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ABSTRACT
Drones are widely anticipated to be used for commercial service

deliveries, with potential to contribute to economic growth, esti-

mated at £42 billion in the UK alone by the year 2030. Alongside air

traffic control algorithms, drone-based courier services will have

to make intelligent decisions about how to deploy their limited

resources in order to increase profits. This paper presents a new

scheduling algorithm for optimising the revenue of a drone courier

service provider in time-sensitive environments. The inputs to the

algorithm are a monotonically decreasing value over time function

which describes the service level agreement between the service

provider and its customers. The second is the anticipated drone

flight-time duration distribution. Our results show that the newly

developed scheduling algorithm, Least Lost Value, inspired by con-

cepts for real-time computational workload processing, is able to

successfully route drones to extract increased revenue to the service

provider than two widely-used scheduling algorithms: First Come

First Served and Shortest Job First, in terms of realised revenue.

CCS CONCEPTS
• General and reference → Performance; • Software and its
engineering → Scheduling;
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1 INTRODUCTION
The demand for prompt courier service continues to grow es-

pecially in industries where timely delivery of parcels is para-

mount [1, 19, 20, 30]. Conventional vehicles have dominated the

courier service delivery for some time. Despite their success, the

lack of speed continues to limit the effectiveness of conventional

vehicles in providing prompt courier service delivery [20]. Increas-

ingly, congested road networks – and in some cases challenging

terrain which inhibits the use of roads – has meant the problem con-

tinues unabated. This problem is expected to only grow bigger with

global e-commerce sales projected to reach US$4.5 trillion in 2021,

fueling the need for timely deliveries [30]. The advent of drones of-

fering a faster mode of transportation is poised to revolutionise the

courier services business [30]. If properly routed, drones have the

potential to provide better courier services which can benefit both

the user and the service provider. The user benefits from prompt

delivery while the service provider benefits from increased revenue

resulting from better allocation of scarce resources. In the past,

similar challenges have been faced in continuous real-time compu-

tational workload increases needing to meet time constraints, while

resources remain limited [15]. Drawing inspiration from this previ-

ous work, the aim of this research is to present a novel optimisation

algorithm for the routing of drones in the context of time-sensitive

services, and to test its effectiveness in enhancing revenue to the

service provider. The contributions of this paper are:

(1) We propose the notion of Time Value of Service Delivery,

which defines “value” as amonotonically decreasing function

of time that captures the service level agreement between a

courier service provider and its customer.

(2) We present a new scheduling algorithm, Least Lost Value

(LLV), that uses the Time Value of Service Delivery func-

tion to drive a revenue-driven scheduling model for time-

sensitive courier service deliveries

(3) We demonstrate the effectiveness of the LLV algorithm in

a drone delivery network that can outperform two widely-

used scheduling algorithms, First Come First Served (FCFS)

[24] and Shortest Job First (SJF) [10], in enhancing revenue

to the service provider.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
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The paper is organised as follows. Section 2 discusses the growth

of e-commerce and how drone technology is viewed as the future

for commercial service deliveries requiring intelligent scheduling.

We examine related work and propose a new notion, the Time Value

of Service Delivery function, that can be used to route drones in

time-sensitive delivery networks. Section 3 presents a newly devel-

oped scheduling algorithm, Least Lost Value (LLV), that uses the

Time Value of Service Delivery function, for revenue-driven sched-

uling. Section 4 discusses the drone-delivery network simulation,

developed for the study, to test the effectiveness of LLV in routing

drones deliveries. Section 5 presents the experiment results which

show the LLV algorithm outperforming widely-used scheduling

algorithms in extracting increased revenue to the drone service

provider. Concluding remarks are given in Section 6.

2 BACKGROUND
Drone is a common term to describe an unmanned aerial vehicle

(UAV), with a ground-based controller and a system of communi-

cation between the controller and the drone. Various versions of

the drone have been around since the first world war, originally

developed as part of air-defense strategies [20]. However, more re-

cently, drone technology is being seen as disruptive technology by

organisations faced with increasing pressures for faster and efficient

deliveries in an environment of limited resources and reduced earn-

ings [12, 20, 29]. Current surveys project drone technology as poised

to contribute to cost-savings, increased productivity/efficiency and

job creation in various industries [19]. In the UK alone, the expected

GDP uplift is over £40bn across all sectors impacted by drone tech-

nology [8].

One particular sector that has seen increased investments using

this technology is in drone delivery networks. In the Americas

region, the pattern is similar with an unprecedented increase in

revenue from $40 million in 2012 to $1 billion in 2017 in the drone-

delivery industry [25]. While security concerns by governments,

continue to impose strict regulations, this has not stopped the

interest and investment in drone delivery. Amazon with a US e-

commerce market-share of 49.1% in online retail [23] is pioneering

Amazon Prime Air [14] for its speed of delivery and what it brings

with increased revenue (Value) obtained [27], seen in Figure 1.

While current use of drone delivery networks target niche use-

cases (e.g. medical aid), there is an overall theme that recognises

the importance of this new technology in time-sensitive environ-

ments [9]. The sooner the delivery, the more the benefit to the

user [9]. Put differently, courier service providers are increasingly

seeing the potential for increased revenue from faster delivery.

Further, with 90% of online delivery parcels weighing under 5lbs,

well suited for drone carrying capacity, it is rapidly becoming the

vehicle of choice for “last-mile” logistics [20]. Therefore, it is pre-

dicted it will not be too long before drones are used in urban areas

of high density, for commercial purposes [12, 19, 29]. In such an

environment of increasing demand for drone delivery services, an

intelligent scheduling mechanism for the routing of the delivery

will be required by service providers, with the aim of enhancing

revenue.

Figure 1: Amazon Delivery Drone - Prime Air [14]

This research draws its inspiration from a similar problem faced

previously in real-time computational workload scheduling in find-

ing a solution for intelligent scheduling. Programs that implement

logically correct algorithms were deemed inaccurate, if timing re-

quirements were not met [26]. In some quarters the failure to meet

its required time constraint deadline, was as good as having failed to

process the job altogether [4, 15, 26]. Jensen notes that the primary

distinguishing feature of a real-time system is that response time is

crucial and the completion of a process adds utility (benefit) that can

be modelled as a function of time, i.e. utility varies with time [15].

This concept draws very close parallels to drone delivery networks

where if critical delivery requests are identified correctly, they can

be made in good time to provide benefit. Using a view of value

over time function for the service delivery, requests that contribute

higher value, given limited resources, can be routed first [1, 20].

Jensen’s proposed time-driven scheduler using his Best Effort Value

(BEValue) algorithm, bound on utility as a time function, was able

to schedule real-time computational workload to successfully meet

time constraints [15]. Given its success, further contributions to

Jensen’s algorithm have continued, listed in Table 1.

Table 1: Improvements in Real-Time SchedulingAlgorithms
using Utility Functions

Date Algorithm Improvement

1985 Best Effort

Value 2 [15]

Support for overload conditions

1990 Dependent Ac-

tivity Schedul-

ing [6]

Considers inter-task dependencies

alongside utility functions

1996 Best Effort [5] Support for multivalence task utility

functions

1999 Dynamic Value

Density [2]

Reduced task deadline misses

2006 Generic Utility

Scheduling [18]

Maximises total accrued utility to the

system

2017 MK Model [17] Commitment to complete m of k tasks

Our review of these algorithms found them unsuited for schedul-

ing in drone delivery networks. Firstly, a real-time system operates

on the basis that some tasks will deliberately get dropped favouring

tasks that contribute higher total utility to the system [17]. Though

common practice in real-time processing environments, it is not
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a viable approach for drone-delivery services, where reliability of

service completion is important [1]. Secondly, the time utility func-

tions for real-time processing is determined using historical task

duration metrics alongside system architect’s expertise. This is not

practical in drone-delivery networks where the service level agree-

ment is jointly agreed between the courier service provider and the

customer, a combined perspective of “Value” [11]. Finally, drone

delivery networks are exposed to obstacles (e.g. static objects, no-

fly-zones) that make the duration of the delivery highly stochastic.

Although the high variability of runtime for computational process-

ing is well-known, real-time processing algorithms do not make

any provisions for reflecting the stochastic nature of task duration

within the scheduling algorithm’s decision-making. This research

contends that the task duration is a random variable with a duration

distribution and needs to be considered in the decision-making for

the routing of drones.

This research proposes the notion of Time Value of Service De-

livery, inspired by Jensen’s work in real-time processing of com-

putational workload, as a monotonically decreasing function of

time that represents the delivery service level agreement between

the courier service provider and the customer. Figure 2 is a dia-

grammatic representation of an arbitrary Time Value of Service

Delivery function. These functions can be continuous or discon-

tinuous and represented by either a single polynomial function or

a set of piece-wise polynomial functions for a defined temporal

interval.

Figure 2: Time Value of Service Delivery Function

Further, this study suggests that the Time Value of Service Deliv-

ery function can be used to schedule deliveries in commercial drone

delivery services to enhance revenue to the service provider. Under

these time-sensitive circumstances, the routing of drones will work

under two assumptions. The first is that the reward for processing

a task monotonically decreases as a function of time, represented

as the Time Value of Service Delivery. The second that the duration

of the task is stochastic and can be represented as a distribution.

While these quantities are quite hard to assess in the context of

real-time computational processing environment, they are very nat-

urally specified in the context of drone delivery networks. Firstly,

in the case of the cost payoff function, in terms of the service level

agreement between the provider of the delivery service and the

customer. Secondly, the estimation of the distribution of the task

duration is also much easier as the drone’s capabilities are known,

i.e. the weight of the parcel and its location destination is known.

3 REVENUE-DRIVEN SCHEDULING
ALGORITHM

This section discusses the newly developed algorithm that uses

the Time Value of Service Delivery function to enhance revenue

to the service provider. The first step in deriving the scheduling

algorithm was to determine the scheduling objective. Given our

overriding goal to enhance revenue to the service provider, this

research proposes that the scheduling objective is to prioritise the

tasks that increases revenue to the service provider.

Secondly, the decisions around which attributes would be used

in the algorithm was driven from the two assumptions highlighted

in previous Section 2. While traditional scheduling algorithms tend

to assume a fixed duration for the tasks, the duration for service

deliveries are instead largely stochastic and needs to be represented

as a task duration distribution. Further, contrary to the assumption

of a fixed deadline when tasks need to be completed, this research

assumes the problem as being more complex. We argue that the in-

trinsic “value” of the service delivery to both the customer and the

courier service provider around the deadline can be represented as

a Time Value of Service Delivery function as seen in Figure 2. There-

fore, we conclude that the attributes relevant for a revenue-driven

scheduling algorithm for courier service deliveries are: (1) the Time

Value of Service Delivery function (2) the service delivery task

duration distribution.

3.1 Least Lost Value Algorithm (LLV)
The development of LLV is grounded on the idea that the sooner

a service delivery (job) is made the better, given a monotonically

decreasing Time Value of Service Delivery function. In develop-

ing LLV we faced a number of challenges regarding how best to

incorporate attributes of interest into the algorithm. For example,

we were aware LLV needed to consider that any job selected re-

sults in an opportunity cost for the jobs not selected. Further, it

was vital to limit the complexity of the use of the attributes in the

algorithm so as not to compromise its effectiveness [3]. Faced with

such challenges, we adopted the Constrained Scheduling Problem

(CSP) method to guide the development of LLV. CSP looks at each

attribute as a constraint that needs to be satisfied, while trying to

limit the complexity of the search, especially in a dynamic environ-

ment, where each attribute can take on multiple values [16]. Keng

highlights that CSP, is more suited for environments where task

duration and resources are fixed which contrasts the stochastic en-

vironment envisaged in this study. However, he argues the problem

of diminishing resources in CSP can be adequately solved using the

cruciality of the solution [16]. Cruciality measures how a solution

impacts the tasks not selected and what he terms as the least im-
pact policy [16]. Encouraged by Keng’s findings, we argue that LLV

should consider both the potential value gained and the potential

value lost to produce a scheduling metric that will prioritise tasks

with the least negative impact.

In this research we define the Potential Gain Value (PGV) as the
value gained by the job selected for processing at current time, ver-

sus starting the job later, after another job completes. The Potential
Lost Value (PLV) is defined as the value lost from all the jobs not

selected for processing at current time, versus starting these jobs

later, after the selected job has completed. A combination of PLV
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and PGV will yield a scheduling metric Net Lost Value. LLV will

order jobs with the lowest Net Lost Value to produce a schedule

that is aimed at extracting increased value (revenue) to the service

provider. The intention is to decrease the net value lost (for the de-

livery requests not selected) while increasing the net value gained

(for the selected delivery requests).

Formally, given a set of jobs J , the Net Lost Value (NLV) for

selecting job ji is defined as follows:

NLV (ji ) = PLV (ji ) − PGV (ji ) (1)

As this scheduling algorithm will need to work in an environ-

ment where the task duration cannot be predicted in any amount

of certainty, both PLV and PGV will use the Expected Value from

the task duration distribution’s probability density function and its

associated cost payoff function, in its calculation. Therefore, the

Expected Value (EV ) for job ji with the cost function Vi , current
time tc and a probability density function fi (t) of the task duration

distribution, is defined as follows:

EV (ji , tc ) =
∫ ∞
tc

Vi (t). fi (t − tc ) dt (2)

The Potential Lost Value (PLV) of selecting job ji is the sum of the

lost value of all other remaining jobs (jk ) not selected for processing,
defined as:

PLV (ji ) =
n∑

jk ∈J ,k,i,k=1

(
EV (jk , tc ) − EV (jk , tc + pi )

)
(3)

where:

n: number of jobs in set of job J
tc : current time

pi : non-weighted expected value of the task duration distribution

for job ji given probability density function fi (t − tc ), defined as:

pi =
∫ ∞
tc
(t − tc ). fi (t − tc ) dt (4)

The Potential Gain Value (PGV) of selecting job ji is the difference
of value between processing job ji at current time tc versus at later

time, tc + pi , defined as

PGV (ji ) = (EV (ji , tc ) − EV (ji , tc + pi )) (5)

where pi is calculated using the non-weighted expected value of the
task duration distribution of the jobs not selected k with probability

density function fk (t − tc ), defined as:

pi = (
n∑

k,i,k=1

pk )/(n − 1) (6)

and

pk =
∫ ∞
tc
(t − tc ). fk (t − tc ) dt (7)

One advantage of PLV is that in considering the value lost from

the jobs not selected it inadvertently considers discontinuity of

value in the Time Value of Service Delivery function, described in

Figure 2 as well as any impending penalties. Therefore, jobs within

the workload are likely to be scheduled for completion, before

the critical value loss of discontinuities and penalties. The LLV

scheduling is detailed as Algorithm 1, where the job workload is

broken down into an array of individual job objects, jobList1.

Algorithm 1 LLV Scheduling algorithm

1: procedure LLVjobSort(jobList, timePassed)
2: jobSet ← jobList
3: currentTime← timePassed
4: lost ← 0.0

5: won← 0.0

6: i ← 1

7: for jobi ∈ jobSet do
8: lost = PLV (jobi , jobSet, currentTime)
9: won = PGV (jobi , jobSet, currentTime)
10: jobi .netLostValue = (lost − won)
11: i = i++
12: jobList ← sort jobs in jobSet by increasing netLostValue
13: return jobList
14:

15: ▷ Potential Lost Value calculation

16: procedure PLV(job, jobSet, currentTime)
17: lostValueJob← 0.0

18: j ← 1

19: job.timeLeft = expectedValueDurationDistr(job)
20: – getTimeProcessed(job)
21: for jobj ∈ jobSet do
22: if jobj , job then
23: lostValueJob = lostValueJob +
24: expectedValue(jobj , currentTime) -
25: expectedValue(jobj , currentTime +
26: job.timeLeft)
27: j = j++

28: return lostValueJob
29:

30: ▷ Potential Gain Value calculation

31: procedure PGV(job, jobSet, currentTime)
32: wonValueJob ← 0.0

33: j ← 1

34: expectedValueOnDuration ← MINVALUE
35: ▷ MINVALUE is the smallest positive non-

zero value of type double

36: for jobj ∈ jobSet do
37: if jobj , job then
38: expectedValueOnDuration =
39: Math.max(expectedValueOnDuration,
40: expectedValueBasedOnDuration(jobj ))

41: j = j++

42: wonValueJob ← expectedValueOnDuration
43: return wonValueJob
44:

1
Each job object in the joblist contains: (1)Job Id (2)Cost Payoff Function (3)Duration

Distribution (4)Job Arrival Time
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4 DRONE ROUTING USING REVENUE
DRIVEN SCHEDULING

As discussed in Section 2, drone delivery networks are viewed as

the solution for faster deliveries, given the projected growth in

global e-commerce. Further, this research postulates that the ex-

pected surge in delivery volumes will outweigh available resources.

Thus, the need for intelligent scheduling for the routing of drone

deliveries, if service providers are to remain profitable. Hence, this

study proposes a novel algorithm LLV, presented in section 3, that

can schedule drone deliveries with the aim of enhancing revenue to

the service provider. LLV uses the Time Value of Service Delivery

function, discussed in Section 2 to represent the service level agree-

ment between the drone service provider and the customer. This

section describes the drone-delivery network simulation
2
that was

developed in this study to test the effectiveness of LLV in routing

drones with the aim of enhancing revenue to the service provider.

It also includes a discussion on how a service level agreement be-

tween the courier service provider and the customer was modeled

as a cost payoff function to be used by LLV for revenue-driven

scheduling.

4.1 Drone Delivery Architecture
In developing the drone delivery network simulation, four consider-

ations were made to reflect real-life features. First, with the advent

of drone technology improvements, drones are now fully capable of

avoiding physical obstacles and navigating to GPS locations on their

own [7], thus will not need a persistent controller for governing its

every movement. Second, if drone technology is to be used effec-

tively for high-volume deliveries in urban areas, an autonomous

aviation model will need to be implemented, between an unmanned

central controller and its drones. Third, the drone delivery route

will need to consider No Fly Zone (NFZ) restrictions, imposed by

most city authorities. Finally, in the absence of customers providing

delivery requests, the system will need to generate delivery orders

as part of the simulation.

SpatialOS, a cloud-based distributed platform, was used for the

development of the drone delivery network simulation [22]. We

selected SpatialOS primarily as it adopts an Entity-Component-
Worker model [21], whichmeans each Entity consists ofComponents
that define state and how other entities interact with them. This

model provided the flexibility required for ease of scaling up the

simulation to include larger number of entities and more complex

components.

The drone delivery network simulation was run in its entirety

as a cloud-based system, with the live state of the running simula-

tion visualised using SpatialOS’ built-in Inspector tool. Unity [28]

was used to provide an initial snapshot
3
for the simulation. Using

Unity, the objects – Controller, Drone, No-Fly-Zones – are used to

populate the snapshot generated of the drone delivery network for

the simulation. This snapshot can be edited with ease for future

delivery network modifications. Figure 3 shows the user interface

2
A simulation was used given regulation limitation and cost constraints in using

real-life drones

3
A snapshot represents the state of a simulated world at a point in time, storing each

entity and the properties of its components

Figure 3: Drone Delivery Network Simulation (SpatialOS)

of the Inspector tool for visualising the simulated drone delivery

network.

Figure 4: Drone Delivery Network using LLV

The Entity(s) in the simulation were: (1) Controller (2) Drone,

(3) Order Generator. A single Order Generator generates customer’s

requests, a random destination coordinate of the “world” and a Time

Value of Service Delivery function
4
. The virtual “world”, is divided

into smaller voronoi areas, each governed by a single Controller
with n drones to perform the delivery. The Order Generator sends
the job order request to the designated Controller. As discussed in

Section 2, a delivery request’s duration distribution can be easily

determined using the known delivery destination, speed of the

drone and historical duration of deliveries. The Controller invokes
the LLV algorithm to prioritise the delivery request using the jobList
object comprised of job details, cost payoff function and internally

generated task duration distribution. The request with the lowest

Net Lost Value is scheduled for the next available drone. Given the

simulated drone delivery network is autonomous, the Controller is
responsible for generating a list of NFZ-avoiding “waypoints” that

a particular drone will follow to move from start to destination.

The Drone will make a series of requests to the Controller for its
next “waypoint” on reaching its previously provided “waypoint”,

until it reaches its destination. This simulation is a non-preemptive

model. Figure 4 provides an illustration of this model.

4
The service level agreement for drone deliveries is discussed in Section 4.2
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4.2 Drone Delivery Service Level Agreement
Traditional courier service level agreements are usually a set of fixed

payment options for the customer to select from where the service

provider guarantees delivery within a specified period of time, for

a fee. Figure 5 is an example of a delivery service payment package

model adapted from Amazon [13]. In contrast, high-volume drone

delivery networks that are time-sensitive need to make intelligent

scheduling decisions with no guarantees of the delivery, given

limited resources. In this environment, courier service providers

need to provide customers with a flexible payment structure that

accounts for possible delivery delays. Therefore this study proposes

the use of the traditional fixed payment model (Figure 5) alongside

the new Time Value of Service Delivery function that combine to

represent the time-sensitive service level agreement between the

drone service provider and the customer. This research proposes

that the Time Value of Service Delivery is a fixed percentage price

reduction for every interval of t time delay.

Figure 5: Drone Delivery Payment Structure

In this experiment, we implemented two possible options for

the Time Value of Service Delivery functions. Figure 6 reflects a

“step-wise” price reduction of equal proportions while Figure 7

represents a “halving” of the price. We believe that this service level

agreement model provides the flexibility, in the future, to adapt to

a more varied view of the time-sensitive diminishing “value” for

the drone delivery. This can be achieved through increasing the

available options for the Time Value of Service Delivery functions.

Figure 6: Time Value of Service Delivery (Step-wise)

In the drone delivery network simulation, the Order Generator
randomly selects a delivery fee from the Payment Package in Fig-

ure 5 using Algorithm 2 as well as selects one of the two available

Figure 7: Time Value of Service Delivery (Halving)

options of Time Value of Service Delivery functions. This informa-

tion is passed from the Order Generator to the Controller for each
delivery request. The Controller using a combination of the Time

Value of Service Delivery function and Payment Package deduces

a cost payoff function
5
. The Controller invokes the LLVjobSort

detailed in Algorithm 1, to sort the delivery requests, scheduling

the request with the lowest Net Lost Value to enhance the value

(revenue) obtained by the service provider.

Algorithm 2 Payment Package Selection

1: procedure selectPaymentPackage(requestID)
2: requestId ← requestID
3: pktType← random select Package Type
4: weight ← random(pktType)
5: priority ← random select priority
6: deliveryFee = getDeliveryFee(pktType,weight, priority)
7: return requestID, deliveryFee
8:

4.3 Drone Delivery Experiment Simulation
The selected area for the drone delivery network simulation was

a location in Central London covering an area of 5km x 4km with

a routable boundary of 4.8km x 3.8km, allowing a 100m border to

avoid simulating entities on the ‘world” boundary. The world was

divided into two sections with 5 NFZ, one Controller per section,
servicing 15 Drones. Figure 8 provides an illustration of the initial

snapshot of the world used in this experiment.

A time-sensitive environment was achieved through an Order
Generator that recreated customers placing delivery requests of

high volume and stochastic arrival times, on average one every

30s, with randomly generated delivery destinations, within the

world. Additionally, each order was randomly assigned one of two

Time Value of Service Delivery functions, illustrated in Figure 6

and Figure 7.

The simulation was run for a period of 6 hours to test the ca-

pability of the LLV algorithm in scheduling the routing of drone

deliveries to enhance the revenue of the service provider. Addition-

ally, two popular scheduling algorithms used in traditional package

deliveries, First Come First Served (FCFS) [24] and Shortest Job

5
As example, a payment structure of Figure 5 combined with Time Value of Service

Delivery function of Figure 6, that takes 5 minutes to deliver a “Standard Envelope”

weighing 500g of “Delivery Type” Super Priority will obtain the full “Value” of £5.20. If

the delivery takes 19 minutes, a reduced “Value” of £3.64 is obtained, and further delay

in delivery time of 55 minutes will see a considerable reduction of “Value” to £0.52.
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Figure 8: Drone Delivery World with NFZ

First (SJF) [10], was run in parallel for the purposes of compari-

son with LLV. A queue size of 40 was used in the experiment. The

FCFS implementation discarded delivery requests received once the

queue was full. For SJF the queue was sorted when a new delivery

request was received, requests with the shortest duration first. The

LLV implementation reordered the queue, when a drone became

available for delivery, allowing the queue to grow beyond the size

of 40. Some assumptions were made in this experiment:

(1) Each Drone travels at a constant speed for the delivery

(2) The service providermaintains a one hour service level agree-

ment, with a fixed penalty of £5 paid out to the customer

after this period

(3) The simulation assumes the drone delivery network targets

“last-mile” logistics, discussed in Section 2 and that the pack-

age deliveries can be brought to the central controller

5 DRONE DELIVERY - EXPERIMENTAL
RESULTS AND DISCUSSION

This section discusses the results
6
of the experiment obtained from

running a simulation of a drone delivery network using three sched-

uling algorithms in parallel to route the drones: (1) LLV (2) FCFS

(3) SJF. The total “value” (revenue) obtained was compared and con-

trasted between LLV and traditional scheduling algorithms: FCFS

and SJF.

Figure 9: Queue Size over Time

6
Detail results location: https://www.doc.ic.ac.uk/~ss11715/DroneSimulationResults/

Figure 9 shows that the queue size load of requests was higher

in Controller 1 than in Controller 2. The overload of requests in

Controller 1meant that the algorithms were used more frequently to

make scheduling decisions for drone deliveries than in Controller 2.

Figure 10: Total Revenue over Time

Figure 11: Average Revenue Per Drone Delivery

Figure 12: Completed Deliveries over Time

The experiment results in Figure 10 show that when the system

was under overload (Controller 1), LLV was able to deliver 48% and

31% of increased revenue to the service provider than FCFS and

SJF. On average LLV extracted £1.15 more revenue per delivery

request than FCFS and £0.80 than SJF, illustrated in Figure 11. Inter-

estingly, the enhanced revenue extracted by LLV was not derived

from increased deliveries. Total deliveries completed by LLV, FCFS

and SJF were 850, 859 and 983 respectively as shown in Figure 12.

https://www.doc.ic.ac.uk/~ss11715/DroneSimulationResults/
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These results indicate that the LLV scheduling decision based on

a consideration of the Time Value of Service Delivery was able to

successfully drive scheduling in a time-sensitive environment to

extract increased revenue to the service provider. Additionally, LLV

achieved this from a reduced number of deliveries than FCFS and

SJF which suggests a more efficient scheduling model.

Where there was no overload in the drone delivery network

(Controller 2), LLV did not perform as well as FCFS and SJF. LLV

extracted 6% and 10% less total revenue than FCFS and SJF. This was

expected as no overload meant that no scheduling decisions were

required. SJF working through the deliveries of closer destinations

would complete more delivery requests, such obtaining increased

value (i.e. revenue). LLV would behave similar to FCFS scheduling

the deliveries as they arrive. However, we did expect LLV to extract

less total revenue than FCFS given the delays in generating the cost

payoff function, that was not required given deliveries were less

than available drones.

These results show that the notion of Time Value of Service

Delivery, introduced in Section 2, is capable of driving scheduling

decisions in a time-sensitive environment. The experiment illus-

trates the practicality of how a service level agreement between the

customer and a service provider can be represented as a cost payoff

function and integrated into a revenue-driven scheduling model.

Finally, these results confirm that the novel LLV algorithm has been

able to schedule deliveries in a time-sensitive drone-delivery net-

work simulation to enhance revenue to the service provider, more

effectively than widely-used FCFS and SJF scheduling algorithms.

6 CONCLUSION AND FUTUREWORK
Delivery providers are increasingly looking to the skies for solutions

to challenges facing light weight package deliveries by embracing

drone technology. With demand for timely deliveries increasing

exponentially from e-commerce, while conventional delivery ve-

hicles remain limited, highly utilised and subject to challenging

terrains and urban congestion, service providers are increasingly

convinced that drones is the much needed solution. Within this

context, this paper proposes the notion of Time Value of Service De-

livery as a monotonically decreasing function of time and presents

a new intelligent scheduling algorithm that uses it. Specifically, we

have developed a revenue-driven scheduling algorithm, Least Lost

Value (LLV), which supports idiosyncrasies such as stochastic task

duration and time-sensitive environments, with aim to enhancing

revenue to courier service providers. LLV was used in a drone de-

livery network simulation to route drones using a revenue-driven

scheduling model. Our results show that the LLV scheduling al-

gorithm is able to extract increased revenue to service providers

compared to traditional scheduling algorithms, 48% and 31% more

revenue than FCFS and SJF respectively.

One avenue for future work would be to test the effectiveness of

the LLV algorithm in driving intelligent scheduling for big data envi-

ronments. Big data suffers from a deluge of data needing some form

of intelligent scheduling for timely processing of data for improved

decision-making. LLV could be useful in driving the scheduling

needs, especially that consumers of the processed data may have

varying views of its “value” that diminishes with time.
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