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A B S T R A C T   

Increasing competition for marine space requires the appropriate development of indicators to best represent the 
use of marine areas and the value (whether economic, social and/or cultural) derived from such use. Fishers (the 
largest group of users) are often under-represented in marine spatial planning processes. Highly-resolved vessel 
tracking data provide opportunities to map the activities of fishing vessels at a level of detail never before 
available. Most effort mapping methods have focused on active gears such as trawls or dredges in large scale 
fisheries. For these fisheries, the time spent fishing at sea (hours) is usually a representative indicator of fishing 
effort, enabling a straightforward mapping of the most important fishing grounds. However, for passive gears 
generally used in small-scale fisheries, we show that spatial indicators of effort (here, length of vessel track) 
greatly outperform time-at-sea as an indicator of fishing effort. We further demonstrate and validate a method to 
estimate gear soak time from vessel tracking data and show how maps of effort that account for soak time can be 
different from those solely based on time spent fishing at sea. The development of adequate methods to quantify 
the spatial distribution of passive gear effort is particularly relevant to fisheries management because globally 
about a fifth of all catches (by weight) are landed by passive gears. Appropriate, fine scale effort maps will 
provide better tools for spatial planning to support sustainable fishing.   

1. Introduction 

Increasing competition for marine space and evolving spatial man
agement regimes, particularly in coastal areas, demands objective 
spatial and temporal evidence of use and the “value” (economic, social 
and cultural) derived from such use. These data are critical to informed 
decision making if fisheries are to be adequately represented in these 
processes (Campbell et al., 2014; Metcalfe et al., 2018; Tidd et al., 2015) 
and can bring insights into the potential impacts or displacement that 
might result from the expansion of maritime activities such as offshore 
wind energy developments or Marine Protected Areas (Cabral et al., 
2017). In addition, fine scale effort data are often used to assess 
compliance with area-based fishery regulations (Meyer et al., 2022) and 

to improve scientific assessments of the location and scale of logbook 
recorded catches (Gerritsen and Lordan, 2011). They have also enabled 
managers to assess the scale of fishery impacts on different benthic en
vironments (Eastwood et al., 2007), and to delimit and protect vulner
able marine biotopes from damage by specific fishing gears (Hall- 
Spencer et al., 2009). 

Traditionally, fishing effort data have been collated with low spatial 
resolution for the purposes of fishery management at fleet level. How
ever, more detailed spatial information about resource distribution and 
fishing effort at the vessel level may be needed to enable the imple
mentation of ecosystem based spatial management (Parnell et al., 2010; 
Stelzenmuller et al., 2008; Wilen, 2004). Recent technological de
velopments have enabled the collection of spatially-detailed fishery- 
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dependent effort data, initially through the use of vessel tracking sys
tems such as Vessel Monitoring Systems (VMS) and Automated Identi
fication Systems (AIS) (Gerritsen and Lordan, 2011; James et al., 2018; 
Lee et al., 2010; Natale et al., 2015a), and more recently through the 
deployment of Global Navigational Satellite System receivers coupled to 
General Packet Radio Service (GPRS) devices (mobile phone technol
ogy) (Behivoke et al., 2021; Burgos et al., 2013; Navarrete Forero et al., 
2017), sometimes referred to as iVMS. 

The growth in affordable electronic technologies to monitor the ac
tivity of fishing fleets in the last two decades constitutes a game- 
changing development for fisheries scientists and managers. Tracking 
devices are being increasingly used to obtain highly resolved geospatial 
data of fishing activities. AIS and GPRS-based trackers can report fishing 
vessel positions with frequencies from seconds to a few minutes (James 
et al., 2018; Kroodsma et al., 2018; Russo et al., 2016). In some countries 
it is mandatory to collect highly resolved geospatial data for small-scale 
fisheries (SSF), such as in England and Wales (MMO, 2022), while in the 
European Union (EU), mandatory tracking of SSF is under active 
consideration (EC, 2018). With these new data streams, activities taking 
place within a given trip can be classified into fishing or not fishing, 
based for example, on speed thresholds (Deng et al., 2005; Eastwood 
et al., 2007), or using more complex models that incorporate several 
descriptors of movement, such as speed and relative angle between 
successive locations to infer fishing activities (Joo et al., 2013; Mendo 
et al., 2019a; Vermard et al., 2010). 

Positions classified as fishing can be aggregated into grid cells and 
provide highly resolved maps depicting proxies of fishing intensity or 
fishing effort. This aggregation is usually done by summing up the time a 
vessel (or vessels) spent within each grid cell (as in Kroodsma et al., 
2018; Le Guyader et al., 2017; Natale et al., 2015b; Vespe et al., 2016). 
For active gears, where target species are captured following an aimed 
chase (e.g., trawls or dredges) (Bjordal, 2009), the time spent fishing 
estimated from highly resolved spatial information would be directly 
related to the amount of effort exerted when the gear effectively oper
ates. This may be further refined by estimating the swept area and 
deriving metrics of swept area per unit time (Eigaard et al., 2015; Ger
ritsen et al., 2013). 

For passive gears (e.g., traps, gillnets, longlines), where the gear is 
usually left underwater and retrieved after a specific amount of time, the 
United Nations Food and Agriculture Organisation (FAO) recommends 
alternative effort measure descriptors, such as number of pots deployed, 
net length, or number of hooks, associated to estimates of the time the 
gear spent in the water (FAO, 2020). These effort descriptors have been 
incorporated into the EU Data Collection Framework, which underpins 
the objectives of the Common Fishery Policy in the European Union 
(European Comission, 2008). Using highly resolved geo-positional data 
for passive gear fisheries opens up the potential to derive more accurate 
effort metrics. However, in contrast to active gears, time estimates 
associated with each position classified as fishing, only represent the 
amount of time a vessel has spent retrieving the gear and handling the 
catch. These operations effectively amount to a “time spent hauling”, 
which is affected by numerous factors such as the number of individual 
fish caught, eventual non-target catches, potential gear entanglements, 
broken ropes, etc. Therefore, using geospatial data to estimate fishing 
intensity or effort for passive gear fisheries is not as straightforward as it 
is for active gear fisheries. The development of adequate methods to 
quantify passive gear effort is particularly relevant to fisheries man
agement, as globally about a fifth of all catches (by weight) are landed 
by passive gears (Watson, 2018, see Sup. Mat 1). 

We believe that the potential of using highly resolved geospatial data 
to depict fishing effort more accurately in passive gears remains largely 
untapped. We demonstrate novel approaches to analyse highly spatially 
and temporally resolved data from passive gear vessels, which allow 
more accurate depiction of fishing effort indicators. We investigate 
whether the distance travelled by a fishing vessel while hauling gear is a 
better predictor of effort than the time spent retrieving the gear. We 

explore these relationships using highly resolved tracking data from five 
fisheries using various passive gears and from different geographical 
areas. In addition, we develop a method to estimate soak time from 
highly resolved geospatial data to further improve our estimates of 
fishing effort at spatial scales relevant to ecological studies and useful to 
inform fisheries management and support science-based decision 
making. 

2. Methods 

2.1. Case study fisheries 

We used five case study fisheries from a variety of sites worldwide. 
They included several fishing gears and target species: pots in Scotland 
targeting Norway lobster Nephrops norvegicus, pots in Scotland targeting 
lobster Hommarus gammarus and brown crabs Cancer pagurus, gillnets in 
Peru targeting hake Merluccius gayi peruanus, gillnets in Denmark tar
geting multiple species including European plaice Pleuronectes platessa, 
Atlantic cod Gadus morhua, and lumpsucker Cyclopterus lumpus, and 
longlines in Iceland targeting Atlantic cod (Gadus morhua). Details of 
each fishery, how it operates and details about the number of vessels, 
trips and data collection can be found in Sup. Mat. 2. 

2.2. Evaluating proxies for effort 

For each case study, we compared fishing effort measured directly by 
observers or fishers, who recorded the number of pots, length of net, or 
number of hooks deployed, with (a) time spent hauling and (b) distance 
travelled by vessels based on vessel-tracking data during the observer- 
identified hauling events, based on vessel-tracking data. The start and 
end time stamp provided by the on-board observers, fishers or via video 
camera observations for each hauling event were used to estimate time 
spent hauling. To estimate the total distance covered during hauling, 
these time stamps were matched to the vessel track data to identify the 
segment of the trips which corresponded to hauling events. First, the 
Euclidean distance between consecutive positions (m) was calculated, 
and then the total distance travelled during hauling events (m) was 
estimated as the sum of each individual distances for each fishing trip. 

We used linear regressions to model the relationship between 
observed fishing effort (number of pots, length of net, number of hooks), 
and time spent hauling, or distance covered during each haul (2 separate 
regressions). We then compared Goodness of Fit using the coefficient of 
determination R2 (which measures the proportion of the total variation 
in the dependent variable that is explained by its relationship with the 
independent variable). All statistical analyses were conducted using the 
software R (R Core Team, 2022). 

2.3. Estimating gear soak time 

Four case studies were used to develop a method to estimate soak 
time in passive gears from highly resolved spatial data only: the hake 
gillnet fisheries in Peru, the lumpsucker gillnet fishery in Denmark, the 
pots and traps fishery in Scotland and the French gillnet fishery. The 
Peruvian dataset consists of highly resolved positional data (every 1 
min) from 15 different vessels conducting 101 fishing trips with one 
setting and one corresponding hauling event (from now on called paired 
events). On board-observers recorded the time that the gear spent in the 
water. The Danish lumpsucker dataset consisted of information taken 
every 10 s, for 1 vessel conducting 16 trips and 59 associated paired 
events. Real soak time was estimated by looking at video data from 
remote electronic monitoring (REM). The Scottish dataset consisted of 
highly resolved data (every 1 min) from 4 different fishing vessels 
conducting 5 fishing trips each, for which validated information on soak 
time was available for 5 paired events, from fisher-led reporting. The 
French dataset consisted of positional data gathered every 15 min, for 
one vessel conducting 8 fishing trips, and 39 hauls. Soak time was 
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annotated by a fisherman for each of these events. 
To estimate soak time from geo-positional data alone, we first needed 

to identify the hauling activities. Several methods for inferring fishing or 
hauling activities from positional data already exist (Behivoke et al., 
2021; Mendo et al., 2019a; Rufino et al., 2023), and we briefly detail 
how hauling was inferred for each case study. We used Random Forest 
models (Breiman, 2001) for all case studies to infer when the vessels 
were engaged in hauling gear, based on variables derived from posi
tional data only (e.g. distance, relative angle, and the time of the day 
were used as predictors of hauling activities) following Mendo et al., 
(2022). The models were fitted using the R package randomForest (RF) 
(Liaw and Wiener, 2002). Accuracy was defined as the number of 
correctly classified instances (validated by on-board observers or 
Remote Electronic Monitoring (REM) data analyst, for both hauling and 
not hauling) with respect to their total number of locations. 

2.3.1. Hake gillnet fisheries in Peru 
As all hauling activities occur when there is sunlight (after 6 am) a 

subset of the data was used before applying RF models. The distance 
between observations, relative angle between positions, and the time of 
the day were used as predictors of hauling activities. We used infor
mation from 101 observer trips (see Sup. Mat. 2) to assess the perfor
mance of the model outputs compared with data ground-truthed by 
observers on hauling activities. We randomly selected 50 trips for 
training and 51 for prediction, to test for out-of-sample accuracy of the 
model. The model predicted hauling activities with 90% accuracy. All 
positions recorded after 06:00 were labelled as potential setting events, 
except for locations associated with speeds <1 knot, since we know from 
fishers that setting events occur on average at 2–3 knots. 

2.3.2. Gillnet fishery in Denmark 
The distance between observations, relative angle between positions, 

time of the day and month were used as predictors of hauling activities. 
We used information from 745 trips for one vessel (see Sup. Mat. 2) to 
assess the performance of the model outputs compared with data 
ground-truthed by observers on hauling activities. We randomly 
selected 603 trips from 5 years (2016, 2018, 2019, 2020, 2021) for 
training and 142 trips conducted in 2017 for prediction, to test for-out- 
of-sample accuracy of the model. The model predicted hauling activities 
with 80.5% accuracy. 

2.3.3. Pots and traps fishery in Scotland 
The distance between observations, relative angle between positions, 

and the proportion of time that had passed since the beginning of a trip 
were used as predictors of hauling activities. We used information from 
95 trips conducted by 95 different vessels to assess the performance of 
the model outputs compared with data ground-truthed by on-board 
observers on hauling activities. We randomly selected 60 trips for 
training and 35 trips for prediction, to test for-out-of-sample accuracy of 
the model. The model predicted hauling activities with 91% accuracy. 

2.3.4. French gillnet fishery 
A random-forest predictor was built using a leave one fishing-trip out 

validation process. The covariates used were: speed, acceleration, 
bearing rate, speed change, sinuosity, turning-angle, direction change 
and a proximity index (ICES, 2023). A moving window of thirty minutes 
is used by adding the values for these variables for previous and next 
neighbours as covariates. The models were fitted with an out-of-sample 
accuracy estimated to 91.5% regarding the prediction of hauling events. 

To estimate soak time from geo-positional data, new methods are 
needed. Ideally, we would be able to identify where the gear was set or 
deployed and then overlay subsequent hauling events. However, iden
tifying when gear is being set is usually challenging (Mendo et al., 
2019a), as the deployment of gear is usually conducted at speeds similar 
to those of steaming events. Therefore, for each trip, we must first infer 
hauling events (Fig. 1a in grey). As this is the starting point to be able to 
infer soak time, the accuracy of detecting hauling events must be high. 
In our four case studies, the accuracy to detect hauling events was 
greater than 80%, with three of four cases studies having an accuracy 
greater than 90%. 

Once the hauling events have been identified, data not associated to 
a hauling event are removed, and a spatial buffer (input parameter, 
called buffer_width in R code, based on expert knowledge) is created 
around the hauling event to allow for a setting event not being exactly 
where the haul occurred (due to nets drifting for example, Fig. 1b). This 
spatial buffer depends on different factors, for example, how much 
“loose” rope is left between the bottom of the sea and the surface, the 
proximity between different sets of gear, the effect of tides in moving the 
buoy further away from the deployment event. Potential setting events 
from preceding trips are plotted (Fig. 1c) until there is a significant 
intersection (shown in blue) between a potential setting event and a 

Fig. 1. Process used to infer soak time from geo
positional data only. Figures a – f show steps taken to 
infer soak time for a trip conducted on 06-02-2017. 
Coordinates not shown for confidentiality reasons. 
Gray lines or polygons represent hauling events, black 
dots represent non-hauling events, and intersections 
between a hauling event and a deployment event are 
presented in blue. (For interpretation of the refer
ences to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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hauling event (Fig. 1d). The next input parameter required is time_
frame_fishing, which sets a constraint on the maximum number of days 
before hauling, where a setting event could have. For example, if we 
know that the fishery will not usually leave the nets for more than 30 

days in the water. 
The threshold for the distance covered by the setting event that 

should intersect with the hauling event is set with expert knowledge. 
This is another user-defined parameter, called overlap_threshold in the R 

Fig. 2. Relationship between estimated time spent hauling (left) and estimated distance covered during hauling (right) and observed effort in fisheries targeting 
lobsters and crabs using pots (a,b), Norway lobster using pots (c,d), hake using gillnets (e,f), longline fisheries in Iceland (g,h). 
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code, and it represents the percentage of the distance covered during a 
hauling event, that should be inside the buffer created (Sup. Mat 3 and 
4). This threshold is important as it helps distinguish between a 
sequence of non-fishing points that might fall inside a buffer, but which 
are not the actual deployment event. The difference in time stamps 
between deployment and hauling constitute soak time. The hauling 
events that are matched with a corresponding setting event are removed 
(Fig. 1e) and then the process is repeated until there as another inter
section (Fig. 1f). This process is repeated until either, all hauling events 
are matched with a corresponding setting event or until a threshold date 
is reached (for example, from expert knowledge, nets will be retrieved 
up to a month after first being deployed). The R code for this new 
method is available as Sup. Mat. 3 (gillnet fishery Peru, setting and 
retrieving nets on the same day) and Sup. Mat. 4 (Danish gillnet fishery, 
setting and retrieving nets on same or different dates). 

2.4. Spatial comparison of fishing effort 

To demonstrate the differences in spatial distribution of effort that 
result from different metrics, we used on-board observers’ data to 
develop the comparison with the best possible accuracy. We compared 
the spatial distribution of the fishing effort using different effort vari
ables reported by on-board observers (gillnet fishery in Peru) and using 
an REM system for one gillnet vessel in Denmark. Three effort metrics 
compared were: (i) time spent hauling (h), (ii) net length (m) and (iii) 
net length (m) multiplied by soak time (h). All maps were plotted on a 
500 × 500 grid. (i) Time spent hauling was calculated as the total 
number of positional records in each grid cell, using the R package raster 
(Hijmans, 2020), and multiplying it by the interval between vessel 
tracking data (180 s in the hake fishery and 60 s in the lumpsucker 
fishery). (ii) Net length was calculated as the proportion of the haul 
distance that occurred within the grid cell multiplied by the total net 
length as reported by fishers. (iii) Net length (m) was multiplied by soak 
time (h, unique for each haul). The soak time of any given net as re
ported by observers or REM analysts was multiplied by the length of the 
net in each cell to provide length of net in meters per unit time in hours 
(e.g. if there were 500 m of net in a grid and the soak time was 2 h, then 
1000 m.h would be calculated). The same analysis could be repeated 
using the new method developed above to estimate soak time but is not 
shown here. 

3. Results 

3.1. Proxies to estimate fishing gear effort 

Distance covered while hauling gear performed better in explaining 
the proportion of total variation in fishing effort for the four case studies 
(see R2 in Fig. 2). This means that predictions of the number of pots, the 
length of the net, and the number of hooks deployed were more precise 
when using the distance covered hauling rather than the time spent 
fishing. In general, all linear models overestimated fishing effort at 
lower values of time spent hauling or distance covered. This could be 
due to the initial longer time and distance covered during hauling 
needed at the beginning of a hauling event, to get the gear out of the 
water which could be a function of water depth and or the length of the 
surface buoy rope. 

3.2. Estimating gear soak time 

Using the newly developed method for estimating soak time, esti
mation worked very well except in cases where the algorithm was not 
correctly able to match deployment and hauling events. This occurred in 
2 of 39 cases in the French gill net fishery, and 1 out of 59 in the Danish 
lumpsucker fishery. This seems to be an issue with the spatial buffers, as 
the buffer around the hauling events did not entirely intersect the 
deployment events. For the hake gillnet fishery in Peru, all paired fishing 

events (a deployment and corresponding hauling) were identified. Gear 
soak time was generally estimated very accurately (F = 710.9, df = 1,49, 
p < 0.001, intercept = − 0.19, slope = 1.07, R2 = 0.93, Fig. 3a). In the 
gillnet fishery targeting lumpsucker in Denmark, the model also per
formed well in identifying paired events (F = 147.5, df = 1,57, p <
0.001, intercept = 20.79, slope = 0.66, R2 = 0.71, Fig. 3b). Soak time 
was estimated very accurately in the Scottish pot and trap fishery (F =
925,5, df = 1,18, p < 0.001, intercept = 9.99, slope = 0.92, R2 = 0.98, 
Fig. 3c) and in the French gillnet fishery (F = 5583, df = 1,33, p < 0.001, 
intercept = 3.15, slope = 0.97, R2 = 0.99 (estimated without the 
outlier), Fig. 3d). 

3.3. Spatial comparison of intensity of fishing effort 

In our study examples, we found that the overall spatial patterns of 
effort did not change drastically over time, regardless of the estimation 
method used. There were differences between the three effort measures 
in the fine scale distributions of effort between cells, as shown in Fig. 4. 
For gillnet fisheries targeting hake in Peru, when using time spent 
hauling to depict fishing effort, one grid cell showed the highest level of 
fishing intensity (Fig. 4a), while using the length of the net or the length 
of the net multiplied by soak time resulted in a wider spread of the same 
high intensity area (Fig. 4b, c).For the Danish gillnet vessel targeting 
lumpsucker and the French gillnet vessel, using length of net multiplied 
by soak time resulted in the highest fishing intensity being located in an 
area approximately 1.5–2 km away from the high intensity areas esti
mated using the alternative estimation methods (Fig. 4, d–f, g–i). The 
French gillnet vessel showed a wider spread of similar intensity when 
using time spent hauling to depict effort (Fig. 4g). 

4. Discussion 

Based on a unique dataset from four different cases studies in 
different parts of the world, and using a variety of passive gears, we 
investigated best proxies of fishing effort. The work presented here an
alyses ground-truthed observations of fishing effort in passive gears 
(number of pots, nets, number of hooks) and their relationship with 
either time spent hauling or distance covered hauling from highly 
resolved geo-positional data. This work strongly suggests that estima
tion of gear effort is improved when using distance covered during 
hauling operations rather than time spent hauling. When elaborating 
maps of fishing effort distribution for passive gears, each grid cell should 
be assigned based on the distance covered during hauling operations, 
instead of the time spent hauling, as used in previous studies (e.g. James 
et al., 2018; Kroodsma et al., 2018). This simple step considerably im
proves estimations of nominal gear fishing effort (e.g. number of pots, 
length of nets, number of hooks). It mitigates the variability in hauling 
time introduced form artifacts such as snagged gear or differences in 
catch abundance and the associated handling time. In addition, if some 
information about the configuration of the gear is known, for example 
the distance between pots or hooks, then the total units of gear deployed 
during a haul or fishing trip can also be estimated (e.g. Mendo et al., 
2019b). 

For the first time, we present a method to estimate soak time in static 
gears from highly resolved geopositional data only. This method allows 
for soak time to be non-uniformly distributed across the study area. 
Generally, inferring deployment events directly from these data has 
proven challenging (Mendo et al., 2019a), so we developed a method 
where we first infer hauling events and then overlay these with 
deployment events from precedent trips. Following this initial step, we 
could estimate soak time by identifying the spatial overlap between 
inferred hauling events and matched deployment events. While the 
model performed generally very well for the four case studies presented 
here, a soak time value significantly greater than average was estimated 
on one occasion (out of 59) in the Danish fishery targeting lumpsucker 
(Fig. 3b) and on one occasion a soak time significantly lower than 
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average was estimated for French gillnet fishery (out of 39). In the first 
instance, the spatial buffer (that allows to match a deployment event to a 
hauling event) could not encompass the correct corresponding deploy
ment event and wrongly matched the haul with an older overlapping 
vessel track. In the latter case, the overlap occurred with a deployment 
event that happened during the same trip. In this specific fishery, a net 
may be hauled on the same day it was set, therefore, the overlap between 
setting hand hauling was matched during the same trip. These param
eters and rules are assigned a priori from expert knowledge, based on 
what is known from the fishery and that could be described as a 
“normal” fishing behaviour. In case of rare anomalies (deviations from 
the norm), this method may thus fail to match events correctly, which 
needs to be considered for heterogenous fisheries. Consequently, when 
deciding on a spatial buffer, experts must think carefully about the sit
uations that might warrant an increase in the buffer length, for example, 
the amount of drifting of the gear due to tides and local currents, the 
length of the buoy or up-rope of the gear, and the depth at which the 
gear is being deployed. 

Fine-scale depictions of fleet fishing effort distribution could benefit 
spatial management, especially when mapping specific fishing areas of 
particular interest for fisheries management and/or wildlife conserva
tion (e.g. marine protected areas, fishing areas overlapping with the 
range of species of concern, etc.). A proper assessment of the risks fishers 
exert on marine and seabed biota and habitats requires finely resolved 
data, at spatial scales pertinent to the granularity of the habitat and also 
fishers’ behaviours. Fishers targeting benthic species, for example, 
transfer knowledge over generations on location of suitable habitats for 
target species at a fine spatial scale. This information on effort distri
bution is often lost when aggregating fishing effort data at the low 

resolutions usually required by the legislator. Parnell et al. (2010) 
showed that incorporating recreational and commercial effort at scales 
of 250 × 250 m could account for the observed changes in biodiversity 
and community structure in kelp forest habitats. Similarly, exploiting 
information on fine-scale patterns of fishing effort will become very 
important for a transition to ecosystem-based management of fisheries 
and may have profound consequences for understanding ecosystem 
functioning and maintaining or rebuilding a healthy habitat and species 
biodiversity (Parnell et al., 2010). 

Under the blue economy agenda, the increasing development of 
offshore renewable energy activities forces scientists and managers to 
understand fishing effort at scales pertinent to the proposed activities. 
For example, (Stelzenmüller et al., 2022) showed that coarse resolutions 
(e.g. 0.05 degrees) of gridded fishing effort tend to overestimate the 
actual overlap between fishing activities and offshore wind farms. In 
order to appropriately represent fishing activities, fine scale depictions 
of effort (0.01 × 0.01 degrees, roughly 1 × 1 km) are needed, as some 
offshore wind sites can cover areas of only few squared kilometres 
(Stelzenmüller et al., 2022). Higher resolution maps will improve the 
ability of policy makers to adequately represent the interests of fisher, 
which are often-neglected in the marine spatial planning process 
(Campbell et al., 2014; Stelzenmuller et al., 2008). While it is possible to 
estimate fishing activities over fine spatial scales using high resolution 
geopositional data, it is important to also consider that different effort 
variables derived from these data (time spent hauling, length of net, net. 
length days) can result in different fine scale depictions of the most 
important areas for fishers. This is an interesting avenue for future 
research, involving the fishing community and other stakeholders such 
as conservation scientists in discussing which type of effort metric is 

Fig. 3. Relationship between the estimated soak time and observed soak time for a) gillnet fishery targeting hake in Peru and b) gillnet fishery targeting lumpsucker 
in Denmark, c) pot and trap fishery in Scotland, d) gillnet fishery in France. Black lines denote an intercept = 0 and slope = 1. 
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most relevant to their activities and priorities. 
The methods developed here to estimate soak time and proxies for 

number of pots, length of net or number of hooks from highly resolved 
geo-positional data fit the reporting requirements of the EU Data 
Collection Framework (EC, 2021). However, as soak time and catch are 
not linearly related, but rather increase towards an asymptote (Munro, 
1974; Sundberg, 1985), derived effort metrics such as trap days or net 
length days may lead to overestimating fishing effort and fishing mor
tality. This declining fishing power with time for passive gears can 
provide serious bias in effort estimations. In particular, in fisheries with 
low stock densities, more gear with longer soak time will usually be 
favoured by fishers, while for stocks at high densities, less gear will be 
soaked for shorter periods as it will become saturated faster (Caddy, 
1979). Fishery and gear-specific adjustments are therefore required to 
estimate soak time and effectively avoid overestimating fishing mor
tality (Caddy, 1979). Estimation of impacts on non-target species might 
also require alternative adjustments to effort estimation when soak time 
or number of hauls are not linearly related to bycatch. 

From an ecosystem-based management perspective, detailed infor
mation on the intensity and distribution of passive gears fishing effort 

derived from the analysis of highly resolved geospatial data is particu
larly valuable to assess the level of incidental captures (bycatch) of 
sensitive species in some problematic fisheries (Moore et al., 2021). 
Bycatch of marine mammals, birds, or sea turtles in gears like gillnets 
and longlines are known to contribute disproportionally to overall 
mortality in some of these species’ groups (Lewison et al., 2014). Many 
fisheries for which bycatch rates of marine megafauna are known to be 
high are not required to report their fishing effort at a fine scale (ICES, 
2021). Knowing the precise location, gear length, and soak duration of 
the vessels operating high-risk gears would allow scientists and wildlife 
managers to better estimate bycatch mortality. Highly resolved geo
spatial data at fleet level (or at least for a representative sample of the 
fleet) would then contribute to a better understanding of the potential 
effects of fishing on impacted populations of non-target and protected 
species, and help in minimising bycatch, in line with the requirements 
enacted in many regions to conserve these species (e.g. Marine Wildlife 
Bycatch Mitigation Initiative in the UK, Marine Strategy Framework 
Directive in the EU, Marine Mammal Protection Act in the US). 

Knowing the fine-scale variations in gear positions and soak time can 
shed a light into vessel-specific behaviours and how these change over 

Fig. 4. Maps for the gillnet hake fishery (a–c) including 15 vessels operating between January and March 2019 in each grid cell (500 × 500 m); for one gillnet 
lumpsucker vessel, operating during 2017 in each grid cell (500 × 500 m) (d–f); and for one French vessel using gillnets in XX (g–i) in each grid cell (1000 × 1000 m), 
showing the proportion of effort (from 0 to 1) as a, d, g) time spent hauling nets, b, e, h) length of net (m), c, f, i) net length (m) × soak time (hours) in each grid cell. 
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time. In some areas, a common control measure for fisheries manage
ment is to limit the quantity of gear allowed in the water (Cochrane, 
2002). However, these restrictions might have unintended conse
quences, such as provoking changes in fishing practices which may in 
turn negatively affect intended management measures. This is exem
plified clearly in the Bristol Bay red king crab fishery, where pot limits 
were so low by 1997 that consequently, fishers reduced the average soak 
time from 2 days to 1, which, taking into consideration the catch per unit 
effort and soak time relationship, effectively increased mortality on 
crabs, as pots achieved more than 90% of a 2-day soak catch after a 
single day (Briand et al., 2004; Briand et al., 2001). Highly resolved 
geospatial data, which to date are often not collected in small-scale 
fisheries, could routinely and automatically be collected and used to 
estimate the number or the length of gear used over time using the 
methods presented in this paper. 

The expansion in the use of tracking technologies that provide high 
resolution data (Burgos et al., 2013; EC, 2018; MMO, 2022), opens up 
the potential to further develop and apply robust methods to understand 
the spatial changes in fishing effort distribution. Highly resolved geo- 
positional data demonstrate great potential for providing indicators of 
effort, fishing activities, and changes in fishing behaviours. Most method 
development has been oriented towards active gears, however, similar 
methods for passive gears are still in their infancy. Small-scale fisheries, 
which mainly use passive gears, generally operate at smaller spatial 
scales than large-scale industrial fisheries and are usually excluded from 
the marine spatial planning process. Understanding these nuances is 
increasingly important as globally, at least 40% of the catch is produced 
by this sector (FAO et al., 2023). 
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Döring, R., 2022. From plate to plug: The impact of offshore renewables on European 
fisheries and the role of marine spatial planning. Renew. Sustain. Energy Rev. 158, 
112108. 

Stelzenmuller, V., Rogers, S.I., Mills, C.M., 2008. Spatio-temporal patterns of fishing 
pressure on UK marine landscapes, and their implications for spatial planning and 
management. ICES J. Mar. Sci. 65 (6), 1081–1091. 

Sundberg, P., 1985. A model for the relationship between catch and souk time in baited 
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