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Abstract

Every brain is different. Understanding this variability is crucial for investigating
the neural substrate underlying individuals’ unique behaviour and developing
personalised diagnosis and treatments. This thesis presents novel computational
approaches to study individual variability in brain structure and function using
magnetic resonance imaging (MRI) data. It comprises three main chapters, each
addressing a specific challenge in the field.

In Chapter 3, the thesis proposes a novel Image Quality Transfer (IQT) technique,
HQ-augmentation, to accurately localise a Deep Brain Stimulation (DBS) target
in low-quality clinical-like data. Leveraging high-quality diffusion MRI datasets
from the Human Connectome Project (HCP), the HQ-augmentation approach is
robust to corruptions in data quality while preserving the individual anatomical
variability of the DBS target. It outperforms existing alternatives and generalises
to unseen low-quality diffusion MRI datasets with different acquisition protocols,
such as the UK Biobank (UKB) dataset.

In Chapter 4, the thesis presents a framework for enhancing prediction accuracy
of individual task-fMRI activation profiles using the variability of resting-state
fMRI. Assuming resting-state functional modes underlie task-evoked activity, this
chapter demonstrates that shape and intensity of individualised task activations can
be separately modelled. This chapter introduced the concept of "residualisation"
and showed that training on residuals leads to better individualised predictions.
The framework’s prediction accuracy, validated on HCP and UKB data, is on
par with task-fMRI test-retest reliability, suggesting potential for supplementing
traditional task localisers.

In Chapter 5, the thesis presents a novel framework for individualised retinotopic
mapping using resting-state fMRI, from the primary visual cortex to visual cortex
area 4. The proposed approach reproduces task-elicited retinotopy and captures in-
dividual differences in retinotopic organisation. The proposed framework delineates
borders of early visual areas more accurately than group-average parcellation and is
effective with both high-field 7T and more common 3T resting-state fMRI data, pro-
viding a valuable alternative to resource-intensive retinotopy task-fMRI experiments.

Overall, this thesis demonstrates the potential of advanced MRI analysis
techniques to study individual variability in brain structure and function, paving
the way for improved clinical applications tailored to individual patients and a
better understanding of neural mechanisms underlying unique human behaviour.
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1.1 Background and Motivation

We all differ in how we perceive, think, and behave. The vast heterogeneity in

human behaviour is often attributed to individual variability of the brain, the

characteristics unique to individuals in terms of brain structure, function, and

connectivity [1]. Individual variability of the brain manifests in various dimensions,

including structural differences such as brain size and cortical thickness, and

functional differences such as the organisation of neural pathways and macroscopic

functional configurations.

Understanding this variability is important in several ways. First, it can help

unravel the complexities of the human mind and identify the factors that contribute

to a wide range of cognitive abilities, behaviours, and psychological traits. For

example, variations in the information exchange efficiency between specific brain

regions may underlie heterogeneity in cognitive abilities, such as memory, attention,

1



2 1.1. Background and Motivation

or problem-solving skills [2, 3]; additionally, differences in brain structure and

function may influence an individual’s susceptibility to psychological disorders

[4, 5]. By investigating the factors contributing to these unique characteristics

and abilities, researchers can gain valuable insights into the influence of neural

architecture on various aspects of human experience. Second, this understanding

can facilitate the development of personalised medicine and targeted interventions

for neurological and psychological disorders, leading to more effective and precise

treatments tailored to the unique needs of each patient [6]. An interesting example

is the use of personalised transcranial magnetic stimulation (TMS) for the treatment

of depression. Recent research has shown that identifying the optimal stimulation

site for each patient, based on their individual brain connectivity patterns, can

result in more effective treatment outcomes [7]. Such developments in personalised

treatments will ultimately improve patient outcomes and overall well-being.

Historically, individual variability in the brain has been treated as noise or an

inconvenient confound in basic and clinical neuroscience. This was primarily due

to the focus on discovering general principles of brain organisation and function,

leading researchers to aggregate data across individuals to identify common patterns.

This type of group-level or group-average analysis has some advantages that have

helped neuroscience research prosper when data quality and size has often been

limited. Specifically, averaging data across subjects reduces sources of unwanted

variability, such as head motion and physiological noise [8], and thus improves

signal-to-noise ratio (SNR), making it easier to detect common patterns across

individuals [9]. Furthermore, pooling data across individuals usually increases

the statistical power of a study, making it more likely to detect true effects and

improve the reliability of findings [10].

However, focusing on group-average statistics and ignoring individual differences

has led to several important disadvantages. For example, neglecting individual

variability in the brain and treating it as noise may result in conclusions that are not

applicable to all individuals, ultimately limiting the generalisability of the findings

[1, 11]; moreover, the differences between individuals may be erroneously attributed
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to experimental manipulations or other factors in group-average inference, leading

to inaccurate conclusions. More importantly, ignoring individual variability in

the brain hinders understanding of the factors underlying disparities in cognitive

abilities, personality traits, and vulnerability to psychological disorders [1]. A deeper

understanding of these disparities is crucial to the development of personalised

medicine and interventions tailored to each individual’s unique biological and

genetic fingerprints.

Thanks to the advancement of multimodal magnetic resonance imaging (MRI)

techniques and emergence of large-scale neuroimaging consortium such as the

Human Connectome Projects (HCP) and UK Biobank (UKB), researchers have

been enabled to noninvasively examine the individual brain in closer detail with

enhanced statistical power. In the last decade, numerous lines of research have

emerged, utilising MRI of different modalities to study various aspects of individual

brain variability. For example, high-resolution structural MRI has been employed

to assess individual differences in grey matter volume, cortical thickness, and

surface area, etc., providing insights into their relationships with a range of

cognitive abilities, behaviour, and susceptibility to disorders [1, 12–16]. Func-

tional MRI (fMRI) has been employed to examine individual variability in brain

functional configurations during cognitive tasks and resting-state, elucidating the

functional underpinnings of cognition and behaviour as well as their implications

in brain disorders [3, 17–20]. Diffusion MRI has been employed to study matter

microstructure and anatomical connectivity between brain regions, revealing their

influence on cognitive performance and predisposition to neurological and psychiatric

disorders [21–26]. Furthermore, multimodal MRI data has been integrated by more

complicated modelling to reveal complex interactions between different aspects of

brain structure/function and behavioural/genetic measures, shedding light on the

mechanisms underlying individual variability in the brain and certain neurological

disorders [27–30]. Longitudinal MRI studies at individual-level have also emerged

to track changes in brain structure and function over time, offering valuable insights
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into individual differences in brain development and ageing [16], as well as their

associations with cognitive, disease, and emotional outcomes [31–33].

However, current research on individual brain variability faces several limitations,

such as lack of methodology, strict requirements on data quality, heterogeneity

in study designs and acquisition/preprocessing protocols, particularly in terms

of specific "fine-grained" aspects of brain anatomy and function. One example is

localising thalamic nuclei at an individual basis for personalised surgical targeting.

While many studies have used diffusion MRI and tractography methods to localise

thalamic nuclei at an individual basis [34–36], a well established and clinically

reliable pipeline is still lacking, and significant methodological heterogeneity is

present across these studies; in addition, localising deep brain nuclei often requires

high-quality data not readily available. Another example is functional localisers

that use resting-state fMRI to identify brain regions activated in response to an

external stimuli or when the individual is executing a cognitive task. Although

numerous studies have successfully predicted individual differences in task-evoked

brain activity using resting-state fMRI [19, 37–40], they usually involved high-quality

datasets such as HCP and did not investigate routine-quality data, which are more

commonly available. Furthermore, these studies did not investigate more fine-grained

functional profiles, e.g., the visuotopic configurations in the visual cortex.

Using MRI of various modalities, this thesis examines three aspects of individual

variability in the brain that remain unaddressed or inadequately explored in previous

studies, in response to the aforementioned limitations. The three aspects share a

common theme of "localisation", emphasising methods development for localising

specific brain structures or regions at the individual-level for personalised surgical

targeting. First, we demonstrate a novel approach that reliably localises a Deep

Brain Stimulation (DBS) target, which is not readily discernible on conventional

MRI. Notably, the approach yields consistent results despite compromised data

quality, demonstrating its potential for translating into a clinically reliable routine.

Second, we present a framework that uses resting-state brain configurations to

reconstruct individual task-evoked brain activation profiles. This framework is not
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only effective on the high-quality HCP data but also applicable to routine-quality

UKB subjects. The framework may serve as a functional localiser to supplement task

localisers when task-fMRI is unavailable. Lastly, we investigate individual differences

in the retinotopic organisation of visual areas using resting-state fMRI. While this

variability holds important clinical implications, obtaining it typically requires

dedicated retinotopy task paradigms and high-quality 7T MRI scanners, which are

not always practical. Predicting the retinotopic mapping using resting-state fMRI

instead offers a valuable alternative to retinotopy task-fMRI.

In conclusion, this thesis contributes to the understanding of individual variability

in the brain by developing and validating novel MRI-based localisation methods.

These approaches have the potential to enhance personalised treatment planning

and further our understanding of the underlying neural mechanisms associated

with brain variability.

1.2 Thesis Structure

The thesis is organised as follows. Chapter 1 introduces the motivation for this

thesis and provides an outline of the subsequent chapters.

Chapter 2 presents an overview of MRI fundamentals and summarises the various

MRI modalities employed in this thesis, including structural (T1- and T2-weighted)

MRI, functional MRI (fMRI), and diffusion MRI.

Chapter 3 delves into individual anatomical variability. In this chapter, we

propose an Image Quality Transfer (IQT) approach to reliably localise a DBS

surgical target. Leveraging the publicly-available high-quality HCP dataset, this

approach utilises anatomical information from high-quality data to enhance surgical

targeting of the structure on clinical-standard lower-quality datasets, outperforming

alternative targeting approaches in terms of accuracy and reliability.

Chapter 4 shifts the focus to the functional aspects of individual variability

in the brain. In this chapter, we present a framework that uses resting-state

spatial configurations to reconstruct profiles of task-evoked brain activity, based

on the hypothesis that resting-state spatial processes form a basis set that spans
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the subspace of a range of task-evoked activation maps. Specifically, we discuss

the importance of "residualisation", a step that removed population-level common

patterns from individual spatial maps, leading to improved predictions of individual-

specific task activation patterns.

Chapter 5 is closely related to chapter 4 but emphasises the variability of

visual processes. In this chapter, we investigate graph embedding methods for

reconstructing retinotopic/visuotopic organisation of visual areas, using resting-

state timeseries data. This chapter demonstrates that resting-state signals, despite

the absence of visual stimuli, can capture individual differences in retinotopic

mapping unexplained by population-level retinotopy.

Chapter 6 concludes the thesis by summarising its contributions and discussing

the limitations of the presented approaches. Additionally, this chapter briefly

explores potential future research directions.

1.3 List of Publications

Journal Articles

• Ying-Qiu Zheng, Seyedeh-Rezvan Farahibozorg, Weikang Gong, Hossein

Rafipoor, Saad Jbabdi, and Stephen Smith. "Accurate predictions of individual

differences in task-evoked brain activity from resting-state fMRI using a sparse

ensemble learner." NeuroImage 259 (2022): 119418. (Contributions in Chapter

4.)

Peer Reviewed Conference Proceedings

• Ying-Qiu Zheng, Harith Akram, Stephen Smith, and Saad Jbabdi. "A

Transfer Learning Approach to Localise a Deep Brain Stimulation Target."

MICCAI 2033 accepted. (Contributions in Chapter 3.)
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2.1 Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that

harnesses the physics of nuclear magnetic resonance to generate detailed images of

the body’s internal structures. The basic principle underlying MRI is the behaviour

of protons, which is abundant nucleus in the human body, due to the high water

content of tissues. When exposed to a strong external magnetic field, these nuclei

align with the magnetic field and can be excited with a radio frequency pulse. As

7
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they relax back to their original alignment, the released energy is detected by the

MRI scanner and used to create images. MRI enables high-resolution visualisation

of soft tissues and boasts a wide range of applications. Since its development

in the late 1970s, MRI has become an indispensable tool in clinical diagnosis,

medical research, and the study of brain structure and function [41–43]. Common

MRI modalities for brain imaging include T1-weighted MRI, T2-weighted MRI,

functional MRI (fMRI) and diffusion MRI (also known as dMRI). In this chapter,

we will introduce the MRI modalities used in this thesis and briefly discuss their

respective principles and applications.

2.2 Structural MRI

Structural MRI focuses on capturing high-resolution images of the brain’s anatomy

and morphology, such as the grey and white matter, as well as other tissue types.

It is the most fundamental modality, serving as a critical tool in both clinical

and research settings, allowing for accurate diagnosis and treatment planning, and

furthering our understanding of the brain’s structural organisation. The most

common modalities of structural MRI are T1-weighted and T2-weighted imaging.

2.2.1 T1-weighted MRI

T1-weighted MRI utilises the differences in the longitudinal relaxation time (T1) of

protons in various tissues to generate images. T1 relaxation represents the time for

the longitudinal magnetisation (parallel to the main magnetic field) of protons to

recover to approximately 63% of its initial value after the radio frequency pulse is

switched off. In general, tissues with shorter T1 relaxation times appear brighter in

T1-weighted MRI, while those with longer T1 relaxation times appear darker. In

T1-weighted MRI, grey matter appears darker (lower signal intensity) than white

matter, allowing for clear visualisation of the cortical and subcortical structures.

T1-weighted MRI has a wide range of applications in structural analysis of

the brain, such as detecting structural abnormalities, assessing brain development,

and guiding neurosurgical planning, etc. T1-weighted MRI serves as the basis for
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advanced MRI analysis techniques, including voxel-based morphometry and cortical

surface reconstruction, which are used to investigate structural changes associated

with neurological and psychiatric disorders [44, 45]. Furthermore, T1-weighted

MRI plays a vital role in both multi-modal MRI analysis and individual variability

studies in neuroimaging. As the anatomical backbone in many neuroimaging

studies, it provides a structural reference for aligning and integrating other imaging

modalities, such as functional MRI (fMRI) and diffusion MRI. This co-registration

process ensures spatial consistency, facilitating the integration of multi-modal

data for a more comprehensive understanding of brain structure and function

[46]. Simultaneously, T1-weighted MRI offers a common anatomical reference

for comparing brain structure and organisation across individuals, allowing for

inter-individual comparisons and group-level analyses [44, 47]. To summarise, T1-

weighted MRI serves as a critical tool for understanding individual variability in

brain structure and its relationship with cognition, behaviour, and clinical outcomes.

2.2.2 T2-weighted MRI

T2-weighted MRI is another type of structural MRI that relies on differences in

T2 relaxation times of tissue to create image contrast [43]. T2 relaxation time

represents the time for the transverse magnetization (perpendicular to the main

magnetic field) of protons to decay to approximately 37% of its initial value. As a

result, tissues with longer T2 relaxation times, such as cerebrospinal fluid (CSF),

appear brighter, while those with shorter T2 relaxation times, like white matter,

appear darker. This contrast is the opposite of what is observed in T1-weighted

images, where tissues with shorter T1 relaxation times appear brighter.

T2-weighted MRI has several applications in clinical and research settings.

Particularly, T2-weighted MRI has been used to study myelination in the brain,

often in combination with T1-weighted MRI. Myelin is a fatty substance that wraps

around axons and plays a crucial role in the conduction of nerve impulses. As

T2-weighted MRI is sensitive to the water content in tissues, myelinated fibres

appear with lower signal intensity (darker) than non-myelinated fibres due to the
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lower water content in myelin. T1-weighted MRI also provides complementary

information, as myelinated fibres have a higher signal intensity (brighter) than

non-myelinated fibres in T1-weighted images. A commonly used approach to study

myelination using MRI data is T1w/T2w ratio, which involves calculating the ratio

of T1-weighted image intensities to T2-weighted image intensities [48]. This ratio

has been shown to be a useful surrogate marker for myelin content in both grey

and white matter regions, allowing researchers to investigate myelination patterns

across the brain and examine their relationship with age, cognitive function, or

neurological disorders [49]. Furthermore, T2-weighted MRI is particularly useful for

detecting pathological changes in the brain, such as lesions, tumours, inflammation

and demyelination [50] that may be less visible in T1-weighted images.

2.3 Diffusion-weighted MR imaging (diffusion MRI)

Diffusion-weighted MR imaging, also known as diffusion MRI or dMRI, is another

specialised type of MRI that focuses on the diffusion of water molecules in different

tissues. The principles of diffusion MRI rely on the fact that the diffusion of water

molecules is influenced by the microstructure of the surrounding tissue. By applying

magnetic field gradients in specific directions, diffusion MRI can detect the random

motion of water molecules, providing insights into tissue organisation and structure.

In diffusion MRI, two important parameters are used to describe the acquisition:

b-values (also known as bvals) and b-vectors (sometimes called bvecs or gradient

directions). The b-values represents the strength and duration of the diffusion-

sensitising gradients applied during diffusion MRI acquisition. A higher b-value

results in a stronger diffusion weighting, making the images more sensitive to the

water molecule diffusion but at the cost of lower signal-to-noise ratio. Common

b-values used in clinical settings range from 0 to 1000 s/mm2, while higher b-values

(e.g., 2000-3000 s/mm2) are more common in advanced research applications. B-

vectors represent the direction of the applied diffusion-sensitising gradients. Through

different b-values and b-vectors, the MRI scanner acquires images with varying

sensitivities to diffusion in various orientations, resulting in volumes where the
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signal intensity depends on the rate and direction of water molecule movement.

Areas with restricted diffusion in the given direction will have higher signal intensity,

while regions with more free diffusion will exhibit lower signal intensity.

Diffusion MRI has numerous applications, including stroke diagnosis [51], tumour

characterisation [52], and the investigation of neurodegenerative diseases [53]. More

importantly, diffusion MRI is the basis of white matter tractography.

2.3.1 Diffusion Tensor Imaging (DTI)

Diffusion Tensor Imaging (DTI) is a diffusion MRI analysis technique that provides

information about the orientation, organisation, and integrity of the white matter

fibres by analysing the principal diffusion directions and the degrees of diffusion

anisotropy. DTI calculates the diffusion tensor, a mathematical representation of

the diffusion process in a voxel, to account for the magnitude, orientation and

anisotropy of water diffusion. This calculation is based on multiple diffusion MRI

volumes with different diffusion gradients (b-values) and gradient directions (b-

vectors). By fitting a diffusion tensor model to each voxel, DTI derives various

parameters, such as fractional anisotropy (FA) and mean diffusivity (MD) for the

given voxel. Such parameters have numerous applications in both clinical and

research settings. For example, they can be used to assess white matter integrity in

various neurological and psychiatric disorders [53] and investigate the effects of ageing

and neurodevelopment [54, 55]. Furthermore, by identifying the primary direction

of diffusion in each voxel (also known as the principal eigenvector), DTI allows

for reconstruction of white matter fibre tracts in the brain via fibre tracking (also

known as tractography). This information can be used to construct connectomes

or structural brain networks, providing information on the anatomical connections

between brain regions. In this thesis, DTI was estimated via FSL’s DTIFIT

tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#DTIFIT).

However, most modern tractography methods, such as FSL’s PROBTRACKX

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#PROBTRACKX), do

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#DTIFIT
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#PROBTRACKX
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not over-reduce the data via the DTI tensor model, working instead from more

advanced techniques, such as the Ball-and-Stick model.

2.3.2 The Ball-and-Stick model

As DTI models the diffusion properties of water molecules within a voxel using

a single tensor, it is usually insufficient to resolve crossing fibres accurately. The

ball-and-stick model is another diffusion MRI analysis technique that seeks to

address the limitations of DTI in representing complex fibre configurations within

a single voxel [56]. Instead, the ball-and-stick model represents the diffusion

signals as a combination of multiple compartments, each consisting of a "stick"

and a "ball". The "stick" represents the orientation of a major fibre population

within a voxel, while the "ball" models the isotropic diffusion component. By

using multiple sticks, the ball-and-stick model can accommodate multiple fibre

orientations within a single voxel. It is more capable of resolving complex fibre

configurations than DTI, leading to more accurate tractography results. In this

thesis, the ball-and-stick model was estimated via FSL’s BEDPOSTX tool (https:

//fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#BEDPOSTX).

2.3.3 Tractography

Another major technique for diffusion MRI analysis used in this thesis is tractography,

also known as fibre tracking or streamline tractography, which reconstructs the

trajectories of white matter fibre tracts (or streamlines) in the brain using the local

diffusion directions [mori2002fibre]. To form streamlines or fibre bundles, the

fibre tracking algorithm iteratively advances from each seed point along the primary

directions within each voxel, connecting neighbouring voxels with similar fibre

orientations and finally generating continuous curves that represent the trajectories

of the underlying fibre pathways. The process continues until a termination criterion

is met, such as reaching a low anisotropy value, which may indicate the termination

of a fibre tract, or exceeding a certain angular threshold between neighbouring

voxels, which suggests a sharp bend in the tract that is anatomically implausible.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#BEDPOSTX
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#BEDPOSTX
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There are two primary types of tractography: deterministic and probabilistic.

They differ in how they deal with the uncertainties associated with fibre orientations

in diffusion MRI. Deterministic tractography assumes that the estimated fibre

orientation in each voxel is accurate and does not account for uncertainty or

multiple fibre bundles within a single voxel. Hence, it utilises a single principal

orientation for each voxel and usually produces smooth and coherent streamlines.

However, it is less effective in resolving complex fibre configurations, such as

crossing fibres. Probabilistic tractography addresses the limitations of deterministic

tractography by incorporating the uncertainties in fibre orientation estimates [57].

Instead of relying on a single principal orientation, probabilistic tractography

typically utilises a distribution of possible fibre orientations for each voxel. At

each step, the fibre tracking process samples multiple orientations from these

distributions, generating multiple streamlines for each seed point. This process is

repeated thousands of times, resulting in a large number of potential streamlines

representing the underlying fibre tracts. Probabilistic tractography usually requires

more complicated diffusion models, such as the ball-and-stick. Tractography has

several applications in studies of individual variability. For example, it may reveal

individual differences in the organisation and shape of white matter pathways, linking

these image-derived phenotypes with age, cognitive abilities or susceptibilities

to neurological disorders [55, 58, 59]. In this thesis, the white matter bundles

were estimated using probabilistic tractography via FSL’s PROBTRACTX tool

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#PROBTRACKX_-_

probabilistic_tracking_with_crossing_fibres).

2.4 Functional MRI (fMRI)

Functional magnetic resonance imaging (fMRI) is another neuroimaging technique

that measures neural activity by detecting changes in blood oxygenation and flow

[60–62]. The basic signal underlying fMRI is the blood-oxygen-level-dependent

(BOLD) contrast. When a brain region is active, the local neurons consume more

oxygen, leading to an increase in blood flow to that region. The increased blood flow

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#PROBTRACKX_-_probabilistic_tracking_with_crossing_fibres
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#PROBTRACKX_-_probabilistic_tracking_with_crossing_fibres
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brings in oxygenated hemoglobin, which has different magnetic properties compared

to deoxygenated hemoglobin. As a result, the BOLD signal in the active region

changes, providing an indirect measure of neural activity. In fMRI scans, a series of

images are acquired over time, capturing the dynamic changes in BOLD signal across

the entire brain. These images can be analysed to identify brain regions that show

correlated activity during rest (resting-state fMRI) or specific tasks (task fMRI),

providing insights into the functional organisations underlying cognitive processes.

2.4.1 Resting-state fMRI

Resting-state fMRI (also known as rs-fMRI) measures brain activity while the

participant is not performing any specific task, usually with their eyes closed or

fixating on a focal point on a blank screen. The primary goal of resting-state fMRI

is to examine the intrinsic functional connectivity of the brain, i.e., the co-activation

patterns between distinct brain regions that form functional configurations.

Over the years, resting-state fMRI has been widely used in various applications,

such the investigation of brain functional organisation, characterisation of alterations

in functional connectivity in clinical populations, and examination of the relationship

between functional connectivity and individual differences in cognition, behaviour,

and personality traits. Resting-state fMRI has been instrumental in identifying

intrinsic functional configurations (or functional networks) in the brain, including

the default mode network, salience network, and executive control network. These

networks have been revealed to play critical roles in various cognitive functions and

are altered in neurological and psychiatric disorders [63–66]. More recently, a growing

body of studies has focused on the relationship between functional connectivity and

individual differences in cognition, behaviour, and personality traits [17, 19].

2.4.2 Task fMRI

Different from resting-state fMRI, task fMRI measures brain activity in response

to specific tasks or stimuli. In task fMRI, participants perform a cognitive or

sensory task, such as motor movements, visual stimulation, or memory retrieval,
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while their brain activity is being recorded. The primary goal of task fMRI is

to investigate brain functions or identify the specific brain regions when subjects

are performing a particular cognitive, sensory, or motor task. Analysing task

fMRI usually involves estimation of task activation maps. Briefly, after initial

pre-processing, the BOLD signal changes in task fMRI are modelled using the

hemodynamic response function (HRF) to represent the apparent neural response

to a task or stimulus [67]. The general linear model (GLM) is employed to fit

the predicted BOLD response, derived from convolving the task design matrix

with the HRF, to the observed fMRI time series data [68]. This generates beta

coefficients as task fMRI activation maps, indicating the magnitude of the BOLD

response for each task or stimuli. These resulting activation maps reveal brain

regions engaged during the given tasks, revealing functional brain organisation and

the neural basis underlying diverse cognitive processes.

Task fMRI activation maps have a wide range of applications in basic and clinical

neuroscience. Traditionally, task fMRI activation maps are used in group-level

studies to investigate the similarities across individuals in response to specific tasks.

These studies reveal brain regions consistently engaged across individuals during a

task, providing insights into the neural basis of particular cognitive or behavioural

functions [65, 69, 70]. More recent task fMRI studies have focused on individual

differences in their task-evoked activation profiles. These studies aim to address

the relationship between individual variability in brain activation and variability in

cognitive or behavioural performance, shedding light on the neural underpinnings

of inter-individual differences in abilities and traits [1]. Furthermore, task fMRI

activation maps have also been used to identify patterns of brain activation that are

specific to certain disorders [71], demonstrating its potential to provide biomarkers

for the diagnosis of various neurological and psychiatric conditions.

2.5 Conclusion

In this chapter, we provided an overview of the MRI modalities used in this

thesis, including T1-weighted MRI, T2-weighted MRI, diffusion MRI, and resting-



16 2.5. Conclusion

state/task fMRI. We discussed the principles underlying each modality, along

with their unique features and applications, particularly in the context of brain

imaging and the study of individual variability. These modalities contribute to

a comprehensive understanding of brain structure, function, and connectivity, by

offering complementary insights into various aspects of the brain. In the following

thesis, each chapter will delve into the specific MRI data and the corresponding

analyses for each modality.
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3.1 Introduction

Functional neurosurgical techniques, including deep brain stimulation (DBS) and

MR-guided focused ultrasound, have been successfully used for several decades to

treat a range of neurological and psychiatric disorders. These techniques target

specific neural circuits that are implicated in the pathophysiology of these disorders,

allowing for modulation of circuit activity and resulting in the alleviation of

symptoms that cannot be managed by medications alone. For instance, the ventral

intermediate nucleus of the thalamus (Vim) is a well-established surgical target in

DBS and stereotactic ablation for tremor in Parkinson’s Disease (PD), essential

tremor, and multiple sclerosis [72, 73]. The Vim is a wedge-shaped nucleus located

inferiorly within the ventrolateral (VLp) nucleus [74, 75], and is part of the motor

thalamic nuclei that play a critical role in tremor circuitry. Classical tract-tracing

and immuno-histochemical studies have revealed that the Vim receives efferent fibres

from the dentate nucleus of the contralateral cerebellum via the superior cerebellar

peduncle at the midbrain level [76], and projects primarily to the primary motor

cortex (M1) [77] with minor projections to the supplementary motor area (SMA)

and premotor cortex (PMC) [78]. Collectively, the tract connecting the contralateral

dentate nucleus to M1 via the Vim in the thalamus forms the dentato-thalamo-

cortical pathway (DTCp) and plays a central role in tremor circuitry [76, 79–83].

Accurately targeting the Vim has remained a significant challenge due to the

lack of intrinsic contrast in conventional MRI sequences to distinguish the nucleus

from neighbouring structures and tissues. Traditional stereotactic targeting of the

structure has relied predominantly on standardised atlases/coordinates adapted

to individual subjects, aided by visible anatomical landmarks such as the anterior

commissure and posterior commissure points [84]. Although stereotactic atlases

provide a reproducible way to identify the Vim, they fail to account for the inter-

individual anatomical variations, which are not negligible in thalamic nuclei [85–88].

To ensure efficacy of stereotactic surgeries, patients are often required to stay awake

in order to allow target confirmation, causing great patient discomfort and potential

risks of intracranial haemorrhage leading to neurological deficit or even death [89].
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To address this limitation, recent studies have attempted to more accurately

identify the Vim in vivo by leveraging its anatomical properties [34–36]. Using

cutting-edge diffusion MRI (dMRI) techniques and tractography-based methods,

these studies reconstruct the DTCp and identify Vim by locating the region of

maximum connectivity with both ipsilateral M1 and the contralateral dentate.

Diffusion MRI enables the estimation of local fibre orientations, while tractography

algorithms generate streamline samples that represent the underlying white matter

pathway based on these local fibre orientations. Often referred to as "connectivity-

driven ", this approach can better explain the inter-individual anatomical variability

of the nucleus, leading to improved efficacy of neurosurgical procedures [34]. However,

reconstructing the DTCp usually requires state-of-the-art high angular resolution

diffusion imaging (HARDI) and advanced diffusion modelling techniques in order to

resolve complex fibre configurations (e.g., crossing fibres), which are impractical in

advanced-care clinical settings due to their prolonged acquisition time and higher

acquisition/computational cost. As a result, lower-quality diffusion MRI techniques

are still commonly used, which affects the reliability of the connectivity-driven

approach as a proxy for surgical targeting. Furthermore, even with cutting-edge

HARDI and higher-order diffusion modelling techniques, the Vim localised by the

connectivity-driven approach has exhibited significant variations across different

acquisition protocols (e.g., b-values, spatial and angular resolutions) and processing

pipelines (e.g., diffusion signal modelling and tractography algorithm parameters)

[36]. Therefore, these methods must be used with caution to ensure that they

accurately reflect the true underlying anatomical variability rather than reflecting

methodological confounds erroneously interpreted as variability [36].

Accurate localisation of the target nucleus is crucial for the efficacy of stereotactic

operations. However, existing surgical targeting approaches have not yet been

able to translate into a reliable clinical routine. To address this challenge, we

propose a novel Image Quality Transfer (IQT) technique, HQ-augmentation, for

reliably localising Vim, particularly on low-quality clinical-like data. IQT is a

computational technique in medical imaging that aims to enhance the quality of
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low-resolution or low-quality images by transferring information from a set of high-

quality reference images [90–93]. This is usually achieved by using machine learning

algorithms to learn the mapping between low-quality images and their high-quality

counterparts. Following this concept, the HQ-augmentation approach proposed here

leverages anatomical information from publicly-available HARDI datasets, such as

the Human Connectome Project (HCP), to guide Vim localisation in low-quality

diffusion MRI datasets. It also exploits connectivity features with a wide range of

brain regions to compensate for the compromised M1 and dentate white matter

connectivity features in low-quality diffusion MRI (Figure 3.1). Specifically, we

generate approximate locations of the Vim from high-quality diffusion MRI datasets

and train the HQ-augmentation model to locate the nucleus in low-quality data that

is most equivalent to the counterpart high-quality estimate, given its low-quality

anatomical connectivity profiles with a wide range of brain regions. Our results

demonstrate that the HQ-augmentation model outperforms existing alternatives,

i.e., the atlas-defined approach and the connectivity-driven approach, on surrogate

low-quality diffusion MRI data with much lower spatial and angular resolution,

suggesting that the HQ-augmentation model is not only capable of accounting for

the true anatomical variability but is also robust to the impact of data quality

and methodological heterogeneity. Furthermore, the HQ-augmentation model can

generalise to unseen low-quality diffusion MRI datasets collected with different

acquisition protocols, such as the UK Biobank (UKB) dataset.

Finally, the HQ-augmentation model is not limited to targeting the Vim.

Depending on specific symptoms, a range of deep thalamic nuclei have been revealed

as effective surgical targets. Within the thalamus, for example, the anterior nucleus

has been used as a DBS target to treat epilepsy [94–97]; the medial dorsal nucleus

is another DBS target to treat obssessive-compulsive disorder and major depressive

disorder [98]. Outside of the thalamus, subthalamic nucleus (STN) [99–101] and

globus pallidus internus (GPi) [102–104] are common DBS targets for the treatment

of PD; the hypothalamus has been explored for the treatment of cluster headaches,

obesity, and other conditions. Our approach can be adapted to many other deep
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Figure 3.1: Illustration of the HQ-augmentation approach. (A) First, the HQ diffusion
data were used to create "ground truth" Vim within the thalamic masks, based on its
white matter connectivity with M1 and contralateral cerebellum. (B) Next, surrogate
low-quality diffusion datasets were created by corrupting the HQ datasets. The HQ-
augmentation model was trained with the HCP HQ "ground truth" Vim as target labels
and an extended set of HCP low-quality connectivity profiles as input features. The trained
model was applied to unseen low-quality datasets (surrogate low-quality HCP and UK
Biobank diffusion data) to give Vim prediction, and evaluated against the corresponding
HQ "ground truth".

brain nuclei, using their literature-based white matter connectivity profiles. Overall,

the HQ-augmentation serves as a better proxy for surgical targeting and has the

potential to translate into a reliable clinical tool.

3.2 Materials and Methods

3.2.1 Datasets and subjects
3.2.1.1 HCP 3T minimally preprocessed MRI

We used 3T diffusion MRI data from the Human Connectome Project (HCP) [105,

106] as the high-quality dataset. The data were collected by the WU-Minn HCP

consortium from a group of healthy young adults (n = 1,062, age range 22-36 years)

who consented to participate under the approval of the Washington University in
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St Louis Institutional Review Board [105]. The minimally pre-processed T1-, T2-,

and diffusion-weighted MRI scans were obtained from the HCP 2017 S1200 release

(https://www.humanconnectome.org/study/hcp-young-adult/document/1200

-subjects-data-release), which included 43 subjects who underwent repeated

scanning. T1- and T2-weighted images were acquired with a customised Siemens 3T

"Connectome Skyra" scanner at an isotropic spatial resolution of 0.7mm. Diffusion

MRI data were collected with a monopolar diffusion-weighted (Stejskal-Tanner) spin-

echo EPI sequence using the Siemens 3T "Connectome Skyra" scanner at an isotropic

spatial resolution of 1.25mm. The acquisition included three shells (b-values =

1000, 2000, and 3000 s/mm2) and approximately 90 unique diffusion directions per

shell, acquired twice (total scan time 60 min per subject) [106]. As part of the

HCP S1200 release, the data were minimally pre-processed [107] and aligned across

modalities for each subject. Motion, susceptibility, and eddy current distortions in

the diffusion MRI data were corrected [108, 109]. The data were linearly registered

to the corresponding T1-weighted images using FSL’s FLIRT [110, 111]. Nonlinear

transformations to the MNI152 standard space and their inverse warps were obtained

using FSL’s FNIRT [111, 112]. The complete imaging protocols and pre-processing

procedures can be found at https://www.humanconnectome.org/storage/app/

media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf.

3.2.1.2 UK Biobank 3T minimally pre-processed MRI

We also used 3T MRI data from UK Biobank [113] in our analysis, as the overall

quality of this data is more representative of what is typically acquired on clinical

scanners. Our analysis included a total of 2,560 subjects who had received repeat

scanning. T1-weighted images were acquired using a 3D MPRAGE acquisition

at 1mm isotropic resolution, while T2-weighted images were acquired using a 3D

SPACE sequence at a spatial resolution of 1.05x1x1 mm. Diffusion MRI was

performed at isotropic spatial resolution 2mm with two shells (b-values = 1000 and

2000 s/mm2), and 50 diffusion directions per shell (total scan time of approximately 6

minutes per subject). Additional information on the imaging protocols can be found

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
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in https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf.

Pre-processing of the UK Biobank data included face removal, brain extraction,

and registration across modalities and to the MNI152 standard space [114]. The

diffusion MRI images were also minimally pre-processed, corrected for motion,

susceptibility and eddy current distortions. [108, 109]. It is important to note

that the uncorrupted UK Biobank 3T diffusion MRI still served as a high-quality

dataset. In the following analysis, we derived a surrogate version of the low-quality

dataset from the UK Biobank dataset.

3.2.2 Low-quality diffusion MRI datasets

To account for the varying data quality typically encountered in clinical contexts,

we considered a range of low-quality datasets, including:

1. surrogate HCP low-quality diffusion MRI, obtained by corrupting the original

(minimally pre-processed) high-quality HCP 3T diffusion MRI. Three different

forms of data corruption were explored: a dataset with reduced angular

resolution, referred to as LQ-LowAngular ; a dataset with decreased spatial

resolution, denoted LQ-LowSpatial; and a dataset with reductions in both

angular and spatial resolution, named LQ-LowAngular-LowSpatial.

2. surrogate UKB low-quality diffusion MRI, obtained by corrupting the original

(minimally pre-processed) UKB 3T diffusion MRI, which we refer to as LQ-

UKB;

The HQ-augmentation model was trained using paired high- and low-quality HCP

data, specifically, the original HCP 3T diffusion MRI and its various lower-quality

counterparts (LQ-LowAngular, LQ-LowSpatial, or LQ-LowAngular-LowSpatial).

The paired high- and low-quality datasets provide examples for the model to learn

the relationship between the low-quality image features and their corresponding high-

quality counterparts, enabling the model to extract and transfer high-quality anatom-

ical information to enhance the target low-quality data. As a result, the trained

model is tailored to the specific type of low-quality dataset on which it is trained.

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
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Validation and evaluation were carried out on both HCP and UKB datasets.

The Vim derived from low-quality data was assessed against two versions of "ground

truth": the connectivity-driven Vim obtained from the high-quality data (referred to

as HQ-Vim in the following text), and the atlas-defined Vim adapted to individual

native space from the template Vim.

3.2.2.1 LQ-LowAngular

The LQ-LowAngular dataset was designed to resemble properties of single-shell

diffusion MRI collected with fewer diffusion directions. To create this dataset, we

discarded all volumes corresponding to bvals = 2000 and 3000 s/mm2 and only

considered the single-shell at bvals = 1000 s/mm2 along with the b0 volumes. We

then sampled 32 directions uniformly on a sphere using FSL’s GPS tool (https:

//git.fmrib.ox.ac.uk/fsl/gps/-/tree/master/). For each of the sampled

directions, we calculated its dot-product with the original 90 directions (at bvals =

1000 s/mm2) and found its closest equivalent direction (i.e., maximum dot-product)

from the actual 90 bvecs, resulting in a total of 32 single-shell volumes selected from

the original multi-shell. Finally, we combined the selected 32 single-shell volumes

with the bvals = 0 volumes to form the LQ-LowAngular dataset.

3.2.2.2 LQ-LowSpatial

When scanning time is limited, it is possible to achieve better angular resolution

by compromising on the spatial resolution for diffusion MRI. The LQ-LowSpatial

dataset was designed to imitate this scenario, where the spatial resolution was

compromised to achieve higher angular resolution. We downsized the (minimally

pre-processed) diffusion data from an isotropic spatial resolution of 1.25mm to

2mm while keeping the original shells and bvals/bvecs, resulting in a surrogate

low-spatial-resolution dataset.

3.2.2.3 LQ-LowAngular-LowSpatial

We also created the LQ-LowAngular-LowSpatial dataset, a surrogate low-angular

and low-spatial resolution diffusion dataset, to reflect the more extreme poor data

https://git.fmrib.ox.ac.uk/fsl/gps/-/tree/master/
https://git.fmrib.ox.ac.uk/fsl/gps/-/tree/master/


3. An Imaging Quality Transfer Technique to Localise Deep Brain Stimulation
Targets 25

quality when advanced MRI imaging techniques are lacking (or time available for

scanning is very short). This dataset was generated by further downsampling the

LQ-LowAngular dataset to an isotropic spatial resolution of 2mm. Alternatively,

it can also be created by extracting the b0 and bvals = 1000 s/mm2 single-shell

volumes (at the same 32 directions) from the LQ-LowSpatial dataset.

3.2.2.4 LQ-UKB

The UK Biobank diffusion MRI has a spatial resolution of 2x2x2 mm, which is

closer to what is typically acquired on clinical scanners. Hence, we did not further

degrade this spatial resolution. Instead, we only created its single-shell (low-angular-

resolution) counterparts by extracting the b0 and bvals=1000 s/mm2 volumes,

sampled at 32 diffusion directions. The resulting MRI images served as a surrogate

UKB low-angular-resolution diffusion MRI dataset, here denoted as LQ-UKB.

Similar to the creation of LQ-LowAngular from HCP, the 32 directions of LQ-UKB

were selected by first sampling 32 bvecs uniformly on a sphere, and next finding

their closest matches respectively from the actual 50 bvecs at bvals = 1000 s/mm2.

3.2.3 Structural and diffusion data post-processing
3.2.3.1 Segmentation of thalamic masks

Thalamic masks for the left and right hemispheres were segmented for each subject

in the HCP and UK Biobank datasets using FSL’s MIST (https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki/MIST), a sub-cortical segmentation tool that leverages

complementary information from different MRI modalities to achieve accurate

segmentation [115]. Although the HCP preprocessed data already included masks

for the thalamus, these were not accurate enough and included too much white

matter, as they were based on the T1 image only.

Three modalities were used for thalamus segmentation in MIST: T1, T2, and

fractional anisotropy (FA) contrast, which was estimated using the diffusion tensor

model [116] and FSL’s DTIFIT (https://fsl.fmrib.ox.ac.uk/fsl/fslwi

ki/FDT/UserGuide#DTIFIT). To match the spatial resolution of the T1- and

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MIST
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MIST
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#DTIFIT
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#DTIFIT
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T2-weighted images, the FA images were upsampled from an isotropic resolution

of 1.25 mm to 1 mm, while the T1- and T2-weighted images were downsampled

from an isotropic resolution of 0.7 mm to 1 mm. The resulting thalamic masks

were utilised as seeds regions in tractography to construct white matter tracts

projecting from the thalamus.

3.2.3.2 Creation of other anatomical masks

To constrain tractography seeded from the thalamus, we employed various regions-

of-interest (ROIs) spanning the brain. These ROIs included:

1. 75 cortical regions and 2 cerebellar parcels (one for cerebellar gray matter

and the other for cerebellar white matter) per hemisphere, and the brainstem,

segmented using Freesurfer [117–120], released as part of the HCP preprocessed

data.

2. 4 ROIs derived from the cerebellothalamic tract of the superior cerebellar

peduncle (SCPCT) [121] warped into the individual space, which includes

3 white matter segments situated between the superior cerebellar peduncle

(SCP) and the ipsilateral thalamus, as well as an additional parcel overlapping

with the brainstem to account for the cerebellothalamic tract decussation.

These ROIs were referred to as SCPCT-1, SCPCT-2, SCPCT-3, and SCPCT-

brainstem.

3. 29 white matter segments extracted from the major white matter bundles

projecting from or passing through the thalamus using the XTRACT atlas

[122], including 6 segments from the Superior Thalamic Radiation (STR), 5

from the Acoustic Radiation (AR), 6 from the Anterior Thalamic Radiation

(ATR), 6 from the Optic Radiation (OR), and 6 from the Fornix (FX). These

white matter ROIs were extracted in the standard space and subsequently

warped back into the individual space.
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4. 5 white matter ROIs extracted from the fibre bundle joining thalamus and

ipsilateral M1. This fiber bundle was created with thalamic voxels as the seed

and M1 as both the waypoint and target mask, subsequently warped into the

standard space and averaged across subjects. These white matter ROIs were

extracted in the standard space and subsequently warped into the individual

space. These ROIs were referred to as M1-1, M1-2, M1-3, M1-4, and M1-5.

5. Another 5 white matter segments extracted from the fibre bundle joining

thalamus and ipsilateral primary sensory cortex (S1). This fiber bundle was

created similarly with thalamic voxels as the seed and S1 as both the waypoint

and target mask, subsequently warped into the standard space and averaged

across subjects. These white matter ROIs were also extracted in the standard

space and subsequently warped into the individual space. These ROIs were

referred to as S1-1, S1-2, S1-3, S1-4, and S1-5.

Table A1 provides a summary of the ROIs and details on how they were created.

3.2.3.3 Fibre orientation estimation

Prior to tractography, fibre orientations were estimated for all diffusion MRI data

by applying a parametric spherical deconvolution model through FSL’s BedpostX

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#BEDPOSTX).

In each voxel, up to three fibre orientations were estimated, along with their

respective uncertainties [56, 86, 123, 124]. Two distinct deconvolution models

were used to fit the crossing fibres in the multi-shell (HQ-HCP, HQ-UKB, and

LQ-LowSpatial) and single-shell (LQ-LowAngular, LQ-LowAngular-LowSpatial,

LQ-UKB) diffusion data. The former utilised a Ball-and-Sticks with zeppelins

model [123, 124], while the latter used the standard Ball-and-Sticks model [56, 86].

The former approach models the diffusion coefficient using a Gamma distribution,

enabling it to more effectively represent multi-shell diffusion MRI data. In contrast,

the latter method models the diffusion coefficient with a single value, making it

more appropriate for single-shell data.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#BEDPOSTX
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3.2.3.4 Tractography protocols

Probabilistic tractography was performed using FSL’s Probtrackx tool [56, 86,

125] in each dataset’s respective individual T1 space (also referred to as native

space). For the subjects that underwent repeat scans, the first-visit T1 scans

served as the reference native space, to which the second-visit scans were registered.

Since all the anatomical masks were in the (first-visit) T1 native space, an affine

transformation matrix between the subject’s T1 and diffusion space was employed

during fibre tracking, allowing the reconstructed streamline distributions to be

directly resampled into the respective T1 space.

The anatomical masks included seeds (starting points of the streamlines),

waypoints/targets (regions that streamlines must pass through to be valid), exclusion

masks (regions that reject streamlines passing through them), and termination

masks (regions that serve to stop streamlines running through them). Streamlines

were seeded from the thalamic masks using a modified Euler integration with a step

length of 0.5mm and 2000 steps per streamline, randomly initialised within a 1mm-

radius sphere around each voxel centre. Streamlines were terminated if they entered

the exclusion masks, or if the cosine of the angle between two steps exceeded 0.2.

A total of 5000 individual streamlines were drawn for each seed voxel and

discarded if they reached the exclusion masks or did not meet the waypoint condition.

The choice of waypoints/termination/exclusion masks varied depending on the

target masks used in each run of tractography, with additional details available in

subsequent sections. The output streamline distributions were corrected for the

distance between the target and the seed mask, as the number of streamlines typically

decreases with distance from the seed mask. A summary of the tractography options

used in this study is provided in Table A2.

3.2.4 Connectivity-driven approach

The connectivity-driven approach used in our study, mirroring from Akram et al.

[34] and Bertino et al. [36], resulted in what we refer to as "connectivity-driven"

Vim in the subsequent text. This approach identifies the Vim by finding the
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maximum probability of connection to M1 and contralateral dentate nucleus within

the thalamic mask, generated via probabilistic tractography.

Streamlines seeded from the thalamus, targeting M1 and contralateral cerebellum,

were generated via probabilistic tractography, yielding two "tract-density" feature

maps for each target. These maps represent the white matter connectivity strength

with their corresponding targets. To mitigate bias caused by differences in target

volumes, the probability maps were normalised and then thresholded to discard

voxels characterised by low tract density (M1 at 50% of the tract density values

within the thalamic mask; dentate at 15%). The thresholded M1 map was

subsequently multiplied with the thresholded cerebellum map and binarised at

a lower 30% threshold, resulting in the connectivity-driven Vim. This process was

repeated for each hemisphere and subject for all diffusion MRI scans.

Note that the connectivity-driven approach was either applied to the high-quality

data to generate HQ-Vim, serving as approximations of the ground truth location

of the Vim, or to the low-quality data to produce low-quality connectivity-driven

Vim. These low-quality connectivity-driven Vim segmentations were then compared

with alternative approaches on low-quality data.

3.2.5 Atlas-defined approach

The atlas-defined approach identifies the Vim based on the group-average location

of the nucleus. To create a group-average Vim atlas, we transformed the binarised

connectivity-driven Vim (derived from the high-quality data) to the MNI152 1mm

standard space [126] and averaged these across the training subjects to obtain

a group-average Vim probability map. The transformation fields were obtained

by non-linearly registering the individual T1 to the same standard space. The

voxel-wise probabilities in this Vim probability map represent the proportion of

subjects that overlap at the given voxel. The group-average Vim probability map

was subsequently warped back into the individual T1 space and thresholded at

the 50% percentile to define the "atlas-defined" Vim.
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It is important to note that we only included a "reliable" subset of subjects

to calculate the group-average Vim probability map. As the connectivity-driven

approach has limited reliability even with high-quality data, we only included

subjects with "trustworthy" high-quality connectivity-driven Vim (HQ-Vim) for

calculating the group-average Vim probability map, while discarding subjects whose

HQ-Vim were considered unreliable. An HQ-Vim must meet four criteria to be

considered reliable: 1) Its volume exceeds 20 mm3. Given that the size of the

Vim is approximately 4x4x6 mm [127], a resulting volume that is too small may

suggest unreliable segmentation. 2) It contains only one connected component. This

criterion aligns with the anatomical reality, given that the Vim structure is a single

connected nucleus. 3) Its center-of-mass is located within 4 mm of the center-of-mass

of the Vim cluster in the Thalamic DBS Connectivity Atlas [34], when referenced

to native space. 4) Its correlation with the Thalamic DBS Connectivity Vim Atlas

exceeds 0.5, again in native space. Criteria 3) and 4) are included to exclude

HQ-Vim that deviate excessively from the atlas, thereby being considered unreliable.

Nonetheless, these criteria allow for a certain degree of individual variability to be

factored in. See Figure A1 for more details on the selection of the "reliable" subset.

3.2.6 HQ-augmented approach

The goal of this approach is to leverage anatomical information in HQ data to infer

the likelihood of a voxel belonging to the Vim, given a wide range of tract-density

maps (multiple distinct tract bundles) derived from low-quality data as input

features. The HQ-augmentation model was trained on the HCP dataset for each

type of low-quality dataset (i.e., LQ-LowAngular, LQ-LowSpatial, LQ-LowAngular-

LowSpatial). Using the HCP HQ data, we first generated the connectivity-driven

Vim (referred to as HQ-Vim) as the "ground truth" location of the nucleus, serving

as training labels in the model. Next, for each low-quality counterpart, we generated

an extended set of tract-density features, targeting a wide range of ROIs, as the

input features of the model. We hypothesise that the richer set of connectivity

features serves to compensate for the primary tract-density features (with M1 and
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dentate), when those are compromised by insufficient spatial or angular resolution

in low-quality diffusion MRI, thus making Vim identification less reliant on the

tract-density features used in the connectivity-driven approach, and more robust to

variations in data quality. During training, the model learns to use the extended

set of low-quality connectivity features to identify the Vim that is closest to the

one that can be otherwise obtained from its HQ counterpart.

3.2.6.1 Input features

The extended set of target ROIs comprised: 1) 75 ipsilateral cortical regions and

the contralateral cerebellar white matter, derived from the Destrieux atlas [120];

2) 29 white matter ROIs extracted from the XTRACT atlas [122]; 3) SCPCT-1,

SCPCT-2, SCPCT-3, and SCPCT-brainstem, i.e., the 4 ROIs extracted from the

cerebellothalamic tract of superior cerebellar peduncle (SCPCT) [121], among

which three are white matter segments lying between the thalamus and brainstem

(SCPCT-1, SCPCT-2, and SCPCT-3), one overlapping with the brainstem (SCPCT-

brainstem); 4) M1-1, M1-2, M1-3, M1-4, and M1-5, i.e., the white matter ROIs

joining thalamus with ipsilateral M1; 5) S1-1, S1-2, S1-3, S1-4, and S1-5, i.e., the

white matter ROIs joining thalamus with ipsilateral S1.

For each target, we reconstructed streamlines with the thalamus as the seed

mask and the selected target as the waypoint mask, producing a tract-density map

within the thalamic voxels. The ipsilateral cerebellum and CSF were designated as

exclusion masks, whilst the cortex served as termination regions. The streamlines

were constrained to be ipsilateral, with the exception of the four SCPCT ROIs

and the contralateral cerebellum serving as targets. The resulting 116 tract-

density maps were normalised by the maximum density value to correct for

overestimation/underestimation biased by target volumes. Finally, six M1-related

tract-density maps (targeting at M1 and five white matter segments from M1-1

to M1-5) were each multiplied by the following four tract-density maps (targeting

the four SCPCT ROIs and the contralateral cerebellum) respectively, resulting

in 6 × 5 product maps as additional connectivity features. These interaction
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features were designed to account for the intersection of the DTCp within the

thalamic mask. The whole procedure resulted in a total of 123 features to be fed

into the HQ-augmented model. Note that the input features were consistently

located within the individual’s T1 space. This held true irrespective of the actual

spatial resolution of the low-quality diffusion MRI. During the process of fibre

tracking, the features were systematically resampled to align with the individual’s

T1 space. This approach ensured uniform spatial correspondence across all datasets,

irrespective of their original resolution.

3.2.6.2 Model setup and implementation

Here we used a Conditional Random Field (CRF) [128] to learn the mapping

between the HQ-Vim (training labels) and the low-quality connectivity features

(input features), by maximising the likelihood of having the same HQ-Vim label

assignments given the set of low-quality connectivity features. CRFs are an extension

of Markov Random Fields (MRFs) [129], a technique that models the joint probability

distribution of random variables, while taking into account the dependencies between

neighbouring variables. While the primary focus of MRFs is to model the joint

distribution of the variables, CRFs, on the other hand, are a type of discriminative

model and focus on modelling the conditional probability distribution of target

variables given the observed input variables, without accounting for the joint

distribution of all variables in the system explicitly. Similar to MRFs, CRFs consist

of two compartments, one designed to model the likelihood of assigning a label

to a given voxel without considering its neighbourhood, the other to account for

the fact that neighbouring voxels are more likely than not to have the same label.

Specifically, assume X = [x1,x2, ...xV ]T is a V × d connectivity feature matrix for

a given subject, where xi is a d× 1 vector representing the connectivity features

in voxel i, V is the total number of voxels of the thalamus (per hemisphere) for

this subject; y = [y1, y2, ...yV ]T is a V × 1 vector containing the HQ-Vim labels for

the V voxels, in which yi is the label of voxel i. Given the low-quality features X,
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we seek to maximise the probability of reproducing the exact same HQ-Vim label

assignment y on its low-quality counterparts, across the training subjects

logP (y|X) = log[ 1
Z(X) exp(−E(y|X))] (3.1)

Here E(y|X) is the cost of the label assignment y given the features X, whilst

Z(X) serves as an image-dependent normalising term. Maximising the posterior

P (y|X) across subjects is equivalent to minimising the cost of the label assignment

y given the features X. Suppose Ni is the set of voxels neighbouring voxel i,

the cost E(y|X) is modelled as

E(y|X) =
∑

i

ψu(yi|xi) +
∑

i

∑
j∈Ni

ψp(yi, yj|xi,xj) + λ1||W||1 + λ2||W||22 (3.2)

The first component ψu(yi) measures the cost (or inverse likelihood) of voxel i

taking label yi. Here ψu(yi) takes the form ψu(yi) = wT
yi
ϕ(xi), where ϕ(·) maps a

feature vector xi = [x1, x2, ...xd] to a further expanded feature space in order to

provide more flexibility for the parameterisation. W = [w1,w2] is the coefficient

matrix to be learned from the data, each column containing the coefficients for

the given class (i.e., belonging to the HQ-Vim or not). Here we chose a series of

polynomials along with the group-average Vim probability (registered into native

space) to expand the feature space, i.e.,

ϕ(xi) = [x1, x2, ...xd, x
p1
1 , x

p1
2 , ...x

p1
d , x

p2
1 , x

p2
2 , ...x

p2
d , x

p3
1 , x

p3
2 , ...x

p3
d , gi]

where p1 = 2, p2 = 0.5, p3 = 0.2 are the power of the polynomials (chosen by

testing a range of power values on an independent subset, see Figure A2), and

gi is the group-average probability of voxel i classified as Vim (calculated across

the training subjects). The second pairwise cost encourages assigning similar

labels to neighbouring voxels, particularly for those sharing similar connectivity

features. We modelled this component as ψp(xi,xj) = µ(yi, yj)ρk(ϕ(xi), ϕ(xj)).

Here k(ϕ(xi), ϕ(xj)) = exp(−γ||ϕ(xi) − ϕ(xj)||2) is a kernel function modelling

the similarity between voxel i and j in the extended feature space, with length
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scale γ, chosen via cross-validation. µ(·) is a label compatibility function where

µ(yi, yj) = 0 if yi = yj or µ(yi, yj) = 1 if yi ≠ yj.

Therefore, in a local neighbourhood, the kernel function penalises inconsistent

label assignment of voxels that have similar features, thus allowing modelling

local smoothness. ρ controls the relative strength of this pairwise cost weighted

by k(·). Lastly, the L1 and L2 penalty terms serve to prevent overfitting of the

model. We used a mean-field algorithm to iteratively approximate the maximum

posterior P (y|X) [128] summed across the subjects. The approximated posterior

is maximised via gradient descent in a mini-batch form, where the connectivity

feature matrix of each subject serves as a mini-batch, is demeaned and normalised,

and sequentially fed into the optimisation problem.

Specifically, we used cross entropy loss to maximise the log-likelihood in Equation

(A1). Specifically, suppose T is the one-hot coding matrix of the HQ-Vim labels y,

i.e., yi is mapped to a binary vector ti = [ti1, ...tiK ], in which yi = k corresponds to

tik = 1 and other elements in ti set to 0. To maximise the log-likelihood in (A1) is

equivalent to minimising the cross entropy (negative log likelihood):

min
V∑
i

K∑
j

tij log(P (yi|xi)) (3.3)

Due to the inter-dependency of neighbouring voxels, the exact minimisation is

intractable. Thus, we approximate the CRF distribution P (y|X) by a simpler

function Q(y), and iteratively solve this optimisation problem, explained below.

To set up initialisation, we derived the initial coefficients Ŵ(0) = [ŵ(0)
1 , ...ŵ(0)

K ]

by optimising the following

Ŵ(0) = arg min
W

V∑
i

K∑
j

tij log(P ′(yi|xi)) (3.4)

where P ′(yi|xi) is the likelihood without considering local smoothness of the label

assignment, i.e., ignoring the pairwise loss term in Equation (A2):

P ′(yi = l|xi) = exp(−ψu(yi = l|xi))∑K
k exp(−ψu(yi = k|xi))

(3.5)
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where, as defined before, ψu(yi = l|xi) = wT
l ϕ(xi). The coefficients Ŵ(0) were

used to initialise Q(y) using Equation (A5), i.e., Qi(yi = l) ← P ′(yi = l|xi)

evaluated at Ŵ(0).

After initialisation, Qi(yi = l) is updated as the weighted sum of its neighbouring

Q values, Q̃i(yi = l) ← ρ
∑

j∈Ni
k(ϕ(xi), ϕ(xj))Qj(yj = l), where Q̃i(yi = l) is the

updated Q value. This is the message-passing step and is equivalent to applying

M image-dependent Gaussian filters on the Q values. After message passing,

label incompatibility was calculated as a penalty to encourage local smoothness.

The incompatibility for label l at a given voxel i, denoted by Q̂i(yi = l), was

calculated as the sum of the updated Q̃i that take a different label, i.e., Q̂i(yi =

l) ← ∑
l′ µ(l, l′)Q̃i(yi = l′). Next, this penalty incurred by incompatibility was

subtracted from the unary inputs ψu(yi = l|xi), i.e., Qi(yi = l)← 1
Z′

i
exp(−ψu(yi =

l|xi) − Q̂i(yi = l)), where Z
′
i = ∑K

k exp(−ψu(yi = k|xi) − Q̂i(yi = k)) is the

normalisation constant. The above steps were repeated until Q converges. The

resulting Qi(yi|xi) is an approximation of the likelihood P (yi|xi), and was used

when calculating the cross entropy in Equation (A3). This cross entropy (A3) was

minimised in a mini-batch style via an ADAM optimiser [130] with learning rate

0.01, in which the connectivity features X of each subject served as a mini-batch.

The model was trained using only the reliable subjects. To clarify, "reliable" refers

to the subjects that passed the selection criteria described in Chapter 3.2.5. These

reliable subjects were further divided into two separate groups or "folds". The model

was trained using one fold at a time, with the other fold and "unreliable" subjects

(those who did not pass the quality control) used for testing. This approach ensured

that our model was exposed to and learned from the most accurate data available.

The pseudo code of the above steps is summarised in Algorithm 1.

3.2.7 Evaluation of Vim localisation

The three approaches for Vim localisation on low-quality data were evaluated

separately on the two subsets of subjects: the reliable subset of subjects, in which

the HQ-Vim passed the selection criteria (described in Chapter 3.2.5), and the
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Algorithm 1 Mean-field iteration in CRF
Qi(yi = l)← exp(−ψu(yi = l|xi))/

∑
k exp(−ψu(yi = k|xi)) ▷ Initialisation

while not converged do
Q̃i(yi = l)← ρ

∑
j∈Ni

k(ϕ(xi), ϕ(xj))Qj(yj = l) ▷ Message Passing
Q̂i(yi = l)← ∑

l′ µ(l, l′)Q̃i(yi = l′) ▷ Compatibility with neighbours
Qi(yi = l)← 1

Z
′
i

exp(−ψu(yi = l|xi)− Q̂i(yi = l)) ▷ Approximate P (yi = l|xi)
end while

unreliable subset, in which the HQ-Vim did not meet the criteria. On the reliable

subset, the corresponding HQ-Vim served as the ground truth (i.e., HCP HQ-Vim as

ground truth for HCP; UKB HQ-Vim as ground truth for UKB); on the unreliable

subset, the atlas-defined Vim served as the ground truth.

Two metrics, Dice coefficient and centroid displacement, were employed to assess

the correspondence between the low-quality Vim localisation and the ground truth.

The Dice coefficient measures the extent of overlap between two segmentations

relative to their combined size. Specifically, for two segmentations, A and B,

the Dice coefficient can be expressed as 2|A ∩ B|/(|A| + |B|), where |A ∩ B|

represents the number of voxels classified as Vim in both A and B, whilst |A|+ |B|

represents the total number of Vim voxels in A and B. Since the HQ-augmentation

approach and the atlas-based approach produce continuous Vim probability maps,

calculating their Dice coefficients with the "ground truth" requires thresholding

to binarise these maps a priori.

The other metric, centroid displacement, provides an alternative means of

evaluating segmentation similarity that does not rely heavily on precise thresholding.

It measures the Euclidean distance between the centroids of two Vim clusters, thus

offering a measure of the spatial displacement between predicted and true Vim

locations. The centroid for the HQ-augmented Vim is calculated as the weighted

average coordinates, where the weights correspond to the estimated posterior

probability of a voxel being classified as Vim. A low threshold of 0.1 is applied to

the output posterior probability map when calculating the centroid coordinate, which

eliminates voxels that have a low likelihood of being classified as Vim. The centroid

for the atlas-based Vim is computed in a similar fashion, using the group-average
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Vim probability as weights (once warped into native space) and also applying a

0.1 threshold. For the connectivity-driven Vim, the centroid coordinate is derived

from the average coordinates of the binarised map.

3.3 Results

3.3.1 Accuracy of the HQ-augmentation model on HCP
surrogate low-quality data

As the connectivity-driven approach may even fail on high-quality data, producing

HQ-Vim (i.e., the connectivity-driven Vim derived from high-quality HCP data) that

are unreliable as "ground truth", we split the evaluation subjects into two subsets

based on the reliability of the HCP HQ-Vim and made evaluations separately, against

different ground truth. The first subset consisted of subjects with trustworthy HQ-

Vim, where the HQ-Vim served as the ground truth location of the Vim. The

second subset consisted of subjects with unreliable HQ-Vim, where the atlas-defined

Vim served as the ground truth instead. The HQ-Vim has to pass four criteria to

serve as a trustworthy ground truth: 1) its volume exceeds 20 mm3; 2) it contains

only one blobs; 3) its center-of-mass locates within 4 mm from the center-of-mass

of the Thalamic DBS Connectivity Vim Atlas [34] in native space; 4) its correlation

with the Thalamic DBS Connectivity Vim Atlas exceeds 0.5 in native space. These

loose criteria were chosen to reject the HQ-Vim that was too far away from the

previously-validated Vim atlas to be considered as reliable, while preserving the

inter-individual anatomical variability by allowing for some extent of deviation from

the standard atlas (see Figure A1A for the histograms of Euclidean distances and

correlations between HQ-Vim and the Thalamic DBS Connectivity Vim Atlas across

HCP subjects). A total of 459 HCP subjects out of 1063 passed the four criteria,

thus selected as the reliable subset (see Figure 3.3 for the example contours of

reliable HQ-Vim, and Figure 3.4C, 3.4F and 3.4I for contours of unreliable HQ-Vim).

A group-average Vim probability map was calculated across these 459 subjects’

HQ-Vim (warped into standard space), and subsequently transformed back into

the individual space and thresholded at 50% as the ground truth for the unreliable
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subset of HCP subjects. To further validate our choices of ground truth, we assessed

the spatial proximity between this group-average Vim probability map (in 1mm

MNI standard space) and three sets of literature-based optimal stimulation points

targeting the Vim for the treatment of tremor [131] in left hemisphere (because, the

three sets of coordinates were provided in left hemisphere only). The group-average

map overlapped with all three sets of optimal stimulation points (TABLE 3.1).

Particularly, it overlapped with the peak location of an unweighted volume of tissue

activated (VTA) frequency map with high probability.

We compared three Vim localisation approaches against the "ground truth" for

each type of HCP surrogate low-quality data (LQ-LowAngular, LQ-LowSpatial,

or LQ-LowAngular-LowSpatial). The three approaches were: 1) the atlas-defined

Vim, created by transforming the HCP group-average Vim probability map into

the individual native space; 2) the connectivity-driven approach, derived from the

respective low-quality M1 and dentate tract-density features; 3) the HQ-augmented

Vim, obtained by applying the corresponding HQ-augmentation model to the

extended set of low-quality connectivity features.

When evaluated against the respective HQ-Vim, the HQ-augmented Vim

outperformed the atlas-defined Vim and the low-quality connectivity-driven Vim

for all three types of HCP low-quality data (Figure 3.2), producing higher Dice

coefficient with the respective HQ-Vim and smaller Euclidean distance from the

HQ-Vim’s center-of-mass. In particular, on LQ-LowAngular (Figure 3.2A, 3.2B

and 3.2C) and LQ-LowAngular-LowSpatial data (Figure 3.2G, 3.2H and 3.2I), the

connectivity-driven approach often failed to generate any clusters due to the degraded

angular resolution, resulting in "zero" identified Vim volume and thus having zero

Dice coefficient with the HQ-Vim. In this case, its Euclidean distance from the

HQ-Vim’s center-of-mass was set to Infinity. In contrast, the HQ-augmentation

model invariably succeeded in finding a coherent Vim cluster that was close to the

respective HQ-Vim, suggesting that the HQ-augmentation model is more capable

of reproducing Vim localisation than the connectivity-driven approach when high-

quality data is unavailable. Furthermore, the HQ-Vim approach produced higher
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Literature-
based
stimulation
points

I: classical target
center of gravity

II:
clinically-weighted

hotspot

III: unweighted
frequency map

peak

MNI coordinates
(x, y, z) (-13.1, -19.3, -2.1) (-17.3, -13.9, 4.2) (-16.5, -17.0, 1.2)

Overlap proba-
bility (HCP) 0.51 0.37 0.96

Overlap proba-
bility (UKB) 0.62 0.23 0.95

Table 3.1: Spatial proximity between the group-average Vim probability map
and the literature-based optimal stimulation points (left hemisphere). The
group-average Vim probability map calculated from the reliable subset overlapped with
three sets of literature-based optimal stimulation points. The overlap probability (in third
and fourth row) represents the proportion of subjects (of the respective dataset) that
overlap at the given target location (in second row). The classical target center of gravity
was defined by Horn et al. based on literature-reported effective contact location. The
other two sets were defined by Elias et al. 2021 on the basis of volume of tissue activated
(VTA) stimulation maps, either weighted by the corresponding VTA percentage change
from baseline (clinically-weighted hotspot coordinates), or unweighted but thresholded at
top 10% (unweighted frequency map peak coordinates).

Dice coefficient and smaller centroid displacement with the HQ-Vim than the

atlas-defined approach, suggesting that the HQ-augmented Vim preserved more

inter-individual variations of the Vim than a rigid standardised atlas. Obviously,

the subset of HQ-Vim as evaluation "ground truth" was defined to resemble the

standardised Vim atlas (i.e., excluding those having a large mismatch with the

atlas), which thus limits inter-individual anatomical variability in the first place. It

is notable that the HQ-augmentation approach produced results that were closer

to the HQ-vim than the atlas-defined Vim, even within this limited margin of

anatomical variability (see Figure 3.3 for contours of reliable HQ-Vim, atlas-defined,

HQ-augmented and connectivity-driven Vim).

On the subset for which the HQ-Vim were regarded as unreliable, we evaluated

the accuracy of the HQ-augmented Vim against the atlas-defined Vim (Figure 3.4).

Although the atlas-defined Vim cannot account for individual variability, it may still

serve as a version of the "gold standard," as the unknown ground truth location of
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Figure 3.2: Accuracy of the HQ-augmentation model on LQ-LowAngular,
LQ-LowSpatial, and LQ-LowAngular-LowSpatial, evaluated against HQ-Vim.
On each type of HCP surrogate low-quality data, we evaluated the HQ-augmentation,
connectivity-driven, and atlas-defined approach against the HQ-Vim. (A) On LQ-
LowAngular data, the HQ-augmentation model produced higher Dice coefficient (X-axis)
with the respective HQ-Vim than the connectivity-driven approach (y-axis). Warmer
colours are indicative of areas where data points are more densely populated. (B) On
LQ-LowAngular data, the HQ-augmentation model also gave higher Dice coefficient with
the respective HQ-Vim than the atlas-defined vim (y-axis). (C) On LQ-LowAngular data,
the HQ-augmentation model (blue histogram) gave smallest centroid displacement from
the HQ-Vim than the connectivity-driven (orange) and atlas-defined (green) approach.
(C), (D) and (F) Equivalent plots of (A), (B) and (C), on LQ-LowSpatial. (G), (H)
and (I) Equivalent plots of (A), (B) and (C), on LQ-LowAngular-LowSpatial. For
a more direct representation of the summary statistics, please refer to Figure A4 which
displays boxplots of the Dice coefficients.
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Figure 3.3: Example contours of HQ-Vim (ground truth), overlayed with the
HQ-augmented or connectivity-driven Vim from HCP low-quality data, or by
the atlas-defined Vim. (A) Contours of HQ-vim (red) versus LQ-LowAngular Vim
(blue: HQ-augmentation; orange: connectivity-driven), or the atlas-defined Vim (green),
of an example subject. (B) Contours of HQ-vim (red) versus LQ-LowSpatial Vim or the
atlas-defined Vim (green), of an example subject. (C) Contours of HQ-vim (red) versus
LQ-LowAngular-LowSpatial Vim or the atlas-defined Vim (green), of an example subject.

the Vim is not expected to be far from its atlas position. For all three types of low-

quality data, the HQ-augmentation approach on the low-quality data gave higher

Dice coefficient and smaller centroid displacement with the atlas-defined Vim, even

outperforming the connectivity-driven approach applied on high-quality HCP. This

suggests that the HQ-augmentation approach is more robust to corruptions of data

quality. Similarly, this evaluation (on unreliable subjects) is obviously somewhat

circular, in the sense that these subjects are defined by a large mismatch between HQ-

Vim and atlas-based Vim, but it is nevertheless notable that the HQ-augmentation

results (which are driven by tractography) are closer to the atlas results than the

HQ-Vim (see Figure 3.4C, 3.4F and 3.4I for example contours of unreliable HQ-Vim,

the HQ-augmented Vim on each low-quality dataset, and the atlas-defined Vim).

Overall, the above results demonstrate that the HQ-augmentation model is

superior to existing approaches in its robustness to data quality, as well as ability to

preserve individual variability. Its reliability against data corruptions is primarily

achieved via the extended set of connectivity-features with the wide range of brain

regions. Instead of merely relying on the M1 and dentate tract-density features,
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Figure 3.4: Accuracy of HQ-augmentation on LQ-LowAngular, LQ-LowSpatial,
LQ-LowAngular-LowSpatial, evaluated against the atlas-defined Vim. For
the left-out subjects in which HQ-Vim is untrustworthy, the atlas-defined Vim served
as "ground truth" instead. (A) and (B) The HQ-augmentation approach (on LQ-
LowAngular) gave higher Dice coefficient and smaller centroid displacement with the
atlas-defined Vim even than the HQ-Vim. Warmer colours are indicative of areas where
data points are more densely populated. (C) Example contours of HQ-Vim (unreliable),
atlas-defined Vim (green) and HQ-augmented Vim (blue). The HQ-augmentation approach
on LQ-LowAngular produced Vim closer to the group-average location of Vim. (D), (E)
and (F) Equivalent plots of (A), (B) and (C), on LQ-LowSpatial data. (G), (H) and
(I) Equivalent plots of (A), (B) and (C), on LQ-LowAngular-LowSpatial data.
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the HQ-augmentation model gathers evidence from the richer set of connectivity

features, together with the group-average "prior" location to make decisions; when

the M1 and dentate features are no longer trustworthy (e.g., giving contrasting

evidence with respect to the location of Vim or tending to make predictions that

deviate too much from the group-average location), the HQ-augmentation model

may still obtain sufficient evidence from the rest of the connectivity features to

produce a coherent Vim cluster that roughly aligns with the atlas-defined Vim.

Even if the data quality is too bad, the model can still rely on the group-average

prior, producing baseline Vim localisation that approximates the atlas-based Vim

(see Figure 3.4 for more discussion). This also explains why the HQ-augmentation

model may give Vim closer to the atlas even when the HQ-Vim fails.

Another interesting result is that the LQ-LowAngular-LowSpatial dataset, which

was created by spatially downsampling the LQ-LowAngular dataset, does not appear

to have an actual lower quality than the latter. Specifically, the connectivity-

driven approach encountered fewer failures on the LQ-LowAngular-LowSpatial

dataset than on the LQ-LowAngular dataset. A potential explanation for this

phenomenon is that the reduced spatial resolution of the LQ-LowAngular-LowSpatial

dataset results in a higher signal-to-noise ratio (SNR). This higher SNR might

improve estimation of fibre orientations and streamline tracking, resulting in better

connectivity-driven Vim localisation.

3.3.2 Generalising the HQ-augmentation model to the UKB
surrogate low-quality dataset

We also tested whether the HQ-augmentation models trained on HCP were gen-

eralisable to other datasets collected under different protocols. It is crucial for

a model to be generalisable to unseen protocols, as collecting large datasets for

training purposes in clinical contexts can often be impractical. Here we leveraged

the UKB diffusion MRI dataset to test the generalisability of the HQ-augmentation

model trained on HCP. The UKB diffusion MRI were acquired at isotropic spatial

resolution 2 mm, with two shells bvals = 1000 s/mm2 and 2000 s/mm2, sampled
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at 50 directions per shell. We similarly corrupted the UKB diffusion MRI data by

extracting the b0 and bvals=1000 s/mm2 volumes, the latter sampled uniformly

at 32 directions, as the surrogate UKB low-quality data, referred to as LQ-UKB.

We applied the HQ-augmentation model trained on LQ-LowAngular-LowSpatial,

which roughly matched the spatial and angular resolution of LQ-UKB, to the

low-quality connectivity features derived from LQ-UKB, producing a predicted

Vim probability map per UKB subject.

The evaluations on the UKB dataset were similar to those on HCP, where

the evaluation subjects were divided into a reliable subset with UKB HQ-Vim as

ground truth and an unreliable subset with atlas-defined Vim as ground truth.

The UKB HQ-Vim were derived from the original multi-shell UKB dataset via

the connectivity-driven approach. The UKB atlas-defined Vim was derived from

the UKB version of group-average Vim probability map, created by averaging the

reliable UKB HQ-Vim, as it is more representative of the age population in UKB

than the HCP group-average Vim probability map. The selection criteria were the

same as HCP (Figure A1B), i.e., the UKB HQ-Vim has to satisfy the following four

conditions to be regarded as trustworthy "ground truth": 1) its volume is greater

than 20 mm3; 2) it contains only one cluster; 3) its correlation with the Thalamic

DBS Connectivity Atlas is greater than 0.5; 4) its centroid displacement from the

Thalamic DBS Connectivity Atlas is smaller than 4 mm. The group-average Vim

probability map calculated from the subset of reliable HQ-Vim, though slightly

different from the one calculated from the HCP subjects, also overlappped with

the literature-based optimal stimulation points for tremor (see TABLE 3.1, the

fourth row, for the overlap probabilities).

Similarly to HCP, the performance of the HQ-augmentation model was com-

pared with the connectivity-driven Vim on LQ-UKB and the atlas-defined Vim.

Although purely trained on HCP low-quality features, the HQ-augmentation model

again produced higher Dice coefficient and smaller centroid displacement than

the connectivity-driven and atlas-defined approach (Figure 3.5A) with the UKB

HQ-Vim, suggesting its robustness to variations in data heterogeneity as well as its
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Figure 3.5: Generalisability of HQ-augmentation to UKB. The HQ-augmentation
model trained on HCP was applied to the UKB low-quality features (blue) as HQ-
augmented Vim. (A). When using the UKB HQ-Vim as ground truth, the HQ-
augmentated Vim has higher Dice coefficient and smaller centroid displacement with the
UKB HQ-Vim, than the atlas-defined Vim (green) and the connectivity-driven Vim using
low-quality features (orange). (B) When using the atlas-defined Vim as ground truth,
the HQ-augmentation model using low-quality features even gave more reliable Vim than
the UKB HQ-Vim (red), which used HQ features to target Vim. (C) and (D). Contours
of Vim, identified by each approach.

ability to capture individual variability. Furthermore, when evaluated against the

atlas-defined Vim, this HCP-transferred HQ-augmentation model generated Vim

estimates that were much closer to the atlas than the UKB HQ-Vim, indicating

again that the HQ-augmentation approach, even trained on a different dataset, was

even more reliable than the connectivity-driven approach applied to high-quality

data (Figure 3.5B). Overall, these results demonstrate that the HQ-augmentation

approach trained on HCP data can indeed generalise to other low-quality datasets

acquired using different protocols. A possible reason for this generalisability is that

the HQ-augmentation model trained on HCP has already learned some general

features and patterns that can be useful for predicting Vim on UKB data; hence,

leveraging the anatomical knowledge gained from HCP improves its performance

on another related dataset, e.g., LQ-UKB. The HCP dataset itself contains a

diverse range of subjects, and thus the model has learned to handle the variability

in the LQ-UKB to some extent.
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3.3.3 Reliability analysis of the HQ-augmentation approach
on HCP and UKB

We conducted a comprehensive reliability analysis for the three approaches at the

individual level to assess their consistency in producing Vim localisation despite

variations in data quality and across scanning sessions. It is crucial for a localisation

approach to produce consistent results not only across different scanning sessions

but also across varying data quality, as its clinical value lies in capturing the true

underlying anatomical variability unique to each individual, rather than reflecting

variabilities arising from noise or methodological factors. Our reliability assessment

consisted of two dimensions: 1) consistency of Vim localisations across scans with

different quality levels for a given subject (referred to as across-quality reliability);

and 2) correspondence of Vim localisations across different scanning sessions of

the same quality level for a given subject (referred to as test-retest reliability).

Prior to conducting the reliability analysis, we trained an HQ-augmentation model

specifically for the high-quality data, using the HQ-Vim as training labels and the

extended set of connectivity profiles derived from high-quality data instead as input

features. The HQ-augmented model tailored to high-quality data was applied to

the left-out subjects to produce a "high-quality version" of HQ-augmented Vim

per subject. This version was then compared with the HQ-augmentation outputs

from low-quality datasets (to measure its across-quality reliability) or retest sessions

(to measure its test-retest reliability).

To assess across-quality consistency of the HQ-augmentation approach, we

calculated the Dice coefficient and centroid displacement between the HQ-augmented

Vim derived from each low-quality dataset (LQ-LowAngular, LQ-LowSpatial, LQ-

LowAngular-LowSpatial) and its high-quality counterpart (i.e, the high-quality

version of HQ-augmented Vim) per subject, resulting in six measurements per

subject (2 metrics × three pairs of low-versus-high comparisons). Similarly, we

also assessed the across-quality consistency of the connectivity-driven approach,

by comparing the connectivity-driven Vim derived from each low quality dataset

against the respective HQ-Vim, again resulting in six measurements. On both UKB
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Figure 3.6: Across-quality consistency of the HQ-augmentation and
connectivity-driven approach. The HQ-augmentation approach is significantly more
consistent than the connectivity-driven approach (paired t-tests, Bonferroni-corrected by 8
tests in total), producing higher Dice coefficient and smaller centroid displacement between
the outputs derived from different data quality, both across the reliable subset (dark blue
and orange) and unreliable subset (light blue and orange). (A) Blue: Dice coefficient
between the HQ-augmentation results on high-quality data (HQ-HCP) and each of the
low-quality data (LQ-LowAngular, LQ-LowSpatial, LQ-LowAngular-LowSpatial), pooled
together (i.e., each dot represents a single high-vs-low comparison); orange: equivalent
plots for the connectivity-driven approach. (B) Equivalent plots of (A), using centroid
displacement as the consistency metric. (C) Dice coefficient between the HQ-augmentation
results on HQ-UKB and LQ-UKB (blue) and between the connectivity-driven results on
HQ-UKB and LQ-UKB (orange). (D) Equivalent plots of (C), using centroid displacement
as the consistency metric. Dark colours indicate reliable subjects (i.e., their HQ-Vim are
trustworthy), while light colours indicate the opposite.
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and HCP, the HQ-augmentation approach produced substantially more consistent

Vim localisation results than the connectivity-driven approach across datasets of

different quality (Figure 3.6). Both approaches had compromised "across-quality"

consistency on the unreliable subset, demonstrated by the smaller Dice coefficient

and higher centroid displacement (Figure 3.6, light colours).

The test-retest reliability of the two approaches displayed a similar pattern. To

assess the test-retest reliability of the HQ-augmentation approach, we applied the

HQ-augmentation model trained on the multi-shell first-visit data to the second-visit

connectivity features, producing the HQ-augmented Vim for the repeat sessions,

and calculated the Dice coefficient and centroid displacement between first-visit

and second-visit HQ-augmented Vim. The test-retest reliability of the connectivity-

driven approach was likewise measured by the similarity between the connectivity-

driven Vim derived from the first-visit and second-visit M1/dentate connectivity

features respectively. The HQ-augmentation approach outperforms the connectivity-

driven approach in providing substantially higher Dice coefficient and smaller

centroid displacement between sessions (Figure 3.7). Similarly, both approaches had

compromised test-retest reliability on the unreliable subset (Figure 3.7, light colours).

3.4 Discussion

We proposed an Image Quality Transfer (IQT) approach, HQ-augmentation, for

improving the accuracy of localising the ventral intermediate nucleus of the thalamus

(Vim), a common target for deep brain stimulation and MR-guided ultrasound.

This approach leverages the anatomical information (i.e., approximate ground

truth location of the nucleus) obtained from high-quality HCP to augment Vim

identification on the low-quality data, by learning to produce Vim localisation

as close as possible to the high-quality "ground truth" using a wide range of

white matter connectivity features derived from the low-quality data. Our results

demonstrate that the HQ-augmentation approach is more accurate in producing Vim

and more robust to data corruptions than its predecessor, the connectivity-driven

approach, especially when high-quality data is unavailable; moreover, it proves more
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Figure 3.7: Test-retest reliability of the HQ-augmentation and connectivity-
driven approaches. The HQ-augmentation approach is significantly more consistent
than the connectivity-driven approach (8 paired t-tests, Bonferroni-corrected by 8 tests
in total) across scanning sessions, producing higher Dice coefficient and smaller centroid
displacement between the outputs derived from the first-visit and repeat scans, both
across the reliable subset (dark blue and orange) and unreliable subset (light blue and
orange). (A) Blue: Dice coefficient between the HQ-augmentation outputs on first-
visit and repeat scans across 43 HCP subjects that had received retest sessions; orange:
equivalent plots for the connectivity-driven approach. (B) Equivalent plots of (A), using
centroid displacement as the consistency metric. (C) and (D) Equivalent plots of (A)
and (B) for 2,760 UKB subjects, using centroid displacement as the consistency metric.
Dark colours indicate reliable subjects (i.e., their HQ-Vim are trustworthy), while light
colours indicate the opposite.
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reliable than the connectivity-driven approach even when the latter uses high-quality

information to localise Vim. The HQ-augmentation approach performs consistently

well across different data qualities and scanning sessions, surpassing the performance

of the connectivity-driven approach. Furthermore, the HQ-augmentation approach

preserves more inter-individual anatomical variability than the atlas-based approach.

Importantly, our HQ-augmentation model trained on HCP surrogate low-quality

data is generalisable to UKB low-quality data, outperforming the connectivity-driven

approach in accuracy and reliability while preserving the anatomical variability

unique to UKB individual subjects. Being a reliable and generalisable tool, our

approach is especially valuable in clinical contexts where large samples of data

collection and retraining are impractical.

Why is the HQ-augmentation approach capable of reproducing HQ-Vim on

low-quality data, while the connectivity-driven approach using M1 and dentate

tract-density features struggles to do so in isolation? The HQ-augmentation model

leverages connectivity features with other target ROIs, which may also contain

information about the anatomical location of Vim. For instance, Vim is anterior to

thalamic clusters exhibiting high diffusion connectivity to S1, the primary sensory

area. Consequently, tract-density with S1 serves as a "negative" feature, providing

evidence against the likelihood of a given voxel being classified as Vim. Connectivity

targeting at white matter segments can also be informative, particularly when

diffusion data has limited angular resolution. This is because middle point targets

are more accessible for streamlines to reach compared to more distant cortical

ROIs. For example, streamlines originating from a seed thalamic voxel might not

reach M1 but could still reach white matter segments between the ipsilateral M1

and the thalamus. In such cases, tract-density features with these white matter

ROIs may compensate for the inadequate M1 connectivity feature, resulting in Vim

segmentation that remains close to the one defined by high-quality M1 and dentate

tract-density features. In essence, the HQ-augmentation model synthesises evidence

from an extended set of connectivity features to determine the most probable location

of the "true" Vim. When primary connectivity features defining Vim fail to provide
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reliable identification due to limited data quality, the remaining connectivity features

may still guide the model to produce Vim segmentation close to its high-quality

counterpart. This makes the model more robust against data quality degradation.

It is worth noting that the HQ-augmentation model generates Vim segmentation

closer to the atlas than the HQ-Vim, which is defined by high-quality M1 and

dentate tract-density features. This is due to the incorporation of a "prior" feature

representing the group-average location of Vim. The HQ-augmentation approach

may converge to the baseline, i.e., the atlas-defined Vim, when the entire extended

set of connectivity features is too noisy to provide reliable Vim identification.

Numerous techniques exist for deep nuclei segmentation, including atlas based

segmentation, image intensity based segmentation, and machine/deep learning

based segmentation. Atlas-based segmentation has the advantage of being the

most reproducible, as the only factor that may affect its segmentation performance

is suboptimal nonlinear registration of the atlas image to a new image set. By

employing an average atlas derived from the same image population, this technique

can often enhance its performance through improved alignment between the atlas

and individual image sets. However, atlas-based segmentation has limitations in

accounting for individual variability inherent in the data, which is essential for

personalising treatments in clinical practice. The connectivity-driven approach is

an example of image intensity based segmentation. The product (or intersection) of

M1 and dentate tract-density feature maps creates an intensity contrast, offering

probabilistic information about the likelihood of a voxel belonging to the Vim nucleus.

A related method is Markov Random Field (MRF), which models image intensity

as Gaussian mixtures and classifies voxels based on their posterior probability

of belonging to respective mixture components, while promoting similarity in

membership assignments for neighbouring voxels. The HQ-augmentation approach,

on the other hand, is a machine learning-based segmentation technique. It shares

similarities with MRF, as it contains two compartments for modelling the posterior

probability of voxel label assignment. One of the compartments usually represents

the likelihood of a voxel belonging to a given class without considering its neighbours.
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The other compartment is usually a pairwise term, akin to MRF, penalising

neighbouring voxels with incompatible label assignments. The HQ-augmentation

approach outperforms MRF in this context due to its discriminative power, which

is achieved by learning the mapping between low-quality image features and high-

quality labels. This optimisation of the likelihood of observing high-quality labels

given low-quality features results in a stronger classifier than Gaussian mixtures

in MRF. In the future, it may be worthwhile to explore other machine learning

or deep learning techniques, as well as transfer learning methods, to evaluate

their potential for further enhancing deep nuclei segmentation/localisation tailored

to low-quality data.

The proposed HQ-augmentation model falls within the scope of Image Quality

Transfer (IQT), a new computational imaging technique aimed at propagating

information from rare or expensive high-quality data to more prevalent low-quality

datasets. This transfer enhances the image resolution or information content of the

latter, facilitating subsequent analysis. IQT typically relies on matched pairs of

high- and low-quality data to establish a mapping from low-quality features to the

corresponding high-quality information [90, 91, 132]. Although closely related to

these previous IQT techniques, the HQ-augmentation approach differs slightly as it

does not primarily focus on enhancing lower-quality images to augment subsequent

analysis. Instead, it directly learns the mapping between high-quality Vim labels

and lower-quality connectivity features. Once learned and applied to unseen image

sets, the mappings "augment" the low-quality connectivity features to produce

predicted Vim probability maps as if they were derived from their "imaginary"

high-quality counterparts. An alternative option for augmenting Vim localisation

on low-quality data involves enhancing the low-quality image content via IQT

first, followed by identifying Vim using the connectivity-driven approach on the

enhanced image. However, this route was not chosen because the connectivity-

driven approach may fail even on high-quality data. Therefore, in addition to

high-quality image transfer, it is equally important to develop an approach that

is more reliable and flexible than existing methods, even when high-quality data
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is available. Nevertheless, it is worth exploring whether enhancing low-quality

image content via IQT first, followed by the HQ-augmentation model, might further

improve Vim localisation on low-quality data.

The HQ-augmentation approach has several limitations. First, it relies on

the availability of high-quality data to train the model, which may not always

be accessible in certain research or clinical settings. Although our model demon-

strates generalisability from HCP to UKB datasets, it is important to assess its

performance on other low-quality datasets and populations to ensure broad applica-

bility. Moreover, given the variation in MRI acquisition protocols and hardware,

the model may require retraining or fine-tuning for specific clinical or research

contexts. Second, the current model is based on a machine learning approach,

which may be more sensitive to the choice of features and the representation of

the data. Recent advancements in deep learning, specifically in the domain of

medical image analysis, may offer alternative solutions with improved performance

and adaptability to various imaging contexts. Investigating the integration of

deep learning methods, such as convolutional neural networks (CNNs), with the

HQ-augmentation framework, could lead to further advancements in deep nuclei

segmentation on low-quality data. Lastly, while the HQ-augmentation approach

demonstrates improved performance compared to existing techniques, there is

still room for refinement. Exploring additional image features, optimising the

model architecture, and incorporating advanced regularisation techniques may

further improve the segmentation accuracy and robustness of the model, ultimately

benefiting clinical decision-making and personalised patient care.

Note that this approach is not exclusively applicable to the Vim nucleus. Rather,

it can be generalised to any brain region for which detailed connectivity information

is available. This adaptability is particularly suitable for subcortical regions, for

which the connectivity in animal models, such as macaques (where we can use

tracers), is more likely preserved in humans.
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4.1 Introduction

Studying individual differences in brain activity and how they relate to cognitive

and genetic traits is an important area of research in basic and clinical neuroscience.

Traditionally, functional Magnetic Resonance Imaging (fMRI) analysis has primarily

been concerned with group-average inference. While averaging data across indi-

viduals substantially improves signal-to-noise (SNR) ratio and has proved fruitful

in identifying common patterns across subjects, this approach treats unexplained

individual variations as noise, discarding unique attributes of brain activity specific

to a particular subject. Individual variations in neuroanatomical or functional

activity often carries valuable information. For example, if a small number of

subjects in a large cohort has a rare disease, an indiscriminate data reduction prior

to the analysis will very likely hide this information.

The rapid development of cutting-edge neuroimaging techniques in recent decades

has led to substantial improvements in the reliability and validity of blood-oxygen-

level-dependent (BOLD) measurements, providing an unprecedented opportunity to

investigate individualised patterns of brain activity. Moreover, emerging "big data"

projects, such as the Human Connectome Project [105] and UK Biobank [133], have

collected multi-modal neuroimaging data on very large samples, enabling researchers

to more closely examine individual variations in neuroanatomical patterns and

functional activities with enhanced statistical power. Among previous fMRI studies

of individual variabilities, an active line of research focuses on understanding

how individual brains vary in response to external cognitive tasks. Following the

work of [19, 37], a number of studies [38, 39, 134, 135] have since shown that

spatial patterns of task-evoked activation form a stable trait marker, encoded in

resting-state brain activity, i.e., in the absence of any explicit task. In contrast to

previous studies that mostly rely on correlation analysis (in-sample inference) to

investigate individual differences, these works adopt predictive frameworks that

allow for out-of-sample inference and greatly improved generalisability of these

investigations of individual variability.
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Why is task-free fMRI predictive of task-evoked activation? Previous studies

have suggested that resting-state networks and task networks may share the

same intrinsic architecture [37, 65, 136–138]. Therefore, a reasonable corollary

is that resting-state heterogeneity should inform on variability of task-evoked brain

activity. Typically, resting-state data are summarised as spatially continuous parcels

distributed across the brain [139–144]. These spatial maps are often referred to

as "functional modes", characterising functionally unified sub-processes underlying

human cognition. Among the approaches of finding functional modes to predict

task-fMRI, dual-regression [145, 146] is a widely-used algorithm, showing ability

to predict individual idiosyncrasies in their response profiles [19, 38–40]. Although

these previous attempts have successfully characterised individual-unique patterns

of task-evoked brain activity, there are a few limitations yet to be accounted for.

For example, these approaches either focused on cortical regions [40] or relied on

pre-determined brain parcellations to make predictions within small patches of

brain and concatenate the results [38, 39]. Here, we are interested in activations

across the whole brain, not necessarilly limited to the cortex. Furthermore, our

model uses global features, because parcellating the brain into small patches a

priori may introduce more free-parameters and increase the risk of over-fitting.

More importantly, these approaches did not attempt to explicitly model cross-

subject variability of the rest and task states per se, and thus may be sub-optimal

to capture cross-subject variations. In contrast, Ngo et al., 2021 introduced a

contrastive loss in combination with the common loss to maximise inter-individual

differences in cortical regions. However, in practice, such loss functions are often

non-convex and may have complicated behaviours (e.g., multiple local minima)

rendering optimisation difficult [147]. To fully account for inter-individual variations,

an alternative is to explicitly train on residualised data, i.e., residuals where group-

average information has been regressed out. The data obtained in this way has

minimal shared variance with the group-level information, thus serves as a cleaner

description of individual-level differences.



58 4.1. Introduction

Accurate prediction of individual differences in task-fMRI response using resting-

state fMRI has a number of potential applications. In a clinical setting, considerable

variability across patients makes it difficult for surgeons to rely on anatomy (or

population-averaged task activation maps) when finding crucial surgical targets.

Task-fMRI can be used to localise surgical targets more accurately for individual

patients, often by asking them to perform a specific cognitive/sensory-motor task.

However, in practice, task-fMRI localisers are often limited by the patients’ poor

performance (or, the patients are unable to perform the task) and measurement

noise. As a stable trait marker, resting-state fMRI has proved a good alternative

to task-fMRI localisers, without the need of task execution prior to an operation.

Accurate predictions of task-fMRI localisers using resting-state fMRI can therefore

greatly benefit surgical targetting. Furthermore, having a better rest-predict-task

model may improve our understanding of the mechanisms underlying individual

differences in resting-state and task-fMRI.

Here we propose a framework that explicitly models individual variations in task-

evoked brain activity using the resting-state variability, the latter profiled by a set

of common spatial modes derived from a recently developed technique, Stochastic

Probabilistic Functional Modes (sPROFUMO). We show that, consistent with

previous studies [148–150], sPROFUMO provides better sets of "bases" (later referred

to as PFMs) to reconstruct the variations in task-evoked activation patterns than

the widely used approach of group-ICA followed by dual-regression. Additionally,

we show that an ensemble learner that combines global and local bases has improved

capacity of not only reproducing typical activation patterns but also preserved

patterns unique to individuals. We demonstrate that modelling of individual-level

task contrast maps comprises the modelling of two separate sources of variability,

shape of activations and the overall activation strength. Considering these two

aspects separately in task prediction is at least as effective as or even more desirable

than simply modelling the original task contrast maps. Furthermore, the proposed

model can recapitulate the spatial patterns of inter-individual variability, recovering

regions that are more variable at the group-level. The model achieves state of
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the art prediction accuracy for both datasets, and is also on par with task test-

retest reliability. These results demonstrate the potential of resting-state features

to reproduce task-fMRI features, and serve as a supplement to task localisers

in pre-surgical plannings.

4.2 Materials and Methods

4.2.1 UK Biobank data

UK Biobank (UKB) is a large national project that collects a wide range of health-

related measures for over 500,000 subjects, initially aged between 40 and 69. We used

the resting-state and task functional MRI data from a total of 17,560 subjects. The

acquisition parameters and processing details can be found in [113, 114]. Briefly, all

resting-state fMRI scans were acquired with identical scanners (3T Siemens Skyra)

with a TR of 735ms for a total of 490 time points for each individual. After the initial

preprocessing, the data were ICA-FIX cleaned to remove structured artefacts [151],

and then registered to the standard MNI space. Next, each individual’s resting-state

4D time series were further spatially smoothed with a Gaussian kernel of sigma

3mm. The task used is the Hariri faces/shapes "emotion" task [70, 152], scanned

and processed under the same protocols as the resting-state data (except that the

task-fMRI data is not ICA-denoised). Individual as well as group-average activation

z-statistic maps of three contrasts (faces, shapes, and faces-shapes) were estimated

from the task fMRI scans using FEAT [153, 154]. Additionally, 473 subjects in

this 17,560 subset received second-time scanning (mean test-retest-interval 2.25

years, std 0.12). These second-time scans provided test-retest reliability scores

as a benchmark for our model performance.

4.2.2 Human Connectome Project data

We used the MSMAll-registered data provided by the Human Connectome Project

(HCP), S1200 Release (https://www.humanconnectome.org/study/hcp-young-adult).

Details on the acquisition protocols and processing pipelines can be found in [105,

107, 155]. Resting-state and task fMRI data from 991 subjects, aged 22 to 35

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
https://www.humanconnectome.org/study/hcp-young-adult
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years, were used in the analysis. Each individual had four runs of resting-state

scans with a TR of 0.72s for a total of 1,200 time points per run. The data were

ICA-FIX denoised to remove structured artefacts automatically, then resampled

onto the "32k_fs_LR" grayordinates space (surface vertices + subcortical voxels)

and minimally-smoothed by 2mm FWHM. All subjects were MSMAll-registered

to improve functional and structural alignment [155]. To further increase the

signal-to-noise ratio, an additional smoothing of 4mm FWHM was applied to

the MSMAll-registered data (with subcortical structures smoothed within parcel

boundaries, and cortical data smoothed in 2D on the surface) using the Connectome

Workbench (https://www.humanconnectome.org/software/connectome-workbench).

The task fMRI scans were acquired and pre-processed in the same way (though

without FIX). We used the MSMAll-registered individual and group-average contrast

maps with 4mm FWHM smoothing in the analysis, including 47 contrasts across

seven task domains [70]. In contrast to the UKB dataset, which is presented in

a volumetric format, the HCP data is represented in the 32k fs_LR standard

greyordinates space. As described by Glasser et al. [107], this space consists of

91,282 vertices in total, including both surface vertices and sub-cortical voxels.

Another difference between the two datasets is how they were registered to the

standard space. The UKB spatial maps were non-linearly registered to the MNI152

standard space via FSL’s FNIRT [111, 112], while the HCP spatial maps were aligned

into the standard grayordinates space via "MSMAll", an aggressive registration

that not only considers cortical folding patterns but also other modalities such as

myelination and resting-state connectivity [155, 156].

Similarly to the UKB dataset, we used the HCP repeat scans as the reliability

benchmark for the predictions. Among the 991 subjects, 43 have received second-

time scanning under the same 3T imaging and behaviour protocols with test-retest-

interval ranging from 18 to 328 days (mean 134.78; std 62.49).

https://www.humanconnectome.org/software/connectome-workbench
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4.2.3 Generation of resting-state functional modes

We used resting-state functional modes to predict individual task-fMRI. Functional

modes are typically modelled as parcel-like spatial configurations of unified functional

processes distributed across brain, each characterised by a summary time course

that captures mode activity over time. Here we explored two approaches of

generating individual resting-state modes, group-ICA followed by Dual-Regression

(DR-ICA) and Stochastic Probablistic Functional Modes (sPROFUMO). DR-ICA

is a conventional group-average algorithm to estimate individual "versions" of group-

level spatial configurations, using a set of common spatial modes as templates

[157]. In DR-ICA, group-PCA was carried out on each dataset (UKB and HCP) by

MELODIC’s Incremental Group-PCA [158] on the resting-state time series of all

subjects (temporally demeaned and variance normalised), producing 1,200 weighted

spatial eigenmaps for UKB and 4,500 eigenmaps for HCP. These eigenmaps were

subsequently fed into ICA using FSL’s MELODIC tool to generate group-ICA spatial

maps at multiple ICA-dimensions (i.e., the number of distinct ICA components).

To obtain dual-regression maps for a specific subject at a given ICA-dimension k,

we first regressed the corresponding k-dimensional group-ICA spatial maps into the

individual 4D time-series data, yielding a set of k time courses per subject. The

resulting time courses were subsequently regressed into the same 4D time-series,

generating k dual-regression spatial maps for each subject. However, a major

limitation of DR-ICA is that it only allows unidirectional flow between group and

individuals, i.e., the estimated individual modes cannot in turn drive the refinement

of group-average modes, and may have limited ability to cope with individual

deviations from the group-average [159, 160]. A recently developed technique,

sPROFUMO, uses a Bayesian model that simutaneously estimates functional modes

both at group- and individual-level, and is scalable to large datasets [150]. In

sPROFUMO, individual resting-state time-series are factorised into a set of spatial

modes and their summary time courses (one per mode), together with the time course

amplitudes. The group-level parameters constrain the estimation of (the posteriors

over) individual-level parameters, of which the posterior evidence is accumulated



62 4.2. Materials and Methods

across individuals to in turn infer the group-level parameters. The bidirectional

information flow between the group and individuals aims to result in improved

subject-specific spatial alignments. Below, we refer to the resting-state feature maps

as either DR-ICA maps or PFMs depending on the approach used to derive them.

4.2.4 Residualisation of the resting-state and task contrast
maps

Our aim is to derive a model that can predict task activation in individuals given

their resting state modes. One of the innovations in this chapter is to try to explicitly

capture individual variations in our model. We propose that training and evaluating

the model on residualised data (i.e., data and features where the group-averaged

maps have been regressed out) would be of more value than training a model on

the original resting-state and task contrast spatial maps.

To understand this, consider each individual task contrast map. This can be

written as the sum of the group-average activation map (scaled by some factor) and

a spatial residual map specific to the given individual. The resting-state feature

maps can also be similarly decomposed. Thus, the mapping between resting-state

features and target maps contains both desirable and undesirable mappings, in the

sense that we do not want to optimise, e.g., for resting-state residual features to map

onto the group-average activation map. Residualisation separates the group-average

components from the residual components, thereby the two desirable mappings

are learned separately as opposed to jointly (Figure 4.1a). Furthermore, using the

residualised data has another added benefit in model evaluation. The test-retest

reliability of the variability (with the group-mean effects removed) between different

scanning sessions is an estimate of noise ceiling, which theoretically bounds the

performance a model can achieve [161]. Consider aX + b+ ϵ1 and cX + b+ ϵ2 as

the activation maps measured at the first and the repeat session respectively, where

X is the group-average activation, b the individual-unique features and ϵ1, ϵ2 the

measurement noise (and session variability) of the two sessions. The test-retest

reliability of the residuals b + ϵ1 and b + ϵ2 is corr(b + ϵ1, b + ϵ2) ≈ σ2
b/(σ2

b + σ2
ϵ ),
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Figure 4.1: Model illustration. (a) The residualisation separates the features
and targets into two (the group maps, denoted by subscript g and the subject residual,
denoted by superscript r). The mapping between rest Rs and task Ts for subject s contains
desirable and undesirable mappings, in the sense that we do not want to optimise, e.g., for
the individual subject features to map onto the group maps. (b) Step 1. Residualisation of
the resting-state modes and task contrast maps. The residualised resting-state maps were
further ICA-reduced as the input of the sparse model. (c) Step 2. Training of the baseline
and sparse model: per training subject, the baseline model yielded k reconstruction
coefficients (one coefficient per map), which were averaged across subjects as the final
baseline coefficients (orange). Next, the resting-state residual maps and the task residual
maps were concatenated across subjects accordingly and then reduced to lower dimensions
via ICA. The sparse model was trained on the (ICA-reduced) across-subject residual
matrices to give the sparse regression coefficients (green). Step 3. the estimated baseline
coefficients and sparse coefficients were applied to the training subjects to get the baseline-
model-fitted (pink) and sparse-model-fitted (light blue) task residual maps. Next, for
each voxel across subjects, we estimated the ensemble coefficients (yellow) by fitting
another linear regression model with the baseline-model-fitted activations and the Lasso-
fitted activations (in the given voxel) as the two regressors. Step 4. These three sets of
coefficients were finally applied to the test subjects to make new predictions (dark blue).
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where σb corresponds to the variability of the signal and σϵ corresponds to the

variability due to the measurement noise. Suppose the predicted activation is âX+ b̂;

the prediction accuracy of the residuals corr(b + ϵ1, b̂), similarly, can be written

as cov(b+ ϵ1, b̂)/std(b̂)
√
σ2

b + σ2
ϵ . It can be easily seen that when the prediction b̂

is perfect (i.e., b = b̂), the accuracy can be higher than the test-retest reliability

due to the denoising effect. Therefore, by comparing prediction accuracy against

its upper bound, we can show whether the model can fundamentally capture

the individual differences in activation. However, if we use the un-residualised

data to evaluate accuracy and reliability, the bias due to the group-average would

make it difficult to establish a straightforward comparison between the test-retest

reliability and prediction accuracy.

Hence, we built the model entirely on residualised data. The residualised

resting-state functional modes and the residualised task contrast maps are also

referred to as "resting-state variation maps" and "task variation maps" in the

remainder of this chapter. To residualise the resting-state data, each of the k

group-average (across training subjects) ICA spatial maps were regressed out from

the corresponding individual DR-ICA maps for all subjects (i.e., a one-variable

linear spatial regression per subject per dual-regression map), and similarly, each

sPROFUMO group-level spatial map was regressed out from the same mode’s

individual-level sPROFUMO spatial maps (PFMs). These residualised spatial

maps represent individual variations in resting-state activity, serving as features

to predict individual variations in task-fMRI.

The task activation maps were residualised similarly for each individual, to

give task variation maps. For a given task contrast, the group-average activation

map was regressed out from the individual contrast maps (i.e., a simple linear

regression per subject per contrast, with the group-average activation map as the

regressor). These task variation maps describe individual differences in task-evoked

brain activity that deviate from the typical activation patterns. Therefore the

mapping between the rest and task states is entirely based on the variations rather
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than on the original resting-state and task-evoked activity. See Figure 4.1b for

an illustration of residualisation.

Finally, to compare this residualised model with the model trained on the original

resting-state and task contrast maps (i.e., un-residualised), the task activations are

predicted as a combination of the modelled variations and the average activation

patterns. For both the rest and task data, we record the regression parameters as

part of regressing out group-mean maps; these measures of overall "amplitude" are

used later in the work, described below, and can of course be used (multiplied by

the group-mean maps) to add the group-mean contribution back in where desired.

4.2.5 The ensemble learner

Our overall ensemble approach combines two separate models, "baseline" and

"sparse". We start by describing these two individual models, and then go on

to describe the ensemble method.

4.2.5.1 The baseline model

The baseline model assumes that, for a given task contrast, the individual task

variations (i.e., residualised activation maps) can be represented by a linear combi-

nation of the variations in resting-state functional modes (i.e., residualised DR-ICA

maps or PFMs). In this sense, the resting-state modes serve as a set of "bases" that

span the task space. To obtain the reconstruction coefficients for each subject, we

regressed the subject’s resting-state bases into its spatial activation map (i.e., a

multiple-regression per subject per task contrast, with resting-state variation maps

as regressors and the task variation map as response). More specifically, suppose

the number of voxels is V , and each individual has k number of bases (i.e., there

are k group-average ICA spatial maps); to find the reconstruction coefficients of

a specific task contrast map yj (a V × 1 vector) for a given subject j, we regress

the given subject’s k resting-state variation maps, denoted by a V × k matrix

Xj = [x1
j ,x2

j , ...,xk
j ], into the task variation map yj of this subject. As a standard
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linear regression problem, the reconstruction coefficients βββj (a k × 1 vector) of

subject j minimise the following loss function

β̂ββj = argmin
βββj∈Rk

||yj −Xjβββj||22 (4.1)

for j ∈ S, where S is the set of training subjects. The estimated reconstruction

coefficients β̂ββj are given as (XT
j Xj)−1XT

j yj, where Xj is subject j’s resting-state

variation maps. These coefficients were averaged across the training subjects to

give the final estimates of the reconstruction coefficients, i.e., β̂ββ = 1
N

∑
j∈S β̂ββj , where

|S| = N is the number of training subjects.

To predict the activation map of an unseen subject l in a test set T , we applied

the reconstruction coefficients averaged from the training set to the subject’s own

resting-state variation maps Xl, i.e.,

ŷl = Xlβ̂ββ (4.2)

for l ∈ T . Note that the baseline model is different from [19, 38, 39] in two ways.

First, their models were primarily local, i.e., one linear regression per brain region,

rather than a global linear regression for the whole brain. Second, with the group-

average content regressed out from both the resting-state dual-regression maps and

task activations, our baseline model aims to establish linear relationships between the

variations of the two states (relative to the group-average) rather than the original

resting-state and task activity (which is possibly dominated by the group average).

4.2.5.2 The sparse model

The baseline model has a few limitations. First, it has very few free parameters,

resulting in one reconstruction coefficient per basis, which is then pooled (averaged)

across all subjects. Crucially, each feature (spatial map) is associated with a single

regression coefficient, regardless of which part of the brain is being modelled. Second,

the coefficients learned from each training subject are estimated separately, which

ignores patterns of between-subject variations. We re-formulated the problem in a

more flexible, highly-parameterised framework, referred to below as the sparse model,

with appropriate regularisation techniques to protect against too much flexibility.
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First, to create feature maps that contain information of cross-subject variability,

each of the k resting-state variation maps is first concatenated across the set of

training subjects S, yielding one N×V resting-state matrix per group-average spatial

map, with a total of k such matrices. Denoting the i-th matrix X̃i
S = [xi

1,xi
2, ...,xi

N ]T ,

where xi
j is the i-th resting-state variation map of subject j, we then dimensionality-

reduce these matrices into a set of d components using ICA: X̃i
S = Ai

SSi for

i = 1, 2, ..., k. Following this decomposition, Ai
S is an N × d mixing matrix and Si

is a set of d independent components representing common spatial variations across

the training subjects S. The mixing matrices of each ICA contains "coordinates"

of each individual in the resting-state space spanned by these common modes,

providing profiles of the resting-state variabilities of these individuals. The k mixing

matrices are concatenated to give a single reduced variation matrix Arest
S as the

final predictors, where Arest
S = [A1

S ,A2
S , ...,Ak

S ] is an N × dk matrix.

Likewise, the task variation maps (residualised activation maps) are concatenated

across the training subjects S, resulting in an N × V task variation matrix YS =

[y1,y2, ...yN ]T per contrast. The reduced resting-state variation matrix (Arest
S ) will

be used to predict the concatenated task variation matrix. Under this formulation,

the model has a large number of potential predictors. To prevent over-fitting, we

enforce sparsity on the prediction regression coefficients, to enable selection of the

subset of features that are most desirable for prediction. In addition, given that

predictions made on the original task matrix are not only computationally expensive

but also involve many redundant and noisy features (which will likely compete with

the "real" features in the training), we also consider to similarly decompose the task

matrix into a set of p independent components, i.e., YS = Atask
S Stask, where Atask

S is

the N × p mixing matrix, and Stask is the set of p independent components. Thus,

both the features matrix (Arest
S ) and the regression target used in training (YS)

are sparse, low-rank versions of their original versions (through ICA), and contain

information on individual variations (through concatenation of subjects).
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To find the sparse coefficients W, we solve the following regularised regression

problem on the ICA-reduced task matrix Atask
S

Ŵ = argmin
W=[w1,w2,...,wp]∈Rdk×p

{||Atask
S −Arest

S W||2F +
p∑

i=1
λi||wi||1} (4.3)

or on the original task maps YS

Ŵ = argmin
W=[w1,w2,...,wV ]∈Rdk×V

{||YS −Arest
S W||2F +

V∑
i=1

λi||wi||1} (4.4)

where the Lasso penalty is univariately applied to columns of W (with different

hyper-parameters to allow differential amounts of regularisation), encouraging it

to be element-wise sparse. Note that an alternative way of introducing sparsity is

to use an L1,2 penalty on W that enforces row-wise sparsity, as commonly applied

in the grouped Lasso and the multivariate Lasso. That strategy would permit

simultaneous use of all outputs to estimate a sole regularisation parameter. It

implicitly assumes that predictions of different outputs (columns of Atask
S or YS)

tend to require the same set of features. This underlying assumption of row-sparsity

penalty is not very appropriate and tends to require heterogeneous feature selection.

Other alternatives that simultaneously use all outputs include Partial Least Squares

(PLS), Canonical Correlation Analysis (CCA), and their variants, as well as a range

of multi-task learning approaches. Given that multi-task learning approaches with

sparsity regularisations usually have more complex behaviours than the pure Lasso,

we simply choose the Lasso penalty, which is also particularly easy to parallelise

across columns of Atask
S or YS (i.e., across task voxels).

To predict task variation maps for a set of unseen subjects, denoted by T , we first

need to translate the subjects’ resting-state variations into the subspace spanned by

the resting-state common modes (decomposed from the training subjects). This is

conducted by regressing each across-subject basis matrix onto the corresponding set

of resting-state common modes. Again, suppose the i-th (across-subject) resting-

state variation matrix of the test subjects is denoted by an n × V matrix X̃i
T ,
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where T is the test set, and n = |T | the number of test subjects. We seek to

solve the linear regression problem

Âi
T = argmin

Ai
T ∈Rn×d

||X̃i
T −Ai

T Si||2F (4.5)

where Âi
T is the estimated "mixing matrix" of the i-th resting-state variation matrix

across the test subjects T , and Si is the independent components calculated from the

training subjects for i = 1, 2, ..., k. Next, the sparse coefficients Ŵ, estimated via (3)

or (4), are applied onto the concatenated variability profiles Ârest
T = [Â1

T , Â2
T , ..., Âk

T ]

(an n × dk matrix), to give predictions for the set of unseen subjects T

ŶT = Ârest
T ŴStask (4.6)

if Ŵ is solved via (3) or

ŶT = Ârest
T Ŵ (4.7)

if Ŵ is solved via (4).

This completes the specification of the sparse model. To summarise the

approach, we use concatenation of training subjects to incorporate information

on subject variability in the training, we apply ICA to sparcify this data to help

with fitting, and we employ further regularisation via the Lasso cost function

on the regression coefficients. For UKB, we chose to reduce each across-subject

resting-state matrix to 3,000 independent components and the task matrix to 4,000

independent components (however, reducing the resting-state and task matrices

to 1,000 independent components yields comparable results, see Figure B1). For

HCP, in contrast, we chose to reduce each resting-state matrix to its full rank (i.e.,

number of the training subjects, around 900 in each fold) but kept the original

spatial dimension of each task matrix (i.e., no ICA on the task matrix), which

yielded the best performance on a left-out subset (see Figure B2).
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4.2.5.3 The ensemble model

A single model usually represents a single hypothesis space of the particular

prediction problem. Although the single models may contain the hypothesis space

already well-suited for a specific problem, combining multiple hypotheses allows for

more flexible structures to exist between predictors and response variables, and can

potentially improve model performance (again, as long as over-fitting is avoided

through correct use of, for example, cross-validation or left-out data). Here the

two single models are tailored to different aspects of the underlying hypothesis

that variations in resting-state activity can inform task variations. As mentioned

above, the baseline model treats the resting-state variation maps as a set of "bases"

that spans the task variation map for each individual. It is obvious that the

baseline model assumes that the mapping between resting-state and task space

is within-subjects and thus ignores between-subject patterns of variations which

might also be useful for the predictions. The underlying hypothesis of the sparse

model captures a different aspect, though closely-connected with the baseline model

hypothesis. With the variation maps reduced to the corresponding subspaces, the

sparse model assumes that the "coordinates" of the subjects in resting-state space

can be translated into their "coordinates" in task space.

Here we aggregate the predictions of each single model, to give the final prediction

for unseen subjects using simple linear regression. Suppose Ŷbaseline
S is the N × V

baseline-model-fitted activations of the training subjects S, and Ŷsparse
S is the sparse-

model-fitted maps. Particularly, we use ŷbaseline
·i and ŷsparse

·i to denote the fitted

activations in voxel i across subjects (i.e., each is an N × 1 vector). At the ensemble

stage, we aim to find the coefficients for each constituent model by column-wisely

fitting a simple linear regression on the task matrix of training subjects YS , i.e.,

θ̂
(1)
i , θ̂

(2)
i = argmin

θ
(1)
i ,θ

(2)
i

||yS
·i − θ

(1)
i ŷbaseline

·i − θ(2)
i ŷsparse

·i ||22 (4.8)

for the "true" activations in voxel i across the N training subjects, denoted by yS
·i ,

for i = 1, 2, ..., V . The two coefficients, θ(1)
i and θ

(2)
i , will then be applied to the

baseline-model-predicted and sparse-model-predicted maps to yield predictions of
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task variations for the unseen subjects. See Figure 4.1 for an illustration of model

training and Table B2 for a summary of the notations.

For UKB, the ensemble model and its constituent base models were trained

and tested on 17,560 subjects (3-fold cross-validation); for HCP, the models were

trained and tested on 991 subjects (10-fold cross-validation). The hyper-parameter

of the L1 penalty was optimised within each fold’s training data via nested cross-

validation (3-fold). The other free parameters (e.g., the number of resting-state

bases and the number of independent components in the sparse model) were

determined on a different subset of 4,700 subjects for the UKB dataset (trained

on 4,000 and tested on 700). Due to the limited number of HCP subjects, we

randomly selected 10% of the HCP subjects and investigated how the choice of

these parameters would affect the model.

4.2.5.4 The amplitude model

The amplitude model aims to predict the task activation amplitude for each

individual (i.e., the beta coefficients from regression against the group-average

activation map, as recorded during residualisation, one scalar value per subject per

contrast) using the resting-state amplitude (i.e., the beta coefficients from regression

of resting maps against the group-mean dual-regression maps, one scalar value per

subject per basis). There are a few reasons for incorporating a separate amplitude

estimation. First, one important source of individual variabilities in task-evoked

activity is the (overall) activation amplitude. Explicitly predicting this information

may help capture a different kind of individual variability that cannot be fully

modelled by the aforementioned spatial models (indeed we would not expect to

capture this from the residualised predictions). Second, the final predictions for

test subjects are ideally given as a combination of modelled residual variations

and the typical activation patterns. In order to recover the activation maps from

the variation maps for each individual, the group-average activations are yet to

be added back in appropriately, scaled by the activation amplitude of the specific

individual. However, the activation maps of the test subjects are of course not seen
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during training. Therefore, we are not able to estimate the activation amplitude (i.e,

betas from task residualisation) by simply regressing the group-average activations

into the inidividual activations. As an alternative, the resting-state amplitude may

be predictive of the overall activation amplitude (Figure B3 and B4) and thus

may serve as a substitute for this information. The surrogate activation amplitude

was generated as follows. Remembering that each subject has k resting-state

amplitude values, corresponding to each of the k group-average spatial maps (i.e.,

one amplitude value per map): for a given contrast, a multiple linear regression

model with the activation amplitude as the response and the resting-state amplitude

as the predictors was trained across subjects (3-fold cross validation on UKB; 10-fold

cross validation on HCP). These surrogate activation amplitude are subsequently

applied to the predicted variation maps as the new beta coefficients, such that the

re-scaled group-average effects can be added back in accordingly.

The other hypothesis about the overall activation amplitude is that it serves as

another important source of individual variabilities. To explore this possibility, we

also consider to incorporate the amplitude information into the ensemble stage to

test whether it can further improve model performance. Given that the k resting-

state amplitude values of the k sets of dual-regression maps are correlated (across

subjects), we reduce the k amplitude features into a few principal components, the

number of which are determined via cross-validation. These components are included

in the ensemble model as additional predictors to predict each column (voxel) of Y.

4.2.6 Measures of model performance

Assessment of model performance is primarily based on Pearson correlations between

predicted maps and the actual maps (in subjects left out of the training process).

Apart from the standard MNI152 brain mask applied at the beginning of all

the analysis, we choose not to apply further thresholding of the resulting maps.

Although further masking of the images may emphasise certain regions that are

more of interest, the choice of thresholds can have a complex impact on evaluation

and requires caution.
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For a given task contrast, the predicted maps are correlated with the actual

maps for all subjects, yielding a "subject by subject" correlation matrix, where

the entry in the i-th row and j-th column corresponds to the correlation between

subject i’s predicted map and subject j’s actual map. The mean of the diagonal

elements measures the overall prediction accuracy, i.e., how well the model can

reproduce the spatial patterns of activation for each subject, averaged across subjects.

However, this measure cannot fully quantify model performance because the overall

model accuracy can be boosted by simply reproducing the group-average activation,

particularly when most subjects are "normal", having activations patterns close to

the group-average. Therefore, it is also important to make differentiated predictions,

i.e., how well the model can capture atypical variations that deviate from the

group-average activations. This necessitates measuring the extent to which, for a

specific subject, the model can make predictions that are closer to the subject’s

own activation maps than to the others. This is of course particularly relevant

if doing non-residualised prediction.

The new evaluation measure is calculated as follows: after the correlation matrix

(between predicted maps and the actual maps for all subjects) is normalised via

Fisher’s transformation, for each subject, we calculate the difference between two

values: (i) correlation between the subject’s predicted map and the subject’s actual

map; (ii) mean of the correlations between the subject’s predicted maps and other

subjects’ actual maps. The difference between (i) and (ii) provides a quantitative

evaluation of the model’s capability of predicting individual differences distinct from

the group mean. In the following text, the first measure is referred to as "prediction

accuracy", and the second one is referred to as "prediction discriminability".

Additionally, we calculated the between-subject standard deviation map of the

actual task variations (as a measure of inter-individual voxel-wise variability) and

also of the predicted variations (as a measure of predicted variability) for each

contrast. We then correlated the predicted variability maps against the actual

variability map as a third measure of model performance. A higher correspondence



74 4.3. Results

between the two standard deviation maps indicates better ability to reproduce

the spatial pattern of between-subject variability.

4.3 Results

4.3.1 The ensemble model outperforms its constituent sin-
gle models

To compare DR-ICA maps with PFMs, we chose the optimal dimensionality of

each method, DR-ICA25 and PFM50 for UKB, and DR-ICA50 and PFM150 for

HCP, respectively. The fact that PFM optimal dimensions were found to be higher

than those of DR-ICA suggests that the former yielded more reliable functional

modes particularly at higher dimensions. (However, note that PFMs consistently

outperformed DR-ICA across all dimensions. See Figure B5). In the baseline model,

overall, most variation maps contributed to the predictions (Figure B6), suggesting

that these resting-state variation modes did capture a significant proportion of

the variance in task variation maps.

We found that the sPROFUMO modes had overall higher accuracy in predicting

task variations than the DR-ICA maps, consistently across the baseline, sparse, and

ensemble model (Figure 4.2a and 4.2b). Compared with predictions based on DR-

ICA, the biggest improvement introduced by sPROFUMO modes was evident from

the baseline model, suggesting that sPROFUMO provides a fundamentally better set

of resting-state bases to reconstruct task variations than DR-ICA. This corresponds

with previous evidence that sPROFUMO better accounts for cross-subject misalign-

ment and accommodates higher predictive power of population heterogeneity [150].

Additionally, sPROFUMO modes also exhibited higher prediction accuracy for the

sparse and ensemble model. Interestingly, the baseline and sparse model based on

DR-ICA had very distinct performance on the two datasets. For HCP, the baseline

model yielded higher prediction accuracy than the sparse model (Figure 4.2b, blue

and green), while for UKB, this relationship was entirely reversed (Figure 4.2a, blue

and green). Here we provide a possible explanation for this discrepancy. The two

single models are tailored to different data scenarios. If the resting-state modes form
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Figure 4.2: Prediction accuracy of the individual task variations and of the
inter-individual variability. PFM better captures task variations than DR-ICA
maps (dark colors vs light colors); the ensemble model outperformed its constituent single
models in predicting individual task variations and reproducing inter-individual variability
patterns (blue, green, and red). (a) Prediction accuracy of the baseline, sparse, and
ensemble models for 17,560 UKB subjects across the three contrasts, the last columns
showing all contrasts pooled together. White diamonds show the means along with the
boxplots showing the medians and quartiles. (b) Equivalent plots of 991 HCP subjects
across seven representative contrasts, the last column showing all 47 contrasts pooled
together. The statistical tests for (a) and (b) can be found in Table B3, all significant
after being Bonferroni-corrected. (c) Correlations between the predicted and the actual
inter-individual variability maps calculated across 17,560 UKB subjects. Overall, ensemble
trained on PFM yielded the highest correspondence with the inter-individual variability.
(d) Equivalent plots across 991 HCP subjects. See Figure B7 for all HCP contrasts. The
statistical tests for (c) and (d) can be found in Table B4. (e) The actual (first row) and
the predicted (second row) inter-individual variability across 17,560 UKB subjects of the
three contrasts, shown volumetrically. Warmer colors indicate higher variability with the
maximum normalised to 1. (f) The actual (first row) and the predicted (second row)
inter-individual variability calculated across 991 HCP subjects of the seven representative
contrasts, shown on the cortical surface.
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the set of bases that do fundamentally have the ability to predict the task maps, then

the baseline model should suffice, i.e., we do not need the sparse model to emphasise

specific spatial features. In practice, however, DR-ICA maps are not the perfect sets

of individual “versions” of the group-average modes, containing many noisy voxels

irrelevant to task-fMRI prediction. A major difference between the two datasets

is that the UKB data we used to train the model is volumetric while the HCP

data is grayordinates. As a consequence, there is more functional spatial variability

(misalignment) in the UKB data [162] and hence more “errors” in its individual

dual-regression maps. In addition, HCP data is MSMAll-aligned and UKB is not.

On the other hand, sPROFUMO better accounts for cross-subject misalignment

and allows more fine-grained delineation of individual differences in resting-state

data, thus it has improved ability to capture variations in task data. Furthermore,

due to the shorter scanning sessions, the resting-state and task-fMRI scans in

UKB have higher noise than in HCP, requiring additional benefits of identifying

which voxels/spatial features are more desirable in the modelling. Hence, UKB

requires greater spatial modelling complexity as well as greater spatial smoothing,

provided by the sparse model (note that conducting ICA on the resting-state and

task matrices across subjects in the sparse model may serve as a kind of de-noising).

For both datasets, overall, the ensemble model outperformed its constituent

single models. Remember that the task variations are the residuals of regressing

the group-average activations into the individuals, thus they are orthogonal to

the group-mean by design. This also implies that these task variation maps have

minimal overall cross-subject similarity, i.e., the spatial correlations between pairs

of subjects fluctuate around zero. Therefore, the plots of prediction accuracy and

of discriminability will look almost identical, because the predicted maps will have

near-to-zero correlations with the maps of the other subjects, i.e., the off-diagonals

of the (subject by subject) correlation matrices (between the predicted maps and

the actual maps) are all close to zero (Figures B9 and B10). The discrimination

metric for prediction accuracy on the residuals can be found in Figure B8.
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In addition to predicting the individual variations in task activity, all three

models could reproduce the spatial pattern of inter-individual variability (standard

derivation maps across subjects) for both datasets (Figure 4.2c and 4.2d). Similar

to the previous scenario, using sPROFUMO modes as bases improved the prediction

of inter-individual variability for the baseline model on both datasets (Figure 4.2c

and 4.2d, blue), corroborating the conclusion that sPROFUMO better aligns the

subjects, refines the spatial details of cross-subject heterogeneity, and thus provides

a better set of bases to reconstruct task variation space. In terms of the sparse and

ensemble model, DR-ICA and sPROFUMO yielded comparable correspondence

with the true inter-individual variability.

Finally, we also calculated the subjects’ identification accuracy, i.e. the probabil-

ity that predicted maps had the highest correlation with the subjects’ own residual

maps, for each task contrast. The subject identification accuracies are all close to

100% (Figure B9 and B10), suggesting that the predicted variability for a given

subject best corresponds with the subject’s own variability patterns than with the

others. These results demonstrate that resting-state variations can capture well the

inter-subject differences in task-evoked brain activity. These actual and predicted

(via the ensemble model) inter-individual variability maps are shown in Figure 4.2e

and 4.2f. Regions of higher variability across subjects are those more involved in

the corresponding task execution. For example, somato-sensory and motor regions

are more variable across subjects in the motor contrasts; fronto-parietal regions

exhibit higher variability in more cognitive contrasts; the visual areas tend to be

more variable in general, for all contrasts. In summary, all three models are able to

capture individual-unique activation patterns that deviate from the typical activation

patterns as well as recapitulating the spatial pattern of inter-individual variability.

In the subsequent analysis, we used PFM50 for UKB, and PFM150 for HCP.
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Figure 4.3: Comparison between the Tavor model and the ensemble models.
Overall, the ensemble model trained on variation maps (residualised maps) outperformed
the other two options; error bars show the 95% CI of the means. (a) Prediction accuracy
across 17,560 UKB subjects of the three contrasts, the last column showing all contrasts
pooled together. (b) Equivalent plots across 991 HCP subjects of seven representative
contrasts, the last column showing all 47 contrasts pooled together. (c) Prediction
discriminability in UKB. (d) Prediction discriminability in HCP in a subset of task
contrasts (see Figure B13 for all HCP contrasts). The statistical tests can be found in
Table B5.

4.3.2 Training on the un-residualised data is suboptimal
to capture individual differences

The next question we asked is whether the model can recover individual idiosyn-

crasies in task-fMRI, if trained on the un-residualised resting-state spatial modes

and the task activations, as opposed to the residualised data (i.e., variation maps).

Having close-to-zero shared variance with the group-average, the residuals more

accurately profile the individual differences by design; we posit that training

on residuals avoids the contamination of group-level information and thus may

potentially facilitate capturing individual-unique patterns. To fairly compare the

two options requires recovering the actual task-evoked responses (as opposed to the

residuals) from the predicted variations for each individual. To explore this, we next

generated the surrogate activation amplitude using the PFMs’ amplitude for each

individual, then added the group-average activation map (scaled by the resting-state-
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predicted amplitude) back to the predicted variation maps. These predictions with

group-average added back in were correlated against the actual (un-residualised)

activations for all subjects, again yielding a subject by subject correlation matrix

per contrast. We calculated the prediction accuracy and discriminability from

these correlation matrices, and compared them with the model trained on the

un-residualised PFMs and task activations.

Overall, both options manifested considerable predictive power of individual

activations, as suggested by the overall accuracy and discriminability (Figure 4.3, red

and orange). Additionally, we found that although training on variations exhibited

little improvement on the actual prediction accuracy (Figure 4.3a and 4.3b), it

tended to improve prediction discriminability (Figure 4.3c and 4.3d). This suggests

that it is more desirable to establish a mapping between the variations in rest

and task data per se than simply use the original data with group-average effects

present. This is probably because residualisation orthogonalises the individual maps

with respect to the group-average maps and prevents the dominance of the typical

activation patterns. Furthermore, this shows that separating out the modelling of

overall amplitude from (group-mean-removed) map variability, and then recombining

these parts of the model later, is at least as effective as predicting raw task from raw

resting maps. This is valuable, as it does suggest that these different data aspects

can indeed be considered separately. The subject identification accuracies based on

residualised predictions (with group-average effects added back in for evaluation)

are again close to 100% for most contrasts, shown in Figure B11 and Figure B12.

We also benchmark our model against previous GLM-based methods [19] using

the same subjects. The Tavor method is based on multiple GLMs, essentially

very similar to the baseline model, except for a few differences: (1) instead of

training a global GLM for the whole brain between the resting-state and the task

maps (as in our baseline model), the Tavor model seeks to fit multiple “local”

GLMs within each of the pre-determined parcels; (2) the features of the Tavor

model are seed-based connectivity maps, while our baseline model uses the dual-

regression maps (i.e., multiple regression against the many “seed” timeseries output
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by the first stage of dual-regression). The ensemble model, trained either on the

un-residualised data or on the variation maps, yielded higher prediction accuracy

than the Tavor method. On the UKB dataset, the ensemble model substantially

improved prediction accuracy and discriminability; on the HCP dataset, the Tavor

method and the ensemble model trained on variations manifested comparable

discriminability, both superior to the ensemble model trained on un-residualised

data (see Figure B13 for all HCP task contrasts). We also compared our approach

with other studies [38, 39] that also utilised the ensemble technique. Cohen et al.

2020 showed that using Random forest bootstrap aggregation enhanced prediction

accuracy, benchmarked against the linear regression approach used in Tavor et

al. 2016. Dohmatob et al. 2021 used random parcellations to improve prediction

accuracy. Instead of using a single parcellation scheme to predict local patches of

activations (one ridge regression per patch, concatenated afterwards), they averaged

the predictions based on random parcellations as the final prediction. We show that

our ensemble approach outperforms the others, particularly on the UKB dataset

(Figure B14). Note that, among the HCP contrasts, motor-tasks exhibited weak

prediction discriminability. A possible explanation for this is that the individual

response profiles to motor-related stimulus had little cross-subject variation, such

that the model was not able to extract sufficient information to discriminate between

subjects. The relatively lower prediction accuracy of motor tasks is, on the other

hand, unexpected, especially considering the strong activations in cortical regions

that are supposed to enable the model to learn the mapping between resting-state

and motor tasks. Understanding this discrepancy between motor tasks and resting-

state activity requires future investigations and would be important to understand

the ongoing interplay of resting-state networks in task execution. Here we provide

possible explanations for the poor accuracy of motor-related tasks. Motor task

activations often pose unique challenges due to their inherently dynamic nature

compared to more static cognitive tasks, making prediction from resting-state

data, which is relatively static, more complex. Additionally, the influence of non-

neural factors such as muscle activity, motion artifacts, and physiological responses,
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which might not be adequately captured or differentiated in the resting-state data,

could further complicate the prediction accuracy. These elements contribute to the

observed lower prediction performance for Motor network-related tasks.

The fact that the model trained on the variations per se (with an explicit and

separate amplitude prediction) can better capture patterns unique to individuals

than its un-residualised counterpart corroborates the assumption that, in addition

to the spatial layout (shapes) of activations, the overall activation intensity may

also contribute to the variability of task-evoked brain activity. Following this, we

also tested whether incorporating resting-state amplitude as additional predictors

explicitly at the ensemble stage would further facilitate capturing individual-

unique patterns for the un-residualised model. We found that, though having

little effect on the actual prediction accuracy (Figure B15a), including the PFMs’

amplitude as explicit predictors (in addition to the other two predictors, the baseline-

model predicted and sparse-model-predicted values in the corresponding voxel) did

further improve discriminability (Figure B15b), particularly on UKB. This improved

discriminability for the un-residualised model (Figure B15b, gray bars), however, is

still not as good as the discriminability of the residualised predictions (Figure B15e,

orange bars). For the ensemble model trained on the residualised data, regressing out

the group-average response “removes” the overall activation intensity relative to the

group-average activations for each individual. Therefore, introducing resting-state

amplitude to the residualised ensemble model, in theory, should have little effect on

model performance. However, in practice, we found that incorporating resting-state

amplitude as additional features in the ensemble stage also increased prediction

discriminability for the residualised ensemble model (Figure B15e). There are a

few possible explanations for this discrepancy. One possible explanation is that the

group-average activation patterns were not entirely removed particularly from the

subjects that are very atypical, probably due to GLM’s sensitivity to outliers or

noise in the fitting (e.g., related to regression dilution). In this sense, including

resting-state amplitude as additional features thus accounted for the remnants

of the amplitude information particularly for those atypical subjects, and thus
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increased the overall prediction discriminability. Another possibility is that the

overall activation intensity may still inform the (strength of the) variabilities of the

shape of activations. This possibility can be partially validated by the finding that

it further improved the fit with the spatial pattern of inter-individual variability

by including resting-state amplitude as additional features at the ensemble stage

(Figure B15c and B15f). Note that, however, the resting-state amplitude is not

expected to be a perfect surrogate of the task amplitude, as R2 between the actual

and the predicted task amplitude is actually small (Figure B3 and B4).

4.3.3 Prediction accuracy paralleled test-retest reliability

To evaluate whether the predicted task contrast maps can reliably capture indi-

vidual differences in task-evoked brain activity, we compared the accuracy of task

predictions against their corresponding test-retest reliability, leveraging the repeat

fMRI scans in UKB and HCP datasets. The test-retest reliability of task-fMRI

was defined as the spatial correlation between the first-visit and repeat-session

task contrast maps, for each subject and each contrast. For both datasets, the

PFM-predicted contrast maps yielded higher overall accuracy than the repeat scans,

consistent across all task contrasts (Figure 4.4b and 4.4c, light blue and light red),

suggesting that resting-state predicted activations can surpass task-fMRI test-retest

reliability. This agrees with previous studies that resting-state features serves as a

reliable trait marker and may even be more heritable than task-fMRI phenotypes

[12]. Note that, the accuracy of PFM-predicted task maps, which is on par with

the test-retest reliability, is not a result of over-fitting to the first-visit task-fMRI

data. To illustrate this, we also correlated the predicted task maps against the

second-visit task contrast maps as "second-visit prediction accuracy" (Figure 4.4a).

If the model is over-fit to the noise component or simply reflects some analytic

circularity in the first-visit sessions, this second-visit prediction accuracy should

be much lower than the first-visit accuracy and far below the test-retest reliability

benchmark. However, we found that the second-visit accuracies were very close

to the first-visit accuracies (Figure 4.4b and 4.4c, blue vs green). This suggests
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Figure 4.4: Test-retest reliability of PFM-predicted task maps. (a). Illustration
of how first- and second-visit accuracy and test-retest reliability were calculated for the
residualised and "group-average-added-back-in" predictions. (b) and (c). Blue: prediction
accuracy of first-visit contrast maps. Green: prediction accuracy of second-visit contrast
maps. Red: test-retest reliability. Light colours denote the prediction accuracy of the
un-residualised/group-average-back-in maps, dark colours the accuracy of the residualised
maps. The last columns show all contrasts pooled together. Error bars show 95% CI of
the means. (d) and (e). For both datasets, the PFM-predicted task amplitude for the
first-visit scans gave higher accuracy than the repeat scans (blue vs red). On HCP, the
predicted amplitude also gave higher accuracy for the second-visit task amplitude than
the corresponding test-retest reliability (red vs green). However, on UKB, this accuracy
was worse (green vs red in Figure 4.4d), again suggesting that the UKB resting-state
sessions are less reliable, possible due to the much shorter scanning time. The statistical
tests can be found in Table B6 and B7. See Figure B18 and B19 for equivalent plots of
(c) and (e) of all HCP contrasts.

that the model trained on a single session generalises well to the repeat sessions

and is not over-fitting to in the first-visit sessions.

As mentioned in previous sections, predicting residuals is of more interest. The

residualised task activation maps, with the group-average removed, consists of

two components that explain the across-session variability, one the measurement
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noise and the other the true individual-unique features. Thus, the test-retest

reliability (correlation between sessions) of residuals measures the proportion of

the true signal’s variance relative to the noise variability, and is a fundamental

criterion for the model performance [161]. A model that yields prediction accuracy

comparable with this reliability is fundamentally capable of capturing the inter-

individual differences in activation. On the HCP dataset, the prediction accuracy

of residualised activations was close to the test-retest reliability of task residuals

(Figure 4.4c) for most contrasts, and even gave higher accuracy for a few contrasts

(GAMBLING_REWARD, GAMBLING_PUNISHMENT, SOCIAL_MATCH-REL,

etc., see Figure B18). On the UKB dataset, however, the (residualised) repeat-

session task-fMRI scans still yielded much higher accuracy than the PFM-predicted

task variations (Figure 4.4b), possibly because of the much shorter resting-state

scanning sessions. The repeat scans also had higher prediction discriminability

than did the group-average-back-in predictions (Figure B17), which is un-surprising

due to the noise ceiling effect.

We also investigated the reliability of task activation amplitude predictions by

comparing the accuracy of predicted amplitude against the test-retest reliability of

the activation amplitude. Similarly, the test-retest reliability of activation amplitude

is defined as the correlation between first- and second-visit regression betas (i.e.,

the coefficients obtained by regressing the group-average task map out from the

individual task contrast maps) across subjects. We tested whether resting-state-

predicted amplitude is more robust than that measured directly in repeat-session

task-fMRI scans. The PFM-predicted activation amplitude (using the first-visit

resting-state scans) indeed proved more reliable than task-fMRI scans in replicating

the actual activation amplitude (Figure 4.4d and 4.4e, blue vs red) for both datasets.

Similarly, to exclude the possibility of over-fitting for the amplitude model, we also

correlated this PFM-predicted amplitude against the second-visit actual amplitude

(Figure 4.4d and 4.4e, green). For HCP, the predicted amplitude still gave higher

accuracy for the second-visit data than the test-retest reliability (Figure 4.4e, green

vs red). However, this no longer held for UKB (Figure 4.4d, red vs green), possibly
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Figure 4.5: Predicted, actual, and group-average activations of 6 example UKB
subjects. The predicted activations captured the atypical activations in individual
subjects (with group-mean-related components added back in). The subjects ranked
between 50% to 75% according to their correlations with the corresponding group-average
activations. See Figure B20 for the plots of the predicted and the actual task variation
maps of the same example subjects.

also due to the much shorter scanning time. Overall, these results did suggest that

resting-state data is potentially a more stable trait marker than task-fMRI features,

but this depends on the reliability of the resting-state scans.

Figures 4.5 and 4.6 show the comparison between the predicted, actual, and

group-average activations volumetrically (for UKB) and on the surface (for HCP).

It can be seen that the predicted activations provide a “smoothed” estimation

of the individual activations, while preserving the unique patterns in individual

subjects (for the actual and the predicted task variation maps of the same example

subjects, see Figure B20 and B21).

4.4 Discussion

In this chapter, we extended previous GLM-based approaches [19, 38, 39] and

proposed an ensemble learner to model individual variations in task activations
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Figure 4.6: Predicted, actual, and group-average activations of example HCP
subjects. The predicted activations captured the atypical activations in individual
subjects; these subjects ranked in the lower 50% percentile according to their correlations
with the corresponding group-average activations. See Figure B21 for plots of the actual
and the predicted task variations maps of the same example subjects.

on two large datasets, UKB and HCP. Enabled by a recently developed technique,

sPROFUMO, we exploited the richness of individual variability in resting-state to

reproduce task-evoked activation patterns unique to individuals. We demonstrated

that sPROFUMO can accommodate higher predictive power than DR-ICA, espe-

cially in terms of the overall capacity of reproducing between-subject differences.

This added advantage of sPROFUMO arises from its enhanced ability to depict

fine-grained resting-state variability in rich detail due to its bidirectional and

hierarchical architecture between the group-average and individual, in contrast to

the unidirectional group-average algorithms (e.g., DR-ICA). Furthermore, we showed

that modelling the individual activation profiles as a combination of the group-

average and predicted variations can be more desirable than simply modelling the

raw task map, suggesting that two sources of task variability, shape and amplitude,

factorise into different compartments and can be modelled separately. Characterising
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different aspects of task variability is important to understanding the sources of

these cross-subject differences. Overall, resting-state functional modes serve as a

set of bases that can not only sufficiently reconstruct individual task-fMRI space

but also yield more reliable localisation of individual task-evoked response profiles.

Our ensemble framework consists a baseline model and a sparse model, each

tailored to a different scenario. In the baseline model, for each individual, the

resting-state modes span the space of the task activation maps and thus, in theory,

can reproduce task-fMRI in itself. In practice, however, more spatial complexity is

often required to select local features that are “cleaner” or of more interest. The

sparse model largely accounts for this limitation. For example, the motor network

in resting-state modes contains components that are often in sync with each other

and are part of the same spatial basis. The baseline model cannot split them,

while the sparse model may select the components more desirable for prediction.

However, the sparse model has a limitation. Despite the existing rescaling techniques

(e.g., fitting another OLS on top of the selected features; introducing a re-scale

factor), the Lasso penalty often introduces too much shrinkage, particularly when

the prediction involves too many candidate features. As a result, the predicted

response may become too biased towards zero, thus degrading model discriminability.

The ensemble model, by fitting another OLS on top of each voxel, de-biases the

over-shrinkage of the sparse model.

It is important to consider our approach in the context of other frameworks,

for example, the activity flow approach [37, 136, 163], which also investigated

the idea of residualisation. It is a different type of framework in that it did not

establish a supervised model trained to relate resting-state data to task-fMRI;

instead, it sought to explicitly build the underlying mechanisms that link functional

connectivity to task activations by testing whether such a mechanistic construct

can capture task activations better than chance. The two types of frameworks are

of different nature but both are able to reproduce individual task-fRMI patterns.

They are tailored to different purposes. The activity flow approach provided an

explanation for the observed rest-state and task-fMRI relationships and tested the
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corresponding hypothesis against chance level. It may help us better understand

the intrinsic mechanism or biology underlying functional connectivity and task

activations. Our framework is a supervised model, which may give more accurate

predictions of individual activations. Note that the activity flow approach also

investigated the idea of residualisation. There are major differences between their

residualisation and ours. For example, the resting-state data were residualised

differently in the two studies. In our analysis, the component to be regressed

out is the group-average spatial map, while in their model, this component is the

subject-general voxel-to-region FC patterns. Furthermore, when predicting residual

activations for a given subject, they used the subject-general activation patterns

(calculated from other subjects) in combination with the residualised FC patterns

of the given subject, whereas we did not utilise this information of subject-general

task activations at all. Both approaches exhibited the benefits of residualisation.

Their approach showed that the individualised functional connectivity routes can

predict individual-specific activations better than chance. This provides further

evidence for the utility of residualisation in making more individualised activation

patterns for individual subjects.

Note that the group-average activation patterns alone can have considerable

overlap with individual activation maps. Thus one can obtain moderate predic-

tion accuracy by simply reproducing the group-average. Hence, the accuracy of

residualised predictions, or the discriminability of the group-average-added-back

predictions, are more informative on the model’s ability to make individualised

predictions. This is of particular importance, because many existing algorithms

tend to push predictions towards the mean. In a higher-dimensional setting, the

relation between the two measures becomes complicated, but it is not difficult to see

that the improvement of discriminability may degrade accuracy a little. Training

and evaluating the model on residualised resting-state and task data thus have more

desirable properties, not only to simplify the assessment of model performance but

also to maximise ability to capture inter-individual differences. Other approaches

to improve prediction discriminability include introducing a contrastive loss term
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to push between-subject differences to be large [40]. It is yet to be investigated

whether the two approaches are comparable. However, introducing extra terms

may complicate the loss function (for example, turn a convex loss function into a

non-convex one) and thus may be less stable. Training on residualised data keeps

the original loss function structure and is usually simpler to train.

It is also important to note that the accuracy of such predictions is not by

itself a good indicator of how well the model captures the underlying individual

differences. The prediction accuracy is not only limited by inaccuracies of model

assumptions or inappropriate specification (i.e. mismodelling) but also by other

sources of variability such as measurement noise. In general, computational models

do not account for the variability due to measurement noise, thus this imposes

a bound to the model’s ability to capture the true signal of interest. This effect

is usually referred to as noise ceiling, and can be estimated by calculating the

correlation between two repetitions of the test set (i.e. split-half estimator). If a

model can fundamentally capture the variations in brain response due to individual

or stimulus differences, the accuracy of prediction should at least verge on the

test-retest reliability, or even be higher. It has previously been recommended in

the neuroimaging community to report the performance of a model with respect to

the noise ceiling [161]. In our results, the prediction accuracies on the HCP dataset

almost paralleled the test-retest reliability for most task contrasts, suggesting that

our model can fundamentally capture the individual variations in activation. On

the UKB dataset, the accuracies are less encouraging, which is unsurprising due

to the shorter scanning sessions and higher noise level.

In addition to predicting individual-unique activations, it is also of value to

investigate the causes of the variations in task-evoked activations, particularly,

what information in resting-state activity drives the individual differences in

task activity. For example, do variations in peak activation patterns correspond

to the changes in resting-state activity in the same location, or is it actually

driven by more complicated configuration of the dense connectivity pattern? Such

investigations would help us understand the nature of the inherent resting-state
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features that characterise variations in task activity. For example, these features can

be “structurally” inherent (characterised by brain organisation and connectivity) or

“functionally inherent” (related to the cognitive state of subjects during the resting-

state scan) [19], both of which may cause the re-configuration or re-allocation of

peak activation patterns. Note that individual differences in task-evoked activations

may be partially due to inter-subject misalignment. Indeed, registration remains

an empirical question and may be sub-optimal in practice. However, it is very

unlikely that our results only account for misalignment between subjects, as the

model can capture variations not only in shape and position but also in topology of

the activations. Indeed, it is likely that the relatively state-of-the-art alignments

used here in preprocessing reduced intersubject variability, rather than increased it.

Using resting-state fMRI scans to infer individualised task-evoked responses has

a wide range of implications in translational and clinical neuroscience. One potential

application of the proposed model is to infer individualised functional localisers based

on resting-state fMRI scans. This is important because task-fMRI scans are often

of limited accuracy and reliability [164], possibly due to poor task performance and

noise that is hard to remove in pre-processing. Such a framework can supplement task

localisers, potentially improving the prediction of individual functional mapping (and

for multiple networks and regions) and facilitating investigations of individualised

response profiles of localised brain regions. Although our results primarily focus

on the residualised results, this does not conflict with application targets such

as pre-surgical planning. One of the biggest challenges in surgical targeting is

to account for individual differences in the location of a target structure, which

may vary considerably across subjects. Therefore, it is more desirable to have a

model better capable of capturing the underlying inter-individual differences, not

just reproducing the typical patterns shared by all subjects. The model trained

on the residualised data, with group-average added back in afterwards, yielded

more differentiated or "individualised" predictions, which matches this goal. The

next question arising is: how many subjects are required in the training to create

such a model and make predictions useful, given that in a surgical context, it is
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impractical to collect a substantial number of subjects as in the UKB and HCP

datasets. Firstly, it is worth noting that even though the numbers of training

subjects are large in this study, neither of the two datasets requires a big "N"

to achieve good prediction accuracy (Figure B22 and B23). In fact, prediction

accuracy as a function of training size converges very quickly. Secondly, one does

not necessarily have to re-collect training data using the same scanner or task for a

given clinical dataset, because the model trained on one dataset may be transferable

to another if aided by transfer learning or data harmonisation techniques. For

example, Jones et al., 2017 applied the GLM model [19] trained on the HCP

healthy cohort to a disease cohort and successfully learned the variations in their

language maps. Another possibility is to generalise the resting-state features across

different datasets, instead of transferring the mapping between resting-state and

task data from one dataset to another. More specifically, one can generate matched

dual-regression or sPROFUMO maps for different datasets. The coefficients thereby

learned on one dataset may also be useful to another, as they refer to the same

spatial configurations. Of course, to accurately generalise such predictions requires

more complicated modelling techniques; developing and validating such approaches

is outside the scope of this chapter. As numerous multi-site multi-scanner consortia

emerge, in future, it is important to develop a model that is capable of learning

features invariant across scanners and insensitive to confounds. Once generalisable

to other populations, such a model can be used to localise regions of interest for

those who cannot perform tasks, such as paralysed patients and infants.

There are a few limitations in this study. First, the ensemble model is a linear

combination of two single (largely) linear models and thus has limited ability to

capture higher-order non-linear relationships within and between the resting-state

and task-evoked brain activity. Second, the decompositions of common modes of

variations are unsupervised. In the future, more complex modelling could be adopted

to simultaneously estimate the common modes of variations and the reconstruction

coefficients. Third, the rich information derivable from T1 and diffusion MRI scans



92 4.4. Discussion

may further aid the predictions of individual differences in task-evoked activity, and

this model is yet to be adapted into a multi-modal framework.
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A large proportion of human cerebral cortex is dedicated to visual processing.

The large-scale spatial organisation of visual cortex that corresponds to the spatial
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arrangement of the retina is known as “retinotopic mapping” or "retinotopy". In

essence, it represents the mapping of the visual field onto the cortical surface, via

topography-preserving anatomical connections.

Studying retinotopy has important implications for both basic and clinical

neuroscience. As a fundamental feature of the visual cortex, retinotopic mapping

provides insights into mechanisms underlying visual processing. Studies on retino-

topic organisation have illuminated the specialisation of different cortical regions

for processing specific aspects of visual information, such as colour, motion, and

object recognition [165, 166]. Moreover, understanding retinotopic organisation

can facilitate the diagnosis and treatment of neurological disorders. For example,

retinotopic mapping can help localise lesions in the visual pathway or assess the

functional integrity of the visual cortex in patients with visual impairments, such

as those caused by stroke or neurodegenerative diseases [167, 168]. Additionally,

knowledge of retinotopic organisation can facilitate the development of visual

prosthetic devices or rehabilitation strategies aimed at restoring or enhancing

visual function [169].

Retinotopic mapping is typically acquired using task-fMRI while subjects view

visual stimuli specifically designed to evoke responses in the visual cortex that

correspond to specific locations in the visual field. Common stimulus types

include expanding rings and rotating wedges/semicircles, which are designed to vary

spatiotemporally in a repetitive manner, covering the visual field over time. The

patterns of BOLD signal changes in response to these stimuli are used to calculate

spatial maps in the visual cortex that represent different locations in the visual field,

as "retinotopic maps". Frequently studied retinotopic maps include polar angle and

eccentricity, which describe the location of receptive fields in the visual cortex, as

well as the size of receptive fields, which measures the spatial extent of the region

responsive to the given stimuli [165]. Despite being a well-established approach,

deriving retinotopic mapping from dedicated task-fMRI can be impractical, as it

typically requires high-field MRI scanners and long scanning time (usually between

15-60 min). Furthermore, it may be impossible to apply this approach to certain
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populations, such as individuals with cognitive or sensory impairments or young

children. Therefore, it is important to develop alternative methods for estimating

retinotopic maps at the individual level.

While limited, previous efforts to characterise retinotopic mapping in vivo

without using dedicated task-fMRI have typically turned to other MRI modalities,

such as structural MRI and resting-state fMRI. The anatomical structure of the

visual cortex, given its fundamental role in visual processing, serves as a valuable

indicator of retinotopic organisation in early visual areas [170–174]. Traditional

methods for predicting retinotopic maps involve using purely geometric templates

(e.g., iso-eccentric bands as an eccentricity template) adjusted to an individual’s

cortical anatomy, allowing for estimation of individual variations in the functional

organisation of the early visual cortex [171, 173]. Such template-based approaches

can only account for gross individual differences. More recently, Ribeiro et al. [175]

achieved more individualised prediction of retinotopic mapping using the anatomical

features of early visual cortex, via deep learning techniques. However, relying solely

on anatomical information, these anatomy-based predictions of retinotopic mapping

overlook the functional aspect of visual processing and thus cannot account for all

unique differences concerning the structure-function relationship in visual areas.

Moreover, while cortical folding predicts the border of V1 well [176, 177], higher

visual areas are not well correlated with the location of the folds.

As demonstrated in Chapter 4, resting-state fMRI possesses an inherent ability to

reconstruct task-evoked brain responses, capturing intrinsic functional connectivity

between brain regions even in the absence of a specific task. This raises an intriguing

question: can resting-state BOLD signal also predict more fine-grained task-elicited

retinotopic mapping? This is based on the hypothesis that adjacent regions in

the visual cortex, which represent nearby locations in the visual field, will likely

exhibit correlated spontaneous activity patterns. A growing body of research has

explored this hypothesis, characterising the retinotopic organisation of visual areas

using resting-state brain activity [174, 178–184]. For example, Haak et al. [183,

184] characterised retinotopic mapping using resting-state connectopy, which is the
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topographically organised resting-state brain connectivity that changes spatially and

gradually according to an orderly organisation, wherein nearby locations connect

with nearby locations elsewhere in the brain; Heinzle et al. and Bock et al. [178,

180] utilised cortico-cortico receptive field modelling, also revealing that locations in

visual areas that tend to co-activate are responsive to similar or nearby visual fields.

Despite these advances, existing resting-state studies on retinotopic mapping have

primarily focused on either a single highly-sampled individual or identifying common

patterns of retinotopic mapping across a population. As a result, there is still a

lack of methods for individualised prediction of retinotopy using resting-state fMRI

data. Recent work by Watson et al. [185] has attempted to address this challenge

by evaluating the accuracy of individualised resting-state retinotopy predicted by

different manifold learning approaches. However, this study was confined to the

primary visual cortex (V1) and did not investigate higher order visual areas. More

research is needed to refine and validate these approaches for broader application.

In this chapter, extending the connectopy-based approach adopted in Haak et al.

[183, 184], we proposed a framework for individualised retinotopic mapping in early

visual areas, ranging from primary visual cortex (V1) up to extrastriate cortex (V4),

using voxel-wise functional "fingerprints" of these areas derived from resting-state

fMRI. We focused on two properties of retinotopy: polar angle and eccentricity, as

they are the most fundamental attributes of the visual field. Polar angle corresponds

to the angular position of a point in the visual field relative to the center of gaze,

while eccentricity represents the radial distance from the center of gaze. These two

attributes together provide a precise description of a point’s position in the visual

field. Moreover, early visual areas are known to exhibit a topographic organisation

based on the polar angle and eccentricity of the visual field. Focusing on polar

angle and eccentricity is not only more straightforward and practical than other

retinotopic properties (e.g. receptive field size), but also more interpretable.

The proposed framework consists of two steps. First, informed by the brain

connectivity elicited by specific visual stimuli, we exploit the rich information
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contained in resting-state fMRI timeseries to generate a set of voxel-wise resting-

state "fingerprints" related to the functional processing of visual information. From

these fingerprints, we derive pairwise similarities among voxels in the visual cortex,

constructing a "resting-state graph" that reflects resting-state similarity pertinent to

visual processing. This graph is optimised to capture the functional connectivity that

arises from visual processing, and contains less of the gross connectivity patterns

found in conventional resting-state functional connectivity. Second, we apply a

modified graph embedding method to uncover the topographic organisation of this

"optimised" resting-state graph, hidden within its low-dimensional representation.

Graph embedding methods usually transform the high-dimensional graph into a

lower-dimensional representation (or ’embedding’) in such a way that important

characteristics of the graph, such as distance relationships between nodes (i.e.,

voxels), are maintained in the lower-dimensional space. This step serves to uncover

spatially varying patterns of functional connectivity between voxels underlying

the high-dimensional complex resting-state graphs. We demonstrate that this

resting-state retinotopic mapping not only reproduces the task-elicited retinotopy,

previously obtained using 7T task fMRI with dedicated visual tasks, but also

captures individual differences in retinotopic organisation in V1-V4. Additionally,

the proposed framework more accurately delineates borders of the early visual areas,

V1-V4, compared to group-average parcellation of the visual cortex. We demonstrate

the effectiveness of our approach using both high-field 7T and more common 3T

resting-state fMRI data. Overall, this approach presents a potential alternative

to resource-intensive task-fMRI visual experiments. It has the potential to be

applied to diverse populations, such as infants or patient cohorts, characterising

retinotopic organisation of visual areas when dedicated visual experiments are

impractical. Such applications will potentially provide valuable insights into the

neural mechanisms underlying neurodevelopment or pathology.
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5.2 Materials and Methods

5.2.1 The Human Connectome Project MRI data
5.2.1.1 Subjects

A total of 181 participants (109 females, 72 males) between the ages of 22 and 35,

obtained from the Young Adult Human Connectome Project (HCP), were included

in the analysis (https://www.humanconnectome.org/study/hcp-young-adult/d

ata-releases). They underwent multimodal MRI scans and received behavioral

and demographic assessments. All participants had normal or corrected-to-normal

visual acuity. The dataset included 53 pairs of identical twins, 34 pairs of fraternal

twins, two pairs of non-twin siblings, and three individuals whose twins/siblings

were not included. The family structure of this dataset can be found in "Restricted

Data" on ConnectomeDB (https://www.humanconnectome.org/study/hcp-you

ng-adult/document/wu-minn-hcp-consortium-restricted-data-use-terms).

5.2.1.2 Structural image acquisition and preprocessing

The T1-weighted (T1w) and T2-weighted (T2w) structural scans were acquired

at 0.7-mm isotropic resolution on a customized Siemens 3T Connectom scanner

at Washington University [105]. They served as as the anatomical substrate for

the retinotopy data. White and pial cortical surfaces were reconstructed using

the HCP preprocessing Pipelines [107]. The surface were aligned across subjects

to the HCP 32k fs_LR standard surface space using two registration stages: a

gentle folding-based registration called "MSMSulc", driven by sulcal and gyral

patterns, followed by a more aggressive registration called "MSMAll", driven not

only by cortical folding patterns but also by other modalities such as myelination and

resting-state connectivity [155, 156, 186]. As the MSMAll registration method partly

involves information of resting-state networks and resting-state-based estimates of

visuotopic organisation, it likely improves alignment of population receptive field

(pRF) solutions across individuals compared to MSMSulc, which is solely based

on cortical folding. Subcortical volume data were aligned to MNI152 standard

space using FNIRT.

https://www.humanconnectome.org/study/hcp-young-adult/data-releases
https://www.humanconnectome.org/study/hcp-young-adult/data-releases
https://www.humanconnectome.org/study/hcp-young-adult/document/wu-minn-hcp-consortium-restricted-data-use-terms
https://www.humanconnectome.org/study/hcp-young-adult/document/wu-minn-hcp-consortium-restricted-data-use-terms
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5.2.1.3 fMRI acquisition and preprocessing

In brief, fMRI data were acquired on a Siemens 7T Magnetom scanner. Whole-brain

fMRI data were acquired at 1.6mm isotropic resolution and 1s TR (multiband

acceleration 5, in-plane acceleration 2, 85 slices). The fMRI data were corrected

for head motion and EPI spatial distortion, and were aligned with the HCP

standard surface space described above using the HCP preprocessing pipelines

[107]. The preprocessed fMRI data are in the "CIFTI" format (a file format

that merges fMRI data from the gray matter surface and subcortical structures

into one file), including 91,282 grayordinates in the 32k fs_LR standard space,

covering both cortical and subcortical brain regions with approximately 2-mm

spatial resolution [107]. Next, the fMRI data were denoised for spatially specific

structured noise via multi-run sICA+FIX [151, 187, 188]. Finally, the dimensions

of the preprocessed data are 181 subjects × 91,282 grayordinates × 6 runs ×

300 timepoints. Full details on fMRI data acquisition and preprocessing can

be found elsewhere [107, 189]. The preprocessed fMRI data are available from

ConnectomeDB (https://db.humanconnectome.org/).

5.2.1.4 Stimuli

The retinotopic mapping stimuli used in this study were generated by slowly moving

apertures containing a range of colourful visual objects. Both the apertures and

textures were generated at a resolution of 768 x 768 pixels, and were confined

to a circular region with a diameter of 16.0°. Beyond the circular region, the

display was uniform gray.

The retinotopy task-fMRI experiments consisted of six runs, RETCCW, RETCW,

RETEXP, RETCON, RETBAR1, and RETBAR2. Each run lasts 300.0 seconds,

during which participants underwent three different types of apertures: wedges

(RETCCW and RETCW, designed to elicit polar angle mapping), rings (RETEXP

and RETCON, designed to elicit eccentricity), and bars (RETBAR1 and RETBAR2,

designed to elicit both polar angle and eccentricity). These apertures slowly moved

across the visual field and were periodically interrupted by blank periods, designed

https://db.humanconnectome.org/
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to help differentiate between non-visual responses and responses from neurons with

very large receptive fields [190]. More specifically, the ring stimuli comprised of a

ring either expanding from or contracting towards the visual field center with a

period of 32 seconds. The wedges stimuli consisted of 90°wedges rotating either

counterclockwise or clockwise across the visual field with a period of 32 seconds.

The bar stimuli consisted of bars with different orientations (i.e., four orientations)

moving across various directions in the visual field. Throughout each experiment,

participants were asked to focus on a semitransparent dot located at the center

of the display and report any changes in colour of the dot by pressing a button

to encourage fixation and allocation of attention to the center of the display. For

further details on the aperture and texture design, please refer to Benson et al. [191].

5.2.2 Population receptive field (pRF) analysis

The retinotopic maps were constructed using population receptive field (pRF)

modelling [191, 192]. The receptive field of a neuron is the region in the visual field

within which a visual stimulus can influence its activity. The pRF model aims to

describe the receptive field properties of a population of neurons within a specific

region of the visual cortex (Figure 5.1A). The pRF model represents the receptive

fields as 2-D isotropic Gaussian functions, characterised by three parameters, polar

angle and eccentricity (which indicates the position of the receptive field) and a

size parameter (which represents the spatial extent of the receptive field).

To perform pRF modelling, the stimulus-related neural response is predicted as

the dot product between the stimulus aperture time series and the 2-D Gaussian,

summed sublinearly according to a static power-law nonlinearity with exponent 0.05

[192] and scaled by a gain factor, finally convolved with a canonical hemodynamic

response function (HRF) [191]:

r(t) = (g × (S(t) ·G)n) ∗ h(t) (5.1)

where r(t) is the predicted stimulus-elicited fMRI time series, g is a scaling factor,

S(t) is the stimulus aperture at time t, G is the 2-D isotropic Gaussian, n is an
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Figure 5.1: Illustration of task-elicited retinotopy and pRF analysis. (A)
Illustration of the three properties of a receptive field, polar angle (blue), eccentricity
(orange), and receptive field size (red). Polar angle and eccentricity describe the location
of a point in the visual field relative to the center of gaze, while pRF size describes the
spatial extent that a group of neurons is reponsive to. (B) The individual polar angle and
eccentricity spatial maps were derived from individual task fMRI times series as "ground
truth" via individual-level pRF analysis. The group-average polar angle and eccentricity
maps were derived from group-average task fMRI timeseries via the group-level pRF
analysis as the baseline prediction. (C) Examples of group-average polar angle map
(top) and individual polar angle map (bottom), across the brain. (D) Examples of
group-average eccentricity map (top) and individual eccentricity map (bottom), across
the brain.

exponent parameter (here n = 0.05), and h(t) is the canonical HRF. The pRF

model’s parameters are adjusted iteratively until the best-fitting model is found via

grid search, yielding the pRF properties (polar angle, eccentricity and pRF size)

for each voxel. See [191] for more details on pRF model fitting. In this chapter,

our focus is limited to polar angle and eccentricity.
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5.2.2.1 Group-level pRF analysis

Group-level pRF models were fitted on the group-average task-fMRI (Figure 5.1B).

As the visual stimuli are synchronised across the subjects, the MSMAll-registered

retinotopy task-fMRI timeseries were simply averaged across the 181 subjects

for each run (e.g., RETCCW, RETCW, RETEXP, RETCON, RETBAR1, and

RETBAR2), giving a single 91282 × 300 timeseries per run. The fitted pRFs

that best explained the group-average task-fMRI timeseries, six runs concatenated

together, produced the group-level spatial maps of polar angle, eccentricity, and

pRF size, as well as the variance explained as a measure of goodness-of-fit of the

pRF models. The group-level polar angle and eccentricity maps serve as the baseline

prediction of retinotopic mapping. The map of variance explained by group-level

pRF modelling was used to exclude noisy vertices, i.e., the neural activity of which

cannot be explained by the visual stimuli.

5.2.2.2 Individual-level pRF analysis

In contrast to the group-level pRF analysis, we chose MSMSulc-registered retinotopy

task-fMRI data for individual-level analysis. This is because MSMAll registration

utilised visuotopic information to align the cortical surface across subjects, con-

sequently minimising individual variability in retinotopic mapping [186]. The

individual-level polar angle maps were obtained by fitting pRF models to the

concatenated RETCCW and RETCW task-fMRI time series (i.e., rotating wedge).

Meanwhile, eccentricity maps were generated by fitting pRF models to the con-

catenated RETCON and RETEXP time series (i.e., expanding/contracting ring).

The resulting individual version of polar angle and eccentricity maps serves as

"ground truth" for resting-state retinotopic mapping.

5.2.3 Definition of visual ROIs

We restricted the analysis to early visual areas, from V1 to V4. The V1, V2, V3,

and V4 ROIs were obtained from a multimodal group-average template [186] in

the HCP 32k fs_LR standard surface space [107]. Vertices for which the fitted



5. Resting-state neural activity predicts individual differences in retinotopic
organisation in early visual areas 103

Figure 5.2: Illustration of the retinotopy prediction framework. First, a
V × 91282 resting-state dense connectome X is constructed for the V vertices within
the selected ROIs (V1-V4), serving as resting-state "fingerprints" for these vertices. The
dense connectome within the ROIs, denoted by XV , is a subset of X. A set of V × V
similarity matrices are subsequently constructed from the dense connectome X, each
emphasising the fingerprints with respect to a specific functional configuration. The
similarity matrices were combined with XV to predict the task connectivity matrix YV

elicited by visual stimuli. The predicted task connectivity matrix, ŶV , is referred to as
the "optimised resting-state graph". A knn-graph D is next constructed from ŶV . Finally,
the resting-state retinotopy F is solved from the knn-graph D via the modified Laplacian
Eigenmap algorithm.

pRF model at group-level yielded less than 55% explained variance were excluded

from the V1-V4 parcels, as the "ground truth" polar angle and eccentricity of these

vertices are regarded unreliable as they can’t be explained well by the pRF model.

5.2.4 Framework setup and implementations

In this study, we used resting-state fMRI to predict task-based retinotopy by

focusing on enhancing the specificity of the resting-state graphs to visual-elicited

functional connectivity (see Figure 5.2 for an illustration of the workflow). The

analysis was conducted for each hemisphere separately.
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5.2.4.1 Optimising the resting-state graph

The original resting-state graph, calculated as the correlations of voxel-wise resting-

state timeseries (i.e., dense connectome), is likely biased by functional connectivity

patterns unrelated to visual processing, as the timeseries in resting-state fMRI

inevitably reflects not only the neural activity underlying visual processing but also

fluctuations modulated by other functional networks. Therefore, by incorporating

connectivity information from task-fMRI, it is possible to improve the "specificity"

of the resting-state graphs to visual-related functional connectivity. We hypothesise

that this specificity can be achieved by accounting for the voxel-wise (or vertex-wise)

similarities with respect to the functional spatial configurations that contain visual

information. To illustrate, the functional connectivity of a given pair of vertices (i.e.,

an edge in the resting-state graph) can be attributed to two sources: one due to

the fluctuations of neural activity normally elicited by visual stimuli, and the other

due to the low-frequency continuous fluctuations arising from intrinsic functional

organisation. By reducing the latter, we can guide the resting-state graph to better

align with visual functional networks, thus allowing for a more accurate prediction of

task-based retinotopy. To achieve this, we calculate a set of resting-state similarity

matrices and use linear combinations of these matrices to approximate the task-

elicited connectivity. The hypothesis is that this approximation can better capture

the neural fluctuations specific to visual processing, compared to the original

resting-state functional connectivity.

Specifically, suppose X is the V × 91282 dense connectome matrix between the

V visual vertices and the 91282 graycoordinates across the brain (both cortical

vertices and subcortical voxels). The original resting-state graph XV , i.e., the dense

connectome within the visual ROIs, is a V × V subset of X. To calculate the task

connectivity graph elicited by a given task stimulus, we took correlations between

the task-fMRI timeseries of the given task (e.g., the task connectivity graphs elicited

by rotating wedges were constructed by calculating the task-fMRI time series of

RETCW and RETCCW tasks, temporally concatenated) and constructed the

corresponding k-nearest-neighbour (knn) graph, removing the weakly correlated
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edges in response to the stimuli. Here we choose k = 50 to construct the knn

task connectivity graph for the rotating wedge task, and k = 200 for the ring

task. The resulting task-fMRI connectivity graph is denoted by YV . Suppose

W = [w1,w2, ...wd] ∈ R91282×d is a set of d spatial configurations. We seek to find a

set of linear coefficients b = [b0, b1, b2, ...bd] that minimises the following loss function:

min
b
||(b0XV +

d∑
i

biXdiag2(wi)XT −YV )⊙M||2F + λ2||b||22 + λ1||b||1 (5.2)

where M is a V × V matrix that has ones below the diagonal and zeros on and

above the diagonal, and ⊙ is the element-wise multiplication. Briefly, we used a

set of spatial configurations to modulate the voxel-wise similarity derived from

the resting-state dense connectome and then used a linear combination of these

resting-state similarities to approximate the task connectivity graph. Here we used

the group-average ICA50 spatial maps as the spatial weights W (see Chapter 4.2.3

for more details on the ICA maps).

The coefficients b signify the weights assigned to each of the resting-state

similarity matrices in their linear combination. These weights help determine the

contribution of each individual similarity matrix to the overall approximation of

task-elicited connectivity. They were solved for the rotating wedge (RETCW and

RETCCW) and expanding/contracting ring (RETCON and RETEXP) task per

subject, resulting in two sets of coefficients for each task per subject (see Figure C1

and Figure C2 for the corresponding coefficients). The coefficients were averaged

across the training set, yielding a single set of coefficients for the given task, and were

subsequently applied to the left-out subjects to produce the "optimised" resting-state

graph ŶV . These "optimised" resting-state graphs would ideally better describe the

co-activation patterns elicited by visual stimuli, compared to the original resting-

state graphs. We next constructed the knn resting-state graph from the predicted

ŶV , denoted as D in the following analysis.
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5.2.4.2 Uncovering retinotopy from the resting-state graph

The resting-state retinotopy maps were uncovered as the low-dimensional repre-

sentations of the optimised resting-state graph. We adopted a modified Laplacian

Eigenmap (LE) to calculate these low-dimensional representations. Specifically, for

a given graph A (in the form of a V × V connectivity matrix, here the optimised

resting-state graph ŶV ), its retinotopic low-dimensional representations at the

individual level, F = [fangle, fecc] ∈ RV ×2, minimises

min
F

Tr(FT LF) + λ1||F−G||22 + λ2||FT F− I||22 (5.3)

where G = [gangle,gecc] ∈ RV ×2 is the group-average retinotopic mapping, gangle

the group-level polar angle map and gecc the group-average eccentricity (which are

derived from the group-level pRF analysis, described in Chapter 5.2.2.1). L =

I−D−1/2AD−1/2 is the normalised graph Laplacian of the resting-state graph A,

where D = diag(d) is its degree matrix (i.e., d ∈ RV ×1 is the node degree vector

of A). The optimal fangle and fecc that give the smallest Laplacian loss are solved

as the individual polar angle and eccentricity maps. The modified Laplacian map

differs from the classical one in two significant ways. First, it includes an additional

penalty term, as indicated by the second term in Equation (5.3), designed to align

the low-dimensional representations, denoted as F, with group-level retinotopy G.

This additional penalty term is absent in the conventional Laplacian Eigenmap.

Second, it relaxes the orthogonality constraint present in the traditional Laplacian

Eigenmap, transforming it into a softer constraint, illustrated by the third term

in the equation. Despite these modifications, this Laplacian Eigenmap remains an

unsupervised method as it doesn’t involve pairing input and output data for training.

5.2.5 Delineating borders of V1-V4 from retinotopy

Typically, the polar angle map reverses (i.e. its gradients flip direction) at borders of

the visual areas. For example, from the lower to upper bank of the calcarine sulcus,

the polar angle gradually changes from the upper vertical meridian to the lower

vertical meridian, and reverses at the lips of the calcarine sulcus in the bordering



5. Resting-state neural activity predicts individual differences in retinotopic
organisation in early visual areas 107

dorsal and ventral V2 maps [191]. Where the polar angle map reverses, or where

its gradients change direction, indicates transitions between adjacent visual areas.

We derived the borders between V1 to V4 from the predicted and group-average

polar angle respectively for each individual, and compared them against the ground

truth borders, derived from individual polar angle.

Characterising the borders based on a given polar angle map involves two steps.

First, the gradients of the given polar angle map are calculated on the surface.

Second, the dot product between the gradient vectors and the direction vectors

with respect to a reference point (e.g., the centroid of V1) are calculated for each

location. This dot product map reflects whether the gradient change is aligned with

the expected direction of the polar angle reversal, and thus contains information of

the transitions between visual areas (see Figure 5.3B for an illustration).

5.2.5.1 Calculating retinotopic gradients on the cortical surface

Estimating gradients on a cortical surface involves determining the rate of change

in a particular feature at a given vertex on the surface. We employed the method

described by Glasser et al. [186] to compute gradients of polar angle maps on

individual surface meshes.

Here we briefly recap the gradient calculation procedure. For each vertex on the

surface mesh, the normals of the vertex’s associated mesh triangles were averaged

to obtain the vertex’s normal vector. Next, the vertex and its neighbours were

unrolled onto a plane orthogonal to the vertex’s normal that passes through the

vertex by conducting the following steps:

1. Between the centre vertex and a neighbouring vertex, draw a circular arc that

is tangent to the plane at the centre vertex;

2. Calculate the arc length Larc = LEuclid∗sin−1(Lopposite/LEuclid)∗LEuclid/Lopposite,

where Lopposite is the dot product of the vector representing the edge (between

the centre vertex and the neighbour) and the normal vector of the centre

vertex (see Figure 5.3A for an illustration);
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3. Project the neighbouring vertex onto the plane, adjusting its position to

maintain the projected direction from the centre vertex while preserving a

distance equal to the circular arc length from the centre vertex;

4. Perform linear regression within the plane, f(t, u) = at + bu + c, where t

and u correspond to distances along orthogonal axes within the plane, using

the values and positions of the centre vertex and the unrolled neighbouring

vertices. The gradient vector comprises the spatial coefficients, projected into

3-D space by the unit vectors of the plane’s coordinate system.

The process is repeated for each subject, on the individual 32k sphere mesh. We

calculated gradients of different versions of polar angle maps, including the ground

truth polar angle (as defined by individual-level pRF), the group-average polar angle

(as defined by the group-level pRF), and the predicted polar angle. Note that since

gradients are calculated on individual-specific surface meshes, the group-average

polar angle map yields slightly different gradients across individuals.

5.2.5.2 Deriving borders from retinotopic gradients

To better characterise where the polar angle gradients change direction, we computed

the dot product between the 3-D gradient vectors and the position vectors pointing

towards the V1 centroid. Specifically, we first averaged the 3-D coordinates

(determined by the individual sphere mesh) of all V1 vertices (per hemisphere)

to obtain the centroid coordinates of V1, denoted as (x0, y0, z0). Next, for a

given vertex v, we computed a direction vector by subtracting the V1 centroid

coordinates from the vertex’s coordinates (xv, yv, zv), resulting in a direction vector

(xv − x0, yv − y0, zv − z0), representing the direction towards V1 at location v.

Suppose the gradient vector at vertex v is (gxv , gyv , gzv); we then took the dot

product between this direction vector and the gradient vector at the given vertex,

(xv − x0, yv − y0, zv − z0) · (gxv , gyv , gzv). This step was repeated for every vertex

within the ROIs (V1-V4), resulting in a dot product map. We then smoothed the

dot product maps with a kernel of FWHM 4mm. At each vertex, we assigned
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Figure 5.3: Illustration of the calculation of gradients and borders. (A)
Calculation of the gradients on the surface. The arc length between the centre vertex and
the neighbour is calculated as Larc = LEuclid ∗ sin−1(Lopposite/LEuclid) ∗ LEuclid/Lopposite,
where Lopposite . The neighbour vertex is projected onto the plane tangent to the arc
and elongated from the centre vertex to match the distance of Larc. A linear regression
is subsequently fitted at the centre vertex within the plane f(t, u) = at + bu + c for the
given feature f(·, ·) (e.g., polar angle), giving the spatial coefficients as the gradients. See
[186] for more details. (B) Calculation of the borders. The dot product map between the
gradient vectors and direction vectors reflects whether the polar angle changes align with
the expected direction (e.g. pointing towards V1). Hence, where the dot product map
flips the sign indicates where the polar angle reverses.

+1 to it if the dot product is positive, otherwise −1, finally resulting a map of

±1s. The locations where the gradients change sign along the directions towards

V1 indicate reversals in the polar angle map, suggesting the boundaries of the

visual areas. For a visual representation of the steps taken to derive the borders,

please refer to Figure 5.3B.

5.3 Results

5.3.1 Resting-state fMRI better predicts individual differ-
ences in task connectivity graph

We first tested whether the optimised resting-state graph can better capture

individual differences in task connectivity structure, elicited by the dedicated

retinotopy task stimuli. Here we briefly recap how these graphs were calculated.
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The individual task connectivity graphs were constructed from the temporal

correlations of 7T retinotopy task-fMRI times series, either from the rotating

wedge visual task (RETCCW and RETCW, concatenated temporally), or from

the expanding/contracting ring visual task (RETCON and RETEXP, concatenated

temporally). To remove the weakly connected edges, we constructed the respective

knn-graphs from the task connectome, with k = 80 for the rotating wedge task

and k = 200 for the ring task. The group-average task connectivity graphs were

constructed likewise, but from the group-average retinotopy task-fMRI time series.

The original resting-state graph were simply the dense connectome calculated from

the original resting-state fMRI time series (with the average signal across the brain

regressed out from the time series of each individual voxel), while the "optimised"

resting-state graphs were constructed using the approach described in Chapter

5.2.4.1. We hypothesised that the original resting-state functional connectivity

between two visual vertices comprises two sources, one arising from the functional

configuration dedicated to visual processing, the other due to the gross connectivity

patterns and/or other non-visual functional configurations. The "optimised" resting-

state graph was designed to approximate the task connectivity structure elicited by

dedicated visual stimuli by reducing the contribution of the latter source, leveraging

resting-state "fingerprints" with the rest of the brain.

For each retinotopy task (rotating wedge or expanding/contracting ring), the

lower triangular elements of the optimised and original resting-state graphs were

respectively correlated with those of the actual task connectivity graphs at the

individual level. Such correlations were also calculated for the group-average task

connectivity graphs, i.e., between the group-average and individual-level lower

triangular elements, as the baseline. Both the optimised and original resting-

state graphs produced higher correlations with the actual task connectivity graphs

than the respective group-average task connectivity graph (Figure 5.4A and 5.4B,

orange/red vs blue), suggesting that resting-state fMRI, even in the absence of

dedicated visual-focused analysis, can indeed capture the individual differences in co-

activation patterns of neural activity elicited by specific visual stimuli. Furthermore,
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the optimised resting-state graphs gave higher correlations than the original resting-

state graphs (Figure 5.4A and 5.4B, orange vs red). This corroborates the hypothesis

that resting-state "fingerprints" in the rest of the brain can indeed inform the co-

activation structure in visual processing. The results obtained from 3T resting-state

fMRI exhibited a similar pattern (Figure 5.4C and 5.4D).

5.3.2 The optimised resting-state graph better captures
individual-specific retinotopy

We subsequently investigated whether the resting-state retinotopy, comprising the

polar angle and eccentricity maps derived from the optimised resting-state graphs,

could more accurately capture individual differences in task-elicited retinotopy (i.e.,

polar angle and eccentricity maps obtained from individual-level pRF analysis)

compared to group-average task retinotopy (i.e., polar angle and eccentricity maps

obtained from group-level pRF analysis). Resting-state retinotopy represents the

low-dimensional embeddings of resting-state graphs, which were determined using

the modified Laplacian Eigenmap algorithm detailed in Chapter 5.2.4.1. These

embeddings were designed to capture the gradual changes in resting-state functional

organisation across two primary, orthogonal directions: one representing changes in

the group-average polar angle, and the other reflecting changes in group-average

eccentricity. Thus, each resting-state graph gave two low-dimensional embeddings,

one supposed to approximate polar angle, the other eccentricity. Note that, however,

the resting-state graphs optimised for the wedge task connectivity inevitably suppress

eccentricity information while enhancing the polar angle information, and vice versa.

Hence, we discarded the eccentricity embeddings from the resting-state graphs

optimised for the wedge task, and only used the polar angle embeddings as the

predicted polar angle maps; similarly, we also discarded the polar angle embeddings

from the resting-state graphs optimised for the ring task, and only adopted the

eccentricity embeddings as the predicted eccentricity maps.

Evaluations were conducted separately for each hemisphere. The predicted

eccentricity maps, based on either the optimised or original resting-state graphs,
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Figure 5.4: Correlations with the task connectivity graph edges. The edges
of the optimised resting-state graph (orange), the original resting-state graph (red),
and the group-average task connectivity graph (blue), were correlated with those of
the individual task-fMRI connectivity graphs of the respective task, rotating wedge or
expanding/contracting ring. Both the original and optimised resting-state graphs gave
higher correlations with the individual task connectivity graphs than the group-average
baseline. (A) Such correlations in left hemisphere, where the resting-state graphs were
calculated using 7T timeseries. (B) Equivalent plots of (A) in right hemisphere. (C)
and (D) Equivalent plots of (A) and (B), where the resting-state graphs were based on
3T data. The task connectivity graphs, either at the individual- or group-level, were
calculated from 7T retinotopy task-fMRI times series. All tests (paired t-tests) were
Bonferroni-corrected (24 tests in total).
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were correlated with the actual eccentricity maps obtained via individual-level pRF

analysis to assess prediction accuracy. Additionally, the group-average eccentricity,

calculated using group-level pRF analysis, was correlated with individual eccentricity

to establish a baseline. Similar correlation calculations were performed for polar

angle. It is important to note that polar angle values are cyclical (i.e., 360o = 0o).

To circumvent discontinuity issues in polar angle values, especially at the horizontal

meridian in the left hemisphere, both individual and group-average polar angle maps

(output by pRF analysis) were transformed into their corresponding sinusoid maps.

Overall, the 7T resting-state retinotopy yielded high correspondence with actual

task-elicited polar angle and eccentricity maps (Figure 5.5A and 5.5C). Compared

to the group-average polar angle and eccentricity, the resting-state retinotopy gave

higher correspondence with the actual retinotopy derived from individual-level pRF

(Figure 5.5A and 5.5C). This is unsurprising, given that the resting-state graphs

better captured the task-elicited co-activation patterns from V1-V4 (see Figure 5.6

for visualisations of the task-elicited, group-average, and resting-state-predicted

polar angle maps on the surface). We also calculated the discrimination metric

as described in Chapter 4.2.6. This metric measures, in addition to the overall

accuracy, the extent to which the predicted retinotopy is more close to the subject to

be predicted than to the others. The group-average prediction, while exhibiting high

correspondence with the individual ground truth, does not discriminate between

subjects, i.e., lacking the ability to tell subjects apart. The resting-state retinotopy

produced much higher discriminability than the group-average patterns, suggesting

that the model is indeed capable of capturing individual differences in task-elicited

retinotopy (Figure 5.5B and 5.5D). The results based on 3T resting-state data

produced a similar pattern (Figure C5), with the optimised resting-state retinotopy

yielded the highest accuracy and discriminability.

Overall, the prediction accuracies for eccentricity are higher than those for

polar angle. This discrepancy may have several possible interpretations. First, the

organisation of eccentricity in the visual cortex might be simpler and more consistent

across individuals compared to the organisation of polar angle. This could make
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Figure 5.5: Prediction accuracy of 7T resting-state retinotopy. (A) 7T resting-
state polar angle gave higher correlations with individual-level task-elicited polar angle
than the group-average polar angle map. (B) 7T resting-state polar angle gave much
higher discriminability than the group-average polar angle. (C) and (D) Equivalent plots
of (A) and (B), for eccentricity prediction.
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Figure 5.6: Task-elicited, group-average, and resting-state polar angle, shown
on the sphere surface. In task-elicited polar angle, the patterns distinct from the
group-average are highlighted by the white circles. These "abnormal" patterns are however
captured by resting-state polar angle. Here the resting-state polar angle were based on 7T
data; see Figure C3 for the 3T resting-state counterparts. The polar angle was converted
to sinusoid maps so that it ranges from -1 to 1.

it easier to predict and capture eccentricity representations accurately. Second,

the neural activity associated with eccentricity may be stronger or more robust

than those associated with polar angle. As a result, the signals for eccentricity

might be easier to detect and predict.

5.3.3 Delineation of borders between V1-V4 via the opti-
mised resting-state graph

One of the important applications of polar angle is to delineate transitions between

adjacent visual areas, particularly areas V1, V2, V3, and V4. This is because the

borders of the early visual cortex are characterised by reversals in the polar angle

representation; by identifying the locations where the polar angle reverses, it is

possible to delineate the borders of these early visual areas.

Characterising where polar angle reverses typically involves calculating its

changes (i.e., its gradients) on the surface and identify where the gradients flip

their sign. To delineate the transitions of visual areas, it is usually required to
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Figure 5.7: Task-elicited, group-average, and resting-state eccentricity, shown
on the sphere surface. Equivalent plots of Figure 5.6, for eccentricity. The abnormal
patterns in individual task-elicited eccentricity are highlighted by the white circles.
These "abnormal" patterns are however captured by resting-state eccentricity. Here the
resting-state eccentricity were based on 7T data; see Figure C4 for the 3T resting-state
counterparts. Warmer colours indicate larger eccentricity, and vice versa.

further characterise the reversal locations with respect to a reference point, e.g., the

centroid of V1, to help determine if the gradient change is aligned with the expected

direction of the polar angle reversal. To illustrate, from the lower to upper bank

of the calcarine sulcus, the polar angle gradually changes from the upper vertical

meridian to the lower vertical meridian, and reverses at the lips of the calcarine

sulcus in the bordering dorsal and ventral V2 maps [191]. By identifying whether

the gradients flip sign along the expected direction of the polar angle change (i.e.,

from the lower to upper bank of calcarine sulcus), we can determine the reversal

locations of the given polar angle map as the borders of adjacent visual areas.

Therefore, on the individual cortical surface, we calculated the gradients of three

types of polar angle maps, the ground truth polar angle derived from individual-level

pRF analysis, the resting-state polar angle derived from the optimised resting-state

graphs, and the group-average polar angle derived from the group-level pRF analysis.

For each type of polar angle gradient map, we calculated the dot product between

the gradient vectors and position vectors pointing towards the centroid of V1 at

each location, resulting in a map of dot products. Next, we assigned a positive or
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Figure 5.8: Segmentation accuracy of the 7T resting-state polar angle. (A)
Across V1, V2, V3, and V4, the 7T resting-state retinotopy (orange) gave marginally
higher segmentation accuracy than the baseline group-average accuracy (blue). (B)
Across V2 and V3, however, the 7T resting-state retinotopy better captured transitions
between visual areas. (C) Across V3 and V4, the 7T resting-state polar angle gave
significantly higher segmentation accuracy than the group-average segmentation. See
Figure C6 for results based on 3T resting-state polar angle.

negative sign to each dot product based on whether the dot product is positive or

negative, resulting in a map of positive and negative values. The positive values

represent where the change of polar angle aligned with the expected direction of the

polar angle change, while the negative values represent the opposite; the transitions

between the positive and negative values suggest the reversal of polar angle along

the reference direction. Hence, the resulting positive/negative assignments naturally

provide the segmentation from V1 to V4.

Such positive/negative-assigned dot product maps, derived from the individual

task-elicited polar angle maps, were adopted as the ground truth segmentation in

the following evaluation. To quantify whether the resting-state polar angle maps

(either from the optimised or original resting-state graphs) can characterise the

borders between V1-V4, we calculated the percentage of correctly assigned vertices

in the resting-state dot product maps, against this ground truth, as a measure of

prediction accuracy. Similarly, we also calculated the baseline accuracy, i.e., the

percentage of correctly assigned vertices in the group-average dot product maps.

Again, the resting-state-based segmentation between V1-V4 turned out to be slightly

more accurate than the group-average segmentation (Figure 5.8A), particularly
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Figure 5.9: Segmentation between V1-V4 using the group-average polar angle
(left), the individual task-elicited polar angle (middle), and the 7T resting-
state polar angle (right). The segmentation derived from individual task-elicited
polar angle served as the ground truth. Resting-state segmentation can capture the
individual-unique patterns, highlighted by red circles.

in higher order visual areas (Figure 5.8B and 5.8C). These results suggest that

more individual variability exists in higher order visual areas, which is in line with

previous studies [193]. Results based on 3T resting-state followed a similar pattern

with those based on 7T (Figure C6) though with degraded segmentation accuracy.

Visualisation of the segmentations between V1-V4 can be found in Figure 5.9 for

7T resting-state, and in Figure C7 for 3T.

5.4 Discussion

In this chapter, we proposed a two-step supervised Laplacian Eigenmap (LE)

approach to reconstruct retinotopic mapping (i.e., polar angle and eccentricity
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of visual receptive fields) in early visual areas from resting-state fMRI. While

the original LE algorithm is an unsupervised method for finding low-dimensional

representations of the data, our proposed framework leveraged the retinotopic

information modulated by dedicated task stimuli, and better captured the topo-

graphically varying retinotopic patterns in the lower-dimensional embedding at the

individual level. Specifically, in the first step, the construction of the resting-state

graph is optimised to approximate the co-activation patterns in the retinotopy

task-fMRI. By incorporating this task information, the resting-state graph is better

suited to characterising the gradual change of functional organisation that arises

from processing of visual information, rather than from the global connectivity or

irrelevant functional configurations, thus producing more visual-specific embeddings.

In the second step, the dimensionality reduction is guided by the group-average

retinotopic embeddings. This is achieved by introducing an additional term to

the traditional Laplacian Eigenmap loss function, encouraging the low-dimensional

embedding of individual resting-state graphs to resemble the overall retinotopic

organisations. This additional penalty further forces the resting-state embeddings

to "focus" more on the functional connectivity patterns relevant to visual processing,

while preserving sensitivity to individual variability in the resting-state graph.

The proposed approach leads to better performance in characterising individual-

specific retinotopy in early visual areas from resting-state fMRI. Furthermore,

based on the gradients of the resulting resting-state embeddings, the proposed

approach yielded more accurate delineations of the borders of the early visual

area than its unsupervised counterpart and the group-average parcellation. This

is more true for higher-order areas, such as V3 and V4, than for V1, as the latter

has less individual variability and can be well predicted by group-average folding

patterns. Overall, these results demonstrate the potential of resting-state fMRI for

replacing task-fMRI to characterise retinotopic organisations in the visual cortex

and serve a reliable functional localiser, particularly when the dedicated task-fMRI

is impractical in infants or disease cohorts.
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Why is resting-state fMRI capable of predicting task retinotopy, even in the

absence of a specific visual stimulus? During resting-state fMRI, spontaneous

neural activity continues to occur. This intrinsic organisation reflects the underlying

structure and connections of the neural networks responsible for processing specific

types of sensory information, such as visual input. In the case of retinotopy,

the visual cortex is organised in a topographically specific manner, with nearby

neurons tending to respond to similar or adjacent regions of the visual field. This

organisation is preserved in the resting-state functional connectivity patterns, as

regions that share similar functional properties are more likely to be interconnected.

The common anatomical substrate underlies the correspondence between resting-

state and task-elicited retinotopy.

The proposed approach, while promising, remains a preliminary framework

with several methodological limitations that warrant further investigation. The

first major limitation is underfitting. In optimising the resting-state graph, we

applied a set of spatial weights to emphasise specific connectivity "fingerprints" to

create more visually-specific vertex-wise similarities. These spatial weights were

precomputed as group-average spatial ICA maps, which may not be the optimal set

of spatial weights for generating a more visually-specific resting-state graph. The

actual number of free parameters (i.e., the number of coefficients corresponding to

the set of spatial weights) is substantially smaller than the sample size (i.e., the

number of edges). It is worth investigating whether optimising the spatial weights

simultaneously with the coefficients will lead to better model performance. Second,

the overall prediction accuracy of the framework needs further improvement. While

we demonstrated that the proposed approach can capture individual differences in

task retinotopy, its prediction accuracy is only marginally better than group-average

retinotopy. Moreover, the predicted retinotopy does not correctly scale with the

actual retinotopy, which should uniformly range from 0 to 2π in polar angle and

from 0 to 8 in eccentricity within the selected ROIs. The distributions of predicted

retinotopy exhibit bimodal patterns, complicating direct comparisons with the

ground truth retinotopy (see Figure C8 for more details and discussions on this
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point). Additional efforts are necessary to predict biologically meaningful retinotopy

with accurate scales and distributions. Furthermore, the current framework has

been trained and validated on the high-quality 7T HCP dataset, while using 3T

fMRI data results in reduced model performance. Investigating advanced machine

learning techniques to transfer the high-quality information from 7T fMRI to 3T

fMRI could enhance retinotopy prediction on more commonly used low-field MRI

systems. A third limitation is that the current work focused solely on polar angle

and eccentricity. While these properties provide valuable information about the

organisation of the visual cortex, other aspects, such as pRF size, are also essential

to understanding the complete functional organisation of the visual system. pRF

size refers to the spatial extent of the visual field that a group of neurons responds to.

It varies across different regions of the visual cortex and is crucial for understanding

how visual information is processed at various spatial scales. In future, it is also

worth exploring frameworks that can predict individual differences in pRF size.

Lastly, the framework has yet to be adapted for diverse populations, such as infants

and blind patients, who may have different functional organisations that could affect

model performance. Investigating the retinotopy of these populations is crucial for

understanding the mechanisms underlying neurodevelopment and pathology. To

translate the proposed framework into a clinically reliable routine, it must account

for the differences in functional organisation among various populations.
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6.1 Contributions

This thesis delved into three unique facets of individual variability in the human brain

in vivo, encompassing both anatomical distinctions and functional variations, using

MRI analysis and machine learning techniques. In this chapter, we will recapitulate

the primary contributions of this thesis and discuss its limitations. Lastly, we will

concisely outline potential future research directions stemming from this work.

• An Imaging Quality Transfer (IQT) Technique to Localise a Deep

Brain Stimulation (DBS) Target

In Chapter 3, we proposed an IQT technique for robustly localising a DBS

target, the Vim, on low-quality clinical-like data by leveraging anatomical

information from high-quality data sources. We demonstrated that the HQ-

augmentation approach outperforms its predecessor, the connectivity-driven

123
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approach, in terms of accuracy, robustness against data corruption, and

consistency across varying data qualities and scanning sessions. We also

demonstrated that the HQ-augmentation approach preserves more inter-

individual anatomical variability compared to the atlas-based approach.

Furthermore, we presented the generalisability of the HQ-augmentation model

across different datasets, such as the HCP and UKB low-quality data, making

it more valuable in clinical contexts where large samples of data collection

and retraining may be impractical. Finally, we showed the versatility of the

approach by indicating its potential to be adapted for targeting other deep

brain structures.

• Accurate predictions of individual differences in task-evoked brain

activity from resting-state fMRI using a sparse ensemble learner

In Chapter 4, we proposed a framework to improve state-of-the art prediction

accuracy of individual differences in task-fMRI activation profiles using resting-

state fMRI. Based on the assumption that resting-state functional modes are

the underlying substrate of task-evoked activity, we demonstrated that features

extracted using Stochastic Probabilistic Functional Modes (sPROFUMO)

outperform the commonly-used dual-regression spatial modes. We showed that

the shape and overall intensity of individualised task activations can be mod-

elled separately and explicitly. Furthermore, we discussed the importance of

"residualisation" and presented evidence that training the model on predicting

residual differences in brain activity further boosts individualised predictions.

The framework’s state-of-the-art prediction accuracy was validated on both

HCP data (surface-based analyses) and UKB data (volumetric analyses) and

on par with the test-rest reliability of task-fMRI, suggesting its potential to

supplement traditional task localisers.

• Resting-state neural activity predicts individual differences in retino-

topic organisation in early visual areas
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In Chapter 5, we presented a two-step supervised Laplacian Eigenmap (LE)

approach for reconstructing retinotopic mapping in early visual areas using

resting-state fMRI. In this framework, we optimised the construction of

resting-state graphs by incorporating co-activation patterns from retinotopy

task-fMRI, resulting in more visual-specific embeddings. We introduced

an additional term to the Laplacian Eigenmap loss function that guides

dimensionality reduction using group-average retinotopic embeddings, thereby

encouraging individual resting-state graphs to resemble overall retinotopic

organisations. We showed that the framework had improved performance

in characterising individual-specific retinotopy in early visual areas (V1 to

V4) from resting-state fMRI compared to unsupervised methods and group-

average parcellation, demonstrating its potential to replace task-fMRI for

characterising retinotopic organisations in the visual cortex and serving

as a reliable functional localiser, particularly in cases where task-fMRI is

impractical, such as with infants or disease cohorts.

6.2 Limitations

In this section, we will recapitulate the limitations of each project, as previously

discussed in Chapters 3.4, 4.4, and 5.4, and provide a comprehensive overview

of these constraints in a broader context.

• In Chapter 3, we proposed an IQT technique to reliably localise a DBS

target, the Vim, leveraging high-quality data resources. There are several

limitations. First, its reliance on high-quality data for model training may

render it impractical in specific research or clinical settings. While the model

exhibits generalisability from HCP to UKB datasets, it is crucial to evaluate its

performance on other low-quality datasets and diverse populations to ensure

widespread applicability. Additionally, due to variations in MRI acquisition

protocols and hardware, the model might necessitate retraining or fine-tuning

for particular clinical or research scenarios. Second, the model did not fully
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explore other advanced techniques in machine learning. Recent advances in

deep learning, particularly in medical image analysis, could provide alternative

solutions with enhanced performance and adaptability to different datasets.

For example, integrating deep learning methods like convolutional neural

networks (CNNs) with the HQ-augmentation framework may lead to further

progress in deep nuclei segmentation for low-quality data. Lastly, there

is potential for further refinement by examining additional image features,

optimising the model architecture, and incorporating advanced regularisation

techniques to improve segmentation accuracy and robustness.

• In Chapter 4, we proposed an ensemble framework that achieves state-of-

the-art prediction accuracy of individual differences in task-evoked brain

activity. Several limitations exist. First, the approach relies on unsupervised

decomposition of common modes of variations. Future work could adopt more

sophisticated modelling strategies for simultaneous estimation of variations

and reconstruction coefficients. Second, the model has not yet been extended

to include the valuable information available from T1 and diffusion MRI scans,

which could enhance the predictions of individual differences in task-evoked

activity. Developing a multi-modal framework that integrates data from

various imaging modalities would likely provide a more comprehensive and

accurate representation of individual brain activity patterns, further improving

the predictive capabilities of the model. Finally, the generalisability of the

model to other datasets remains an area for further exploration. Evaluating

the model’s performance on diverse datasets, e.g., in populations, as well as

refining the model to account for variations in MRI acquisition protocols and

hardware, will be crucial to ensuring the broad applicability of the ensemble

framework in both research and clinical settings.

• In Chapter 5, the proposed framework that predicts task retinotopy from

resting-state fMRI has several methodological limitations. First, there is

potential underfitting in the resting-state graph optimisation, where spatial



6. Conclusion 127

weights were precomputed using group-average spatial ICA maps. Optimising

these weights simultaneously with coefficients may improve model perfor-

mance. Second, the framework’s prediction accuracy needs enhancement.

While capturing individual differences in task retinotopy, its accuracy is

only slightly better than group-average retinotopy. Predicted retinotopy

distributions exhibit a Gaussian pattern, complicating comparisons with

ground truth retinotopy. Further efforts are needed to achieve accurate

retinotopy predictions. Additionally, the framework has been trained and

validated on high-quality 7T HCP datasets, while using 3T fMRI data results in

reduced performance. Advanced machine learning techniques may help transfer

information from 7T fMRI to more common 3T hardware. Furthermore, the

current framework focused solely on polar angle and eccentricity. While they

are the most important properties regarding the organisation of the visual

cortex, incorporating other aspects of retinotopy, such as pRF size, may provide

a more comprehensive understanding of the functional organisation of the

visual cortex. Finally, the framework needs adaptation to diverse populations,

such as infants and blind patients, whose functional organisations may differ

from the young and healthy HCP subjects. Understanding retinotopy in these

populations is crucial, and the framework should account for such differences

to become a clinically reliable tool.

Although each chapter varies in terms of the methodology and applications,

they share several common limitations in the analysis of individual variability. The

first shared limitation is restricted generalisability. As the chapters are all aimed

at developing clinically reliable tools, it is crucial to ensure their applicability to

diverse datasets collected in clinical settings, potentially from different disease/age

population and different sites with varying MRI acquisition protocols and hardware

configurations. Although the IQT technique presented in Chapter 3 demonstrates

its generalisability from HCP to UKB datasets, the remaining two chapters do

not investigate the feasibility of extending the models trained on one dataset to

others with different MRI protocols or populations. To enhance the applicability
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of the proposed approaches across a wider context, it is essential to examine

advanced techniques that can accommodate the heterogeneity in MRI acquisition

protocols, hardware, data populations, and other factors. For example, incorporating

domain adaptation techniques could further improve the applicability of these

approaches in various settings. The second notable limitation pertains to scalability.

The proposed methods may not scale well to larger datasets or higher-resolution

imaging data, which could impact their computational efficiency and effectiveness

in real-world applications. For example, while the IQT technique introduced

in Chapter 3 employed a mini-batch method that substantially reduced RAM

requirements, its scalability for high-resolution data might still be limited due to the

enforcement of local smoothness, which typically involves complex mathematical

operations on voxel-by-voxel matrices. In Chapter 4, both the calculation of

functional modes and the sparse model is computationally demanding due to the

large size of voxels. Evaluating and optimising the scalability of these methods would

be essential for their successful implementation in research and clinical settings.

Finally, the current chapters may not have explored the full range of available

analytical techniques, which could potentially enhance the predictive accuracy,

generalisability, and robustness of the models. For example, incorporating advanced

deep learning techniques, such as CNNs, could capture more complex and often

complementary patterns in the MRI data and lead to better performance. In

summary, while the current studies have demonstrated promising results, there is

still room for improvement in model performance by considering more advanced

machine learning techniques and continuously refining the models based on the

latest developments in the field.

6.3 Future Directions

There are several future directions that can be pursued to address the aforementioned

limitations. To tackle with restricted generalisability, it is necessary to investigate

transfer learning or domain adaptation techniques and conduct validation studies

on more diverse datasets to ensure the models’ applicability to various clinical and
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research contexts. Transfer learning and domain adaptation are machine learning

techniques that leverage knowledge gained from one task or domain to improve the

performance of a model in another related task or domain. The idea behind these

techniques is that features or patterns learned from the source task (source domain)

can inform the target task (target domain). In our context, MRI data acquired at

different sites (or with different protocols and hardware) or from different population

may have different data properties (e.g., having different SNRs). Transfer learning

or domain adaptation techniques may help models to adapt to differences in data

properties, making them more robust and applicable across various contexts.

Another future direction to consider is the integration of multimodal data. While

each chapter primarily focuses on a single MRI modality to investigate specific

aspects of individual variability, combining information from multiple imaging

modalities could potentially enhance the performance of the proposed models. For

example, localising the DBS target in Chapter 3 relies on diffusion MRI, while

predicting the task-evoked brain activity in Chapter 4 and 5 utilises resting-state

fMRI. Leveraging complementary information in multimodal MRI may lead to better

performance of these models and provide better understanding of the underlying

neural mechanisms that may not be fully captured by a single modality. An

potential example is the integration of structural features (e.g., cortical thickness

and myelination) into the retinotopy-prediction framework proposed in Chapter 5,

as previous evidence has revealed that these structural features are also predictive

of the retinotopic organisation in the visual cortex. Furthermore, incorporating

multimodal MRI data could also facilitate the discovery of novel biomarkers, better

prediction of clinical outcomes, and more effective individualised interventions.

A third future direction to pursue is the validation of the models on diverse

populations. Since this thesis primarily focuses on the publicly available HCP

and UKB datasets, the proposed methods have not yet been tested on a wide

range of populations, such as specific age groups, genders, or individuals with

particular health conditions who may have limited sample sizes. Conducting

validation studies on diverse populations would be crucial in ensuring the broader



130 6.3. Future Directions

applicability and relevance of the developed methods. For example, it would

be valuable to explore whether the retinotopy-prediction method presented in

Chapter 5 can be applied to infants or individuals with visual impairments, such

as the blind. Investigating the applicability of the proposed models in these

populations could provide essential insights into the neural mechanisms underlying

neurodevelopment or the pathology of the visual cortex. Moreover, by encompassing

a wider range of populations, researchers can better understand the potential

impact of factors such as age, sex, and health status on the performance of the

proposed models. This broader validation will not only help refine the models but

also contribute to a more comprehensive understanding of individual variability in

brain function and structure, ultimately promoting the development of personalised

treatments for diverse populations.



Appendices

131





A
Additional Results for Chapter 3

A.0.1 Selection criteria of reliable HQ-Vim

The subjects were split into two subsets, depending on the reliability of HQ-Vim.

A subject’s HQ-Vim has to pass 4 criteria in order to be accepted as "reliable":

1. the HQ-Vim’s volume exceeds 30mm3;

2. the HQ-Vim contains one blob;

3. Its correlation with the Vim from Thalamic DBS Connecitivity Atlas (Akram

et al., 2018) is larger than 0.5;

4. Its center-of-mass is within 4mm from the center of mass of the Thalamic

DBS Connecitivity Dentate Atlas [34];

The thresholds in 3. and 4. are shown as vertical lines in Figure A1. 459 out of

1063 HCP subjects and 1445 out of 2760 UKB subjects passed all four criteria.

These selection criteria exclude subjects whose HQ-Vim clusters locate too far away

from the atlas to be considered as trustworthy, while preserving the inter-individual

anatomical variability of the structure as much as possible. Note that, however,

passing all the selection criteria does not necessarily guarantee the selected HQ-Vim

as the perfect "ground truth". Instead, this only suggests that the HQ-Vim may
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Figure A1: Split between the reliable subset and unreliable subset. (A)
Histograms of HQ-Vim’s volume (mm3), number of blobs, correlations and centroid
displacement with the Thalamic DBS Connecitivity Atlas, across HCP subjects. (B)
Equivalent plots of (A), across UKB subjects. Ticks suggest that the subjects fell above
the respective criteria, while crosses suggest their HQ-Vim were rejected as untrustworthy.

serve as the ground truth Vim with relatively high confidence, as it is the best

available estimate of the ground truth location of the Vim.
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A.0.2 List of ROIs

We provide a table listing the ROIs used in this study, as well as the respective

tractography protocols and the procedures to obtain them.

ROI name (per hemisphere) Procedures to obtain it
Thalamus Obtained using T1, T2 and FA

via FSL’s MIST [115], a multi-
modal subcortical segmentation
tool

Brainstem (both hemisphere)

Obtained via Freesurfer’s
subcortical segmentation
tool, as released in the
*aparc.a2009s.aseg.nii.gz files

Cerebellum grey matter (WM)
Cerebellum grey matter (GM)
Caudate
Pallidum
Putamen
Cerebrospinal fluid (CSF)
Ventrical
AR-1, AR-2, AR-3, AR-4, AR-5, and AR-6: six
Acoustic Radiation fiber segments

Manually extracted from the
Acoustic Radiation fibers
(XTRACT atlas), and warped
into individual space

STR-1, STR-2, STR-3, STR-4, STR-5, and STR-6:
six Superior Thalamic Radiation WM segments

Manually extracted from the Su-
perior Thalamic Radiation fibers
(XTRACT atlas), and warped
into individual space

OR-1, OR-2, OR-3, OR-4, OR-5, and OR-6: 6
Optic Radiation fiber segments

Manually extracted from the Op-
tic Radiation fibers (XTRACT
atlas), and warped into individual
space

ATR-1, ATR-2, ATR-3, ATR-4, ATR-5, and ATR-
6: 6 Anterior Thalamic Radiation fiber segments

Manually extracted from the An-
terior Thalamic Radiation fibers
(XTRACT atlas), and warped
into individual space

FX-1, FX-2, FX-3, FX-4, and FX-5: five Fornix
ROIs

Manually extracted from the
Fornix (XTRACT atlas), and
warped into individual space

SCPCT-brainstem, SCPCT-1, SCPCT-2, and
SCPCT-3: four segments of the SCPCT tract,
three lying between the brainstem ROI and ip-
silateral thalamus ROI (SCPCT-1, SCPCT-2,
SCPCT-3), one overlapping with the brainstem
ROI (SCPCT-brainstem)

Extracted from the cerebellotha-
lamic tract [121], and warped into
individual space
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4 white matter segments on the tracts that connect
M1 and thalamus

manually extracted from the tract
that joins M1 and thalamus

4 white matter segments on the tracts that connect
S1 and thalamus

manually extracted from the tract
that joins S1 and thalamus

G_and_S_frontomargin: Fronto-marginal gyrus
(of Wernicke) and sulcus

Obtained from the Destrieux At-
las [120], via Freesurfer’s cortical
parcellation tool (https://surf
er.nmr.mgh.harvard.edu/fsw
iki/CorticalParcellation)
[118, 119]

G_and_S_occipital_inf: inferior occipital gyrus
(O3) and sulcus
G_and_S_paracentral: Paracentral lobule and
sulcus
G_and_S_subcentral: Subcentral gyrus (central
operculum) and sulci
G_and_S_transv_frontopol: Transverse fron-
topolar gyri and sulci
Transverse frontopolar gyri and sulci
G_and_S_cingul-Mid-Ant: Middle-anterior part
of the cingulate gyrus and sulcus
G_and_S_cingul-Mid-Post: Middle-posterior
part of the cingulate gyrus and sulcus
G_cingul-Post-dorsal: Posterior-dorsal part of the
cingulate gyrus
G_cingul-Post-ventral: Posterior-ventral part of
the cingulate gyrus
G_cuneus: Cuneus
G_front_inf-Opercular: Opercular part of the
inferior frontal gyrus
G_front_inf-Orbital: Orbital part of the inferior
frontal gyrus
G_front_inf-Triangul: Triangular part of the
inferior frontal gyrus
G_front_middle: Middle frontal gyrus
G_front_sup: Superior frontal gyrus
G_Ins_lg_and_S_cent_ins: Long insular gyrus
and central sulcus of the insula
G_insular_short : Short insular gyri
G_occipital_middle: Middle occipital gyrus
G_occipital_sup: Superior occipital gyrus
G_oc-temp_lat-fusifor: Lateral occipito-temporal
gyrus
G_oc-temp_med-Lingual: Lingual gyrus, ligual
part of the medial occipito-temporal gyrus
G_oc-temp_med-Parahip: Parahippocampal
gyrus, parahippocampal part of the medial
occipito-temporal gyrus
G_orbital: Orbital gyri

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
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G_pariet_inf-Angular: Angular gyrus
G_pariet_inf-Supramar: Supramarginal gyrus
G_parietal_sup: Superior parietal lobule
G_postcentral: Postcentral gyrus
G_precentral: Precentral gyrus
G_precuneus: Precuneus
G_rectus: Straight gyrus
G_subcallosal: Subcallosal area, subcallosal gyrus
G_temp_sup-G_T_transv: Anterior transverse
temporal gyrus
G_temp_sup-Lateral: Lateral aspect of the supe-
rior temporal gyrus
G_temp_sup-Plan_polar: Planum polare of the
superior temporal gyrus
G_temp_sup-Plan_tempo : Planum temporale
or temporal plane of the superior temporal gyrus
G_temporal_inf: Inferior temporal gyrus
G_temporal_middle:
Lat_Fis-ant-Horizont: Horizontal ramus of the
anterior segment of the lateral sulcus
Lat_Fis-ant-Vertical: Vertical ramus of the ante-
rior segment of the lateral sulcus
Lat_Fis-post: Posterior ramus (or segment) of the
lateral sulcus
Medial_wall:
Pole_occipital: Occipital pole
Pole_temporal: Temporal pole
S_calcarine: Calcarine sulcus
S_central: Central sulcus (Rolando’s fissure)
S_cingul-Marginalis: Marginal branch (or part)
of the cingulate sulcus
S_circular_insula_ant: Anterior segment of the
circular sulcus of the insula
S_circular_insula_inf: Inferior segment of the
circular sulcus of the insula
S_circular_insula_sup: Superior segment of the
circular sulcus of the insula
S_collat_transv_ant: Anterior transverse collat-
eral sulcus
S_collat_transv_post: Posterior transverse col-
lateral sulcus
S_front_inf: Inferior frontal sulcus
S_front_middle: Middle frontal sulcus
S_front_sup: Superior frontal sulcus
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S_interm_prim-Jensen: Sulcus intermedius
primus
S_intrapariet_and_P_trans: Intraparietal sulcus
(interparietal sulcus) and transverse parietal sulci
S_oc_middle_and_Lunatus: Middle occipital
sulcus and lunatus sulcus
S_oc_sup_and_transversal: Superior occipital
sulcus and transverse occipital sulcus
S_occipital_ant: Anterior occipital sulcus and
preoccipital notch (temporo-occipital incisure)
S_oc-temp_lat: Lateral occipito-temporal sulcus
S_oc-temp_med_and_Lingual: Medial occipito-
temporal sulcus (collateral sulcus) and lingual
sulcus
S_orbital_lateral: Lateral orbital sulcus
S_orbital_med-olfact: Medial orbital sulcus (ol-
factory sulcus)
S_orbital-H_Shaped: Orbital sulci (H-shaped
sulci)
S_parieto_occipital: Parieto-occipital sulcus (or
fissure)
S_pericallosal: Pericallosal sulcus (S of corpus
callosum)
S_postcentral: Postcentral sulcus
S_precentral-inf-part: Inferior part of the precen-
tral sulcus
S_precentral-sup-part: Superior part of the pre-
central sulcus
S_suborbital: Suborbital sulcus (sulcus rostrales,
supraorbital sulcus)
S_subparietal: Subparietal sulcus
S_temporal_inf: Inferior temporal sulcus
S_temporal_sup: Superior temporal sulcus
S_temporal_transverse: Transverse temporal sul-
cus

Table A1: The list of anatomical ROIs used in Chapter 3.
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A.0.3 Tractography protocols

Target mask (per hemi-
sphere)

Waypoint
mask

Exclusion
mask

termination
mask

Contralateral cerebellar WM
(dentate)

SCPCT-
brainstem,
contralateral
cerebellar WM

Ipsilateral
cerebellum WM
and GM, CSF,
Putamen,
Caudate,
contralateral
thalamus

cortex

SCPCT-brainstem (the seg-
ment of SCPCT that overlap
with the brainstem ROI)

SCPCT-
brainstem

Ipsilateral
cerebellum WM
and GM, CSF,
Putamen,
Caudate,
contralateral
thalamus

cortex

SCPCT-1, SCPCT-2, and
SCPCT-3

Same as the re-
spective target
mask

Ipsilateral
cerebellum WM
and GM, CSF,
Putamen,
Caudate,
contralateral
thalamus

SCPCT-
brainstem,
cortex

G_and_S_frontomargin

same as target
mask

Ipsilateral cere-
bellum, CSF cortex

G_and_S_occipital_inf
G_and_S_paracentral
G_and_S_subcentral
G_and_S_transv_frontopol
G_and_S_cingul-Mid-Ant
G_and_S_cingul-Mid-Post
G_cingul-Post-dorsal
G_cingul-Post-ventral
G_cuneus
G_front_inf-Opercular
G_front_inf-Orbital
G_front_inf-Triangul
G_front_middle
G_front_sup
G_Ins_lg_and_S_cent_ins
G_insular_short
G_occipital_middle
G_occipital_sup
G_oc-temp_lat-fusifor
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G_oc-temp_med-Lingual
G_oc-temp_med-Parahip
G_orbital
G_pariet_inf-Angular
G_pariet_inf-Supramar
G_parietal_sup
G_postcentral
G_precentral (M1)
G_precuneus
G_rectus
G_subcallosal
G_temp_sup-G_T_transv
G_temp_sup-Lateral
G_temp_sup-Plan_polar
G_temp_sup-Plan_tempo
G_temporal_inf
G_temporal_middle
Lat_Fis-ant-Horizont
Lat_Fis-ant-Vertical
Lat_Fis-post
Medial_wall
Pole_occipital
Pole_temporal
S_calcarine
S_central
S_cingul-Marginalis
S_circular_insula_ant
S_circular_insula_inf
S_circular_insula_sup
S_collat_transv_ant
S_collat_transv_post
S_front_inf
S_front_middle
S_front_sup
S_interm_prim-Jensen
S_intrapariet_and_P_trans
S_oc_middle_and_Lunatus
S_oc_sup_and_transversal
S_occipital_ant
S_oc-temp_lat
S_oc-
temp_med_and_Lingual
S_orbital_lateral
S_orbital_med-olfact
S_orbital-H_Shaped
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S_parieto_occipital
S_pericallosal
S_postcentral
S_precentral-inf-part
S_precentral-sup-part
S_suborbital
S_subparietal
S_temporal_inf
S_temporal_sup
S_temporal_transverse
AR1-AR6
STR1-STR6
ATR1-ATR6
OR1-OR6
FX1-FX5
S1-1-4
M1-1-4

Table A2: The list of seed, waypoint, exclusion and termination masks used
in tractography.
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Figure A2: Choices of polynomial features. In addition to the original features
(no polynomial), we tested a range of polynomial features on a smaller independent subset
of subjects. The numbers in the x-axis denote the powers of polynomials used in the
HQ-augmentation model, e.g., (2, 0.5, 0.2, 0.1) indicates that four additional polynomial
features were included, with p1 = 2, p2 = 0.5, p3 = 0.2, p4 = 0.1 where p1, p2, p3, p4 were
the powers. Overall, the choices of polynomials did not affect the Dice coefficient with
HQ-Vim very much. However, (2, 0.5, 0.2), i.e., p1 = 2, p2 = 0.5, p3 = 0.2, appeared to be
slightly better than the other choices.
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Figure A3: Dice coefficient with the HQ-Vim that excluded the atlas-defined
Vim content, for the HQ-augmentation approach on two types of low-quality
data, single shell sampled at 32 directions and 12 directions. We further
degraded the LQ-LowAngular data (sampled at 32 directions) by extracting volumes that
correspond to 12 directions. Therefore, "Single shell 12 directions" is a low-quality version
of "Single shell 32 directions". We trained a HQ-augmentation model tailored to the
"single-12" dataset as we did for the LQ-LowAngular, and generated the corresponding
HQ-augmented Vim. For each dataset ("single-12" or LQ-LowAngular, a.k.a "single-32"),
we calculated the Dice coefficient between the HQ-augmented Vim and the HQ-Vim that
excluded the atlas-defined Vim (i.e., the voxels belonging to the HQ-Vim subtract the
voxels belonging to the atlas-defined Vim). Hence, higher Dice coefficient here suggests
less similarity to the atlas. Such Dice coefficients on "single-32" are higher than those
on "single-12", suggesting that the HQ-augmented Vim on more corrupted dataset relies
more on the group-average information.



144 A. Additional Results for Chapter 3

A.0.4 Mean-field approximation of the CRF distribution

As mentioned in Chapter 3.2.6.2, we seek to maximise the probability of reproducing

the exact same HQ-Vim label assignment y on its low-quality counterparts, across

the training subjects

logP (y|X) = log[ 1
Z(X) exp(−E(y|X))] (A1)

where the cost (energy) of label assignment y given the connectivity features

X is modelled as

E(y|X) =
∑

i

ψu(yi|xi) +
∑

i

∑
j∈Ni

ψp(yi, yj|xi,xj) + λ1||W||1 + λ2||W||22 (A2)

Here we briefly re-explain these terms. The first component ψu(yi) measures the cost

(or inverse likelihood) of voxel i taking label yi. Here ψu(yi) takes the form ψu(yi =

k) = wT
k ϕ(xi) for k = 1, 2, where ϕ(·) maps a feature vector xi = [x1, x2, ...xd]

to a further expanded feature space in order to provide more flexibility for the

parameterisation. W = [w1, ...wK ] is the coefficient matrix (K = 2), each column

containing the coefficients for the given class (i.e., belonging to the HQ-Vim or not).

Here we chose a series of polynomials along with the group-average Vim probability

(registered into native space) to expand the feature space, i.e.,

ϕ(xi) = [x1, x2, ...xd, x
p1
1 , x

p1
2 , ...x

p1
d , x

p2
1 , x

p2
2 , ...x

p2
d , x

p3
1 , x

p3
2 , ...x

p3
d , gi]

where p1 = 2, p2 = 0.5, p3 = 0.2 are the power of the polynomials, and gi is

the group-average probability of voxel i classified as Vim (calculated across the

training subjects). The second pairwise cost encourages assigning similar labels

to neighbouring voxels, particularly for those sharing similar connectivity features.

We modelled this component as ψp(xi,xj) = µ(yi, yj)ρmkm(ϕ(xi), ϕ(xj)). Here

km(ϕ(xi), ϕ(xj)) = exp(−γm||ϕ(xi) − ϕ(xj)||2) is a kernel function modelling the

similarity between voxel i and j in the extended feature space, with length scale γm,

chosen via cross-validation. µ(·) is a label compatibility function where µ(yi, yj) = 0

if yi = yj or µ(yi, yj) = 1 if yi ̸= yj.
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Here we used cross entropy loss to maximise the log-likelihood in Equation (A1).

Specifically, suppose T is the one-hot coding matrix of the HQ-Vim labels y, i.e.,

yi is mapped to a binary vector ti = [ti1, ...tiK ], in which yi = k corresponds to

tik = 1 and other elements in ti set to 0. To maximise the log-likelihood in (A1) is

equivalent to minimising the cross entropy (negative log likelihood):

min
V∑
i

K∑
j

tij log(P (yi|xi)) (A3)

Due to the inter-dependency of neighbouring voxels, the exact minimisation is

intractable. Thus, we approximate the CRF distribution P (y|X) by a simpler

function Q(y), and iteratively solve this optimisation problem, explained below.

To set up initialisation, we derived the initial coefficients Ŵ(0) = [ŵ(0)
1 , ...ŵ(0)

K ]

by optimising the following

Ŵ(0) = arg min
W

V∑
i

K∑
j

tij log(P ′(yi|xi)) (A4)

where P ′(yi|xi) is the likelihood without considering local smoothness of the label

assignment, i.e., ignoring the pairwise loss term in Equation (A2):

P ′(yi = l|xi) = exp(−ψu(yi = l|xi))∑K
k exp(−ψu(yi = k|xi))

(A5)

where, as defined before, ψu(yi = l|xi) = wT
l ϕ(xi). The coefficients Ŵ(0) were

used to initialise Q(y) using Equation (A5), i.e., Qi(yi = l) ← P ′(yi = l|xi)

evaluated at Ŵ(0).

After initialisation, Qi(yi = l) is updated as the weighted sum of its neighbouring

Q values, Q̃i(yi = l) ← ρm
∑

j∈Ni
km(ϕ(xi), ϕ(xj))Qj(yj = l), where Q̃i(yi = l) is

the updated Q value. This is the message-passing step and is equivalent to applying

M image-dependent Gaussian filters on the Q values. After message passing,

label incompatibility was calculated as a penalty to encourage local smoothness.

The incompatibility for label l at a given voxel i, denoted by Q̂i(yi = l), was

calculated as the sum of the updated Q̃i that take a different label, i.e., Q̂i(yi =

l) ← ∑
l′ µ(l, l′)Q̃i(yi = l′). Next, this penalty incurred by incompatibility was

subtracted from the unary inputs ψu(yi = l|xi), i.e., Qi(yi = l)← 1
Z′

i
exp(−ψu(yi =
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LQ-LowAngular LQ-LowSpatial
Dice
coefficient

Centroid
displacement

Dice
coefficient

Centroid
displacement

HQ-augmentation
vs connectivity-driven <1e-99 <1e-54 <1e-99 <1e-89

HQ-augmentation
vs atlas-based <1e-10 <1e-17 0.0043 <1e-17

LQ-LowAngular-LowSpatial LQ-UKB
Dice
coefficient

Centroid
displacement

Dice
coefficient

Centroid
displacement

HQ-augmentation
vs connectivity-driven <1e-72 <1e-38 <1e-96 <1e-66

HQ-augmentation
vs atlas-based <1e-4 1e-12 <1e-19 <1e-12

Table A3: P values of paired t-tests comparing the HQ-augmentation against
the alternative methods, based on their correspondence with HQ-Vim. Metrics
used for comparison include the Dice coefficient and centroid displacement. P
values were Bonferroni corrected (12 tests in total).

l|xi) − Q̂i(yi = l)), where Z
′
i = ∑K

k exp(−ψu(yi = k|xi) − Q̂i(yi = k)) is the

normalisation constant. The above steps were repeated until Q converges. The

resulting Qi(yi|xi) is an approximation of the likelihood P (yi|xi), and was used

when calculating the cross entropy in Equation (A3). This cross entropy (A3) was

minimised in a mini-batch style via an ADAM optimiser [130] with learning rate

0.01, in which the connectivity features X of each subject served as a mini-batch.

The pseudo code of the above steps is summarised in Table 2.

Algorithm 2 Mean-field iteration in CRF
Qi(yi = l)← exp(−ψu(yi = l|xi))/

∑
k exp(−ψu(yi = k|xi)) ▷ Initialisation

while not converged do
Q̃i(yi = l)← ρm

∑
j∈Ni

km(ϕ(xi), ϕ(xj))Qj(yj = l) ▷ Message Passing
Q̂i(yi = l)← ∑

l′ µ(l, l′)Q̃i(yi = l′) ▷ Compatibility with neighbours
Qi(yi = l)← 1

Z
′
i

exp(−ψu(yi = l|xi)− Q̂i(yi = l)) ▷ Approximate P (yi = l|xi)
end while
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Figure A4: Boxplots of the Dice coefficient with HQ-Vim on surrogate low-
quality datasets. (A). Dice coefficient with the HQ-Vim, produced by the atlas-based
(green), HQ-augmentation (blue), and connectivity-driven (orange) approach, on LQ-
LowAngular. (B). Equivalent plots of (A), on LQ-LowSpatial. (C). Equivalent plots of
(A), on LQ-LowAngular-LowSpatial. (D). Equivalent plots of (A), on LQ-UKB (where
the HQ-augmentation model was trained on HCP and applied on LQ-UKB).
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Figure A5: Relative contributions of the features in HQ-augmentation model
for LQ-LowAngular, LQ-LowSpatial, LQ-LowAngular-LowSpatial. We plotted
the std. of each feature contribution (i.e., the feature times its coefficient) across 50
subjects. The group-average prior feature contributed the most to Vim prediction, which
is unsurprising given that the ground truth HQ-Vim labels were confined to be close to
the atlas-defined Vim. For the purpose of visualisation, we summed the std. across the
polynomials of a given connectivity feature. For example, the std. for M1 shown here was
obtained by summing the std. of M1’s polynomial features. Specifically, suppose β1 is
the coefficient for xM1, and β2 for x2

M1, β3 for x0.5
M1, and β4 for x0.2

M1; then the std for M1
shown here is std(β1xM1) + std(β2x2

M1) + std(β3x0.5
M1) + std(β4x0.2

M1) across 50 subjects.



B
Additional Results for Chapter 4

HCP contrast
category HCP contrast index and name

EMOTION 01_EMOTION_FACES 02_EMOTION_SHAPES
03_EMOTION_FACES-SHAPES

GAMBLING 07_GAMBLING_PUNISH 08_GAMBLING_REWARD
09_GAMBLING_PUNISH-REWARD

LANGUAGE 13_LANGUAGE_MATH 14_LANGUAGE_STORY
15_LANGUAGE_MATH-STORY

MOTION

19_MOTOR_CUE 20_MOTOR_LF 21_MOTOR_LH
22_MOTOR_RF 23_MOTOR_RH 24_MOTOR_T 25_MO-
TOR_AVG 26_MOTOR_CUE-AVG 27_MOTOR_LF-
AVG 28_MOTOR_LH-AVG 29_MOTOR_RF-AVG
30_MOTOR_RH-AVG 31_MOTOR_T-AVG

RELATIONAL 45_RELATIONAL_MATCH 46_RELATIONAL_REL
47_RELATIONAL_MATCH-REL

SOCIAL 51_SOCIAL_RANDOM 52_SOCIAL_TOM
53_SOCIAL_RANDOM-TOM

WORKING
MEMORY

57_WM_2BK 58_WM_2BK 59_WM_2BK 60_WM_2BK
61_WM_0BK 62_WM_0BK 63_WM_0BK 64_WM_0BK
65_WM_2BK 66_WM_0BK 67_WM_2BK-0BK
71_WM_BODY 72_WM_FACE 73_WM_PLACE
74_WM_TOOL 75_WM_BODY-AVG 76_WM_FACE-
AVG 77_WM_PLACE-AVG 78_WM_TOOL-AVG

Table B1: List of the 47 HCP contrasts. We used the 47 unique contrast maps for
HCP, excluding all redundant contrasts.
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Notation Explanation Notation Explanation

V the number of voxels k
the number of dual-
regression maps per
subject

S the training set T the test set

N
the number of training
subjects n

the number of test sub-
jects

xi
j ∈ RV the i-th resting-state vari-

ation map of subject j Xj ∈ RV ×k the resting-state variation
maps of subject j

βββj, β̂ββj ∈ Rk the (estimated) baseline
coefficients for subject j β̂ββ ∈ Rk

the baseline coefficients
(averaged across the train-
ing set)

X̃i
S ∈ RN×V

the i-th across-subject
resting-state variation ma-
trix (of the training set)

YS , ŶS ∈ Rk

the (predicted) across-
subject task variation ma-
trix

Ai
S , Âi

S ∈
RN×d

the (estimated) mixing
matrix of the i-th across-
subject resting-state vari-
ation matrix

Si ∈ Rd×V

the independent compo-
nents of the i-th across-
subject resting-state vari-
ation matrix

Arest
S , Ârest

S ∈
RN×dk

the concatenated k mix-
ing matrices of the resting-
state variation matrices

d

the number of
modes/independent
components of each
resting-state variation
matrix

Atask
S ∈ RN×p

the mixing matrix of the
across-subject task varia-
tion matrix

Stask ∈ Rp×V

the independent compo-
nents of the task variation
matrix

yj ∈ RV the task variation map of
subject j p

the number of
modes/independent
components of the task
variation matrix

W,Ŵ ∈
Rdk×p or
Rdk×V

the (estimated) sparse co-
efficients wi, ŵi ∈ Rdk

the i-th column of the
estimated sparse coeffi-
cients

λi

the hyper-parameter of
the L1 penalty for the i-
th column of W

Ŷbaseline
S ∈

RN×V

the baseline-model-fitted
task variation matrix for
the training subjects

Ŷsparse
S ∈

RN×V

the sparse-model-fitted
task variation matrix for
the training subjects

ŷbaseline
·i , ŷsparse

·i) ∈
RN

the i-th column/voxel of
the baseline- / sparse-
model fitted task varia-
tion matrix

θ
(1)
i

ensemble coefficient for
the i-th voxel of the base-
line mode

θ
(2)
i

ensemble coefficient for
the i-th voxel of the
sparse mode

Table B2: List of the notations used in Chapter 4.
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Prediction accuracy of the residualised activations UKB HCP
DR-ICA baseline vs PFM baseline p<1e-30 p<1e-30
DR-ICA sparse vs PFM sparse p<1e-30 p<1e-30
DR-ICA ensemble vs PFM ensemble p<1e-30 p<1e-30
DR-ICA baseline vs DR-ICA sparse p<1e-30 p<1e-30
DR-ICA baseline vs DR-ICA ensemble p<1e-30 p<1e-30
DR-ICA sparse vs DR-ICA ensemble p<1e-30 p<1e-30
PFM baseline vs PFM sparse p<1e-30 p<1e-30
PFM baseline vs PFM ensemble p<1e-30 p<1e-30
PFM sparse vs PFM ensemble p<1e-30 p<1e-30

Table B3: Two-sided paired t-test between prediction accuracies of the
baseline, sparse and ensemble model (residualised), based on DR-ICA or
PFM repsectively. The task contrasts were pooled together, corresponding to the last
columns of Figure 4.2a and 4.2b (UKB three contrasts and HCP 47 contrasts, across all
subjects). The p-values were all highly significant, after being Bonferroni-corrected (18
tests in total).

Correlation with inter-individual variability UKB HCP
DR-ICA baseline vs PFM baseline 0.0243 4.5176e-12
DR-ICA sparse vs PFM sparse 0.6724 0.0003
DR-ICA ensemble vs PFM ensemble 1.1192 0.0218
DR-ICA baseline vs DR-ICA sparse 0.8775 5.7470e-5
DR-ICA baseline vs DR-ICA ensemble 0.6582 1.4465e-16
DR-ICA sparse vs DR-ICA ensemble 0.1026 1.7612e-25
PFM baseline vs PFM sparse 3.2002 0.1466
PFM baseline vs PFM ensemble 2.3015 5.4127e-8
PFM sparse vs PFM ensemble 0.0005 5.5898e-23

Table B4: Two-sided paired t-test between correlations with the inter-
individual variability (std map) of the baseline, sparse and ensemble model
(residualised), based on DR-ICA or PFM repsectively. The task contrasts were
pooled together, corresponding to the last columns of Figure 4.2c and 4.2d (UKB three
contrasts and HCP 47 contrasts). The p-values were Bonferroni-corrected (18 tests in
total). Overall, UKB results were non-significant, which is un-surprising given that UKB
has only three task contrasts (i.e., three samples).
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Accuracy & discriminability UKB HCP

Tavor method vs un-residualised accuracy p<1e-30 p<1e-30
discriminability p<1e-30 p<1e-30

Tavor method vs residualised accuracy p<1e-30 p<1e-30
discriminability p<1e-30 p<1e-30

un-residualised method vs
residualised

accuracy 0.4105 3.7932
discriminability p<1e-30 p<1e-30

Table B5: Two-sided paired t-test between model performance of different
approaches. The task contrasts were pooled together, corresponding to the last columns
of Figure 4.3 (UKB three contrasts and HCP 47 contrasts, across all subjects). The
p-values were Bonferroni-corrected (12 tests in total).

Comparison with test-retest reliability (task prediction) UKB HCP

first-visit prediction vs reliability un-residualised p<1e-30 p<1e-30
residualised p<1e-30 p<1e-30

second-visit prediction vs reliability un-residualised p<1e-30 p<1e-30
residualised p<1e-30 p<1e-30

Table B6: Two-sided paired t-test between model performance (with group-
average added back in) and test-retest reliability. The task contrasts were pooled
together, corresponding to the last columns of Figure 4.4a and 4.4b (UKB three contrasts
and HCP 47 contrasts, across all subjects). The p-values were all highly significant, after
being Bonferroni-corrected (8 tests in total).

Comparison with test-retest reliability (amplitude prediction) UKB HCP
first-visit prediction vs reliability 1.2543 6.5663e-11
second-visit prediction vs reliability 0.0734 2.9706e-6

Table B7: Two-sided paired t-test between amplitude prediction accuracy and
the corresponding test-retest reliability. The task contrasts were pooled together,
corresponding to the last columns of Figure 4.4c and 4.4d (UKB three contrasts and HCP
47 contrasts). The p-values were Bonferroni-corrected (4 tests in total). UKB results
were non-significant, which is un-surprising given that UKB has only three task contrasts
(i.e., three samples).
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Figure B1: Prediction accuracy of the sparse model at a range of PFM
dimensions, trained on a subset of 4,000 UKB subjects and tested on 700.
Overall, prediction accuracy increases with the number of functional modes. Note that
the results were based on residualised data. The un-residualised data exhibited similar
accuracy patterns, though with smaller differences between the choices of dimensions (not
shown here).
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Figure B2: Prediction accuracy of the sparse model at a range of PFM
dimensions, trained on 891 HCP subjects and tested on 98. Overall, accuracy
increases with the number of functional modes. The un-residualised data exhibited similar
accuracy patterns, though with smaller differences between the choices of dimensions (not
shown here).
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Figure B3: Using resting-state amplitude to predict activation amplitude
(UKB). For each task contrast, the activation amplitude was predicted using the amplitude
of the 50 PFMs (700 subjects shown).
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Figure B4: Using resting-state amplitude to predict activation amplitude
(HCP). For each task contrast, task amplitude was predicted using the amplitude of 150
PFMs via 10-fold cross-validation (i.e., trained on 9 folds and predicted on the rest).
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Figure B5: Choices of the functional modes’ dimensions. Lower dimensions often
result in larger parcels and tend to reflect whole brain resting-state networks. Higher
dimensions, in contrast, tend to break down the parcels into more fine-grained functional
subprocesses. We argue that the resolution of functional parcellations may non-trivially
impact prediction of individual variations in task-evoked activations. The number of
resting-state modes must be optimised in the first place for the the subsequent analysis.
White diamond shows the mean. (a) Prediction accuracy of DR-ICA25, DR-ICA50, and
DR-ICA100 across a subset of 700 UKB subjects. (b) Equivalent plots of PFM25, PFM50,
and PFM100. (c) and (d) Equivalent plots of 98 HCP subjects at 50, 100, and 150 modes.
The results were based on the residualised data; for the un-residualised data, different
dimensions had similar effects on the accuracy, though with smaller differences (not shown
here).
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Figure B6: Baseline coefficients (betas of the baseline model) of the residualised
data. Error bars showing 95% CI of the mean beta values (calculated across 1,000 UKB
subjects and 891 HCP subjects). For each subject, the coefficients were divided by the
maximum beta value within the given contrast. Overall, the non-differential functional
modes exhibited consistent patterns within each task domain, while the differential
contrasts showed different patterns.
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Figure B7: Comparison between the ensemble model and the single models,
shown across all 47 HCP task contrasts. (a) Equivalent plots of Figure 4.2b. (b)
Equivalent plots of Figure 4.2d.
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Figure B10: HCP subjects identification accuracy (based on residualised data).
For illustration purpose, only 100 subjects were shown above.
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Figure B11: UKB subjects identification accuracy (with group-average
activations added back in). The off-diagonal values no longer fluctuate around
zero. The subject identification accuracy remains high. For illustration purpose, only 100
subjects were shown above.
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Figure B12: HCP subjects identification accuracy (with group-average
activations added back in). For illustration purpose, only 100 subjects were shown
above.
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Figure B13: Comparison of the Tavor model and the ensemble model (both
un-residualised and residualised) across 991 HCP subjects for all 47 task contrasts.
The ensemble model (either residualised or not) outperformed the Tavor model in
terms of the actual prediction accuracy; however, the Tavor model could make more
individualised predictions than the ensemble model if both trained on un-residualised
data. The residualised ensemble model outperformed the other two both in accuracy and
discriminability, except for the motor task domain.
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Figure B14: Prediction accuracy and discriminability of previous methods.
The hyper-parameters of Random Forest Bagging were optimised on a different subset.
P-values of the two-sided paired t-tests are Bonferroni-corrected (8 tests in total). ns: P >
0.05; **: P < 0.01; ****: P < 0.0001. Blue: the Random Forest Bagging approach used
in Cohen et al., 2020; Green: the Random Parcellation approach used in Dohmatob et al.
2021; Red: Our ensemble approach. (a) Prediction accuracy across 700 UKB subjects,
trained on 4,000 subjects. (b) Prediction accuracy across 98 HCP subjects, trained on 991
subjects. (c) Equivalent plot of (a), showing prediction discriminability. (d) Equivalent
plot of (b), showing prediction discriminability.
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Figure B15: Prediction accuracy and discrimininability of the ensemble model
with or without PFM amplitude as additional features, calculated across
17,560 UKB subjects Although incorporating amplitude did not further increase the
overall accuracy for UKB, it did marginally improve prediction discriminability. This
coincides with (c) and (d), which shows that the std. maps of predicted activations (across
subjects) exhibited higher correspondence with the actual inter-individual variability.
P-values of the two-sided paired t-tests are Bonferroni-corrected (4 tests in total). ns: P
> 0.05; **: P < 0.01; ****: P < 0.0001.
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Figure B16: Prediction accuracy and discrimininability of the ensemble model
with and without resting-state amplitude as additional features for all 47 HCP
contrasts. For HCP, however, including PFM amplitude as additional features at the
ensemble stage only marginally improved prediction discriminability.
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Figure B17: Discrimination metric for the predictions and the test-retest
reliability. Blue: prediction discriminability for the first-visit task contrast maps.
Green: prediction discriminability for the second-visit task contrast maps. Red: test-
retest discriminability of task contrast maps. Note that opposite to Figure 4.4b and 4.4c,
here light colours denote the prediction discriminability of the residualised maps, dark
colours the discriminability of the un-residualised maps.
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Figure B18: Prediction accuracy of first-visit and second-visit contrast maps
and test-retest reliability for all HCP contrasts. Equivalent plots of Figure 4.4c,
for all HCP task contrasts.
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Figure B19: Prediction accuracy of first-visit and second-visit amplitude and
test-retest reliability for all HCP contrasts. Equivalent plots of Figure 4.4e, for
all HCP task contrasts.
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Figure B20: The actual and the predicted task variations (residuals) of the example
UKB subjects, shown on the brain.
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Figure B21: The actual and the predicted task variations (residuals) of the HCP subjects,
shown on the surface.
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Figure B22: Prediction accuracy as a function of number of training subjects
(UKB). (a) Prediction accuracy of the baseline, sparse and ensemble model for the
residualised maps. The baseline and ensemble model converges very quickly; the sparse
model requires a larger number of training subjects. (b) Prediction accuracy of the
ensemble model, with group-average added back in. (c) Equivalent plot of (b), showing
prediction discriminability.
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Figure B23: Prediction accuracy as a function of number of training subjects
(HCP). (a) Prediction accuracy of the baseline, sparse and ensemble model on the
residualised maps for 98 HCP subjects. The baseline and ensemble model gave good
accuracy at a small N; the sparse model requires a larger number of training subjects.
(b) Prediction accuracy of the ensemble model, with group-average added back in. (c)
Equivalent plot of (b), showing prediction discriminability.
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Figure C1: Coefficients for the wedge task (RETCCW and RETCW). The first
coefficient corresponds to the contribution of the original resting-state connectivity matrix
(i.e., dense connectome). The other coefficients correspond to the contributions of the
other resting-state smilarities, each derived from the resting-state fingerprints weighted
by group-average ICA50.

Figure C2: Coefficients for the ring task (RETEXP and RETCON). The first
coefficient corresponds to the contribution of the original resting-state connectivity matrix
(i.e., dense connectome). The other coefficients correspond to the contributions of the
other resting-state smilarities, each derived from the resting-state fingerprints weighted
by group-average ICA50.
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Figure C3: Task-elicited, group-average, and 3T resting-state polar angle.
Equivalent plots of Figure 5.6, based on 3T resting-state.

Figure C4: Task-elicited, group-average, and 3T resting-state eccentricity.
Equivalent plots of Figure 5.7, based on 3T resting-state.
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Figure C5: Prediction accuracy of 3T resting-state retinotopy. Equivalent plots
of Figure 5.5, using 3T resting-state fMRI.
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Figure C6: Segmentation accuracy of the 3T resting-state polar angle.
Equivalent plots of Figure 5.8, based on 3T resting-state polar angle.
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Figure C7: Segmentation between V1-V4 using the group-average polar angle
(left), the individual task-elicited polar angle (middle), and the 3T resting-
state polar angle (right). Equivalent plots of Figure 5.9, while the resting-state
segmentation were based on 3T resting-state polar angle maps.
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Figure C8: Histograms of task-elicited retinotopy (ground truth) and resting-
state retinotopy (predictions) of an example subject, right hemisphere. The
histograms of resting-state predicted retinotopy do not match well with the histograms of
the actual retinotopy, complicating direct comparisons of the two. For example, the actual
polar angle exhibits a roughly uniform distribution between π/2 and 3π/2, while the
predicted polar angle exhibits a bimodal pattern. This phenomenon might be explained by
the inherent properties of the Laplacian Eigenmap technique. Specifically, this technique
has a focus on preserving the local structure rather than the global structure. In other
words, this technique prioritises keeping data points that were close in the high-dimensional
space remain close in the lower-dimensional space, and is less concerned with the distances
between points that were relatively far apart. This focus on local structure may lead
to the suboptimal bimodal distribution that fails to preserve the distance relationships
between data points that were more distantly separated.
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