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Abstract Big genera represent a significant proportion of the world’s plants. However, comprehensive taxonomic and evolutionary
studies of these genera are often complicated by their size and geographic spread. This paper explores the challenges faced in classi-
fying these megadiverse plant groups consequent to the existing tension between diagnosability and increasing levels of resolution
from molecular sequence data. We use recent examples from across angiosperms to illustrate how monophyly, diagnosability and
completeness interplay with each other in attempts to classify several big genera and, specifically, the genus Ipomoea (Convolvula-
ceae). Ipomoea and the tribe Ipomoeeae have been the object of recent taxonomic and phylogenetic studies that highlight the limita-
tions of previous attempts to classify the group, and show that the smaller segregate genera traditionally recognised in Ipomoeeae are
nested within Ipomoea and are neither monophyletic nor diagnosable. We argue that existing classifications must be abandoned, and
that recognising an expanded Ipomoea that incorporates all segregate genera of the Ipomoeeae is the most appropriate solution as it
reconciles the properties of monophyly, diagnosability and completeness, and favours nomenclatural stability.
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■ INTRODUCTION

Approximately 370,000 species of flowering plants
have been described to date (RBG Kew, 2016), with 13.5%
of these species (c. 50,000 spp.) belonging to the so-called
big genera. That is, genera that include five hundred or more
species, such as AcaciaMill., Allium L., Begonia L.,Carex L.,
Erica Tourn. ex L., Eucalyptus L’Hér., Euphorbia L., Ipo-
moea L., Salvia L., and Solanum L. (Frodin, 2004). Of the
c. 13,200 angiosperm genera only around 57 can be considered
big genera (cf. Frodin, 2004), yet they constitute an important
part of plant diversity and contain plants of economic, horti-
cultural, ecological and cultural significance. Big plant genera
are a natural phenomenon akin to big families such as Astera-
ceae Bercht. & J.Presl, Orchidaceae Juss. or Poaceae Barnhart
(Brummitt, 1992; Domínguez Lozano & Schwartz, 2005). Al-
though explanations for the occurrence of species-rich taxa
are varied, there is little doubt that they are a feature of all Lin-
naean classifications, which always include a large number of

species-poor taxa together with a small number of species-
rich taxa (Willis, 1922; Willis & Yule, 1922; Sanderson &
Wojciechowski, 1996; Scotland & Sanderson, 2004; Domín-
guez Lozano & Schwartz, 2005).

Big genera represent a challenge for taxonomic and evolu-
tionary studies due to their size and geographical spread. Some
authors (see historical account in Frodin, 2004: 754–757) refer
to these genera as “too big”, a criticism that can only be valid for
practical, rather than ontological reasons. The sheer number
of specimens in natural history collections from all over the
world and the logistics of bringing them together is daunting.
Furthermore, the amount of information accumulated over
time, the burden of an extensive and widely dispersed literature,
and changes in the publication system in recent decades (i.e.,
impact factor and institutional pressure to publish regularly)
have often discouraged researchers from monographing big
genera at a global scale. In consequence, there have been very
few comprehensive monographs of these genera since the nine-
teenth century, when the number of known species in each
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genuswas far fewer. In addition,most big genera arewidely dis-
tributed (Frodin, 2004; POWO, 2020) and therefore no study
based on one country or even one region is likely to account
for all the diversity that exists (see as an example Ipomoea in
Bolivia in fig. 3 in Muñoz-Rodríguez & al., 2019). Further-
more, as we describe in this paper, judgements based on limited
material or material from a geographically restricted area inev-
itably provide an incomplete explanation of the total variation
in the genus and often lead to misleading conclusions. As the
number of recognised species keeps growing, the study of these
big groups becomes even more challenging – although the inte-
gration of modern research tools can accelerate the speed at
which these studies are conducted (Scotland & Wood, 2012;
Muñoz-Rodríguez & al., 2019).

Due to these challenges, taxonomists have frequently
tried to break big genera up into more manageable units, ei-
ther by splitting them into separate genera or by recognising
infrageneric taxa, such as subgenera, sections, or series. Until
about 25 years ago, these decisions were based on observed
morphology, but in recent years molecular systematics has
revolutionised the study of evolutionary relationships with im-
plications for generic limits and infrageneric classification, pro-
viding more objective grounds for the recognition of genera
and infrageneric categories. However, in solving some prob-
lems,molecular phylogenetics has created other difficulties, no-
tably through increased phylogenetic resolution that uncovers
cryptic nodes, which cannot be correlated with observablemor-
phological synapomorphies (Muñoz-Rodríguez & al., 2022b).
In addition, molecular data does not resolve issues of rank,
that is, whether a particular clade should be recognised at ge-
neric or infrageneric level (Backlund & Bremer, 1998).

A monographic study of the big genus Ipomoea. —
Ipomoea is the largest genus in the family Convolvulaceae
Juss. and, with c. 800 species, one of the largest plant genera
worldwide (Wood & al., 2020). It has a pantropical distribu-
tion and includes herbs, shrubs, vines, lianas and trees. The
genus is also present in some more temperate regions as far
north as Canada and several widespread species have a world-
wide distribution (Wood& al., 2020). Two species have global
importance as crops: the sweet potato, Ipomoea batatas (L.)
Lam., and the kangkong or water spinach, I. aquatica Forssk.
Similarly, cultivated ornamental species, such as I. tricolor
Cav. and I. purpurea (L.) Roth – the group commonly known
as morning glories – and species considered invasive, such as
I. cairica (L.) Sweet and I. indica (Burm.) Merr., are also more
or less well known.

The authors of this paper have been working on the sys-
tematics of Ipomoea since 2012, and in 2014 we embarked
on the study of the genus at a global scale. Although hundreds
of studies on Ipomoea have been published since the genus
was validly published (Linnaeus, 1753: 159), it had never been
monographed. The only previous “global” taxonomic review,
published by Choisy more than 170 years ago, included just
282 species (Choisy, 1834, 1838, 1845), and more recent stud-
ies focused on small parts of the genus (e.g., Mardero-
sian, 1965; Austin, 1991; Staples & al., 2005; Ogunwenmo,

2008; Austin, 2013; Austin & McDonald, 2014; Swamy &
Ramana, 2018; Rattanakrajang& al., 2022) or on small groups
of species, frequently those related to sweet potato or other
widespread species (McDonald & Austin, 1990; Austin &
Staples, 1991; Austin, 1997; Das, 2011; Abdel Khalik & al.,
2012; Abdel Khalik, 2013; Folorunso, 2013). A few authors
also addressed the genus at a national or regional level, but
several of these more extensive treatments date back to the
19th century or the first half of the 20th century (Grisebach,
1864; Gray, 1878; Hallier, 1894; House, 1908) and most of
the more recent, with a few notable exceptions (e.g., Van
Ooststroom, 1953; O’Donell, 1960; Verdcourt, 1963; Austin,
1975, 1982;Meeuse &Welman, 2000;Wood& al., 2015), are
basic checklists of species or provide only limited information
about the taxa included. Ipomoea species new to science are
still described regularly, especially from Brazil, Mexico, India
and Southeast Asia (e.g., Traiperm & al., 2019; Santos & al.,
2020, 2021; Lawand & Shimpale, 2021), although authors of-
ten do not discuss their discoveries in a broader taxonomic
context.

Amilestone of our workwas the publication of a taxonomic
monograph of all 425 Ipomoea species in the Americas (Wood
& al., 2020) alongside comprehensive molecular phylogenies of
the tribe Ipomoeeae Hallier f. (Muñoz-Rodríguez & al., 2019).
The results of our monographic work also include the descrip-
tion of over 70 American species new to science – almost 9%
of all species known worldwide –, an extensive nomenclatural
review, and several other taxonomic publications (Wood & al.,
2015, 2016a,b, 2017a,b,c, 2018; Wood & Scotland, 2017a,b,c;
Jara & al., 2020; Muñoz-Rodríguez & al., 2019, 2022a). The
molecular phylogenies also allowed us to address the evolution
of the genus at a global scale (Muñoz-Rodríguez & al., 2018,
2019, 2022a,b; Carruthers & al., 2020a). Our results are sup-
ported by the study of over 25,000 physical herbarium speci-
mens, with visits to herbaria in the U.K. and other European
countries, Argentina, Bolivia, Brazil, Colombia, Cuba, Ecuador,
Paraguay, Peru, United States and specimens in virtual herbaria,
as well as fieldwork in Argentina, Bolivia, Brazil, Ecuador, and
Paraguay. Our molecular phylogenies currently include c. 60%
of all species in tribe Ipomoeeae, with 2000 specimens se-
quenced for DNA barcodes corroborated for accuracy against
whole chloroplast genomes and 384 putative single-copy nu-
clear regions from c. 400 samples representing 215 species.

Taxonomic implications for Ipomoea and Ipomoeeae.
— Ipomoea has been traditionally classified in the tribe
Ipomoeeae alongside several smaller segregate genera such
as *Argyreia Lour., *AstripomoeaA.Meeuse, Batatas Choisy,
*Blinkworthia Choisy, Calonyction Choisy, Calycanthemum
Klotzsch, Exogonium Choisy, *Lepistemon Blume, *Lepiste-
monopsis Dammer, Mina Cerv., *Paralepistemon Lejoly &
Lisowski,QuamoclitMill., *Rivea Choisy, *StictocardiaHal-
lier f., or *TurbinaRaf. These smaller genera have been recog-
nised by different authors throughout history, with most of
them later sunk into Ipomoea and only a handful still recog-
nised at present (indicated with an asterisk above). In 2019,
our molecular phylogenies (Muñoz-Rodríguez & al., 2019)
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confirmed that all the smaller genera in Ipomoeeae are nested
within Ipomoea and all but one of them (Astripomoea) are
non-monophyletic (Fig. 1, suppl. Fig. S1). This had been
shown several times before, albeit with a less comprehensive
taxon and data sampling (see for example Miller & al., 1999;
Wilkin, 1999; Stefanović & al., 2003; Eserman & al., 2014).
In addition, we also demonstrated that the three subgenera tra-
ditionally recognised within Ipomoea, and almost all sections
and series, were not monophyletic (suppl. Fig. S2) (Muñoz-
Rodríguez, 2019; Muñoz-Rodríguez & al., 2019, 2022b).
Thus in 2019, considering all evidence available, we embraced
the idea, first suggested by Paul Wilkin (1999) and reiterated
by others (e.g., Stefanović & al., 2003), of recognising an ex-
panded Ipomoea that includes all other genera in Ipomoeeae.
Members of this expanded, monophyletic genus Ipomoea

can be recognised by their spiny pollen, a morphological syn-
apomorphy within Convolvulaceae (all other members of the
family have smooth pollen exine). We also undertook the nec-
essary nomenclatural changes to recognise an expanded Ipo-
moea that contained all species previously included in other
genera (supplementary information in Muñoz-Rodríguez &
al., 2019). This decision, however, has been questioned by
colleagues who prefer to continue using the smaller non-
monophyletic genera aforementioned and a non-monophyletic
Ipomoea (Traiperm & Suddee, 2020; Lawand & Shimpale,
2021; Staples & al., 2021; Rattanakrajang, & al. 2022).

In this paper, we discuss how we reached this and other
decisions in our work on Ipomoea. We structure the paper
in three main sections. First, we present the theoretical frame-
work that we think is relevant to a discussion on biological
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Fig. 1. The taxonomy of Ipomoeeae has been constantly revised since the 18th century, and many species have been classified in different genera by dif-
ferent authors. This nrITS phylogeny of Ipomoeeae, modified from Muñoz-Rodríguez & al., 2019, includes c. 60% of all species in the tribe, with one
specimen per species; it summarises the current taxonomic situation, with all recognised segregate genera nested within Ipomoea. Colour bars indicate
species currently classified in a segregate genus. Only the segregate genus Astripomoea (purple) forms a small, monophyletic group within the
Astripomoea clade (As), with all other segregate genera polyphyletic. An important point about the Old World clade is that it contains more species of
Ipomoea (c. 250) than all segregate genera combined (c. 170). NW = New World clade; OW = Old World clade; AG = African grade; A = clade A;
A1 = Carnea clade; A2 = Digitata clade; A3 = Batatas clade; B = clade B; B1 = Purpurea clade; B2 = Quamoclit clade; C = Pes-caprae clade;
D = Squamosa clade; E = Cairica clade; As = Astripomoea clade. An expanded phylogeny with all labels is provided in suppl. Fig. S1. This nrITS
phylogeny is for illustrative purposes only as its usefulness in taxonomic studies is always in tandem with morphological species hypotheses and high-
throughput nuclear and chloroplast phylogenies. See Muñoz-Rodríguez & al. (2019) for a full explanation and an expanded, multi-specimen phylogeny.
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classifications based on four criteria: monophyly, resolution,
diagnosability, and completeness. Second, we use recent
examples from across angiosperms to illustrate how these
different criteria interplay with each other, with special atten-
tion to other big genera, and explore the approaches taken by
researchers in these groups. Finally, we discuss the case of
Ipomoea and several alternatives for its classification.

■ THEORETICAL FRAMEWORK

A review of recent papers on the classification of big gen-
era suggests four criteria are considered as important by most
authors: monophyly, resolution, diagnosability, and complete-
ness. These four criteria are an implicit feature of all classifi-
cations (Fig. 2A).

First, it is now widely accepted that classifications should
reflect evolutionary history and a taxon should include all de-
scendants of a common ancestor (Hennig, 1966). Thus, all taxa
should be monophyletic. Monophyly was accepted by many,
more than 20 years ago, as the overarching principle for classi-
fication, with other properties subordinated to it (Bryant, 1994;
Backlund & Bremer, 1998) – although there does seem to have
been an ongoing, stubborn resistance to this idea in the taxo-
nomic literature (Brummitt, 1996; Hörandl & Stuessy, 2010).

The recognition of non-monophyletic taxa, e.g., polyphyletic
sections or series (Fig. 2B), hinders the interpretation of bio-
logical observations in an evolutionary context.

The second property, resolution, is tightly linked with
monophyly. Lack of resolution may hinder recognition of the
existing breadth of phylogenetic diversity (Swenson, 2009).
Although poorly resolved phylogenies exist, the exponential
increase in genomic data generation has made high levels of
phylogenetic resolution a realistic goal (Muñoz-Rodríguez
& al., 2022b).

Third, to be most useful, all taxa in a classification should
be diagnosable by amorphological character or a combination
of characters. In the best-case scenario, morphological diag-
nosability is also supported by geographical distribution and
behaviour/ecology. Even when diagnosability is considered
secondary to monophyly, a classification that recognises, for
example, subgenera that are monophyletic but lack diagnostic
characters (Fig. 2C) would in practice be of limited use, as it
would not be possible to place specimens in their evolutionary
context unless using molecular data. Given that most plant
species have never been sequenced (Sayers & al., 2021) it
would result in many unplaced specimens and species, also
affecting completeness.

Fourth, a Linnaean classification should be complete, that
is, it should account for all species in a group and not leave

Fig. 2. A, In an ideal classification of any group of organisms, all taxa should be monophyletic (dashed lines) and diagnosable (blue boxes), and no
taxon should be left unplaced. B, Often, however, one or more taxa are not monophyletic but split into two or more distinct lineages more closely
related to other taxa (e.g., taxon 2). C, Many classifications include formally recognised groups that are monophyletic but do not present diagnos-
able morphological characters, and thus can only be identified using molecular data. This is unsatisfactory as at present it is not possible to sequence
every specimen studied. D, It is common that classifications fail to account for all taxa (e.g., species) in the group, leaving some of them unplaced.
The lack of a taxonomic context hinders the study of these species in the right framework.
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unplaced species. If a genus is divided, for example, into three
subgenera, every species in the genus is ideally assigned to
one of them. A classification that leaves a rump of unassigned
species (Fig. 2D) is inherently incomplete, unsatisfactory and
intrinsically problematic for other users.

An additional criterion, not theoretical but pragmatic and
desirable is nomenclatural stability (Carruthers & Robin,
2010; Wright, 2015: 125; Drew & al., 2017). Many large gen-
era are of economic or horticultural importance and names are
used in commercial and cultural settings as well as by ecolo-
gists, conservationists, horticulturalists, etc. Users welcome
nomenclatural stability and this is something that should be
aimed for where possible. Many of these users are resistant to
change as evidenced by the persistence of long abandoned
names such as “azalea” (syn.Rhododendron L.) in horticultural
settings. However, we think nomenclatural stability should in
no case overrule monophyly. In fact, the issue of stability can
be overstated as for example the sinking and nomenclatural
changes of Lycopersicon Mill. into Solanum and Rosmarinus
L. into Salvia seem to have been readily accepted (Drew &
al., 2017; Gagnon & al., 2022).

■ RECONCILING THEORY AND PRACTICE IN
BIG PLANT GENERA

The criteria for a classification outlined above are rela-
tively uncontroversial. However, taxonomists often find diffi-
culties in reconciling them, and in practice a constant tension
exists between the application of all four properties. This ten-
sion can lead to conflict between, for example, monophyly
and diagnosability. In such cases, taxonomists often prioritise
one at the expense of the other with the consequent recogni-
tion of either non-monophyletic or non-diagnosable taxa.

In this section we review how recent decisions have been
made in other genera to put our proposal for Ipomoea in a
broader context. We specifically focus on five other megadi-
verse genera (Carex, Solanum, Salvia, Euphorbia, Begonia)
and discuss these taxonomic decisions relative to the general
properties of classification discussed above.

Case study 1. Carex. — Carex is the largest genus in the
family Cyperaceae Juss. It is classified in tribe Cariceae
Dumort., which includes c. 2000 species traditionally divided
into five genera: Carex (>1830 spp.), Uncinia Pers. (c. 70
spp.), Kobresia Willd. (c. 60 spp.), Schoenoxiphium Nees
(c. 15 spp.), and CymophyllusMack. ex Britton & A.Br. (mono-
typic). Molecular phylogenetics have confirmed that the tribe
Cariceae is a monophyletic group but Carex and Kobresia as
traditionally recognised are polyphyletic, and Schoenoxiphium
and Uncinia, although monophyletic, are nested within Carex
(Global Carex Group, 2015 and references therein).

As explained by the Global Carex Group (2015), a new
classification that better reflected evolutionary relation-
ships was needed. Carex specialists thus considered three
possibilities:

(1) To treat the four major clades as four distinct genera.

(2) To recognise each strongly supported clade within
Cariceae as a distinct genus.

(3) To recognise the entire tribe Cariceae as a single ge-
nus, Carex.

Option 1 was ruled out due to lack of diagnosability.
Although three of the four major clades have strong molecular
support, the morphological variation makes it difficult to
define synapomorphies. In turn, option 2 was ruled out be-
cause it would imply extensive nomenclatural rearrange-
ments, and because some of the putative genera would be
morphologically very similar and this would cause consider-
able confusion. The Global Carex Group therefore opted for
option 3, to recognise an expanded, monophyletic Carex as
the only genus in tribe Cariceae. An expanded Carex is mono-
phyletic, diagnosable (its unisexual flowers and the perigynia
surrounding the female flowers are synapomorphies within
the family), and complete (accounts for all species), and in-
volves fewer name changes than the other options, causing
less potential disturbance to other users. In addition, it is im-
portant to note that authors do not seem to be concerned with
the size of the genus –more than twice the size of an expanded
Ipomoea.

Case study 2. Solanum.— Solanum is the largest genus in
the family Solanaceae Juss. Prior to molecular studies, the tra-
ditional definition of Solanum excluded taxa with stamen di-
morphism and/or anther modifications and treated them as
different genera, e.g., Cyphomandra Mart. ex Sendtn., Lyco-
persicon Mill., and Normania Lowe. Over the past decades,
the use of DNA sequence data showed that these genera were
nested within Solanum (Spooner & al., 1993; Bohs & Olm-
stead, 1997; Olmstead & Palmer, 1997) and were subsequently
sunk into it. The changes in the generic circumscription of So-
lanum have had a minimal effect on its size but have expanded
its morphological diversity, especially in relation to anther
characteristics.

Solanum presents a relatively uniform floral morphology.
In terms of an infrageneric classification, and prior to molec-
ular studies, sections were defined based on morphological
characters (Hunziker, 2001), but most of these have later been
shown to be non-monophyletic (Olmstead & Palmer, 1997;
Weese & Bohs, 2007). Following a proposal by Bohs (2005),
Solanum researchers have used informal names to refer to
clades within Solanum (see fig. 1 in Särkinen & al., 2013)
and no formal infrageneric classification has been attempted.
Some of the clades have diagnostic morphological charac-
ters, whereas other clades do not. Furthermore, the complex
nomenclature and concepts used across Solanum, as well as
the possible existence of hard polytomies along the backbone
of the genus (Gagnon & al., 2022) suggest that any attempt to
classify Solanum into formal sections would add to the con-
fusion more than facilitate understanding (Tiina Särkinen,
pers. comm.).

Case study 3. Salvia.— Salvia, as traditionally recognised
(Drew& al., 2017;Mabberley, 2017) is an almost-cosmopolitan
genus only absent from Australia and New Zealand. It forms a
morphologically homogeneous group readily identifiable by
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the staminal lever mechanism (Sprengel, 1793; Claßen-Bock-
hoff & al., 2004). However, it has been shown that Salvia in its
current delimitation is not monophyletic (Drew & al., 2017
and references therein), and that the lever mechanism appeared
at least three times independently – or, alternatively, the lever
mechanism was the ancestral character state and was subse-
quently lost multiple times in different lineages (Walker &
Sytsma, 2007; fig. 2 in Drew& al., 2017). Interestingly, the five
lineages that do not present the staminal lever mechanism corre-
spond to five segregate genera traditionally recognised in La-
miaceae: Dorystaechas Boiss. & Heldr. ex Benth., Meriandra
Benth., Perovskia Kar., Rosmarinus L., and Zhumeria Rech.f.
& Wendelbo. These five genera together amount to 15 species,
a small number in comparison with Salvia.

Similar to the case in Carex, three possibilities were con-
sidered to deal with the non-monophyly of Salvia (Walker
& al., 2004):

(1) To treat all different lineages within Salvia sensu lato as
different genera. This option was supported, for example, by
Will & al. (2015), who argued in favour of recognising the seg-
regate genera and splitting Salvia into smaller groups. This ap-
proach would imply extensive nomenclatural rearrangements
as the type of Salvia, S. officinalis L., belongs to a clade of
c. 250 species that would retain the name Salvia, whereas over
500 other species would be transferred to other genera – includ-
ing all but eight species in the Americas.

(2) To employ phylogenetic nomenclature (the Phylo-
Code), a rank-free system of biological nomenclature (De
Queiroz & Gauthier, 1992; Cantino & al., 2020), and retain
current species binomials while naming the different clades.
This was proposed in the late 20th century for mints and their
relatives (Cantino & al., 1997) but has not been followed in re-
cent publications.

(3) To keep the genus Salvia as traditionally circum-
scribed while treating the five segregate genera as part of it
(Drew & al., 2017). This approach would achieve monophyly
while only requiring minor nomenclatural rearrangements to
accommodate the c. 15 species transferred to Salvia and seems
to be gaining acceptance (e.g., González-Gallegos & al., 2020).
On the other hand, sinking the five segregate generawithin Sal-
via comes at the cost of rendering the lever mechanism found in
Salvia s.str. no longer diagnostic for Salvia s.l. At the moment,
no formal or comprehensive infrageneric classification of Sal-
via has been proposed, and researchers use informal names to
refer to clades within an expanded Salvia that are distinguished
geographically and/or morphologically (Jenks & al., 2013;
Fragoso-Martínez & al., 2018), akin to the approach used in
Solanum.

Case study 4. Euphorbia. — With over 2000 accepted
species, Euphorbia is the second-largest genus of flowering
plants after Astragalus L. Euphorbia species are characterised
by the cyathium, a morphological synapomorphy. In 2002,
phylogenies using nuclear and chloroplast DNA sequence
data and around 220 species showed that former segregate
genera such as Chamaesyce Gray, Monadenium Pax, Pedi-
lanthus Neck. ex Poit., and Poinsettia Graham were nested

within Euphorbia, and were thus synonymised into it with lit-
tle conflict (Steinmann & Porter, 2002). The data also showed
a marked incongruence with most of the traditionally recog-
nised subgeneric groups within Euphorbia, clearly indicating
that previous subgenera and sections delimited based on mor-
phology are not monophyletic. Subsequently, broadly sampled
studies have clarified the relationships between Euphorbia s.l.
(i.e., including all formerly segregate genera) and other groups
within Euphorbiaceae Juss., clearly showing that all segregate
generawith a cyathium are embeddedwithinEuphorbia (Stein-
mann & Porter, 2002; Wurdack & al., 2005; Bruyns & al.,
2006; Horn& al., 2012). These studies have also identified four
main clades within Euphorbia with no apparent morphologi-
cal synapomorphies. These clades have been recognised as
four distinct subgenera: E. subg. Euphorbia (c. 660 spp., Dor-
sey & al., 2013), subg. Chamaesyce Raf. (c. 600 spp., Yang &
al., 2012), subg. Esula Pers. (c. 480 spp., Riina & al., 2013),
and subg. Athymalus Neck. ex Rchb. (c. 150 spp., Peirson &
al., 2013).

Case study 5. Begonia. — Begonia L. is one of the
fastest-growing genera of angiosperms in terms of number
of species described, with over 700 new species names
published in the last two decades (IPNI, 2021). Begonia as cur-
rently delimited has a near-pantropical distribution but is absent
from Australia, and species often have restricted distributions
(c.f. Doorenbos & al., 1998; Forrest & Hollingsworth, 2003).
It is one of only two recognised genera in the family Begonia-
ceae C.Agardh, the other one being monotypic, Hillebrandia
Oliv. (POWO, 2020). An alternative approach would be to split
Begonia into multiple generawith the recognition of monophy-
letic groups at generic level. This approach, however, would be
extremely disruptive to the nomenclature of this otherwise
easy-to-recognise, horticulturally important group, as only
the American species closely related to the type species (B. ob-
liqua L.) would retain the nameBegonia. Researchers working
on Begonia have thus opted for an expanded, monophyletic
Begonia with a sectional classification of the genus (Dooren-
bos& al., 1998;Moonlight & al., 2018). A sectional classifica-
tion has the advantage over a generic classification that
taxonomic instability does not produce nomenclatural instabil-
ity, as species can be moved between sections with no impact
on their generic name or authority string (Turland & al., 2018).

A complication of this sectional classification for Bego-
nia studies, however, is that many of the sections traditionally
recognised based on morphology (Doorenbos & al., 1998) are
not monophyletic (see fig. 2 in Moonlight & al., 2018). In ad-
dition, this classification was incomplete as 80 species were
only tentatively assigned to section and some 50 species were
not assigned at all. The current sectional classification of
Begonia thus needs updating to achieve a natural (monophy-
letic) sectional classification informed by morphology (Peter
Moonlight, pers. comm.).

Conflict between monophyly and diagnosability is
recurrent.—Conflict betweenmonophyly and diagnosability
is recurrent in angiosperm genera. It is sometimes not easily
settled as in the case of Phyllanthus L. (Phyllanthaceae
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Martinov), a widespread genus with c. 875 species and a
complex taxonomic history. As traditionally circumscribed,
Phyllanthus is paraphyletic, with three smaller genera nested
within: Breynia J.R.Forst. & G.Forst. (c. 90 spp.), Glochidion
J.R.Forst & G.Forst. (c. 300 spp.), and Synostemon F.Muell.
(c. 30 spp.) (Bouman & al., 2021). However, while it is clear
that Phyllanthus as traditionally circumscribed is not mono-
phyletic, a general agreement on how to delimit it has not been
reached. Two main solutions have been proposed, either to
recognise an expanded, monophyletic albeit morphologically
heterogeneous Phyllanthus (Kathriarachchi & al., 2005; Hoff-
mann & al., 2006) or to divide the tribe Phyllantheae into mul-
tiple monophyletic genera (Pruesapan & al., 2008; Van
Welzen & al., 2014; Bouman & al., 2021). The most recent
publication (Bouman & al., 2021) argued that an expanded
Phyllanthus would be difficult to define, and thus the authors
recommended splitting Phyllanthus into nine distinct mono-
phyletic genera. However, diagnosability issues persist, as
the authors do not identify morphological characters to diag-
nose these genera.

Uncertainty is not limited to big genera. Bruyns & al.
(2017), for example, proposed the recognition of an expanded,
monophyletic genus Ceropegia L. to include Brachystelma
R.Br. and the approximately 30 other genera of Apocynaceae
Juss. known as the stapeliads that are nested withinCeropegia.
However, some authors still prefer to differentiate Ceropegia
and Brachystelma based on their distinct floral morphologies,
prioritising diagnosability over monophyly (Rasingam &
Swamy, 2020): several new species of Brachystelma have been
described in recent years, and the name Brachystelma is still
used in horticultural settings. Finally, other authors argue the
stapeliads, although nested within Ceropegia, form a morpho-
logically well-defined group that “makes a strong case for the
acceptance of paraphyletic groupings” (Gilbert, 2020). Gilbert
(2020) also argues that splitting Ceropegia into multiple new
genera would cause a major disruption in data connectivity
and would serve little useful purpose.

A final example is the relationship between Euploca Nutt.,
HeliotropiumTourn. ex L., andMyriopus Small, three genera in
the family Heliotropiaceae sensu APG IV (Stevens, 2001–). In
this case, monophyly is deemed more important than diagnosa-
bility: the three genera have been recently delimited by Frohlich
& al. (2022) as reciprocally monophyletic even though there are
no clear diagnostic characters to differentiate them.

In summary, conflict between monophyly and diagnosa-
bility is widespread in many angiosperm genera, regardless
of their size, and the incorporation of molecular analysis to
not-yet-studied groups is likely to exacerbate the conflict.
Researchers working on big genera (>800 spp.) have faced
similar challenges as those faced now by Ipomoea researchers.
They have attempted to reconcile the theoretical criteria of an
ideal biological classification (monophyly, diagnosability,
completeness) while aiming at nomenclatural stability. It must
be clear, nevertheless, that all decisions imply nomenclatural
rearrangements, from making just 15 new combinations in
the case of Salvia to changing hundreds of names in

Phyllanthus and over 150 names inCarex. In most cases, the in-
corporation of molecular data has revealed that small, segregate
genera are nested within larger ones, and that many infrageneric
ranks are paraphyletic or polyphyletic, subsequently leading to
alternative proposals to redefine generic and infrageneric
boundaries. In all big genera discussed above authors favoured
monophyly, either by splitting a paraphyletic genus into smal-
ler, monophyletic genera (e.g., Phyllanthus) or by expanding the
larger genus to incorporate all formerly recognised smaller segre-
gates (e.g., Begonia, Carex, Euphorbia, Salvia, Solanum).

Diagnosability has long been an implicit requirement in
taxonomic studies as exemplified in the cases above and in
the use of morphological diagnoses and identification keys.
However, the recognition of cryptic nodes is becoming more
common as a consequence of increasing levels of phyloge-
netic resolution (Fazekas & al., 2009; Muñoz-Rodríguez &
al., 2022b). Nevertheless, even when cryptic nodes can be
identified through molecular methods, a classification that
recognises them may be of little practical value as such nodes
cannot be identified except as a result of sequencing in a lab-
oratory, while most plants have never been sequenced, even
for a single DNA barcode region (Sayers & al., 2021). In con-
clusion, we consider a classification of flowering plants that
does not attempt a degree of morphological diagnosability is
neither ideal nor functional and so is of limited value.

Completeness.—Historically most taxonomists have fol-
lowed the principle of completeness, leaving only a short ap-
pendix in taxonomic treatments with a few unplaced species.
There have been exceptions; Bremekamp’s monograph of the
Acanthaceae subtribe Strobilanthinae (Bremekamp, 1944),
for example, recognised 52 genera –mostly splits from Strobi-
lanthes Blume – but failed to account for around 100 species
previously placed in Strobilanthes (c. 30% of the total number
of species in the genus). Consequently, herbaria, floras and
checklists had to account for two kinds of Strobilanthes: a
small, supposedly monophyletic group of species separated
off by Bremekamp, and a large polyphyletic group of miscel-
laneous species with no close connection to Strobilanthes
sensu stricto (Carine & Scotland, 2002).

Completeness problems were a feature of the traditional
circumscription of Ipomoea. Authors recognised three subge-
nera – I. subg. Ipomoea, subg. EriospermumVerdc., and subg.
Quamoclit (Moench) C.B.Clarke – but these only included a
fraction of all species known in the genus, leaving many spe-
cies unclassified (suppl. Fig. S2) (Muñoz-Rodríguez, 2019,
2022b). This is not just a historical issue but contemporary
as in the case of Begonia discussed above. Biological classifi-
cations should aim to include all species in the group with no
significant residue of unassigned species.

■MOVING FORWARD: ALTERNATIVES FOR
A CLASSIFICATION OF IPOMOEEAE

There are three options for a classification of Ipomoeeae:
(1) to continue using the current system, (2) to attempt a new
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classification with multiple genera newly defined, or (3) to
recognise an expanded genus Ipomoea. In the rest of this pa-
per, we discuss these different possibilities in our current state
of knowledge and in the context of the theoretical framework
outlined above.

Option 1. Business-as-usual. — The first option is to
continue using the current system; that is, to recognise segre-
gate genera, such as Argyreia, Lepistemon and Rivea, as in re-
cent publications (Traiperm & Suddee, 2020; Lawand &
Shimpale, 2021; Staples & al., 2021; Rattanakrajang & al.,
2022). Since all smaller genera currently recognised except
Turbina are in what Muñoz-Rodríguez & al. (2019) termed
the Old World Clade (Fig. 1), it may seem that they are dom-
inant in that clade and thus this approach would be straightfor-
ward. However, that is not the case as the Old World clade
contains more species of Ipomoea in its traditional delimita-
tion (c. 250) than the number of species of all other genera
combined (c. 170).

In addition, it has been repeatedly shown that Ipomoea
is paraphyletic with all other genera nested inside, and all
of these except Astripomoea in turn are polyphyletic and
intermingle with Ipomoea species (Muñoz-Rodríguez & al.,
2019) (Fig. 1, suppl. Fig. S1). The significance of many spe-
cies of Ipomoea intermingled with the non-monophyletic seg-
regate genera is that it classifies potential sister species or very
closely related species in different genera, and therefore pre-
vents the interpretation of biological and ecological observa-
tions in the correct evolutionary framework.

Some recent authors (e.g., Traiperm&Suddee, 2020; Law-
and & Shimpale, 2021; Staples & al., 2021; Rattanakrajang
& al., 2022) have ignored the issue of monophyly, arguing that
the main reason to continue the recognition of these segregate
genera is that they can be morphologically distinguished from
Ipomoea. To avoid unnecessary repetition, we refer the reader
to the introductory pages of our monograph of Ipomoea for
an extensive discussion of the heterogeneous and homoplastic
morphology of the group (Wood & al., 2020: 31–53). Never-
theless, just as an example, Lawand & Shimpale (2021: 18–
19) claim that the genus Argyreia can be distinguished “by an
array of characters such as their habit as mostly semi-woody li-
anas, corolla with hairy midpetaline bands, flowers subtended
with well-developed bracts, and an indehiscent berry”. A
broader view of the morphology of Ipomoeeae shows these
morphological characters are not restricted to Argyreia but ap-
pear commonly elsewhere in Ipomoeeae, often in distant parts
of the phylogeny. The woody or semi-woody liana habit of
Argyreia species appears also, for example, in clades A1 (e.g.,
Ipomoea bombycina (Choisy) Benth. & Hook.f. ex Hemsl.,
I. populina House), A2 (e.g., I. cuprinacoma E.Carranza &
J.A.McDonald, I. horsfalliae Hook., I. schulziana O’Donell),
and Old World (e.g., I. corymbosa (L.) Roth ex Roem. &
Schult. [= Turbina corymbosa (L.) Raf.], I. fissifolia (McPher-
son) Eckenwalder, I. tiliifolia (Desr.) Roem. & Schult. [=
Stictocardia tiliifolia (Desr.) Hallier f.]) (Wood & al., 2020);
indehiscent fruits in clade C (e.g., Ipomoea leptophylla Torr.)
and all species formerly recognised in Stictocardia in clade

OldWorld (Miller & al., 1999); corollaswith hairymidpetaline
bands in clades A (e.g., I. bracteolata R.W.Johnson, I. saintro-
nanensis R.W.Johnson) and Old World (e.g., I. cambodiensis
Gagnep. & Courchet, I. corrugata Thulin, I. pes-tigridis L.,
I. plebeia R.Br.) (Van Ooststroom, 1940; Johnson, 1986;
Thulin, 2003; Staples & al., 2014); and flowers subtended with
well-developed bracts in clades B1 (e.g., I. neurocephala
Hallier f.), B2 (e.g., I. suffulta (Kunth) G.Don), or Old World
(e.g., I. involucrata P.Beauv.) (Wood & al., 2020). Further-
more, it is important to note that the multiple origin of some
of these morphological characters was reported decades ago.
Manos& al. (2001), for example, showed that indehiscent fruits
have evolved at least seven times independently in Ipomoeeae,
appearing in species of Argyreia, Stictocardia, the former Tur-
bina, and Ipomoea (e.g., I. aquatica or I. leptophylla Torr.).

It has also been argued that Argyreia can be distinguished
based on cytology (Lawand & Shimpale, 2021). Cytological
studies are few and, in general, use a very limited taxon sam-
pling, which complicates comparisons. Most cytological stud-
ies of Ipomoeeae species focused on the same set of species
and only a few Argyreia species have been analysed, normally
1–3 species per study. In general, studies that focus on chro-
mosome morphology or chromosome length highlight the
intra- and interspecific diversity existing in Convolvulaceae
and Ipomoeeae, and species of different genera are frequently
classified in the same type (e.g., Sampathkumar, 1979). In ad-
dition, most species of Ipomoeeae have a basic chromosome
number of n = 15, while exceptions (e.g., n = 14) have only
been reported sporadically and in both the segregate genera
and in Ipomoea (Ting & Kehr, 1953; Ting & al., 1957; Vij
& al., 1977). In summary, to the best of our knowledge there
is no evidence that the segregate genera in Ipomoeeae have
sufficient and consistent cytological differences for the pur-
pose of classification.

Finally, Staples & Traiperm (2017) noted that “In ecolog-
ical terms, Argyreia in Asia seems to have taken over the role
filled by Ipomoea species elsewhere in the tropics: the two
genera appear to be ecological analogues.” This view is mis-
leading as it suggests two separate groups with similar ecolog-
ical roles exist in different parts of theworld, whereas from the
phylogeny we know there is only one pantropical group ful-
filling this ecological role.

In conclusion, there is no reason to continue using the
current classification system with recognition of multiple
non-monophyletic genera. Justifications for this “business-as-
usual” approach are illogical and this system should be aban-
doned. The claim by some authors (e.g., Traiperm & Suddee,
2020; Lawand & Shimpale, 2021; Staples & al., 2021; Ratta-
nakrajang & al., 2022) that we have not offered enough evi-
dence to abandon this “business-as-usual” approach ignores
the fact that Muñoz-Rodríguez & al. (2019, 2022b), Wood &
al. (2020) and related publications constitute the most compre-
hensive study in terms of taxon and character sampling in the
history of Ipomoea research.

Option 2. Propose a new classification of Ipomoeeae.
— A second possibility is to redefine the groups within
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Ipomoeeae and delimit new taxa at the same rank, in a generic
or infrageneric classification, based on the monophyletic
groups Muñoz-Rodríguez & al. (2019) have identified (New
World clade, OldWorld clade, clades A–E; Fig. 3).Whilst this
optionmay be attractive, it would face a problem as significant
as the lack of monophyly in the current classification: diag-
nosable clades in Ipomoea are the exception and not the rule,
and most of these large clades are not diagnosable (Wood &
al., 2020). Clade A (part of the bigger New World clade), for
example, includes a quarter of all species of Ipomoea world-
wide and is further divided into three strongly supported smal-
ler clades: two species-rich clades (clades A1 and A2, with
c. 130 and c. 90 species respectively) and clade A3, which in-
cludes sweet potato and its 16 close wild relatives. In addition,
at least three other species form independent lineages within
clade A: Ipomoea cryptica J.R.I.Wood & Scotland, I. peru-
viana O’Donell and I. setosa Ker Gawl (suppl. Fig. S1), and
chloroplast and nuclear phylogenies resolve different topologies

between clades A1, A2, A3 and these three species. Further-
more, this part of the tree (clades A1 and A2) includes two
species-rich radiations (Muñoz-Rodríguez & al., 2019; Car-
ruthers & al., 2020a). These radiations are characterised by
constant shifts between biomes and growth habits, have no di-
agnostic characters, and there are no clear-cut boundaries to
decidewhich species are or are not part of the radiation.Mono-
phyletic diagnosable groups in clade A cannot readily be
identified in our current state of knowledge. Further studies
using high-throughput sequencing and including other still un-
sampled species in this clade will help assess how far genetic
data alone can help reveal the true levels of species diversity
in this part of the phylogeny, but it is likely that adding more
data will make the identification of diagnostic, monophyletic
groups more – rather than less – difficult.

Lack of diagnosability affects most nodes in the Ipo-
moeeae phylogeny, not only clade A. In order to find diagnos-
able clades, we need to look at much smaller groups of

Fig. 3. Summary nuclear phylogeny of Convolvulaceae tribe Ipomoeeae. All segregate genera are nested within clades dominated by Ipomoea spe-
cies (in green). All clades shown have 100% support in molecular phylogenies inferred using nuclear and chloroplast data; relationship between A1,
A2 and A3, and between B1 and B2 varies for nuclear and chloroplast data (see Muñoz-Rodríguez & al., 2019). NewWorld and Old World clades
have roughly the same number of species (c. 400), whereas the African grade includes c. 20 species divided into three clades. The Old World clade
includes more Ipomoea species than species of all segregate genera combined. The tribe Ipomoeeae is characterised by the echinate pantoporate
pollen. A1 = Carnea clade; A2 = Digitata clade; A3 = Batatas clade; B1 = Purpurea clade; B2 = Quamoclit clade; C = Pes-caprae clade; D = Squa-
mosa clade; E = Cairica clade; As = Astripomoea clade; Is = Ipomoea setosa; Ip = I. peruviana; Ic = I. cryptica.
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species, such as the Arborescens clade (a group of 10 species
with a tree habit in clade A1) or the Quamoclit clade (16
species with subapically awned sepals, some of which were
treated in the past as a different genus Quamoclit L., now in
clade B2) (Wood & al., 2020). In the African grade (Figs. 1, 3),
the Astripomoea clade, which includes 15 species of former
Astripomoea and Ipomoea, can be recognised by the pres-
ence of stellate hairs and a somewhat elongate stigma, al-
though both characters appear independently in several
American species from other clades. Similarly, the clade
including members of the former genus Stictocardia, which
intermingle with several Ipomoea species, can be diagnosed
by the accrescent sepals and the glandular abaxial leaf sur-
face, yet neither character is unique to this clade. These small
clades form part of bigger clades that cannot be readily diag-
nosed, and neighbouring clades are also not diagnosable.

Thus, the hypothetical recognition of smaller clades as
independent genera hinted at by recent authors (Eserman &
al., 2020; Staples & al., 2021) would necessarily lead to the
generation of non-diagnosable taxa, and would certainly affect
completeness, particularly if an attempt wasmade to achieve di-
agnosability. Furthermore, the inclusion of more species in the
molecular phylogenies (c. 30% of Ipomoeeae species have not
been sequenced yet) will likely further complicate the reconcil-
iation of these properties. Additionally, the morphological con-
tinuum and high levels of homoplasy that characterise the tribe
Ipomoeeae also advise against trying to split Ipomoea into
smaller non-diagnosable genera. Ignoring this, and thus perse-
vering in the use of artificial groups – as opposed to natural
or monophyletic groups –, will result in repeating the problems
of previous classifications of Ipomoea that were to a degree
unnatural, with many groups neither monophyletic nor well-
defined (McDonald, 1995; Miller & al., 2004). In the longer
term, the recognition of artificial taxa or the publication of com-
parative studies with misleading results based on a very limited
taxon sampling (Baker & al., 2022; Rattanakrajang& al., 2022;
Simões & al., 2022) will hinder a good understanding of the di-
versity and evolution of the group.

Option 3. Recognise an expanded Ipomoea.—With the
evidence available, we consider the third option, recognising an
expanded Ipomoea, to be themost appropriate solution. All phy-
logenetic analyses to date have shown Ipomoeeae is a mono-
phyletic group with high support (McDonald & Mabry, 1992;
Miller & al., 1999; Wilkin, 1999; Stefanović & al., 2002, 2003;
Eserman & al., 2014; Muñoz-Rodríguez & al., 2019). This
clade includes all members of the family Convolvulaceae with
echinate, pantoporate (spiny) pollen – a synapomorphy in the
family. Thus, an expanded Ipomoea that incorporates all seg-
regate genera meets the four properties outlined above: mono-
phyly, resolution, diagnosability and completeness.

Incorporating all segregate genera into Ipomoea requires
fewer nomenclatural changes than splitting Ipomoea intomulti-
ple smaller genera. The number of species in the segregate gen-
era currently recognised is c. 174 – many of which originally
described in Ipomoea – and, as explained above, most of them
belong to the Old World clade, a clade that nevertheless

contains more species of Ipomoea in the traditional sense than
of all other genera combined. The alternative of splitting Ipo-
moea into several smaller genera would require changing ap-
proximately 500 Ipomoea names, a solution certainly less
favourable to nomenclatural stability. In addition, recognising
an expanded Ipomoeawould also avoid nomenclatural changes
affecting species of economic interest, not only the two crop
species, sweet potato (I. batatas) and water spinach (I. aqua-
tica), but also themany ornamental species that belong to differ-
ent clades. Finally, recognising an expanded Ipomoea as the sole
genus in Ipomoeeaewould alsomake the proposal to change the
type of the genus (Eserman & al., 2020) unnecessary.

Some authors could argue that the different clades in an
expanded genus Ipomoea could be formally named following
a Linnaean classification system, for example at subgeneric
rank. Although we have no theoretical objection to the naming
of these cryptic nodes as subgenera, sections, etc., we think
there is little benefit in establishing a complex named hierar-
chy of non-diagnosable taxa that would be of little practical
use. No less important, we believe that any attempt to provide
an infrageneric classification of Ipomoea following a tradi-
tional Linnaean model is bound to be artificial, impractical
and doomed to failure (Carine & Scotland, 2002). It is diffi-
cult, or impossible, to achieve an infrageneric classification
(or a generic classification if Ipomoea is split) in which the
properties of monophyly, resolution, diagnosability, and com-
pleteness are met, especially considering the poor current
knowledge of many species.

In the delimitation we propose, Ipomoea splits into two
main clades (Fig. 3): one clade (Old World clade) including
slightly less than half of the species in the genus, mostly re-
stricted to Africa andAsia, and another clade formed by a grade
of African species and a species-rich clade dominated by
American species (NewWorld clade). Several clades are recog-
nised and strongly supported in all phylogenies. Some of these
clades have diagnostic morphological characters, for example
species with coriaceous sepals (clade A2) or species with a tree
habit (a small clade within A1), but most clades are cryptic.
With this inmind, in 2019we did not attempt any formal recog-
nition of infrageneric ranks in Ipomoea and still prefer to refer
to the genus as a whole while using informal names to refer to
specific parts of the phylogeny, in line with the approach fol-
lowed for example in Solanum. Nevertheless, we acknowledge
that using letters to refer to the main clades in the phylogeny
may not be satisfactory, and thus in Figs. 1 and 3 we suggest in-
formal names alongside the letters we used in our previous
works.

■ CONCLUSION

Although focused on Ipomoea, the discussion in this paper
highlights the more general tension that exists in contemporary
systematics between phylogenetics and taxonomy. At one ex-
treme, this tension has resulted in proposals for a “phylocode”
that is rank-free classification based entirely on phylogeny (De
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Queiroz & Gauthier, 1992; Cantino & al., 2020). The reasons
why the PhyloCode has not been widely adopted are numerous
but include the fact that most authors consider classifications
should reflect phylogeny, but that classification and phylogeny
are distinct. Classifications are viewed as useful information re-
trieval systems for diagnosable monophyletic groups and, al-
though they reflect aspects of phylogeny, their role is distinct.
At the other extreme there are colleagues, albeit few now, that
prefer to explicitly argue against monophyly in favour of para-
phyly (Brummitt, 2008; Gilbert, 2020) or implicitly support
classifications that include non-monophyletic taxa (e.g., Bego-
nia, former Ipomoeeae). In between these two extremes is the
mainstream of systematics but here too the same tensions in
the relationship between classification and phylogeny manifest
themselves in numerous ways. These issues will surely increase
as molecular sequence data achieve more phylogenetic resolu-
tion. It is in this context that we as a community need to be clear
aboutwhatwe consider is the general purpose of a classification.

Our proposal to recognise an expanded Ipomoea recon-
ciles the properties of monophyly, resolution, diagnosability,
and completeness, as well as favours nomenclatural stability,
and is in line with what has been agreed in other megadiverse
plant genera. As we have shown, in all these cases splitting big
genera into smaller units, be it genera, subgenera, or sections,
appears to be problematic if the aim is to reconcile monophyly
and diagnosability, and thus authors have often preferred to
recognise an expanded, monophyletic and diagnosable genus
– regardless of its size. In the circumscription we propose,
Ipomoea is the only genus in the tribe Ipomoeeae and includes
almost half of the species in the family. Most nomenclatural
changes necessary to transfer species from the segregate gen-
era to Ipomoea have already been published (Muñoz-Rodrí-
guez & al., 2019; Wood & al., 2022).

In our studies of Ipomoea, we have continually prioritised
species-level taxonomic accounts as we consider these the pri-
ority output for taxonomy, given how little we know about indi-
vidual species (Scotland&Wood, 2012; Goodwin& al., 2020).
A secondary but useful output is the fact that we now have com-
prehensively sampled phylogenies that can be used for a range
of evolutionary studies (Muñoz-Rodríguez & al., 2018, 2019,
2022a; Carruthers, 2019; Carruthers & al., 2020a,b). Taking
these phylogenies into account forms a vital part in sorting
(classifying) the species in a diagnosable, monophyletic genus
within their evolutionary context.
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