
Conjunctive Query Answering over
Unrestricted OWL 2 Ontologies

Federico Igne
Linacre College

University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Hilary 2022

A Davide

Acknowledgements

I would like to express my most sincere gratitude to my supervisors, Professor
Ian Horrocks and Dr Stefano Germano, for their guidance and support in the
past years. My thanks go, in particular, to Prof. Horrocks for being an invaluable
source of advice, never failing to share his experience in conducting research and
for helping me prioritize and stay focused on the final goal. Special thanks go
to Stefano, for his dedication in helping me navigate this DPhil, for our regular
meetings and precious help.

My gratitude goes also to the SIRIUS Research Centre, for funding my research
and for all the opportunities for personal and professional growth that they offered
me in these past years.

My experience, here in Oxford, would not have been the same without all the
lovely people I had the opportunity to meet. A big “thank you” goes to all members
of the KRR group, SIRIUS research centre, the OxRAM society, and past and
present Oatlanders. Honourable mentions go to Alessandro and Babis, for our coffee
breaks by the sofa; to Przemek, for being the perfect gym buddy who inevitably
turned into a whisky tasting buddy; to Alessio, for making sure I wouldn’t forget
my origins; to Stefano, for our “off-topic” chats whose backlog is longer than this
work; to David, for being a constant reference point during my DPhil, and for being
the companion I’d choose if I ever had to delve in a dungeon; to Max, co-host of
the Monday Rants, a podcast about the joy of research, long-distance relationships
and everything in between. . . you have been a true friend.

Infine, la mia più profonda gratitudine va ai miei genitori per essere, ancora
oggi, punto di riferimento sicuro e sostegno nei momenti di difficoltà, a Riccardo,
da sempre compagno di giochi, e a tutta la mia famiglia. Un grazie speciale va
a Giulia, che in tutti questi anni mi è rimasta vicina, anche nella distanza, e ha
sempre assecondato le mie passioni più disparate, sin da quando portavo il libro
di λ-calcolo in vacanza. Ora torno a casa.

Abstract

Conjunctive query (CQ) answering is one of the primary reasoning tasks over
knowledge bases (KBs). However, when considering expressive description logics
(DLs), query answering can be computationally very expensive; reasoners for CQ
answering, although heavily optimized, often sacrifice expressive power of the input
ontology or completeness of the computed answers in order to achieve tractability
and scalability for the problem. In this work, we present a hybrid query answering
architecture that combines black-box services to provide a CQ answering service for
OWL (Web Ontology Language). Specifically, it combines scalable CQ answering
services for tractable languages with a CQ answering service for a more expressive
language approaching the full OWL 2. If the query can be fully answered by one of
the tractable services, then that service is used. Otherwise, the tractable services
are used to compute lower and upper bound approximations, taking the union
of the lower bounds and the intersection of the upper bounds. If the bounds do
not coincide, then the “gap” answers are checked using the “full” service. These
techniques led to the development of two new systems: (i) RSAComb, an efficient
implementation of a new tractable answering service for the RSA (role safety acyclic)
ontology language; (ii) ACQuA, a reference implementation of the proposed hybrid
architecture combining RSAComb, PAGOdA (Zhou, Cuenca Grau, Nenov, et al.
2015), and HermiT (Glimm, Horrocks, Motik, et al. 2014) to provide a CQ answering
service for OWL. Our extensive evaluation shows how the additional computational
cost introduced by reasoning over a more expressive language like RSA can still
provide a significant improvement compared to relying on a fully-fledged reasoner.
Additionally, we showed how ACQuA can reliably match PAGOdA’s performance
and further limit its performance issues, especially when the latter extensively
relies on the underlying fully-fledged reasoner.

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

I Foundations 7

2 Preliminaries 9
2.1 First-Order logic . 9

2.1.1 Syntax . 9
2.1.2 Semantics . 12
2.1.3 Herbrand interpretations . 13

2.2 Rule-based knowledge representation 13
2.2.1 Program stratification . 14
2.2.2 Rule Skolemization . 15

3 Description logics 17
3.1 The description logic SROIQ . 17

3.1.1 Syntax . 18
3.1.2 Semantics . 21

3.2 Reasoning problems . 22
3.3 OWL 2 profiles . 22

3.3.1 OWL 2 EL . 23
3.3.2 OWL 2 QL . 23
3.3.3 OWL 2 RL . 23

3.4 RSA . 24

4 Query answering over ontologies 29
4.1 Conjunctive queries . 29
4.2 RDF and SPARQL . 32
4.3 Computational Complexity . 34
4.4 Query Answering Techniques . 35

ix

x Contents

4.4.1 Reduction to entailment checking 35
4.4.2 Materialization-based reasoners 36
4.4.3 Ontology-mediated query rewriting 37
4.4.4 Combined approaches . 39
4.4.5 Hybrid approaches . 43
4.4.6 Ontology approximation . 46

II The ACQuA system 49

5 The hybrid approach of ACQuA 51
5.1 Overview . 51
5.2 Lower bound computation . 55

5.2.1 Approximation to ALCHOIQ 55
5.2.2 Approximation to Horn-ALCHOIQ 55
5.2.3 Approximation to RSA . 57

5.3 Upper bound computation . 61
5.3.1 ⊥ substitution . 61
5.3.2 Approximation of disjunctive rules 62
5.3.3 From Horn-ALCHOIQ+ to RSA+ 62
5.3.4 Property chain axioms . 65

6 Design and architecture 67
6.1 RSAComb . 68

6.1.1 Overview . 70
6.1.2 Canonical model computation 71
6.1.3 Filtering program and answer computation 73

6.2 Lower bound approximation to RSA 76
6.3 Upper bound approximation to RSA 79

7 Evaluation 81
7.1 Benchmarks . 82
7.2 PAGOdA batch . 84

7.2.1 RSAComb . 84
7.2.2 ACQuA . 86

7.3 OOR batch . 89

8 Discussion and conclusions 93

Appendices

Contents xi

A Proofs 99

B Naming convention for description logics (DLs) 117

C Benchmark queries 119

References 121

Index 134

xii

List of Figures

3.1 Exponential model blow-up caused by and-branching. 24

4.1 Forks in the presence of inverse roles 40

5.1 Workflow of the ACQuA system. 53
5.2 Graphical representation of GKex . 60

6.1 Workflow of the RSAComb system. 70
6.2 RSAComb: canonical model computation. 71
6.3 RSAComb: answer filtering. 73

7.1 Scalability of preliminary steps in RSAComb. 85
7.2 Answer filtering in RSAComb. 85
7.3 Answer filtering with high degree of filtration in RSAComb. 86
7.4 Percent time distribution of RSAComb computation. 86
7.5 Scalability of query answering step in ACQuA vs PAGOdA. 88
7.6 Execution time of DOLCE queries in ACQuA vs PAGOdA. 90

A.1 Ambiguous roles in RSA canonical model. 112

xiii

xiv

List of Tables

3.1 Concepts in SROIQ. 18
3.2 Normalized SROIQ axioms and their translation into logic rules. . 19
3.3 SROIQ concepts semantics. 21

4.1 Canonical model rules for the RSA combined approach. 40
4.2 Filtering program for the RSA combined approach. 42

5.1 Running example Kex. 54

6.1 Improved rules for the filtering step for the RSA combined approach. 75

7.1 Benchmarks statistics for LUBM, UOBM, and Reactome. 83
7.2 PAGOdA and ACQuA statistics on OOR batch. 89
7.3 Statistics for DOLCE fragments 14 and 24 from the OOR. 90
7.4 Results of ACQuA vs PAGOdA on DOLCE. 91

B.1 Naming convention for DLs. 118

xv

xvi

1
Introduction

Efficient data management and data access have become a primary problem in
the design and development of applications, especially due to the large amount
of data we produce every day.

Description logics (DLs) [3, 4] are a logic-based formalism for knowledge
representation (KR) and reasoning, dating back to the late 1980s. They can
be used to effectively model a certain domain of interest in a structured and
well-defined way; this is done by defining the foundational notions of a domain
in terms of individuals (entities), concepts (classes of entities) and roles (relation
between entities). DLs are formally defined as decidable fragments of First-Order
(FO) logic, and this very connection to a logical formalism is what makes them
differ from previous attempts at including knowledge into intelligent systems (e.g.,
semantic networks [90], frames [71]).

Domain knowledge is usually divided into two major components, a terminological
part, called TBox (or ontology), and an assertional part, called ABox. The ABox
represents explicit knowledge about the domain in terms of known facts, while the
TBox is used to represent the structure of the domain and the rules governing it.
The combination of a TBox and an ABox is called a knowledge base (KB).

Common reasoning tasks performed over KBs include checking for satisfiability
of concepts, consistency checking of the KB as a whole, and various kinds of queries,
including subsumption queries between concepts and database-like queries. These
tasks are usually performed by ontology reasoners, often tailored towards specific
applications and selection of DL languages.

One of the primary strengths of DLs resides in the ability to perform tasks
taking into account both the explicit knowledge (ABox) and the implicit knowledge

1

2 1. Introduction

captured by the terminological representation of the domain (TBox). Different
DL languages are designed to offer different levels of expressive power. However,
expressiveness does not come without a computational cost; as such, when modelling
a certain domain, particular attention needs to go into balancing the accuracy of
the model with the complexity of the task that we want to perform on it.

This process of designing a KB by deciding on a relevant, domain-specific,
vocabulary and building a model on top of it, is often referred to as ontology
engineering. This process can be performed manually, semi-automatically, with
the aid of visualization and building tools, or even automatically by means of
learning procedures [8, 64, 96, 116]. Ontology templates [102, 103, 104] are also an
active area of research and an effective way of guiding the process of designing and
maintaining KBs. So far, this formalism has been applied to several domains, such
as, astronomy [20], biology [93, 85], defence [63], education [17], energy management
[16], medicine [15, 38, 47] and oil and gas [101, 58].

DLs also provide the logical underpinning for the Web Ontology Language
(OWL) [40], cornerstone of the Semantic Web standard, as defined by the World Wide
Web Consortium (W3C). As an example, the expressive DL language SROIQ [49]
underpins OWL 2 DL [77], one of the more expressive languages in this family.

In the realm of data access, conjunctive query (CQ) answering is one of the
primary reasoning tasks over KB for many applications. However, when considering
expressive description logic languages, query answering is computationally very
expensive, even when considering only complexity w.r.t. the size of the data (data
complexity) [95, 32, 36, 25, 35, 82], and decidability is still an open problem when
considering CQ answering over expressive languages like SROIQ. Fully-fledged
reasoners oriented towards CQ answering over OWL 2 ontologies exist but, although
heavily optimized, often need to rely on restricting the expressive power of the input
ontology or sacrifice completeness of the computed answers to achieve (empirical)
tractability. This limiting process often targets particular constructs of DLs, such
as the ability to represent existential knowledge

Lecturer v ∃teaches.Course (1.1)

where we are claiming that every lecturer teaches at least one course, or dis-
junctive knowledge

Student v UndergradStudent t GraduateStudent (1.2)

where we divide students by the level of degree they are currently pursuing.

1. Introduction 3

Query answering procedures have been developed for several fragments of OWL 2
for which CQ answering is tractable with respect to data complexity [9]. Three
such fragments have been standardized as OWL 2 profiles, and CQ answering
techniques for these fragments have been shown to be highly scalable at the expense
of expressive power [10, 61, 68, 92, 107, 105].

An interesting fragment of OWL 2, tractable for standard reasoning tasks, is
RSA. RSA [14] is an ontology language that extends the OWL 2 profiles, and for
which a CQ answering algorithm, based on the combined approach technique [61,
60], was proposed by Feier, Carral, Stefanoni, et al. [29]. RSA is designed to avoid
intractability due to and-branching, interaction between existential and universal
knowledge that often leads to exponentially large models for a KB. By using a set
of constraints on the structure of the KB, RSA is able to restrict itself to KBs
with only polynomially bounded models.

In order to deal with more expressive ontologies, several techniques have been
proposed to compute a sound subset of answers to a given CQ. One such technique
is to approximate the input ontology to a tractable fragment, so that a tractable
algorithm can be used to answer CQs over the approximated ontology.

A particularly interesting approach to CQ answering over unrestricted OWL 2
ontologies, using a combination of the aforementioned techniques, is adopted by
PAGOdA [120]. Its “pay-as-you-go” approach uses a Datalog reasoner to handle
the bulk of the computation, computing lower and upper approximations of the
answers to a query, while relying on a fully-fledged OWL 2 reasoner like HermiT
[31] only as necessary to fully answer the query.

While PAGOdA is able to avoid the use of a fully-fledged OWL 2 reasoner in
some cases (i.e., when the lower and upper answer approximations coincide), its
performance rapidly deteriorates when the input query requires (extensive) use of
the underlying OWL 2 reasoner. This was confirmed by our preliminary tests, as
well. The computation of lower and upper bounds is achieved by under- and over-
approximating the ontology into the OWL 2 profile OWL 2 RL so that a tractable
reasoner can be used to answer the input queries. The tractability of OWL 2 RL
is, again, achieved by avoiding problematic interactions between axioms that can
cause an exponential blow-up of the computation. As it turns out, this elimination
of problematic interactions between axioms is rather coarse, and PAGOdA ends up
falling back to the underlying OWL 2 reasoner even when it is not really needed.

The objective of this research is to expand on this “pay-as-you-go” technique and
improve existing CQ answering techniques over OWL 2 ontologies. We propose a
new hybrid query answering architecture that combines black-box services to provide

4 1. Introduction

a CQ answering service for OWL. Specifically, it combines scalable CQ answering
services for tractable languages with a CQ answering service for a more expressive
language approaching the full OWL 2. If the query can be fully answered by one of
the tractable services, then that service is used. Otherwise, the tractable services
are used to compute lower and upper bound approximations, taking the union of the
lower bounds and the intersection of the upper bounds. If the bounds do not coincide,
then the “gap” answers are checked using the “full” service. When considering
ontology approximations “from below”, we introduce a novel algorithm to compute
a lower bound to the answers to an input query by means of approximation to
RSA. This is done by ensuring that all the constraints for the RSA language are
satisfied in the input KB. The combined approach for RSA can then be used to
compute the set of certain answers over the approximated ontology. Similarly, we
propose an algorithm to compute an approximation “from above” targetting RSA+;
in this case, we consider an extension of RSA, enriched with additional axioms
for the representation of (ir)reflexivity, asymmetry and disjointness among roles,
aiming at computing an upper bound tighter than one computed by approximating
to RSA. We prove that the combined approach for CQ answering for RSA is still
complete when applied to an RSA+ ontology.

These techniques led to the development of two new system: RSAComb and
ACQuA (Answering CQs using Approximation)

RSAComb An efficient implementation [57, 56] of the combined approach algo-
rithm for RSA [29], reorganized to fit the new implementation design and the
integration of RDFox [79, 76, 74, 75] as a backend reasoner. We revise the
overall structure of the combined approach for the language by improving some
of the main steps and streamlining the execution of the algorithm by factoring
out those tasks that are query independent to make answering multiple queries
over the same knowledge base more efficient. The system accepts any OWL 2
KB and includes a customizable approximation step to languages compatible
with the RSA combined approach. The system is further extended with
a reference implementation of the novel approximation algorithms for the
computation of answer bounds mentioned above.

ACQuA A reference implementation [53] of the hybrid architecture mentioned
above, combining RSAComb, PAGOdA [120], and HermiT [31] to provide a
CQ answering service for OWL. The resulting system ensures the same “pay-
as-you-go” capabilities of the systems it is based on, but tries to reduce the
gap between upper and lower bounds by integrating approximations targetting

1. Introduction 5

more expressive language (i.e., RSA and RSA+). Furthermore, we show how
the additional computational cost introduced by reasoning over RSA can still
provide a significant improvement compared to relying solely on a fully-fledged
reasoner. The system has been designed to accommodate a high degree of
modularity; the services it is built upon can be potentially substituted or
augmented with more capable ones to improve the overall performance.

We carried out an extensive evaluation both for RSAComb, as a standalone tool,
and for ACQuA, to assess their effectiveness, and compare our results with PAGOdA,
aiming, primarily, at improving some of the shortcomings of the latter tool. Our
experimental results show that the new technique yields significant performance
improvements in several important application scenarios. Both ACQuA1 and
RSAComb2 have been released as free and open source software. Source code
and documentation are available online.

This work is structured in two parts. Part I provides a summary of the logical
foundations that are exploited in this thesis and an overview of the preliminary
literature on description logics and conjunctive query answering. In particular

• Chapter 2 offers a recapitulation of the notation, syntax and semantics of FO
logic, and its connection to rule-based knowledge representation languages;

• In Chapter 3, we introduce the SROIQ DL, along with associated standard
reasoning tasks. We provide definitions and properties for different fragments
of the language, such as the OWL 2 profiles and the RSA language;

• Chapter 4 focuses on CQ answering. We start by giving a formal definition of
conjunctive query, along with a brief description of their representation as
SPARQL queries. Following is an extensive analysis on the computational
complexity of the problem, as well as a summary of the different answering
techniques that can be encountered in literature.

Part II presents the hybrid approach to CQ answering implemented in ACQuA.

• In Chapter 5, we present the theoretical foundations behind the novel ap-
proach and focus in particular on the description of the novel approximation
algorithms for the computation of answers bounds.

1https://github.com/KRR-Oxford/ACQuA
2https://github.com/KRR-Oxford/RSAComb

https://github.com/KRR-Oxford/ACQuA
https://github.com/KRR-Oxford/RSAComb

6 1. Introduction

• Chapter 6 contains an in-depth description of the reference implementation
of this hybrid system, ACQuA. We provide details on the overall structure
and heuristics adopted during the implementation. Additional, technical,
improvements to the implementation of the combined approach for RSA, in
RSAComb, are also provided.

• Finally, Chapter 7 provide an extensive evaluation of performance and
scalability of both RSAComb and ACQuA, and, in particular, a performance
comparison of the latter with PAGOdA.

We conclude with a brief discussion on the contributions and present several
opportunities for future work in Chapter 8.

Parts of this work have been previously published:

• The algorithm for the approximation of an unrestricted OWL 2 ontology to
RSA, sound for CQ answering, was presented at ISWC 2021 [55].

• A full description of RSAComb system was presented at DL 2021 [57].

An extended version of the results presented in this thesis have been submitted
to the Semantic Web Journal and are currently under review.

Part I

Foundations

7

2
Preliminaries

Contents
2.1 First-Order logic . 9

2.1.1 Syntax . 9
2.1.2 Semantics . 12
2.1.3 Herbrand interpretations 13

2.2 Rule-based knowledge representation 13
2.2.1 Program stratification 14
2.2.2 Rule Skolemization . 15

This chapter defines the preliminary notions needed in this thesis. We begin
by giving an overview of syntax and semantics of First-Order (FO) logic, followed
by its specialization into knowledge representation (KR) languages; we refer the
reader to, e.g., [1], for a standard introduction to these topics. Throughout this
work, we consider FO logic without equality, i.e., the standard equality predicate
≈ is treated as an ordinary predicate without any special semantics.

2.1 First-Order logic

2.1.1 Syntax

A signature Σ of a First-Order (FO) logic language is a tuple 〈S,V ,P ,F , C〉 where

(a) S = {¬,∧,∨,→,∀,∃} is a set of reserved symbols denoting negation, con-
junction, disjunction, implication, universal and existential quantification,
respectively.

9

10 2.1. First-Order logic

(b) V = {x, y, z, . . . } is a set of variables.

(c) P is a set of predicates. We denote with Pn ⊆ P the set of predicates of arity
n for some n ≥ 0. In particular, we consider special predicates ⊥,> ∈ P0.

(d) F is a set of function symbols. We denote with Fn ⊆ F the set of function
symbols of arity n for some n ≥ 1.

(e) C = {a, b, c, . . . } is a set of constants.

We use ~x, ~y, ~z, . . . to denote vectors of variables, |~x| to denote their arity and with
slight abuse of notation we will occasionally interpret them as sets and write x ∈ ~x
for any x occurring in ~x. We recursively define terms as follows:

• any variable x ∈ V is a term;

• any constant a ∈ C is a term;

• given t1, . . . , tn terms and f ∈ Fn, then, f(t1, . . . , tn) is a term.

An atomic formula (or simply atom) A is of the form P (t1, . . . , tn), where
t1, . . . , tn are terms and P ∈ Pn a predicate of arity n. A literal is an atom A or
its negation ¬A. We recursively define formulas as follows:

• any atomic formula A is a formula;

• if ϕ is a formula, then ¬ϕ is a formula;

• if ϕ and ψ are formulas and ◦ ∈ {∧,∨,→} then, ϕ ◦ ψ is a formula;

• if ϕ is a formula and x is a variable, then, ∀xϕ and ∃xϕ are formulas.

We write ∀~xϕ (resp. ∃~xϕ) to denote ∀x1 . . . ∀x|~x|ϕ (reps. ∃x1 . . . ∃x|~x|ϕ). The scope
of quantifiers and of free and bound variables in formulas can be defined recursively
on the structure of the formula:

• Each variable occurring in an atom A is free.

• If x is free in ϕ, then it is free in ¬ϕ.

• For ◦ ∈ {∧,∨,→} and formulas ϕ and ψ, a variable x is free in ϕ ◦ ψ if it is
free in either ϕ or ψ and bound otherwise.

• If x is free in ϕ, then it is free in ∀~yϕ (resp. ∃~yϕ) if x 6∈ ~y and bound otherwise.
Moreover, for each y ∈ ~y we say that y is in scope of ∀ (resp. ∃).

2. Preliminaries 11

A sentence is a formula with no free variables. A theory is a set of sentences.
W.l.o.g. we assume all bound variables in a formula are different and the set of
bound and free variables are disjoint.

Given an atom A (resp. a formula ϕ), we denote with terms(A) (resp. terms(ϕ))
the set of terms appearing in the atom (resp. formula). We call a term, an atom
of a formula ground if they do not contain any variable. A fact is a function-
free ground atom.

A substitution is a mapping from variables in a formula to terms. The expression
σ ≡ {x1 7→ t1, . . . , xn 7→ tn} ≡ {~x 7→ ~t} denotes the mapping of variable xi to
term ti for 1 ≤ i ≤ n and any other variable y to itself if y 6∈ ~x. Moreover,
we define vars(σ) = ~x. A restriction of a mapping σ = {~x 7→ ~t} to a set of
variables ~y = {y1, . . . , ym} is denoted by σ|~y = {y1 7→ σ(y1), . . . , ym 7→ σ(ym)}.
The application of a substitution σ = {~x 7→ ~t} to a term t, written tσ or t|~x7→~t
can be recursively defined as

• cσ = c for every constant c ∈ C,

• xσ = σ(x) for every variable x ∈ V ,

• (f(t1, . . . , tn))σ = f(t1σ, . . . , tnσ) for t1, . . . , tn terms and f ∈ Fn.

The application of a substitution σ to a formula ϕ, written ϕσ or ϕ|~x7→~t, can
be recursively defined as

• (P (t1, . . . , tn))σ = P (t1σ, . . . , tnσ) for t1, . . . , tn terms and P ∈ Pn,

• (¬ϕ)σ = ¬(ϕσ),

• (ϕ ◦ ψ) = ϕσ ◦ ψσ for ◦ ∈ {∧,∨,→},

• (Q~yϕ)σ = Q~y(ϕσ|vars(σ)\~y) for Q ∈ {∃, ∀}.

Substitution is extended to other concepts introduced above in a straightforward way.
Finally, let Σ be a FO signature that includes the equality symbol ≈.1 Then

we define the equality axiomatization of Σ as the set of FO sentences

∀x(x ≈ x) (2.1)
∀x∀y(x ≈ y → y ≈ x) (2.2)

∀x∀y∀z(x ≈ y ∧ y ≈ z → x ≈ z) (2.3)
∀~x∀x′i(xi ≈ x′i ∧ P (~x)→ P (x1, . . . , x

′
i, . . . , xn)) (2.4)

∀~x∀x′i(xi ≈ x′i → f(~x) ≈ f(x1, . . . , x
′
i, . . . , xn)) (2.5)

1W.l.o.g. we will write x ≈ y instead of ≈ (x, y)

12 2.1. First-Order logic

where ~x = 〈x1, . . . , xi, . . . , xn〉 and 1 ≤ i ≤ n. Formulas (2.1), (2.2) and (2.3) denote
reflexivity, symmetry, and transitivity, and formula (2.4) (resp. formula (2.5)) denotes
the substitution rule for every P ∈ Pn (resp. for every f ∈ Fn) and for every arity n.

2.1.2 Semantics

An interpretation is a tuple I = 〈∆I , ·I〉 consisting of a non-empty domain set
∆I and a function ·I defined as follows:

• every constant c ∈ C is mapped to an element cI ∈ ∆I ,

• every function f ∈ Fn, for any arity n, is mapped to fI : (∆I)n → ∆I

• every predicate P ∈ Pn, for any arity n, is mapped to P I ⊆ (∆I)n

where we denote with (∆I)n the set of n–tuples with elements in ∆I . Given t a
ground term, tI is recursively defined as follows:

• if t = c with c ∈ C, then tI = cI ,

• if t = f(t1, . . . , tn) for f ∈ Fn and t1, . . . , tn terms, then tI = fI(tI1 , . . . , tIn).

Given ϕ a FO sentence, we use ϕI to denote the truth value of ϕ w.r.t. the
interpretation I.

• For any P ∈ Pn with n > 0 and t1, . . . , tn terms.

(P (t1, . . . , tn))I =

True if 〈tI1 , . . . , tIn〉 ∈ P I

False if 〈tI1 , . . . , tIn〉 6∈ P I
(2.6)

• (¬ϕ)I = ¬(ϕI)

• For ◦ ∈ {∧,∨,→}, (ϕ ◦ ψ)I = ϕI ◦ ψI

• (∀xϕ)I = True if ϕ|x 7→d = True for all d ∈ ∆I

• (∃xϕ)I = True if ϕ|x 7→d = True for some d ∈ ∆I

Let I be an interpretation, and let ϕ be a FO sentence. We say that I models
(or satisfies) ϕ, written I |= ϕ, if ϕI is True. Alternatively, we say that I is a
model for ϕ. Given a theory Φ, I |= Φ if I |= ϕ, for every ϕ ∈ Φ. We say that Φ
is satisfiable if there exists an interpretation satisfying it. A theory Φ satisfies a
FO sentence ψ (written Φ |= ψ) if every model for Φ is a model for ψ.

2. Preliminaries 13

2.1.3 Herbrand interpretations

Let us consider a fixed FO signature Σ. Then, we call Herbrand universe HU the set
of all ground terms and Herbrand base HB the set of all ground atoms. Given M ⊆
HB such that ⊥ 6∈M , the Herbrand interpretation IM = 〈∆IM , ·IM 〉 is defined as

• ∆IM = HU ,

• cIM = c for c ∈ C,

• fIM = f such that for any term t = f(t1, . . . , tn), f ∈ Fn and some n,
tI = f(tI1 , . . . , tIn),

• P IM = {〈t1, . . . , tn〉 | P (t1, . . . , tn) ∈M} for each P ∈ Pn for some arity n.

Let Φ be a theory over Σ. A Herbrand interpretation IM over Σ is a Herbrand
model of Φ if IM |= Φ. LetM and N be two sets of ground atoms. A homomorphism
from M to N is a mapping τ from ground terms in M to ground terms in N such
that for any A ∈ M , Aτ ∈ N . A Herbrand model IM for a FO theory Φ is
a universal model for Φ if, for any Herbrand model IN for Φ, there exists a
homomorphism from M to N .

2.2 Rule-based knowledge representation

Given a FO signature Σ, we define a rule as a FO sentence of the form

∀~x∀~y(β1(~x, ~y) ∧ · · · ∧ βn(~x, ~y)→
m∨
i=1
∃~ziϕi(~x, ~zi)) (2.7)

where ~x, ~y, ~zi are pair-wise disjoint sets of variables, βi(~x, ~y) literals with variables
in ~x ∪ ~y and either

• m = 1, and ϕ1(~x, ~z1) = ⊥, or

• m ≥ 1, and ϕi(~x, ~zi) is a conjunction of atoms with variables in ~x ∪ ~zi.

The conjunction of literals β1(~x, ~y) ∧ · · · ∧ βn(~x, ~y) is the body of r, denoted as
body(r). Moreover, we denote with body+(r) the set of positive atoms in the body
of r and with body−(r) the set of negative atoms in the body of r. The formula∨m
i=1 ∃~ziϕi(~x, ~zi) is the head of r, denoted as head(r). A rule r is safe if all variables

in ~x occur in body+(r). We consider only safe rules.

14 2.2. Rule-based knowledge representation

We can classify a rule r as

• Horn if m = 1;

• definite if Horn, ~zi is empty for every i, and body−(r) is empty;

• disjunctive Datalog if function-free, ~zi is empty for every 1 ≤ i ≤ m, and
body−(r) is empty;

• Datalog if both disjunctive Datalog and Horn (or alternatively if both definite
and function-free).

By slight abuse of notation, we consider facts as definite rules with an empty (>)
body and, if r is Horn, we consider head(r) to be the set of conjuncts in the head of
the rule. A program is a finite set of rules. The concepts of Horn, definite, disjunctive
Datalog and Datalog can be extended to programs in a straightforward way.

2.2.1 Program stratification

Given preds(·) the function that returns the set of predicates in P in either
a formula, a set of atoms or a program, a stratification for a program Π is a
function δ : preds(Π) → {1, . . . , k} where k ≤ |preds(Π)| and such that, for
every r ∈ Π and P ∈ preds(head(r))

• for every Q ∈ preds(body+(r)) then, δ(Q) ≤ δ(P)

• for every Q ∈ preds(body−(r)) then, δ(Q) < δ(P)

The stratification partition of Π induced by δ is the sequence (Π1, . . . ,Πk), with
each Πi, also called stratum, consisting of all rules r ∈ Π such that

maxP∈preds(head(r))(δ(P)) = i (2.8)

A program is stratified if it admits a stratification. According to this definition,
all definite programs are stratified.

Every stratified program Π has a least Herbrand model (LHM), i.e., a unique
Herbrand model, minimal w.r.t. set inclusion, that can be constructed using the
immediate consequence operator TΠ.

Let S ⊆ HB, then, TΠ(S) consists of all facts in head(r)σ with r ∈ Π and
σ a substitution for the variables in r to HU satisfying body+(r)σ ⊆ S and
body−(r)σ ∩ S = ∅.

2. Preliminaries 15

The powers of TΠ are defined as follows

• T 0
Π(S) = S

• T n+i
Π (S) = TΠ(T nΠ(S))

• T ωΠ(S) = ⋃∞
i=0 T

i
Π(S)

Let (Π1, . . . ,Πk) be a stratification partition for Π. We define U1 = T ωΠ1(∅) and for
each 1 ≤ i < k, Ui+1 = T ωΠi+1

(Ui). Then, the LHM of Π is Uk and is denoted asM [Π].
Finally, for each P ∈ P for some signature Σ, we consider the rule

P (x1, . . . , xn)→ >(x1), . . . ,>(xn) (2.9)

Given a program Π, we denote with Π≈,> the extension of Π with top axiomatization
rules (2.9) and equality axiomatization rules (2.1) to (2.5).

2.2.2 Rule Skolemization

In various occasions throughout this thesis we will refer to the concept of Skolem-
ization. Given a rule r of the form (2.7), for each existential quantifier variable zij,
let f rij be a function symbol globally unique for r and zij of arity |~x|. Furthermore,
let σsk be the substitution such that σsk(zij) = f rij(~x) for each zij ∈ ~zi. The
Skolemization of r is the following FO sentence

∀~x∀~y(β1(~x, ~y), . . . , βn(~x, ~y)→
m∨
i=1

ϕi(~x, ~zi)σsk) (2.10)

Now, for each existential quantifier variable zij, let crij be a fresh constant symbol
globally unique for r and zij. Furthermore, let σcsk be the substitution such
that σcsk(zij) = crij for each zij ∈ ~zi. The constant Skolemization of r is the
following FO sentence

∀~x∀~y(β1(~x, ~y), . . . , βn(~x, ~y)→
m∨
i=1

ϕi(~x, ~zi)σcsk) (2.11)

The (constant) Skolemization operator can be trivially extended to programs.
It is well-known that Skolemization is an entailment-preserving transformation,

i.e., for an arbitrary program Π and a FO sentence ϕ in the signature of Π, Π |= ϕ

iff Πσsk |= ϕ. This is not the case for constant Skolemization.

16

3
Description logics

Contents
3.1 The description logic SROIQ 17

3.1.1 Syntax . 18
3.1.2 Semantics . 21

3.2 Reasoning problems . 22
3.3 OWL 2 profiles . 22

3.3.1 OWL 2 EL . 23
3.3.2 OWL 2 QL . 23
3.3.3 OWL 2 RL . 23

3.4 RSA . 24

In this chapter we introduce the syntax and semantics of the DLs underpinning
the Web Ontology Language (OWL) and its variants and fragments. We will start
by introducing syntax and semantics of SROIQ [49, 119], the logical underpinning
of OWL 2 DL, along with a normal form for the language and its translation
into logic rules. Finally, we will provide additional details for the OWL 2 profiles,
standardized fragments of OWL 2 with particularly valuable properties.

3.1 The description logic SROIQ

A description logic (DL) language defines a syntax to build axioms, i.e., first order
sentences, and assertions, i.e., atoms, both restricted to unary and binary predicates.

17

18 3.1. The description logic SROIQ

A (concept name)
{a} (nominal)
C uD (conjunction)
C tD (disjunction)
¬C (negation)
∀R.C (value restriction)
∃R.C (existential restriction)
∃R.Self (self restriction)
≤ nR.C (max number restriction)
≥ nR.C (min number restriction)

Table 3.1: Concepts in SROIQ, with A ∈ NC , a ∈ NI , n ∈ N, R role and C,D concepts.

3.1.1 Syntax

A signature for SROIQ consists of the following symbols and operators:

• ¬, u, t, v (negation, conjunction, disjunction, and implication),

• ∀, ∃, ≤, ≥ (universal and existential quantification, min/max cardinality),

• −, ◦, Self (role inverse, composition and self constructor),

• Ref (reflexivity), Irr (irreflexivity), Sym (symmetry), Asy (asymmetry), Trans
(transitivity), Dis (disjointness), Func (functionality),

and pair-wise, disjoint, countable sets NC , NR, NI of unary predicates, binary
predicates and constants (individuals), respectively. Predicates in NC are called
concept names and predicates in NR are called role names. We assume {⊥,>} ∈ NC .
The set of roles is defined as NR ∪ {R− | R ∈ NR} where R− is the inverse
role of R. We define Inv(·) as

Inv(R) =

R− if R ∈ NR

S if R ≡ S− with S ∈ NR

Concepts1 are defined inductively according to Table 3.1. An axiom is either

• a general concept inclusion (GCI), of the form C v D with C,D concepts.
We use C ≡ D to abbreviate the axioms C v D and D v C;

• a role axiom of the forms Ref(R), Irr(R), Sym(R), Asy(R), Trans(R), Dis(R),
or R1 ◦ · · · ◦Rn v R, with R, S,R1, . . . , Rn roles and the last form called role
inclusion. A role inclusion axiom is complex if n > 1.

1The DL terms “concept” and “role” correspond to the OWL terms “class” and “property” in
the W3C standards.

3. Description logics 19

Axioms α Logic rules π(α)
(R1) R− R(x, y)→ R−(y, x) R−(y, x)→ R(x, y)
(R2) R v S R(x, y)→ S(x, y)
(R3) R u S v ⊥ R(x, y) ∧ S(x, y)→ ⊥
(R4) R ◦ S v T R(x, y) ∧ S(y, z)→ T (x, z)
(T1)

dn
i=1Ai v

⊔m
i=1Bi

∧n
i=1Ai(x)→

∨m
i=1Bi(x)

(T2) A v {a} A(x)→ x ≈ a
(T3) ∃R.A v B R(x, y) ∧A(y)→ B(x)
(T4) A v≤ mR.B A(x) ∧

∧m+1
i=1 [R(x, yi) ∧B(yi)]→

∨
1≤i<j≤m+1 yi ≈ yj

(T5) A v ∃R.B A(x)→ R(x, fAR,B(x)) ∧B(fAR,B(x))
(T6) A v Self(R) A(x)→ R(x, x)
(T7) Self(R) v A R(x, x)→ A(x)
(A1) A(a) → A(a)
(A2) R(a, b) → R(a, b)

Table 3.2: Normalized SROIQ axioms and their translation into logic rules.

A concept assertion is a ground atom of the form C(a) with C a concept and a ∈
NI . A role assertion is a ground atom of the form R(a, b) with R role and a, b ∈ NI .

According to the DL naming convention (see Appendix B), SROIQ can
be defined as the basic DL S with the addition of complex role composition
(R), nominals (O), inverse roles (I) and qualified number restriction (Q). Note
that, in this particular context, SROIQ also includes disjointness, (ir)reflexivity,
(a)symmetry axioms as well as self restriction, even though this is not reflected
by the presence of the relevant symbols.

Table 3.2 introduces a normal form for SROIQ [119]. W.l.o.g. we assume that
any axiom defined above can be converted into a set of axioms in Table 3.2, and,
as such, the following definitions are based on this syntax.

A role is complex if it is a conjunction of roles (RuS), or composition (R ◦S) of
roles. An RBox R is a finite set of axioms of type (R2)–(R4) with R, S, T roles. We
denote v∗R as the minimal relation over roles closed by reflexivity and transitivity
s.t. R v∗R S, Inv(R) v∗R Inv(S) hold if R v S ∈ R. A TBox T is a set of axioms
of type (T1)–(T7) where A,B ∈ NC , a ∈ NI and R role. An ABox A is a finite set
of assertions of type (A1), (A2) with A ∈ NC , a, b ∈ NI and R ∈ NR.

A SROIQ ontology is a set of axiomsO = T ∪R. An ontology is SHOIQ+ if we
restrict axioms (R4) to role transitivity (i.e., R = S = T). An ontology is SHOIQ if
we further exclude axioms of type (T6), (T7) and (R3). An ALCHOIQ+ ontology
(resp. ALCHOIQ) is obtained from SHOIQ+ (resp. SHOIQ) by disallowing
(R4) axioms altogether. A Horn-ALCHOIQ+ ontology (resp. Horn-ALCHOIQ)
is obtained from ALCHOIQ+ (resp. ALCHOIQ) by forcing m = 1 in axioms (T1)

20 3.1. The description logic SROIQ

and (T4). Finally, given an ontology language L, we define an L knowledge base
(KB) as a tuple 〈O,A〉 comprising an L ontology O = T ∪ R and an ABox A.2

Each normalized axiom corresponds to a logic rule, as given on the right hand-side
of Table 3.2. We call π(·) the function that converts normalized axioms and assertions
into rules; given K = 〈O,A〉, we denote the program π(K) = {π(α) | α ∈ O ∪A}
and π(K)≈,> as the smallest set containing all rules in π(K) and axiomatization
rules for equality (≈) and > as defined in Section 2.1.1.

Syntactical restrictions in SROIQ

In order to ensure decidability of several reasoning tasks (see Section 3.2), the
definition of SROIQ involves a number of additional syntactical restrictions. Given
a SROIQ ontology O, a simple role R is inductively defined as follows:

i) R is a role name which does not appear on the right hand-side of any role
inclusion in O,

ii) R is the inverse of a simple role,

iii) R only appears in role inclusions of the form S v R with S simple.

In SROIQ, axioms of type (R3), (T4)–(T7) are restricted to simple roles.
Moreover, let ≺ be a partial ordering over roles, then ≺ is a regular order if

S ≺ R ⇔ Inv(S) ≺ R, for every R,S roles. An RBox R is regular if and only if
there exists a regular partial order ≺ over R and every axiom in R is of the form

i) R ◦R v R,

ii) Inv(R) v R,

iii) R ◦R1 ◦ · · · ◦Rn v R,

iv) R1 ◦ · · · ◦Rn ◦R v R;

where Ri ≺ R, for every 1 ≤ i ≤ n, whenever Ri is not a simple role. In a SROIQ
ontology, the RBox is required to be regular.

2Sometimes we say that an axiom α is part of a KB K = 〈O,A〉 (in symbols, α ∈ K), to denote
that α ∈ O

3. Description logics 21

Syntax Semantics
> ∆I
⊥ ∅
¬C ∆I \ CI

C uD CI ∩DI
C tD CI ∪DI
∃R.C {x ∈ ∆I | ∃y ∈ ∆I : 〈x, y〉 ∈ RI ∧ y ∈ CI}
≤ nR.C {x ∈ ∆I | #{y ∈ ∆I : 〈x, y〉 ∈ RI ∧ y ∈ CI} ≤ n}
Self(R) {x ∈ ∆I | 〈x, x〉 ∈ RI}
R− {〈y, x〉 | 〈x, y〉 ∈ RI}
R u S RI ∩ SI
R ◦ S {〈a, c〉 | 〈a, b〉 ∈ RI , 〈b, c〉 ∈ SI}

Table 3.3: Extension of interpretation function ·I to SROIQ concepts.

3.1.2 Semantics

Given a SROIQ signature Σ, an interpretation I is a pair 〈∆I , ·I〉, where ∆I

is a non-empty set called domain and ·I is an interpretation function defined for
each element of NC , NR, NI :

• for each concept name C ∈ NC , CI ⊆ ∆I ,

• for each role name R ∈ NR, RI ⊆ ∆I ×∆I ,

• for each individual name a ∈ NI , aI ∈ ∆I .

The interpretation function definition can be extended to concepts and complex
roles as described in Table 3.3.

Furthermore, the interpretation function defines the satisfaction condition for
axioms and assertions:

• for every concept assertion C(a), I |= C(a) iff aI ∈ CI ,

• for every role assertion R(a, b), I |= R(a, b) iff 〈aI , bI〉 ∈ RI ,

• for every C v D, with C,D concepts, I |= C v D iff CI ⊆ DI ,

• for every S v R, with S complex role and R role, I |= S v R iff SI ⊆ RI .

As for the FO case, we say that an interpretation I models (is a model for, satisfies)
an axiom (resp. assertion) α iff I |= α. Given an ontology O, I |= O if I |= α,
for every α ∈ O. Additionally, given a KB K = 〈O,A〉, I |= K if I |= O and
I |= α, for every α ∈ A. We say that K is satisfiable if there exists an interpretation

22 3.2. Reasoning problems

satisfying it. A KB K satisfies an axiom (or an assertion) α (written K |= α)
if every model for K is a model for α.

Given a ∈ NI and a concept C, such that aI ∈ CI , for some interpretation
I, then, we say that a is an instance of C w.r.t. I.

Finally, the translation π(·) from ontology axioms to rules, defined in the previous
section is entailment preserving, i.e., K |= α iff π(K)≈,> |= π(α) for any axiom or
assertion α, and as such we can treat the two formalisms as interchangeable.

The semantics for SROIQ can be equivalently defined via translation of axioms
into FO formulas and by referring to FO logic semantics, as defined in Section 2.1.2.
The translation into logic rules is given in Table 3.2, with (T5) axioms translated
to A(x) → ∃y(R(x, y) ∧ B(y)).

3.2 Reasoning problems

Following is a list of standard reasoning problems that are associated with DLs.
Given K = 〈O,A〉 a KB with signature Σ = 〈NC , NR, NI〉, I an interpretation
for K, A,B concept names, C,D concepts:

Consistency checking (or satisfiability checking) is the problem of deciding
whether there exists an interpretation I that satisfies K.

Subsumption is the problem of deciding whether each instance of C is also an
instance of D in all models of K.

Classification is the task of determining the subsumption relation for all pairs of
concept names A,B in K.

Instance Retrieval is the task of collecting all individuals a ∈ NI such that a is
an instance of C in all models of K.

Realization is the task of computing, for every individual a ∈ NI the minimal set
of concept names A ∈ NC such that a is an instance of A for all models of K.

3.3 OWL 2 profiles

OWL 2 profiles [40, 72] have been defined as fragments of OWL 2, and designed to
provide a desirable balance between computational complexity of standard reasoning
tasks and expressiveness of the ontology language. OWL 2 provides three profiles:
OWL 2 EL, OWL 2 QL and OWL 2 RL.

3. Description logics 23

3.3.1 OWL 2 EL

OWL 2 EL is based on the EL++ family of DLs, and has been designed to allow
for efficient reasoning over large ontologies. The main reasoning task of interest is
classification [40], and standard reasoning (see Section 3.2) in this profile can be
implemented in polynomial time w.r.t. the size of the ontology [4].

In OWL 2 EL, concepts are formed according to the following:

C,D → ⊥ | A | {a} | C uD | ∃R.C | ∃R.Self (3.1)

where A is a concept name, C,D concepts, and R is a role name. A GCI in
OWL 2 EL is of the form C v D with C,D concepts; Ref(R), Trans(R) and
complex role inclusion are also allowed.

3.3.2 OWL 2 QL

OWL 2 QL is based on the DL-Lite family [10] of DLs, which has been tailored
towards efficient reasoning over large amounts of data enriched by a relatively simple
ontology schema. The main reasoning task for OWL 2 QL is conjunctive query (CQ)
answering (see Section 4.1). This task is usually implemented by means of query
rewriting techniques (see Section 4.4.3) where a CQ is rewritten into a union of
CQs that captures the information introduced by the ontology; the rewritten query
can be answered over the input dataset using conventional RDBMSs. OWL 2 QL
ensures that a polynomial rewriting of a query exists [10].

OWL 2 QL is based on the DL-LiteR DL; concepts are defined as

C → ⊥ | A | ∃R (3.2)

where A is a concept name, and R a role. A GCI in OWL 2 QL is of the form
C v D with C,D concepts. Role axioms are restricted to Ref(R), Sym(R), Asy(R),
Dis(R, S) with R, S roles and simple concept inclusion.

3.3.3 OWL 2 RL

OWL 2 RL is based on the Description Logic Program (DLP) [41] formalism, placing
itself in the intersection between DLs and Datalog. CQ answering in OWL 2 RL
is P–complete in data complexity [1].

GCIs C v D in OWL 2 RL are defined as follows

C → A | {a} | C u C | ∃R.C (3.3)
D → ⊥ | A | ¬C | ∀R.D | ∃R.{a} |≤ 1R.C (3.4)

where A is a concept name and R a role.

24 3.4. RSA

0

1

2

6

7

¬A2 u ¬A1 u ¬A0

¬A2 u ¬A1 u A0

¬A2 u A1 u ¬A0

A2 u A1 u ¬A0

A2 u A1 u A0

000

001

010

110

111

R

R

R

Figure 3.1: Example of exponential model enumerating numbers from 0 to 2n − 1 for
n = 3. The KB is polynomial in n.

3.4 RSA
Role safety acyclic (RSA) ontologies were originally presented by Carral, Feier,
Grau, et al. [14] and further analyzed by Feier, Carral, Stefanoni, et al. [29].

RSA is a class of ontology languages designed to subsume all OWL 2 profiles,
while maintaining tractability of the standard reasoning tasks. The RSA ontology
language is designed to avoid interactions between axioms that can result in
the ontology being satisfied only by exponentially large (and potentially infinite)
models. This problem is often called and-branching [4] and can be caused by
interactions between axioms of type (T5) with either axioms (T3) and (R1), or
axioms (T4), in Table 3.2.

Example 3.4.1. Interaction between existential quantifiers (which can be encoded as
axioms of type (T5)) and universal quantifiers (which can be encoded by axioms of
type (T3) and (R2)) can lead to an ontology that may only be satisfied by models
of exponential size.

Consider the following knowledge base with ABox A = {(¬A0u· · ·u¬An−1)(a)}
for some n, and a TBox containing the following axioms, for 0 ≤ i < n:

¬Ai u
l

j<i

Aj v Bi u ∃R.Ai u ∀R.(
l

j<i

¬Aj) (3.5)

∀j>i
(
Bi u Aj v ∀R.Aj

)
(3.6)

∀j>i
(
Bi u ¬Aj v ∀R.¬Aj

)
(3.7)

The knowledge base, of polynomial size w.r.t. n, enforces a chain of individuals of
length 2n where each individual represents a number from 0 to 2n − 1 encoded in

3. Description logics 25

binary (i.e., each Ai represents a bit in position i, where an Ai encodes a 1 and a
¬Ai encodes a 0). Figure 3.1 shows an example of the exponentially large model
induced by the TBox for n = 3.

RSA is based on the Horn-ALCHOIQ ontology language, restricting the
interaction between axioms to ensure a polynomial bound on model size [14]. For the
following section we will consider a generic Horn-ALCHOIQ KB K = 〈T ∪ R,A〉
over the signature ΣK = 〈NC , NR, NI〉.

Definition 3.4.1. A role R in K is unsafe if it occurs in axioms (T5), and there is
a role S s.t. either of the following holds:

1. R v∗R Inv(S) and S occurs in an axiom (T3) with left-hand side concept ∃S.A
where A 6= >;

2. S is in an axiom (T4) and R v∗R S or R v∗R Inv(S).

A role R in K is safe if it is not unsafe.

Note that, all OWL 2 profiles, as defined in Section 3.3, contain only safe roles.
The distinction between safe and unsafe roles makes it possible to strengthen the
translation π from Table 3.2 as follows:

Definition 3.4.2. Let vAR,B be a fresh constant for each pair of concepts A,B and
each safe role R in K. The function πsafe is defined for each axiom α in K:

πsafe(α) =

A(x)→ R(x, vAR,B) ∧B(vAR,B) if α of type (T5) and R safe
π(α) otherwise.

(3.8)

Let P = {πsafe(α) | α ∈ O} and PK = P≈,>.

Theorem 3.4.1 ([14], Theorem 2). A Horn-ALCHOIQ KB K is satisfiable iff
PK 6|= ⊥. If K is satisfiable, then, K |= A(c) iff A(c) ∈ M [PK] for each unary
predicate A and constant c in K.

Note that, if K contains unsafe roles, the model M [PO] might be infinite (or
exponentially large), due to the introduction of function symbols caused by the
Skolemization of existential axioms.

26 3.4. RSA

Definition 3.4.3. Let PE and E be fresh binary predicates, let U be a fresh unary
predicate, and let uAR,B be a fresh constant for each concept A,B ∈ NC and each
role R ∈ NR. Then, for each axiom α in K

πRSA(α) =

A(x)→ R(x, uAR,B) ∧B(uAR,B) ∧ PE(x, uAR,B) if α is of type (T5)
π(α) otherwise.

(3.9)
The program PRSA consists of πRSA(α) for each α ∈ K, rule U(x)∧PE(x, y)∧U(y)→
E(x, y) and facts U(uAR,B) for each uAR,B, with R unsafe.

Let MRSA be the LHM of P≈,>RSA. Then, GK is the digraph with an edge (c, d) for
each E(c, d) in MRSA. KB K is equality-safe if:

(i) for each pair of atoms w ≈ t (with w and t distinct) and R(t, uAR,B) in MRSA

and each role S s.t. R v Inv(S), it holds that S does not occur in an axiom
(T4), and

(ii) for each pair of atoms R(a, uAR,B), S(uAR,B, a) in MRSA with a ∈ NI , there is
no role T such that both R v∗R T and S v∗R Inv(T) hold.

We say that K is RSA if it is equality-safe and GK is an oriented forest. If the
KB K is Horn-ALCHOIQ+, equality-safe and GK is an oriented forest, we say
that K is RSA+.

The fact that GK is a DAG ensures that the LHM M [PK] is finite, whereas the
lack of “diamond-shaped” subgraphs in GK guarantees polynomiality of M [PK].
The definition gives us a programmatic procedure to determine whether a Horn-
ALCHOIQ (resp. Horn-ALCHOIQ+) ontology is RSA (resp. RSA+).

Theorem 3.4.2 ([14], Theorem 3). If K is RSA, then the size of M [PK] is
polynomial in the size of K.

Tractability of standard reasoning tasks for RSA ontologies follows from The-
orem 3.4.1 and Theorem 3.4.2.

Finally, we introduce an alternative definition of OWL 2 profiles as fragments of
Horn-ALCHOIQ. Unless otherwise stated, we will use this definition of OWL 2
profiles, which does not consider property chain and transitivity axioms, in order to
keep this work compatible with definitions by Feier, Carral, Stefanoni, et al. [29].

OWL 2 profiles can be defined as restrictions of Horn-ALCHOIQ as follows:

• OWL 2 EL does not allow inverse roles (R1) and axioms of type (T4),

• OWL 2 RL does not allow axioms of type (T5), and

3. Description logics 27

• OWL 2 QL does not allow axioms (T2), (T4), axioms (T1) satisfy n = 1 and
axioms (T3) satisfy A = >.

It is worth noting that, when not considering transitive roles, the logical underpinning
of OWL 2 EL matches ELHOr⊥ [105, 120].

28

4
Query answering over ontologies

Contents
4.1 Conjunctive queries . 29
4.2 RDF and SPARQL . 32
4.3 Computational Complexity 34
4.4 Query Answering Techniques 35

4.4.1 Reduction to entailment checking 35
4.4.2 Materialization-based reasoners 36
4.4.3 Ontology-mediated query rewriting 37
4.4.4 Combined approaches 39
4.4.5 Hybrid approaches . 43
4.4.6 Ontology approximation 46

Conjunctive query (CQ) answering over ontologies is a reasoning task that
has received increasing attention in recent years. In this chapter we introduce
the definition of conjunctive query and its answers w.r.t. a knowledge base [4, 84,
119]. Computational complexity of CQ answering has been thoroughly investigated
in the literature and a number of different algorithms to compute all answers
to a query have been proposed.

4.1 Conjunctive queries

A conjunctive query (CQ) is a FO formula q(~x) = ∃~yψ(~x, ~y) where ψ(~x, ~y) is a
conjunction of function-free atoms over ~x ∪ ~y, ~y are called existential or bound
variables and ~x are called answer variables. For the sake of simplicity, we sometimes

29

30 4.1. Conjunctive queries

omit the existential variables from the query and write q instead of q(~x). W.l.o.g.
we treat a query as the set of its conjuncts. A CQ q(~x) = ∃~yψ(~x, ~y) is

• ground when |~y| = 0,

• atomic when ground and ψ(~x) is a single atom P (~x), for some predicate P ,

• an instance query when atomic and |~x| = 1,

• Boolean (BCQ) when |~x| = 0.

Example 4.1.1. The following are conjunctive queries

q1(x1, x2) = writes(x1, x2) ∧ Paper(x2) (4.1)
q2(x1, x2) = publishedBy(x1, x2) (4.2)

q3(x) = Researcher(x) (4.3)
q4 = ∃y1y2(writes(lisa, y2) ∧ Paper(y2) ∧ presentedAt(y2, y1)) (4.4)

q5(x) = ∃y(writes(lisa, y) ∧ Paper(y) ∧ presentedAt(y, x)) (4.5)

where (4.1) is a ground query retrieving any individual writing a paper, along
with the paper; (4.2) is an atomic query computing all pairs of objects satisfying
the predicate publishedBy; (4.3) is an instance query for Researcher; (4.4) is a
Boolean query asking whether lisa presented any paper at any conference; and
finally (4.5) is a generic CQ retrieving all conferences lisa presented a paper at.

Let K be a KB and q(~x) = ∃~yψ(~x, ~y) a CQ. A possible answer for q w.r.t. K
is a substitution σ mapping answer variables ~x to constants in K. We sometimes
represent the substitution σ as a vector of constants ~a such that |~a| = |~x| = n

and σ = {x1 7→ a1, . . . , xn 7→ an}. A possible answer σ is an answer under certain
answer semantics (certain answer for short) to q w.r.t. K if K |= (∃~yψ(~x, ~y))σ.
A possible answer σ is an answer under ground semantics (ground answer for
short) to q w.r.t. K if there exists a substitution σ′ from bound variables ~y to
constants in K such that K |= ψ(~x, ~y)σσ′. We denote the set of certain (resp.
ground) answers as cert(q,K) (resp. ground(q,K)). If q is a BCQ, then the set of
certain answers is either an empty set or the set containing the identity substitution.
An (un)satisfiability check can be seen as the special Boolean query ⊥. In particular
a KB is satisfiable iff cert(⊥,K) is empty.

Conjunctive queries can be represented as a set of Datalog rules Rq of the form

Rq =

∅ if q = ⊥
{ψ(~x, ~y)→ Pq(~x)} otherwise

(4.6)

4. Query answering over ontologies 31

where Pq is a fresh predicate uniquely bound to q. Note that this allows us to define
query answers by means of entailment of a single fact, i.e., ~a ∈ cert(q,K) iff
K ∪ Rq |= Pq(~a).

It is easy to see that certain answer semantics is equivalent to ground semantics
when K is a Datalog KB, or q is a ground CQ. However, in general, this is
not the case, and interpreting CQs under ground or certain answer semantics
can lead to different results.

Example 4.1.2. Consider a KB consisting of a single axiom

Researcher v ∃ writes.Paper

and {Researcher(lisa), writes(bart, thesis1)} as ABox. Then, considering q(x) =
∃ywrites(x, y), the set of answers under ground semantics is {bart} while the set
of answers under certain answer semantics is {lisa, bart}.

When considering CQs over OWL 2 KBs, we restrict ourselves to unary or
binary predicates, representing, respectively, concept and role names.

Answering CQs w.r.t. KBs is computationally very hard and decidability for
OWL 2 under certain answer semantics is still an open problem. There exists
a number of classes of conjunctive queries for which CQ answering is known
to be decidable over OWL 2.

Let q be a CQ. The graph representation Gq = 〈V,E〉 of q is an undirected
(multi)graph where

• V is the set of terms in q, and

• E is the set of labelled edges P (u, v), where u, v are terms in q, P is a binary
predicate s.t. P (u, v) ∈ q.

A query q is forest-shaped if the subgraph obtained from Gq by removing all edges
P (u, v), s.t. u, v are both answer variables and P a predicate in q, is a forest rooted
in answer variables of q. A tree-shaped query is a forest-shaped query with a single
answer variable. Tree-shaped queries can be rolled-up [50] into single concepts.

Definition 4.1.1. Let q be a tree-shaped query, and let x be the only free variable
in q. Let parent(·) be the function, induced by the tree underlying Gq, rooted in x,
returning the parent of a given node. The rolled-up concept Cu for some term u in
Gq is

Cu =
l

C(u)∈q

C u
l

u=parent(v)
R(u,v)∈q
v constant

∃R.({v} u Cv) u
l

u=parent(v)
R(u,v)∈q
v variable

∃R.Cv (4.7)

The rolled-up concept of q is Cq = Cx.

32 4.2. RDF and SPARQL

Given L a DL language, a tree-shaped query q, and a fresh concept name
D, q is said to be in L if Cq v D is a GCI in L; moreover, answering q over a
KB K = 〈O,A〉 in L can be reduced to instance checking, i.e., a ∈ cert(q,K)
iff 〈O ∪ {Cq v D},A〉 |= D(a).

Internalisable queries are an extension of tree-shaped and forest-shaped queries,
for which answering over OWL 2 KBs can be reduced to entailment of concept
assertions and satisfiability [50] (hence the decidability of the problem).

Definition 4.1.2. A CQ q is internalisable if its graph Gq does not contain cycles
of length at least two involving only bound variables in q.

Note that ground and forest-shaped queries are internalisable queries.

4.2 RDF and SPARQL
The Resource Description Framework (RDF) [98] is a framework for representing
information on the Web. RDF allows expressing relations between resources by
means of triples, i.e., statements of the form

〈subject, predicate, object〉

where subject and object represent the two resources being related and predicate
is the resource representing the nature of their relationships.

A resource in RDF terms is either an Internationalized Resource Identifier
(IRI) [23], a literal (numbers, strings, dates, enumerations, etc.) or a blank node
(resources without a specific identifier, represented as _:resource).

Given an IRI <http://example.com/resource>, it can be abbreviated as
ex:resource, with ex a unique identifier for the prefix http://example.com/.
The prefix ex determines a namespace shared by all resources under the same
prefix. Commonly used namespaces are rdf:, rdfs:, owl:, providing resources
that define the specifications for RDF [98], the RDF schema (RDFS) [6] and
OWL [77], respectively.

A collection of triples is usually stored in an RDF store and can be represented as
a graph by interpreting subject and object of triples as nodes and predicates as edges.

An ABox can be represented as a set of triples, where a property assertion
A(b, c) corresponds to the triple 〈b, A, c〉, and a class assertion A(b) corresponds
to the triple 〈b, rdf:type, A〉.

The SPARQL Protocol and RDF Query Language (SPARQL) [45] is a standard
query language to retrieve and manipulate data stored as RDF triples. A SPARQL
conjunctive query is an expression of the form

4. Query answering over ontologies 33

1 SELECT ?X1 · · · ?Xn

2 WHERE {
3 S1 P1 O1.
4 · · ·
5 Sm Pm Om.
6 }

where variables X1, . . . , Xn (corresponding to the answer variables of a CQ) appear
in the triple patterns (Si Pi Oi) composing the body of the query and where Si, Pi,
and Oi can be either RDF resources, blank nodes, or variables (represented by a
leading question mark or a dollar sign). When representing BCQs (i.e., CQs without
answer variables) the keywords SELECT <variables> WHERE are replaced by ASK.

Example 4.2.1. Conjunctive queries introduced in Example 4.1.1 can be expressed
using SPARQL as follows. We represent existing concept and role names as resources
under the namespace “ex:”.
Query (4.1)

1 SELECT ?X ?Y
2 WHERE {
3 ?X ex: writes ?Y.
4 ?Y rdf:type ex:Paper
5 }

Query (4.2)
1 SELECT ?X ?Y
2 WHERE {
3 ?X ex: publishedBy ?Y
4 }

Query (4.3)
1 SELECT ?X
2 WHERE {
3 ?X rdf:type ex: Researcher
4 }

Query (4.4)
1 ASK {
2 ex:lisa ex: writes ?Y.
3 ?Y rdf:type ex:Paper
4 ?Y ex: presentedAt ?X.
5 }

Query (4.5)
1 SELECT ?X
2 WHERE {
3 ex:lisa ex: writes ?Y.
4 ?Y rdf:type ex:Paper
5 ?Y ex: presentedAt ?X.
6 }

34 4.3. Computational Complexity

The semantics of SPARQL queries over an RDF graph is based on subgraph
matching [45]. Formally, a solution to a SPARQL CQ q is a mapping σ from
variables and blank nodes in q to nodes in the queried RDF graph G, such that the
application of σ to the body of the query results in a subgraph of G. An answer
to a SPARQL CQ is the projection of σ over the answer variables.

Ontology axioms and data assertions can also be mapped into sets of RDF
triples using an extended vocabulary defined by W3C standards, such as RDFS [6]
and OWL [77]. The semantics of SPARQL queries over such extensions is obtained
by redefining subgraph matching to take into account semantic entailment relations.
Such extensions of the SPARQL semantics are called entailment regimes [37] and
standardize the entailment relation in use, well-formed queries and graphs for the
regime and the definition of entailment. The semantics of SPARQL queries w.r.t.
OWL 2 ontologies is specified by the OWL 2 Direct Semantics entailment regime [37].

4.3 Computational Complexity

The decision problem associated with CQ answering is known as conjunctive query
entailment (CQE); given a KB K, a query q and a possible answer σ, CQE consists
in determining whether K |= q(~x)σ. As mentioned above, CQE is a well-known
open problem, when considering unrestricted OWL DL and OWL 2 ontologies.

The problem is decidable for OWL DL ontologies when the query does not
involve transitive relations [95]. Decidability of CQE is co–N2ExpTime-hard for
ALCHOIQ [35] and 2–ExpTime–complete for DLs like SHIQ [36], SHOQ [32,
25], and for the Horn fragment of OWL 2, Horn-SROIQ [82]. Hardness results
for 2–ExpTime have been shown even for weaker languages, such as ALCI [66]
and SH [25]. We can lower the complexity to ExpTime–complete by removing
inverse roles, e.g., in ALC and SHQ [66] or by considering the Horn fragment
of OWL, Horn-SHOIQ [82]. When considering data complexity, CQE is coNP–
complete for non-Horn DLs like ALC [97, 81], ALE [97] and SHIQ [36, 81] and
P–complete for Horn-SHOIQ [83] and Horn-SROIQ [82]. CQE is ExpTime–
complete for Horn-ALCHOIQ and NP–complete for RSA, while it is P–complete
in data complexity for both languages [13, 29].

To further lower the complexity of the decision problem and find tractable ways
of computing certain answers to CQs, less expressive fragments of OWL 2 (called
OWL 2 profiles [72]) have been defined. Decidability of CQE for OWL 2 EL is
PSpace–complete in combined complexity and P–complete in data complexity [62,
105]. The complexity drops to NP when excluding complex role inclusion (but

4. Query answering over ontologies 35

maintaining reflexivity and transitivity) from the language [106]. Decidability of
CQE in OWL 2 QL is NP–complete in combined complexity and AC0 in data
complexity [10, 12]. Decidability of CQE for OWL 2 RL is NP–complete in combined
complexity and P–complete in data complexity [72]. The OWL 2 RL profile is a
fragment of plain Datalog, for which CQE is P–complete in data complexity and
ExpTime–complete in combined complexity [1]. When considering disjunctive
Datalog the problem is coNP–complete in data complexity and coNExpTime–
complete in combined complexity [18].

An alternative approach to obtain decidability of CQE is to consider CQs under
ground semantics. Ground conjunctive query entailment (GCQE) is the problem of
checking whether a substitution σ is a ground answer to a CQ q(~x) w.r.t. K. GCQE
can be easily reduced to satisfiability checking and hence, is decidable in OWL 2.

For more information on the computational complexity of decidability of CQE
in other fragments of OWL 2, we refer the reader to [84].

4.4 Query Answering Techniques

Support for CQ answering is offered natively by several existing reasoners. Some of
them achieve this by ensuring sound and complete answers for a specific semantics
over a certain family of ontology languages, while others limit the language in
which the queries can be expressed. We will now give an overview of the several
CQ answering techniques present in the literature.

4.4.1 Reduction to entailment checking

The first technique we are going to discuss is based on the reduction of CQ answering
to entailment checking. Tableau–based DL reasoners like Pellet [100], HermiT [31],
RacerPro [43] construct a finite structure that represents a model for the input
KB and use blocking conditions to ensure the termination of the procedure. These
reasoners usually target standard reasoning tasks and only offer limited support
for CQ answering. Still, internalisable CQs can be rolled-up and included in the
KB, effectively reducing CQ answering to entailment checking of a fresh concept
entailed by the rolled-up query.

Pellet [100] provides support for CQ answering under ground semantics and
supports CQ answering under certain answer semantics limited to tree-shaped
queries (which can be internalized using the rolling-up technique).

36 4.4. Query Answering Techniques

HermiT [31] is a fully-fledged reasoner for OWL 2, based on the hypertableau
calculus [78]; a SPARQL interface around HermiT is provided by OWL-BGP.1

RacerPro is a tableau–based system for the SHIQ DL language; it implements a
technique for instance retrieval, called filter and refine [117] and is tailored towards
KBs with large ABoxes. The idea behind this technique is to first determine
obvious (non-)solutions to a concept description (filter) and subsequently perform
an optimized instance check (using ABox locality properties) for the remaining
individuals (refine). It supports a superset of CQs under ground semantics.

Another tableau-based reasoner, Konclude [111], has been recently adapted to
perform CQ answering over expressive ontologies [109], using an absorption-based
technique [110, 108]. The assertional part of a KB is divided into small packets used
to parallelize the model construction of the tableau algorithm. This parallelizable
approach, along with the use of caching to avoid the need of synchronization
mechanisms between workers, can be used to derive possible answers to a CQ.
Candidate answers are then checked using entailment checking, where bindings for
the answer variables are restricted to individuals appearing in the possible answers.
According to [109], the approach works best when considering ground queries,
while the presence of existential variables can require a substantial amount of
additional computation.

Overall, the systems described in this section are not primarily designed for
CQ answering under certain answer semantics and instead target other reasoning
tasks. The technique of reducing CQ answering to entailment checking is supported
for expressive ontology languages but may not scale as well as other approaches.
Optimizations have been proposed to further limit performance issues; examples are
query execution order, based on the input KB [59] and data summarization [22].

When considering the development of fully-fledged reasoners targetting OWL 2,
such as HermiT and Konclude, improvements on these reasoners can translate
into improvements for hybrid systems like ACQuA and PAGOdA, which directly
use these tools as black boxes.

4.4.2 Materialization-based reasoners

Materialization-based reasoners are also widely in use and implement the forward
chaining algorithm on top of (some fragment of) Datalog. Materialization-based
systems are often built on top of RDF management systems; i.e., data management
systems based on the Resource Description Framework, representing knowledge
as statements in the form of triples.

1https://github.com/iliannakollia/owl-bgp

https://github.com/iliannakollia/owl-bgp

4. Query answering over ontologies 37

Triple stores like Jena [70], Sesame [7] and Virtuoso [28] offer query answering
capabilities over RDBMS and support the RDFS description language. OWLim [5]
provides support for OWL 2 RL ontologies. A materialization-based reasoner
extensively used in this work is RDFox [79], an RDF store supporting arbitrary
Datalog rules over unary and binary predicates. The nature of the tool allows for
important optimizations, e.g., incremental updates, and parallel materialization, at
the expense of a limited expressivity in the supported description logic language
[76, 73, 75, 79]. RDFox covers most of SPARQL 1.1 over an extension of Datalog.
There are several other engines that support CQ answering over (extensions of)
Datalog; among them, it is worth mentioning DLV [65], which provides support
for CQ answering over an extension of disjunctive Datalog.

Although OWL 2 RL is expressive enough to cover a large portion of practical
use cases, it lacks some common patterns like disjunctive knowledge or existentially
quantified knowledge, that would potentially render the materialization process
either non-deterministic or infinite. Typically, materialization-based reasoners can
still process ontologies outside OWL 2 RL, ignoring axioms that do not fall into
the language. Answers to queries are still sound, but might not be complete,
effectively providing a lower bound to the set of certain answers. This technique
is used in the system PAGOdA [120] to effectively compute a sound lower bound
to the set of certain answers to a CQ.

4.4.3 Ontology-mediated query rewriting

DLs are often used to model the domain of interest as collections of concepts and
roles. In this sense, ontologies offer a great tool to build high-level semantics on
top of some structured data (e.g., relational database).

Ontology-Based Data Access (OBDA) directly applies this principle, creating
a layer of abstraction on top of an existing data store; an ontology becomes an
entry point for the user to access the underlying data via query answering. Another
advantage of this approach is that it can rely on the underling data store (e.g., a
RDBMS) to carry out the reasoning tasks. The OBDA framework [118] uses an
ontology to rewrite an input query (i.e., expanding it by incorporating parts of the
ontology). It then uses a set of mappings2 to transform the rewritten query into
a query over the underlying relational data sources. The process is called perfect
reformulation [89] and ensures that the answers to the query over the dataset and the
ontology are the same as the answers to the rewritten query over the dataset alone.

2Often expressed in the W3C standard R2RML language [19].

38 4.4. Query Answering Techniques

It is worth noting that, since the query addresses the data source(s) indirectly,
any updates made to the source are immediately reflected into the system. This is
in contrast with the materialisation-based approach, where updates in the source
require the recomputation (or the update) of the materialized dataset.

The OBDA approach is based on ontologies that fall into the DL-Lite family of
DL languages, and hence the OWL 2 QL profile, for which the rewriting of CQs into
unions of FO queries is guaranteed to exist [10]. Perfect reformulation is implemented
in QuOnto [2] and further integrated into the MASTRO system [11]. Unfortunately,
the query rewriting process can lead to an exponentially larger FO query [10] and
polynomial rewriting is guaranteed only for small fragments of OWL 2, such as
OWL 2 QL. For a more in-depth analysis on the performance of the OBDA approach
we refer the reader to the Optique project and their work with Equinor [51, 58].

Rosati [94] applied the query rewriting technique to EL and ELH, showing that
unions of conjunctive queries (UCQs) can be rewritten into a Datalog query. The
same result does not hold for EL+ and EL++. REQUIEM [87, 88] implements
a resolution-based query rewriting technique for ELHIO¬, a DL covering both
DL-Lite and EL. The rewriting is based on the resolution calculus to saturate the
set of rules in the ontology and subsequently filter out those containing functional
terms. However, the introduction of inverse roles leads to a significant jump in
complexity: CQE for EL and ELH is NP–complete, whereas it becomes ExpTime–
complete for ELHIO¬. Depending on the language of the input ontology the
rewriting can be a UCQ or a (linear) Datalog query.

We briefly mention the work done in Clipper [27, 26] which implements a query
rewriting technique for Horn-SHIQ. The rewriting differs from the ones mentioned
above since Clipper modifies the dataset as well. A set of inference rules are used to
saturate the input ontology and the data is materialized against the Datalog rules in
the saturation. The query is rewritten against the subset of existentially quantified
rules in the ontology and evaluated against the augmented dataset. The saturated
ontology and the rewriting might be exponential in size w.r.t. the input ontology and
query. Query rewriting has also been applied to linear Datalog± ontologies (see [80]).

A different approach involves the manipulation and rewriting of the input query
[32, 36]. The authors propose a decision procedure for CQE for SHIQ and SHOQ
based on the rewriting of the query into a forest shape. By applying the rolling-up
technique [50], the problem is reduced to testing the consistency of an extended KB.

4. Query answering over ontologies 39

4.4.4 Combined approaches

The combined approach is another widely known technique for computing a sound
and complete set of answers to a CQ. In this scenario the dataset is first augmented
by materializing entailed facts w.r.t. the ontology in order to build a model for the
input KB. This process is usually query-independent and performed in polynomial
time. Spurious answers are then systematically identified by means of a filtration
step or by rewriting the query [68, 60] in order to derive the certain answers to
the input query. The technique has been applied to different description logics
in the EL family, such as the extension of ELH with ⊥ and range axioms [68]
and ELHOr⊥ [107], as well as in the DL-Lite family, e.g., DL-Litehorn with number
restriction [60] and DL-LiteR [67]. More recently the combined approach has been
applied to RSA [14, 29] and its underlying ontology language Horn-ALCHOIQ [13].

In this thesis, we exploit the filtration-based combined approach for RSA [29]
to compute bounds to the answers to an input query. In the following, we provide
a brief overview of this technique.

Combined approach for RSA

The combined approach for RSA consists of two main steps to be offloaded to a
Datalog reasoner able to handle stratified negation and function symbols.

The first step computes the canonical model of an RSA ontology over an extended
signature (introduced to deal with inverse roles and directionality of newly generated
binary atoms). The computed canonical model is not universal and, as such, might
lead to spurious answers in the evaluation of CQs.

The second step of the computation performs a filtration of the computed
answers to identify only the certain answers to the input query.

Canonical model computation The computation of the canonical model for a
KB K is performed by computing the LHM of the definite program obtained by
translating K according to the rules in Table 4.1. The translation is an enhanced
version of the translation given in Table 3.2 where axioms of type (T5) are Skolemized
if the role involved is unsafe, and constant Skolemized otherwise. Constant
Skolemization of axioms can introduce forks, i.e., confluent chains of binary atoms,
in the canonical model, possibly leading to spurious answers. Furthermore, the
presence of inverse roles might create forks that lead to a spurious match even when
the input query is linearly-shaped (see Fig. 4.1). In order to keep track of these forks,
directionality is taken into account when Skolemizing an axiom; roles are annotated

40 4.4. Query Answering Techniques

s

y

t

R(s, y) ∧ S(t, y)

Rf Sf

s

y

t

R(s, y) ∧ S(y, t)

Rf Sb

s

y

t

R(y, s) ∧ S(y, t)

Rb Sb

Figure 4.1: Forks in the presence of inverse roles. From left to right: forward/forward,
forward/backward, backward/backward combinations of binary atoms.

Axioms in K LP rules
non-(T5) axiom α π(α)
R v S, ∗ ∈ {f, b} R∗(x, y)→ S∗(x, y)

R role, ∗ ∈ {f, b}
R∗(x, y)→ R(x, y)

Rf (x, y)→ Inv(R)b(y, x)
Rb(x, y)→ Inv(R)f (y, x)

(T5) axiom, R unsafe A(x)→ Rf (x, fAR,B(x)) ∧B(fAR,B(x))

(T5) axiom, R safe

A(x) ∧ notIn(x, unfold(A,R,B))→ Rf (x, vA,0R,B) ∧B(vA,0R,B)
if R ∈ confl(R), for every i = 0, 1:

A(vA,iR,B)→ Rf (vA,iR,B, v
A,i+1
R,B) ∧B(vA,i+1

R,B)
for every x ∈ cycle(A,R,B):
A(x)→ Rf (x, vA,1R,B) ∧B(vA,1R,B)

Table 4.1: Translation of Horn-ALCHOIQ axioms to build EK.

with the direction in which they are “generated” (during the materialization process),
and the annotation is propagated according to axioms in the RBox.

This is still not enough to detect spurious matches in the canonical model and,
in particular, cycles of length one (self-loops) or two can be the source of ambiguity
during materialization. In order to solve the ambiguity of the canonical model,
cycles of length one and two are unfolded into cycles of length three and four,
respectively [29]. This is formalized in the definition of EK, the Datalog program
used to compute the canonical model for K.

Definition 4.4.1. Let confl(R) be the set of roles S s.t. R v∗R T and S v∗R Inv(T)
for some T . Let prec be a strict total order on triples (A,R,B), with R safe and A,B
concept names in K. For each (A,R,B), let vA,0R,B, v

A,1
R,B and vA,2R,B be fresh constants;

let self(A,R,B) be the smallest set containing vA,0R,B and vA,1R,B if R ∈ confl(R); and
let cycle(A,R,B) be the smallest set of terms containing, for each S ∈ confl(R),

• vD,0S,C if (A,R,B) ≺ (D,S,C);

• vD,1S,C if (D,S,C) ≺ (A,R,B);

4. Query answering over ontologies 41

• fDS,C(vD,0S,C) and each fFT,E(vD,0S,C) s.t. uDS,C ≈ uFT,E is in MRSA, if S is unsafe.

Finally, unfold(A,R,B) = self(A,R,B) ∪ cycle(A,R,B).
Let Rf and Rb be fresh binary predicates for each role R in K, let NI be a

fresh unary predicate, and notIn be a built-in predicate which holds when the first
argument is not an element of the set given as the second element. Let P be the
smallest program with a rule → NI(a) for each constant a and all rules in Table 4.1.
We define EK = P≈,>.

The set confl(R) intuitively contains the roles that are source of ambiguity in
conjunction with R and hence need to be potentially unfolded if part of a loop; the
arbitrary order ≺ determines the direction in which the loops are unfolded. Since
the input ontology is RSA, there is no loop introduced by unsafe roles, and hence
axioms of type (T5) involving unsafe roles do not need to be constant Skolemized.

The canonical model for an RSA input ontology is defined as M [EK].

Theorem 4.4.1 ([29],Theorem 3). The following holds:

(i) M [EK] is polynomial in |K|;

(ii) K is satisfiable iff EK 6|= ∃y.⊥(y);

(iii) if K is satisfiable, K |= A(c) iff A(c) ∈M [EK];

(iv) there are no terms s, t and role R s.t. EK |= Rf (s, t) ∧Rb(s, t).

Filtering spurious answers For the filtering step, a query dependent logic
program Pq is introduced to filter out all spurious answers to an input query q over
the extended canonical model M [EK] computed in the previous section.

The program identifies and discards any match that cannot be enforced by a
TBox alone and hence correspond to a spurious answer induced by the canonical
model. This includes the task of detecting forks and cycles in the model and answers
that contain anonymous terms (i.e., functional terms and constants introduced
as part of the canonical model program). Rules for the filtering program are
provided in Table 4.2. Filtering program Pq and its extension Pq,K with EK from
Def. 4.4.1 are defined as follows.

Definition 4.4.2. Let q = ∃~y.ψ(~x, ~y) be a CQ, let QM, sp, and fk be fresh predicates
of arity |~x|+|~y|, let id, AQ∗, TQ∗ with ∗ ∈ {f, b} be fresh predicates of arity |~x|+|~y|+2,
let Ans be a fresh predicate of arity |~x|, let named be a fresh unary predicate, and
let U be a set of fresh variables s.t. |U | ≥ |~y|. Then, Pq is the smallest program with
all rules in Table 4.2, and Pq,K is defined as EK ∪ Pq.

42 4.4. Query Answering Techniques

(1) ψ(~x, ~y)→ QM(~x, ~y)
(2) → named(a) for each constant a in O

(3a) QM(~x, ~y), not NI(yi)→ id(~x, ~y, i, i) for each 1 ≤ i ≤ |~y|
(3b) id(~x, ~y, u, v)→ id(~x, ~y, v, u)
(3c) id(~x, ~y, u, v), id(~x, ~y, v, w)→ id(~x, ~y, u, w)
(4a) for all R(s, yi), S(t, yj) in q with yi, yj ∈ ~y

Rf (s, yi) ∧ Sf (t, yj) ∧ id(~x, ~y, i, j) ∧ not s ≈ t→ fk(~x, ~y)
(4b) for all R(s, yi), S(yj , t) in q with yi, yj ∈ ~y

Rf (s, yi) ∧ Sb(yj , t) ∧ id(~x, ~y, i, j) ∧ not s ≈ t→ fk(~x, ~y)
(4c) for all R(yi, s), S(yj , t) in q with yi, yj ∈ ~y

Rb(yi, s) ∧ Sb(yj , t) ∧ id(~x, ~y, i, j) ∧ not s ≈ t→ fk(~x, ~y)
for all R(yi, yj), S(yk, yl) in q with yi, yj , yk, yl ∈ ~y

(5a) Rf (yi, yj) ∧ Sf (yk, yl) ∧ id(~x, ~y, j, l) ∧ yi ≈ yk ∧ not NI(yi)→ id(~x, ~y, i, k)
(5b) Rf (yi, yj) ∧ Sb(yk, yl) ∧ id(~x, ~y, j, k) ∧ yi ≈ yl ∧ not NI(yi)→ id(~x, ~y, i, l)
(5c) Rb(yi, yj) ∧ Sb(yk, yl) ∧ id(~x, ~y, i, k) ∧ yj ≈ yl ∧ not NI(yj)→ id(~x, ~y, j, l)
(6) for each R(yi, yj) in q with yi, yj ∈ ~y and ∗ ∈ {f, b}

R∗(yi, yj) ∧ id(~x, ~y, i, v) ∧ id(~x, ~y, j, w)→ AQ∗(~x, ~y, v, w)
for each ∗ ∈ {f, b}

(7a) AQ∗(~x, ~y, u, v)→ TQ∗(~x, ~y, u, v)
(7a) AQ∗(~x, ~y, u, v) ∧ TQ∗(~x, ~y, v, w)→ TQ∗(~x, ~y, u, w)
(8a) QM(~x, ~y) ∧ not named(x)→ sp(~x, ~y) for each x ∈ ~x
(8b) fk(~x, ~y)→ sp(~x, ~y)
(8c) TQ∗(~x, ~y, v, v)→ sp(~x, ~y) for each ∗ ∈ {f, b}
(9) QM(~x, ~y) ∧ not sp(~x, ~y)→ Ans(~x)

Table 4.2: Rules in PQ. Variables u, v, w from U are distinct.

Theorem 4.4.2 ([29], Theorem 4). Let Pq be the filtering program for q, and
Pq,K = EK ∪ Pq. It holds that:

(i) PO,q is stratified;

(ii) M [PO,q] is polynomial in |O| and exponential in |q|;

(iii) if O is satisfiable, ~x ∈ cert(q,O) iff PO,q |= Ans(~x).

We can then build a worst-case exponential algorithm that, given an ontology
K and a CQ q, materializes Pq,K and returns all instances of predicate Ans. We
obtain a “guess and check” algorithm that leads to an NP–completeness result
for BCQs [29]. The algorithm first materializes EK in polynomial time and then
guesses a match σ for q over the materialization; finally it computes (Pq,K)σ.

Theorem 4.4.3 ([29], Theorem 5). Checking whether K |= q(~x, ~y) with K an RSA
ontology and q(~x, ~y) a BCQ is NP–complete in combined complexity.

4. Query answering over ontologies 43

4.4.5 Hybrid approaches

We will now look at tools that combine more than one technique described above
to implement CQ answering.

Hydrowl [112] is a reasoner for CQ answering combining an OWL 2 RL reasoner,
a query rewriting system and a fully-fledged OWL 2 reasoner. Hydrowl uses a
repairing strategy [113] (limited to those ontologies for which a repairing exists)
and query rewriting to answer an input query q. First a query base, i.e., a set of
atomic queries that can be answered using the OWL 2 RL reasoner, is derived from
the query. It is checked whether the query base “covers” the query, and in that case
the OWL 2 RL reasoner is used to answer the query; otherwise the tool falls back
to the fully-fledged reasoner. Further investigation on the computation of the query
base [120] shows that the algorithm is not always able to automatically extract a
set of atomic queries, thus compromising the correctness of the approach.

Absorption-based query entailment checking [108] (inspired by the absorption
technique presented by Steigmiller, Glimm, and Liebig [110]) also falls into the
category of hybrid approaches. An input query is rewritten in order to make its
entailment more efficiently detected by the model constructed using an extended
version of the tableau algorithm. In this sense, the rewritten query is used to
identify the individuals that are involved in the entailment of the query and, at
the same time, to guide the construction of the model in the tableau algorithm.
The technique is sound and complete for CQE for expressive ontology languages,
such as SHIQ and SHOQ.

PAGOdA

PAGOdA is a hybrid reasoner for sound and complete CQ answering over OWL 2
KBs, adopting a “pay-as-you-go” technique to compute the certain answers to a
given query. The idea is to compute lower/upper bound approximations to the
answers to a query by approximating the input ontology into a less expressive
language and possibly provide a fallback (more expensive) algorithm to process
the answers in the gap between the bounds; to achieve this, it uses a combination
of a Datalog reasoner and a fully-fledged OWL 2 reasoner. PAGOdA treats the
two systems as black boxes and tries to offload the bulk of the computation to the
former and relies on the latter only when necessary. ACQuA uses a similar approach
but tries to reduce the gap between upper and lower bounds by approximating
to a more expressive language (RSA).

The capabilities, performance, and scalability of PAGOdA inherently depend on
the ability of the fully-fledged OWL 2 reasoner in use, and the ability to delegate

44 4.4. Query Answering Techniques

the workload to a given Datalog reasoner. In the best scenario, with an OWL 2
reasoner, PAGOdA is able to answer internalisable queries [50] under certain answer
semantics [120] over OWL 2 DL.

In the following is a high level description of the procedure adopted by PAGOdA
to compute the answers to a query. Zhou [119] provides a more in-depth description
of the algorithm and heuristics in use.

Given a KB K = 〈T ∪ R,A〉3 and a query q, PAGOdA executes the following
steps in order to compute the answers to q w.r.t. K:

1. The Datalog reasoner is exploited to compute a lower bound Lq and an upper
bound U q for the answers to the query q. This is achieved by approximating
the input KB K into a tractable language to be handled by the Datalog
reasoner. Depending on the approximation procedure, running the query over
the approximated ontology will result in either a lower or an upper bound of
the certain answers to the query. The lower bound Lq is obtained as follows:

(a) The disjunctive Datalog subset of the input ontology, denoted with KDD,
is computed by dropping any axiom that does not correspond to a
disjunctive Datalog rule.

(b) Using a variant of shifting [120, 24], KDD is polynomially transformed
in order to eliminate disjunction in the head. The resulting ontology
shift(KDD) is sound but not necessarily complete for CQ answering.

(c) A first materialization is performed, i.e., M1 = M [shift(KDD)], and the
resulting facts are added back to the input knowledge base to obtain
K′ = 〈T ∪ R,A ∪M1〉.

(d) The ELHOr⊥ [105] subset of K′ is computed, denoted K′EL, dropping any
axiom that is not in ELHOr⊥.

(e) The combined approach for ELHOr⊥ [68, 107] is used to compute the
answers to the query q over K′EL.

The upper bound U q is computed by executing the query over the ontology,
modified as follows:

(a) The ⊥ concept is substituted with a fresh concept name ⊥s to avoid
directly deriving falsehood.

3In the following we consider the input KB to be consistent and normalized. This is ensured
by PAGOdA’s preprocessing step.

4. Query answering over ontologies 45

(b) Disjuncts in the head of an axiom are reduced to a single disjunct. The
“most favourable” disjunct is chosen according to a polynomial choice
function that reasons over the dependency graph of the input ontology.

(c) Existential axioms of type (T5) are constant Skolemized.

2. If lower and upper bound coincide (i.e., Lq = U q) then the Datalog reasoner
was able to provide a sound and complete set of answers to the input query.
The computation terminates.

3. Otherwise, the “gap” between the upper and lower bound (i.e., Gq = U q \ Lq)
is a set of answers that need to be verified against the KB using a fully-fledged
OWL 2 reasoner. The Datalog reasoner is again exploited for this step to
compute a subset Kq of the KB K that is enough to check whether the answers
in Gq are certain or spurious.

4. For each ~a ∈ Gq, the fully-fledged reasoner is used to check whether Kq |= q(~a).
This process is further optimized by reducing the number of answers in Gq

that need to be checked by means of summarization [21].

5. Once all spurious answers have been removed from Gq, Lq ∪Gq is returned.

Let us take the lower bound computation as an example: the two performed
approximations (i.e., to disjunctive Datalog and to ELHOr⊥) are handled indepen-
dently, by means of materialization in the first case, and the combined approach
in the second; this allows PAGOdA to avoid having to deal with and-branching
and the resulting intractability of most reasoning problems (see Definition 3.4.1).
In fact, OWL 2 RL (Datalog) and ELHOr⊥ are used by PAGOdA to eliminate
all interactions between axioms (T5) and either axioms (T4) or axioms (T3) and
(R1).4 However, not all such interactions cause an exponential jump in complexity,
and PAGOdA’s filtering of such cases is unnecessarily coarse. We will see in the
next sections, how this procedure can be improved by introducing an alternative
approximation algorithm.

PAGOdA’s reference implementation5 uses RDFox as a Datalog reasoner and
HermiT as the underlying fully-fledged reasoner. It accepts any OWL 2 DL ontology
as input, alongside a dataset in Turtle format and CQs in SPARQL [45].

PAGOdA ensures that the returned answers are always complete under ground
semantics, while being ultimately limited by the capabilities of HermiT when

4OWL 2 RL does not allow axioms (T5) and EL (which contains ELHOr
⊥) does not allow

axioms (T4) or inverse roles (R1).
5https://github.com/KRR-Oxford/PAGOdA

https://github.com/KRR-Oxford/PAGOdA

46 4.4. Query Answering Techniques

considering the returned answers under certain answer semantics. HermiT does not
natively support CQ answering and the process is first reduced to fact entailment.
This is possible when the input query is internalisable, i.e., the query can be rolled-up
into a set of DL concept assertions. In this scenario PAGOdA returns a set of
answers that is sound and complete under certain answers semantics if the bounds
match or the query can be internalised into a DL concept. Otherwise, PAGOdA
will return a sound set of answers (complete under ground semantics) and a bound
on the incompleteness of the computed answers (under certain answers semantics).

4.4.6 Ontology approximation

The idea of approximating an expressive language into less expressive (but more
tractable) languages has been exploited before. This was first introduced by Selman
and Kautz [99] and Val [115] in the context of logic theories (both propositional
and FO logic) and has been applied in the context of ontologies and CQ answering
as well. Besides PAGOdA, some of the systems that use ontology approximation
to explore and restrict the set of answers to a given CQ are SCREECH [46],
TrOWL [114] and SHER [22].

The SCREECH system [46] is able to compute an (unsound or incomplete)
approximation of the answers to a query under ground semantics. It achieves
that by performing a query dependent (and possibly exponential) rewriting of the
input SHIQ ontology to disjunctive Datalog first, and then further to Datalog.
Compared to ACQuA, SCREECH can only handle CQ answering under ground
semantics over SHIQ ontologies.

TrOWL [114] is a system providing CQ answering capabilities over OWL 2
DL. It uses a semantic approximation [86] technique to transform an OWL 2 DL
ontology into OWL 2 QL for CQ answering and a syntactic approximation [91]
from OWL 2 DL to OWL 2 EL for TBox reasoning. While being sound and
complete for CQ answering, approximation steps in TrOWL are ontology and query
dependent, making in harder to reuse partial results in the computation. Moreover,
the semantic approximation requires the use of a fully-fledged reasoner to compute
a KB approximation whose axioms are valid w.r.t. the input ontology.

The SHER [22] system is a tableau-based reasoner for SHIN which provides
instance retrieval capabilities. The system uses a summarization technique to com-
pute an upper bound to the answers to an instance query. Spurious answers are then
filtered out by a following relaxation step [21, 22]. Again, this system is sound and
complete for instance CQ answering for ontologies within the SHIN DL language.

4. Query answering over ontologies 47

In addition, a way to approximate an OWL 2 ontology into an OWL 2 QL
ontology maintaining completeness for instance queries is proposed as part of the
filter and refine technique presented by Wandelt, Möller, and Wessel [117]. The
idea is to transform every axiom C v D in an OWL 2 ontology into a stronger
OWL 2 QL axiom C ′ v D′ such that C subsumes C ′ and D′ subsumes D. The
technique is, however, non-deterministic in nature and the approximation can
sometimes lead to an unsatisfiable ontology.

Under the umbrella of approximate reasoning for CQ answering, the query
extension technique [34, 33] is of particular relevance. This algorithm aims at
improving the bounds of the answers by extending the query with additional atoms
obtained analysing the input ontology. The resulting query can then be used to
restrict the bounds of subqueries of the initial query.

Finally, the recent work by Haga, Lutz, Sabellek, et al. [44] explores different
notions of approximation for ontology-mediated queries over a selection of expressive
languages like ALC and ALCI. The authors aim at designing polynomial time
approximations towards tractable languages like ELI or some restricted tuple–
generating dependencies (TGDs) “from below and from above” (lower and upper
bounds) with respect to CQs (and other query formalisms as well).

48

Part II

The ACQuA system

49

5
The hybrid approach of ACQuA

Contents
5.1 Overview . 51
5.2 Lower bound computation 55

5.2.1 Approximation to ALCHOIQ 55
5.2.2 Approximation to Horn-ALCHOIQ 55
5.2.3 Approximation to RSA 57

5.3 Upper bound computation 61
5.3.1 ⊥ substitution . 61
5.3.2 Approximation of disjunctive rules 62
5.3.3 From Horn-ALCHOIQ+ to RSA+ 62
5.3.4 Property chain axioms 65

In this chapter we will provide the theoretical details behind our contributions.
We first give an overview of the overall approach, and later go into details on the
key components of this hybrid framework for CQ answering.

5.1 Overview

We propose a hybrid query answering architecture that combines black-box services
to provide a CQ answering service for OWL. Specifically, it combines scalable CQ
answering services for tractable languages with a CQ answering service for a more
expressive language approaching the full OWL 2. If the query can be fully answered
by one of the tractable services, then that service is used. Otherwise, the tractable
services are used to compute lower and upper bound approximations, taking the

51

52 5.1. Overview

union of the lower bounds and the intersection of the upper bounds. If the bounds
do not coincide, then the “gap” answers are checked using the “full” service.

In particular, ACQuA is built on top of the following tools:

(i) RSAComb, a novel system for CQ answering over RSA ontologies, based on
the combined approach, extended with algorithms to compute bounds of the
answers to a query via approximation of the input KB to RSA;

(ii) PAGOdA, providing lower and upper bounds to the answers to a query and
techniques to further refine these bounds to provide CQ answering capability
over OWL 2 DL;

(iii) a fully-fledged reasoner (such as HermiT) for CQ answering over a certain
ontology language.

These tools allowed us to build a fine-grained “pay-as-you-go” approach, offering
suitable, performant solutions depending on the inputs to the system; overall, this
results in a lower complexity of the answer computation, when support for high
expressivity is not needed. Any of these components could be potentially substituted
or augmented with more capable ones; in particular, any relevant service mentioned
in the previous sections could be used in ACQuA (e.g., the fully-fledged reasoner
HermiT could be substituted with Konclude).

Given a generic KB K = 〈T ∪R,A〉 and a CQ q(~x) = ∃~yϕ(~x, ~y) containing only
symbols in K, the combination of RSAComb, PAGOdA, and HermiT performs the
following steps to compute the full set of answers to q(~x) over K:

1. A preliminary satisfiability check is performed over the input knowledge base
K. The procedure terminates if K is unsatisfiable.

2. If K is either RL or ELHOr⊥ return the answers provided by the lower bound
algorithm in PAGOdA.1 Otherwise, proceed to step 3.

3. If K is RSA, return the full set of answers computed by RSAComb.2 Otherwise,
proceed to step 4.

4. Compute the bounds for the answers to q as Lq = LqP ∪ L
q
R and U q =

U q
P ∩ U

q
R, with 〈L

q
P , U

q
P 〉 and 〈L

q
R, U

q
R〉 the lower and upper bounds computed

by PAGOdA and RSAComb, respectively.
1In this case, K falls in one of the profiles for which the lower bound computation in PAGOdA

is sound and complete for CQ answering.
2In this case, RSAComb provides a sound and complete algorithm for CQ answering over K.

5. The hybrid approach of ACQuA 53

U

Knowledge base

query

otherwise

if

if

or

RSA combined
approach

U

HermiT

Gap answers
validation

RSAComb

Lower bound

PAGOdA

Lower bound

RSAComb

Upper bound

PAGOdA

Upper bound

RSAComb

Lower bound
algorithm

PAGOdA

Answers

Answers

/

Answers

Answers

Figure 5.1: Workflow of the ACQuA system.

5. If Gq = U q \ Lq = 0, return Lq. Otherwise, proceed to step 6.

6. Compute Kq, a subset of K, relevant for the answering of q(~x).

7. Use HermiT on Kq, to check the entailment of the answers in Gq and remove
any remaining spurious answer.

8. Return Lq ∪Gq.

A visual representation of these steps is given in Figure 5.1.
The choice of fully-fledged reasoner ultimately determines the class of ontologies

for which CQ answering is sound and complete under ground and/or certain
answer semantics for the overall system. Thanks to RSAComb, ACQuA is sound
and complete for CQ answering under certain answer semantics for ontologies in
RSA [29]. With the integration of PAGOdA, and a suitable fully-fledged reasoner,
like HermiT, ACQuA is able to answer internalisable queries [50] over OWL 2
DL under certain answer semantics [120].

Steps 2,6,7 and the computation of LqP , U
q
P in step 4 are offloaded to PAGOdA;

we refer the reader to [120] for more details. We will instead focus our attention
on the underlying RSAComb reasoner; in particular we dedicate Sections 5.2–
5.3 to the description of the novel algorithms used in step 4 to compute LqR, U

q
R

via approximation to RSA. In Chapter 6 we provide more details on the design

54 5.1. Overview

(a1) PhDStudent(bart) (a6) writes(bart, work1)
(a2) Researcher(lisa) (a7) writes(lisa, work1)
(a3) Journal(journal1) (a8) published(journal1, work1)
(a4) Journal(journal2) (a9) JournalPaper(work1)
(a5) Journal(journal3) (a10) Report(work1)

(r1) published ≡ publishedBy−

(r2) accepted v reviewed

(t1) PhDStudent v Student u Researcher
(t2) JournalPaper u Thesis v ⊥
(t3) Report v Paper t Thesis
(t4) Journal v ∃ published.Paper
(t5) Researcher v ∃ writes.Paper
(t6) Paper v ∃ presentedAt.Conference
(t7) Paper v≤ 1 presentedAt.Conference
(t8) Conference v ∃ accepted.Paper
(t9) ∃ reviewed−.Conference v ConferencePaper

Table 5.1: Running example Kex.

and architecture of ACQuA and RSAComb (both as a standalone system and
its integration in ACQuA).

To help the reader follow along with the description of the proposed techniques,
we consider the following running example.
Example 5.1.1. Consider the KB Kex = 〈Tex ∪Rex,Aex〉, with ABox Aex contain-
ing assertions (a1)–(a10), TBox Tex containing axioms (t1)–(t9) and RBox Rex

containing axioms (r1)–(r2) in Table 5.1.
Intuitively, the ABox contains a collection of statements about researchers and

their research outputs; on top of that, the ontology (RBox and TBox) models
additional information about the relationships between different types of papers
and their publication processes. Some axioms are not expressed in normal form (see
Table 3.2) and can be further normalized as follows: axiom (t1) can be rewritten as

PhDStudent v Student (t1a)
PhDStudent v Researcher (t1b)

while axiom (r1) becomes

published v publishedBy− (r1a)
publishedBy v published− (r1b)

Note that Kex is not in Horn-ALCHOIQ because of axiom (t3), and hence it is
neither RSA nor RSA+.

5. The hybrid approach of ACQuA 55

5.2 Lower bound computation

As mentioned in Section 4.4.5, PAGOdA computes a lower bound by approximating
the input ontology first to disjunctive Datalog and then to Datalog; this is done by
discarding any axiom that is not in the language, while introducing some additional
heuristics to handle specifically disjunctive and existential axioms.

In this section we present an alternative technique to compute a lower bound to
the answers to an input query, by means of approximating the input KB to RSA.

RSA is not purely syntactically defined, and instead introduces a set of con-
straints over the ontology language Horn-ALCHOIQ; as such, the naïve approx-
imation that consists in discarding any axiom type which is not in the target
approximation language does not work. Instead, we split our approximation
algorithm in three substeps, each building on top of the previous one:

1. From a generic SROIQ ontology to ALCHOIQ by discarding any axiom
that is not in the target language;

2. From ALCHOIQ to Horn-ALCHOIQ by means of program shifting [120,
24];

3. From Horn-ALCHOIQ to RSA by modifying the input KB in order to enforce
the constraints imposed by RSA (see Definition 3.4.3).

We are now going to explain these steps in more details.

5.2.1 Approximation to ALCHOIQ

This first step is performed by discarding any axiom that is not in ALCHOIQ,
namely axioms of type (R3)–(R4) and (T6)–(T7) in Table 3.2.

Let K′ be the ALCHOIQ restriction of a KB K. By the monotonicity of FO
logic all certain answers w.r.t. K′ are also certain answers w.r.t. K. Moreover,
if K′ is unsatisfiable, so is K.

In Example 5.1.1, Kex is in ALCHOIQ, so no axioms are discarded.

5.2.2 Approximation to Horn-ALCHOIQ

We will now describe how to reduce an ALCHOIQ ontology to Horn-ALCHOIQ.
This involves the approximation of axioms of type (T1),(T4) by eliminating the

56 5.2. Lower bound computation

disjunction in the head of the axioms.3 Simply discarding them is not desirable,
especially when considering that disjunctive axioms are quite common in practice.

To address this and improve the approximation to Horn-ALCHOIQ we rely
on a technique known as program shifting [24] to convert disjunctive Datalog rules
into Datalog. Program shifting is a polynomial compilation of disjunctive logic
rules into Datalog rules that preserve soundness of CQ answering and acts on the
translation π(·) of the axioms into definite rules.

Example 5.2.1. In Example 5.1.1, we know that assertions Report(work1) and
JournalPaper(work1) hold (because of assertions (a10),(a9)). Moreover, by (t2),
we know that Thesis(work1) does not hold. Using this information, along with
(t3), we can derive Paper(work1). This derivation is deterministic and can be
captured by Datalog rules. To make this reasoning explicit, we introduce a fresh
atom Thesis that intuitively represents the complement of Thesis, and add the
following axioms to Kex:

JournalPaper v Thesis (5.1)
Report u Thesis v Paper (5.2)

These axioms can be used to derive Paper(work1).

Program shifting is formally defined as follows.

Definition 5.2.1 ([120], Def. 4.3). Let r be a normalized disjunctive Datalog rule.
For each predicate P in r, let P be a fresh predicate of the same arity. The shifting
of r, denoted shift(r), is the following set of rules:

• if r is of the form
β1 ∧ · · · ∧ βn → ⊥ (5.3)

then

shift(r) = {r} ∪ {β1 ∧ · · · ∧ βi−1 ∧ βi+1 ∧ · · · ∧ βn → β̄i | 1 ≤ i ≤ n} (5.4)

• if r is of the form
β1 ∧ · · · ∧ βn → γ1 ∨ · · · ∨ γm (5.5)

then shift(r) consists of the following rules:

β1 ∧ · · · ∧ βn ∧ γ̄1 ∧ · · · ∧ γ̄m → ⊥ (5.6)
β1 ∧ · · · ∧ βi ∧ γ̄1 ∧ · · · ∧ γ̄j−1 ∧ γ̄j+1 ∧ . . . γ̄m → γj for 1 ≤ j ≤ m (5.7)
β1 ∧ · · · ∧ βi−1 ∧ βi+1 ∧ · · · ∧ βn ∧ γ̄1 ∧ . . . γ̄m → β̄i for 1 ≤ i ≤ n (5.8)

3While axioms of type (T4) do not use disjunction explicitly, their translation into definite
rules involve disjunction in the head of the rule.

5. The hybrid approach of ACQuA 57

This can be generalized to sets of rules Σ as follows:

shift(Σ) =
⋃
r∈Σ

shift(r) (5.9)

We apply this technique to our ALCHOIQ KB in order to reduce it to a
Horn KB. This procedure guarantees to produce a polynomial approximation of
the input KB which is sound (but not necessarily complete) w.r.t. CQ answering.
For r a disjunctive Datalog rule with n atoms in the body and m atoms in the
head, shift(r) contains n + m + 1 rules.

Theorem 5.2.1. Let K′ = 〈O′,A〉 be the ALCHOIQ restriction of the KB K =
〈O,A〉, and let K′′ = 〈shift(O′),A〉. Then cert(q,K′′) ⊆ cert(q,K′).

Proof (sketch). Let M = M [π(K′′)>,≈]. We recall that, given a predicate P in
the signature of K′, we denote with P a fresh predicate, introduced by shift(·),
intuitively representing the complement of P . The following claims can be proved
by induction on the derivation level of atoms inM:

(i) if ⊥ ∈M, then, K′ is inconsistent;

(ii) if P (c) ∈ M, then, K′ 6|= P (c), for any P introduced by shift and K′

consistent;

(iii) if P (c) ∈ M, then, K′ |= P (c), for some P in the signature of K′ and K′

consistent;

If q = ⊥, then the theorem follows from claim (i). Otherwise, let q(~x) = ∃~yϕ(~x, ~y)
and let σ be a certain answer to q w.r.t. K′′. Then, by definition, there exists σ′

such that, for every α ∈ ϕ(~x, ~y)σσ′, α ∈ M and, by claim (iii), K′ |= α. Finally,
we have that K′ |= ϕ(~x, ~y)σσ′, and hence K′ |= ∃~yϕ(~x, ~y)σ, which, by definition of
conjunctive query answer, implies σ ∈ cert(q,K′).

See Appendix A for a full version of the proof.

5.2.3 Approximation to RSA

In this section we provide a description of an algorithm to approximate the Horn-
ALCHOIQ KB K obtained in the previous step into an RSA KB K′ such that
cert(q,K′) ⊆ cert(q,K) for any CQ q. Given a Horn-ALCHOIQ KB K, checking
if K is RSA consists of the following steps (see Def. 3.4.3):

1. checking whether GK is an oriented forest;

58 5.2. Lower bound computation

2. checking whether K is equality safe.

We first consider step 1. If GK is not an oriented forest, then its underlying
undirected graph has a cycle. In order to make GK an oriented forest we want to
detect these cycles, break them and propagate the changes back to K.

Cycles can be broken by removing nodes from GK. Nodes in GK are of the form
uAR,B, paired with a corresponding existential axiom A v ∃R.B ∈ K of type (T5).
The action of deleting a node from the graph can be propagated back to K by
removing the corresponding (T5) axiom. Due to monotonicity of FO logic, deleting
axioms from K produces a lower bound approximation of K w.r.t. CQ answering.

Lemma 5.2.1. Let K = 〈O,A〉 be a Horn-ALCHOIQ KB, GK be its dependency
graph as defined in Def. 3.4.3 and uAR,B a node in GK. The dependency graph GK′
corresponding to K′ = 〈O \ {A v ∃R.B},A〉 does not contain uAR,B.

Proof. This is proven by observing that, by definition of dependency graphs, the
constant uAR,B can solely be introduced by the corresponding axiom A v ∃R.B, and
hence, removing the axiom from O will remove the node from GK′ .

Using the Datalog reasoner, we compute MRSA from the program P≈,>RSA obtained
from K, and retrieve all instances of role E to build GK. Finally, we use a modified
depth-first search (DFS) visit (see Algorithm 1) of the graph to detect any cycle
in GK; during the visit, the algorithm determines a representative node for each
detected cycle, selected to be removed. In order to keep the visit as efficient as
possible we determine these nodes eagerly, by selecting the last processed node
when a cycle is detected. Let D be this set of nodes, then for every uAR,B ∈ D we
remove the corresponding axiom A v ∃R.B in K. Note that D is, in general, not
unique and different such sets might lead to different lower bounds.

Next, we need to deal with equality safety (step 2). According to the definition
of RSA, the following steps can be performed to ensure this property:

i. Delete any (T4) axiom that involves a role S such that there exists w ≈ t

(with w and t distinct) and R(t, uAR,B) in MRSA and R v Inv(S).

ii. If there is a pair of atoms R(a, uAR,B), S(uAR,B, a) in MRSA with a ∈ NI and a
role T such that both R v∗R T and S v∗R Inv(T) hold, then remove some
axiom of type (R2) to break the derivation chain that deduces either R v∗R T
or S v∗R Inv(T).

5. The hybrid approach of ACQuA 59

Input: Dependency graph GK for KB K
Output: Set of nodes C, representatives of each cycle in GK

1 let N be the set of nodes in GK;
2 let C be an empty set;
3 foreach node n in N do
4 if n is not discovered then
5 let S be an empty stack;
6 push n to S;
7 while S is not empty do
8 pop v from S;
9 if v is not discovered then

10 label v as discovered;
11 let adj be the set of nodes adjacent to v;
12 if any node in adj is discovered then
13 push v to C;
14 else
15 foreach node w in adj do
16 push w to S;

17 return C
Algorithm 1: Cycle detection in GK

Again, by removing some selected axioms we are able to force the input Horn-
ALCHOIQ ontology to satisfy RSA additional constraints. In the following, we
summarize steps 1–2 described above with the function lower(·) from KBs to KBs.

Theorem 5.2.2. Let K be a SROIQ KB, and K′ its syntactic restriction to
ALCHOIQ. Then cert(q, lower(shift(K′))) ⊆ cert(q,K).

Proof. By Section 5.2.1 and Theorem 5.2.1 we know that

cert(q, shift(K′)) ⊆ cert(q,K′) ⊆ cert(q,K) (5.10)

Moreover, we can observe that lower(·) only removes axioms from the input
ontology; by monotonicity of FO logic we have that cert(q, lower(shift(K′))) ⊆
cert(q, shift(K′)) and hence cert(q, lower(shift(K′))) ⊆ cert(q,K).

Note that, in general, the lower bound resulting from the algorithm proposed
here is incomparable with the one produced by PAGOdA; the next example shows
a scenario in which the lower bound computed by our algorithm is tighter than the
one produced by PAGOdA. On the other hand, the RSA language fully captures
OWL 2 RL (used internally by PAGOdA) only when not considering property chain
axioms; this can potentially lead to a situation where PAGOdA is able to capture,
e.g., some transitive knowledge, that is, on the other hand, ignored by RSAComb.

60 5.2. Lower bound computation

u3 u4

E, accepted, reviewed

E, presentedAt

Figure 5.2: Graphical representation of GKex .

Example 5.2.2. Consider our running Example 5.1.1 and K′ex = shift(Kex). Then

• presentedAt is unsafe because of axioms (t6), (t7);

• accepted is unsafe because of axioms (t8), (t9) and (r2);

whereas all other roles are safe.
Now, let ui, for 1 ≤ i ≤ 4 be unique, fresh constants, and PexRSA be the logic

program (according to Def. 3.4.3), corresponding to K′ex. In particular

Journal(x)→ published(x, u1) ∧ PE(x, u1) ∧ Paper(u1) (5.11)

Researcher(x)→ writes(x, u2) ∧ PE(x, u2) ∧ Paper(u2) (5.12)

Paper(x)→ presentedAt(x, u3) ∧ PE(x, u3) ∧ Conference(u3) ∧ U(u3) (5.13)

Conference(x)→ accepted(x, u4) ∧ PE(x, u4) ∧ Paper(u4) ∧ U(u4) (5.14)

is the translation (according to Def. 3.4.3) of (t4), (t5), (t6), and (t8). Finally,
M ex

RSA is the LHM of PexRSA.
The dependency graph GK′ex

is shown in Figure 5.2. GK′ex
needs to be reduced to

an oriented forest by detecting a set of nodes for removal. Let us assume Algorithm 1
returns the set {u4} to be removed from GK′ex

. We propagate this change to K′ex by
removing axiom (t8). K′ex was already equality safe. We denote the KB resulting
from this process with K′′ex = lower(K′ex).

Now, consider the query ql(x2) = publishedBy(x1, x2). Then,

cert(ql,K′′ex) = {journal1, journal2, journal3}. (5.15)

It can be verified that the lower bound computed by PAGOdA is not as tight and
results in the set of answers {journal1}.

5. The hybrid approach of ACQuA 61

5.3 Upper bound computation

We will now look at the problem of approximating a generic input KB K to a KB
K′ from above, such that answering an input query over the approximated KB
will return an upper bound to the answers. More formally, given an input KB K,
we want to find a KB K′ s.t. cert(q,K) ⊆ cert(q,K′) for any CQ q. We initially
consider ALCHOIQ+ as the source ontology language, not taking property chain
axioms (T4) into account, and approximate the ontology to RSA+. Some additional
comments on how to handle axioms (T4) will also be provided.

We adopt a similar approach to the one used in the lower bound computation
and divide the procedure in steps. Given an ALCHOIQ+ KB, we proceed as follows

1. replace any occurrence of ⊥ in the knowledge base with a fresh nullary
predicate ⊥f with no special meaning;

2. approximate disjunctive rules by removing all but one disjunct from the head
of the rule. For each rule, the selected disjunct is chosen deterministically
using an efficient choice function;

3. enforce the constraints that define the RSA ontology language on the Horn-
ALCHOIQ+ KB obtained in the previous step.

5.3.1 ⊥ substitution

As described above, ACQuA performs a preliminary satisfiability check on the
input KB; in spite of this, while strengthening the KB, we might cause the KB
to become unsatisfiable.

In order to provide a meaningful upper bound even in cases where the approxi-
mation leads to an unsatisfiable KB, we adopt an approach initially proposed in
PAGOdA. The idea is to substitute every occurrence of ⊥ with a fresh nullary
predicate ⊥f with no predefined meaning; by doing so we avoid the derivation of the
entire Herbrand base, ignoring the fact that the final KB approximation might be
unsatisfiable. Note that, despite the fact that ⊥ is stripped of its built-in semantics
in FO logic, weakening the KB, it can be shown (see [120, Lemma 5.4, Theorem 5.5])
that we can still compute a meaningful upper bound for any input query.

This step has been included purely for theoretical purposes. RDFox, used in
the implementation of the approximation algorithm, will not explicitly check for
satisfiability during query answering, making it possible to consider correct the
answers to a query even when the KB is unsatisfiable.

62 5.3. Upper bound computation

5.3.2 Approximation of disjunctive rules

According to Table 3.2, axioms of type (T1) and (T4) can introduce disjunction in
the head of rules. This usually results in non-determinism in the answering process
and a corresponding jump in computational complexity. In order to rewrite these
axioms and avoid the introduction of this operator, we borrow a technique used in
a similar fashion in PAGOdA. The approach consists in replacing any disjunction in
the head of a rule with one of the disjuncts. It is easy to see that this strengthens
the KB and eliminates any non-determinism introduced by the disjunction. The
surviving disjunct is chosen deterministically using an efficient choice function; the
idea is to analyze the dependency graph of the KB and choose a disjunct which
does not eventually lead to a contradiction. To this end, a standard dependency
graph of the KB is built and disjuncts are ordered according to their distance from
⊥f ; (one of) the furthest from ⊥f is chosen. For more details on the definition
of a choice function, see [120, Section 8.2].

Given a choice function ch that returns a concept name out of an input set, we
define the process of eliminating disjunction from the head of a rule as follows

Definition 5.3.1. Let δ be a function from axioms to axioms eliminating disjunction
from the head of any axiom of type (T1) and (T4):

δ(α) =


dn
i=1Ai v ch({Bj | 1 ≤ j ≤ m}) if α ≡

dn
i=1Ai v

⊔m
j=1Bj

A v≤ 1R.B if α ≡ A v≤ mR.B

α otherwise
(5.16)

The definition of δ can be trivially extended to sets of axioms and KBs.

Example 5.3.1. Consider axioms (t3) from our running example. Let ch be a choice
function, such that

ch({Paper, Thesis}) = Paper (5.17)

Then δ(t3) is
Report v Paper (t3’)

5.3.3 From Horn-ALCHOIQ+ to RSA+

The final step of the approximation process consists in enforcing the additional
constraints that the RSA language introduces on top of Horn-ALCHOIQ. We
apply these constraints on top of the KB obtained in the previous step, which is
Horn-ALCHOIQ+, obtaining an RSA+ KB. We will later prove that the algorithm

5. The hybrid approach of ACQuA 63

for the combined approach for RSA applied to an RSA+ ontology is complete
w.r.t. CQ answering.

Given K a Horn-ALCHOIQ+ KB and GK its dependency graph as defined
in Def. 3.4.3, checking if K is RSA+ consists of:

1. checking whether GK is an oriented forest;

2. checking whether K is equality safe.

In order to ensure equality safety we proceed similarly to the lower bound case.
For any pair of atoms w ≈ t, R(t, uAR,B) ∈ MRSA and role S s.t. R v Inv(S), if S
occurs in an axiom α ≡ C v≤ 1S.D of type (T4), we convert α into the axiom
C u ∃S.D v ⊥. It is easy to see that, for any C,D ∈ NC and role S, {C u ∃S.D v
⊥} |= C v≤ 1S.D and hence the rewriting is a strengthening of the KB.

On the other hand, for each pair of atoms R(a, uAR,B), S(uAR,B, a) ∈MRSA, with
a ∈ NI and role T such that R v∗R T and S v∗R Inv(T), we know that term
uAR,B was introduced by an axiom A v ∃R.B of type (T5). In order to satisfy the
constraint, we mark this axiom for constant Skolemization, meaning that when
translated into a logic rule this axiom will be translated into A(x)→ R(x, c)∧B(c)
for some unique fresh constant c.4 Moreover, we assume to have a Boolean function
marked(α) over axioms that returns true if α is a marked axiom.

Finally, we reduce GK to an oriented forest. We proceed similarly to the lower
bound computation described in Section 5.2.3. In fact, we can reuse Algorithm 1
to gather a possible set of nodes D, whose removal would render the dependency
graph an oriented forest. As explained before, each node uAR,B uniquely identifies an
axiom A v ∃R.B of type (T5) in the input KB. In order to break the cycles while
strengthening the KB we mark the axioms in D for constant Skolemization.

These steps can be summarized in the definition of δ′:

Definition 5.3.2. We define δ′ as a function from axioms to sets of axioms.

δ′(α) =



{C u ∃S.D v ⊥f} if α ≡ C v≤ 1S.D and
∃R unsafe s.t. R v Inv(S) and
w ≈ t, R(t, uAR,B) ∈MRSA

with w, t distinct
{A v ∃R.{bAR,B}, {bAR,B} v B} if α ≡ A v ∃R.B and marked(α)
{α} otherwise

(5.18)
where bAR,B is a fresh constant, unique to axiom A v ∃R.B.

Finally, given K = 〈O,A〉, we define upper(K) = 〈⋃α∈O δ′(α),A〉.
4This is equivalent to rewriting the axiom as A v ∃R.{c}, {c} v B

64 5.3. Upper bound computation

Theorem 5.3.1. Let K be a satisfiable ALCHOIQ+ KB and K′ = upper(δ(K)).
Moreover, let q(~x) = ∃~yϕ(~x, ~y) be a CQ. Then,

(i) K′ is RSA+,

(ii) cert(q,K) ⊆ cert(q,K′),

(iii) if ~x ∈ cert(q,K) then PK′,q |= Ans(~x).

Proof (sketch). The claims can be proven as follows:

(i) Both the construction of GK and the definition of equality safety are expressed
in a purely syntactical way. It is easy to see that rewriting the axioms (T4)
and (T5), as defined in Def. 5.3.2, is enough to render the knowledge base
RSA+.

(ii) To prove that cert(q,K) ⊆ cert(q,K′), it can be shown that, for every model
I such that I is a model of the rewritten KB K′, I is a model of K.

(iii) Finally, assume ~x ∈ cert(q,K). By step (ii) we know that ~x ∈ cert(q,K′).
Then, by definition of certain answer, there exists a match σ for q over
M [π(K)≈,>]. The claim can be proven by building a corresponding match σ′

from σ over M [PK,q], such that σ′ is non-anonymous, fork-free and acyclic. It
is, then, trivial to show that PK′,q |= Ans(~x)σ′.

See Appendix A for a full version of the proof.

Example 5.3.2. Consider, again, our running example (Example 5.1.1) and K′ex =
δ(Kex). Let PexRSA be its translation into logic rules (according to Def. 3.4.3) and
M ex

RSA its LHM, as in Example 5.2.2. We know that the dependency graph GKex

(shown in Figure 5.2) is not an oriented forest. Let us assume, again, that Algorithm 1
returns {u4}. We mark axiom (t8) for constant Skolemization by δ′, instead of the
standard Skolemization that would be applied by Def. 4.4.1 (accepted is unsafe).
We denote the KB resulting from this process with K′′ex = upper(K′ex).

Now, consider the query

qu(x1, x2) = published(x1, x3) ∧ published(x2, x3) ∧ x1 6= x2 (5.19)

Then,
cert(qu,K′′ex) = ∅. (5.20)

It can be verified that the upper bound computed by PAGOdA is not as tight and
results in the following set of answers

{〈journal2, journal3〉, 〈journal3, journal2〉} (5.21)

5. The hybrid approach of ACQuA 65

5.3.4 Property chain axioms

Our tests show that, general property chain axioms (axioms of type (R4) in Table 3.2)
are quite uncommon in practice.5 Transitive property axioms, on the other hand,
are a specialization of (R4) that can be easily found in common ontologies. While we
ignored the presence of these axioms so far, it can be shown that completeness is still
guaranteed when including them in RSA [14, Theorem 2, Proposition 1]. Intuitively,
due to monotonicity of FO logic, including more axioms in the computation of
the canonical model will lead to a strengthening of the KB. Furthermore, the
computational complexity for the computation of the canonical model is still bound
by the translation of the problem into Datalog, for which new heuristics have
being recently proposed to efficiently handle transitive closure of roles [52]. Note
that, in this case, we are not modifying the filtration step, which will then only
be able to detect a fraction of the spurious answers, effectively computing an
upper bound of the certain answers.

5Over the 797 ontologies in the Oxford ontology repository (http://krr-nas.cs.ox.ac.uk/
ontologies/UID/), only 82 ontologies (∼10%) contain (up to 53) complex property chain axioms.

http://krr-nas.cs.ox.ac.uk/ontologies/UID/
http://krr-nas.cs.ox.ac.uk/ontologies/UID/

66

6
Design and architecture

Contents
6.1 RSAComb . 68

6.1.1 Overview . 70
6.1.2 Canonical model computation 71
6.1.3 Filtering program and answer computation 73

6.2 Lower bound approximation to RSA 76
6.3 Upper bound approximation to RSA 79

We proposed a new framework to compute CQ answering over unrestricted
OWL 2 DL ontologies by using answer bounds and further refinement steps. The
approach has been implemented in a system called ACQuA [53], which, as discussed
in the previous sections, offloads different steps in the computation to a selection of
underlying systems used as black boxes, i.e., RSAComb and PAGOdA and HermiT.

ACQuA is inspired by the “pay-as-you-go” philosophy that drove the development
of PAGOdA and as such shares similarities and capabilities with the latter tool.
The idea is to take different steps depending on how the input KB is classified. The
input KB needs to go through a consistency check and normalization procedure
first. If the normalized KB is inside one of the two ontology languages for which
PAGOdA provides full support (i.e., OWL 2 RL and ELHOr⊥), we use the PAGOdA
lower bound algorithm to compute the answers to the query. This check is purely
syntactic over the normalized ontology and can be performed by leveraging the
OWLAPI [48] interface for OWL 2 profile checking. If the first check fails (i.e., the
ontology is not in any of the aforementioned ontology languages), we check whether

67

68 6.1. RSAComb

the ontology is in RSA using RSAComb. If the input ontology is RSA we use the
RSAComb algorithm directly (described in Section 4.4.4) and collect the full set of
answers to the query. If none of the tractable services for CQ answering are able to
capture the KB, we use them to compute lower and upper bound approximations,
taking the union of the lower bounds and the intersection of the upper bounds
(see Sections 6.2–6.3). If the combined bounds match, we have computed a sound
and complete set of answers for the input query. If, however, this is not the case,
we use PAGOdA’s algorithm to compute a subset of the input KB relevant to
answer the query, and fall back to HermiT to filter any spurious answers from the
gap between the bounds. A summary of these steps was provided in Section 5.1,
along with a visual representation in Figure 5.1.

In this section we will describe some of the design and implementation details
that led to the development of ACQuA. In particular, we will focus our attention
on RSAComb, a novel implementation of the RSA combined approach for CQ
answering, and how the tool can be used to compute lower and upper bounds
to the answers of an input query.

6.1 RSAComb

RSAComb [56] is an optimized implementation of the combined approach for CQ
answering in RSA. We streamlined and reorganized the algorithm to make the
different steps either ontology or query independent. On top of that we designed
and implemented an API to introduce approximation capabilities in the system;
RSAComb is able to take an unrestricted ontology as input and potentially apply
an approximation algorithm (targeting RSA) before computing the answers to a
query. The system ships with reference implementations of the algorithms for the
computation of answer bounds introduced in Sections 5.2–5.3.

The system is written in Scala and uses the OWLAPI [48] to interface with
the input ontology and manipulate OWL 2 axioms. RDFox is used as an under-
lying Datalog reasoner; RSAComb has been designed to maximize the amount
of computation to be offloaded to RDFox, by redefining problems in terms of
queries over a materialized RDF store.

RDFox is used as a black box, and RSAComb can be adapted to use any Datalog
reasoner with support for stratified negation and Skolemization. Nonetheless, the
use of RDFox allowed us to introduce some optimizations based on particular
features provided by the tool.

6. Design and architecture 69

These are:

• a SKOLEM operator1, which provides a way to uniquely associate a sequence of
terms with a fresh term;

• support for named graphs to isolate and cache partial computations;

• support for “TBox reasoning” in order to query the structure of an ontology
represented as RDF triples.

We designed and built RSAComb around these general principles:

Modularity The code should be modular and different steps in the algorithm
should be as independent of each other as possible. It should be easy to
reimplement (or enhance) an intermediate step of the algorithm as long as
the signature and the interface with the system as a whole remain unaltered.
We achieved this by an extensive use of Scala traits, building a collection of
interfaces that describe the behaviour of the different actors that take part
in the execution of the combined approach for RSA. As explained in the
following sections, the integration with RDFox was also key to providing a
good level of modularity to the system.

Scalability The system has to be able to scale efficiently even for large amounts of
data. Partial results are computed when needed and reused whenever possible.
A more detailed analysis on the performance and scalability of the system is
provided in Chapter 7.

Integration It should be equally possible to use the system as a self-contained
application or integrate it in another system. As such, our software presents
a simple but effective command line interface alongside a well-structured set
of classes exposing all the necessary tools to work with RSA ontologies, while
hiding unnecessary implementation details. The different steps can also be
disabled for user convenience.

We will first provide a description of RSAComb as an implementation of the
RSA combined approach and then go into details on how lower and upper bound
algorithms are implemented in the system.

70 6.1. RSAComb

Answers

RSA
Ontology Canonical

Model
Computation

Ontology Data Query

Approximation
Answer
filtering

Canonical
model

Figure 6.1: Workflow of the RSAComb system.

6.1.1 Overview

Figure 6.1 summarizes the workflow of RSAComb:

(i) the approximation steps take an unrestricted OWL 2 KB as input and
approximate it to a target language handled by the RSA combined approach;

(ii) the canonical model for the resulting RSA KB is computed by materializing
the data against a logic program derived from the input ontology;

(iii) a filtering program is derived from the input query and is combined with the
canonical model to produce the set of certain answers to the input query over
the approximated KB.

The process of importing the input ontology (TBox, RBox) into the system is
performed using the OWLAPI. Since importing large amounts of data (ABox) into
the system might be expensive, data files are read and data is loaded on demand
and reused whenever possible to maximize performance.

As mentioned above, two approximation algorithms ship with the system. The
first approximation algorithm is an implementation of the algorithm presented in
Section 5.2; it targets the RSA ontology language and maintains soundness w.r.t.
CQ answering, i.e., answers to a CQ are a lower bound to the answers to the query
over the original KB. A copy of the ontology, translated into Datalog according to
Def. 3.4.3, is imported into RDFox along with the data and materialized by the
reasoner. The dependency graph and equality safety checks (see Definition 3.4.3)
are implemented as queries over the RDF store exposed by RDFox; the original
knowledge base is altered accordingly. The second approximation is an implemen-
tation of the algorithm introduced in Section 5.3; it targets RSA+ and maintains
completeness w.r.t. CQ answering, i.e., answers to a CQ are an upper bound to
the answers to the query over the original knowledge base.

The canonical model is computed for the knowledge base in Step (ii); this is
done by converting each axiom in the KB into a logic rule according to Def. 4.4.1

1https://docs.oxfordsemantic.tech/tuple-tables.html#rdfox-skolem

https://docs.oxfordsemantic.tech/tuple-tables.html#rdfox-skolem

6. Design and architecture 71

RDFox

Canonical model
materialisation

Canonical model
program

generation

Canonical
model

program
RSA

Ontology
Canonical

Model

Canonical model computation
Data

Figure 6.2: RSAComb: canonical model computation.

and uploading it into RDFox. Note that the translation from axioms into logic rules
is different from the one in Step (i), hence the need to reload them into RDFox.
The data, on the other hand, can be safely reused. Finally, the potentially spurious
answers to the input query introduced during the canonical model computation
are filtered out in Step (iii). It is worth noting that, in this scenario, steps (i)
and (ii) are query independent, while step (iii) is ontology independent. As such,
when multiple queries are submitted over the same KB, steps (i-ii) are performed
“on-demand” and only once, while the third step is performed for each input query.

6.1.2 Canonical model computation

The computation of the canonical model involves the conversion of the input RSA
ontology into logic rules as described in Def. 4.4.1, and where function symbols
are simulated using RDFox’s built-in Skolemization feature.

Example 6.1.1. A Skolemized rule derived from an existential axiom (T5)

A(x)→ R(x, fAR,B(x)) ∧B(fAR,B(x)) (6.1)

can be turned into the following RDFox–compatible rule
1 R[?X ,?Y], B[?Y] :- A[?X], SKOLEM ("A,R,B",?X,?Y).

where the built-in operator SKOLEM binds ?Y to a unique value generate from the
string “A,R,B” and term ?X.

The system performs the conversion and then offloads the materialization of
the rules, combined with the input data, to RDFox.

Since the canonical model is query independent, this process can be performed
once and the result cached and reused for every subsequent query over the same
input ontology. We achieve this using RDFox’s support for RDF named graphs,
which enables us to perform operations on specific “named” subsets of the data.
Further operations on the graph operate and produce additional data in different
named graphs, leaving the materialized canonical model intact.

72 6.1. RSAComb

Axiomatization of > and ≈

RDFox has built-in support for > (owl:Thing) and equality (owl:sameAs), so that
> automatically subsumes any new class introduced within an RDF triple, and
equality between terms is always consistent with its semantics.

In both cases we are not able to use these features directly: in the case of
top axiomatization, we import axioms as Datalog rules, which are not taken into
consideration when RDFox derives new > subsumptions;2 in the case of equality
axiomatization, the feature cannot be enabled along other features like aggregates
and negation-as-failure (with the latter used in the filtering step).

To work around this, we introduce the axiomatization for both predicates
explicitly. For every concept name C ∈ NC and for every role name R ∈ NR in
the input ontology, we add the following rules to RDFox:

1 owl:Thing [?X] :- C[?X].
2 owl:Thing [?X], owl:Thing [?Y] :- R[?X,?Y].

This gives us the correct semantics for owl:Thing.
Similar rules are introduced to axiomatize equality. We make the role reflexive,

symmetric and transitive:
1 owl: sameAs [?X,?X] :- owl:Thing [?X].
2 owl: sameAs [?Y,?X] :- owl: sameAs [?X,?Y].
3 owl: sameAs [?X,?Z] :- owl: sameAs [?X,?Y], owl: sameAs [?Y,?Z].

and introduce substitution rules to complete the axiomatization. For every concept
name C ∈ NC and for every role name R ∈ NR in the input ontology, we add:

1 C[?Y] :- C[?X], owl: sameAs [?X,?Y] .
2 R[?Z,?Y] :- R[?X,?Y], owl: sameAs [?X,?Z] .
3 R[?X,?Z] :- R[?X,?Y], owl: sameAs [?Z,?Z] .

The notIn and named predicates

Our work also includes a few clarifications on theoretical definitions and their
implementation. In the canonical model computation [29], the notIn predicate
is introduced to simulate the semantics of set membership and in particular the
meaning of notIn[a, b] is “a is not in set b”. During the generation of the canonical
model program performed by RSAComb, we have complete knowledge of any set
that might be used in a notIn atom. For each such set S, and for each element
a ∈ S, we introduce the fact in[a,S] in the canonical model. We then replace

2RDFox accepts both OWL 2 axioms encoded as RDF triples and Datalog rules; these are
very different entities in the system and the semantics of special concepts/roles (like > and ≈) is
applied to the former.

6. Design and architecture 73

Filtering program
generation

RDFox

Materialisation
update

Filtering
program

Answers

Answer filtering
Query

Canonical
model

RDFox

Answer
gathering

Updated
model

Figure 6.3: RSAComb: answer filtering.

any occurrence of notIn[?X,?Y] in the original program EK with NOT in[?X, ?Y],
where NOT is the operator for negation-as-failure in RDFox. This is possible because
we know that EK is stratified; moreover the negated predicate introduced in these
rules is fully instantiated at program generation and does not appear in the head
of any rules, maintaining the stratified structure of the program.

We generate the instances of the predicate NI, representing the set of non-
anonymous terms in the materialized canonical model, with the following rule:

1 NI[?Y] :- rsa:named [?X], owl: sameAs [?X,?Y] .

where rsa:named is a predicate representing the set of constants in the original KB.
A final improvement has been made to the computation of the cycle function

used during the generation of the canonical model program performed by RSAComb.
The original definition involved a search over all possible triples (A,R,B) where
A,B ∈ NC and R ∈ NR in the original ontology. We realized that traversing the
whole space would significantly slow down the computation, and is not necessary;
we instead restrict our search over all (A,R,B) triples that appear in a (T5) axiom
A v ∃R.B in the original normalized ontology.

6.1.3 Filtering program and answer computation

As depicted in Fig. 6.3, answer filtration involves the computation of the filtering
program from the input query, the filtering of the materialized canonical model
and the final process of gathering the answers.

RSAComb performs the translation of the query into a set of logic rules. This
step was modified w.r.t. the original definition [29] to be completely ontology
independent by moving the generation of rsa:named instances to the canonical
model computation step. Furthermore, we redesigned the filtering step to restrict
ourselves to use only unary and binary predicates and, as a result, keep the filtering
somewhat closer to the realm of description logics (and to the language supported

74 6.1. RSAComb

by RDFox). Filtering rules are then greatly simplified by making extensive use of
the Skolemization operator provided by RDFox, hence avoiding some expensive
joins that would result from a standard reification process.

Example 6.1.2. Let q(~x) = ψ(~x, ~y) be a CQ with ~x = x1, . . . , xm, ~y = y1, . . . , yn.
Rule (3c) of the filtering program (see Table 4.2) computes the transitive closure
of the predicate id, keeping track of identity between anonymous terms w.r.t. a
specific match for the input query.

id(~x, ~y, u, v), id(~x, ~y, v, w)→ id(~x, ~y, u, w) (6.2)

A standard technique to reduce the arity of predicates is reification. Provided we
have access to a function KEY to compute a new term that uniquely identifies a
tuple of terms, we can reify any n-ary atom into a set of n atoms of arity 2. E.g., an
atom P (x, y, z) becomes P1(k, x), P2(k, y), P3(k, z), where k = KEY(x, y, z) and Pn,
for 1 ≤ n ≤ arity(P), are fresh predicates of arity 2. Rule (3c) can be reified as:

id1(k, x1), . . . ,idm+n(k, yn), idm+n+1(k, u), idm+n+2(k, v),

id1(j, x1), . . . ,idm+n(j, yn), idm+n+1(j, v), idm+n+2(j, w),

l := KEY(~x, ~y, u, w)→ id1(l, x1), . . . , idm+n(l, yn),

idm+n+1(l, v), idm+n+2(l, w)

(6.3)

The problem with this approach is that it increases the number of joins to be
performed to match the body of the rule.

Using the SKOLEM functionality in RDFox, we are able to reduce the arity of a
predicate P (see predicate id in (6.4)) without having to introduce arity(P) fresh
predicates. The SKOLEM predicate associates a list of terms with a unique blank
node; the list of terms and the variable that will be bound to the blank node
are passed to the SKOLEM predicate as a single list of arguments. To this end, an
atom id(~x, ~y, u, v) in the original rule becomes an atom id(k, j) of arity 2 where
SKOLEM(~x, ~y, k) and SKOLEM(u, v, j) hold, and k and j are bound to two blank nodes
uniquely associated with the sequences of terms 〈~x, ~y〉 and 〈u, v〉, respectively. Joins
over multiple terms (id joining over (~x, ~y) in (6.2)) can now be rewritten into simpler
joins (id joining over a single term k).3

id(k, j), SKOLEM(u, v, j), id(k, l), SKOLEM(v, w, l), SKOLEM(u,w, t)→ id(k, t) (6.4)

3Rule 6.4 showcases how the SKOLEM predicate can be used in both directions: given a sequence
of terms, we can pack them into a single fresh term; given a previously Skolemized term, we can
unpack it to retrieve the corresponding sequence of terms.

6. Design and architecture 75

(1) ψ(~x, ~y), SKOLEM(~x, ~y, s)→ QM(s)
(2) rsa:named instances computed in the canonical model step.
(3a) QM(s), SKOLEM(~x, ~y, s), not NI(yi), SKOLEM(i, i, k)→ id(s, k) for each 1 ≤ i ≤ |~y|
(3b) id(s, k1), SKOLEM(u, v, k1), SKOLEM(v, u, k2)→ id(s, k2)
(3c) id(s, k1), SKOLEM(v, u, k1), id(s, k2), SKOLEM(u,w, k2), SKOLEM(v, w, k3)→ id(s, k3)
(4a) for all R(a, yi), S(b, yj) in q with yi, yj ∈ ~y

Rf (a, yi), Sf (b, yj), SKOLEM(i, j, k), id(s, k), SKOLEM(~x, ~y, s), not a ≈ b→ fk(s)
(4b) for all R(a, yi), S(yj, b) in q with yi, yj ∈ ~y

Rf (a, yi), Sb(yj, b), SKOLEM(i, j, k), id(s, k), SKOLEM(~x, ~y, s), not a ≈ b→ fk(s)
(4c) for all R(yi, a), S(yj, b) in q with yi, yj ∈ ~y

Rb(yi, a), Sb(yj, b), SKOLEM(i, j, k), id(s, k), SKOLEM(~x, ~y, s), not a ≈ b→ fk(s)
for all R(yi, yj), S(ym, yn) in q with yi, yj, ym, yn ∈ ~y

(5a) Rf (yi, yj), Sf (ym, yn), SKOLEM(j, n, k1), id(s, k1), SKOLEM(~x, ~y, s),
yi ≈ ym, not NI(yi), SKOLEM(i,m, k2)→ id(s, k2)

(5b) Rf (yi, yj), Sb(ym, yn), SKOLEM(j,m, k1), id(s, k1), SKOLEM(~x, ~y, s),
yi ≈ yn, not NI(yi), SKOLEM(i, n, k2)→ id(s, k2)

(5c) Rb(yi, yj), Sb(ym, yn), SKOLEM(i,m, k1), id(s, k1), SKOLEM(~x, ~y, s),
yj ≈ yn, not NI(yj), SKOLEM(j, n, k2)→ id(s, k2)

(6) for each R(yi, yj) in q with yi, yj ∈ ~y and ∗ ∈ {f, b}
R∗(yi, yj), id(s, k1), id(s, k1), SKOLEM(i, v, k1), SKOLEM(~x, ~y, s),

id(s, k2), SKOLEM(j, w, k2), SKOLEM(v, u, k3)→ AQ∗(s, k3)
for each ∗ ∈ {f, b}

(7a) AQ∗(s, k)→ TQ∗(s, k)
(7b) AQ∗(s, k1), SKOLEM(u, v, k1), TQ∗(s, k2), SKOLEM(v, w, k2), SKOLEM(u,w, k3)→ TQ∗(s, k3)
(8a) QM(s), SKOLEM(~x, ~y, s), not named(x)→ sp(s) for each x ∈ ~x
(8b) fk(s)→ sp(s)
(8c) TQ∗(s, k), SKOLEM(v, v, k)→ sp(s) for each ∗ ∈ {f, b}
(9) QM(s), not sp(s), SKOLEM(~x, ~y, s), SKOLEM(~x, k)→ Ans(k)

Table 6.1: Improved rules for the filtering step for the RSA combined approach.

The complete rewriting of the filtering program is provided in Table 6.1.
According to the documentation4 for the SKOLEM operator in RDFox, it can be easily
shown that the rewriting is not changing the semantics of the rules, but instead
packs and unpacks subsets of variables in order to make rule matching more efficient.

The filtering program is, then, loaded into RDFox and the materialization is
updated taking into account the newly introduced rules. The triples produced
by this materialization update are stored in a separate named graph to keep the
product of filtration separate from the canonical model. This is possible because
the signature of the atoms in the head of rules introduced by the filtering program
is separate from the signature of the canonical model. When processing a new
query, the only step we need to take is to drop the named graph associated with
the filtration from the previous query, leaving unaltered all other triples. Better
yet, here we have the possibility to execute queries in parallel, each one associated

4https://docs.oxfordsemantic.tech/tuple-tables.html#rdfox-skolem

https://docs.oxfordsemantic.tech/tuple-tables.html#rdfox-skolem

76 6.2. Lower bound approximation to RSA

with a separate filtering program and hence storing their derivations in different
named graphs. The materialization update for each of the queries is isolated and
does not interfere with the other processes.

At this point, the task of gathering the answers to the query over the input KB
is reduced to querying a materialized named graph for the atoms representing
the certain answers.

Example 6.1.3. Given a query q(~x) = ∃ϕ(~x, ~y), with ~x = 〈x1, x2, x3〉, we can retrieve
the answers to q with the following query

1 SELECT ?x1 ?x2 ?x3
2 WHERE {
3 ?K rdf:type rsa:Ans .
4 TT rdfox: SKOLEM { ?x1 ?x2 ?x3 ?K }
5 }

where we first collect all instances ?K of the class rsa:Ans, and then we unpack
them at line 4 using the custom RDFox syntax for the SKOLEM operator, to retrieve
the actual answers. When answering BCQs, we only need to check for an rsa:Ans
witness, i.e., an instance of rsa:Ans in the RDF store

1 ASK { ?K rdf:type rsa:Ans . }

6.2 Lower bound approximation to RSA

As described in Section 5.2, we propose a novel algorithm for approximating an
unrestricted input KB to RSA. The procedure is composed of 3 main steps:

1. Approximation to ALCHOIQ via axiom filtering;

2. Approximation to Horn-ALCHOIQ via program shifting (Def. 5.2.1);

3. Approximation to RSA by reducing the ontology dependency graph to an
oriented forest and ensuring equality safety properties.

The first two steps are entirely carried out by RSAComb in a straightforward
way. The knowledge base is first filtered by axiom type and then program shifting
is applied to all relevant axioms. The last step is designed to partially offload
the task to RDFox; this involves:

• building and reasoning over a custom dependency graph derived from the
materialization of the input data over a Horn-ALCHOIQ KB;

• reasoning over the knowledge base itself, and in particular performing some
RBox reasoning.

6. Design and architecture 77

We first translate the axioms in the knowledge base according to Definition 3.4.3,
and import them, along with the data, into RDFox. The imported data and its
materialization contain all instances of the atom E, used to build the dependency
graph for the input ontology. After retrieving all instances of E, querying the
RDFox triple store with the following query

1 SELECT ?X ?Y WHERE { ?X rsa:E ?Y }

RSAComb builds the dependency graph for the input KB. Using Algorithm 1
we detect and break cycles by iteratively removing nodes. The existential axioms
corresponding to the nodes returned by the visit are removed from the input ontology.

For the equality safety check we need to reason over the ontology itself and
in particular perform some reasoning over its RBox. Regardless of the support
offered by the Datalog reasoner for this task, axioms in a knowledge base can
be encoded as RDF triples.5

RDFox supports importing OWL 2 axioms and the conversion into RDF triples
is performed automatically. RBox reasoning (Listing 6.1) is then achieved by
importing the following rules into the RDF store.

1 [?X,rdfs: subPropertyOf ,?Y],
2 [?Y,rdfs: subPropertyOf ,?X] :-
3 [?X,owl: equivalentProperty ,?Y].
4

5 [?Yi ,rdfs: subPropertyOf ,?Xi] :-
6 [?X,rdfs: subPropertyOf ,?Y],
7 [?Xi ,owl:inverseOf ,?X],
8 [?Yi ,owl:inverseOf ,?Y] .
9

10 [?Y,owl:inverseOf ,?X] :-
11 [?X,owl:inverseOf ,?Y] .
12

13 [?X,rdfs: subPropertyOf ,?X],
14 [?Y,rdfs: subPropertyOf ,?Y] :-
15 [?X,rdfs: subPropertyOf ,?Y].
16

17 [?X,: subPropertyOfTrans ,?Y] :-
18 [?X,rdfs: subPropertyOf ,?Y].
19

20 [?X, : subPropertyOfTrans , ?Z] :-
21 [?X, : subPropertyOfTrans , ?Y],
22 [?Y, : subPropertyOfTrans , ?Z] .

Listing 6.1: Rules for role subsumption reasoning

These encode reflexivity and transitivity of sub-role axioms (R2) (lines 13–22),
taking into account inverse (lines 5–11) and equivalent roles (lines 1–3), as well.

5https://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/

https://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/

78 6.2. Lower bound approximation to RSA

Once both the data and the axioms have been imported and materialized
according to their respective rules, the equality safety condition (i) of Definition 3.4.3
can be formulated as a query as follows:

1 SELECT ?A ?S ?B WHERE {
2 ?W owl: sameAs ?T .
3 filter (?W != ?T) .
4 ?T ?R [a rsa:U] .
5 ?R rdfs: subPropertyOf ?Si .
6 ?Si owl: inverseOf ?S .
7 ?X rdf:type owl: Restriction .
8 ?X owl: onProperty ?S .
9 ?X maxQualifiedCardinality "1" .

10 ?X owl: onClass ?B .
11 ?A rdfs: subClassOf ?X .
12 }

Listing 6.2: Condition 1 of equality safety in the RSA definition

For each pair of atoms w ≈ t, with w and t distinct, and R(t, uAR,B) (lines 2–4)
in MRSA and each role S s.t. R v Inv(S) (lines 5–6), we query for the tuple
〈A, S,B〉 such that A v≤ 1S.B is part of the input KB (lines 7–11). For each
triple 〈A, S,B〉 returned by the query we can remove the corresponding axiom
(T4) from the input ontology.

Similarly, condition (ii) can be formulated as a query as follows:
1 SELECT ?R ?P WHERE {
2 ?A ?R ?U .
3 ?U ?S ?A .
4 ?A a rsa:NI .
5 ?U a rsa:U .
6 ?R rdfs: subPropertyOf ?P .
7 FILTER (?R != ?P) .
8 ?P rdfs: subPropertyOfTrans ?T .
9 ?T owl: inverseOf ?Ti .

10 ?S rdfs: subPropertyOfTrans ?Ti .
11 }

Listing 6.3: Condition 2 of equality safety in the RSA definition

For each pair of atoms R(a, uAR,B), S(uAR,B, a) in MRSA with a ∈ NI (lines 2–5), we
detect roles R, S such that there exists a role T for which R v∗R T (lines 6–8)
and S v∗R Inv(T) (lines 9–10). Note that, when detecting R v∗R T we “isolate”
the first step of the subPropertyOf chain (line 6) and query for that couple of
roles 〈R,P 〉. In this case the returned couple 〈R,P 〉, identifies an axiom of type
(T2) whose removal will break a chain of subproperties from R to T , making
the knowledge base equality safe.

6. Design and architecture 79

6.3 Upper bound approximation to RSA

The approximation algorithm proposed in Section 5.3 is implemented in a similar
way. Again, the procedure is divided into the following steps:

1. rewriting of ⊥ into a new nullary predicate ⊥f with no predefined meaning,

2. rewriting of disjunctive rules to eliminate disjunction, and

3. approximation to RSA+.

As discussed before, the first step is not performed in practice. During the
computation of the KB approximation and the upper bound set of answers, we
simply ignore the satisfiability of the KB. Note that, even if ⊥ is derived during
the process of materialization, RDFox will not derive the entire Herbrand base, to
keep the operation as efficient as possible. We can use this to our advantage and
still compute a meaningful upper bound approximation.

The rewriting of disjunctive rules is also straightforward, and is performed
directly by RSAComb. The choice function is implemented as in PAGOdA, in
order to avoid the derivation of ⊥ (see Section 5.3.2).

Finally, the third step involves the same framework introduced in the previous
section for the lower bound computation, and in particular the construction of
the dependency graph and role subsumption reasoning are performed in the same
way. Both the enforcing of equality safety and the reduction of the dependency
graph to a forest involve a rewriting of the knowledge base according to Def. 5.3.2,
and are implemented directly in RDFox.

Finally, RSAComb can be used to run the combined approach algorithm on
the resulting RSA+ KB. According to Theorem 5.3.1 the answers produced by
RSAComb are an upper bound to the answers to the query.

80

7
Evaluation

Contents
7.1 Benchmarks . 82
7.2 PAGOdA batch . 84

7.2.1 RSAComb . 84
7.2.2 ACQuA . 86

7.3 OOR batch . 89

We provide here an extensive evaluation over a range of benchmark ontologies.
We start by looking at some performance results for RSAComb [56], our imple-
mentation of the combined approach for RSA, followed by a comparison of our
system ACQuA [53] with PAGOdA.1 This latter comparison is first carried out by
providing an analysis of the execution times of the two tools over a selection of test
cases. Additionally, we provide a more qualitative comparison over the number of
gap answers that need further processing, and the related number of calls to an
underlying fully-fledged reasoner. To draw this fine-grained analysis we chose to
test ACQuA against PAGOdA, which shares a similar approach to CQ answering,
while leaving out other approaches, such as the absorption-based query entailment
implemented in Konclude [108, 109] (see Section 4.4).

Section 7.1 provides an in-depth description of the benchmarks used for the
evaluation. Ontologies, data, queries, and scripts used to run tests and generate
the graphs shown in this section are available online [54].

1https://github.com/KRR-Oxford/PAGOdA (commit 8651164c)

81

https://github.com/KRR-Oxford/PAGOdA

82 7.1. Benchmarks

All experiments were performed on an Intel(R) Xeon(R) CPU E5-2640 v3
(2.60GHz) with 16 real cores, extended via hyper-threading to 32 virtual cores, 512
GB of RAM and running Fedora 33, kernel version 5.10.8-200.fc33.x86_64. We
were able to make use of the multicore CPU and distribute the computation across
cores, especially for intensive tasks offloaded to RDFox.

7.1 Benchmarks
We use two different sets of benchmark ontologies:

• the PAGOdA batch mimics the evaluation process originally performed for
the RSA combined approach [29] and for PAGOdA [120];

• the Oxford ontology repository (OOR) batch is a subset of the Oxford ontology
repository2, and it is used to provide a broader evaluation on a wide range of
ontology benchmarks.

The PAGOdA batch consists of a selection of ontologies and benchmark data
that comes with the PAGOdA distribution.3 These resources include ontology,
data, and queries for:

• LUBM and UOBM, standard benchmarks with a data generator (depending
on a numerical parameter) and sample queries. When referring to a dataset
generated for a particular parameter we will use LUBM(n) and UOBM(n)
for some number n. PAGOdA provides an additional set of queries more
challenging for the tool.

• Reactome, a realistic ontology for which both data and relevant queries are
provided. To test scalability, the datasets of this ontology have been sampled
in subsets of increasing size.

A summary of the statistics regarding each of these ontologies can be found in Ta-
ble 7.1 where n is the parameter passed to the data generator for LUBM and UOBM.

For the OOR batch we selected 126 ontology from the repository with non-empty
ABoxes. A summary of the statistics of the ontologies in the repository can be found
online.4 Since the Oxford ontology repository does not provide any test queries, we
generated, for each ontology, a set of sample queries by extracting atomic concept,
atomic roles and existential patterns from the structure of the ontology. In order
to generate a suitable number of queries we used the following step:

2http://krr-nas.cs.ox.ac.uk/ontologies/UID/
3https://www.cs.ox.ac.uk/isg/tools/PAGOdA/2015/jair/
4http://krr-nas.cs.ox.ac.uk/ontologies/readme.htm

http://krr-nas.cs.ox.ac.uk/ontologies/UID/
https://www.cs.ox.ac.uk/isg/tools/PAGOdA/2015/jair/
http://krr-nas.cs.ox.ac.uk/ontologies/readme.htm

7. Evaluation 83

Axioms # Facts # Queries
LUBM(n) 93 n× 105 35
UOBM(n) 186 2.6n× 105 20
Reactome 559 1.2× 107 130

Table 7.1: Benchmarks statistics, with LUBM/UOBM data generators depending on a
parameter n.

1. Import the ontology into RDFox as RDF triples.

2. Query for a specific pattern in the ontology, e.g.,
1 SELECT DISTINCT ?Y ?Z
2 WHERE {
3 ?X rdf:type owl: Restriction ;
4 owl: onProperty ?Y ;
5 owl: someValueFrom ?Z .
6 }

to retrieve all existential axioms in the ontology.

3. Convert those patterns into queries.

Using this method, we extracted 14 135 concept atomic queries, 4 434 role atomic
queries and 3 893 existential queries for a total of 22 462 queries over 126 ontologies.
Apart from the basic atomic patterns, we chose to include existential queries of
the form q(x) = ∃y[R(x, y) ∧ B(y)], for some role R and concept B, because of
the potentially different results given when considering the query under ground
and certain answer semantics and the fact that, in preliminary testing, we noticed
that PAGOdA was having some difficulties returning a sound set of answers to
queries of this shape.
Example 7.1.1. LUBM TBox contains the following axiom describing the fact that
each research assistant works for at least one research group

ResearchAssistant v ∃worksFor.ResearchGroup (7.1)

The following query
1 SELECT ?X WHERE {
2 ?X a lubm: ResearchAssistant .
3 ?X lubm: worksFor [rdf:type lubm: ReseachGroup]
4 }

should return all 39 instances of ResearchAssistant contained in LUBM(1), but
PAGOdA returns 0 answers (which is only correct under ground semantics).5

5PAGOdA guarantees a sound and complete set of answers under certain answers semantics if
the bounds match or the query can be internalized into a DL concept. Otherwise, it will return a
sound set of answers (complete under ground semantics) and a bound on the incompleteness of
the computed answers (under certain answers semantics).

84 7.2. PAGOdA batch

The collection of queries and the scripts to generate them are part of our
benchmark distribution [54].

7.2 PAGOdA batch

We now present the test result obtained using the first set of benchmarks. We
first tested RSAComb as a standalone system, in order to evaluate its performance
and scalability. Later we compare the performance of ACQuA against the original
PAGOdA. This is particularly usefully since we were able to draw a very close
comparison between the two tools and improve upon the observations provided
by Zhou, Cuenca Grau, Nenov, et al. [120].

7.2.1 RSAComb

As part of this work, we introduced RSAComb, an improved implementation of the
combined approach algorithm for RSA, released as free and open source software [57].
Given that the original reference implementation [29] was not available when we
started this work, and some details about the testing process are not provided,
we will not try to draw a comparison between the results provided here and the
ones provided by the original paper.

Our implementation is written in Scala and uses RDFox6 as the underlying
Datalog reasoner. At the time of writing, development and testing have been carried
out using Scala v2.13.5 and RDFox v5.2. We can easily interface Scala with Java
libraries and in particular the OWLAPI [48] for easy ontology manipulation. Thanks
to the Java wrapper API provided with RDFox we were able to take advantage of a
tight integration with the tool and simplify the following integration into ACQuA.

In the following we provide test results of our system against LUBM [42] and
Reactome7 using the set of queries originally used by Feier, Carral, Stefanoni,
et al. [29] and available in Appendix C. All results provided below are averages
of at least 3 measurements.

In Figure 7.1 we show the scalability of our algorithm for the lower bound
approximation to RSA and the computation of the canonical model for the approxi-
mated ontology. The two steps are query independent and the trend appears to
be linear w.r.t. the dataset size, both in LUBM and Reactome.

The filtering process is instead less dependent on the size of the data and more
dependent on its composition and distribution. As such, a bigger dataset does

6https://www.oxfordsemantic.tech/product
7https://elixir-europe.org/platforms/data/core-data-resources

https://www.oxfordsemantic.tech/product
https://elixir-europe.org/platforms/data/core-data-resources

7. Evaluation 85

 0

 5

 10

 15

 20

 25

 30

10 20 30 40 50 60 70 80 90 10
0

Re
ac

to
m

e
se

co
nd

s (
s)

Reactome sample (%)

Approximation to RSA

 0

 5

 10

 15

 20

 25

 30

10 20 30 40 50 60 70 80 90 10
0

Reactome sample (%)

Canonical model computation

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

LU
BM

se
co

nd
s (

s)

LUBM size

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

LUBM size

Figure 7.1: Scalability of approximation to RSA and canonical model computation in
RSAComb.

 0
 2
 4
 6
 8

 10

10 20 30 40 50 60 70 80 90 100

se
co

nd
s (

s) Q
uery 1

Reactome sample (%)

 0
 2
 4
 6
 8

 10

10 20 30 40 50 60 70 80 90 100

Q
uery 2

Reactome sample (%)

Figure 7.2: RSAComb answer filtering in Reactome.

not necessarily correspond to a greater amount of filtering, as shown in Figure 7.2,
where we reported the execution time for query 1 and 2 in Reactome. This figure
also shows how the filtering depends on the data distribution; both queries take
longer on a 50% sample of the data than on other datasets (even larger ones) due
to its specific content. In general, we noticed that the time spent by the system
on the filtering step is considerably lower than the time spent on the canonical
model computation (as described below, and shown in Figure 7.4).

This unpredictability of the filtering step can “backfire” when a huge amount
of filtering is involved. In Figure 7.3 we show the filtering time for query 2 in

86 7.2. PAGOdA batch

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

se
co

nd
s (

s)

m
ili

on
s o

f a
ns

w
er

s

LUBM size

Filtering step
Unfiltered answers

Figure 7.3: Answer filtering with high degree of filtration in Query 2 in LUBM.

 0

 20

 40

 60

 80

 100

10 20 30 40 50 60 70 80 90 10
0

pe
rc

 (%
) Q

uery 1
Reactome sample (%)

 0

 20

 40

 60

 80

 100

10 20 30 40 50 60 70 80 90 10
0

Q
uery 2

Reactome sample (%)

 0

 20

 40

 60

 80

 100

10 20 30 40 50 60 70 80 90 10
0

Q
uery 3

Reactome sample (%)

Figure 7.4: Percent time distribution of canonical model computation (at the bottom,
in blue) and answer filtering (at the top, in yellow) in Reactome.

LUBM along with the amount of unfiltered answers that the filtering program
needs to process. Of these, less than 1‰ is found to be part of the certain
answers. Figure 7.3 confirms the previous claims that the filtering step grows
proportionally to the amount of filtering that is needed for a particular query.
Finally, this figure shows how our system is able to handle a huge filtering step,
processing hundreds of millions of facts.

Finally, Figure 7.4 shows how execution time is distributed among the two
main tasks of the combined approach. Filtering takes consistently less that 20% of
the total execution time, when considering bigger datasets. As mentioned before,
we can limit the impact of the canonical model computation by computing it
“offline” whenever we find ourselves in a scenario in which we need to perform
query answering over a fixed ontology.

7.2.2 ACQuA

We will now provide test results for the PAGOdA batch, a subset of the benchmarks
initially used to evaluate the performance of PAGOdA [120]. During our tests we
were able to reproduce the results provided in the original paper except for UOBM,
for which PAGOdA does not terminate with a timeout of 10h.

7. Evaluation 87

We chose this as a first set of benchmarks because we were able to use the
extensive analysis on PAGOdA’s performance to guide our research and easily
detect those cases that our system could improve.

PAGOdA initially divided its test results into three groups:

(G1) queries for which the bounds match;

(G2) queries with a non-empty gap, but for which summarization is able to filter
out all remaining spurious answers;

(G3) queries where HermiT is called on at least one of the test datasets.

When considering RSAComb and PAGOdA separately, efficiency in the two
tools mainly depends on the input ontology and the type of query answered, with
PAGOdA showing worse performance when heavily relying on HermiT. On the
other hand, when combining the tools into ACQuA, RSAComb is able to further
limit the occurrence of these cases, providing better performance overall.

In general, ACQuA is able to match PAGOdA’s results, as well as performance, in
all queries in the (G1-2) groups. This should not come as a surprise, since the results
from PAGOdA were not leaving much room for improvement and were showing
that more complex CQ answering techniques were not needed for these families of
queries. In particular, for queries in the G1 group, ACQuA does not perform any
additional step other than PAGOdA’s computation of lower and upper bounds.

For this reason we will be focusing on those queries falling in the (G3) group,
for which PAGOdA’s performance does not scale well.

According to [120, Section 10.3.2], PAGOdA falls back to HermiT in the following
queries to compute the correct set of answers: queries 32 and 34 in LUBM, query
18 in UOBM (for some data sizes) and query 65 in Reactome. Figure 7.5 sums
up the results for our tests. Pre-processing times for the ontology are not taken
into account here since the process is common to both tools and, in general,
can be computed offline.

LUBM

For both query 32 and 34, PAGOdA computes an empty lower bound and an exact
upper bound, leaving a gap between the bounds of 26 and 14 possible answers,
respectively, with just as many calls to HermiT. ACQuA, is able to compute a
matching lower bound, avoiding the calls to HermiT altogether. This resulted in a
significant improvement on the query processing time (Figure 7.5a). It is interesting
to notice that in this case the nature of the data and the queries seem to lead to
a linear growth with respect to the size of the data.

88 7.2. PAGOdA batch

 0
 2
 4
 6
 8

 10
 12
 14
 16

 100 200 300 400 500 600 700 800

H
un

dr
ed

s s
ec

on
ds

 (s
)

LUBM size

PAGOdA Q32
ACQuA Q32

PAGOdA Q34
ACQuA Q34

(a) LUBM query processing.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

H
un

dr
ed

s s
ec

on
ds

 (s
)

UOBM size

PAGOdA Q18 ACQuA Q18

(b) UOBM query processing.

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10 20 30 40 50 60 70 80 90 100

H
un

dr
ed

s s
ec

on
ds

 (s
)

Reactome sample (%)

PAGOdA Q65 ACQuA Q65

(c) Reactome query processing.

Figure 7.5: Scalability of query processing times for LUBM, UOBM and Reactome in
ACQuA vs PAGOdA.

UOBM

We could not perform a direct comparison with UOBM since we were unable
to fully reproduce the results shown by Zhou, Cuenca Grau, Nenov, et al. [120],
with PAGOdA not terminating within the provided time limit of 10h for bigger
sizes of data. Regardless, we were able to observe a recognizable pattern in the
results for query 18. In Figure 7.5b, we report our results against an estimate of
PAGOdA’s performance determined by looking at the graphs by Zhou, Cuenca
Grau, Nenov, et al. [120].

In this case, PAGOdA is able to compute a tight lower bound, while showing a gap
in the answers in the order of thousands, caused by the upper bound computation.
Even in this case we were able to avoid the use of HermiT by computing a matching
upper bound, consequently improving the query processing time overall.

Reactome

In query 65 of Reactome, PAGOdA fails to compute matching bounds, presenting a
gap of up to 52 answers that requires the use of a full reasoner. In our case, we were

7. Evaluation 89

Ontologies Queries Non-empty
processed executed queries

PAGOdA 103 18 235 1 455
ACQuA 126 22 462 2 256

Table 7.2: PAGOdA and ACQuA statistics on OOR batch (over 126 ontologies and
22 462 queries).

able to answer query 65 with matching bounds, avoiding again the use of HermiT.
This resulted in an improvement of almost 600 seconds for the full Reactome dataset.

Furthermore, we found that the answers returned by PAGOdA for some of
the queries in LUBM were only correct if considering CQ answering under ground
semantics. Examples of these are query 15-16 from the PAGOdA benchmarks, for
which PAGOdA was able to return only an incomplete set of answers.8 In these
cases ACQuA was able to fix the issue and compute the sound and complete set
of answers under certain answer semantics.

7.3 OOR batch

For the second batch of benchmarks executed on the Oxford ontology repository,
we were able to identify a set of queries for which PAGOdA requires the use of
HermiT for the full computation of the query answers.

As shown in Table 7.2, PAGOdA was able to process 103 out of 126 ontologies
considered, executing around 81% of the generated queries; out of these, only 1455
(circa 8%) have a non-empty answer set. ACQuA, on the other hand, was able to
process the entire set of ontologies, answering the full suite of generated queries,
of which around 10% have a non-empty answer set.

We identified a set of 18 (role atomic) queries over DOLCE [30] for which
PAGOdA required the use of HermiT. In these cases, only the lower bound
computed by PAGOdA is exact, while ACQuA was able to compute a matching
upper bound, avoiding the use of HermiT, overall. This was detected in two
different fragments of DOLCE from the repository, corresponding to ontology 14
and 24. Ontology 24 corresponds to the full DOLCE ontology, while ontology 14
is a fragment of 24 partially restricting the ABox. Both ontologies are classified
as SHOIN (D) (see Table 7.3).

In Table 7.4 we provide quantitative and performance results for the queries over
ontology 24, where we denote the lower bound, upper bound and query processing

8This is most likely due to a bug in the PAGOdA codebase.

90 7.3. OOR batch

DOLCE expressivity # axioms # facts
00014 SHOIN (D) 1544 119
00024 SHOIN (D) 1544 137

Table 7.3: Statistics for DOLCE fragments 14 and 24 from the OOR.

 0

 10

 20

 30

 40

 50

 60

p1
27

p1
28

p1
29

p1
54

p2
06

p2
07

p2
10

p2
11

p2
12

p2
13

p2
18

p2
19

p2
66

p2
67

p2
73

p2
74

p2
82

p2
83

se
co

nd
s (

s)

Query ID

PAGOdA ACQuA

Figure 7.6: Execution time on DOLCE queries in PAGOdA (red) vs ACQuA (orange).

time for the corresponding tools with L, U and T respectively. We omit ontology
14 since the results are similar to the ones reported for ontology 24. It can be
seen from the table that PAGOdA computes a tight lower bound to the answers
to the queries, and this is inherited in ACQuA by using the former tool as an
intermediate step. On top of this, the use of RSAComb in ACQuA makes it possible
to compute a matching upper bound.

In the first 16 queries we obtained comparable performance results (see Fig-
ure 7.6). This is understandable since DOLCE is a relatively small ontology (with a
very small ABox) and this ended up hiding the performance differences that would
potentially appear with larger datasets. Moreover, it should be noted that PAGOdA
is able to deal with the larger upper bound by performing a limited amount of calls
to HermiT (up to 8). The number of calls increases to 19 in the last two queries;
these are also the cases in which we can observe a greater gain in performance using
ACQuA, which reduces the total number of calls to HermiT to 0.

Finally, we found a set of 23 queries across multiple ontologies for which PAGOdA
returned an unsound set of answers. We were able to fix the issue in ACQuA, and
return the correct answers to the queries under certain answer semantics.

For the rest of the tested queries PAGOdA and ACQuA had comparable
performance and were able to compute matching bounds.

7. Evaluation 91

Query PAGOdA ACQuA Total
ID L U T L U T answers
p127 32 41 17.2s 32 32 16.8s 32
p128 7 14 16.2s 7 7 12.4s 7
p129 7 14 15.9s 7 7 13.9s 7
p154 32 41 16.6s 32 32 17.0s 32
p206 9 19 15.7s 9 9 15.4s 9
p207 9 19 15.8s 9 9 16.5s 9
p210 10 20 15.9s 10 10 14.0s 10
p211 10 20 16.4s 10 10 14.3s 10
p212 12 20 15.8s 12 12 16.5s 12
p213 12 20 15.7s 12 12 16.1s 12
p218 12 20 16.0s 12 12 14.8s 12
p219 12 20 15.8s 12 12 14.7s 12
p266 12 20 16.7s 12 12 12.1s 12
p267 12 20 16.0s 12 12 15.8s 12
p273 12 20 15.9s 12 12 16.1s 12
p274 12 20 16.1s 12 12 15.5s 12
p282 53 77 54.4s 53 53 25.4s 53
p283 53 77 49.7s 53 53 28.0s 53

Table 7.4: Results of ACQuA vs PAGOdA on DOLCE.

To conclude this section, we provide a list of performance results and improve-
ments highlighted by our evaluation:

• RSAComb shows linear scalability for preprocessing and canonical model
computation steps. Moreover, the filtering time is lower on average than the
canonical model computation;

• The filtering step in RSAComb is able to handle millions of triples;

• ACQuA is able to outperform PAGOdA in a selection of test cases, improving
both the lower and upper bounds;

• ACQuA is able to fix some performance issues present in PAGOdA, by
computing matching bounds and hence further limiting the use of HermiT;

• The ability to avoid the use of HermiT when computing matching bounds
results in significant performance improvements.

92

8
Discussion and conclusions

In this work, we presented a new hybrid query answering architecture that combines
black-box services to provide a CQ answering service for OWL. Specifically, it
combines scalable CQ answering services for tractable languages with a CQ answering
service for a more expressive language approaching the full OWL 2. The technique
is based on the computation of answer bounds “from above” and “from below”
and their progressive refinement to compute the full set of certain answers. To
this end, we propose two novel algorithms to compute lower and upper bounds to
the answers to a query via approximation to RSA and RSA+, respectively. These
techniques led to the development of two new systems:

• RSAComb, an efficient implementation of the combined approach for RSA [29],
reorganized to fit the new implementation design and the integration of RDFox
as the underlying Datalog reasoner. We streamlined the execution of the
algorithm by factoring out those steps in the combined approach that are query
independent to make answering multiple queries over the same knowledge base
more efficient. In addition, we included an improved version of the filtering
step for the combined approach. The system accepts any OWL 2 KB and
includes a customizable approximation step to languages compatible with the
RSA combined approach. The system is further extended with a reference
implementation of the novel approximation algorithms for the computation of
answer bounds mentioned above.

• ACQuA, a reference implementation of the hybrid architecture combining
RSAComb, PAGOdA [120], and HermiT [31] to provide a CQ answering

93

94 8. Discussion and conclusions

service for OWL. The resulting system ensures the same “pay-as-you-go”
capabilities of the systems it is based on, while enjoying a high degree of
modularity; the services it is built upon can be potentially substituted or
augmented with more capable ones to improve the overall performance.

We provided an extensive evaluation of the systems, first testing scalability and
performance of RSAComb as a standalone system and then, comparing ACQuA
against PAGOdA.

In ACQuA, we showed how the additional computational cost introduced by
reasoning over a more expressive language like RSA can still provide a significant
improvement compared to relying on a fully-fledged reasoner. This might not always
be true, and, in general, the proposed architecture involves a trade-off performance
analysis concerning the addition of new reasoners to the picture.

We showed how ACQuA can reliably match PAGOdA’s performance, and further
limit performance issues originally present in PAGOdA, especially when the tool
has to extensively rely on HermiT. This comparison reports on differences on the
execution time, showing how ACQuA provides, in general, better performance than
PAGOdA, and on qualitative results, analysing the number of gap answers and
calls to HermiT in both tools. As we mentioned in Chapter 5, these qualitative
improvements are the result of the combination of the (incomparable) bounds
computed with PAGOdA and RSAComb, with the performance of the two tools
varying extensively depending on the KB and query in input. During our evaluation
process we identified different scenarios in which the contribution of the two
tools towards the final result greatly differed, justifying the inclusion of both
tools in ACQuA.

We intend to further extend this work in a few different directions. In this work
we made extensive use of RSA, and introduced RSA+, an extension of the language
enriched with axioms to represent (ir)reflexivity, asymmetry and disjointness among
roles. We proved that the combined approach for RSA is still complete when applied
to this extension. We think that a more thorough analysis of the expressive power
of the language would be beneficial for a further refinement of the approximation
algorithms. In particular, it would be interesting to analyze the correctness of
the combined approach for RSA applied to RSA+ to show whether the additional
axioms increase the expressivity of the language.

On top of this, alternative approximation techniques targetting RSA could
be explored. The handling of transitive properties in the approximation “from
below” might, for example, be refined by using a technique like box-pushing; such

8. Discussion and conclusions 95

a rewriting does not preserve entailment of CQ, but might be enough to provide
lower bound guarantees on the computation of query answers.

The RSAComb-based algorithms for the computation of answer bounds depend
on a cycle-detection procedure over a KB dependency graph. We think that
altering the traversal of the graph and adopting (query dependent) heuristics in the
cycle-detection algorithm could improve the quality of the computed bounds.

Moreover, ACQuA mostly focuses on ontology manipulation for computing
bounds and further processing gap answers. While query independent processes
can be cached or computed offline, a different, complementary, approach would be
to study the problem of computing answer bounds from a query perspective. An
example of such a technique for computing bounds to answers to SPARQL queries
has been presented by Glimm, Kazakov, Kollia, et al. [33].

On a similar note, relationships between queries have not been considered so far
and might be beneficial to the computation of the final set of answers. To this end,
it might be possible to consider dependences between sets of queries and exploit
execution order and cached partial results to compute answers more efficiently.

From a practical standpoint, the integration of different tools may also introduce
programming languages and license compatibility issue, especially when building a
commercial application. While different tools might provide their own integration
interfaces, the proposed architecture might benefit from a unified interface (e.g.,
a REST API) that can be wrapped around external tools, regardless of their
internal implementation details.

Finally, singularization [69] is an alternative to equality axiomatization that
replaces the equality predicate ≈ with a fresh predicate Eq. The new predicate is
defined as an equivalence relation but lacks the substitution rules (see Eq. 2.4);
the premises of rules in a KB are instead rewritten to compensate for the lack of
substitution rules. Properties of singularization have been thoroughly explored in
the literature [69, 39], and adapting the combined approach for RSA to work with
this technique might lead to better performance in practice.

To conclude, this work led us to believe that relying on hybrid frameworks
and leveraging existing systems for CQ answering is a winning strategy that can
render the problem more viable in practice. Thanks to its modularity, this approach
can benefit from the broader research in the area of knowledge representation,
description logics, and CQ answering.

96

Appendices

97

A
Proofs

This chapter provides proofs for lemmas and theorems used in Sections 5.2–5.3.1

In the following we will consider either an RSA or an RSA+ KB K = 〈O,A〉
(and explicitly state when some result holds only for one of the two languages)
and a CQ q(~x) = ∃~y.ψ(~x, ~y). For PK,q, EK and π(K)≈,>, we will refer to their
LHMs as M, Mc (canonical) and Mu (universal), respectively. Note that, by
definition of PK,q, it is the case that Mc ⊆ M.

We start with the notations concerning terms and atoms. For terms s and t,
we write s ≤ t (s < t) iff s is (strictly) contained in t. The root of a term t is its
non-functional part, i.e., root(f1(f2(. . . (fn(a)) . . .))) = a. We say that a term t has
type (A,R,B) if t is either of the form vA,iR,B or of the form fAR,B(·).

The derivation level of a ground atom a = P (~t) ∈ M [Π] with Π a stratified
program, is denoted by level(a,M [Π]) and is a pair of natural numbers (k, l) where
k denotes the stratum of P and l is the smallest number such that a ∈ T lΠk

(U),
where U = ∅, if k = 1, and U = T ωΠk−1

(Ui), otherwise. The derivation level of
a ground term t ∈ terms(M [Π]), where Π is a stratified program, is denoted as
level(t,M [Π]) and is a pair of natural numbers (k, l), such that t occurs in an atom
a ∈ M [Π] s.t. level(a,M [Π]) = (k, l) but t does not occur in any atom a ∈ M [Π]
such that level(a,M [Π]) = (k′, l′) and k′ < k, or k′ = k and l′ < l. When a
program Π has only one stratum k, the stratum is dropped from the derivation
level of the corresponding atom/term.

1Some of the following lemmas are adapted from drafts of proofs for the theorems in [29]. These
drafts were provided by the authors but, to the best of our knowledge, have never been published.

99

100 A. Proofs

Theorem 5.2.1. Let K′ = 〈O′,A〉 be the ALCHOIQ restriction of the KB K =
〈O,A〉, and let K′′ = 〈shift(O′),A〉. Then cert(q,K′′) ⊆ cert(q,K′).

Proof. LetM = M [π(K′′)>,≈]. We recall that, given a predicate P in the signature
of K′, we denote with P a fresh predicate, introduced by shift(·), intuitively
representing the complement of P . In order to prove the theorem, we introduce the
following claims:

(i) if ⊥ ∈M, then, K′ is inconsistent;

(ii) if P (c) ∈ M, then, K′ 6|= P (c), for any P introduced by shift and K′

consistent;

(iii) if P (c) ∈ M, then, K′ |= P (c), for some P in the signature of K′ and K′

consistent;

We can prove these claims by induction on the derivation level of atoms inM.

(i) If ⊥ ∈ A then, K′ |= ⊥ and hence K′ is inconsistent. Otherwise, there must be
some rule r of the form ∧n

i=1Ai(x) v ⊥ in K′′ such that Ai(c) ∈M, for some
constant c and 1 ≤ i ≤ n. If r ∈ K′′, then, by definition of shift, r ∈ K′.
Moreover, by IH, we have K′ |= Ai(c) for 1 ≤ i ≤ n, and hence K′ |= ⊥ (i.e.,
K′ is inconsistent).

(ii) Let P (c) ∈M, with P predicate introduced by shift for some predicate P
in the signature of K′. Since P (c) 6∈ A, there must be a rule

r ≡
n∧
i=1

Ai(x) ∧
m∧
i=1

Bi(x)→ P (x) (A.1)

with Ai(c) ∈ M for 1 ≤ i ≤ n and Bi(c) ∈ M for 1 ≤ i ≤ m. By IH,
K′ |= Ai(c) for 1 ≤ i ≤ n and K′ 6|= Bi(c) for 1 ≤ i ≤ m. Moreover, if r ∈ K′′

then, there is a rule r′ ∈ K′ s.t. either

(a) r′ is of the form ∧n
i=1Ai(x) ∧ P (x)→ ∨m

i=1Bi(x). Since K′ is consistent,
K′ 6|= P (c).

(b) m = 0 and r′ is of the form ∧n
i=1Ai(x) ∧ P (x)→ ⊥. Assume K′ |= P (c);

then, K′ is inconsistent — contradiction, and hence K′ 6|= P (c)

(iii) Let P (c) ∈M, for some P in the signature of K′. If P (c) ∈ A, then K′ |= P (c).
Otherwise,

A. Proofs 101

(a) there must be some rule r ≡ ∧n
i=1Ai(x) ∧ ∧mi=1Bi(x) → P (x) in K′′,

Ai(c) ∈M for 1 ≤ i ≤ n, Bi(c) ∈M for 1 ≤ i ≤ m. By IH, K′ |= Ai(c)
for 1 ≤ i ≤ n and K′ 6|= Bi(c) for 1 ≤ i ≤ m. Moreover, if r ∈ K′′, there
must be a rule r′ ∈ K′ of the form

n∧
i=1

Ai(x)→
m∨
i=1

Bi(x) ∨ P (x) (A.2)

Since K′ is consistent, K′ |= P (c).

(b) For all other possible rules r that can derive P (c), it is the case that
r ∈ K′′ implies r ∈ K′ and, by IH, we have that K′ |= P (c).

If q = ⊥, then the theorem follows from claim (i). Otherwise, let q(~x) = ∃~yϕ(~x, ~y)
and let σ be a certain answer to q w.r.t. K′′. Then, by definition, there exists σ′

such that, for every α ∈ ϕ(~x, ~y)σσ′, α ∈ M and, by claim (iii), K′ |= α. Finally,
we have that K′ |= ϕ(~x, ~y)σσ′, and hence K′ |= ∃~yϕ(~x, ~y)σ, which, by definition of
conjunctive query answer, implies σ ∈ cert(q,K′).

We next relate terms in Mc and Mu to terms in MRSA.

Lemma A.1. Let ηc : terms(Mc)→ terms(MRSA) be the following function

ηc(t) =

t if t ∈ NI

uAR,B if t is of type (A,R,B)
(A.3)

Then, for every t1, t2 ∈ terms(Mc) it holds that

• A(t1) ∈Mc implies A(ηc(t1)) ∈MRSA;

• R(t1, t2) ∈Mc implies R(ηc(t1), ηc(t2)) ∈MRSA;

• t1 ≈ t2 ∈Mc implies ηc(t1) ≈ ηc(t2) ∈MRSA.

Proof. Trivial, by definition of MRSA and induction on the derivation level of atoms
inMc.

Lemma A.2. Let ηu : terms(Mu)→ terms(MRSA) be the following function

ηu(t) =

t if t ∈ NI

uAR,B if t is of type (A,R,B)
(A.4)

Then, for every t1, t2 ∈ terms(Mu) it holds that

• A(t1) ∈Mu implies A(ηu(t1)) ∈MRSA

102 A. Proofs

• R(t1, t2) ∈Mu implies R(ηu(t1), ηu(t2)) ∈MRSA

• t1 ≈ t2 ∈Mu implies ηu(t1) ≈ ηu(t2) ∈MRSA

Proof. Trivial, by definition of MRSA and induction on the derivation level of atoms
inMu.

Lemma A.3. Let t1, t2 ∈ terms(Mc). Then, β ≡ t1 ≈ t2 ∈ Mc implies at least
one of the following holds:

1. t1 ≈ a ∈Mc, for some a ∈ NI ,

2. t1 is of the form f(u) and t2 is of the form g(v) with u ≈ v ∈Mc.

3. t1 is of the form vA,iR,B and t1 and t2 are identical (i.e., the same term),

Proof. We prove the lemma, together with the following additional claims, by
induction on the derivation level of atoms inMc:

(i) Let R(t1, t2) ∈ Mc with t2 of some type τ , R v∗R S for some S occurring
in an axiom (T4). Moreover, let t3 ∈ terms(Mc) s.t. t2 ≈ t3 ∈ Mc with
ηc(t2) 6= ηc(t3). Then, t2 is of the form f(u) with u ≈ t1 ∈Mc.

(ii) Let R(t1, t2) ∈Mc with t1 of some type τ , R v∗R Inv(S) for some S occurring
in an axiom (T4) Moreover, let t3 ∈ terms(Mc) s.t. t1 ≈ t3 ∈ Mc with
ηc(t1) 6= ηc(t3). Then, t1 is of the form f(u) with u ≈ t2 ∈Mc.

In the following, let R(t1, t2) be an atom inMc.

(i) Moreover, let t2 be of some type τ , R v∗R S for some S occurring in an axiom
(T4) and t2 ≈ t3 ∈Mc with t3 ∈ terms(Mc) and ηc(t2) 6= ηc(t3).

Then, there must be at least one rule in EK of the form:

(a) C(x)→ R(x, fCR,D(x))∧D(fCR,D(x)) with C(t1) ∈Mc and t2 = fCR,D(t1).
t1 ≈ t1 ∈Mc and hence the claim holds.

(b) C(x)→ R(x, vCR,D)∧D(vCR,D) with C(t1) ∈Mc. This is in contradiction
with the fact that R is unsafe, i.e., R occurs in a (T5) axiom and R v∗R S
with S occurring in a (T4) axiom.

(c) T (x, y) → R(x, y) with T (t1, t2) ∈ Mc and level(T (t1, t2),Mc) <

level(R(t1, t2),Mc). Since T v R v∗R S, with S occurring in an axiom
(T4), by IH, the claim holds for T (t1, t2). Then it trivially holds for
R(t1, t2) as well.

A. Proofs 103

(d) Inv(R)(y, x) → R(x, y) with Inv(R)(t2, t1) ∈ Mc. As in the previous
case, we have level(Inv(R)(t2, t1),Mc) < level(R(t1, t2),Mc). It can be
easily shown that Inv(R) fulfills all hypotesis of claim (ii), and, by IH,
it follows that t2 is of the form f(u) with u ≈ t1 ∈Mc.

(e) R(x, y) ∧ y ≈ z → R(x, z) and ∃t term s.t. R(t1, t), t ≈ t2 ∈Mc. By IH,
t is of the form f(u) with u ≈ t1 ∈Mc. Moreover, since t is of the form
f(u), by the main claim of Lemma A.3, t2 must be of the form g(v) with
u ≈ v ∈ Mc. Then, the claim holds, since t2 is of the form g(v) with
v ≈ t1, for transitivity of ≈.

(f) R(x, y)∧ x ≈ z → R(z, y) and ∃t term s.t. R(t, t2), t ≈ t1 ∈Mc. Similar
to case (i)e, using claim (ii).

(ii) Similarly, let t1 be of some type τ , R v∗R Inv(S) for some S occurring in an
axiom (T4) and t1 ≈ t3 ∈Mc with t3 ∈ terms(Mc) and ηc(t1) 6= ηc(t3).

Then, there must be at least one rule in EK of the form:

(a) C(x)→ R(x, fCR,D(x)) ∧D(fCR,D(x)) with C(t1) ∈Mc and t2 = fCR,D(t1).
Then, from Lemma A.1, it follows that R(ηc(t1), uCD,R) ∈ MRSA. But
then, K is not equality-safe, since:

• t1 ≈ t3 ∈ Mc with ηc(t1) 6= ηc(t3). Then by definition of ηc in
Lemma A.1, t1, t2 must be distinct.

• R(ηc(t1), uCD,R) ∈MRSA.
• ∃S s.t. R v∗R Inv(S) and S occurs in an axiom (T4).

This contradicts our hypothesis that K is RSA.

(b) C(x)→ R(x, vCR,D)∧D(vCR,D) — in contradiction with the fact that R is
unsafe.

(c) T (x, y)→ R(x, y) such that T (t1, t2) ∈Mc, similar to case (i)c.

(d) Inv(R)(y, x) → R(x, y) such that Inv(R)(t2, t1) ∈ Mc, similar to
case (i)d and using claim (i).

(e) R(x, y)∧y ≈ z → R(x, z) and a term t3 such that R(t1, t3), t3 ≈ t2 ∈Mc,
similar to case (i)e.

(f) R(x, y)∧x ≈ z → R(z, y) and a term t3 such that R(t3, t2), t3 ≈ t1 ∈Mc,
similar to case (i)f.

Now, let β ≡ t1 ≈ t2 ∈Mc; then, there must be some rule in EK of the form:

104 A. Proofs

(a) >(x)→ x ≈ x such that t1 = t2 = x. We can distinguish three different cases:

• x = a, for some a ∈ NI . Then, t1 ≈ a and condition 1 is satisfied.

• x is of the form fAR,B(u) for some type (A,R,B). Then, t1 = t2 = fAR,B(u)
with u ≈ u because of the semantics of ≈; condition 2 is satisfied.

• x is of the form vA,iR,B for some type (A,R,B) and i ∈ {0, 1, 2}. Then,
t1 = t2 = vA,iR,B and condition 3 is satisfied.

(b) A(x)→ x ≈ a, with A(t1) ∈Mc Then, t2 = a and t1 ≈ a ∈Mc; condition 1
is fulfilled.

(c) A(x) ∧ S(x, y) ∧ B(y) ∧ S(x, z) ∧ B(z) → y ≈ z. Moreover, there exists t3
term, s.t. A(t3), S(t3, t2), B(t2), S(t3, t1), B(t1) ∈Mc. We distinguish between
the following cases:

• ηc(t1) = ηc(t2). If t1 = t2 the claims of the lemma trivially hold. If t1 6= t2,
then t1 and t2 must have the same type (C,R,D). Then t1 = fAR,B(u)
and t2 = fAR,B(v) for some type (A,R,B) and with u 6= v. It can be
shown that atoms S(t3, fAR,B(u)), S(t3, fAR,B(v)) cannot be introduced in
an RSA ontology.

• ηc(t1) 6= ηc(t2). If either t1 = a or t2 = b, with a, b ∈ N1, then, condition 1
trivially holds for β. Otherwise, from claim (i) it follows that:

– t1 = f(u), with u ≈ t3 ∈Mc.
– t2 = g(v), with v ≈ t3 ∈Mc.

Then, for transitivity of ≈, u ≈ v ∈Mc and condition 2 holds for β.

(d) x ≈ y → y ≈ x with t2 ≈ t1 ∈ Mc. By IH, the lemma holds for t2 ≈ t1 and,
since all conditions are symmetric, it holds for β as well.

(e) x ≈ y ∧ y ≈ z → x ≈ z and ∃t3 term s.t. t1 ≈ t3, t3 ≈ t2 ∈ Mc. By IH, the
lemma holds for t1 ≈ t3 and t3 ≈ t2:

• If condition 1 holds for t1 ≈ t3, s.t. t1 ≈ a for some a ∈ NI , then it holds
for t3 ≈ t2 (since t3 ≈ t1 ≈ a) and for β.

• If condition 2 holds for t1 ≈ t3, then t1 is of the form f(u) and t3 is of
the form g(v), with u ≈ v ∈Mc. Since t3 is of the form g(v), condition 2
must hold for t3 ≈ t2 as well, and hence t2 is of the form h(w), with
v ≈ w ∈Mc. Then, for transitivity of ≈, u ≈ w and condition 2 holds
for β.

A. Proofs 105

• If condition 3 holds for t1 ≈ t3, then t1 and t3 are identical and of the
form vA,iR,B for some type (A,R,B) and i ∈ {0, 1, 2}. Since t3 is of the
form vA,iR,B, condition 3 must hold for t3 ≈ t2 as well, and hence t2 = vA,iR,B.
Then, t1 = t2 = vA,iR,B and condition 3 holds for β.

Lemma A.4. Let t1, t2 ∈ terms(Mu). Then t1 ≈ t2 ∈Mu implies that either:

1. t1 ≈ a ∈Mu, for some a ∈ NI

2. t1 is of the form f(u) and t2 is of the form g(v) with f, g function symbols in
Mu and u ≈ v ∈Mu

Proof. Similar to the proof for Lemma A.3, by induction on the derivation level of
atoms inMu.

Definition A.1. Let Ψ be a conjunction of atoms of the form
m∧
i=1

Ai(ti) ∧
n∧
j=1

Rj(u1j, u2j) (A.5)

An adornment for Ψ is a vector ~a such that |~a| = n and aj ∈ {f, b, ␣} for every
1 ≤ j ≤ n (where ␣ denotes the empty adorning, i.e., R␣ is syntactically equivalent
to R). We denote with Ψ~a the adorned formula:

m∧
i=1

Ai(ti) ∧
n∧
j=1

R
aj

j (u1j, u2j) (A.6)

where Raj

j is a syntactic renaming of Rj for every 1 ≤ j ≤ n.

Definition A.2. Let Ψ~a be the adorned formula of the form
m∧
i=1

Ai(ti) ∧
n∧
j=1

R
aj

j (u1j, u2j) (A.7)

Then, the normal form of Ψ~a, denoted with Ψ~a
n, is the formula

m∧
i=1

Ai(ti) ∧
n∧
j=1

Lj (A.8)

where

Lj =


R(u1j, u2j) if aj = ␣
Rf (u1j, u2j) if aj = f

Inv(R)f (u2j, u1j) if aj = b

(A.9)

106 A. Proofs

Definition A.3. Let q(~x) = ∃~y ψ(~x, ~y) be a CQ, λ : terms(q)→ terms(M) be a
homomorphism and ~a be an adornment for q = ψ(~x, ~y). Then (λ,~a) is said to be
an adorned match for q overM iff the following conditions both holds:

1. M |= (ψ(λ(~x), λ(~y)))~a;

2. ∀R(t1, t2) ∈ (ψ(λ(~x), λ(~y)))~a, we have Rf (t1, t2) 6∈ M and Rb(t1, t2) 6∈ M.

Definition A.4. Let (λ,~a) be an adorned match for q(~x) over M. We say that
(λ,~a) is non-anonymous if named(λ(x)) ∈M for all x ∈ ~x.

Definition A.5. Let (λ,~a) be an adorned match for q(~x) over M. We say that
(λ,~a) is fork-free iff for every two atoms of the form Rf (u, yi), Sf (v, yj) ∈ (ψ(~x, ~y))~an,
such that yi, yj ∈ ~y and id(λ(~x), λ(~y), i, j) ∈M, it is the case that λ(u) ≈ λ(v).

Definition A.6. Let (λ,~a) be an adorned match for q(~x) over M. We say that
(λ,~a) is acyclic iff there is no sequence of atoms

Rf
o1(yl1 , yl2), Rf

o2(yl3 , yl4), . . . , Rf
op

(yl2p−1 , yl2p) ∈ (ψ(~x, ~y))~an (A.10)

such that

1. id(λ(~x), λ(~y), l2i, l2i+1) ∈M for every 1 ≤ i ≤ p where l2p+1 = l1;

2. NI(λ(ylj)) 6∈ M for every 1 ≤ j ≤ 2p.

Lemma A.5. For a given substitution λ : ~x → terms(M), it is the case that
M |= Ans(λ(~x)) iff there exists an adorned match (λ′,~a) for q over M which is
non-anonymous, fork-free and acyclic, where λ′ is a homomorphism that extends λ
to terms(q).

Proof. Trivial, from the definitions of π(K)≈,>,M (and in particular the filtering
program in Table 6.1), and Definition A.3.

Lemma A.6. For a given substitution λ : ~x → terms(M), if λ(~x) ∈ cert(q,K)
then there exists a match λ′ for q(~x) over Mu where λ′ is a homomorphism that
extends λ to terms(q).

Proof. Trivial by the definition of certain answer.

Definition A.7. Let T ′i be the congruence classes induced by ≈ over terms(Mu),
and let t′i be a collection of terms fromMu s.t. for every i:

1. t′i ∈ T ′i ;

A. Proofs 107

2. t′i ∈ NI if there exists t′ ∈ T ′i s.t. t′ ∈ NI .

Then, let ξ : terms(Mu) → terms(Mu) be such that ξ(t) = t′i, if t ∈ T ′i and let
σ : terms(Mu)→ terms(Mu) be a function which has the following properties:

σ(t) =

ξ(t) if ξ(t) ∈ NI

f(σ(u)) if ξ(t) = f(u) for some function symbol f inMu

(A.11)

Also, let θ : terms(Mu)→ terms(Mc) be the following function:

θ(t) =



t if t ∈ NI

fAR,B(θ(u)) if t = fAR,B(u) and R is unsafe
vA,0R,B if t = fAR,B(u), R is safe and θ(u) 6∈ unfold(A,R,B)
vA,i+1
R,B if t = fAR,B(u), R ∈ confl(R) and θ(u) = vA,iR,B, for i = 0, 1
vA,1R,B if t = fAR,B(u) and θ(u) ∈ cycle(A,R,B)

(A.12)

Definition A.8. Given t ∈ terms(M∗) with ∗ ∈ {␣, c, u}, we define the nesting
level of t as

depth∗(t) =

0 if ξ(t) ∈ NI

1 + depth∗(u) if ξ(t) = f(u)
(A.13)

with f a function symbol inM∗.

Lemma A.7. Let σ be as in Definition A.7, and f, h function symbols in Mu.
Then, for every t, t1, t2 ∈ terms(Mu), it holds that:

1. σ(t) ≈ t ∈Mu

2. σ(f(t)) ≈ f(σ(t)) ∈Mu

3. t1 ≈ t2 ∈Mu implies σ(t1) ≈ σ(t2) ∈Mu

4. σ(f(t)) = h(σ(t)) or σ(f(t)) ∈ NI

Proof. Given t ∈ terms(Mu):

1. We show by induction over depthu(t) that σ(t) ≈ t ∈ Mu. If depthu(t) = 0,
σ(t) = ξ(t) and ξ(t) ≈ t ∈ Mu. If depthu(t) > 0, σ(t) = f(σ(u)), where
ξ(t) = f(u) and by IH σ(u) ≈ u ∈ Mu. Then f(σ(u)) ≈ f(u) = ξ(t) ∈ Mu.
As ξ(t) ≈ t ∈Mu, it follows that σ(t) ≈ t ∈Mu.

2. From claim 1, σ(f(t)) ≈ f(t) ∈ Mu. Furthermore, as t ≈ σ(t) ∈ Mu, it
follows that f(t) ≈ f(σ(t)) ∈Mu. Thus, σ(f(t)) ≈ f(σ(t)) ∈Mu.

108 A. Proofs

3. Follows from the fact that ξ(t1) = ξ(t2), for any t1 ≈ t2 ∈Mu.

4. Assume ξ(f(t)) = h(u). Then, f(t) ≈ h(u) ∈ Mu and, from Lemma A.4, it
follows that t ≈ u ∈Mu. Then, σ(f(t)) = h(σ(u)) = h(σ(t)) or σ(f(t)) ∈ NI .

Lemma A.8. Let σ and θ be as in Definition A.7. Then, for every t, t1, t2 ∈
terms(Mu):

(1) A(t) ∈Mu implies A(θ(σ(t))) ∈Mc

(2) R(t1, t2) ∈Mu implies R(θ(σ(t1)), θ(σ(t2))) ∈Mc

(3) t1 ≈ t2 ∈Mu implies θ(t1) ≈ θ(t2) ∈Mc

Proof. From Lemma A.7 it follows that:

• A(t) ∈Mu implies A(σ(t)) ∈Mu

• R(t1, t2) ∈Mu implies R(σ(t1), σ(t2)) ∈Mu

In the following we show by induction on the derivation level of atoms inMu that:

(i) A(t) ∈Mu implies A(θ(t)) ∈Mc

(ii) R(t1, t2) ∈Mu implies R(θ(t1), θ(t2)) ∈Mc

(iii) t1 ≈ t2 ∈Mu implies θ(t1) ≈ θ(t2) ∈Mc

Let a be an atom inMu. If a ∈ A, i.e., a is a fact in K, all three conditions are
trivially satisfied since θ(t) = t for t ∈ NI . Otherwise,

(i) Let a = A(t). Then, there must be a rule in π(K)≈,>:

(a) B(x)→ R(x, fBR,A(x)) ∧ A(fBR,A(x)) and a term u such that B(u) ∈Mu

and t = fBR,A(u). Then, by IH, B(θ(u)) ∈ Mc and EK must contain a
rule:

• B(x)→ R(x, fBR,A(x)) ∧ A(fBR,A(x)) if R is unsafe.
Then, A(fBR,A(θ(u))) = A(θ(fBR,A(u))) = A(θ(t)) ∈Mc.

• B(x)→ R(x, vB,0R,A) ∧ A(vB,0R,A) if θ(u) 6∈ unfold(B,R,A).
Then, A(vB,0R,A) = A(θ(fBR,A(u))) = A(θ(t)) and A(θ(t)) ∈Mc.

• B(x)→ R(x, vB,1R,A) ∧ A(vB,1R,A) if θ(u) ∈ unfold(B,R,A). Similar to
the previous case.

A. Proofs 109

• B(vB,iR,A) → R(vB,iR,A, v
B,i+1
R,A) ∧ A(vB,i+1

R,A) if θ(u) = vB,iR,A and R ∈
confl(R). Similar to the previous case.

(b) R(x, y) ∧B(y)→ A(x) and a term u s.t. R(t, u), B(u) ∈Mu. Straight-
forward application of IH.

(c) B1(x)∧ · · · ∧Bn(x)→ A(x) s.t. B1(t), . . . , Bn(t) ∈Mu. Straightforward
application of IH.

(d) A(x) ∧ x ≈ y → A(y) and a term u s.t. A(u), u ≈ t ∈ Mu. Straightfor-
ward application of IH.

(ii) Let a = R(t1, t2). Then, there must be a rule in π(K)≈,>:

(a) B(x)→ R(x, fBR,A(x)) ∧ A(fAR,A(x)) and a term u such that B(u) ∈Mu

and t = fBR,B(u). Similar to case (i)a.

(b) S(x, y)→ R(x, y). Straightforward application of IH.

(c) Inv(R)(y, x)→ R(x, y). Straightforward application of IH.

(d) R(x, y)∧ y ≈ z → R(x, z) and a term u such that R(t1, u), u ≈ t2 ∈Mu.
Straightforward application of IH.

(e) R(x, y)∧ x ≈ z → R(z, y) and a term u such that R(u, t2), u ≈ t1 ∈Mu.
Straightforward application of IH.

(iii) Let a = t1 ≈ t2. Similar to case (ii).

Lemma A.9. Let σ and θ be as defined in Definition A.7. Then, for every
t1, t2 ∈ terms(Mu) the following hold

(i) R(t1, t2) ∈Mu, σ(t1) < σ(t2) and σ(t1) 6∈ NI implies

Rf (θ(σ(t1)), θ(σ(t2))) ∈Mc (A.14)

(ii) R(t1, t2) ∈Mu, σ(t1) < σ(t2) and σ(t1) ∈ NI implies

Rf (θ(σ(t1)), θ(σ(t2))) ∈Mc or Rb(θ(σ(t1)), θ(σ(t2))) ∈Mc (A.15)

(iii) R(t1, t2) ∈Mu, σ(t1) 6< σ(t2), σ(t1) ∈ NI and σ(t2) 6∈ NI implies

Rb(θ(σ(t1)), θ(σ(t2))) ∈Mc (A.16)

110 A. Proofs

(iv) R(t1, t2) ∈Mu, σ(t2) 6< σ(t1), and σ(t2) 6∈ NI implies

Rb(θ(σ(t1)), θ(σ(t2))) ∈Mc (A.17)

(v) R(t1, t2) ∈Mu, σ(t2) < σ(t1) and σ(t2) ∈ NI implies

Rf (θ(σ(t1)), θ(σ(t2))) ∈Mc or Rb(θ(σ(t1)), θ(σ(t2))) ∈Mc (A.18)

(vi) R(t1, t2) ∈Mu, σ(t2) 6< σ(t1), σ(t2) ∈ NI and σ(t1) 6∈ NI implies

Rf (θ(σ(t1)), θ(σ(t2))) ∈Mc (A.19)

Proof. We show that the claims of the lemma hold by induction on the derivation
level of atoms in Mu. Let a be an atom in Mu. We distinguish between these
cases:

(i) a = R(t1, t2) ∈Mu with σ(t1) < σ(t2), and σ(t1) 6∈ NI . Then there must be
a rule in π(K)≈,>:

(a) A(x)→ R(x, fAR,B(x)) ∧B(fAR,B(x)) with A(t1) ∈Mu and t2 = fAR,B(t1).
From Lemma A.8, A(θ(σ(t1))) ∈Mc and one of the following holds:

• R is unsafe and EK contains a rule of the form

A(x)→ Rf (x, fAR,B(x)) ∧B(fAR,B(x)) (A.20)

Then, Rf(θ(σ(t1)), fAR,B(θ(σ(t1)))) ∈ Mc. By definition of θ, we
have that fAR,B(θ(σ(t1))) = θ(fAR,B(σ(t1))), and, from Lemma A.7, we
can derive that fAR,B(σ(t1)) ≈ σ(fAR,B(t1)) ∈ Mc and fAR,B(t1) = t2.
Thus, fAR,B(θ(σ(t1))) ≈ θ(σ(t2)) and Rf (θ(σ(t1)), θ(σ(t2))) ∈Mc.

• R is safe and EK contains a rule of the form

A(x)∧notIn(x, unfold(A,R,B))→ Rf (x, vA,0R,B)∧B(vA,0R,B) (A.21)

and θ(σ(t1)) 6∈ unfold(A,R,B). Then, Rf(θ(σ(t1)), vA,0R,B) ∈ Mc

and, by Lemma A.7, θ(σ(t2)) = θ(σ(fAR,B(t1))) ≈ θ(fAR,B(σ(t1))) =
vA,0R,B. Hence, Rf (θ(σ(t1)), θ(σ(t2))) ∈Mc.

• R is safe and EK contains a rule A(x)→ Rf (x, vA,1R,B) ∧B(vA,1R,B) and
θ(σ(t1)) ∈ cycle(A,R,B). Similar to previous cases.

• R ∈ confl(R) and EK contains a rule A(vA,iRB
)→ Rf (vA,iR,B, v

A,i+1
R,B) ∧

B(vA,i+1
R,B) and θ(σ(t1)) = vA,iR,B. Similar to previous cases.

A. Proofs 111

(b) S(x, y) → R(x, y) with S(t1, t2) ∈ Mu. By IH we can derive that
Sf (θ(σ(t1)), θ(σ(t2))) ∈Mc and EK contains a rule Sf (x, y)→ Rf (x, y),
thus Rf (θ(σ(t1)), θ(σ(t2))) ∈Mc.

(c) Inv(R)(y, x)→ R(x, y) with Inv(R)(t2, t1) ∈Mu. By IH we can derive
that Inv(R)b(θ(σ(t2)), θ(σ(t1))) ∈Mc and Rf (θ(σ(t1)), θ(σ(t2))) ∈Mc.

(d) R(x, y), z ≈ y → R(x, z) and term t3 s.t. R(t1, t3), t3 ≈ t2 ∈ Mu.
Then, by Lemma A.7, σ(t3) ≈ σ(t2) ∈ Mu and, by Lemma A.8,
θ(σ(t3)) ≈ θ(σ(t2)) ∈ Mc. By IH over R(t1, t3), we can deduce that
Rf (θ(σ(t1)), θ(σ(t3))) ∈Mc.

(e) R(x, y), z ≈ x→ R(z, y) and term t3 s.t. R(t3, t2), t3 ≈ t1 ∈Mu. Similar
to previous cases.

(ii) a = R(t1, t2) ∈Mu, with σ(t1) < σ(t2), and σ(t1) ∈ NI — similar to case (i).

(iii) a = R(t1, t2) ∈ Mu, with σ(t1) 6< σ(t2), σ(t1) ∈ NI and σ(t2) 6∈ NI . Then,
there must be a rule in π(K)≈,>:

(a) A(x)→ R(x, fAR,B(x))∧B(fAR,B(x)), with A(t1) ∈Mu and t2 = fAR,B(t1).
But then, from Lemma A.7, it follows that either σ(t2) = h(σ(t1)),
which contradicts the constraints on the derivation level of σ(t1), σ(t2),
or σ(t2) ∈ NI , which contradicts the assumption that σ(t2) 6∈ NI .

(b) S(x, y)→ R(x, y) — similar to case (i)b.

(c) Inv(R)(y, x)→ R(x, y) — similar to case (i)c.

(d) R(x, y) ∧ y ≈ z → R(x, z) — similar to case (i)d.

(e) R(x, y) ∧ x ≈ z → R(z, y) — similar to case (i)e.

(iv) a = R(t1, t2) ∈Mu, with σ(t2) < σ(t1), and σ(t2) 6∈ NI — similar to case (iii).

(v) a = R(t1, t2) ∈Mu, with σ(t2) < σ(t1), and σ(t2) ∈ NI — similar to case (ii).

(vi) a = R(t1, t2) ∈Mu, with σ(t2) 6< σ(t1), σ(t2) ∈ NI and σ(t1) 6∈ NI — similar
to case (i).

Lemma A.10. For every t1, t2 ∈ terms(Mc), t1 ≈ t2 implies depthc(t1) =
depthc(t2).

Proof. Trivially proven by observing that, if t1 ≈ t2 then ηc(t1) = ηc(t2) and, since
Definition A.8 is based on ηc, depthc(t1) = depthc(t2).

112 A. Proofs

t1 ≈ s ≈ t3

t2 ≈ t ≈ t4

Rf T f T b Sf

Figure A.1: Ambiguous roles inMc in which both T f (s, t) and Tb(s, t) hold.

Lemma A.11. For every t ∈ terms(Mc), concepts A,B and role R, such that
vA,0R,B 6≈ a, for every a ∈ NI , it holds that:

1. t ∈ cycle(A,R,B) and Rf (t, vA,iR,B) ∈Mc implies i = 1;

2. t 6∈ cycle(A,R,B) and Rf (t, vA,iR,B) ∈Mc implies i = 0;

Proof. By definition of canonical model and Definition 4.4.1.

Lemma A.12. For any role T and terms s and t, it is not the case that both
T f (s, t) ∈Mc and T b(s, t) ∈Mc.

Proof. Assume the opposite. Then, there must be some roles R and S and terms t1,
t2, t3 and t4, such that R v∗R T , S v∗R Inv(T), t1 ≈ s, t2 ≈ t, t3 ≈ s, t4 ≈ t ∈ Mc,
Rf(t1, t2), Sf(t4, t3) ∈ Mc, t2 is of type (A,R,B) and t3 is of type (D,S,C) for
some concept A, B, C and D (see Fig. A.1).

We first deal with the case where one of t1, t2, t3 and t4 is equal to a named
individual. w.l.o.g., assume that t1 ≈ a ∈ Mc, with a ∈ NI . Then, t3 ≈ a ∈
Mc as well. From the fact that R(a, t2) ∈ Mc and Lemma A.1 it follows that
R(a, uAR,B) ∈MRSA. Furthermore, S(t4, t3) ∈Mc implies S(t2, a) ∈Mc, and thus
S(uAR,B, a) ∈MRSA. Since it holds that R v∗R T and S v∗R Inv(T), it follows that
K is not equality-safe — contradiction.

In the following, we assume that none of t1, t2, t3 or t4 are equal to a named
individual. Then one of the following holds:

• if t1 is of the form vD,iS,C , then, from Lemma A.3, t3 = t1. We then distinguish
between the following cases:

– t2 is of the form vA,iR,B. Then, by Lemma A.3, t4 = t2.

If (A,R,B) ≺ (D,S,C) we have that eithert1 = vD,0S,C

t2 = vA,1R,B

or

t1 = vD,1S,C

t2 = vA,0R,B

(A.22)

A. Proofs 113

and t3 = vD,0S,C

t4 = vA,0R,B

or

t3 = vD,1S,C

t4 = vA,1R,B

(A.23)

But this is a contradiction to the fact that t1 = t3 and t2 = t4.

A similar derivation can be done if (D,S,C) ≺ (A,R,B).

– t2 is of the form fAR,B(t1) and R is unsafe. Then, Sf(fAR,B(t1), t1) =
Sf(fAR,B(vD,iS,C), vD,iS,C) ∈ Mc. If i = 0, fAR,B(vD0

S,C) ∈ cycle(D,S,C) and,
from Lemma A.11, Sf (fAR,B(vD,0S,C), vD,0S,C) 6∈ Mc — contradiction. If i = 1,
fAR,B(vD,1S,C) 6∈ cycle(D,S,C). Thus, by Lemma A.11, we have that
Sf (fAR,B(vD,1S,C), vD,1S,C) 6∈ Mc — contradiction.

• if both t1 and t2 are functional, t3 and t4 are functional as well and t2 = fAR,B(t1)
and t3 = fDS,C(t4). From Lemma A.10, it follows that depthc(t1) = depthc(t3)
and depthc(t2) = depthc(t4). But depthc(t2) = depthc(t1)+1 and depthc(t3) =
depthc(t4) + 1 — contradiction.

Lemma A.13. Let ρ be a non-anonymous match for q over Mu and let λ(·) =
θ(σ(ρ(·))). Furthermore, let ~a be the following adornment for ψ(~x, ~y):

aj =


␣ if Rj(λ(u1j), λ(u2j)) ∈Mc and

Rf
j (λ(u1j), λ(u2j)), Rb

j(λ(u1j), λ(u2j)) 6∈ Mc

f if Rf
j (λ(u1j), λ(u2j)) ∈Mc

b if Rb
j(λ(u1j), λ(u2j)) ∈Mc

(A.24)

Then (λ,~a) is an adorned match for q overMc. Moreover, (λ,~a) is non-anonymous,
fork-free and acyclic.

Proof. Following from Lemma A.9, (λ,~a) is an adorned match for q overMc. It is
also easy to see that (λ,~a) is non-anonymous provided that ρ is non-anonymous.

To see that (λ,~a) is acyclic, assume the contrary. Then there exists a sequence
Rf
o1(yl1 , yl2), Rf

o2(yl3 , yl4), . . . , Rf
op

(yl2p−1 , yl2p) ∈ (ψ(~x, ~y))~an such that:

1. id(λ(~x), λ(~y), l2i, l2i+1) ∈M for every 1 ≤ i ≤ p where l2p+1 = l1;

2. NI(λ(ylj)) 6∈ M for every 1 ≤ j ≤ 2p.

114 A. Proofs

Let si = σ(ρ(yl2i
)) for 1 ≤ i ≤ p. Then

Ro1(sp, s1), Ro2(s1, s2), . . . , Rop(sp−1, sp) ∈Mu (A.25)

where si 6∈ NI for every 1 ≤ i ≤ p. Then, by Lemma A.8, Lemma A.9 and
Lemma A.12 and from the fact that Rf

oi
(θ(si), θ(si+1)) ∈ Mc for every 1 ≤ i ≤ p,

it follows that si < si+1, for every 1 ≤ i ≤ p. But then si < si holds, which is a
contradiction.

To see that (λ,~a) is fork-free, we assume again the contrary. Then, there must
be a pair of axioms Rf (u, yi), Sf (v, yj) ∈ (ψ(~x, ~y))~an, such that u, v ∈ ~x∪~y, yi, yj ∈ ~y
and id(λ(~x), λ(~y), i, j) ∈M and λ(u) 6≈ λ(v).

From the fact that id(λ(~x), λ(~y), i, j) ∈M, it follows that either:

• i = j: in this scenario, since NI(λ(yi)), NI(λ(yj)) 6∈ M, it follows that
NI(σ(ρ(yi))), NI(σ(ρ(yj))) 6∈ Mu, σ(ρ(yi)) = fR,B(σ(ρ(u))) and σ(ρ(yj)) =
fS,C(σ(ρ(v))). But, as i = j, we have σ(ρ(yi)) = σ(ρ(yj)), fR,B, fS,C are
the same function symbol and σ(ρ(u)) = σ(ρ(v)). Then λ(u) = λ(v) —
contradiction.

• or there exist two sequences of atoms:

– Rf
l1(yi, yl1), . . . , Rf

lm
(ylm−1 , ylm)

– Rf
k1(yj, yk1), . . . , Rf

km
(ykm−1 , ykm)

such that lm = km and id(λ(~x), λ(~y), li, ki) ∈M, for every 1 ≤ i ≤ m.

Then, it can be shown by induction on the lengthm of the sequences introduced
above that σ(ρ(yli)) = σ(ρ(yki

)), for every 1 ≤ i ≤ m and that σ(ρ(u)) =
σ(ρ(v)). Finally, we obtain λ(u) = λ(v) — contradiction.

Theorem 5.3.1. Let K be a satisfiable ALCHOIQ+ KB and K′ = upper(δ(K)).
Moreover, let q(~x) = ∃~yϕ(~x, ~y) be a CQ. Then,

(i) K′ is RSA+,

(ii) cert(q,K) ⊆ cert(q,K′),

(iii) if ~x ∈ cert(q,K) then PK′,q |= Ans(~x).

Proof. Consider the following

A. Proofs 115

(i) Both the construction of GK and the definition of equality safety are expressed
in a purely syntactical way. It is easy to see that rewriting the axioms (T4)
and (T5), as defined in Def. 5.3.2, is enough to render the knowledge base
RSA+.

(ii) In order to prove that cert(q,K) ⊆ cert(q,K′), we will show that for every
model I such that I is a model of K′, I is a model of K.2

Given a model I for K′, we know that there are four possible ways in which
K′ differs from K:

(a) An axiom α ≡ A v ∃R.B ∈ K has been rewritten into β ≡ A v
∃R.{bAR,B} and B(bAR,B). Since we have that I |= β, we know that for
every a ∈ AI , we have (a, bAR,B) ∈ RI and bAR,B ∈ BI . But then I is also
a model of the KB where β has been substituted with α.

(b) An axiom α ≡ C v≤ 1S.D ∈ K has been rewritten into β ≡ Cu∃S.D v
⊥f . Since we have that I |= β, we know that for every c ∈ CI , there is
no individual d such that (c, d) ∈ SI and d ∈ DI . But then I is also a
model of the KB where β has been substituted with α.

(c) An axiom α ≡ A v≤ mR.B ∈ K has been rewritten into β ≡ A v≤
1R.B. Similar to the previous steps.

(d) An axiom α ≡
dn
i=1Ai v

⊔m
j=1Bj has been rewritten into β ≡

dn
i=1Ai v

B with B = ch({Bj | 1 ≤ j ≤ m}). Similar to the previous steps.

(iii) Assume ~x ∈ cert(q,K). By step (ii) we know that ~x ∈ cert(q,K′). Then
according to Lemma A.6, there exists a match ρ for q overMu. According
to Lemma A.13 one can construct from ρ a match (λ,~a) over Mc which
is non-anonymous, fork-free and acyclic. Note that λ does not necessarily
preserve the mapping of ρ over terms(q) \ ~y, since λ is based on the definition
of σ, which maps over representatives of a certain equivalence class induced
by ≈. λ can be transformed into another mapping λ′ such that

λ′(t) =

ρ(t) for every t ∈ terms(q) \ ~y
t otherwise

(A.26)

It can be checked that (λ′,~a) is still non-anonymous, fork-free and acyclic
(intuitively because we are only updating the non-anonymous part). Then, by
applying Lemma A.5, we obtain that PK′,q |= Ans(λ(~x)).

2Here we are using an alternative, but equivalent, definition of certain answer. Given a query
q(~x) and a KB K, ~a ∈ cert(q,K) iff K, I |= q(~a) for every model I of K.

116

B
Naming convention for DLs

A DL language definition determines the constructors and axioms available in
its syntax. In order to distinguish between different DLs, a mnemonic naming
convention has been introduced in the DL community; as such, a DL language is
usually named according to a basic DL, and by adding letters and symbols according
to the concept constructors, role constructors and axioms available. Table B.1 [4]
introduces the symbols associated with the different language features mentioned
in this work, and the definition of three basic DL languages, i.e., AL, EL, and S.

Note that the definition of the symbol + is non-standard and it can appear in
literature with the generic meaning of “additional features”. In this work we will
adopt the definition proposed by Motik, Shearer, and Horrocks [78].

1Includes disjoint (Dis), (ir)reflexive (Ref, Irr), (a)symmetric (Sym, Asy) roles.

117

118 B. Naming convention for DLs

Description Syntax Sym AL EL S
Top > X X X
Bottom ⊥ ⊥ X X
Conjunction C uD X X X
Atomic negation ¬A X X
Value restriction ∀R.C X X
Disjunction C tD U X
Negation ¬C C,¬ X
Existential restriction ∃R.C E X X
Unqualified ≤ nR N
number restriction ≥ nR
Qualified ≤ nR.C Q
number restriction ≥ nR.C
Nominal {a} O
Range range(R,C) r

Inverse role R− I
Role inclusion R v S H
Complex role inclusion R1 ◦ · · · ◦Rm v S R
Functionality Func(R) F
Transitivity Trans(R) R+ X
Additional roles1 (see note) +

Datatype properties (D)

Table B.1: Naming convention for DLs, with A ∈ NC , a ∈ NI , n,m ∈ N, C,D concepts,
R1, . . . , Rm, R, S roles.

C
Benchmark queries

Following are the queries initially introduced by Feier, Carral, Stefanoni, et al. [29]
and used in this work as part of the benchmark for RSAComb.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX : <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl#>
3 SELECT *
4 WHERE {
5 ?X rdf:type : Student .
6 ?X : takesCourse ?Y .
7 ?Z rdf:type : Student .
8 ?Z : takesCourse ?Y .
9 ?Y rdf:type : Course .

10 ?X : advisor ?Z .
11 ?Z : advisor ?W .
12 }

Listing C.1: LUBM ontology, query 1.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX : <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl#>
3 SELECT *
4 WHERE {
5 ?X : headOf ?Y .
6 ?Z : headOf ?Y .
7 ?Y rdf:type : Department .
8 }

Listing C.2: LUBM ontology, query 2.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX : <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl#>
3 SELECT *
4 WHERE {
5 ?X rdf:type : Student .
6 ?X : takesCourse ?Y .

119

120 C. Benchmark queries

7 ?Y rdf:type : Course .
8 ?Y : teacherOf ?Z .
9 }

Listing C.3: LUBM ontology, query 3.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX : <http :// www. lehigh .edu /~ zhp2 /2004/0401/ univ -bench.owl#>
3 SELECT *
4 WHERE {
5 ?X rdf:type : Professor .
6 ?Y : publicationAuthor ?X .
7 ?Y rdf:type : Publication .
8 ?Y : memberOf ?Z .
9 ?Z rdf:type : Department .

10 }

Listing C.4: LUBM ontology, query 4.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX : <http :// www. biopax .org/ release /biopax - level3 .owl#>
3 SELECT ?X ?Y ?Z
4 WHERE {
5 ?X rdf:type : Pathway .
6 ?X : pathwayComponent ?Y .
7 ?Y rdf:type : BiochemicalReaction .
8 ?Y : participant ?Z .
9 ?Z rdf:type : Protein .

10 }

Listing C.5: Reactome ontology, query 1.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX : <http :// www. biopax .org/ release /biopax - level3 .owl#>
3 SELECT ?X ?Y ?Z
4 WHERE {
5 ?X rdf:type : Pathway .
6 ?X : pathwayComponent ?Y .
7 ?Y rdf:type : BiochemicalReaction .
8 ?Y : participant ?Z .
9 ?Z rdf:type : Complex .

10 }

Listing C.6: Reactome ontology, query 2.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX : <http :// www. biopax .org/ release /biopax - level3 .owl#>
3 SELECT ?X ?Y ?Z ?W
4 WHERE {
5 ?X : participantStoichiometry ?Y .
6 ?Y : physicalEntity ?Z .
7 ?Z : participantStoichiometry ?W .
8 ?W : physicalEntity ?Z .
9 }

Listing C.7: Reactome ontology, query 3.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995. url: http://webdam.inria.fr/Alice/.

[2] Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Mattia Palmieri, and Riccardo Rosati. “QuOnto: Querying
Ontologies”. In: Proceedings, The Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA. Ed. by
Manuela M. Veloso and Subbarao Kambhampati. AAAI Press / The MIT Press,
2005, pp. 1670–1671. url:
http://www.aaai.org/Library/AAAI/2005/isd05-001.php.

[3] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, eds. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[4] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to
Description Logic. Cambridge University Press, 2017.

[5] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov,
Zdravko Tashev, and Ruslan Velkov. “OWLIM: A family of scalable semantic
repositories”. In: Semantic Web 2.1 (2011), pp. 33–42. url:
https://doi.org/10.3233/SW-2011-0026.

[6] Dan Brickley and Ramanathan Guha. RDF Schema 1.1. W3C Recommendation.
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/. W3C, Feb. 2014.

[7] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. “Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema”. In: The Semantic
Web - ISWC 2002, First International Semantic Web Conference, Sardinia, Italy,
June 9-12, 2002, Proceedings. Ed. by Ian Horrocks and James A. Hendler.
Vol. 2342. Lecture Notes in Computer Science. Springer, 2002, pp. 54–68. url:
https://doi.org/10.1007/3-540-48005-6%5C_7.

[8] Lorenz Bühmann, Jens Lehmann, and Patrick Westphal. “DL-Learner - A
framework for inductive learning on the Semantic Web”. In: J. Web Semant. 39
(2016), pp. 15–24. url: https://doi.org/10.1016/j.websem.2016.06.001.

[9] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. “Data Complexity of Query Answering in Description
Logics”. In: Proceedings, Tenth International Conference on Principles of
Knowledge Representation and Reasoning, Lake District of the United Kingdom,
June 2-5, 2006. AAAI Press, 2006, pp. 260–270.

121

http://webdam.inria.fr/Alice/
http://www.aaai.org/Library/AAAI/2005/isd05-001.php
https://doi.org/10.3233/SW-2011-0026
https://doi.org/10.1007/3-540-48005-6%5C_7
https://doi.org/10.1016/j.websem.2016.06.001

122 References

[10] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. “Tractable Reasoning and Efficient Query Answering in
Description Logics: The DL-Lite Family”. In: Journal of Automated Reasoning
39.3 (2007), pp. 385–429.

[11] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and
Domenico Fabio Savo. “The MASTRO system for ontology-based data access”. In:
Semantic Web 2.1 (2011), pp. 43–53. url:
https://doi.org/10.3233/SW-2011-0029.

[12] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. “Data complexity of query answering in description logics”.
In: Artif. Intell. 195 (2013), pp. 335–360. url:
https://doi.org/10.1016/j.artint.2012.10.003.

[13] David Carral, Irina Dragoste, and Markus Krötzsch. “The Combined Approach to
Query Answering in Horn-ALCHOIQ”. In: Principles of Knowledge
Representation and Reasoning: Proceedings of the Sixteenth International
Conference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018. Ed. by
Michael Thielscher, Francesca Toni, and Frank Wolter. AAAI Press, 2018,
pp. 339–348. url:
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18076.

[14] David Carral, Cristina Feier, Bernardo Cuenca Grau, Pascal Hitzler, and
Ian Horrocks. “Pushing the Boundaries of Tractable Ontology Reasoning”. In:
The Semantic Web - ISWC 2014 - 13th International Semantic Web Conference,
Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part II. Vol. 8797.
Lecture Notes in Computer Science. Springer, 2014, pp. 148–163.

[15] Werner Ceusters, Barry Smith, and L Goldberg. “A Terminological and
Ontological Analysis of the NCI Thesaurus”. In: Methods of information in
medicine 44 (Feb. 2005), pp. 498–507.

[16] Pierre Chaussecourte, Birte Glimm, Ian Horrocks, Boris Motik, and
Laurent Pierre. “The Energy Management Adviser at EDF”. In: Oct. 2013,
pp. 49–64.

[17] Sofia Cramerotti and Dario Ianes. “An Ontology-based System for Building
Individualized Education Plans for Students with Special Educational Needs”. In:
Procedia - Social and Behavioral Sciences 217 (Feb. 2016), pp. 192–200.

[18] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
“Complexity and expressive power of logic programming”. In: ACM Comput. Surv.
33.3 (2001), pp. 374–425. url: https://doi.org/10.1145/502807.502810.

[19] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF
Mapping Language. W3C Recommendation.
https://www.w3.org/TR/2012/REC-r2rml-20120927/. W3C, Sept. 2012.

[20] Sebastian Derriere, André Richard, and Andrea Preite-Martinez. “An ontology of
sstronomical object types for the Virtual Observatory”. In: Proceedings of the
International Astronomical Union 2 (Aug. 2006), pp. 603–603.

https://doi.org/10.3233/SW-2011-0029
https://doi.org/10.1016/j.artint.2012.10.003
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18076
https://doi.org/10.1145/502807.502810

References 123

[21] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Aaron Kershenbaum,
Edith Schonberg, Kavitha Srinivas, and Li Ma. “Scalable Semantic Retrieval
through Summarization and Refinement”. In: Proceedings of the Twenty-Second
AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver, British
Columbia, Canada. AAAI Press, 2007, pp. 299–304. url:
http://www.aaai.org/Library/AAAI/2007/aaai07-046.php.

[22] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Edith Schonberg, and
Kavitha Srinivas. “Scalable highly expressive reasoner (SHER)”. In: J. Web
Semant. 7.4 (2009), pp. 357–361. url:
https://doi.org/10.1016/j.websem.2009.05.002.

[23] Martin Dürst and Michel Suignard. Internationalized Resource Identifiers (IRIs).
RFC 3987. https://www.rfc-editor.org/rfc/rfc3987.html. Jan. 2005.

[24] Thomas Eiter, Michael Fink, Hans Tompits, and Stefan Woltran. “On Eliminating
Disjunctions in Stable Logic Programming”. In: Principles of Knowledge
Representation and Reasoning: Proceedings of the Ninth International Conference
(KR2004), Whistler, Canada, June 2-5, 2004. Ed. by Didier Dubois,
Christopher A. Welty, and Mary-Anne Williams. AAAI Press, 2004, pp. 447–458.
url: http://www.aaai.org/Library/KR/2004/kr04-047.php.

[25] Thomas Eiter, Carsten Lutz, Magdalena Ortiz, and Mantas Simkus. “Query
Answering in Description Logics with Transitive Roles”. In: IJCAI 2009,
Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009. 2009, pp. 759–764.

[26] Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and
Guohui Xiao. “Query Rewriting for Horn-SHIQ Plus Rules”. In: Proceedings of
the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012,
Toronto, Ontario, Canada. Ed. by Jörg Hoffmann and Bart Selman. AAAI Press,
2012. url:
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4931.

[27] Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and
Guohui Xiao. “Towards Practical Query Answering for Horn-SHIQ”. In:
Proceedings of the 2012 International Workshop on Description Logics, DL-2012,
Rome, Italy, June 7-10, 2012. Ed. by Yevgeny Kazakov, Domenico Lembo, and
Frank Wolter. Vol. 846. CEUR Workshop Proceedings. CEUR-WS.org, 2012. url:
http://ceur-ws.org/Vol-846/paper%5C_20.pdf.

[28] Orri Erling and Ivan Mikhailov. “Virtuoso: RDF Support in a Native RDBMS”.
In: Semantic Web Information Management - A Model-Based Perspective. Ed. by
Roberto De Virgilio, Fausto Giunchiglia, and Letizia Tanca. Springer, 2009,
pp. 501–519. url: https://doi.org/10.1007/978-3-642-04329-1%5C_21.

[29] Cristina Feier, David Carral, Giorgio Stefanoni, Bernardo Cuenca Grau, and
Ian Horrocks. “The Combined Approach to Query Answering Beyond the OWL 2
Profiles”. In: Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015.
AAAI Press, 2015, pp. 2971–2977.

http://www.aaai.org/Library/AAAI/2007/aaai07-046.php
https://doi.org/10.1016/j.websem.2009.05.002
http://www.aaai.org/Library/KR/2004/kr04-047.php
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4931
http://ceur-ws.org/Vol-846/paper%5C_20.pdf
https://doi.org/10.1007/978-3-642-04329-1%5C_21

124 References

[30] Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari, and
Luc Schneider. “Sweetening Ontologies with DOLCE”. In: Knowledge Engineering
and Knowledge Management. Ontologies and the Semantic Web, 13th
International Conference, EKAW 2002, Siguenza, Spain, October 1-4, 2002,
Proceedings. Ed. by Asunción Gómez-Pérez and V. Richard Benjamins. Vol. 2473.
Lecture Notes in Computer Science. Springer, 2002, pp. 166–181. url:
https://doi.org/10.1007/3-540-45810-7%5C_18.

[31] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang.
“HermiT: An OWL 2 Reasoner”. In: Journal of Automated Reasoning 53.3 (2014),
pp. 245–269.

[32] Birte Glimm, Ian Horrocks, and Ulrike Sattler. “Conjunctive Query Entailment
for SHOQ”. In: Proceedings of the 2007 International Workshop on Description
Logics (DL2007), Brixen-Bressanone, near Bozen-Bolzano, Italy, 8-10 June, 2007.
Ed. by Diego Calvanese, Enrico Franconi, Volker Haarslev, Domenico Lembo,
Boris Motik, Anni-Yasmin Turhan, and Sergio Tessaris. Vol. 250. CEUR
Workshop Proceedings. CEUR-WS.org, 2007. url:
http://ceur-ws.org/Vol-250/paper%5C_63.pdf.

[33] Birte Glimm, Yevgeny Kazakov, Ilianna Kollia, and Giorgos B. Stamou. “Lower
and Upper Bounds for SPARQL Queries over OWL Ontologies”. In: Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA. Ed. by Blai Bonet and Sven Koenig. AAAI Press,
2015, pp. 109–115. url:
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9715.

[34] Birte Glimm, Yevgeny Kazakov, Ilianna Kollia, and Giorgos B. Stamou. “OWL
Query Answering Based on Query Extension”. In: Proceedings of the 11th
International Workshop on OWL: Experiences and Directions (OWLED 2014)
co-located with 13th International Semantic Web Conference on (ISWC 2014),
Riva del Garda, Italy, October 17-18, 2014. Ed. by C. Maria Keet and
Valentina A. M. Tamma. Vol. 1265. CEUR Workshop Proceedings.
CEUR-WS.org, 2014, pp. 1–12. url:
http://ceur-ws.org/Vol-1265/owled2014%5C_submission%5C_1.pdf.

[35] Birte Glimm, Yevgeny Kazakov, and Carsten Lutz. “Status QIO: An Update”. In:
Proceedings of the 24th International Workshop on Description Logics (DL 2011),
Barcelona, Spain, July 13-16, 2011. Ed. by Riccardo Rosati, Sebastian Rudolph,
and Michael Zakharyaschev. Vol. 745. CEUR Workshop Proceedings.
CEUR-WS.org, 2011. url: http://ceur-ws.org/Vol-745/paper%5C_44.pdf.

[36] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. “Conjunctive Query
Answering for the Description Logic SHIQ”. In: Journal of Artificial Intelligence
Research 31 (2008), pp. 157–204.

[37] Birte Glimm and Chimezie Ogbuji. SPARQL 1.1 Entailment Regimes. W3C
Recommendation.
https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/. W3C, Mar.
2013.

[38] Christine Golbreich. “The Foundational Model of Anatomy in OWL: Experience
and Perspectives.” In: Jan. 2005.

https://doi.org/10.1007/3-540-45810-7%5C_18
http://ceur-ws.org/Vol-250/paper%5C_63.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9715
http://ceur-ws.org/Vol-1265/owled2014%5C_submission%5C_1.pdf
http://ceur-ws.org/Vol-745/paper%5C_44.pdf

References 125

[39] Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke,
Despoina Magka, Boris Motik, and Zhe Wang. “Acyclicity Notions for Existential
Rules and Their Application to Query Answering in Ontologies”. In: J. Artif.
Intell. Res. 47 (2013), pp. 741–808. url: https://doi.org/10.1613/jair.3949.

[40] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia,
Peter F. Patel-Schneider, and Ulrike Sattler. “OWL 2: The next step for OWL”.
In: J. Web Semant. 6.4 (2008), pp. 309–322. url:
https://doi.org/10.1016/j.websem.2008.05.001.

[41] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. “Description
logic programs: combining logic programs with description logic”. In: Proceedings
of the Twelfth International World Wide Web Conference, WWW 2003, Budapest,
Hungary, May 20-24, 2003. ACM, 2003, pp. 48–57.

[42] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. “LUBM: A benchmark for OWL
knowledge base systems”. In: Journal of Web Semantics 3.2-3 (2005), pp. 158–182.
url: https://doi.org/10.1016/j.websem.2005.06.005.

[43] Volker Haarslev, Kay Hidde, Ralf Möller, and Michael Wessel. “The RacerPro
knowledge representation and reasoning system”. In: Semantic Web 3.3 (2012),
pp. 267–277. url: https://doi.org/10.3233/SW-2011-0032.

[44] Anneke Haga, Carsten Lutz, Leif Sabellek, and Frank Wolter. “How to
Approximate Ontology-Mediated Queries”. In: Proceedings of the 18th
International Conference on Principles of Knowledge Representation and
Reasoning, KR 2021, Online event, November 3-12, 2021. 2021, pp. 323–333. url:
https://doi.org/10.24963/kr.2021/31.

[45] Steven Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C
Recommendation. https://www.w3.org/TR/2013/REC-sparql11-query-20130321/.
W3C, Mar. 2013.

[46] Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, and Tuvshintur Tserendorj.
“Approximate OWL Instance Retrieval with SCREECH”. In: Logic and
Probability for Scene Interpretation, 24.02. - 29.02.2008. Ed. by
Anthony G. Cohn, David C. Hogg, Ralf Möller, and Bernd Neumann. Vol. 08091.
Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2008. url:
http://drops.dagstuhl.de/opus/volltexte/2008/1615/.

[47] Robert Hoehndorf, Michel Dumontier, and Georgios Gkoutos. “Evaluation of
research in biomedical ontologies”. In: Briefings in bioinformatics 14 (Sept. 2012).

[48] Matthew Horridge and Sean Bechhofer. “The OWL API: A Java API for OWL
ontologies”. In: Semantic Web 2.1 (2011), pp. 11–21. url:
https://doi.org/10.3233/SW-2011-0025.

[49] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. “The Even More Irresistible
SROIQ”. In: Proceedings, Tenth International Conference on Principles of
Knowledge Representation and Reasoning, Lake District of the United Kingdom,
June 2-5, 2006. Ed. by Patrick Doherty, John Mylopoulos, and
Christopher A. Welty. AAAI Press, 2006, pp. 57–67. url:
http://www.aaai.org/Library/KR/2006/kr06-009.php.

https://doi.org/10.1613/jair.3949
https://doi.org/10.1016/j.websem.2008.05.001
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.3233/SW-2011-0032
https://doi.org/10.24963/kr.2021/31
http://drops.dagstuhl.de/opus/volltexte/2008/1615/
https://doi.org/10.3233/SW-2011-0025
http://www.aaai.org/Library/KR/2006/kr06-009.php

126 References

[50] Ian Horrocks and Sergio Tessaris. “A Conjunctive Query Language for
Description Logic Aboxes”. In: Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on on Innovative
Applications of Artificial Intelligence, July 30 - August 3, 2000, Austin, Texas,
USA. Ed. by Henry A. Kautz and Bruce W. Porter. AAAI Press / The MIT Press,
2000, pp. 399–404. url:
http://www.aaai.org/Library/AAAI/2000/aaai00-061.php.

[51] Dag Hovland, Roman Kontchakov, Martin G. Skjæveland, Arild Waaler, and
Michael Zakharyaschev. “Ontology-Based Data Access to Slegge”. In: The
Semantic Web - ISWC 2017 - 16th International Semantic Web Conference,
Vienna, Austria, October 21-25, 2017, Proceedings, Part II. Vol. 10588. Lecture
Notes in Computer Science. Springer, 2017, pp. 120–129.

[52] Pan Hu, Boris Motik, and Ian Horrocks. “Modular Materialisation of Datalog
Programs”. In: The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019. AAAI Press, 2019, pp. 2859–2866. url:
https://doi.org/10.1609/aaai.v33i01.33012859.

[53] Federico Igne, Stefano Germano, and Ian Horrocks. ACQuA - A hybrid framework
providing a CQ answering service for OWL. Version v0.2.1. May 2022. url:
https://doi.org/10.5281/zenodo.6564388.

[54] Federico Igne, Stefano Germano, and Ian Horrocks. Benchmarks and scripts for
ACQuA and RSAComb. Zenodo, May 2022. url:
https://doi.org/10.5281/zenodo.6564995.

[55] Federico Igne, Stefano Germano, and Ian Horrocks. “Computing CQ
Lower-Bounds over OWL 2 Through Approximation to RSA”. In: The Semantic
Web - ISWC 2021 - 20th International Semantic Web Conference, ISWC 2021,
Virtual Event, October 24-28, 2021, Proceedings. Ed. by Andreas Hotho,
Eva Blomqvist, Stefan Dietze, Achille Fokoue, Ying Ding, Payam M. Barnaghi,
Armin Haller, Mauro Dragoni, and Harith Alani. Vol. 12922. Lecture Notes in
Computer Science. Springer, 2021, pp. 200–216. url:
https://doi.org/10.1007/978-3-030-88361-4%5C_12.

[56] Federico Igne, Stefano Germano, and Ian Horrocks. RSAComb - Combined
approach for Conjunctive Query answering in RSA. Version 1.1.0. May 2022. url:
https://doi.org/10.5281/zenodo.6564261.

[57] Federico Igne, Stefano Germano, and Ian Horrocks. “RSAComb: Combined
Approach for CQ Answering in RSA”. In: Proceedings of the 34th International
Workshop on Description Logics (DL 2021) part of Bratislava Knowledge
September (BAKS 2021), Bratislava, Slovakia, September 19th to 22nd, 2021.
Ed. by Martin Homola, Vladislav Ryzhikov, and Renate A. Schmidt. Vol. 2954.
CEUR Workshop Proceedings. CEUR-WS.org, 2021. url:
http://ceur-ws.org/Vol-2954/paper-18.pdf.

http://www.aaai.org/Library/AAAI/2000/aaai00-061.php
https://doi.org/10.1609/aaai.v33i01.33012859
https://doi.org/10.5281/zenodo.6564388
https://doi.org/10.5281/zenodo.6564995
https://doi.org/10.1007/978-3-030-88361-4%5C_12
https://doi.org/10.5281/zenodo.6564261
http://ceur-ws.org/Vol-2954/paper-18.pdf

References 127

[58] Evgeny Kharlamov, Dag Hovland, Ernesto Jiménez-Ruiz, Davide Lanti,
Hallstein Lie, Christoph Pinkel, et al. “Ontology Based Access to Exploration
Data at Statoil”. In: The Semantic Web - ISWC 2015 - 14th International
Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015,
Proceedings, Part II. Vol. 9367. Lecture Notes in Computer Science. Springer,
2015, pp. 93–112.

[59] Ilianna Kollia and Birte Glimm. “Optimizing SPARQL Query Answering over
OWL Ontologies”. In: J. Artif. Intell. Res. 48 (2013), pp. 253–303. url:
https://doi.org/10.1613/jair.3872.

[60] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and
Michael Zakharyaschev. “The Combined Approach to Ontology-Based Data
Access”. In: IJCAI 2011, Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011. Ed. by
Toby Walsh. IJCAI/AAAI, 2011, pp. 2656–2661. url:
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-442.

[61] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and
Michael Zakharyaschev. “The Combined Approach to Query Answering in
DL-Lite”. In: Principles of Knowledge Representation and Reasoning: Proceedings
of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada,
May 9-13, 2010. AAAI Press, 2010.

[62] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. “Conjunctive Queries
for a Tractable Fragment of OWL 1.1”. In: Jan. 2007, pp. 310–323.

[63] Lee Lacy, Gabriel Aviles, Karen Fraser, William Gerber, Alice Mulvehill, and
Robert Gaskill. “Experiences Using OWL in Military Applications.” In: Jan. 2005.

[64] Jens Lehmann and Pascal Hitzler. “Concept learning in description logics using
refinement operators”. In: Mach. Learn. 78.1-2 (2010), pp. 203–250. url:
https://doi.org/10.1007/s10994-009-5146-2.

[65] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob,
Simona Perri, and Francesco Scarcello. “The DLV system for knowledge
representation and reasoning”. In: ACM Trans. Comput. Log. 7.3 (2006),
pp. 499–562. url: https://doi.org/10.1145/1149114.1149117.

[66] Carsten Lutz. “The Complexity of Conjunctive Query Answering in Expressive
Description Logics”. In: Automated Reasoning, 4th International Joint Conference,
IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings. Vol. 5195.
Lecture Notes in Computer Science. Springer, 2008, pp. 179–193.

[67] Carsten Lutz, Inanç Seylan, David Toman, and Frank Wolter. “The Combined
Approach to OBDA: Taming Role Hierarchies Using Filters”. In: The Semantic
Web - ISWC 2013 - 12th International Semantic Web Conference, Sydney, NSW,
Australia, October 21-25, 2013, Proceedings, Part I. Ed. by Harith Alani,
Lalana Kagal, Achille Fokoue, Paul Groth, Chris Biemann,
Josiane Xavier Parreira, Lora Aroyo, Natasha F. Noy, Chris Welty, and
Krzysztof Janowicz. Vol. 8218. Lecture Notes in Computer Science. Springer, 2013,
pp. 314–330. url: https://doi.org/10.1007/978-3-642-41335-3%5C_20.

https://doi.org/10.1613/jair.3872
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-442
https://doi.org/10.1007/s10994-009-5146-2
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1007/978-3-642-41335-3%5C_20

128 References

[68] Carsten Lutz, David Toman, and Frank Wolter. “Conjunctive Query Answering in
the Description Logic EL Using a Relational Database System”. In: IJCAI 2009,
Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009. Ed. by Craig Boutilier. 2009,
pp. 2070–2075. url: http://ijcai.org/Proceedings/09/Papers/341.pdf.

[69] Bruno Marnette. “Generalized schema-mappings: from termination to
tractability”. In: Proceedings of the Twenty-Eigth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2009, June 19 - July 1, 2009, Providence, Rhode Island, USA. Ed. by
Jan Paredaens and Jianwen Su. ACM, 2009, pp. 13–22. url:
https://doi.org/10.1145/1559795.1559799.

[70] Brian McBride. “Jena: Implementing the RDF Model and Syntax Specification”.
In: Proceedings of the Second International Workshop on the Semantic Web -
SemWeb’2001, Hongkong, China, May 1, 2001. Ed. by Stefan Decker,
Dieter A. Fensel, Amit P. Sheth, and Steffen Staab. Vol. 40. CEUR Workshop
Proceedings. CEUR-WS.org, 2001. url:
http://CEUR-WS.org/Vol-40/mcbride.pdf.

[71] Marvin Minsky. “A framework for representing knowledge”. In: Mind Desing. The
MIT Press, 1981.

[72] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and
Carsten Lutz. OWL 2 Web Ontology Language Profiles (Second Edition). W3C
Recommendation. https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/.
W3C, Dec. 2012.

[73] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. “Combining Rewriting
and Incremental Materialisation Maintenance for Datalog Programs with
Equality”. In: Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015.
AAAI Press, 2015, pp. 3127–3133.

[74] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. “Handling Owl:
sameAs via Rewriting”. In: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA. AAAI Press,
2015, pp. 231–237.

[75] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. “Incremental Update
of Datalog Materialisation: the Backward/Forward Algorithm”. In: Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA. AAAI Press, 2015, pp. 1560–1568.

[76] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. “Parallel
Materialisation of Datalog Programs in Centralised, Main-Memory RDF Systems”.
In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada. AAAI Press, 2014, pp. 129–137.

[77] Boris Motik, Peter Patel-Schneider, and Bijan Parsia. OWL 2 Web Ontology
Language Structural Specification and Functional-Style Syntax (Second Edition).
W3C Recommendation.
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/. W3C, Dec. 2012.

http://ijcai.org/Proceedings/09/Papers/341.pdf
https://doi.org/10.1145/1559795.1559799
http://CEUR-WS.org/Vol-40/mcbride.pdf

References 129

[78] Boris Motik, Rob Shearer, and Ian Horrocks. “Hypertableau Reasoning for
Description Logics”. In: Journal of Artificial Intelligence Research 36 (2009),
pp. 165–228.

[79] Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee.
“RDFox: A Highly-Scalable RDF Store”. In: The Semantic Web - ISWC 2015 -
14th International Semantic Web Conference, Bethlehem, PA, USA, October
11-15, 2015, Proceedings, Part II. Vol. 9367. Lecture Notes in Computer Science.
Springer, 2015, pp. 3–20.

[80] Giorgio Orsi and Andreas Pieris. “Optimizing Query Answering under Ontological
Constraints”. In: Proc. VLDB Endow. 4.11 (2011), pp. 1004–1015. url:
http://www.vldb.org/pvldb/vol4/p1004-orsi.pdf.

[81] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. “Data Complexity of
Query Answering in Expressive Description Logics via Tableaux”. In: J. Autom.
Reason. 41.1 (2008), pp. 61–98. url:
https://doi.org/10.1007/s10817-008-9102-9.

[82] Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. “Query Answering in
the Horn Fragments of the Description Logics SHOIQ and SROIQ”. In: IJCAI
2011, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011. IJCAI/AAAI, 2011,
pp. 1039–1044.

[83] Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. “Worst-Case Optimal
Reasoning for the Horn-DL Fragments of OWL 1 and 2”. In: Principles of
Knowledge Representation and Reasoning: Proceedings of the Twelfth
International Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010.
Ed. by Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski. AAAI Press,
2010. url: http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296.

[84] Magdalena Ortiz and Mantas Simkus. “Reasoning and Query Answering in
Description Logics”. In: Reasoning Web. Semantic Technologies for Advanced
Query Answering - 8th International Summer School 2012, Vienna, Austria,
September 3-8, 2012. Proceedings. Ed. by Thomas Eiter and
Thomas Krennwallner. Vol. 7487. Lecture Notes in Computer Science. Springer,
2012, pp. 1–53. url: https://doi.org/10.1007/978-3-642-33158-9%5C_1.

[85] David Osumi-Sutherland, Simon Reeve, Christopher Mungall, Fabian Neuhaus,
Alan Ruttenberg, Gregory Jefferis, and James Armstrong. “A strategy for
building neuroanatomy ontologies”. In: Bioinformatics (Oxford, England) 28 (Mar.
2012), pp. 1262–9.

[86] Jeff Z. Pan and Edward Thomas. “Approximating OWL-DL Ontologies”. In:
Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence,
July 22-26, 2007, Vancouver, British Columbia, Canada. AAAI Press, 2007,
pp. 1434–1439. url:
http://www.aaai.org/Library/AAAI/2007/aaai07-227.php.

[87] Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik. “Efficient Query Answering
for OWL 2”. In: The Semantic Web - ISWC 2009, 8th International Semantic Web
Conference, ISWC 2009, Chantilly, VA, USA, October 25-29, 2009. Proceedings.
Vol. 5823. Lecture Notes in Computer Science. Springer, 2009, pp. 489–504.

http://www.vldb.org/pvldb/vol4/p1004-orsi.pdf
https://doi.org/10.1007/s10817-008-9102-9
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296
https://doi.org/10.1007/978-3-642-33158-9%5C_1
http://www.aaai.org/Library/AAAI/2007/aaai07-227.php

130 References

[88] Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. “Tractable query answering
and rewriting under description logic constraints”. In: J. Appl. Log. 8.2 (2010),
pp. 186–209. url: https://doi.org/10.1016/j.jal.2009.09.004.

[89] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Riccardo Rosati. “Linking Data to Ontologies”. In: J.
Data Semant. 10 (2008), pp. 133–173. url:
https://doi.org/10.1007/978-3-540-77688-8%5C_5.

[90] Ross Quillian. “Semantic Memory”. In: (1968). Ed. by Marvin Minsky,
pp. 216–270.

[91] Yuan Ren, Gerd Gröner, Jens Lemcke, Tirdad Rahmani, Andreas Friesen,
Yuting Zhao, Jeff Z. Pan, and Steffen Staab. “Validating Process Refinement with
Ontologies”. In: Proceedings of the 22nd International Workshop on Description
Logics (DL 2009), Oxford, UK, July 27-30, 2009. Ed. by Bernardo Cuenca Grau,
Ian Horrocks, Boris Motik, and Ulrike Sattler. Vol. 477. CEUR Workshop
Proceedings. CEUR-WS.org. url:
http://ceur-ws.org/Vol-477/paper%5C_59.pdf.

[92] Yuan Ren, Jeff Z. Pan, Isa Guclu, and Martin J. Kollingbaum. “A Combined
Approach to Incremental Reasoning for EL Ontologies”. In: Web Reasoning and
Rule Systems - 10th International Conference, RR 2016, Aberdeen, UK,
September 9-11, 2016, Proceedings. Vol. 9898. Lecture Notes in Computer Science.
Springer, 2016, pp. 167–183.

[93] Peter Nick Robinson and Sebastian Bauer. “Introduction to Bio-Ontologies”. In:
2011.

[94] Riccardo Rosati. “On Conjunctive Query Answering in EL”. In: Proceedings of the
2007 International Workshop on Description Logics (DL2007), Brixen-Bressanone,
near Bozen-Bolzano, Italy, 8-10 June, 2007. Ed. by Diego Calvanese,
Enrico Franconi, Volker Haarslev, Domenico Lembo, Boris Motik,
Anni-Yasmin Turhan, and Sergio Tessaris. Vol. 250. CEUR Workshop Proceedings.
CEUR-WS.org, 2007. url: http://ceur-ws.org/Vol-250/paper%5C_83.pdf.

[95] Sebastian Rudolph and Birte Glimm. “Nominals, Inverses, Counting, and
Conjunctive Queries or: Why Infinity is your Friend!” In: J. Artif. Intell. Res. 39
(2010), pp. 429–481. url: https://doi.org/10.1613/jair.3029.

[96] Viachaslau Sazonau and Uli Sattler. “Mining Hypotheses from Data in OWL:
Advanced Evaluation and Complete Construction”. In: The Semantic Web -
ISWC 2017 - 16th International Semantic Web Conference, Vienna, Austria,
October 21-25, 2017, Proceedings, Part I. Ed. by Claudia d’Amato,
Miriam Fernández, Valentina A. M. Tamma, Freddy Lécué,
Philippe Cudré-Mauroux, Juan F. Sequeda, Christoph Lange, and Jeff Heflin.
Vol. 10587. Lecture Notes in Computer Science. Springer, 2017, pp. 577–593. url:
https://doi.org/10.1007/978-3-319-68288-4%5C_34.

[97] Andrea Schaerf. “On the Complexity of the Instance Checking Problem in
Concept Languages with Existential Quantification”. In: J. Intell. Inf. Syst. 2.3
(1993), pp. 265–278. url: https://doi.org/10.1007/BF00962071.

[98] Guus Schreiber and Yves Raimond. RDF 1.1 Primer. W3C Note.
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/. W3C, June 2014.

https://doi.org/10.1016/j.jal.2009.09.004
https://doi.org/10.1007/978-3-540-77688-8%5C_5
http://ceur-ws.org/Vol-477/paper%5C_59.pdf
http://ceur-ws.org/Vol-250/paper%5C_83.pdf
https://doi.org/10.1613/jair.3029
https://doi.org/10.1007/978-3-319-68288-4%5C_34
https://doi.org/10.1007/BF00962071

References 131

[99] Bart Selman and Henry A. Kautz. “Knowledge Compilation and Theory
Approximation”. In: J. ACM 43.2 (1996), pp. 193–224. url:
https://doi.org/10.1145/226643.226644.

[100] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. “Pellet: A practical OWL-DL reasoner”. In: J. Web Semant. 5.2
(2007), pp. 51–53. url: https://doi.org/10.1016/j.websem.2007.03.004.

[101] Martin Skjæveland, Espen Lian, and Ian Horrocks. “Publishing the Norwegian
Petroleum Directorate’s FactPages as Semantic Web Data”. In: Oct. 2013,
pp. 162–177.

[102] Martin G. Skjæveland, Henrik Forssell, Johan W. Klüwer, Daniel P. Lupp,
Evgenij Thorstensen, and Arild Waaler. “Pattern-Based Ontology Design and
Instantiation with Reasonable Ontology Templates”. In: Proceedings of the 8th
Workshop on Ontology Design and Patterns (WOP 2017) co-located with the 16th
International Semantic Web Conference (ISWC 2017), Vienna, Austria, October
21, 2017. Ed. by Eva Blomqvist, Óscar Corcho, Matthew Horridge, David Carral,
and Rinke Hoekstra. Vol. 2043. CEUR Workshop Proceedings. CEUR-WS.org,
2017. url: http://ceur-ws.org/Vol-2043/paper-04.pdf.

[103] Martin G. Skjæveland, Henrik Forssell, Johan W. Klüwer, Daniel P. Lupp,
Evgenij Thorstensen, and Arild Waaler. “Reasonable Ontology Templates: APIs
for OWL”. In: Proceedings of the ISWC 2017 Posters & Demonstrations and
Industry Tracks co-located with 16th International Semantic Web Conference
(ISWC 2017), Vienna, Austria, October 23rd - to - 25th, 2017. Ed. by
Nadeschda Nikitina, Dezhao Song, Achille Fokoue, and Peter Haase. Vol. 1963.
CEUR Workshop Proceedings. CEUR-WS.org, 2017. url:
http://ceur-ws.org/Vol-1963/paper597.pdf.

[104] Martin G. Skjæveland, Daniel P. Lupp, Leif Harald Karlsen, and
Johan W. Klüwer. “OTTR: Formal Templates for Pattern-Based Ontology
Engineering”. In: Advances in Pattern-Based Ontology Engineering, extended
versions of the papers published at the Workshop on Ontology Design and Patterns
(WOP). Ed. by Eva Blomqvist, Torsten Hahmann, Karl Hammar, Pascal Hitzler,
Rinke Hoekstra, Raghava Mutharaju, et al. Vol. 51. Studies on the Semantic Web.
IOS Press, 2021, pp. 349–377. url: https://doi.org/10.3233/SSW210025.

[105] Giorgio Stefanoni and Boris Motik. “Answering Conjunctive Queries over EL
Knowledge Bases with Transitive and Reflexive Roles”. In: CoRR abs/1411.2516
(2014).

[106] Giorgio Stefanoni and Boris Motik. “Answering Conjunctive Queries over EL
Knowledge Bases with Transitive and Reflexive Roles”. In: Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA. Ed. by Blai Bonet and Sven Koenig. AAAI Press, 2015,
pp. 1611–1617. url:
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9310.

[107] Giorgio Stefanoni, Boris Motik, and Ian Horrocks. “Introducing Nominals to the
Combined Query Answering Approaches for EL”. In: Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence, July 14-18, 2013,
Bellevue, Washington, USA. Ed. by Marie desJardins and Michael L. Littman.

https://doi.org/10.1145/226643.226644
https://doi.org/10.1016/j.websem.2007.03.004
http://ceur-ws.org/Vol-2043/paper-04.pdf
http://ceur-ws.org/Vol-1963/paper597.pdf
https://doi.org/10.3233/SSW210025
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9310

132 References

AAAI Press, 2013. url:
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6156.

[108] Andreas Steigmiller and Birte Glimm. “Absorption-Based Query Entailment
Checking for Expressive Description Logics”. In: Proceedings of the 32nd
International Workshop on Description Logics, Oslo, Norway, June 18-21, 2019.
Ed. by Mantas Simkus and Grant E. Weddell. Vol. 2373. CEUR Workshop
Proceedings. CEUR-WS.org, 2019. url:
http://ceur-ws.org/Vol-2373/paper-25.pdf.

[109] Andreas Steigmiller and Birte Glimm. “Parallelised ABox Reasoning and Query
Answering with Expressive Description Logics”. In: The Semantic Web - 18th
International Conference, ESWC 2021, Virtual Event, June 6-10, 2021,
Proceedings. Ed. by Ruben Verborgh, Katja Hose, Heiko Paulheim,
Pierre-Antoine Champin, Maria Maleshkova, Óscar Corcho, Petar Ristoski, and
Mehwish Alam. Vol. 12731. Lecture Notes in Computer Science. Springer, 2021,
pp. 23–39. url: https://doi.org/10.1007/978-3-030-77385-4%5C_2.

[110] Andreas Steigmiller, Birte Glimm, and Thorsten Liebig. “Reasoning with Nominal
Schemas through Absorption”. In: J. Autom. Reason. 53.4 (2014), pp. 351–405.
url: https://doi.org/10.1007/s10817-014-9310-4.

[111] Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. “Konclude: System
Description”. In: Journal of Web Semantics (JWS) 27 (2014), pp. 78–85.

[112] Giorgos Stoilos. “Hydrowl: A Hybrid Query Answering System for OWL 2 DL
Ontologies”. In: Web Reasoning and Rule Systems - 8th International Conference,
RR 2014, Athens, Greece, September 15-17, 2014. Proceedings. Ed. by
Roman Kontchakov and Marie-Laure Mugnier. Vol. 8741. Lecture Notes in
Computer Science. Springer, 2014, pp. 230–238. url:
https://doi.org/10.1007/978-3-319-11113-1%5C_20.

[113] Giorgos Stoilos. “Ontology-Based Data Access Using Rewriting, OWL 2 RL
Systems and Repairing”. In: The Semantic Web: Trends and Challenges - 11th
International Conference, ESWC 2014, Anissaras, Crete, Greece, May 25-29,
2014. Proceedings. Ed. by Valentina Presutti, Claudia d’Amato, Fabien Gandon,
Mathieu d’Aquin, Steffen Staab, and Anna Tordai. Vol. 8465. Lecture Notes in
Computer Science. Springer, 2014, pp. 317–332. url:
https://doi.org/10.1007/978-3-319-07443-6%5C_22.

[114] Edward Thomas, Jeff Z. Pan, and Yuan Ren. “TrOWL: Tractable OWL 2
Reasoning Infrastructure”. In: The Semantic Web: Research and Applications, 7th
Extended Semantic Web Conference, ESWC 2010, Heraklion, Crete, Greece, May
30 - June 3, 2010, Proceedings, Part II. Ed. by Lora Aroyo, Grigoris Antoniou,
Eero Hyvönen, Annette ten Teije, Heiner Stuckenschmidt, Liliana Cabral, and
Tania Tudorache. Vol. 6089. Lecture Notes in Computer Science. Springer, 2010,
pp. 431–435. url: https://doi.org/10.1007/978-3-642-13489-0%5C_38.

[115] Alvaro del Val. “First order LUB approximations: characterization and
algorithms”. In: Artif. Intell. 162.1-2 (2005), pp. 7–48. url:
https://doi.org/10.1016/j.artint.2004.01.003.

http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6156
http://ceur-ws.org/Vol-2373/paper-25.pdf
https://doi.org/10.1007/978-3-030-77385-4%5C_2
https://doi.org/10.1007/s10817-014-9310-4
https://doi.org/10.1007/978-3-319-11113-1%5C_20
https://doi.org/10.1007/978-3-319-07443-6%5C_22
https://doi.org/10.1007/978-3-642-13489-0%5C_38
https://doi.org/10.1016/j.artint.2004.01.003

References 133

[116] Johanna Völker and Mathias Niepert. “Statistical Schema Induction”. In: The
Semantic Web: Research and Applications - 8th Extended Semantic Web
Conference, ESWC 2011, Heraklion, Crete, Greece, May 29-June 2, 2011,
Proceedings, Part I. Ed. by Grigoris Antoniou, Marko Grobelnik,
Elena Paslaru Bontas Simperl, Bijan Parsia, Dimitris Plexousakis,
Pieter De Leenheer, and Jeff Z. Pan. Vol. 6643. Lecture Notes in Computer
Science. Springer, 2011, pp. 124–138. url:
https://doi.org/10.1007/978-3-642-21034-1%5C_9.

[117] Sebastian Wandelt, Ralf Möller, and Michael Wessel. “Towards Scalable Instance
Retrieval over Ontologies”. In: Int. J. Softw. Informatics 4.3 (2010), pp. 201–218.
url:
http://www.ijsi.org/ch/reader/view%5C_abstract.aspx?file%5C_no=i59.

[118] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo,
Antonella Poggi, Riccardo Rosati, and Michael Zakharyaschev. “Ontology-Based
Data Access: A Survey”. In: Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden. ijcai.org, 2018, pp. 5511–5519.

[119] Yujiao Zhou. “Pay-As-You-Go Ontology Query Answering Using a Datalog
Reasoner”. PhD thesis. University of Oxford, 2015.

[120] Yujiao Zhou, Bernardo Cuenca Grau, Yavor Nenov, Mark Kaminski, and
Ian Horrocks. “PAGOdA: Pay-As-You-Go Ontology Query Answering Using a
Datalog Reasoner”. In: Journal of Artificial Intelligence Research 54 (2015),
pp. 309–367.

https://doi.org/10.1007/978-3-642-21034-1%5C_9
http://www.ijsi.org/ch/reader/view%5C_abstract.aspx?file%5C_no=i59

Index
SROIQ, 17–19

interpretation, 21
model, 21
normal form, 19

SKOLEM, 69

ABox, 19
And-branching, 24
Axiom, 18

general concept inclusion, 18
role, 18

Axiomatization
equality, 11, 15, 72, 95
top, 15, 72

Classification, 22
Concept, 18

assertion, 19
name, 18

Consistency checking, 22

Description Logics, 17

Entailment regime, 34
Equality safety, 26, 58, 77

First-Order
atom, 10
constant, 10
fact, 11
formula, 10
function symbol, 10
interpretation, 12
literal, 10
model, 12
predicate, 10
sentence, 11

signature, 9
term, 10
theory, 11
variable, 10

Herbrand
base, 13
interpretation, 13
model, 13
least, 14

universe, 13
Hypertableau calculus, 36

Individuals, 18
Instance Retrieval, 22

Named graph, 69

OBDA, 37
mappings, 37
perfect reformulation, 37

OWL 2
profiles, 17, 22, 26

OWL 2 EL, 23
OWL 2 QL, 23
OWL 2 RL, 23

Program, 14
stratification, 14

Query
as rules, 30
atomic, 30
Boolean, 30
conjunctive, 29
entailment, 34
forest-shaped, 31

134

INDEX 135

graph, 31
ground entailment, 35
tree-shaped, 31

ground, 30
instance, 30
internalisable, 32

Query answer
certain, 30, 70
ground, 30
possible, 30

RBox, 19
regular, 20

RDF, 32
blank node, 32
graph, 32
literal, 32
resource, 32
store, 32
triple, 32

Realisation, 22
Reification, 74
Role, 18

assertion, 19
complex, 19
inverse, 18
name, 18
safe, 25
simple, 20
unsafe, 25

Role safety acyclic, 24
Rolling up, 31, 38
Rolling-up, 35
RSA, 24, 39
Rule, 13

body, 13
Datalog, 14
definite, 14
head, 13
Horn, 14
safe, 13

Satisfiability, 30

Satisfiability checking, 22
Singularization, 95
Skolemization, 15

constant, 15
Subsumption, 22

TBox, 19

Variable
bound, 29
existential, 29

Variables
answer, 29

	List of Figures
	List of Tables
	Introduction
	I Foundations
	Preliminaries
	First-Order logic
	Syntax
	Semantics
	Herbrand interpretations

	Rule-based knowledge representation
	Program stratification
	Rule Skolemization

	Description logics
	The description logic SROIQ
	Syntax
	Semantics

	Reasoning problems
	OWL 2 profiles
	OWL 2 EL
	OWL 2 QL
	OWL 2 RL

	RSA

	Query answering over ontologies
	Conjunctive Queries
	RDF and SPARQL
	Computational Complexity
	Query Answering Techniques
	Reduction to entailment checking
	Materialization-based reasoners
	Ontology-mediated query rewriting
	Combined approaches
	Hybrid approaches
	Ontology approximation

	II The ACQuA system
	The hybrid approach of ACQuA
	Overview
	Lower bound computation
	Approximation to ALCHOIQ
	Approximation to Horn-ALCHOIQ
	Approximation to RSA

	Upper bound computation
	Bottom substitution
	Approximation of disjunctive rules
	From Horn-ALCHOIQ+ to RSA+
	Property chain axioms

	Design and architecture
	RSAComb
	Overview
	Canonical model computation
	Filtering program and answer computation

	Lower bound approximation to RSA
	Upper bound approximation to RSA

	Evaluation
	Benchmarks
	PAGOdA batch
	RSAComb
	ACQuA

	OOR batch

	Discussion and conclusions
	Proofs
	Naming convention for DLs
	Benchmark queries
	References
	Index

