
A flexible mixed model for age-dependent 
performance: application to golf 
Rose D. Baker1 and Ian G. McHale2 

1Salford Business School, University of Salford, Greater Manchester, M5 4WT, UK 
2University of Liverpool Management School, University of Liverpool, Liverpool, L69 7ZH, UK 
Address for correspondence: Ian G. McHale, University of Liverpool Management School, University of Liverpool, 
Liverpool, L69 7ZH, UK.  
Email: ian.mchale@liverpool.ac.uk 

Abstract 
We present a new mixed linear model for the relationship between age and performance. The model allows for 
random effects at the nodes of a barycentric interpolation, such that performance evolves with age in a non- 
prescriptive way. We use the model to investigate the effects of age on performance in golf and find that 
performance peaks in the 30s and then declines after that. We disaggregate performance into its 
constituent components and find that driving, which tends to require power and speed, deteriorates 
consistently from the early 20s, whilst putting, which requires touch and finesse, remains strong until the 
late 40s. Our model can be used in other settings, and requires only that measures of performance exist. 
Keywords: ageing, barycentric rational interpolation, mixed-effects model, optimum age, statistics in sports 

1 Introduction 
It is natural for humans to wonder about the effects of ageing. Understanding, or knowing, the age 
at which we are ‘at our best’ can, for those of us past that age, be somewhat sobering. However, for 
those performing at elite levels in their field of work, understanding when peak performance oc-
curs can help recruitment (e.g. of athletes to sports teams), manage expectations (e.g. of product-
ivity levels of individuals), and the setting of targets (e.g. publications of scientific papers). As such, 
in sports and other elite fields, understanding peak age of performance, and measuring the effects 
of age on level of performance, is more than simply an intriguing problem. Since the first look at 
this problem in Lehman (1945), researchers have considered age of peak performance in fields 
from conducting Nobel Prize winning research to 100 m sprinting. Here, we present a new flexible 
mixed effects model that can be used to estimate the relationship between age and performance in 
any field and we use it to study ageing in golf. 

Much of the literature on age and performance has been descriptive in nature. Various authors 
in the sports science community have tabulated ages of achievement in, for example, setting re-
cords, and winning competitions. Schulz and Curnow (1988) look at several sports. Tabulating 
the ages of Olympic gold medallists in a number of disciplines, they find that the average age of 
winners of the 100 m sprint is 22.85 years, and that the age increases monotonically with race dis-
tance to a peak of 27.85 years for marathon runners. They perform similar analyses for swimming, 
baseball and indeed golf. In golf they find that the average age of a golfer who reaches number one 
in the world rankings is 33.67, though they find that the age is decreasing. 

Koensigsberg et al. (2020) focuses on the age of peak performance of golfers and looks at the 
mean age of golfers reaching the top 100 in the world rankings. The descriptive statistics suggest 
that this age is now 23.91, but it has decreased significantly from 33.29 years a few decades ago. 
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Despite presenting clear complexities such that understanding the relationship between age and 
performance requires statistical modelling, there is surprisingly little in the scientific literature on 
the topic. Roring and Charness (2007) present a multi-level model for chess rankings as a function 
of age and find that age is kinder (a slower rate of decay in performance) for those with initially 
higher levels of expertise. They calculate a confidence interval for the peak age of performance 
being between 39 and 49. Taken together with findings from other activities, it seems clear that 
performance in activities requiring speed and power peaks (much) earlier than in more cerebral 
activities such as chess. 

Unlike Jones (2010), in this paper we are not concerned with the changing age of peak perform-
ance. Instead, we build a model to estimate the age of peak performance, and subsequently esti-
mate the magnitude of the effects of age. 

To do so, we present a new type of random-effects model. We allow for random effects at the 
nodes of a barycentric rational interpolation. This allows performance to evolve with age in a 
non-prescriptive way and means that as well as estimating a mean relationship between age and 
performance, each golfer’s performance is allowed to vary from the mean through random 
fluctuations in performance at the nodal ages. 

Golf is a particularly attractive laboratory in which to test our model as it requires several dis-
tinct skill sets to perform at the elite level. Speed and power are required for hitting the ball a long 
way (driving), whilst touch and finesse are essential for short shots and putting. Examining golf, 
and disaggregating performance across its various component skills, allows a unique insight into 
how individuals are affected by age across their personal skill sets. 

The paper is structured as follows. Next, in Section 2, we present the dataset we use to model 
performance as a function of age. In Section 3, we describe the model we use. In Section 4, we pre-
sent some properties of the model, including how to use it to forecast an individual’s expected fu-
ture performance. Section 5 provides our results and findings before we comment on other fields in 
which the model can be used in Section 6. We close the paper with some concluding remarks in 
Section 7. 

2 Data 
We obtained data for golfers on the Professional Golfers’ Association of America (PGA) Tour 
from 2004 to 2021. The data were scraped from the PGA Tour website which includes 
round-by-round scores for players at all PGA Tour tournaments (including the tournament date 
and the course name). 

It seems obvious, at first, that one should use a player’s score in a round as a measure of the 
performance of that player. A player who has a lower score (as he has taken fewer shots to com-
plete the round) has performed better than a player who has a higher score (who has taken more 
shots to complete the round). However, not all golfers play in the same tournaments or on the 
same courses. Some golf courses are much more difficult than others. Further, the same golf 
course can play much harder due to a number of factors. For example, the weather may 
make the course harder, or the grass can be grown in certain areas to make it more difficult, 
or the pin positions can be placed in places on the greens that are hard to access. As such, using 
the round scores to measure and monitor performance is fraught with problems that need to be 
taken account of. 

Fortunately, Broadie (2012) presented an intuitive solution to measuring performance in golf 
whilst taking account of the complexities described above. The basic idea of Broadie’s strokes 
gained is, for each shot, to compare the average number of shots expected to be required to finish 
the hole from the starting position, to the average number of shots expected to be required to finish 
the hole from the end position. For example, suppose a player is to take his first shot on a hole 
measuring 450 yards. The average number of shots required to complete a hole, from a tee box 
450 yards away is, say, 4.2, based on historic data from the PGA Tour. Now suppose the player 
takes his tee shot and hits it 350 yards down the middle of the fairway such that he has 100 yards 
remaining. From this new position, the average number of shots required is 2.8 (say). The player’s 
strokes gained from his tee shot is thus 4.2 − 2.8 − 1 = 0.4. Intuitively, the player has gained 0.4 of 
a shot by hitting a good (long and straight) tee shot. Strokes gained are commonly calculated in five 
categories, accumulated over a round (or a tournament):  
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• strokes gained off-the-tee (driving) (SGdriving): the sum of strokes gained for tee shots on par 4 
and par 5 holes; 

• strokes-gained around-the-green (SGatg): the sum of strokes gained for all shots within 30 
yards of the putting surface; 

• strokes-gained putting (SGputt): the sum of strokes gained for all shots played from a green (all 
putts); 

• strokes-gained approach (SGapp): the sum of strokes gained for all strokes not included in 
‘off-the-tee’, ‘putting’, or ‘around-the-green’. Strokes-gained approach includes tee shots on 
par 3 holes. 

• total strokes gained (SGtotal): the sum of strokes gained for all shots. Note that strokes gained 
is additive such that SGtotal = SGdriving + SGapp + SGatg + SGputt. 

Each of these strokes-gained metrics attempts to quantify performance in a different area of ‘skill’ 
as each category requires different skill sets. For example, off-the-tee requires power and speed to 
hit the ball long and straight. Putting, on the other hand, requires touch and finesse to guide the 
ball to its target. 

As for the round-by-round scores of players in tournaments, the PGA Tour website now offers 
round-by-round strokes-gained data from 2004, and we scraped strokes-gained data for golfers in 
each tournament. 

In addition to scoring and performance data on golfers, we obtained date of birth, height, 
weight, nationality, and year turned professional for all golfers who had played more than five 
tournaments. In total, we had complete information on 944 golfers, playing 168,296 rounds in 
597 tournaments. Table 1 provides descriptive statistics for the round scores, and strokes-gained 
metrics. 

3 A model for estimating the variation in golfers’ performance with age 
3.1 Why fit a parametric model? 
Before describing our model, we can ask why one should fit a parametric model at all rather than 
calculating descriptive statistics as has been done many times in the literature. For example, one 
could compute mean scores and standard errors on the mean for (say) yearly age-bands. Such a 
non-parametric ‘age-band’ approach is extremely simple, but has three disadvantages in compari-
son to building a mathematical model. First, there is a secular trend in scores, such that round 
scores decrease by about two strokes over the 18-year period of the data. There is also a slight 
drop in average age by about 3.5 years over the period. Only a parametric model can disentangle 
age-based and secular trend effects. Second, non-parametric results would need smoothing to be 
interpretable, which occurs automatically in a parametric model. Finally, a parametric model al-
lows the performance of individual golfers to be modelled and forecast far into the future, e.g. to 
age 60, which is of interest. The non-parametric approach cannot do this and so one must adopt a 
parametric model. 

Table 1. Descriptive statistics for round scores and strokes-gained metrics 

Variable Mean Median St. Dev.  

core  70.13  70  1.81 

SGtotal  0.758  0.796  1.356 

SGdriving  0.032  0.04  0.153 

SGapp  0.068  0.073  0.214 

SGatg  0.027  0.028  0.141 

SG putt  0.062  0.063  0.217 

Note. St. Dev. = standard deviation.   
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3.2 Modelling choices 
We have several years of performance data for each golfer, yit indexed by golfer i and match num-
ber t, occurring at calendar time sit. The variable yit can be one of the five strokes-gained metrics or 
any combination of them, or total score for a tournament. Of course, the model can be applied 
outside of golf and yit can then be any measure of performance the user thinks appropriate in 
the field of study. 

Two modelling choices are how to flexibly model individual variations of performance with age, 
and whether to use fixed or random effects. 

To model how a golfer’s performance evolves with age, we interpolate performance between a 
series of ‘nodes’ at regularly spaced ages. This could be done with spline-interpolation where the 
nodes correspond to the spline knots. However, we use barycentric interpolation, because it is sim-
pler to describe and implement, and has no discontinuities in derivatives. This means that a func-
tion minimiser has a smooth function to minimise. Also, the methodology has been shown to 
interpolate at least as accurately as a spline (Baker & Jackson, 2014). 

Barycentric intepolation was introduced by Berrut (1988) and further developed by Floater and 
Hormann (2007). The interpolant is the ratio of two polynomials. Baker and Jackson (2014) dis-
cuss its use in statistical applications. Baker and McHale (2015a) use barycentric interpolation to 
model the evolution of the strength of golfers, whilst Baker and McHale (2015b) use it to compare 
the strengths of football teams from different eras. To date, it has been little used by statisticians, 
despite its attractive properties. 

We use fixed effects to allow performance to respond to a golfer’s height (measured in cm from 
the mean height of all golfers), and a variable representing the date of play to allow for secular 
(temporal) trend in yit. 

Golfer-specific effects are needed to allow each golfer to have a personalised, and arbitrary vari-
ation in performance through time. The performance of some golfers, for example, will decline 
more slowly than others and using a golfer-specific effect will allow for this in the model. 
Random, rather than fixed, effects are used to model this, for two reasons. First, some of the age- 
dependence would be absorbed into fixed effects, because in the 18 years data, some golfers are 
young and some much older. Second, there are nearly a thousand golfers, so having fixed effects 
for each golfer would require many parameters. An age-based random-effects model allows a 
smooth autocorrelated deviation for each golfer from the mean age-trajectory. Our chosen model 
is thus a mixed effects model. 

3.3 The model in detail 
We model yit as the sum of a barycentric interpolation of performance to the ith golfer’s age at the 
tth match, a random error for the golfer’s performance, and a random residual error. A barycentric 
interpolation coefficient μj + γjsit + ϵij appears at each of m ages, aj, that are the nodes of the inter-
polant, and this coefficient is a normally distributed random variate. The γjsit term allows perform-
ance to change with calendar time s, and the addition of the ϵij allows the performance of 
individual golfers to diverge from the mean age-trajectory. We take age a ranging from a minimum 
of 17.5 to a maximum of 62.5 with m = 8 regularly spaced nodes; the model fit was insensitive to 
the number of nodes and their placement. Suppressing the golfer suffix i, with the golfer’s age at the 
tth match at, the model for the tth score yt is 

yt = ht +
􏽘m

j=1

rtjζ j + η + ϵt, (1) 

where ht =
􏽐m

j=1
wj(μj+γjst)/(at−aj)

􏽐m

j=1
wj/(at−aj)

+ βTx(at) is the deterministic part of the age-dependence, plus a re-

gression on fixed or age-dependent covariates x, and 

rtj =
wj/(at − aj)

􏽐m
j=1 wj/(at − aj)

. (2)  
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The wj are the barycentric weights for which Floater and Hormann (2007) provide formulae. 
Here, we use weights of ‘order zero’ given by wj = ( − 1)j. 

The expression for ht is mathematically well defined at the nodal ages, as at → aj, where the 
barycentric interpolation simply yields the nodal value. Computationally, one can either simply 
test that |at − aj| < b, where b ≃ 10−3, and if so use the nodal value, or else use the reformulation 
in Baker and Jackson (2014) that avoids the problem completely. 

The errors are ϵt ∼ N[0, σ2], η ∼ N[0, λ2], and ζ j ∼ N[0, ϕ2] and all errors are independent. A 
golfer thus has a random shock ζ j occurring at each tabulated age (node) and an overall random 
level of performance η. Each score yt is also subject to a random error ϵt. The parameters are μ, γ, β 
and σ, λ, ϕ. 

3.4 The likelihood function 
Using equation (1), the likelihood for a golfer is 

L =
F

(2π)(m+1)/2 ∫∞−∞ exp ( − ψ/2) dζ dη, (3) 

where 

F = (2πσ2)−n/2λ−1(ϕ)−m. (4) 

With Δt = yt − ht, 

ψ =

􏽐n
t=1 Δt −

􏽐m
j=1 rtjζ j − η

􏼐 􏼑2

σ2 +
􏽐m

j=1 ζ2
j

ϕ2 +
η2

λ2 . (5) 

Writing v = (ζ1 · · · ζm, η)T , we have 

ψ = A − 2BTv + vTMv, (6) 

where M is symmetric, A =
􏽐n

t=1 Δ2
t /σ2 and 

Bi =

􏽘n

t=1

Δtrti/σ2 if i ≤ m

􏽘n

t=1

Δt/σ2 if i = m + 1.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7) 

Also, 

Mij =

􏽘n

t=1

rtirtj/σ2 + δij/ϕ2 if i, j ≤ m

􏽘n

t=1

rti/σ2 if i ≤ m, j = m + 1

n/σ2 + 1/λ2 if i = j = m + 1.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)  

3.5 Model fitting 
To fit the model to data by likelihood-based methods, the likelihood function must be integrated 
over the m + 1 normal random variates ϵ, η.  
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The likelihood for a model with just one random effect for the golfer’s performance, i.e. ϕ = 0, 
can be found analytically, by doing the integration over the random effect corresponding to differ-
ences in golfer performance (see Appendix A). 

For the full model with ϕ > 0, we can evaluate the integral, allowing for random effects at each 
node, by completing the square in the exponent. Then 

ψ = A − 2BTv + vTMv = C + (v − δ)TM(v − δ), (9) 

from which we read off Mδ = B, C = A − δTB. The vector δ is found by solving the m + 1 linear 
equations Mδ = B. The distribution of v given y1 · · · yn is multivariate normal with mean δ and co-
variance matrix M−1. 

Maximum-likelihood estimators are known to underestimate scale parameters, such as σ, ϕ and 
λ, but because of the large sample size, this bias will be negligible. For small samples, corrections 
can be made. One of many methods is to use the parametric bootstrap to simulate fresh datasets 
from the fitted model, and so estimate the bias of the maximum-likelihood estimates. 

Note that one can think of this random-effects model in Bayesian terms; the normal distribution 
of the errors would be the prior pdf, and our likelihood would then become the posterior probabil-
ity. This approach would then be empirical Bayes, based on maximum posterior probability. 

The vector of realised random effects, δ, is found by solving the m + 1 linear equations. Doing a 
Cholesky decomposition M = LLT , where L is lower-diagonal, the m + 1 linear equations for δ can 
be solved, and the determinant |M| =

􏽑m+1
i=1 L2

ii calculated. There is no need to invert the matrix M. 
Thus, finally 

L = F exp ( − A/2 + δTB/2)/|M|1/2. (10) 

Likelihood maximisation was done using a function minimiser that does not require derivatives: 
this requires only computation of the log-likelihood and is quick. On a standard desktop running 
Windows the model was fitted in less than a minute. Note that this computational scheme means 
that we are not restricted to a linear model, although we have used one here. 

The computation proceeds by direct maximisation of the likelihood function, whereas econo-
mists usually use feasible generalised least squares. This is a 2-step iteration in which generalised 
least squares fit residuals are used to estimate the random-effect parameters, which are then used to 
re-estimate the covariance matrix across all observations. We have instead regarded this as a gen-
eral likelihood-maximisation problem, which was simpler to compute. 

In order to check the model (and coding), data were simulated from the fitted model and the 
model refitted to that data. The resulting parameter estimates were very close to the ones simulated 
(within the estimated standard errors). This gave us confidence in the correctness of the model de-
velopment and programming. 

Finally, we comment on the novelty of this methodology. Mixed models are widely used, and  
Straube et al. (2015) have used splines to model temporal variation, although this is unusual. 
Using barycentric interpolation in a mixed model is new. Further, the method of model fitting 
by directly maximising the log-likelihood function after solving linear equations for the realised 
random effects is also new. 

4 Model properties 
Using random variables at the nodes of the barycentric interpolation as random effects has not, as far 
as we know, been done before. As such, it is useful to explore the model properties. Figure 1 shows 
four random realisations from the model, which shows that it can indeed model a wide range of in-
dividual performance and its change over time. The lower line shows how that hypothetical golfer 
tends to have below average performance and this ‘trait’ is carried throughout his career. 

4.1 Additivity 
The model allows for individual stochastic variation in scores. The model can be fitted to each of 
the four strokes-gained metrics (to see how age effects putting, and driving separately), or for  
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combinations of them, such as long game minus short game scores. The model has an additivity 
property, in that any linear combination of two uncorrelated scores will obey the same form of 
model. This follows from the fact that the normal distribution has the same property. 

4.2 An identity for the expected value of the random effect η given the data 
From the properties of M and B, it may be shown that δm+1 = (λ2/ϕ2)

􏽐m
i=1 δi, where δm+1 is the 

mean of η. 
To show this, we take the equation Mδ = B. The equation for the ith row, where i ≤ m, is 

􏽘n

t=1

rtirtjδj/σ2 + δi/ϕ2 +
􏽘n

t=1

rtiδm+1/σ2 =
􏽘n

t=1

Δtrti/σ2, (11) 

The m + 1th row gives 

􏽘n

t=1

rtjδj/σ2 + (n/σ2 + 1/λ2)δm+1 =
􏽘n

t=1

Δt/σ2. (12) 

Summing equation (11) from 1 to m and recalling that 
􏽐m

i=1 rti = 1 we have that 

􏽘n

t=1

􏽘m

j=1

rtjδj/σ2 +
􏽘m

i=1

δi

􏼠 􏼡

/ϕ2 + nδm+1/σ2 =
􏽘n

t=1

Δt/σ2, (13) 

and subtracting this from equation (12), we obtain 

δm+1/λ2 =
􏽘m

i=1

δi/ϕ2. (14) 
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Figure 1. Total strokes gained for four random realisations of the fitted model.   
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Intuitively, the sum of the expected values of the random effects at the m nodes could be taken as a 
measure of lifetime achievement, and the expected value of the random effect η is proportional to this. 

4.3 Autocorrelation of scores 
From equation (1), for a particular golfer, the covariance of scores between two ages as, at is 

Cov(Ys, Yt) =
􏽘m

j=1

rsjrtj. (15) 

The correlation is 

r(Ys, Yt) =
􏽐m

j=1 rsjrtj

􏽐m
j=1 r2

sj + σ2
􏼐 􏼑 􏽐m

j=1 r2
tj + σ2

􏼐 􏼑􏽮 􏽯1/2 . (16) 

The correlation is largest when as = at and decreases when as, at are far apart. 
Autocorrelation of performances by a single golfer at different ages is a reasonable, and logical 

property of a model for the evolution of performance with age. A golfer who has a high perform-
ance at age as is likely to possess superior talent for example, and is therefore more likely to have a 
high performance at age at (t > s), and the model captures this. 

4.4 Probability of a golfer beating another 
Given two random golfers, one of age a and the other of age b, the predicted 18-hole scores for 
golfer a and golfer b are Y(a) and Y(b), respectively. These scores are normally distributed, so 
the probability that the golfer of age a ‘wins’ (i.e. has a lower score over the 18 holes) is 

Prob(Ya − Yb > 0) = Φ
h(a) − h(b)

􏽐m
j=1 {r2

aj + r2
bj}ϕ

2 + 2λ2 + 2σ2

􏼠 􏼡

, (17) 

where Φ is the normal distribution function. The probability that a particular golfer of age a per-
forms better than he did at age b is 

P(a, b) = Φ
h(a) − h(b)

􏽐m
j=1 {rj(a) − rj(b)}2ϕ2 + 2σ2

􏼠 􏼡

. (18)  

4.5 Forecasting 
Given results y1 · · · yn, we seek the distribution of Y(a), when the golfer is of age a. Writing f (·) for 
pdfs, the conditional pdf for v by Bayes theorem is 

f (v | y1 · · · yn) =
f (y1 · · · yn | v)f (v)

∫∞−∞ f (y1 · · · yn | v)f (v) dv
. (19) 

Hence, the pdf of Y(a) is 

f (y(a) | y1 · · · yn) =
∫∞−∞ f (y(a) | v)f (y1 · · · yn | v)f (v) dv

∫∞−∞ f (y1 · · · yn | v)f (v) dv
. (20) 

Thus, f (y(a) | y1 · · · yn) = L(y(a), y1 · · · yn)/L(y1 · · · yn). Define ξT = (ra1 · · · ran, 1). Then for fixed v, 
Y(a) is normally distributed with mean h(a) + ξTv and variance σ2. Hence, Y(a) is the sum of two  
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independent normally distributed random variables, and the unconditional distribution of Y(a) is 
normal with mean h(a) + ξTδ and variance σ2 + ξTM−1ξ. 

Forecasting a golfer’s future performance level is of interest for several reasons. For example, it 
allows sponsoring companies to understand the future expectations of a golfer they may be con-
sidering sponsoring. Bookmakers may be interested in setting odds on future tournament wins, for 
example, on the number of Majors won in a career. Or, perhaps fans and the media are simply 
intrigued to have a prediction on how good a young golfer is expected to become. 

4.6 A correction term 
The means μj give the mean score for the average golfer at the jth age node, when covariates such as 
height are centred on their means. The secular trend term had origin mid-way through the time 
span so the μj refer to a golfer in that year. The vector δ gives a correction to the mean for a par-
ticular golfer, and the mean over all golfers is zero, as it should be. 

However, it is a fact that better golfers play more games than less able golfers. If by golfer per-
formance at some age we mean the average performance of a randomly selected golfer, in comput-
ing the mean δ, we must weight the δ values for each golfer by the number of games played. In 
other words, in observing a random golfer we have ‘length-biased sampling’. Doing this, the 
mean is no longer zero, and the mean δ gives a small correction to mean golfer performance. 
This small correction is mentioned in the table captions, but is not added in the plots. 

5 Results 
The quality of the model was measured by the Akaike Information Criterion. This showed that the 
fit could not be improved by adding more nodes or changing their placement. Fit residuals were 
normally distributed (skewness −0.0054, excess kurtosis 0.355) and had zero autocorrelation. 

Table 2 shows the results of the model when the dependent variable is score relative to par and  
Table 3 shows the results of the model when the dependent variable is total strokes gained. Results 
for the other strokes-gained metrics are shown in tables in Appendix B. 

It is perhaps easier to grasp the results of these models visually, and Figure 2 shows the fitted 
evolution of score relative to par, with the different lines showing its variation with calendar 
time. The time-dependent model this figure is based upon shows how younger golfers have im-
proved with calendar time, as can be seen by the blue line being higher than the other two lines. 
The age-dependence of total score is fairly flat until the 40s. The upturn in performance at an 
age of around 52 years shown for the blue line is likely to be a consequence of ‘survival’ bias in 

Table 2. Model parameter estimates with standard errors for (minus) score relative to par in 2012–2013 

Parameter Estimate Standard error Trend γ Standard error  

Height  0.0365  0.0112 – – 

Residual error σ  6.7695  0.0035 – – 

Performance random effect sd λ  1.2596  0.0632 – – 

Age variation random effect sd ϕ  0.5006  0.2073 – – 

Score at age 17.5  2.9094  0.4455  0.2464  0.0946 

Score at age 25.0  3.3174  0.1328  0.2067  0.0247 

Score at age 30.0  3.4546  0.1078  0.1333  0.0189 

Score at age 35.0  3.4285  0.1092  0.1345  0.0190 

Score at age 40.0  2.9905  0.1230  0.1220  0.0217 

Score at age 47.5  2.2309  0.1841  0.0011  0.0338 

Score at age 55.0  −0.0413  0.7470  0.0599  0.1393 

Score at age 62.5  −0.2697  1.5975  0.3829  0.3036 

Note. The mean correction term was 0.0105. The p-value for height is 0.0012. Units are strokes per tournament, except 
for trend, where the units are strokes per tournament per year.   
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that the golfers still competing at that age are highly likely to be elite golfers, with talent levels in 
the tails of the distribution. 

Figure 3 shows the evolution for total strokes gained, strokes-gained approach, strokes-gained 
around-the-green, and strokes-gained putting, respectively. The yellow line in Figure 3 shows how 
overall scoring performance improves until the mid-30s (peaking at 35), which is later than in oth-
er sports. A somewhat rapid decay in performance begins thereafter. Our results on ‘off-the-tee’ vs. 
the other strokes gained categories highlight the different skills required to excel in each area of 

Table 3. Model parameter estimates with standard errors for total strokes gained 2012–2013 

Parameter Estimate Standard error Trend γ Standard error  

Height  0.0406  0.0114 – – 

Residual error σ  5.2815  0.0035 – – 

Performance random effect sd λ  1.3919  0.0503 – – 

Age variation random effect sd ϕ  0.7947  0.0798 – – 

Score at age 17.5  2.0988  0.3858  0.1185  0.0826 

Score at age 25.0  2.1744  0.1268  0.0657  0.0233 

Score at age 30.0  2.4714  0.1062  0.0006  0.0179 

Score at age 35.0  2.3448  0.1080  −0.0127  0.0180 

Score at age 40.0  1.8906  0.1210  −0.0607  0.0204 

Score at age 47.5  0.8002  0.1758  −0.1707  0.0316 

Score at age 55.0  −0.6898  0.6320  −0.2017  0.1153 

Score at age 62.5  −0.8368  1.3303  0.0078  0.2481 

Note. The mean correction term was 0.029. The p-value for height is 0.0004. Units are strokes per tournament, except for 
trend, where the units are strokes per tournament per year.  
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Figure 2. Minus score relative to par and its variation with age and calendar time.   
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golf. Like sprinting, driving performance peaks early and effectively declines from 20 years old. 
Putting and around-the-green performance appear to be almost constant with age, at least until 
the late forties. Like total strokes-gained, approach play appears to peak in the mid- to late-30s. 
These results highlight, to some extent, the different physical (and to some extent mental) attrib-
utes required to excel in golf. 

It is worth highlighting the magnitude of the age effect. Considering total strokes gained (the 
yellow line in Figure 3), we see that for a golfer at his peak age of around 35, he is nearly one 
full shot per round better than himself at age 20, and more than two full shots per round better 
than himself at age 50. 

As was evident in Figure 2, the slight upturns in performance for strokes-gained putting, 
off-the-tee and total, are likely to be a consequence of ‘survival bias’ such that only the very 
best golfers survive on the PGA Tour to compete at that age. 

The coefficient on height in Tables 2 and 3 is positive and statistically significant such that taller 
golfers have a slight advantage in terms of scoring and total strokes gained. The standard deviation 
of height is 6.08 cm, and moving from one standard deviation below mean height to one standard 
deviation above gives a mean drop of 0.45 strokes. Going from the bottom 5% to the top 5% 
height gives an advantage of 0.73 strokes. We also experimented with including a golfer’s weight 
and/or BMI in the model but it appears not to have an effect on performance. Height had no effect 
on putting strokes gained (see Table B4 in Appendix B), which is as one might expect. 

Figure 4 shows the long-term forecast of expected performance for Tiger Woods to age 60. 
Visually, one can see how the model fit tracks through the middle of his total strokes gained. 
The forecast for Tiger was, as of 2021, that he would continue to attain a positive strokes gained 
until his 60s. However, the picture may have changed considerably, as Tiger Woods had a car ac-
cident and broke both legs. In mid-2022, Tiger struggled to even complete a round of golf, let alone 
reach the level of performance the world had come to expect from him. Our model cannot of 
course account for such random events. Note that the error bars shown here represent plus and 
minus the standard error on the performance, not a prediction interval. The results for any match 
are subject to a further variation of about five strokes. Similarly, Figure 5 shows the long-term 
forecast for Scottie Scheffler. Scheffler is still relatively young in golfing terms at only 25, yet he 
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Figure 3. Synopsis of the age-dependence of the four golfing skills.   
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Figure 4. Fitted curve of total strokes gained for Tiger Woods, showing forecast performance to age 60 with 
standard error.  
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Figure 5. Fitted curve of total strokes gained for Scottie Scheffler, showing forecast performance to age 60 with 
standard error.   
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has already won many tournaments and reached the top of the Official World Golf Rankings. 
Whilst at his peak Tiger was gaining nearly 10 shots per round over the average (see Figure 4), 
Scheffler is currently ‘only’ gaining around five shots, which is expected to begin to decrease 
around his early to mid-30s. 

6 Other application areas 
Performance in all studied fields improves from childhood before gradually declining. What differs 
across type of activity is the age of peak performance, and the rate of decline. The persistent finding 
is that activities relying on speed and power result in younger peak age of performance (early to 
mid-20 s), whilst activities relying on skill, experience, or intelligence have a peak age of perform-
ance in the early 30 s, or for invention, the late 30 s. 

Beyond the context of sport, Jones (2010) considers the ‘age of great invention’ by modelling the 
age at which an individual conducts Nobel Prize winning research or is responsible for techno-
logical innovation. He finds that, within an activity, the age of peak performance has increased 
over the course of the last century. Having been in the early 30s at the start of the 20th century, 
it is now in the late 30s. He speculates that the reason for increasing age of great invention is 
that it now requires longer to make it through ‘training’ before great invention is allowed to 
take place. 

Most recently, Choi et al. (2022) look at the performance of entrepreneurs as a function of age 
and experience and, as in other fields, find an inverse U-shaped relationship with a firm’s perform-
ance. Similarly, Zhang et al. (2022) find that ageing of the population impedes corporate 
innovation. 

For further references of the descriptive work in this area, we point the reader towards Hertzog 
(2020) who provides a review of the literature. 

The model described here can be used in all these areas. 

7 Conclusions 
The paper presents a new type of mixed model which allows for random effects in a barycentric 
rational interpolation. We use the model to understand the effects of age on the performance of 
professional golfers. The model allows for smooth variation in performance, but cannot allow 
for sudden changes in performance, e.g. as a result of injury. 

Golf provides an interesting laboratory for such analysis as it requires different physical and 
mental attributes for each different part of the game. As has been shown in previous studies, we 
find that activities requiring power and speed (here this is driving, in other studies it has been 
100 m sprinting, for example), peak performance occurs in the early 20s, and declines thereafter. 
We have the additional insight that the other skills in golf, namely putting and around-the-green 
peak much later, and, to some extent, are fairly insensitive to age, until the late 40s at least. 

Apart from the intrinsic interest of these findings, the model enables long-term forecasts of per-
formance for a golfer. This could be of use to several parties. For example, agents wondering 
which young golfers to sign up, and sponsoring companies thinking about which golfer to sign, 
and the size of the contract to be offered, would be interested in the forecast performance of indi-
vidual golfers. 

A use of the model we have yet to explore, but which looks promising, is to use the model to help 
golfers improve their total performance by identifying strengths and weaknesses in the different 
areas of the game. However, to do this, we would need to know the relative effort required to 
achieve improvements in the four skills (putting, driving, approach play, and around-the-green). 

Our model could certainly be used to help understand the effects of age in other sports and other 
fields. In football, for example, players are given contracts worth millions, even tens of millions of 
pounds. It would be valuable for clubs to know when a player is likely to peak and how his or her 
ability to play at a particular level will evolve. Outside of sport, it would be interesting to see how 
age effects performance in other areas such as business. Sales commissions, for example, could be 
modelled as a function of age. 
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Appendix A: Likelihood for simple model 
We need to estimate the n parameters μi, with ϕi = 0, as well as λ and σ. However, we can do the 
integral over ηi analytically. The likelihood for a golfer is 

Li= ∫∞−∞
exp ( −

􏽐ni
i=1 exp { − (yit − hit − ηi)

2/2σ2 − η2
i /2λ2} dϵi

(2πσ2)ni/2(2πλ2)1/2 .

Completing the square in the exponent allows this integral to be evaluated, as 

Li =
exp −

􏽐ni
t=1 (yit − hit)

2/2σ2 +
􏽐ni

t=1 (yit − hit)
( 􏼁2

/(2σ2(ni + σ2/λ2)
􏽮 􏽯

(2πσ2)ni/2(σ2/(niλ2 + σ2)1/2 .

Appendix B: Parameter estimates for the different strokes-gained metrics  

Table B1. Model parameter estimates with standard errors for strokes-gained around-the-green in 2012–2013 

Parameter Estimate Standard error Trend γ Standard error  

Height  0.0650  0.0179 – – 

Residual error σ  5.9475  0.0035 – – 

Performance random effect sd λ  2.4346  0.0385 – – 

Age variation random effect sd ϕ  1.3740  0.0541 – – 

Score at age 17.5  0.4506  0.4921  0.0239  0.1037 

Score at age 25.0  −0.0106  0.1796  −0.0205  0.0324 

Score at age 30.0  −0.1883  0.1556  −0.0096  0.0252 

Score at age 35.0  −0.4983  0.1593  −0.0455  0.0252 

Score at age 40.0  −0.9614  0.1762  −0.0555  0.0283 

Score at age 47.5  −1.7924  0.2496  −0.1214  0.0437 

Score at age 55.0  −2.8796  0.7982  −0.0318  0.1416 

Score at age 62.5  −4.6404  1.6552  0.1315  0.2970 

Note. The mean correction term was 0.0028. The p-value for height is 0.0209. Units are strokes per tournament, except 
for trend, where the units are strokes per tournament per year.   
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Table B2. Model parameter estimates with standard errors for strokes-gained off-the-tee in 2012–2013 

Parameter Estimate Standard error Trend γ Standard error  

Height  0.0339  0.0073 – – 

Residual error σ  2.1513  0.0036 – – 

Performance random effect sd λ  0.9585  0.0426 – – 

Age variation random effect sd ϕ  0.7487  0.0419 – – 

Score at age 17.5  1.0581  0.1984  −0.0585  0.0410 

Score at age 25.0  0.6803  0.0757  −0.0056  0.0136 

Score at age 30.0  0.3247  0.0662  −0.0190  0.0107 

Score at age 35.0  0.1081  0.0679  −0.0196  0.0107 

Score at age 40.0  −0.2991  0.0755  −0.0428  0.0120 

Score at age 47.5  −0.7933  0.1054  −0.0607  0.0182 

Score at age 55.0  −1.7888  0.3159  −0.0459  0.0553 

Score at age 62.5  −2.4217  0.6505  0.0560  0.1136 

Note. The mean correction term was 0.0208. The p-value for height is 0.0003. Units are strokes per tournament, except 
for trend, where the units are strokes per tournament per year.  

Table B3. Model parameter estimates with standard errors for strokes-gained approach in 2012–2013 

Parameter Estimate Standard error Trend γ Standard error  

Height  0.0200  0.0077 – – 

Residual error σ  3.3121  0.0035 – – 

Performance random effect sd λ  0.9748  0.0461 – – 

Age variation random effect sd ϕ  0.5485  0.0712 – – 

Score at age 17.5  0.1914  0.2475  0.1300  0.0530 

Score at age 25.0  0.3325  0.0828  0.0240  0.0153 

Score at age 30.0  0.7452  0.0700  0.0117  0.0118 

Score at age 35.0  0.7292  0.0713  −0.0118  0.0118 

Score at age 40.0  0.6970  0.0796  −0.0224  0.0134 

Score at age 47.5  0.1968  0.1153  −0.0866  0.0207 

Score at age 55.0  −0.0402  0.4053  −0.0711  0.0736 

Score at age 62.5  −0.3457  0.8507  0.0220  0.1574 

Note. The mean correction term was 0.015. The p-value for height is 0.01. Units are strokes per tournament, except for 
trend, where the units are strokes per tournament per year.   
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