP4D and DISFA. The
robustness of the adaptive region learning module allows
our ALGRNet to outperform JÂA-Net in facial paralysis es-
timation and AU detection, even if sometimes with slightly
lower landmark detection accuracy.

4.8 Visualization of Results

Fig. 6 shows four examples of the learned class activation
maps of ALGRNet (the input of classifier) corresponding
to different patients. It suggests that our method can mine
the relationship between related muscle regions while ac-
curately locating the muscle regions where the underlying
disease occurs, thus enhancing the contextual detail of the
face representation. For a clearer and adequate display, four

examples of the learned class activation maps of ALGRNet
(the outputs of F&R module) from two different datasets
are given, two of which are from BP4D and two are from
DISFA, containing visualization results of different genders
with different AU categories. Through the learning of AL-
GRNet, not only the concerned AU regions can be accurately
located, but also the positive (in red) or negative (in blue)
correlation with other AU areas can be established and
other details of the global face can be supplemented. This
obviously improves the flaws of the excessive localisation of
JÂA-Net [10] and the negative influence of unrelated regions
of ARL [9]. In addition, it also adapts well to irregular
muscle areas for different AUs. The heatmaps for the same
AU category in the different examples are broadly consistent
but also vary slightly by the individual, demonstrating
that our ALGRNet can learn certain rules across different
datasets and adaptively adjust to different samples.

5 DISCUSSION

ALGRNet, an advanced facial representation stem network
based on adaptive facial action units with multi-relational
modelling, offers several notable advantages. Firstly, AL-
GRNet demonstrates outstanding performance in AU de-
tection, showcasing its remarkable facial representation ca-
pabilities. This enables its application in a wide range of
higher-order decision-making processes. Secondly, we have
demonstrated that the features learned by ALGRNet can
be effectively utilized either for AU recognition through a
multi-branch classification network or seamlessly integrated
into a facial paralysis estimation classifier with minimal
adjustments to the AU positions. Through identifying sym-
metrical AUs, we have developed an effective facial palsy
detector. This pioneering work explores the effectiveness of
an end-to-end deep learning-based AU detection model in
predicting the severity of facial paralysis. Facial paralysis
is a debilitating condition that affects numerous individu-
als worldwide. Experimental findings from a meticulously
gathered and annotated facial paralysis benchmark, con-
ducted by medical experts, highlight the potential of utiliz-
ing identified AU attributes to estimate the severity of facial
paralysis.

Limistations. One limitation of this study is the need
to train the two tasks (AU and facial paralysis) separately
using distinct datasets, rather than combining them within a
single model. This is because there is still not known dataset
with simultaneous AU and face paralysis annotations. An
additional limitation is the low accuracy of a few categories
due to category imbalance, although we have achieved the
best overall results. In this case, the average F1 score can
better reflect a model’s performance over the whole grade
range.

6 CONCLUSION

This paper introduces ALGRNet, an innovative adaptive
local-global relational network designed for detecting facial
action units and also in estimating the severity of facial
paralysis through AU detection. ALGRNet capitalizes on
the precision and adaptability of muscle region localiza-
tion and leverages the comprehensive facial semantic fea-
ture representation offered by AU detection models. By
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harnessing the interactive relationships and interplay be-
tween adaptive and symmetrical muscle regions, ALGRNet
effectively captures the dynamic nature of these regions
across various expressions and individual characteristics.
ALGRNet employs a skip-BiLSTM mechanism to facilitate
efficient information exchange, allowing for seamless trans-
fer of local muscle features while modelling the potential
assistance and exclusion relationships among AU branches.
Furthermore, a novel feature fusion and refining module
is incorporated into each branch, promoting the synergy
between local features and grid-based global features while
accommodating irregular muscle regions. We substantiate
the effectiveness of our approach by conducting comprehen-
sive experiments on two widely utilized benchmarks for AU
detection. Furthermore, we have successfully applied AU
detection to the detection of facial paralysis by identifying
symmetrical Action Units (PAUs). Our experiments on a
benchmark specifically designed for facial paralysis estima-
tion highlighted the remarkable superiority of our method
in accurately estimating the severity of facial paralysis.
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