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Abstract: In this study, we use LSTM (Long-Short-Term-Memory) networks to evaluate Magnetic
Resonance Imaging (MRI) data to overcome the shortcomings of conventional Alzheimer’s disease
(AD) detection techniques. Our method offers greater reliability and accuracy in predicting the
possibility of AD, in contrast to cognitive testing and brain structure analyses. We used an MRI
dataset that we downloaded from the Kaggle source to train our LSTM network. Utilizing the
temporal memory characteristics of LSTMs, the network was created to efficiently capture and
evaluate the sequential patterns inherent in MRI scans. Our model scored a remarkable AUC of
0.97 and an accuracy of 98.62%. During the training process, we used Stratified Shuffle-Split Cross
Validation to make sure that our findings were reliable and generalizable. Our study adds significantly
to the body of knowledge by demonstrating the potential of LSTM networks in the specific field
of AD prediction and extending the variety of methods investigated for image classification in AD
research. We have also designed a user-friendly Web-based application to help with the accessibility
of our developed model, bridging the gap between research and actual deployment.

Keywords: long-short-term-memory; magnetic resonance imaging; Alzheimer’s disease; deep learning

1. Introduction

Human life expectancy has increased worldwide as a result of improved diagnosis
and treatment. However, neither medication nor treatment can cure Alzheimer’s disease.
More than 47 million people worldwide are affected by the condition [1]. Furthermore,
the number of people affected by the condition is increasing yearly, and deaths due to
the disease are increasing, while deaths from other diseases are declining. In the United
States, for example, the number of people affected by the disease is anticipated to increase
to 13.8 million by 2050, up from 5.4 million in 2016. The rate of diagnosis is expected to
more than double by 2050, from 66 s in 2016 to 33 s. Alzheimer’s disease was responsible
for 84,767 fatalities in 2013. Between 2000 and 2013, mortality from chronic diseases such
as stroke and heart disease declined, whereas deaths from the disease surged by 71% [2].

In the preliminary stages of AD, common obstacles include [3]:

• It might be challenging to recall proper words or names.
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• Daily work in social settings or an office might be difficult.
• Getting in trouble remembering people’s names while meeting them.
• Having difficulty locating or misplacing a valuable asset.
• Forgetting something you just heard or read.
• It might become much more difficult to plan and manage various daily tasks.

Recent developments in deep learning algorithms and other Machine Learning (ML)
techniques have made it possible to extract relevant data for data classification across a
variety of disciplines. Due to their outstanding performance in image processing and
computer vision applications, deep learning (DL) techniques offer a wide range of potential
applications [4]. The process of identifying AD in its early stages can be both costly and
time-consuming, according to past research on disease detection and forecasting. This
entails gathering a large quantity of data, using sophisticated diagnostic techniques, and
consulting an experienced clinician [5]. Because they are susceptible to human mistakes,
computerized mechanisms are more accurate than human evaluations and can be used in
medical systems [3]. MRI images [6], because of their capability of showing the anatomical
makeup of the brain, have been shown in the literature to be a useful method for diagnosing
AD [7]. The ability of deep learning approaches to manage large, complex data sets,
including high-dimensional and multi-modal data, is a key advantage. For instance, DL-
based techniques can be used to examine the intricate connections between brain function
and structure and the onset of AD when using MRI data to make such predictions. RNNs,
CNNs, and LSTM algorithms are a few deep learning techniques that have been used
to predict AD [8]. These methods have been used to the analyze clinical data, genetic
information, MRI data, and results from cognitive tests. The accuracy of disease diagnosis
could be greatly improved by using deep learning algorithms for disease prediction and
better patient outcomes and quicker treatment would result. These techniques can also
provide new perspectives on the underlying causes of illnesses, which can help with the
creation of more potent remedies and preventative measures [9].

Although there is no cure for AD and a definitive diagnosis is difficult, early detection
is essential for preventing symptoms from getting worse [10]. Through early identification,
AD patients’ quality of life can also be enhanced [11]. In order to automatically diagnose AD,
research has been done on DL computer-aided [12] techniques [13]. Both CNNs and RNNs
are strong and reliable varieties of artificial neural networks. Another prominent form of
RNN-based algorithm is known as LSTM, which is one of the most promising algorithms
currently in use since it has internal memory [14]. Like many other DL techniques, we
have seen the true potential of Recurrent Neural Networks. RNN-based methods are now
more popular than ever thanks to improvements in technology, greater data accessibility,
and algorithms like LSTM. Due to its capacity for dealing with difficulties like exploding
and vanishing gradients, LSTM is favored over conventional RNNs. Its adaptability and
memory capacity make it perfect for jobs like time series analysis, speech recognition, and
NLP, which promotes better understanding in the data-driven environment [15].

In this study, we strive for a time-series-based technique known as LSTM. The LSTM
model receives the MRI images as input, and after performing feature extraction based on
each image’s pixel values, the model outputs a binary classifier that divides the input into
one of two categories, such as Non-Demented or Very-Mild-Demented. The key main aim
of the paper is as follows:

Objective 1: Develop a robust and accurate diagnostic LSTM approach and utilize its capac-
ity for time-series MRI data analysis.

Objective 2: Investigate how well the suggested LSTM-based model performs in catego-
rizing MRI data and making accurate predictions for the early identification
of AD.

Objective 3: To offer a thorough examination of the model’s diagnostic skills and evaluate
the model’s efficacy using a wide range of measures, such as accuracy, confusion
matrix, and AUC ROC.
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Objective 4: Create a user-friendly Web-based application to aid in the practical deployment
of the generated model.

The remainder of the paper is divided into numerous sections, beginning with the
introduction, which gives a background on the subject being studied and a summary
of LSTM Approach. The next section, the methodology, describes the research strategy,
including the methods used for data collection and analysis. The literature review comes
next. The findings from the study and evaluation are presented in Section 5.2, exploratory
data analysis is covered in Section 5, and future extensions and research implications are
discussed in the paper’s conclusion.

2. Overview of Deep Learning and LSTM Model

Complex Artificial Neural Networks (ANNs) are used in DL, a subset of ML, to find
patterns in data that may be difficult to understand. Deep learning algorithms are based
on how the human brain is built and how it works. They can be used to do things like
recognize images [16] and voices, process natural languages, etc. [17]. Unlike machine
learning, models that are based on deep learning are made up of numerous layers, each
of which learns progressively abstract representations of the data that are fed into the
model. Early layers are responsible for the acquisition of fundamental characteristics,
such as edges and color blobs; later layers, however, are in charge of integrating these
characteristics to recognize objects, predict outcomes, and make choices. DL algorithms
can be broken down into a few distinct types, the most common of which are feedforward
NNs, Recurrent Neural Networks (RNNs), and Convolutional Neural Networks (CNNs).
The particular issue at hand and the nature of the data to be entered both play a role in
the model selection process. CNNs are an artificial neural network type developed for
image-identification tasks. They filter picture inputs using convolutional layers and extract
important features. Pooling layers are then employed to minimize the spatial dimensions
of the filtered output and keep only the most essential data. The retrieved features are
then transmitted through layers with complete connectivity to get the final classification
results. In computer vision applications, CNNs have achieved great success and are
frequently used for image classification, object recognition, and picture segmentation. On
the other hand, LSTM, which was introduced by Hochester and Schmidhuber in 1997,
is a specialized type of RNN that was developed to address the issues of exploding and
vanishing gradients in traditional RNNs [18]. These issues arise when training RNNs on
long sequences, making it difficult for the network to retain and propagate information over
time. LSTMs mitigate these problems by introducing a more complex and sophisticated
architecture. They incorporate memory cells, which are capable of storing information
for extended periods, allowing the network to retain important information over long
sequences [19]. Additionally, input, forget, and output gates are included in LSTMs to
control the information flow into, out of, and within the memory cells [20]. These gates are
responsible for determining whether to accept further input (input gate), eliminate the data
since they are irrelevant (forget gate), or permit the information to influence the output at
the current time step (output gate). Additionally, the cell unit memory keeps values over
a series. Pointwise multiplication operations and nonlinear functions are what make up
these gates.

LSTMs have a topology similar to a chain, but their repeating module is constructed
differently. Instead of just one, there are four, and their interactions are highly unusual. Each
line in Figure 1, which shows a high-level perspective of the LSTM architecture, transports a
full vector from one node’s output to another node’s input. The pink circles in the notations
represent pointwise operations such as vector multiplication and addition, and the yellow
notations represent trained neural network layers. Concatenation is indicated by line
merging, but a forked line indicates that its content has been replicated and is being sent to
other destinations [21]. Following are descriptions of each gate in LSTM architecture:

1. Forget Gate—The input and previous output are combined at the forget gate to
produce and generate an output that falls within the range of 0 to 1, and a sigmoid
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activation function is employed, which indicates how much of the previous timestamp
has to be kept or forgotten. The previous state is multiplied by this output after
that [22].

2. Input Gate—Although the input gate’s output ranges from 0 to 1, it operates with the
same signals as the forget gate. The goal here is to choose which new information will
be added to the LSTM’s state [18]. The additional values that were to be added to the
initial state are then created by multiplying them by the output of the tan h block. The
current state is created by adding this gated vector to the previous state.

3. Output Gate—The output gate will gate the input and previous state as before to
produce an output that ranges from 0 to 1, which is then combined with the output
of the tan h block to obtain the current state. The result is then distributed [22]. The
LSTM block receives input from both the output and the state.
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Importance of Imaging Modality for AD Detection

MRI is a non-invasive medical imaging method that creates images of inside body
components. This method creates detailed images of the body’s organs, tissues, and bones
using a computer, radio waves, and a strong magnetic field [23]. According to the recent
literature [24], MRI has been the most popular diagnostic technique for detecting AD which
is shown in Figure 2 due the distribution of usage of various imaging modalities. AI is
increasingly being used in MRI technology to improve various aspects of the imaging
process, including.
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• Image analysis: AI algorithms can be used to analyze MRI images and detect anomalies
or patterns in including. allowing for earlier and more accurate diagnoses.

• Image reconstruction: AI can be used to enhance MR picture quality by reducing noise
and boosting resolution.
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• Image segmentation: Radiologists can more easily identify particular areas of interest
by using AI to segment MRI pictures into various tissues or structures.

• Dose reduction: AI can be used to optimize MRI protocols to reduce the amount of
radiation exposure for patients, making the imaging process safer [25].

• Personalization: AI can be used to personalize MRI scans for individual patients based
on factors such as body shape, size, and medical history.

3. Related Works

The field of DL has recently appeared as a potentially useful method for the diagnosis
and prognosis of diseases such as AD, a neurodegenerative disorder that impacts millions of
people globally and worsens over time. Deep learning algorithms can detect subtle patterns
and alterations in the brain that might signify the initial phases of AD. This is accomplished
by evaluating enormous volumes of data, which may include scans of the brain as well as
genetic information. Several studies utilizing CNNs, RNNs, and LSTM algorithms have
been published on the subject of deep-learning-based strategies for detecting AD. This
research has made significant contributions to the enhancement of novel and more effective
AD diagnostic and treatment procedures.

Some of the key findings and contributions of previous studies in this field include:

• Temporal information—LSTMs have been used in multiple research projects to incor-
porate temporal information into the prediction model, which can help us understand
Alzheimer’s disease and its progression better. LSTMs are particularly well-suited for
studying time-series data [26].

• Improved accuracy—CNNs and transfer learning have been shown in multiple studies
to attain a high level of accuracy when it comes to the prediction of Alzheimer’s disease,
in contrast to more traditional techniques of machine learning [27]. This could lead to
earlier, more accurate diagnoses and better patient outcomes [27].

• Transfer learning—Transfer learning has been utilized in some research to make use
of CNN and LSTM models that have already been trained on massive amounts of
data and can then be tailored to particular tasks and data sets. This has the benefit
of requiring less data and processing during training, which can increase prediction
accuracy [28].

• Integration of multi-modal data—Several studies have combined the results of MRI
scans with those of other clinical assessments, such as cognitive evaluations or genetic
information. This has resulted in a more in-depth and precise understanding of
Alzheimer’s disease and how it progresses [29].

In recent years, there has been a lot of interest in the application of RNN-based
approaches for the prediction of Alzheimer’s disease. In this literature review, we explore
six recent papers that have used various RNN architectures for AD prediction. A Multi-
Layer Perceptron (MLP) and a Bidirectional Gated Recurrent Unit (BGRU) were used to
classify AD, done by the author in 2018 [10]. The authors of [26] employed LSTM to predict
the future state of AD in 2019. A CNN was utilized to learn spatial characteristics in the
third paper [30], and an RNN was used to extract longitudinal features for classification.
Another piece of work [31] from 2020 used an ensemble method to combine CNN, RNN,
and LSTM models to reach high accuracy. The fifth study [12], released in 2021, proposed
a complete 3D framework based on ConvLSTM for early AD diagnosis. The last study
employed LSTM to predict biomarkers and a neural network for classification in [32],
which was published in 2022. Overall, these findings indicate that RNN-based methods for
predicting AD have promising outcomes. These models’ levels of accuracy range from 86%
to 92.22%. The generality of these models and their application to bigger datasets could
be improved with future research, though. In conclusion, RNN-based algorithms have
considerable promise for AD diagnosis and prediction, and additional study in this area
has the potential to significantly advance science.

Deep learning algorithms have attracted a lot of interest recently and have demon-
strated incredible promise for the detection and analysis of brain disorders. These algo-
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rithms have been extensively studied and applied to numerous other brain illnesses besides
Alzheimer’s disease, significantly advancing medical imaging and diagnosis. The diagnosis
of Autism Spectrum Disorder (ASD) is a significant use of deep learning algorithms [33].
ASD is a complicated neurodevelopmental disease marked by issues with social interaction
and communication. Deep learning algorithms have been used to analyze neuroimaging
data from structural and functional MRI to find patterns and biomarkers connected to
Autism Spectrum Disorder (ASD). These models have demonstrated promise for increasing
the precision of ASD diagnosis and comprehending the underlying variations in brain
connections in people with ASD [34].

In the diagnosis of schizophrenia (SZ), DL algorithms have also demonstrated substan-
tial promise. SZ is a persistent mental illness marked by abnormal perceptions, actions, and
thoughts. Deep learning algorithms have been used to identify useful characteristics and
patterns suggestive of SZ from multimodal neuroimaging data, including fMRI, diffusion
tensor imaging (DTI), and electroencephalography (EEG) [35]. These models have proven
to be effective at differentiating between healthy people and people with SZ, facilitating
early detection and individualized treatment plans.

For instance, utilizing resting-state functional MRI (rs-fMRI) data, Shoeibi et al. [35]
present a new DL strategy for the intelligent detection of schizophrenia (SZ) and attention
deficit hyperactivity disorder (ADHD). In their method, the data are preprocessed, features
are extracted using a convolutional autoencoder model, and interval type-2 fuzzy regression
(IT2FR) using optimization approaches is used. The IT2FR approach outperformed other
classifier methods with an accuracy rate of 72.71%. The study emphasizes the potential of
deep learning and fuzzy regression for rs-fMRI data-based SZ and ADHD detection. By
combining neuroimaging modalities, another paper [36] investigates the potential of deep
learning models for diagnosing brain diseases. It looks at different models, including CNNs,
RNNs, GANs, and AEs, and analyzes the benefits of deep learning over more traditional
approaches. Deep learning algorithms have also been used to analyze different types of
brain conditions, including Parkinson’s disease [37], epilepsy [38], and brain cancers [39].
These algorithms have demonstrated promise in identifying patterns particular to certain
diseases, assisting in accurate diagnosis, and offering insights into the progression of the
disease and the effectiveness of treatment.

For instance, two CNN frameworks are shown by Hakan Gunduz et al. [37] for
identifying Parkinson’s disease based on vocal (voice) data. How the frameworks combine
feature sets varies. A nine-layered CNN is used in the first framework to merge various
feature sets. The second architecture, in contrast, sends feature sets to parallel input
layers that are coupled with convolution layers directly. As a result, deep features can be
simultaneously extracted from each parallel branch before being combined into the merged
layer. The suggested models were tested using Leave-One-Person-Out Cross Validation
(LOPO CV) using a dataset from the UCI Machine Learning repository.

Two deep learning algorithms for the detection and classification of brain tumors are
introduced in another study [40]. The You Only Look Once (YOLO) object-identification
framework is used in the first technique, and the FastAi deep learning library is used in
the second. The study focuses on a subset of 1992 MR brain images from the 2018-BRATS
dataset. The accuracy of the YOLOv5 model is 85.95%, whereas the accuracy of the FastAi
classification model is 95.78%.

In conclusion, deep learning algorithms have become effective instruments for identify-
ing and analyzing brain disorders. Using neuroimaging data from structural and functional
MRI, they have been effectively applied to several brain illnesses, including AD, ASD,
and SZ. These algorithms have shown increased diagnostic accuracy and given insights
into the underlying abnormalities in brain connections that underlie these illnesses. Deep
learning methods have also demonstrated promise in the detection of various neurological
conditions such as Parkinson’s disease, epilepsy, and brain tumors, enabling accurate
diagnosis and comprehension of disease progression. Diagnostic abilities are further im-
proved by combining deep learning with cutting-edge approaches like fuzzy regression
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and multimodal fusion. Overall, the use of deep learning algorithms for the diagnosis of
brain disorders holds tremendous promise for enhancing individualized care plans and
deepening our understanding of these challenging ailments. A summary of the studies
discussed above is given in Table 1.

Table 1. Recent studies for the prediction of AD.

Ref. Approach Methods Dataset Result

[10] 2018
Longitudinal analysis
for AD diagnosis
with RNN

MLP is first developed to learn the
spatial characteristics of MR
images to classify AD. The MLP
outputs are then used to train an
RNN with two cascaded (BGRU)
layers, which, by extracting
longitudinal information from the
imaging data at different time
intervals, generates a final
categorization predicting score.

ADNI, sMRI
T1-weighted
428 subjects,
198 AD patients, and
229 NC

Accuracy: 89.7%

[26] 2019 Predicting Alzheimer’s
disease using LSTM

LSTM is used to predict the
disease’s future state rather than to
categorize it in its current state.

1105 patients are
included in the MRI
longitudinal time
sequence data from
the ADNI

AUC of AD vs.
NC: 0.935,
mAUC of AD vs. MCI
0.798 and mAUC of AD
vs. NC vs. MCI 0.777

[30] 2019
Longitudinal analysis
for diagnosis of AD
with RNN

The RNN harvests longitudinal
data for AD classification using
three cascaded BGRU layers,
whereas the CNN learns MR
image spatial characteristics
for classification.

ADNI 198 AD, 229 NC,
and 403 MCI

Accuracy 91.33%
(AD vs. NC) and
71.71% (pMCI
vs. sMCI)

[31] 2020
Hybrid-model-based
amalgamation for
AD detection

An ensemble approach that uses a
weighted average technique which
can be employed to merge these
models, including CNN, RNN,
and LSTM.

Open Access Series
of Imaging
Studies (OASIS)
OASIS dataset-1 for
CNN and OASIS
dataset-2 for
RNN, LSTM

Ensemble of bagged
models accuracy
92.22%, Ensemble of
primary models 89.75%

[12] 2021
An end-to-end
3D-ConvLSTM for
early detection of AD

With the help of high-resolution
whole-brain sMRI data, this
project seeks to develop or build a
comprehensive 3D
ConvLSTM-based framework for
the early identification of AD.

OASIS-3 and ADNI
1-Screening

Accuracy: 86%,
Specificity: 74%,
Sensitivity: 96%,
F1-score: 88% and
AUC of 93%

[32] 2022
An LSTM
biomarker-based
prediction for AD

After 6, 12, 21, 18, 24, and
36 months, the model can predict
the biomarkers (feature vectors) of
a patient. These predicted
biomarkers will go through layers
of a neural network that are all
connected. The NN layers will
then decide if these biomarkers
belong to a person with AD
or MCIx.

ADNI, 805 subjects
MRI T1-weighted Accuracy: 88.24%

4. Materials and Methods
4.1. Data Description

Our dataset was sourced from an online Kaggle challenge, specifically focusing on
MRI brain images. The dataset provided for this challenge included a total number of
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6400 images, including training and testing and it is available into four distinct classes,
Non-Demented, Mild-Demented, Moderate-Demented, and Very-Mild-Demented; and
contained 200 subjects, with 32 slices of the image for each subject. The data source can be
found in Kaggle (Alzheimers-dataset-4-class-of-images) [41]. Out of these four classes, we
only considered Non-Demented and Very-Mild-Demented since the implemented model is
a binary classifier.

For the proposed approach, we used two groups of data, such as Non-Demented and
Very-Mild-Demented. Table 2 provides an overview of the distribution of Non-Demented
and Very-Mild-Demented MRI scans specifically for training and testing. This table serves
to present the two distinct classes of MRI scans, namely Non-Demented and Very-Mild-
Demented, and highlights the number of data samples allocated for training and testing
within each class. By examining the table, one can easily discern the partitioning of data
for both the training and testing phases, facilitating a clear understanding of the dataset
distribution across different categories of MRI scans.

Table 2. Dataset distribution.

Class Training Testing

NC 2560 640

AD 1792 448

Total 4352 1088

4.2. Proposed Method

Alzheimer’s disease has been predicted using DL-based approaches in many cases.
These techniques use ANNs, which are designed to learn patterns and relationships in data.
By training these networks on large amounts of data, they can learn to recognize complex
relationships and make accurate predictions [42]. The two primary stages of training a DL
model are forward propagation and backward propagation, which are used to calculate
the loss function between the predicted output and the ground truth labels [20]. In this
kind of DL model, the main aim is to reduce the loss as much as possible in such a way
that the expected output gets closer to the actual output. Convolutional neural networks,
one sort of DL-based approach, have become quite popular in image classification [43]
over the past few years and have been employed extensively for a range of issues such as
image segmentation, classification [44,45], and other problems [46]. These types of models
only work with numbers, but they are unable to comprehend images the same way that
humans do. To make the computer understand the images, we must somehow translate
them into numbers [47], then the model can extract meaningful features and give output
based on the observed features. We used MRI images and preprocessed them into desirable
input for the model. The idea here is we are passing the image’s rows as sequences in this
network. In our study, we utilized MRI images as the input data for our model. To prepare
the images for the model, we performed preprocessing steps to ensure they were in the
desired format. One key aspect of our approach was to consider the rows of the image as
sequences within the neural network. In other words, we treated each row of pixels in the
image as a separate sequence, allowing the model to process the image sequentially. This
approach resulted in an input shape of 100 × 100, indicating that we had 100 sequences,
each consisting of 100 elements. In other words, 100 rows (sequences) contain 100 columns
(pixels). To incorporate the sequential nature of the data into our model, we included an
LSTM layer. This layer had a parameter called “return sequences”, which served as a flag
indicating whether the model should continue to another LSTM recurrent layer or not. By
enabling this parameter, we allowed the model to capture and learn from the sequential
patterns present in the image data. Under the proposed approach, the following steps were
taken and concisely discussed:

• Image Preprocessing—The CV2 library was utilized for image preprocessing. The
images were resized, and labels were appended to them.
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• Normalization—The image data were normalized by dividing them by 255.0 to scale
the pixel values between 0 and 1.

• Categorical Target—The np_utils module from Keras was employed to convert the
target labels into categorical format.

• Model Building—The TensorFlow and Keras frameworks were utilized. The necessary
modules were imported to construct the model. The model consisted of multiple layers,
with the CuDNNLSTM layer serving as the backbone. The layers were added sequen-
tially, employing the he_uniform kernel initializer and setting the return_sequences
attribute to true. Dropout layers with a rate of 0.2 were added between each layer to
avoid overfitting. The ReLU activation function was applied to the layers. For the final
layer, a sigmoid activation function was used since it was a binary classification task.

• Stratified Shuffle-Split Cross-Validation—The Stratified Shuffle-Split Cross-Validation
technique was employed with 5 splits and a test size of 0.1. This technique ensured
the preservation of the class distribution in the training and testing datasets.

• Model Compilation—The model was compiled with parameters such as a loss function
set to binary_crossentropy, metrics for evaluation, and an optimizer. The optimizer
chosen was SGD (Stochastic Gradient Descent), and a grid search approach was used
to find the best optimal values by trying different learning rates and momentums.

• Early Stopping—Early stopping was put into place to terminate training as soon as the
model’s performance on the validation set began to deteriorate to avoid overfitting.

• Best Fold Selection—The best fold (score) was determined using the arg max function,
and the corresponding best accuracy was obtained.

The model’s performance was then plotted and visualized using a variety of metrics,
including Accuracy, Confusion Matrix, Area Under the Receiver Operating Characteristic
(ROC) curve (AUC ROC), and accuracy scores for cross validation.

Lastly, to enhance user accessibility, a Flask application was created to enable individu-
als to input their own MRI images and receive prediction results from the deployed model.
To do this, the trained model was saved and imported into the Flask application. When a
user submits an image, the application uses the imported model to generate a prediction
for the input image.

LSTM models were specifically developed to tackle the long-term dependency issue
in RNNs caused by the vanishing gradient problem. In contrast to traditional RNNs,
LSTM models mitigate this problem by incorporating specialized memory units that can
retain and propagate information over longer sequences. This advancement in LSTM
architecture has significantly improved the ability of recurrent neural networks to capture
and model complex temporal relationships. LSTM is different from traditional forward
neural networks, and it is the feedback connections that make it different. This property
allows LSTMs to evaluate whole data sequences, such as time series, without having to take
into account each data point separately. Instead, they keep track of relevant information
from previous data points to assist in processing incoming data [48].

In the last layer for binary classification, a sigmoid function was used together with an
ReLU activation function during training. The proposed workflow is shown in Figure 3.
The training and validation carried out in this experiment served to both train the deep
learning model and evaluate its performance on new data. For the model to learn from the
data, the weights and biases were updated using the training dataset. A loss function was
used during training to determine the difference between the model’s predictions and the
actual target values. Minimizing the loss function during training means that the model was
successfully fitting the data. Utilizing the validation dataset, the model’s performance was
assessed following training [49]. Based on the validation data, the model was used to create
predictions, and metric [50–52] accuracy was used to evaluate the model’s performance.
The two phases such as model building and deployment flow are given in Figure 4.



Bioengineering 2023, 10, 950 10 of 22

Bioengineering 2023, 10, x FOR PEER REVIEW 10 of 22 
 

model’s performance. The two phases such as model building and deployment flow are 
given in Figure 4. 

 
Figure 3. Proposed workflow diagram. 

 
Figure 4. Model building and deployment. 

Table 3 showcases the major hyperparameters used in the proposed model along 
with their corresponding values. These hyperparameters governed the behavior and per-
formance of the model during training and inference. The table provides a concise sum-
mary of the specific values chosen for each hyperparameter and their purpose in the 
model. 

Figure 3. Proposed workflow diagram.

Bioengineering 2023, 10, x FOR PEER REVIEW 10 of 22 
 

model’s performance. The two phases such as model building and deployment flow are 
given in Figure 4. 

 
Figure 3. Proposed workflow diagram. 

 
Figure 4. Model building and deployment. 

Table 3 showcases the major hyperparameters used in the proposed model along 
with their corresponding values. These hyperparameters governed the behavior and per-
formance of the model during training and inference. The table provides a concise sum-
mary of the specific values chosen for each hyperparameter and their purpose in the 
model. 
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Table 3 showcases the major hyperparameters used in the proposed model along
with their corresponding values. These hyperparameters governed the behavior and
performance of the model during training and inference. The table provides a concise
summary of the specific values chosen for each hyperparameter and their purpose in
the model.
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Table 3. Parameters.

Parameter Values

Dropout rate 0.2

Batch size 32

Cross-validation Stratified Shuffle-Split (5 splits, 0.1 test size)

Activation function Relu and Sigmoid

Accuracy Metric = Accuracy

Loss function binary_crossentropy

Optimizer SGD (Learning Rate with Momentum)

Early stopping Early Stopping with Epoch = 200

The hyperparameters included in the table encompass important aspects such as
the dropout rate, batch size, activation functions, accuracy as the evaluation metric, loss
function, optimizer, learning rate, momentum, number of epochs, and early stopping.
Each of these hyperparameters contributed to different aspects of the model’s training and
optimization process.

5. Experiment and Evaluation
5.1. Setup for Experiment

The DL model in this study was run on an Intel Computer OptiPlex 7090 GeForce RTX
3070 system, and the tests were conducted using the TensorFlow framework. The LSTM
model for the prediction of AD using MR images was trained and effectively evaluated
thanks to the utilization of a dedicated GPU and the TensorFlow framework. The Tensor-
Flow framework provided a flexible and powerful platform for building and training deep
learning models, and the dedicated GPU provided the necessary computational resources
to handle the large amounts of data and complex computations involved in the experiment.
The entire code was implemented in Python programming language. For training, the
CUDA driver was utilized and endorsed by NVIDIA for graphics processing. Version
9.0.176 of CUDA was used to optimize the use of GPU resources.

5.2. Results and Discussion

To assess the effectiveness of the suggested DL approach for the prediction of AD,
experiments were carried out. The performance of the LSTM model was assessed after
it was trained using MR images from the two categories of Non-Demented and Very-
Mild-Demented. The experiment presented in this research offers the following outcomes:
accuracy of 98.62%, loss of 0.003, validation loss of 0.041, and validation accuracy of 0.976,
demonstrating the promise of DL-based techniques like LSTM networks in the diagnosis
of AD. The proposed approach provides a promising solution for the early and accurate
prediction of AD using MRI brain scans, and the results show that the LSTM model can
be used to improve the current methods of AD diagnosis and aid in the development of
effective treatment strategies. Researchers can better understand the model’s operations
and identify areas for improvement by examining the behavior of the model and displaying
the change in accuracy as a function of the number of epochs. The accuracy of the model is
plotted versus the number of training epochs in Figure 5, with each epoch denoting a full
loop through the training dataset. The y-axis shows the accuracy of the model, which can
range from 0 to 1, and the x-axis represents the number of epochs, which grows from left to
right. The graphic shows that, typically, as the number of epochs rises, so does the model’s
accuracy. This is a result of the model gradually improving its predictions over time by
learning from the input data.
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The loss of the model is displayed versus the number of training epochs in Figure 6.
The graph demonstrates that as the number of epochs rises, the model’s loss decreases. As
a result, the model’s predictions and the actual target values are becoming closer together
as a result of the model’s gradual learning from the data.
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In our investigation, our model produced an amazing AUC of 0.97. This high AUC
shows how well our model performs in differentiating between the positive and negative
classifications. By examining the ROC curve, we discovered that, with a probability of 0.97,
our model consistently scored a randomly chosen positive case higher than a randomly
chosen negative instance. Strong support for the efficacy and dependability of our model
in correctly classifying the target variable is provided by the achieved AUC of 0.97. This
exceptional result highlights the robustness and discriminative strength of our model in
identifying the underlying patterns and producing precise predictions, as illustrated in
Figure 7. The TPR (True Positive Rate) examines how well a classifier can detect positive
examples, whereas the FPR (False Positive Rate) shows how often false alarms are generated.
TPR measures sensitivity, and FPR gauges the classifier’s specificity. With high TPR and
low FPR serving as the optimal point on the ROC curve, we can evaluate the trade-off
between sensitivity and specificity. The performance of the classifier is summarized by the
AUC ROC.
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The confusion matrix for the classification of AD is shown in Figure 8. The performance
of the classification model in determining an individual’s disease-state based on a set
of features is shown in the image. The matrix, which summarizes the number of true
positives, false positives, true negatives, and false negatives, is a tabular form with two
rows and two columns. The illustration emphasizes the significance of correctly diagnosing
Alzheimer’s patients, because false negatives may cause treatment and diagnosis to be
delayed. Briefly, “0” denotes those without Alzheimer’s disease and “1” denotes people
who have the disease.
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Figure 9 displays the outcomes of our thorough study using Shuffle-Split Cross-
Validation and highlights the outstanding performance of our model. The y-axis shows
the various folds used, with a total of five folds, while the x-axis shows the accuracy
levels attained. Surprisingly, across all folds, our model consistently exhibits outstanding
accuracy. The third fold, in particular, stands out as the pinnacle of performance with a
remarkable accuracy of 98.62%. This outstanding outcome demonstrates how well the
model can identify and categorize intricate patterns in the dataset. The dotted red line’s
representation of the average mean accuracy further supports the model’s dependability
and resilience. The model’s ability to generalize well and retain good performance on
various subsets of the data is shown by the consistently high accuracy scores throughout
the folds.
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Table 4 displays the dataset utilized for evaluation along with the performance results
of several models.

Table 4. Comparison of performance results for different models.

Technique Dataset Performance

Longitudinal analysis for AD diagnosis with RNN ADNI Accuracy: 89.7%

Predicting Alzheimer’s disease using LSTM ADNI AUC of AD vs. NC: 0.935

Longitudinal analysis for diagnosis of AD with RNN ADNI Accuracy: 91.33% (AD vs. NC)

Hybrid model-based amalgamation for AD detection OASIS Accuracy: 92.22%

A 3D-ConvLSTM end-to-end for AD early detection OASIS +ADNI AUC of 93%

An LSTM biomarker-based prediction for AD ADNI Accuracy: 88.24%

Proposed approach Kaggle Dataset Accuracy: 98.62%

A promising tool for medical diagnosis is the Web application created for AD predic-
tion. It has the capacity to input MRI scans of patients and provide a user-friendly UI for
the user. The Web program uses advanced algorithms to provide accurate predictions of
Alzheimer’s disease, enabling early detection and treatment. The functionality and user
interface of the application is illustrated by Figures 10–12, given below.
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The diagnosis and prognosis of Alzheimer’s disease have shown tremendous potential
for deep learning approaches. Deep learning can identify small anomalies linked to the
disease and capture complex patterns in neuroimaging data by employing models like
CNNs and RNNs. These algorithms provide unbiased evaluations, early identification,
and individualized risk evaluations. Deep learning has the potential to transform clinical
practice by utilizing cutting-edge computational techniques, enhancing patient outcomes,
and expanding our understanding of Alzheimer’s disease. The proposed model does,
however, have a drawback due to the availability of a tiny dataset. The dataset’s small size
may make it difficult to fully capture the complexity and variety of the target population.
The generalizability and robustness of the model’s performance may be impacted by this.

6. Exploratory Data Analysis

An important stage in any data-driven endeavor is EDA (Exploratory Data Analysis).
With the use of this technique, you may learn more about the data and spot patterns, trends,
and anomalies that might not be obvious from summary statistics alone. In this section,
we offer the dataset’s EDA results, which include feature visualizations and descriptive
statistics. The descriptive statistics highlight the central tendencies and dispersion of the
dataset, while the visualizations aid in the discovery of any links, trends, and patterns
among the variables. Figure 13 shows the relative sizes of the two classes, with category
one covering roughly 58.8% of the dataset and category two roughly 41.2%. These data
emphasize the differential sample distribution between the two classes. It is significant
to note that there might have been a little mismatch in the proportions of the classes due
to the availability of the dataset. The deviation, nevertheless, is not significant enough to
cause grave concerns. The dataset is still useful for training and testing the model, despite
the modest disparity, because it includes a representative sample of both Non-Demented
and extremely Mild-Demented cases.

Figure 14 shows that the mean pixel values of the Non-Demented and Very-Mild-
Demented classifications varied noticeably. In particular, the Non-Demented class typically
has a higher mean pixel value than the Very-Mild-Demented class. This implies that the two
classes’ image colors differ from one another. Further information about the distribution
of mean pixel values is also shown by the shape of the violins in the plot. The violin plot
appears larger for the Non-Demented class, showing a greater range of mean pixel values.
Additionally, the plot demonstrates that for the “non-demented” class, more values are
distributed toward the higher end of the range.



Bioengineering 2023, 10, 950 17 of 22Bioengineering 2023, 10, x FOR PEER REVIEW 17 of 22 
 

 
Figure 13. Number of samples per class. 

Figure 14 shows that the mean pixel values of the Non-Demented and Very-Mild-
Demented classifications varied noticeably. In particular, the Non-Demented class typi-
cally has a higher mean pixel value than the Very-Mild-Demented class. This implies that 
the two classes’ image colors differ from one another. Further information about the dis-
tribution of mean pixel values is also shown by the shape of the violins in the plot. The 
violin plot appears larger for the Non-Demented class, showing a greater range of mean 
pixel values. Additionally, the plot demonstrates that for the “non-demented” class, more 
values are distributed toward the higher end of the range. 

 
Figure 14. Mean value distribution for all classes. 

The distribution of an image’s mean pixel values in relation to x-axis density is shown 
in Figure 15. The average pixel value on the y-axis, which displays the average color in-
tensity of the image, is plotted against the pixel density on the x-axis. The graph makes it 
easy to see the color properties of the image as well as how the pixel values are distributed 
throughout its parts.  

Figure 13. Number of samples per class.

Bioengineering 2023, 10, x FOR PEER REVIEW 17 of 22 
 

 
Figure 13. Number of samples per class. 

Figure 14 shows that the mean pixel values of the Non-Demented and Very-Mild-
Demented classifications varied noticeably. In particular, the Non-Demented class typi-
cally has a higher mean pixel value than the Very-Mild-Demented class. This implies that 
the two classes’ image colors differ from one another. Further information about the dis-
tribution of mean pixel values is also shown by the shape of the violins in the plot. The 
violin plot appears larger for the Non-Demented class, showing a greater range of mean 
pixel values. Additionally, the plot demonstrates that for the “non-demented” class, more 
values are distributed toward the higher end of the range. 

 
Figure 14. Mean value distribution for all classes. 

The distribution of an image’s mean pixel values in relation to x-axis density is shown 
in Figure 15. The average pixel value on the y-axis, which displays the average color in-
tensity of the image, is plotted against the pixel density on the x-axis. The graph makes it 
easy to see the color properties of the image as well as how the pixel values are distributed 
throughout its parts.  

Figure 14. Mean value distribution for all classes.

The distribution of an image’s mean pixel values in relation to x-axis density is shown
in Figure 15. The average pixel value on the y-axis, which displays the average color
intensity of the image, is plotted against the pixel density on the x-axis. The graph makes it
easy to see the color properties of the image as well as how the pixel values are distributed
throughout its parts.

The distribution of an image’s maximum pixel value according to its class—Very
Mild-Demented or Non-Demented—is shown in Figure 16. The probability density of
the maximum pixel value for each class is shown by the KDE plots in the picture. The
likelihood or probability of seeing a specific maximum pixel value within each class is
represented by smooth curves that are used to build the KDE displays. The probability that
a particular value will occur within the appropriate class increases with the height of the
curve’s peak or density at that value.
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Figure 16. Image color max value distribution by class.

We can better comprehend the distribution patterns and variations in the maximum
pixel values between the two classes by looking at the KDE graphs. If the curves’ peaks are
at different locations or have distinct shapes, it means that the distributions of the classes’
maximum pixel values are not the same.

According to the statistical measurements employed to characterize the image samples,
Figure 17 “showcases the average and variability of image samples, represented by their
mean and standard deviation values”. The mean value indicates the typical or average
image qualities within the collection by displaying the average or central tendency of the
samples. Indicating the degree of variances or diversity present in the dataset, the standard
deviation value shows the variability or spread of the samples around the mean. The
picture provides a summary of the main image qualities and the range of variances seen in
the dataset by displaying the mean and standard deviation values.
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deviation values.

In the case of Figures 14, 16 and 17, the significant and distinctive relationship between
pixel values and image samples is that pixel values relate to the numerical values that
indicate the intensity or color of particular points in an image. We examine the distribution
of mean pixel values across all classes in Figure 14. On the other hand, image samples are
full images made up of several pixels. We look at the highest pixel value distribution per
class in Figure 14. The mean and standard deviation values of the image samples that make
up Figure 16 are used to illustrate the average and variability of those samples. We learn
more about the traits and statistics of image samples as a whole by comprehending the
pixel-level data contained in images.

7. Conclusions

We were able to successfully use a DL-based LSTM model to predict Alzheimer’s
disease using MRI brain images, according to the findings of our study. With a remarkable
AUC of 0.97, the model distinguished between the positive and negative classes with an
accuracy of 98.62%, demonstrating both its extraordinary performance and its promise
as a diagnostic tool for the disease’s early identification. The ability to accurately predict
AD at an early stage can greatly benefit patients and healthcare professionals in planning
appropriate interventions and therapies. Deep learning methods have demonstrated
encouraging outcomes in several medical domains. This study adds to the growing corpus
of research that shows these methods are effective when used in healthcare. A Web-based
application was also designed to make the DL model easily accessible. It allows users to
upload MRI scans, and the deep learning model provides a prediction of the likelihood of
AD. Overall, our findings demonstrate the potential of the DL-based model to improve the
accuracy and efficiency of disease diagnosis, and we believe that further research in this
area can lead to significant advancements when it comes to medical imaging and diagnosis.
As part of our future work, we aim to expand the dataset by increasing the number of
samples. To achieve this, we plan to explore openly accessible repositories and apply data
augmentation techniques. We want to increase the generalization of our model through
this expansion of the dataset.
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