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Abstract 

Drought stress is a major limiting factor for yield on a global scale (Solh and van Ginkel, 

2014), with drought effects being predicted to become more severe with increasing global 

temperatures (IPCC, 2014). Climate change is also expected to increase the frequency and 

severity of floods leading to root oxygen stress (Trenberth, 2011). At the same time, current 

agricultural practises are increasingly relying on heavy machinery leading to soil compaction 

and changes in soil structure (Chamen et al., 2003), reducing the rate of cell division in the 

root meristem, and decreasing cell expansion (Bengough and Mullins, 1990). As such, in 

order to reduce yield losses it is essential to understand the complex interaction between 

oxygen stress, water stress and mechanical stress (Mohammadi et al., 2010). The least 

limiting water range (LLWR) is one such model which relates the above-mentioned soil 

stressors in order to estimate the soil moisture range in a particular soil for which plants 

should be less limited in terms of growth. However, the extent to which the LLWR considers 

the influence of root traits in changing its boundaries is currently limited. In order to be able 

to assess the effects of root trait variability on the LLWR boundaries while manipulating the 

LLWR soil stressors a minirhizotron based system (RS) was developed. This cheap (~£10 per 

unit), acrylic based, A3 sized system enabled in situ imaging of roots and root hairs. 

Destructive sampling methods were also used to determine root border cell numbers and root 

tip geometry. To further optimise the process of data collection, Rcpp based image 

processing algorithms were developed to obtain automated estimates of the root traits of root 

length, root hair, root border cells and root tip eccentricity to further increase the efficiency of 

the RS phenotyping platform. 

To test how contrasting root traits influence the LLWR a plant phenotyping experiment was 

performed comparing four spring barley (Hordeum vulgare L.) varieties, Optic, KWS Sassy, 

Derkado and Golden Promise. Root growth rates both in the vertical and horizontal directions 

all increased with increasing water availability and decreasing substrate density. Root hair 

area did not vary significantly among treatments and between variaties. Root border cell 

count and root tip eccentricity increased with increasing substrate density but did not vary 

significantly across varieties. A root micro-trait based linear interaction model was developed 

to describe average root growth rates and it was demonstrated that root growth rates on 

average follow a linear patern for values >= 8 mm day-1. Root micro-traits mostly failed to 

correlate well with root growth rates except for a negative assosiation with root tip geometry 

(cor = -0.4192, p = 2e-05**). 
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1. Literature review 

1.1 Introduction 

Today, there is an unprecedented need for increasing crop productivity as it is projected that 

global food demand will dramatically increase by 2050 (Godfray et al., 2010; Tilman et al., 

2011). Global food security is listed as the second of the 17 Sustainable Development Goals 

adopted by the United Nations as part of its 2030 Agenda for Sustainable Development 

(United Nations, 2015). Despite arguments/perceptions that future global food demand can be 

sufficiently covered with current rates and “timely distributions” (World Hunger 

Organisation, 2016), the current projections show that the global population will reach 9.7 

billion in 2050 (United Nations Department of Economic and Social Affairs, 2015). 

Furthermore, climate change is expected to cause yield reductions in a range of important 

cereal crops due to increasing temperatures (Asseng et al., 2015). Thus, in order to reduce the 

risk of world hunger there must be a dramatic increase in food production in the next decades 

with a projected overall increase in food production of about 70 % between 2005/02 and 2050 

(FAO, 2009).     

 

Maximising yield requires the root systems to be of optimum size and shape to extract the 

required amount of water and nutrients from the growth medium. However, soils are not 

always an ideal environment for plant root growth. Soil physical conditions often reduce root 

elongation rates and restrict the soil volume occupied by the root system thus, hindering 

nutrient and water uptake rates with negative consequences for plant yield (Valentine et al., 

2012; Whiteley and Dexter, 1982). Furthermore, current agricultural practises have a range of 

effects on soil structure, with heavy machinery changing the pore size distribution and 

connectivity of the soil pore network creating water infiltration problems and yield reductions 

(Keller et al., 2015). In addition, most crop plants have high-water requirements and are not 

drought tolerant, which is reflected by the fact that agricultural irrigation is estimated to 

account for 70 % of the total use of available freshwater (FAO and ITPS, 2015). Furthermore, 

many of the resources used for food production, including irrigation water and mineral 

fertilisers, are becoming relatively more expensive (White et al., 2013), further exacerbating 

existing issues such as the financial inability of many farmers to purchase mineral fertilizers 

(Vitousek et al., 2009). This is all in addition to increasing rainfall, snow and higher 

temperatures due to climate change causing plant stress and reducing crop yield (Srivastava 
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and Misra, 2018). As a result, an appreciation of how plant growth could be limited by soil 

physical stressors would be beneficial in future discussions (Section 1.2).   

 

Ultimately, to mitigate the above-mentioned issues, it is vital that crops are adapted to perform 

better in less than optimum environments that are limited or have an excess of water and 

nutrients or salts. Roots are responsible for the acquisition of both water and mineral nutrients 

from the soil and as such, research is increasingly aiming for the manipulation of root traits 

which enhance root growth (Meister et al., 2014). Root properties can be viewed as the 

product of two basic components: root system architecture (RSA) and root morphology (RM) 

(Nguyen and Stangoulis, 2019). RSA refers to the spatial distribution of the root system or the 

geometrical character of roots. An example of its significance to root growth is demonstrated 

by the observation that maize genotypes with shallow root systems have a higher growth rate 

and P accumulation relative to deep-rooted genotypes (Zhu et al., 2005). RM can be defined 

as the study of the features of a single root axis as an organ. This term encompasses important 

root traits such as root hairs which influence root growth and root-soil interactions. For 

example, an increase in root hair length and density in low P soil concentrations is a 

mechanism used by wheat to increase its absorption of P (Wang et al., 2016). As such, 

developing an understanding of how root traits can influence the ability of the root system to 

cope with various soil stressors is of critical importance (Section 1.3).    

 

Unlike above ground plant components the investment in time required to study root systems 

is a highly limiting factor for plant breeders (Tuberosa et al., 2002). In fact, apart from 

specific root crops such as carrot (Stein and Nothnagel, 1995) or cassava (Nassar and Ortiz, 

2007), below-ground traits are rarely of primary significance to plant breeders because of the 

difficulty to observe them in situ (Ryan et al., 2016). Even so, the increasing popularity of 

“Plant Phenomics”, a collection of methods whose aim is to link plant genotypes to plant 

phenotypes (Furbank, 2009) and its importance towards the advancement of plant 

biotechnology and crop output (Tester and Langridge, 2010) indicates an increasing 

recognition of the importance of the detailed study of root systems. As a result, there is a 

growing body of research for image-based phenotyping of plant roots which involve the 

optical analysis of RSA and RM to understand how roots interact with soil. These methods 

may be simple and straightforward such as the traditional destructive sampling of roots 

grown in field soil (Smit et al., 2000). Other possibilities may involve an artificial system 

such as minirhizotrons (Upchurch, 1987). More powerful setups such as X-ray CT 
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(Heeraman et al., 1997), have also been used successfully in the past to study the 3D RSA in 

constrained (plant pots) soil systems. All such methods have their own advantages (and 

limitations) but an appreciation of the properties of different imaging systems is nevertheless 

advantageous (Section 1.4).  

Ultimately, it is desirable to summarise our understanding of the interaction of the soil and 

root systems in the form of a model which predicts root response to different soil conditions. 

A range of mathematical models exist in the literature today describing the system of 

individual roots and gradually scaling up to the more complex system case of the entire root 

system (Dunbabin et al., 2013). Some architectural models consider the interaction between 

environmental and root variables such as water and nutrient transfer to the roots from soil. 

However, this complexity comes at a high computational cost due to their difficulty in 

parameterization (Dupuy et al., 2010). On the other hand, continuous root distribution models 

are easier to manage in terms of computational complexity but it comes at the cost of not 

allowing for the integration of complex plant development processes (Dupuy et al., 2010). 

However, there are also more practical models which completely lack any consideration of 

root processes and simply consider the influence of the soil environmental conditions on the 

root system such as the least limiting water range (LLWR) model proposed by da Silva et al., 

(1994). This concept describes the soil system in the form of three soil stressor variables: 

penetrometer resistance (PR), soil matric potential (Ψ) and aeration porosity (AP). It also uses 

a set of assumptions concerning the limiting values at which plant growth effectively stops 

for each of the previously mentioned variables, namely the soil matric suction at -0.01 MPa 

and -1.5 MPa, soil penetration resistance at 2 MPa and soil oxygen concentration at a 

porosity of 10 %. The output of LLWR is a prediction of the soil moisture range for which 

plants should be less limited in terms of growth, in a particular soil. Unlike computationally 

demanding models such as architectural ones (Dupuy et al., 2010), the practical definition of 

the LLWR makes the model computationally feasible as it only requires knowledge of the 

water release and soil strength curves of the soil. The LLWR decreases with increasing soil 

bulk density, increasing clay content, and decreasing organic matter content (da Silva and 

Kay, 1997) As a result, LLWR is used as an index-like variable that can help assess how 

different soil management practices can affect the potential productivity of the soil (Tormena 

et al., 1999). However, the same succinctness that is responsible for its wide use also restricts 

its prediction accuracy because it doesn’t consider the plant response beyond the simplistic 

assumptions concerning the limits of plant growth. The LLWR is also not an explicit RA 
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growth model. The concept of LLWR is the main theme of this project and as such, a more 

detailed assessment of the model is a pre-requisite for understanding the motivation behind 

the work presented in later chapters (Section 1.5).          

1.2 Soil physical stressors 

1.2.1 Drought 

Drought stress is believed to be the most lethal abiotic stress affecting crops, negatively 

impacting plant growth, physiology, and reproduction (Barnabas et al., 2008). Between 1980 

to 2015 it was estimated that on a global scale drought caused a yield reduction of up to 40 % 

and 21 % for maize (Zea mays L.) and wheat (Triticum aestivum L.) respectively (Daryanto 

et al., 2016). Considering that average temperature is projected to increase by at least 0.2°C 

per decade (IPCC, 2014) and with simulations suggesting that important cereal crops such as 

wheat will have a yield reduction of 6 % per 1 °C rise in temperature (Asseng et al., 2015) 

drought stress will certainly be a challenge for future food security.  

Plants begin to experience drought stress when either the water supply to the roots is 

sufficiently reduced or plant transpiration becomes sufficiently high that the roots cannot 

supply the water that is being lost (Anjum et al., 2011). Water limitation restricts cell growth 

due to the loss of cell turgor which decreases cell volume and makes cellular contents more 

viscous (Taiz and Zeiger, 2006). Therefore, there is an increased frequency in protein-protein 

interactions causing their aggregation and denaturation with catastrophic consequences for 

cells (Hoekstra, 2001). In the initial stages of plant growth drought stress reduces seed 

germination rates and limits seedling growth (Kaya et al., 2006; Teixeira et al., 2020). In 

more mature plants the plant response of leaf stomatal closure to limit water loss also reduces 

the CO2 availability leading to an increased risk of photo-damage and reduced photosynthesis 

(Lawlor and Cornic, 2002). As a result, there is an enhanced production of reactive oxygen 

species such as H202 which cause lipid peroxidation leading to chlorophyll degradation 

(Foyer et al., 1994). Reduced transpiration rates also increase heat stress further disrupting 

photosynthesis through disruption of photosynthetic pigments (Camejo et al., 2006), 

inhibition of photosystem II (Camejo et al., 2005) and reduced RuBP regeneration capacity 

(Wise et al., 2004). Leaf expansion is also limited under drought conditions because of the 

reduction in turgor pressure and photosynthetic rates (Rucker et al., 1995). In addition to the 

above, nutrient uptake can be dramatically reduced during drought because many nutrients 

are dissolved in the soil water solution and as such, their rate of diffusion is decreased 
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(Barber, 1995). The reduction in transpiration flow also reduces nutrient transport to the 

shoots (Garg, 2003). For example, reductions in N and K uptake under drought stress was 

demonstrated in cotton (McWilliams, 2003) and reduced P tissue concentrations in beech 

(Peuke et al., 2002). Grossman and Takahashi, (2001), remarked how nutrient limitations 

under drought conditions are also related to reduction in energy availability because of the 

energy dependant processes required to convert nutrients in plant available forms. Drought 

stress also indirectly influences plant nutrition by reducing soil microbial diversity and 

activity which can disturb plant-microbial nutrient associated relations (Schimel et al., 2007). 

1.2.2 Soil Oxygen 

Approximately 10 % of cultivated land surface suffers from poor drainage and waterlogging 

(Koevoets et al., 2016). This issue will likely worsen in the future as climate change is 

projected to increase the frequency and severity of floods (Trenberth, 2011). At 25 °C the 

diffusion coefficient of 02 is 0.176 cm2 s-1 (Cussler, 1997) and as such, the surface layers of 

soil are usually well oxygenated, even if wet, although, the effective diffusion coefficient is 

less than that of air due to the tortuous nature of the soil pore network (Whitmore and 

Whalley, 2009). However, in water the diffusion coefficient of 02 is dramatically reduced to 

only 2.10 x 10-5 cm2 s-1 (Cussler, 1997). This is highly problematic for roots as limitations in 

oxygen supply effectively halt root growth (Gibbs et al., 1998). Non-photosynthetic plant 

tissues such as roots normally use aerobic respiration however, under hypoxic or anoxic 

conditions roots switch to the (inefficient) anaerobic pathway of glycolysis to generate ATP 

leading to a severe reduction in energy available for maintenance, growth and ion uptake 

(Koevoets et al., 2016). Furthermore, anaerobic respiration produces a range of by-products 

which are dangerous for cells because when protons accumulate in the cytoplasm and the 

vacuole there is sharp decrease in cell pH (Gerendás and Ratcliffe, 2002). In addition to the 

above, anoxic conditions induce the plant to increase the rate of the stress signalling hormone 

ethylene by more than 5-fold as compared to normal conditions (Mancuso and Marras, 2006) 

which will have negative consequences for the above ground components of the plant by 

inhibiting the elongation of cells in the elongation zone (Voesenek, 2013). Roots also secrete 

phytotoxic compounds like ethanol under low 02 conditions to help prevent cell damage 

caused by flooding (Badri and Vivanco, 2009). In combination with the anaerobic products 

released by soil microbes there is an accumulation of phytotoxic compounds in waterlogged 

soils (Armstrong and Gaynard, 1976). 
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1.2.3 Soil mechanical impedance 

From a mechanics point of view, roots are a complex material, being neither completely 

plastic nor completely elastic or viscous but having features of all three kinds of materials 

(Niklas, 1992) and as such, their response to mechanical stress is also a complex one. 

Mechanical impedance, a measure of motion resistance to an external force, decreases the 

rate of root elongation because it reduces the rate of cell division in the root meristem, and 

decreases cell expansion (Bengough and Mullins, 1990). As a result, mechanical impedance 

is almost always associated with lower shoot growth and ultimately, reduced crop yield 

(Whalley et al., 2008). A widely used measure of the mechanical impedance that roots 

experience in soil is penetrometer resistance (PR) (Whalley et al., 2007), with values of e.g., -

2 MPa causing a 50 % reduction in maize (Bengough et al., 2011). Considering that soil PR 

values of 0.5-1.0 MPa and greater are commonly reported, mechanical impedance is 

responsible for significant reduction in root elongation rates (Bengough and Mullins, 1990; 

Valentine et al., 2012). Furthermore, given the projected increase in average temperate 

(IPCC, 2014), roots will experience a higher frequency in mechanical impedance because as 

the water content of the soil is reduced its strength increases (Whalley et al., 2005). 

An increase in mechanical impedance reduces root numbers (Iijima and Kono, 1991), root 

axial growth and root length which results in an overall reduction in the size of the root 

system (Colombi et al., 2017). Furthermore, it makes the root cortex thicker because it 

increases cell numbers (Colombi et al., 2017) and causes an increase on the radial dimension 

of cells (Atwell, 1988). Additionally, cell numbers in the stele are also increased as its 

diameter increases (Bengough and Mullins, 1990). Chimungu et al., (2015), analysed root 

anatomical phenes in maize and concluded that cortical thickness is a better predictor of root 

bending compared to root diameter with a similar conclusion made for stele diameter as a 

predictor for root tensile strength. In addition to the above, it was demonstrated that in barley 

roots there are significant reductions in the content of cellulose and hemicellulose and an 

increase in lignin concentration in root tissue in response to increase mechanical impedance 

(Bingham et al., 2010). In contrast, reduced lignin concentrations were reported for maize 

roots in similar circumstances (Degenhardt and Gimmler, 2000). The influence of mechanical 

impedance extends beyond roots and affect the entirety of the plant (Tardieu, 1994) as plant 

shoots experience reduced growth rates and length (Kobaissi et al., 2013), and dry weight 

(Donald et al., 1987). Leaves also experience reduced growth rates (Iijima and Kono, 1991) 

and they may even induce stomata closure as a result of mechanical stress (Roberts et al., 
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2002). Furthermore, several indirect effects can occur in the form of water and nutrient stress 

because changes in root morphology and architecture influence the plants ability to acquire 

water and nutrients (Yamauchi, 1993). For example, Chimungu et al., (2014), demonstrated 

that a larger root cortical cell size could improve drought tolerance in maize (Zea mays). A 

reduction in net photosynthetic rate, transpiration rate and stomatal conductance was 

demonstrated in triticale and maize plants (Grzesiak, 2009). 

It should also be noted that there is an inverse relationship between soil water concentration 

and mechanical impedance. This is because a drying soil experiences an increase in the total 

force of the capillary component which leads to reductions in soil matric potential and 

ultimately, an increase in soil strength (Whalley et al., 2005). This nonlinear, inverse 

relationship results in roots experiencing greater mechanical impedance which will limit the 

growth of the entire root system and as such stresses can interact to produce a greater 

negative effect on crops (Bengough et al., 2011). 

1.3 Root traits 

1.3.1 Roots 

Roots are a plant organ of high significance because they are mainly responsible for the 

growth and survival of plants (Lynch, 1995). Although root systems demonstrate a high 

plasticity the roots of higher plants can be classified into roots derived from the embryo 

(embryonic roots) and those formed after germination from existing roots or non-root tissues 

(post-embryonic roots) (Atkinson et al., 2014). In general terms, root systems consist of four 

different types of roots (Wasaya et al., 2018): 

1. Coarse/tap roots (first root or roots to emerge from the seed)  

2. Lateral/fine roots (any root branching from another root)  

3. Shoot-borne roots (roots which arise from shoot tissues)   

4. Basal roots (roots which develop from the hypocotyl). 

Coarse roots provide the structural basis for anchorage of the plant, the establishment of the 

basic root system architecture and control the rooting depth (Henry et al., 2011). Fine roots 

are potentially less important as a structuring block, but their high permeability nature makes 

them highly significant for absorbing water and nutrients (Comas et al., 2012), especially in 

herbaceous plants (Fitter, 2002). This is mainly because fine roots increase the root surface 

area per unit mass (Landi, 2010). In the case of cereals, the root system consists of the 
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following root types: the embryonic primary or seminal roots, and the post embryonic shoot 

borne crown roots (Hochholdinger et al., 2004). The crown roots are separated from the 

embryonic roots by the mesocotyl, which elongates to place the shoot base close to the soil 

surface (Singh et al., 2010). 

Root structure in cereals can become highly complicated with different structural zones along 

the root profile formed by a series of cell elongations and differentiations with the overall 

root ability to survive and grow in harsh environments being dependents on physiological 

responses. Figure 1.1, contains root cross sections for monocot (A) and dicot (B) plants, 

demonstrating the differences between them such as a well-developed pith for monocot 

plants. 

 

 

Figure 1.1: Schematic diagram showing the root cross sections of a monocot (A) and a dicot 

(B) (taken from: https://www.researchgate.net/figure/Anatomy-of-typical-a-monocot-and-b-

dicot-root_fig2_278689094). 

Details of the cellular dynamics involved in root growth will not be discussed here, instead 

the reader is directed to the numerous excellent reviews in the literature (e.g., Smith and de 

Smet, 2012). Instead, root traits will be introduced here as they are critical for the absorption 

of water and nutrients (Narayanan et al., 2014) and are a central theme of this study. Root 

traits can be defined as “any morphological, physiological or phenological feature of the root 

system measurable at the individual level, without reference to the environment or any other 

level of organization” (Violle et al., 2007). However, in practise root traits are influenced by 

both the surrounding environment and the underlying plant genetics. 

A B 
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1.3.2 Root system architecture (RSA) 

RSA expression is complex and is affected by various environmental factors such as soil 

strength, temperature, moisture, nutrients, soil pH (Robbins and Dinneny, 2015) and plant 

genotype. Despite its complexity, RSA adjustments are of immense importance for the 

survival and growth of the plant (Smith and De Smet, 2012). For example, Hammer et al., 

(2009), demonstrated that RSA was strongly correlated with biomass production and could 

help explain the increase in yield of maize (Zea mays L.) observed historically in the U.S.. 

Selective plant breeding for increased yield has resulted in dramatically transformed the 

phenotype of wheat with modern varieties having an enhanced ability to absorb soil nitrogen 

reflected by an enhanced nitrogen nutrition index (Sadras and Richards, 2014). The same 

process was used in the UK to increase radiation-use efficiency, biomass, and nitrogen uptake 

of wheat in recent decades (Shearman et al., 2005). In a similar manner, selective plant 

breeding and agronomic adaptations in the water and nitrogen restricted soils in Australia 

have increased wheat yield per unit transpiration at a steady rate of 0.12 kg ha–1 mm–1 yr–1 

during the last century (Sadras and Lawson, 2013).  

Since roots are primarily responsible for water absorption it is not surprising that significant 

efforts have being made to determine how RSA affects drought resistance. Drought reduces 

the soil matric potential and as a result, roots experience osmotic stress as they have to use 

more energy to remove the water from the soil. If the soil water potential is sufficiently 

reduced, then hyper-osmotic stress might occur causing water loses from root to the soil 

(Koevoets et al., 2016). This leads to loss of turgor in plant cells and plasmolysis, i.e., the 

violent detachment of the living protoplast from the cell wall (Lang et al., 2014). In order to 

avoid this catastrophic outcome, plants can induce several changes in RSA. For example, 

drought conditions promote the production of many lateral roots and root hairs that increase 

the total surface area of the root system and enhance its water absorption capacity (Agbicodo 

et al., 2009). The diameter of roots also influences their ability to extract water (Richards et 

al., 2001) and affects their capacity to penetrate through deeper soil layers (Bao et al., 2014). 

A RSA with smaller root diameter and length of fine roots is believed to be better equipped to 

tolerate drought conditions as a higher root length density in deep soil layers (30-45 cm) was 

beneficial (Henry et al., 2011). Roots also possess the ability to actively seek out water 

reserves, a phenomenon known as hydrotropism (Dietrich, 2018).  
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One RSA strategy to mitigate drought stress involves deep rooting as a deeper root system 

enables the uptake of water from deeper soil layers (Boyer, 1996). A high root density and 

root depth are desirable traits in low water environments (Zhao et al., 2004). Researches are 

also actively trying to identify the genes associated with the expression of higher rooting 

depth. High drought tolerance was associated with the deeper rooting mutant extremely 

drought tolerant1 of the model plant Arabidopsis thaliana (Yu et al., 2008). This was because 

the mutant had an overexpression of the HD-ZIP transcription factor HDG11 which promoted 

the production of proteins that stimulate root elongation thus, leading to a higher rooting 

depth (Xu et al., 2014). In rice, the gene DEEPER ROOTING1 was demonstrated to increase 

rooting through alterations in the auxin distribution (Uga et al., 2013). Likewise, expression 

of the DEHYDRATION RESPONSE ELEMENT B1A in groundnut (Arachis hypogaea L.), 

increases rooting depth (Lobet et al., 2014). However, authors have cautioned that the extent 

to which any root trait contributes to plant drought resistance is strongly dependent on the 

drought scenario considered (Tardieu, 2012). More recently, Lobert et al., (2014), pointed out 

how experiments with chickpea (Cicer arietinum L.) (Zaman-Allah et al., 2011) and wheat 

(Schoppach et al., 2013) suggest that drought tolerance was more related to a conservative 

use of water throughout the season rather than deep rooting per se.  

RSA is also identified to be of high importance in nitrogen uptake efficiency (Comas et al., 

2012). An RSA composed of traits such as steeper root growth angles, reduced production of 

crown roots and reduced lateral root branching density are believed to enhance N uptake 

(Lynch, 2019). In a similar manner, RSA can enhance phosphorus absorption an essential 

component for numerous metabolic processes (Raghothama and Karthikeyan, 2005). An RSA 

response that is believed to facilitate phosphate absorption is the development of a shallower 

root system to explore the upper soil layers where phosphate tends to accumulate (Lynch and 

Brown, 2001). This will require a higher investment in lateral root production which is 

preferable in terms of cost because they have lower phosphate requirements in comparison to 

primary roots (Zhu and Lynch, 2004). A shift to a shallower rooting system was observed in 

experiments involving Arabidopsis (Péret et al., 2011; Karley et al., 2011). 

Other RSA responses could include the ability of roots to detect and direct root growth along 

soil biopores which offers an advantage to the penetration of structured subsoils (McKenzie 

et al., 2009). In a similar manner, the angle of the root when it penetrates the soil can be 

important for determining whether root penetration will occur, with near vertical angles 

giving an advantage (Dexter and Hewitt, 1978).  
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1.3.3 Root Hairs  

Root hairs are a common anatomical characteristic of most vascular plants which can 

dramatically increase the surface area of roots (Jones and Dolan, 2012). In more precise 

terms, they are extensions of trichoblasts, specific root epidermal cells which develop in the 

maturation zone of the root tip (Taiz and Zeiger, 2006). In general, root hairs are 

characterized by a rapid growth rate of 1 μm min−1 (Grierson and Schiefelbein, 2002) and a 

short life cycle, with cytoplasmic disintegration reported to occur after 2-3 days (Johnson et 

al., 2001). Nevertheless, root hairs play a central role in the survival and growth of plants 

because of their numerous functions. They influence the uptake of both nutrients and water 

(Gilroy and Jones, 2000) with the root hair zone being the most active zone for fluid transfer 

in the root system due to its high permeability (Segal et al., 2008). Experiments comparing 

the water uptake between wild-type barley and the barley mutant brb lacking root hairs 

demonstrated that wild-type barley had a much higher water uptake (Carminati et al., 2017). 

This was attributed to the ability of root hairs to substantially reduce the rate of matric 

potential reduction at the root-soil interface in rapidly transpiring plants by increasing the 

degree of physical contact between roots and soil which influences water uptake (Carminati 

et al., 2009).  

Another function of root hairs is to enhance the ability of the roots to efficiently extract 

phosphorus from the soil (Keyes et al., 2013). Phosphate uptake is a topic that has received 

considerable attention as it is a crucial component of nucleic acids and membrane 

phospholipids in plants. Bayuelo-Jiménez et al., (2011), performed a large screening 

experiments with 242 accessions of maize on high and low phosphate concentration 

treatments and found a positive correlation between root hair density and biomass for low 

phosphate treatments. Experiments with Arabidopsis mutants lacking root hairs demonstrated 

a lower phosphorus uptake compared to wild type plants when grown in low-phosphorus 

conditions (Bates and Lynch, 2000). In a similar manner, Gahoonia et al., (2001), 

demonstrated that barley mutants lacking root hairs could only absorb half the amount of 

phosphate compared to a wild type. Results reported by Gahoonia and Nielsen, (2004), 

suggest that root hair length is also a significant factor for phosphate uptake in low phosphate 

conditions. Furthermore, they are often the point of infection for the symbiotic association 

between legumes and rhizobia bacteria (Peterson and Farquhar 1996). In general, the density 

and length of root hairs are also shown to have considerable variability in response to P 

availability (Bates and Lynch, 1996), soil water regime and soil compression (Haling et al., 
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2014) which is significant, because root hair density and length are thought to have 

significant potential in plant breeding (Brown et al., 2013).  

Root hairs also influence soil structure. The role of root hairs on pore structure development 

at the root-soil interface during the early stage of crop establishment was clearly 

demonstrated by Koebernick et al., (2017), in an experiment with synchrotron radiation 

computed tomography. Moreno-Espındola et al., (2007), also demonstrated how in sandy 

soils, root hairs helped enhance soil adhesion to roots. Furthermore, they are believed to 

improve soil penetration and root soil contact (Haling et al., 2013), especially in compact 

soils (Lynch et al., 2014). There is also evidence that they can offer enhanced mechanical 

anchorage to the plant (Bengough et al., 2016; Haling et al., 2014). Czarnes et al., (1999), 

reported that maize root hairs contributed significantly to root-soil adhesion. Rebecca et al., 

(2013), also demonstrated that barley genotypes absent of root hairs had a reduced ability to 

penetrate compacted soil. However, perhaps this effect is more localized as it did not scale up 

to the whole root system level in an experiment comparing the pullout resistance of hairless 

Arabidopsis mutants with wild types (Bailey et al., 2002). 

1.3.4 Root cap 

The root cap covers the root tip and as such, it represents the first point of contact between 

root and soil. It protects the meristem of the root tip from abrasion and the stresses exerted on 

it by the soil and determines the direction of root growth (Bengough and McKenzie, 1997). 

Root caps are demonstrated to have significant role over the root’s ability to sense and 

respond to external stimuli, i.e., tropisms. This ability is crucial for reducing root abiotic 

stress. Experiments involving the removal of the root cap inhibit the ability of the root to 

sense gravitropism in plants such as Arabidopsis, maize and rice (Fujii et al., 2018). In a 

similar manner, roots can sense and grow towards water, this is termed as “hydrotropism”. 

Arabidopsis roots can distinguish a wet from a dry surface and induce a preferential growth 

response towards the wet surface (Bao et al., 2014). Interestingly, there is also evidence that 

hydrotropism is not regulated by root tips for species such as Arabidopsis (Nakajima et al., 

2017), rice (Dietrich et al., 2017) and cucumber (Fujii et al., 2018) but, the mechanisms 

responsible are not yet known. Plants were also demonstrated to be able to redirect root 

growth away from higher salt concentrations, i.e., halotropism (Galvan-Ampudia et al., 

2013). Svistoonoff et al., (2007), demonstrated that root tips of Arabidopsis thaliana were 
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able to detect the low phosphate concentration of the medium when it came into physical 

contact with it and subsequently, induced a halt in the growth of the primary root.   

The root cap is also of great importance in influencing the root’s ability to penetrate soil. For 

example, it was demonstrated recently that the geometry of the root tip itself influences the 

probability of a root to penetrate the soil (Colombi et al., 2017). This is because the shape of 

the root tip influences cavity expansion pressure (Bengough et al., 2011), a more pointed root 

tip enables cylindrical deformation of soil which is more efficient compared to spherical 

deformation of soil which is common for blunter shapes (Bengough et al., 1991). Kirby and 

Bengough, (2002), used a finite-element method to predict the stresses around a simulated 

root and demonstrated that peak stress occurs in the soil adjacent to the apex of the root cap. 

Removal of the root cap in maize roots grown in a compacted sandy loam soil was 

demonstrated to halve their elongation rate as a result of the increased root PR resistance, 

from 0.31 MPa to 0.52 MPa (Iijima et al., 2003). Vollsnes et al., (2010), compared the 

growth of the primary roots of a mutant maize after the root cap had been removed with that 

of primary roots of a normal wild-type maize. Elongation rates for the roots of the mutants 

without a root cap was slower than that of the roots of the wild type (although the unimpeded 

roots elongated at the same rate), and the nature of the soil deformation around the root tip 

was quantifiably changed. 

1.3.5 Root Border Cells 

Root border cells can be defined as “the cells that disperse into suspension within seconds 

when root tips are placed into water” (Hawes, et al., 2000). These cells are originally derived 

from root cap meristematic cells and after a series of cell differentiations they physically 

separate from the root cap (Feldman, 1984). They are believed to be an important mechanism 

that prevents microbial and soil fauna attacks to the roots (Hawes et al., 2000; Humphris et 

al., 2005). Furthermore, their production and excretion from plant root caps can have a very 

strong influence on the penetration of plant roots in soil as they can potentially decrease the 

friction between roots and soil and thus, help them overcome soil mechanical restriction 

(Mckenzie et al., 2013). Mckenzie et al., (2013), demonstrated that the mucilage-border cell 

matrix around the root tips reduced the coefficient of root-soil friction to about 0.12-0.26 

which was slightly larger than the 0.05-0.15 range of boundary lubricants. This is further 

supported by the reduced elongation rate of mutant maize with a removed root cap relative to 

wild-type maize in strong soil conditions which suggested a lubricating effect around the root 
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tip (Vollsnes et al., 2010). An increase in mechanical impedance increases the rate of border 

cell and mucilage production to further decrease root-soil friction (Iijima et al., 2000). More 

recently it has being demonstrated that the mucilage in seeds subjected to water stress, helps 

reduce their water potential during germination and reduces seed mortality (Teixeira et al., 

2020). 

The border cell-mucilage matrix also influences soil structure in the rhizosphere. The soil of 

the rhizosphere normally forms a structure referred to as “rhizosheath”, a layer of strongly 

bound and more aggregated soil that adheres firmly to the root surface (Koebernick et al., 

2017). The dimensional extent and chemical composition of the rhizosheath can be rather 

variable between species (Brown et al., 2017) and between genotypes of the same species 

(George et al., 2014). Root exudates and microbially released compounds are known to 

contribute to its formation by binding soil particles together and increasing the overall 

stability of the rhizosphere (Hallett et al., 2009). This complex interaction between root 

exudates, microbial activity and variations in soil water potential can induce significant 

changes in soil structure (Hinsinger et al., 2009). 

1.4 Root phenotyping 

1.4.1 Overview 

Root traits are essential for plant survival and growth. Unfortunately, unlike other easily 

accessible plant organs such as the stem and leaves or small embryo seeds, the imaging of 

undisturbed root systems is a more complicated process due to the opacity of soil. 

Nevertheless, as was pointed out by Walter et al., (2015), the ability to link plant genotypes 

and root system architecture (RSA) is dependent on the detailed measurement of root 

phenotypes. This has motivated the development of numerous techniques able to provide 

information about the root system. Such methods may be indirect such as the estimation of 

root biomass with the use of empirical models (Hendricks et al., 2006) or nutrient budgets 

(Kurz et al., 1996). More commonly however, methods tend to involve the direct 

measurement of the root system. These methods can be grouped in terms of the experimental 

conditions under which the roots were grown (Paez-Garcia et al., 2015) and include field, 

greenhouse/glasshouse and laboratory settings. Each of those methods has advantages and 

limitations (Table 1.1) with the choice of the method to be used being ultimately dependant 

on the root traits of interest, cost and time constraints. In general, there is a reduction in 

reproducibility, and increase in labour and time required when transitioning from a lab-based 
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setting to the greenhouse and the field with difficulties in the reliability of results increasing 

depending on the distance of the experiment from field conditions, as ultimately, the majority 

of modern agriculture still grows plants under field-based soil conditions.   

Table 1.1: A list of the advantages and disadvantages of field, greenhouse and laboratory 

methods (Paez-Garcia et al., 2015). 

 Advantages Disadvantages 

Field Accurate representation of 

field conditions 

Mature stages of plant 

growth  

Labour intensive 

Time consuming 

Difficult to replicate 

Destructive sampling 

Highly limited imaging 

Green/Glass house Closer to field conditions 

when soil/sand is used 

Faster relative to field 

Good replication 

Imaging of roots possible 

Imaging is more limited 

relative to laboratory 

methods 

Limited reflection of field 

conditions 

Destructive sampling 

Laboratory Low cost 

Time savings 

Non-destructive 

Easy to replicate 

Allows easy and detailed 

imaging of roots 

Inaccurate reflection of field 

conditions due to the absence 

of soil, environmental 

conditions and soil biota. 

Restricted to early growth 

stages 

 

1.4.2 Field based methods 

One of the most traditionally used technique to assess root structure in the field is the trench 

profile technique, involving the careful removal of soil with fine brushes from the sides of the 

plant and subsequently drawing of the root system along the soil profile (Nielsen et al., 

1997). The obvious disadvantage of this classical method is the rather significant investment 

in both time and labour which prevents it being high throughput. This limitation motivated 

the development of methods that required less time and effort such as the soil coring method 

which use a tractor mounted hydraulic soil corer to push soil tubes into the soil that are then 
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extracted to assess root density and depth (Wasson et al., 2014). More recently, this method 

was improved by introducing technological components such as UV illumination and 

fluorescence spectroscopy to automatically acquire soil core images with a superior root 

contrast and thus, make the process more efficient (Wasson et al., 2016). Although, this 

method offers greater speed compared to traditional root excavation methods it is 

unfortunately still rather time-consuming and destructive for high-throughput root 

assessment. Other options such as ingrowth cores or pinboard excavation of root systems (do 

Rosário et al., 2000) have similar limitations. Trachsel et al., (2011), suggested the use of 

“shovelomics” as a potentially high-throughput method for root phenotyping of field grown 

plants. The process involves soil excavation around the plant so that it remains in the centre 

of the surface. The roots are subsequent washed gently, placed on a phenotyping board and 

scored through visual assessment. An experienced team was reported to require two minutes 

to visually score a rootstock. However, like other field based methods the protocol involves 

destructive sampling of roots which destroys the root architecture and is also labour intensive 

to implement (Downie et al., 2015). Furthermore, the subjective assessment of roots through 

visual assessment rather than an objective approach could also introduce systematic errors. 

Although, in recognition of that limitation the method was later updated by replacing the 

visual scoring with manual measurements at the cost of a higher time requirement although 

no updated estimates were reported (Trachsel et al., 2013). 

As mentioned above, field-based root sampling methods have the intrinsic limitation of 

destroying the root system architecture. The desire to observe undisturbed root growth in 

field soil over time appears to date back to at least the early 1900s (McDougall, 1916). One 

development that was proposed as a solution to the above problem was the introduction of 

rhizotrons. Rhizotrons are underground enclosures with transparent windows that enabled the 

repeated, non-destructive, in situ measurement of field grown roots that lie on the soil-

transparent-window interface. Rhizotron observation facilities were described in detail by 

authors such as Soileau et al., (1974). More recently developed facilities such as 

rhizolysimeters (Eberbach et al., 2013) are very similar in principle although, significantly 

more elaborate compared to early rhizotron prototypes since they enable monitoring of soil 

water concentration, soil solute sampling and allows for placement of minirhizotron tubes to 

monitor root growth. However, the development of such a facility inevitably requires 

significant effort and financial investment. This motivated the development of minirhizotrons 

which are effectively scaled down versions of rhizotrons in the form of transparent tubes 
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installed in the soil. According to Upchurch, (1987), minirhizotrons were originally proposed 

by Bates in 1937. Modern minirhizotrons systems consist of Plexiglas that contain small 

cameras that obtain 2D images around the transparent surface tubes and are a practically 

feasible option for repeated, non-destructive, in situ measurement of field grown roots 

(Johnson et al., 2001). Studies as early as the 1980s which compared traditional field soil 

core sampling and minirhizotrons had concluded that the minirhizotron scheme was both 

time-efficient and non-destructive in nature for obtaining estimates of root length densities 

(Vincent et al., 2017). However, several studies (Samson and Sinclair, 1994; Joslin and 

Wolfe, 1999; Taylor et al., 2014) demonstrated that the installation process for 

minirhizotrons disturbs the soil. The installation process of minirhizotrons may also cause 

soil compaction, introduce light and affect soil processes (Vamerali et al., 1999) and also 

influence root growth (Joslin and Wolfe, 1999). The alteration of root paths before and after 

the installation of a minirhizotron was also clearly demonstrated by Itoh, (1985). 

Furthermore, the time required in constructing and setting up multiple minirhizotron can be a 

major factor in deterring their widespread use (Eshel and Beeckman, 2012). The most 

intrinsic limitation of rhizotrons and minirhizotrons is that a fraction of the root system will 

always not be in contact with the transparent surface and as such, not all the root system can 

be imaged.  

1.4.3 Greenhouse based methods 

One of the most widely used techniques for root phenotyping in greenhouse experiments is 

the growth of seedlings in pots filled with soil packed at a range of bulk densities (Taylor and 

Ratliff, 1969; Courtois et al., 2000). The obvious advantage of using soil as a substrate is that 

it more closely resembles field soil conditions compared to horticultural sand but at the cost 

of reduced reproducibility, more labour and time required for root washing during destructive 

sampling. Alternatively, gravel mixtures are commonly used as a substrate in pot experiments 

(Goss, 1977). They have the advantage that they have physical properties closer to soil in 

comparison to laboratory-based methods while being easier to replicate compared to soil. 

Root washing is also significantly faster compared to soil grown roots. More recently, an 

improvement to the pot system was proposed in the form of clear pots which are transparent 

pots that allow root imaging of the root fraction in contact with the transparent surface, 

similar to minirhizotrons  (Richard et al., 2015). The disadvantage of this method is that it is 

restricted to the early, embryonic root system and is labour intensive to mount the pouches on 

the imaging station and open opaque foil covering the roots (Le Marié et al., 2014) 
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Another approach is growing roots inside nutrient solutions, i.e., hydroponics. Hydroponics is 

perhaps more relevant for root phenotyping than agar systems in the sense that the method is 

widely used in greenhouse cultures. They were used in the past to study the effect of oxygen 

deficits on roots through reduced oxygen flow (Pitman, 1969). The manipulation of the 

concentration of an osmotic solute e.g. polyethylene glycol, can also be used to induce water 

stress (Whalley et al., 1998). The advantages of hydroponics are that root growth occurs in 

3D, enable easy imaging of the roots, replication, root harvesting and allow for the 

measurement of root exudates (Mathieu et al., 2015). High-throughput hydroponics-based 

systems were developed such as the one presented by Pin ̃eros et al., (2015), who used a 

support system inside the hydroponics to retain the 3D root architecture in rice and help 

determine the genes associated with root architecture. However, the environment available to 

roots is still absent of any physical structure and the distribution of nutrients and oxygen is by 

default homogenous making this method unrealistic for extrapolating to field soil. Hybrids of 

minirhizotron and hydroponics (rhizoponics) were also developed, being submerged 

minirhizotrons consisting of a nylon fabric and supported by an aluminium frame (Mathieu et 

al., 2015). It is also possible to grow roots without any substrate, i.e., aeroponics, by spraying 

them regularly with nutrient solution (Zobel et al., 1976) but this method has similar 

advantages and disadvantages to hydroponics although, roots can be more similar to field soil 

in terms of anatomical structure (Redjala et al., 2011).     

It should also be noted that both minirhizotron systems (Nagel et al., 2012) and X-ray CT 

(Paya et al., 2015) can be used in greenhouse settings in addition to its usual laboratory 

setting (in section below). 

1.4.4 Laboratory based methods 

The most widely used method for studying seedling roots is using agar or plates that contain 

clean gels (Clark et al., 1999; French et al., 2009) as a medium for 3D root growth. High-

throughput completely automated systems using petri dishes have being used in the past 

(Subramanian, Spalding and Ferrier, 2013). Its popularity stems from its easily replicated 

nature, low cost, high transparency and keeping roots in place so that they don’t overlap. 

However, its artificial nature is not a realistic depiction of root growth in soil because roots 

grow in a well-lighted environment absent of heterogenous physical structure and often high 

in both sucrose and humidity. Furthermore, space is usually limited and the process of 

keeping the agar free of pathogens is laborious. However, authors have proposed 
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improvements for the agar system, for example, the D-Root system developed by Silva-

Navas et al., (2015), removes non-intrinsic limitations such as light exposure by shielding 

roots from light. Extensions to 3D have also been made by using digital cameras and rotating 

an agar-filled Petri dish to obtain 3D images of seedling roots (Nagel et al., 2009). Similar 

systems involve the placing of the seedling in a glass cylinder that contains “gellan gum” 

(Phytagel powder dissolved in water). This enables an automated imaging process by simply 

rotating the cylinder and taking images at different time intervals to reconstruct the 3D root 

architecture (Iyer-Pascizzi et al., 2010). Nevertheless, it was demonstrated that when 

comparing these artificial substrate based systems with more realistic plant growth media like 

sand there are significant differences in root morphological traits (Clark et al., 2011). This 

example serves to illustrate the importance of studies that are as close as possible to the 

desirable system, i.e., field soil. More recently, Pineros et al., (2016), reported that as a result 

of the time required to prepare the agar, the lack of growth for some species and the risk of 

fungal infection the system was redesigned. This time the 3D system was hydroponics based 

and the seedling grows between a rotatable structure composed of Acrylonitrile butadiene 

styrene plastic mesh disks. Although, the root architecture did appear to be similar to “gellan 

gum” there were again observable differences when compared with “Turface” which is a 

material that has a physical structure aspect to it.  

Another popular high-throughput method involving artificial media is the use of simple 

germination paper to grow seedlings in a pseudo-3D system that is sprayed with nutrient 

solution (Bonser et al., 1996). Germination paper is cheap, easy to use, highly reproducible 

and enables very easy 2D imaging of the exposed root system, especially when coloured 

germination paper is used to increase root contrast (Hund et al., 2009). Hybrids of 

minirhizotron that use coloured germination paper (rhizoslides) are also in use today (Le 

Marie et al., 2014) However, its artificial nature raises similar concerns with the agar/gel 

systems. 

Other 3D imaging methods like laser scanning (Fang et al., 2009) are also in use today but 

they require simple transparent media, are expensive to use and currently demand long 

imaging times. It should also be mentioned that attempts to create more realistic substrates 

have been made and which allow 3D imaging. One such example involves the so called 

“transparent soils” which are particles of “Nafion”, a sulfonated tetrafluoroethylene-based 

fluoropolymer−copolymer, processed to mimic different physical properties similar to soil 

(Downie et al., 2012). The material has a low refractive index matching that of water and as 
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such, it enables the optical imaging of the root system after saturating the growth chamber. 

However, the material is expensive and must always be chemically processed before it can be 

used for plant growth which is time-consuming. Furthermore, the aqueous solution used for 

imaging was reported to be a sorbitol solution with concentration between 0-13 % (w/v). This 

is an issue for time lapse imaging because sorbitol induces osmotic stress (Zhao and Schaller, 

2004). However, solution used was later changed to one composed of sugar (trehalose) and 

two different colloidal suspensions (Ludox® TMA (pH 6) or Percoll®) which had a smaller 

effect on osmotic potential (O’Callaghan et al., 2018). More recently, an alternative 

transparent soil based on a much cheaper “hydrogel” was developed by mixing a solution of 

alginate and gellan gum, with a solution of MgCl2 (Ma et al., 2019).  

There are also a number of non invasive 3D imaging techniques that can be used to measure 

root traits of plants growing in soil and this list of techniques includes X-ray computed 

tomography (Xray-CT) (Heeraman et al., 1997), nitrogen balancing (Smit et al., 2000), 13C 

labelling (Smit et al., 2000), radioisotope tracing (Wen et al., 2015), synchrotron radiation 

computed tomography (SRCT) (Koebernick et al., 2017), nuclear magnetic resonance 

microscopy (NMR) (van der Weerd et al., 2001), magnetic resonance imaging (MRI) (van 

Dusschoten, 2016) and Positron emission tomography (PET) (Garbout et al., 2012). These 

methods enable the study of root-soil interactions and certain methods such as X-ray CT are 

used at an increasing frequency to develop models describing 3D root-soil interactions (Roose 

and Schnepf, 2008). According to Atkinson et al., (2019), in situ, 3D imaging of soil grown 

roots currently uses three techniques: X-ray CT, MRI and PET. PET scanning uses short half-

life radioactive tracers such as carbon isotopes to visualize roots grown in soil (Garbout et al., 

2012) although, according to Jahnke et al., (2009), the resolution is currently relatively 

restricted to a resolution of approximately 1.4 mm. MRIs use radio-frequency waves and 

strong magnetic field to excite atoms such as the hydrogen component of the water molecule 

and they have been used successfully in the past to image roots and soil water (Leitner et al., 

2014; van Dusschoten et al., 2016). However, the MRI signal is influenced by ferromagnetic 

particles as well as soil moisture which respectively poses restrictions on the soil mineral 

composition and the soil moisture range (Rogers and Bottomley, 1987; van Dusschoten et al., 

2016). It should also be noted that 2D neutron radiography, also used to image roots and soil 

water in situ (Leitner et al., 2014) may be used in tomography (neutron tomography) to extend 

the method to 3D. More recently, the scanning time of an entire tomogram was reported to 
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require only 10 seconds for a soil filled column of 27 mm diameter and 100 mm height 

(Tötzke et al., 2017). 

X-ray CT allows the imaging of 3D soil grown roots in situ by measuring the attenuation of 

ionizing radiation as it passes the root and subsequently, reconstructs the 3D image by 

combining the obtained projections. It is perhaps the most popular 3D imaging technique and 

it’s widely used to build and test root-soil interactions models (Dunbabin et al., 2013). 

However, like the above mentioned methods there is a trade off between sample dimensions 

and image resolution with pot sizes being roughly 8 cm in diameter (Metzner et al., 2015) 

although, resolutions as high as 24 µm for samples of 7 cm in height and 3 cm in diameter are 

possible today with X-ray microtomography (Tracy et al., 2010). Additionally, despite being 

a powerful method able to penetrate the opaque nature of soil. not all roots may be detected. 

Lazorenic et al., (2016), reported that μCT identified only 75 % of the roots observed during 

destructive harvesting. Tracy et al., (2012), reported the correlation between μCT observed 

roots and those harvested destructively to be low (r2 = 0.53). Similarly, the review by 

Metzner et al., (2015), reported that about 60 to 70 % of the root system can be reliably 

identified. Furthermore, similar to MRI, Xray-CT is significantly affected by soil moisture 

and the heterogeneity of soil which again places certain restrictions on the soil type and 

moisture content used with sieved, repacked soil providing a more homogenous background 

with small pores (Zappala et al., 2013). 

In general, these methods are not considered to be high throughput because the required 

equipment is expensive to obtain and maintain, is bulky and requires significant space, is 

difficult to operate (trained staff), has long scanning and processing steps, and depending on 

resolution there are limitations on the dimensions (Wen et al., 2015). In addition to the above, 

even with automated systems the process of physically moving the sample during the 

scanning process can affect plants (Braam and Davis, 1990). There is also concern that 

repeated radiation exposure could influence roots and soil biota although results from 

Zappala et al., (2013), suggest that in the case of Xray-CT low dosages (< 30 Gy) do not 

cause adverse effects for up to 24 weeks. 

Minirhizotrons were also designed for monitoring root growth in closed containers. The 

minirhizotrons may be filled with a substrate, such as gel (Bengough et al., 2004), filter paper 

(Gioia et al., 2017), glass beads (Courtois et al., 2013), grids of toothpicks (Nguyen and 

Stangoulis, 2019), peat (Dresbøll et al., 2013) and soil (Le Marie et al., 2016). Furthermore, 

facilities using automated conveyors for high-throughput phenotyping have already being 



40 
 

constructed (Jeudy et al., 2016; Nagel et al., 2012). Certain systems also offer excellent 

imaging through by using more complex optical setups (Lu et al., 2019), including techniques 

which use luminescence-based reporters to image transgenic roots for certain species such as 

Arabidopsis (Rellan et al., 2015). 

1.5 Least Limiting Water Range 

1.5.1 Introduction  

The soil physical conditions that can limit crop production include oxygen stress, water stress 

and mechanical stress (Mohammadi, et al., 2010). However, all three factors have strong 

associations between them. For example, it is known from soil basic principles that for a 

given soil porosity value the soil water content will be inversely related to soil oxygen 

concentration. In a similar manner, soil water content is strongly associated with soil strength. 

During the process of soil drying there is often a rapid increase in strength due to capillary 

forces making the matric potential more negative with mechanical impedance potentially 

reducing root growth in soil as wet as –100 kPa (Whalley et al., 2005). This is important 

because drought is identified to be a major factor limiting both the growth of crops and the 

distribution of natural plant communities on a global scale (Ryan et al., 2016). At the same 

time the increasing use of heavy agricultural machinery is causing soil compaction which 

further exacerbates the above issues. Soil compaction modifies the soil pore size distribution 

and connectivity which increases the mechanical resistance of the soil and reduces its oxygen 

availability with negative consequences for crops (Lipiec et al., 2012). Thus, understanding 

the relationship between those three physical factors can be a key to provide enhanced growth 

of crops and help with important issues such as food security. 

The least limiting water range (LLWR) is an example of a mathematical model which 

attempts to describe the basic interaction between plants and the soil physical stressors 

described above within the context of plant productivity. In order to help facilitate the 

detailed description of the LLWR the following definitions are introduced: 

Soil water content (θ): A measure of the amount of water (volume or mass) contained in a 

unit volume or mass of soil. 

Soil matric potential (Ψ): The negative gauge pressure (kPa), relative to the external gas 

pressure on soil water, to which a solution identical in composition with the soil solution 
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must be subjected in order to be in equilibrium through a porous membrane wall with the 

water in the soil. 

Water retention curve (WRC): The relationship between θ and Ψ. This is usually represented 

in a graphical form with a plot of θ against Ψ. 

Penetrometer resistance (PR): A measure of sol mechanical strength representing the force 

needed to push a metal cone through the soil expressed as a pressure (kPa) by dividing the 

force by the area of the base of the cone. 

Dry bulk density (Db): The mass of oven dried soil divided by its volume.  

1.5.2 Model Description  

The concept of the “least limiting water range” (LLWR) was developed by da Silva et al., 

(1994), and it represents the first noticeable advancement of the previously established 

concept of the “non limiting water range” (NLWR) by Letey, (1985). A widely used 

definition of NLWR is “the range of water content in the soil where limitations to plant 

growth (such as water potential, air-filled porosity or soil strength) are minimal” (Letey, 

1985). This definition theorises that the NLWR limits are determined by the water content of 

the soil under certain limiting conditions. However, an immediate implication of the above 

definition is that plant growth occurs as a step function at each limiting value rather than in a 

continuous way which more accurately characterises the dynamic and complex interaction 

between plants and soils. Furthermore, although NLWR relates soil properties and their effect 

on crop productivity its qualitative definition did not present a practical way of estimating the 

desirable range of the soil parameters for plant growth. 

Based on the above limitations da Silva et al., (1994), proposed the LLWR which effectively 

aimed at integrating the growth factors mentioned in NLWR in a single index-like variable. 

This mathematically quantitative model has the advantages of being computationally feasible 

and clearly integrating important soil variables such as dry bulk density, porosity, matric 

https://en.wikipedia.org/wiki/Water_content
https://en.wikipedia.org/wiki/Soil
https://en.wikipedia.org/wiki/Water_potential
https://en.wikipedia.org/wiki/Porosity
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suction and soil strength (usually measured as penetrometer resistance) to estimate a range of 

soil volumetric water concentration for optimum plant growth, an example of which is shown 

in Figure 1.2.  In more precise terms, the first step in estimating the LLWR is the fitting of 

two functions to the two empirical datasets of the soil water retention and the soil penetration 

resistance respectively. The empirical regression model used to describe the soil water release 

curve is normally a simple power function used by Ross et al., (1991):  

(1) 𝜃 = 𝑎Ψ𝑏.  

However, an alternative model was proposed by da Silva et al., (1994), which was derived 

through a stepwise multiple linear regression procedure and introduced an extra layer of 

complexity from equation 1 by adding Db to the water retention curve equation:   

(2) 𝜃 = exp(𝑎 + 𝑏𝐷𝑏 ) ∗  Ψ𝑐. 

The function used for the soil penetration resistance is normally the one proposed by 

Busscher and Sojka, (1987):                                      

(3) 𝑆𝑅 = 𝑑𝜃𝑒𝐷𝑏
𝑓
. 

The second step is an assumption which requires the selection of four limiting values for soil 

stressors, with each value corresponding to a soil condition at which plant growth is severely 

limited. The values chosen by the authors and which appear to be used routinely to this day 

are as follows: 

1) Matric Suction at field capacity (Ψ𝑓𝑐):  -0.01 MPa   

2) Matric Suction at wilting point (Ψ𝑤𝑝): -1.5 MPa   

3) Soil resistance at impeded root elongation conditions (𝑆𝑅𝑙𝑖𝑚𝑖𝑡): 2 MPa 

4) Air filled porosity at hypoxic conditions (𝐴𝐹𝑃𝑙𝑖𝑚𝑖𝑡): 0.1 (or 10 %). 
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The estimated regression parameters a, b, c, d, e and f characterising the LLWR from the first 

step are then used after simple algebra manipulations to express θ in the following equations: 

(4) 𝜃𝑓𝑐 =  exp(𝑎 + 𝑏𝐷𝑏 ) ∗  Ψ𝑓𝑐
𝑐 .    

(5) 𝜃𝑤𝑝 =  exp(𝑎 + 𝑏𝐷𝑏 ) ∗  Ψ𝑤𝑝
𝑐 . 

(6) 𝜃𝑠𝑟 =  [𝑆𝑅𝑙𝑖𝑚𝑖𝑡 (𝑑𝐷𝑏
𝑓)]⁄

(1 𝑒)⁄
. 

(7) 𝜃𝑎𝑓𝑝 = [1 −  (𝐷𝑏 𝐷𝑟)] −  𝐴𝐹𝑃𝑙𝑖𝑚𝑖𝑡⁄ . 

The LLWR is then defined to be the difference between the upper limit (UL) and the lower 

limit (LL) as follows: 

 (8) 𝐿𝐿𝑊𝑅 = 𝑈𝐿 − 𝐿𝐿 =  min(𝜃𝑓𝑐, 𝜃𝑎𝑓𝑝) − max(𝜃𝑠𝑟 , 𝜃𝑤𝑝).  

 

Figure 1.2: Example LLWR output of soil volumetric water content (θ) vs. bulk density (Db). 

The regression lines correspond to the soil volumetric content at the plant limiting conditions 
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of 10 % soil air filled porosity (θAP), -0.01 MPa soil matric suction (θFC), 2 MPa soil 

penetrometer resistance (θPR), and -1.5 MPa soil matric (θPWP). The dry bulk density value 

represented by Db-crit marks the transition point between the shaded LLWR zone and the non 

LLWR zone where plants should be least limited relative to each factor. 

1.5.3 Limitations 

As discussed previously the basis of the LLWR is critically dependant on two assumptions: 

1) Assumption 1: Equations 2 and 3 are accurate and precise regression models for 

empirically observable datasets. 

2) Assumption 2: The LLWR limiting values are complete descriptors of the upper or lower 

limits for plant growth for all cases.  

A potential issue with assumption 1 is that the two empirical models might not provide a 

good fit for the data and as such the researcher should always assess if they are appropriate 

descriptors of the datasets. Assumption 2 is in the authors’ opinion the most problematic of 

the two assumptions since it effectively underscores the complexity of plant-soil interactions. 

For example, an immediate implication of this assumption is that all plants have identical 

physiological responses, something which is impossible, since several soil physical stresses 

are known to be influenced by a range of root traits (Bengough et al., 2011). 

If a crop plant was more susceptible to oxygen limitations e.g. potatoes, then the choice of the 

10 % air filled porosity is completely unjustifiable from a plant physiology point of view 

when compared to less susceptible species such as rice. Other examples are of course not 

difficult to construct. For instance, Zarebanadkouki et al., (2016), examined hydraulic 

conductivity in lupin (Lupinus albus) roots with neutron radiography and it was clearly 

demonstrated just how variable the process is between different types of roots and the roots 

themselves. Furthermore, da Silva et al., (1994), originally indicated in their analysis that soil 

texture can influence the limiting value of air-filled porosity with the effect being stronger for 
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more heavy textures. This will effectively imply that other soil properties not included in 

LLWR can implicitly influence it. It can also be argued, that for soils which are rarely 

saturated it is highly unlikely that compaction will be a limiting growth factor for plant 

growth compared to soil aeration (Aust et al., 1998). Siegel-Issem et al., (2005), also pointed 

out how depending on soil properties some plants will have a higher growth rate outside the 

LLWR range as opposed to inside it. Other authors had also demonstrated in the past that the 

critical air-filled porosity will be dependent on factors such as soil temperature and the 

considered depth (Bartholomeus et al., 2008). Similar concerns about the limiting values can 

be found in the literature (Mohammadi et al., 2010; Bengough et al., 2006), with other 

authors (De Jong van Lier and Gubiani, 2015) raising more severe criticisms demonstrating a 

range of issues arising from the simplicity of the model.  

In a similar manner, it is misleading to adopt the 2 MPa threshold value for soil strength. In 

general, root mechanical stress decreases root elongation rates in an approximately linear way 

until they reach a high penetrometer pressure (Whalley et al., 2006). This value originates 

from the work of Taylor and Ratliff, (1968), who used a blunt (30 °semi-angle) penetrometer 

to study how PR influences root elongation rates. However, a blunt penetrometer is related to 

spherical and not to cylindrical cavity expansion and may also involve the formation of soil 

bodies as opposed to a sharp (5 °semi-angle) penetrometer (Bengough and Mullins, 1991). It 

will be more accurate to say that the threshold value of 2 MPa corresponds to the soil strength 

where root elongation rates are reduced by half (Dexter, 1987). If that definition is adopted, 

then the PR threshold value could be 0.8 MPa for cotton roots and 2 MPa for maize and 

peanut roots in the absence of water stress according to the review of Bengough et al., 

(2011). Gregory et al., (2007), also reported that for most of the spring and summer the PR 

values of three contrasting soil types in the UK were higher than 2 MPa below 30 cm from 

the surface. Even in surface soil the LLWR can become very small under zero tillage 
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practices (Betz et al., 1998). In contrast to a penetrometer whose movement follows a straight 

line, roots can exploit cracks and pores within the soil thus experiencing a much-reduced 

mechanical impedance (McKenzie et al., 2009; Brown et al., 2004; Valentine et al., 2012). 

As a result, mean penetrometer resistance in zero tillage treatments can poorly reflect 

mechanical impedance because roots exploit networks of continuous channels even in a 

relatively strong soil matrix (Bengough et al., 2006).  

In regards to the drought threshold value of -1.5 MPa, root elongation may occur for a soil 

water potential significantly less than the -1.5 MPa threshold (Portas and Taylor, 1976) but 

this value is probably accurate for transpiring plants in a fully equilibrated soil (Bengough et 

al., 2011). However, if similar to soil strength, we adopt a threshold value at which root 

elongation rate is halved then the threshold value will vary between species. For example, a 

matric potential of -0.5 MPa could be used for maize roots grown in the absence of 

mechanical impedance (Bengough et al., 2011). For seminal roots grown in vermiculate this 

value could be between -0.4 MPa and -0.5 MPa for maize (Akmal and Hirasawa, 2004) and 

between -0.2 MPa and -0.3 MPa for wheat (Sharp et al., 1988). Furthermore, hysteresis 

effects could change the soil water release curve during soil drying which will be definition 

change the LLWR. 

It should also be noted that there is a certain degree of restriction as to the dimensional extent 

of the soil system considered in the LLWR. For example, consideration of the soil system 

beyond the top 20 cm and for an agricultural soil the LLWR will be affected by the nature of 

the agricultural practises used (Bengough et al., 2006). The LLWR could then be considered 

for soil depths beyond the 20 cm limit. In a similar way one may assess LLWR at different 

time points as properties such as the soil water release curve will be influenced by soil 

structure which will change depending on season, agricultural practises and soil biota,  
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In summary, although the LLWR is a computationally feasible model that can be used as an 

index of soil quality it is unfortunately an example of a limited trait quantitative, mechanistic 

model and it does not help to increase the current knowledge of root trait-soil interactions and 

by implication future crop production unlike other mathematical models (Roose and Schnepf, 

2008). Although, the task of modelling root architectural traits and their interaction with soil 

can be very challenging (Li et al., 2015), the process can be invaluable in determining 

beneficial root traits for different plant functions such as root depth for drought resistance 

(Dunbabin et al., 2013). Nevertheless, modification of the LLWR limits using knowledge of 

plant species differences (Mohammadi et al., 2010) could potentially provide significantly 

more accurate predictions and enhance crop productivity. 

1.6 Aims of this project 

Root micro-traits can have an enormous influence on the ability of plants to survive and grow 

when exposed to various soil stressors. Only, by developing methodologies which enable the 

accurate quantifications of those traits and evaluate those in the context of precisely defined 

soil stressing conditions can we develop accurate process based models that can help increase 

understanding of plant soil interactions. The LLWR is an easily understood, computationally 

feasible index of soil quality but is currently limited by assuming a singular plant response 

across the spectrum of plants. As such, the first aim of this thesis will be the development of a 

standard operating procedure (SOP) which will enable for the manipulation of the LLWR 

associated stressors while having the ability to quantify a list of root traits of interest. The 

second objective will be to assess to what extend the variability in root traits is responsible 

for differential root growth rates under various soil conditions. This will provide the data 

which can then be used as a basis for future modelling work. Finally, the third aim is the 

integration of root traits into the existing LLWR model by using any existing patterns or 

relationships among the dataset obtained in the previous step. If successful, the new model 

will serve as an indicator of how root traits potentially shift the boundaries of the LLWR 

range.  

The aims of this thesis may be summarised as: 
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1. To develop a plant phenotyping system which enables the manipulation of the LLWR 

soil stressors while allowing for the imaging of seedling roots. 

2. To develop methods which enable the quantification of root micro traits, e.g., root tip 

geometry. 

3. To assess if root trait variability is responsible for differential growth rates when 

subjected to various soil LLWR associated conditions. 

4. To modify the LLWR model through the integration of root traits and try to predict 

which root traits might be significant. 
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2. Rhizotron Development 

2.1 Introduction 
Modern agriculture is becoming increasingly mechanized with important crop plants such as 

soybean and corn being completely dependent upon machinery (Olibone et al., 2010). One of 

the side effects of the increasing usage of heavy machinery is an increase in the compaction of 

the soil. Routine soil cultivation by ploughing encourages the formation of pan layers in the 

horizontal direction and wheel tracks form heterogeneously compacted structures in the 

vertical direction (Chamen et al., 2003). Soil compaction has a number of negative 

consequences on soil functions such as an increase in its mechanical resistance, reduction in 

water infiltration, and increased soil saturation, all of which have negative implications for 

crop yield (Keller et al., 2015). As such, it is essential to increase our understanding of how 

plant roots interact with the soil physical conditions associated with mechanical stress, water 

stress, and oxygen stress, to avoid losses in crop yield (Whitmore and Whalley, 2009).   

 

The least limiting water range (LLWR) is one such concept relating the important soil 

stressors of penetrometer resistance (a measure of mechanical impedance), porosity and water 

potential to the physiological limits of plant growth (da Silva et al., 1994). The output of the 

model is a soil moisture range indicating the limits within which plants will experience 

minimum restrictions in growth. The limits are effectively four threshold values indicating the 

points at which root growth stops for three soil physical stressors and include penetrometer 

resistance (2 MPa), air filled porosity at hypoxic conditions (10%), matric suction at field 

capacity (a measure of soil water-holding capacity) (0.01 MPa) and matric suction at the 

permanent wilting point (1.5 MPa). Thus, by definition, the LLWR is directly influenced by 

two basic components: (i) soil stressors and (ii) the root traits of the plant in question. The 

interaction between (i) and (ii) is what determines the limits of the LLWR. The LLWR is 

however limited in its scope since it does not consider the complex variability in root traits 

that can influence it. For example, root hairs are highly permeable structures which influence 

the ability of roots to extract nutrients and water (Segal et al., 2008). However, in the context 

of LLWR the limits will be identical when comparing a plant with root hairs and a mutant 

variety without root hairs. Many other examples can of course be constructed but the main 

message is that the LLWR is determined only by soil physical properties and that the plant 

response is only integrated through the limiting values assumptions mentioned above defining 

the conditions at which root growth is halted.   
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In order to reformulate the LLWR a system was required which enabled the manipulation of 

the LLWR soil stressors and at the same time enabled the quantification of root traits. The 

requirement to image roots in situ excluded the more traditional approach which involves 

destructive field sampling. It also prohibited the use of soil-less systems such as clear gels 

(French et al., 2009) or filter papers (Hetz et al., 1996) as the LLWR stressor variables could 

not be manipulated in a manner which reflected the physical processes occurring in soil. The 

desirability of the system to be high throughput and to grow seedlings at least for three weeks 

excluded more recently developed methods such as transparent soils (Downie et al., 2015).  

Other powerful methods which enable visualisation of roots in situ such as X-ray CT 

(Heeraman et al., 1997) were also rejected due to difficulties in assessing the root micro-traits 

of interest. As a trade-off the proposed system that was selected was based on the design of 

minirhizotrons. 

 

Rhizotrons are effectively large underground tunnels surrounded by transparent glass and 

enable observations of the portion of the root system that is growing against the glass. 

Unfortunately, its construction is rather complicated and costly which prohibits their 

widespread use (Klepper and Kaspar, 1994). The scaled down version of rhizotrons are 

referred to as minirhizotrons. Minirhizotron systems were originally described by Bates in 

1937 and are similar in principle to the much larger rhizotron system but are much smaller 

and designed to be carried by the user. They consist of a transparent tube which is installed in 

the ground with a cylindrical imaging device moving into the tube to collect images. 

Although root growth is not identical to field soil, minirhizotron observations of root systems 

tend to correlate well with results from soil sampling methods (Upchurch and Ritchie, 1983; 

Liao et al., 2010). An alternative to field rhizotron observation tubes are flat rhizotron growth 

chambers.  These are often custom made and have been  proposed by various authors over the 

years (Rewald and Ephrath, 2013). They normally consist of a small soil/gravel filled 

container made from transparent material and as such, enables the imaging of roots at the 

root/rhizotron interface. Minirhizotron system data has being used in the past to develop 

mathematical models which aim to predict root growth under different soil conditions (Dupuy 

et al., 2010) and as such, they could provide a framework for redefining the LLWR.  
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2.2 Design criteria 

Minirhizotron systems offer a relatively cheap and potentially highly detailed imaging 

platform that can be used to monitor seedling roots. In order to be able to measure the various 

root traits that can help redefine the LLWR it was essential to either adopt an existing design 

or create one. In order to determine if an existing minirhizotron design could be used, a list of 

properties that the minirhizotron system should ideally possess was compiled and then used 

to guide the selection process. From here on after, the term “RS” will be used to refer to an 

ideal/desirable minirhizotron system. The first two properties are introduced here: 

Property 1 (P1): The RS structure and growth substrate must enable the manipulation 

of the LLWR soil stressor variables. 

Property 2 (P2): The RS structure must have an imaging surface which allows the 

imaging and quantification of both coarse features of the roots (root detection) as well 

as finer root features (root hairs). 

P1 is simply stating that the RS should use a growth substrate with physical structure in it. 

This could be soil or sand/gravel mixtures but substrates such as filter paper or agar were to 

be excluded. Although valuable, such growth substrates have several drawbacks, such as 

absence of microbial interactions, soil structure and in most cases, even absence of 

mechanical impedance. This was required to be able to manipulate the LLWR soil stressor 

variables in the RS to help redefine the model.   

P2 is a requirement for high quality images obtained from the RS. If the LLWR would be 

redefined by considering root trait variation, then the ability to measure in situ not just coarse 

root traits but finer root traits such as root hairs known to influence root hydraulic properties, 

will be necessary.     

Based on the above requirements the following systems were considered with the aim to 

encompass a range of minirhizotron designs: 

Bengough et al., (2004), developed a 2D gel chamber system for the rapid and sequential 

measurement of root growth that was used to study cereal seedlings. The chambers were 

constructed from two plates (one black polyvinylchloride and one transparent perspex), with 

dimensions of 215 × 300 × 3 mm3. The root system was imaged with a flatbed scanner Epson 

Expression 1600XL-PRO (300 dpi/82 µm – 1500 dpi/15 µm) and then manually traced to 
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obtain coarse root features such as root length. Sample images suggest that root hairs were 

visible, but they were not reported to have being measured.  

Gioia et al., (2017), developed a system referred to as “GrowScreen-PaGe” which consists of 

two-dimensional polymethyl methacrylate plates (350 x 250 mm2) covered on both sides with 

wetted germination paper providing water and nutrients for the developing root system. A 

custom-made mobile imaging box (outer dimensions: 140 x 140 x 46 cm3) was then used to 

image the root system at a resolution of 74 mm per pixel. Coarse root traits were measured 

but root hairs were not reported to have being measured. 

Le Marie et al., (2016), introduced a “rhizoslides” system which consists of two PVC bars 

(600 x 60 x 10 mm3) and a plexiglass sheet (650 x 530 x 4 mm3) fixed with two screws 

between the bars. A custom-made mobile imaging station (~ 168 x 164 x 110 cm3) was then 

used to image both the root and the shoot system after the rhizoslides were manually placed 

onto the imaging mount. The images themselves were taken with a 22.3 megapixel full-frame 

digital single-lens reflex camera (EOS 5D Mark III, Canon, Tokyo, Japan) equipped with a 

50 mm lens (compact macro 50  mm f/2.5, Canon, Tokyo, Japan) giving an image resolution 

of ~ 0.13 mm pixel-1. Coarse root features were then traced by using the software SmartRoot 

but root hairs were not quantified although sample images indicate that they were visible. 

Jeudy et al., (2016), introduced an automated conveyor system referred to as “RhizotTubes” 

which are cylindrical minirhizotrons 18 cm in diameter and 50 cm high. Root growth 

between an inner permeable membrane (mesh size of 18 µm) and the external outer 

transparent polymethylmethacrylate tube, which separates the plant root from the soil. The 

membrane is permeable to nutrients and water but it does not allow roots to pass through 

which makes it a pseudo-3D system. The roots are photographed with the “Rhizocab” 

(automated conveyor) camera through the outer transparent tube. The final definition of the 

RGB image is 12,000 × 12,000 pixels with a file size of 411 MB. All root traits were 

manually measured from the images although it was stated that an automated image 

processing method was in development. These authors did not mention root hairs so it is not 

clear whether they might be visible for this system. 

Courtois et al., (2013), developed a hybrid minirhizotron design based on hydroponics 

referred to as “rhizoboxes”. Roots are held together by a sandwich of two transparent 

plexiglas plates (50 cm x 20 cm x 2 cm3) and an installed nail board that provides a degree of 

mechanical resistance and maintain the spatial distribution of roots during substrate removal. 
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The rhizoboxes are filled with glass beads of 1.5 mm diameter to provide some degree of 

mechanical resistance for roots compared to normal hydroponics. At the end of the 

experiment the rhizoboxes are removed from the hydroponics and the glass beads are 

removed to enable simple camera imaging of the root system that is held together by the grid 

of nails. Fine root traits such as root hairs were not reported to have been measured although 

the submerged nature of the system will almost certainly destroy fine root traits. 

Nagel et al., (2012), developed an automated minirhizotron system known as 

“GROWSCREENRhizo” which is capable of automatically imaging roots and shoots of 

plants grown in soil-filled rhizotrons (up to a volume of ~18 L) with an impressive 

throughput of 60 rhizotrons per hour. The image processing is reported to be semi-automatic 

with manual tracing of the portion of the root system not captured by the algorithm although 

no estimate of the accuracy of the algorithm was reported. There was also no mention of any 

root hair associated measurement, so it is not clear if they are visible or not in the images. 

Unfortunately, the development of this high-throughput phenotyping platform will require 

significant investments to develop and as such, was excluded from further consideration. 

Rellan et al., (2015), designed a complex minirhizotron system known as GLO-Root for 

Arabidopsis which uses luminescence-based reporters to image transgenic roots in time lapse 

studies. The rhizotrons are imaged on both sides and the images are merged to obtain the 

final image of the root system. Use of such systems however will require the genetic 

modification of species and specific imaging setups to detect the required wavelength of the 

expressed fluorescent protein. Furthermore, as was pointed out by Faget et al., (2013), in 

many countries it is forbidden to use transformed plants in the field which will prohibit field-

based validation.  

In general, all the above systems were in violation of PI or P2 or were not feasible to use in 

this study due to costs. This led to the decision of developing an RS prototype that satisfy the 

criteria. Since, root hair measurement appeared to be difficult to observe or measure in the 

existing systems it was decided to reject the use of soil for this system as soil is a highly 

variable material and not of consistent quality to achieve the required image quality. This 

decision was also supported by the consideration that in order to test future LLWR 

hypotheses constant material properties for the growth substrate will be needed to remove the 

intrinsic variability component of soil. As a result, the following two properties were added to 

the list of properties: 
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Property 3 (P3): The RS substrate must have consistent physical properties in order to 

reduce the variability of results that are inherent from the variance in soil properties. 

Property 4 (P4): The RS substrate must produce root growth rates that are similar to 

soil throughout the duration of the experiments.  

 

P3 is simple restating the constant material properties requirement mentioned above. 

P4 is an additionally requirement that was added to ensure that the RS growth substrate to be 

used had to be a good proxy to soil determined by similar root growth rates. 

2.3 Aims 

Based on the discussion of the previous section a list of desirable properties for the RS was 

established: 

Property 1 (P1): The RS structure and growth substrate must enable the manipulation 

of the LLWR soil stressor variables. 

Property 2 (P2): The RS structure must have an imaging surface which allows the 

imaging and quantification of both coarse features of the roots (root detection) as well 

as finer root features (root hairs). 

Property 3 (P3): The RS substrate must have consistent physical properties in order to 

reduce the variability of results that are inherent from the variance in soil properties. 

Property 4 (P4): The RS substrate must produce root growth rates that are similar to 

soil throughout the duration of the experiments.  

This chapter focuses on four key experiments which were designed to develop the RS within 

the context of the above defined properties. The experiments described were designed to 

address those properties with a basic description being provided by Table 2.1. To convert 

those properties into testable experimental hypothesis the following two terms are introduced 

here with the understanding that their precise definitions will be provided in later sections: 

ARGR: Average Root Growth Rate – a measure of root growth rate (Section 2.4.8). 

ISI: Image Sharpness Index – a measure of image sharpness (Section 2.4.10). 
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Table 2.1: Basic description of the experiments described in Chapter 2.  

Experiment -

Section 

Property Description 

1 - 2.5.1 P1, P3 and P4 Comparison of ARGR for four different RS 

substrates. 

2 - 2.5.2 P3 and P4 Comparison of ARGR in RS substrate sieved to four 

different particle size ranges. 

3 - 2.5.3 P2 Comparison of ISI for three different rhizotron 

scanning surfaces. 

4 - 2.5.4 P2 and P4 Comparison of ISI and ARGR for four different RS 

substrates. 

 

2.4 Methods 

2.4.1 Assessment of initial RS criteria 

In order to achieve the properties described above, it was necessary to first develop and test 

an RS design and to determine a growth substrate which will be used in future experiments. 

In order to satisfy P1, P3 and P4, the RS must use a substrate with a physical structure that 

included particles, air and water, to ensure that the basic physical mechanics of root growth in 

soil are mimicked to a reasonable extent. The requirement of constant physical properties 

(P3) would imply a material of artificial origin since naturally occurring soil can have 

extremely variable properties. The above conclusion was also reinforced by the requirement 

for high image quality (P2). As such, it was decided that artificially coloured sands would be 

compared with soil as they could potentially satisfy P1, P2, P3 and P4 and because 

horticulture sand is often used in studies as a proxy to soil (Materechera et al., 1991; 

Bengough et al., 2011).          

In a similar manner, P2 will also impose certain restrictions in the design of the RS to be able 

to image both coarse (roots) and fine (root hairs) root traits. Conventional image sensors used 

in minirhizotron images have a grid size of 640 x 480 pixels and a resolution of about 60 µm 

(Faget et al., 2010) which eliminated most options. On the other hand, excellent image 

quality can be achieved with certain systems such as the one developed by Lu et al., (2019), 

but were not appropriate here as it was reported to be as small as 1.1 x 1.1 x 1.2 cm3. Instead, 
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the dimensions were restricted to A3 paper size (420 x 297 mm2) because this is the largest 

dimension for which commercially available flatbed scanners can be obtained with high 

optical resolution (up to 2,400 dpi) for minirhizotron scanning. The RS was built out of 

acrylic plastic as opposed to glass because of its higher hardness, transparency and reduced 

effects on root growth (Cai, 2006), is commercially available and of low cost (£10 per unit). 

Reduced costs can be very important for building a high-throughput system, which is a 

requirement for plant root phenotyping platforms linking genotype to phenotype (Walker, 

2009). In fact, classical mapping of quantitative trait loci or association mapping studies 

require a minimum of 100-500 individuals (Rafalski, 2010).  

It should also be noted that because the RS is restricted to A3 sized dimensions root growth 

will be restricted to a mature seedling stage depending on the species and treatment. Seedling 

root phenotype can sometimes be a good predictor of later root morphology such as maize 

grown in hydroponics (Tuberosa et al., 2002) but that is not always the case (McPhee et al., 

2005). However, in general, most techniques developed for high-throughput root phenotyping 

are restricted to young seedlings (Jeudy et al., 2016). Furthermore, the imaging setups used in 

high-throughput systems are normally restricted to scanners or cameras which have fast 

image acquisition speeds and enable hundreds of plants to be phenotyped daily (Downie et 

al., 2015). The proposed RS does seem to have potential as a high-throughput plant 

phenotyping platform.    

2.4.2 Minirhizotron Construction 

2.4.2.1 Minirhizotron design A 

The minirhizotrons were developed in two stages. Initially they were composed of two pieces 

of rectangular (420 x 297 mm) acrylic (PlasticSheets.com) with smaller spacers being placed 

at the edges of them to seal them and to allow a 5 mm gap between the acrylic surfaces 

(Figure 2.1). 
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Figure 2.1: Schematic diagram of the starting minirhizotron design A) Top view and B) 

Front view. 

Each minirhizotron was filled with growth substrate (Section 2.4.3) at an approximate dry 

bulk density (DBD) of 1.5 g cm-3 and subsequently watered. This relatively high density was 

the minimum DBD at which all substrates could be packed inside the minirhizotrons without 

slumping however, it is not unusual to observe it in agricultural fields where the use of heavy 

machinery can easily increase the surface soil density (Keller et al., 2015). The apparatus was 

then placed at a 30° angle from the vertical to achieve root growth against the imaging 

surface and subsequent good quality images from scanning. All minirhizotrons were covered 

with a light, waterproof, black fabric (Do4U), so exclude light from the root growth surface. 

After field capacity was reached 2 pre-germinated spring barley (var. Optic) seedlings 

(Section 2.3.5) with a root length between 1-2 cm were randomly chosen and subsequently 
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sown at the top of minirhizotrons. The second barley seedling was removed after 48 hours so 

that only one actively growing seedling remained after the initial establishment phase.  

2.4.2.2 Minirhizotron design B 

Minirhizotron design B included a 2 mm acrylic imaging surface to allow high imaging 

quality. This required drilling and adding screws to maintain rhizotron integriy due the the 

weight of the filling substrate.  An irrigation system was also added to allow consistency of 

irrigation over the entire experimental period, and across replicates. The internal 

compartment of the RS was enlarged to fit the irrigation pipes and the surplus volume was 

filled with a 4 mm thick acrylic. Figure 2.2, is a schematic diagram that demonstrates the 

minirhizotron design B that allowed automated irrigation while controlling the minirhizotron 

volume. Irrigation cables were fitted to the minirhizotron leaky pipes to slowly saturate the 

minirhizotron over a series of irrigation events rather than forcing a large amount of water in 

turn connected to an irrigation pump (Boyu FP-1500 Adjustable Pump) in a black light-

absorbing water container. The irrigation pump could then be controlled through a custom-

made fitted timer to operate when required. This makes the system more automated and 

eliminates the need for manual watering. After filling with dry growth matrix these 

minirhizotrons were watered for 2 days, 3 times a day each for 3 minutes at slow pressure 

through the leaky pipes allowing the water to equilibrate throughout the substrate. Seedlings 

were sown after this period as described for the minirhizotron design B above. 
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Figure 2.2: Schematic diagram of new minirhizotron design B A) Top view and B) Front 

view (circles indicate screws). 

2.4.3 Growth Substrate – sample preparation 

Five different substrates were tested as potential growth substrate materials for the rhizotrons.  

Two soils were collected from two fields “Mid Pilmore” (sandy texture) and “Bullion” (clay 

texture) at the James Hutton Institute, Invergowrie, Dundee DD2 5DA. The soil was oven 

dried at 105°C for 48 hours and then sieved to a range of aggregate sizes (8, 4 and 2 mm) 

mm. The “Blue Sand” (Stoney River) was gently washed with potassium chloride to make it 

more hydrophilic. Afterwards, it was washed again thoroughly with tap water to remove the 

residue acids and finally oven dried at 105°C for 24 hours. The “Black Sand” (Natural Color) 

came in two different size fractions both gravel (8 - 2 mm) and sand (2 - 0 mm). The gravel 

was first sieved to 4 mm and then mixed 50/50 % (gravimetric) with the sand. Afterwards, 

the sand was washed as recommended by the manufacturer and subsequently oven dried at 
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105 °C. The “Flourite Black Sand” came in two different size fractions both gravel (8 – 4 

mm) and sand (4 – 0 mm). The gravel and the sand were first mixed together 50/50 % 

(gravimetric) and the entire mixture was subsequently sieved at 4.0, 2.8, 2.0 and 1.4 mm to 

create mixtures of 4.0 - 2.8, 2.8 - 2,0, 2.0 - 1.4 and 1.4 - 0 mm respectively. Each mixture was 

then washed with tap water for three times and subsequently oven dried at 105 °C. Oven 

dried materials were always used as they are not cohesive and thus, much easier to pour 

inside the rhizotrons. This also provided a more accurate estimate of rhizotron dry bulk 

density. 

2.4.4 Growth Substrate – physical property analysis 

Pilmore and Bullion soils were first collected, air dried for a period of 5 days, and then 

subsequently sieved at 8, 4 and 2 mm to create the particle ranges of 8-0, 4-0 and 2-0 mm 

respectively. The 2 soil types × 3 aggregate size treatments were then used to create a series 

of cylindrically shaped (4.5 mm diameter x 5.0 mm height) repacked soil cores of different 

aggregate sizes at different dry bulk densities (0.9, 1.0, 1.1, 1.25, 1.3, 1.45 and 1.6 g cm-3) in 

a 2 by 3 by 7 factorial design (n = 4).  The gravimetric moisture content of each soil core was 

first adjusted to 20 % to give it consistency. Cores were saturated with degassed water, then 

subjected to a sequence of different matric suctions (5, 10, 20 and 50 kPa) via the use of sand 

and tension tables. A needle penetrometer (1 mm diameter, 30 8 cone angle, 4 mm min-1 

penetration rate, readings; averaged at 1-mm intervals from 5–15 mm depth range) fitted to a 

mechanical test frame (Instron model 5544; Instron, MA, USA), with a 50-N load cell 

accurate to 2 mN at maximum load, was used to measure penetration force at each matric 

suction and calculate penetrometer resistance (force divided by cone cross-sectional area) 

(Bengough and Mullins, 1990; Valentine et al., 2012). The measurements of mass and 

penetrometer resistance enabled the estimation of the soil water release and strength curves 

respectively. This enabled an assessment of the differences between samples with contrasting 

physical properties and how that may affect their strength and water holding capacity. 

The exact procedure was also used for the Flourite sand treatments used in this experiment 

but only for a dry bulk density of 1.6 g cm-3 in a 2 by 3 by 1 factorial design due to time 

limitations. The soil strength curve was obtained with loess regression by using the 

“geom_smooth” function from the “ggplot2” package in R. The water release curve was 

obtained by fitting a Van Genuchten model (Van Genuchten, 1980) by using the 

“fitsoilwater” function from the “soilphysics” package in R. The obtained Van Genuchten 
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model was then used to estimate the effective pore diameter for each substrate by using the 

relation: 𝑑 = (300 𝜓)⁄ , where ψ is the matric potential (Marshall and Holmes, 1988). 

In addition to the above, laser diffraction (Mastersizer 2000 - Malvern Instruments) was used 

to determine the particle size distribution of the Pilmore and Bullion soils (Table 2.2) 

analysed at the James Hutton institute located in Craigiebuckler, Aberdeen AB15 8QH, 

Scotland. 

Table 2.2: Physical properties of the two soils used in the experiments. 

  Pilmore Soil Bullion Soil 

 200-20 µm 64.05 55.86 

Percentage between (%) 20-2 µm 28.49 37.34 

 2-0.02 µm 7.46 6.80 

Specific Surface Area (m2 g-1)  0.84 0.856 

Uniformity (n/a)  2.09 3.64 

Particle density (g cm-3)  2.53 2.54 

Texture  Sandy Clay 

 

2.4.5 Seed germination 

All the seeds used in the experiments described in this chapter were spring barley (Hordeum 

vulgare var. Optic). 

The steps involved in the process of seed germination used in all experiments are as follows: 

1. Seeds were placed in a beaker containing deionized water and mixed slightly to 

disperse air. 

2. The seeds were left in the beaker overnight. 

3. The seeds were sterilized by immersing them in a solution of 2% Sodium 

Hypochlorite for about 15 minutes.  

4. The seeds were rinsed three times with sterile distilled water to remove the Sodium 

Hypochlorite. 

5. Two layers of filter paper were placed in a Petri-dish and subsequently moistened 

with sterile distilled water. 
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6. The seeds were placed on top of the wet filter papers with the embryos facing 

downwards. 

7. Filter paper was placed on top of seeds and moistened with sterile distilled water. 

8. The plates were covered with aluminium foil and incubated at 15oC for a period of 2-

3 days. 

2.4.6 Glasshouse growth conditions 

All the experiments described below took place in a temperature-controlled glasshouse 

located at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland. The 

temperature was set to 18oC during the day and 14oC during the night. The threshold value at 

which the artificial lighting was activated was 150 W m-2. The lamp fittings installed were 

GAVITA GAN 400AL Ecomax fitted with 400W SON-T sodium bulbs.  

2.4.7 Minirhizotron imaging 

At intervals of 7 days the minirhizotrons were removed from the black coverings and 

scanned.  Minirhizotrons were scanned with a flatbed scanner (EPSON Expression 10000XL) 

at 1,200-1,600 dpi, with images saved as (uncompressed) TIFF files to assess the relative 

growth of the seedlings. The experiments described in this chapter had a randomized 

(blocked) one-way ANOVA design arranged on two parallel linear rows. 

2.4.8 Root growth parameters 

Root growth parameters were measured by using the rhizotron images obtained at 7, 14 and 

21 days. The visible root system was traced manually using the “Segmented Line” tool of 

Fiji. The following definitions are used for the variables used to characterise root growth in 

images of the

• Vertical Root Length (VRL): The Euclidean distance between the minimum and 

maximum vertical coordinates of the visible root system grown in the RS. The 

measured value is expressed in units of mm.    

• Horizontal Root Length (HRL): The Euclidean distance between the minimum and 

maximum horizontal coordinates of the visible root system grown in the RS. The 

measured value is expressed in units of mm. 

• Vertical Growth Rate (VGR): The difference between the VRL values at 2 different 

time points (t) divided by the time interval (δt), i.e., 𝑉𝐺𝑅𝑡𝑖 =  [(𝑉𝑅𝐿𝑡𝑖 −

 𝑉𝑅𝐿𝑡(𝑖−1)) / δt]. The calculated value is expressed in units of mm day-1.   
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• Horizontal Growth Rate (HGR): The difference between the HRL values at 2 

different time points (t) divided by the time interval (δt), i.e., 𝐻𝐺𝑅𝑡𝑖 = [(𝐻𝑅𝐿𝑡𝑖 −

 𝐻𝑅𝐿𝑡(𝑖−1)) / δt]. The calculated value is expressed in units of mm day-1.   

• Root Growth Rate (RGR): The weighted sum of the VGR and HGR values. The 

weights are defined by the corresponding RS dimensions of height (400 mm) and 

length (261 mm), i.e., 𝑅𝐺𝑅𝑡𝑖 = (𝑉𝐺𝑅𝑡𝑖 ∗  0.605144) +  (𝐻𝐺𝑅𝑡𝑖 ∗  0.394856). The 

calculated value is expressed in units of mm day-1.   

• Average Root Growth Rate (ARGR): The average value of the RGR values from 

each time point (t), i.e., 𝐴𝑅𝐺𝑅 =  (∑ 𝑅𝐺𝑅𝑡𝑖)
𝑡𝑖= 𝑛
𝑡𝑖=1 𝑛⁄ . The calculated value is 

expressed in units of mm day-1.  

• Average Vertical Growth Rate (AVGR): The average value of the VGR values from 

each time point (t), i.e., 𝐴𝑉𝐺𝑅 =  (∑ 𝑉𝐺𝑅𝑡𝑖)
𝑡𝑖= 𝑛
𝑡𝑖=1 𝑛⁄ . The calculated value is 

expressed in units of mm day-1.  

• Average Horizontal Growth Rate (AHGR): The average value of the HGR values 

from each time point (t), i.e., 𝐴𝐻𝐺𝑅 =  (∑ 𝐻𝐺𝑅𝑡𝑖)𝑡𝑖= 𝑛
𝑡𝑖=1 𝑛⁄ . The calculated value is 

expressed in units of mm day-1.  

2.4.9 Substrate image RGB spectra 

To assess the optical characteristics of each substrate, an RGB profile was obtained by 

scanning each the minirhizotrons (n = 4) filled with the candidate RS substrates from 

experiment 1 (Section 2.5.1) at 1,600 dpi after reaching field capacity and prior to the 

seedlings being sown into them. The samples used in that experiment were of minirhizotron 

design A which had a 5 mm thick acrylic as the scanning surface. The average value of the 

percentage RGB histogram distributions was then computed by using the “Analyse/Color 

Histogram” command of Fiji (http://www.fiji.sc) after manually cropping the images to the 

rectangular section that included only the RS substrate. An additional black coloured sand 

(Flourite Black) was also tested later (experiment 2 - Section 2.5.2) for its optical properties 

by using the same method. This sand was chosen because it was clay-based and thus, 

hypothesized to give a more favourable root growth than the substrates already tested. 

Finally, in order to extract the root foreground optical properties from the image and 

subsequently obtain their RGB profile for comparison with the rhizotron substrates, seedlings 

were grown for 2 weeks in the RS (n = 4) and then subsequently scanned at 1,600 dpi prior to 

terminating the experiment. The visible root boundaries were then manually traced by using 

http://www.fiji.sc/
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the “Polygon selections” tool of Fiji to extract the root foreground from the image and 

subsequently obtain their RGB profile for comparison with the candidate RS substrates. 

2.4.10 Image quality - Image Sharpness Index 

To assess the quality of the images obtained through different imaging surfaces an image 

sharpness index was used.  The Image Sharpness Index (ISI) is a dimensionless measure of 

image sharpness which is computed by estimating the average value of the local greyscale 

variance at the scale of interest (Erasmus and Smith, 1982). The scale chosen here is a block 

radius of 1 pixel because root hairs are only 1 or 2 pixels thick at the image scale. Despite its 

simplicity, the method tends to be more robust to noise relative to most other candidates 

(Moreno and Calderero, 2013). A higher index value indicates a sharper image as the image 

intensity variation tends to be smaller when blurriness is stronger (Batten, 2000).   

Image processing involved the following steps (Microsoft Visual C++ implementation): 

1) The skeleton of the visible root system (centre line) was traced manually by using the 

“Segmented Line” tool of Fiji (http://www.fiji.sc). 

2) Each of the (n) identified skeleton pixels were assigned a uniform probability (1 / n) 

and then 4 pixels were randomly selected for each image to obtain unbiased estimates. 

3) A rectangular section of 640 x 640 pixels was formed around each of the 4 randomly 

selected pixels. The size of this area was empirically determined to sufficiently cover 

the root hair zone adjacent to the root. If any of the 4 image regions overlapped, then 

the process was repeated until there was no region overlap.      

4) The ISI measure described above was then computed for each of the 4 image 

sections.   

5) Finally, the (4 x 3) values associated with each treatment were pooled together and 

analysed with Dunnett's T3 test for comparison of their mean values. This step was 

performed by using the R script provided by Wilcox, R. (2017), available for 

download at the url: https://dornsifelive.usc.edu/labs/rwilcox/software/. 

2.4.11 Statistical Analysis 

The statistical analysis of the data was performed using the software R (version 3.5.0). The 

statistical significance test used for comparing the arithmetic averages of the experimental 

treatments was Dunnett’s T3 test and was implemented with the “lincon” function of the 

freely available R script provided by Wilcox, (2017), which can be downloaded from the 
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following url: https://dornsifelive.usc.edu/labs/rwilcox/software/. The degree of statistical 

significance is represented by *, ** and *** corresponding to a p value in the interval of 

(0.05, 0.01], (0.01, 0.001] and (0.001, 0] respectively. The 95% confidence interval of the 

difference between 2 treatments is represented by “95% CI”. The graphical outputs were also 

produced in R with the “ggplot2” and the “grid” packages. The convention adopted here is to 

annotate a graph only if a statistically significant difference was detected. 

2.4.12 Rhizotron Substrate Selection 

To identify an RS substrate which could be used in future experiments, an assessment of root 

growth for each candidate substrate was required. The main aims could be summarised as:  

• Aim 1: Test the construction of minirhizotron design A. 

• Aim 2: Identification of an artificial sand which could be used in future experiments. 

• Aim 3: Assess whether artificial substrate could produce similar root growth rates to 

soil.  

• Aim 4: Identify potential minirhizotron improvements. 

To test the initial minirhizotron design A, the minirhizotrons were filled with four growth 

substrates: “Bullion Soil”, “Pilmore Soil”, “Black Sand” and “Blue Sand” with four 

minirhizotrons per treatment. The physical properties of the soils used are described in 

Section 2.4.4 and all treatments were first sieved to 2 mm. The minirhizotrons were packed at 

a DBD of 1.5 g cm-3, adjusted and kept at 15% gravimetric moisture content by weighting 

each of them every 2-3 days and adding the required amount of tap water to return them to 

15%. 5 ml of the standard Hoagland's solution for nutrients were added every 3 days to all the 

samples. The experiment itself started in mid-May of 2017 and had a duration of 3 weeks. 

2.4.13 Rhizotron Substrate Particle Size Distribution Comparison 

The initial assessment of potential growth substrate materials (Section 2.4.12) provided 

evidence that root growth in RS using the sand substrates tested was statistically significantly 

less than the soil treatments used, which was in violation of P1. A potential method to remedy 

this issue was to manipulate the Particle Size Range (PSR) of the substrate in order to change 

the distribution of pores in the RS to one that was more favourable for root growth. This was 

hypothesized because of the great importance that the pore network has in influencing the 

functions of the substrate (Pagliai and Vignozzi, 2002; Anderson and Croft, 2009) and how 

manipulating that volume can have an impact in root growth (Lipiec et al., 2016; Poorter et 

https://dornsifelive.usc.edu/labs/rwilcox/software/
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al., 2012; Valentine et al., 2012). By identifying a substrate which had a higher degree of 

similarity with the physical properties of the soil types tested in Experiment 1, it was 

hypothesized that this will translate to potential improvements in root growth which will in 

turn help the RS achieve P1.  

In consideration of the results of the previous experiment a newly obtained aquarium sand 

was used to test the above-mentioned hypothesis. This substrate, i.e., “Flourite Black Sand” 

(Seachem), was reported to be clay-based and as such, it was thought that it might provide a 

better rooting environment for plants within the RS.  

The experimental aims for this experiment are as follows: 

• Aim 1: To determine if manipulation of the sand PSR could induce an improvement 

on root growth rates. 

• Aim 2: To identify the PSR with the highest ARGR value. 

• Aim 3: To characterise the physical properties of the sand in relation to the soil 

properties. 

Minirhizotron design A was used to compare the ARGR of barley in different particle size 

distributions of “Flourite Black Sand” growth material.  Table 2.3 lists the distribution mixes 

of the 4 treatments used in this experiment expressed as a percentage of the total mass. The 

mixtures were created by combining the sieved fractions of two different sized versions of the 

same material: “Flourite Black” (4-2 mm) and “Flourite Black Sand” (2-0 mm). 

Table 2.3: Particle size distribution treatments definition table (% of total mass). 

 Treatment  4 – 2.8 

mm 

(Gravel) 

2.8 – 2 

mm 

(Gravel) 

2.0 – 1.4 

mm 

(Sand) 

1.4 – 1 

mm 

(Sand) 

1 – 0.5 

mm 

(Sand) 

0.5 – 0 

mm 

(Sand) 

Fraction 

(mm) 

4–0 16.67 16.67 16.67 16.67 16.67 16.67 

2.8–0  20.0 20.0 20.0 20.0 20.0 

2.0–0   25.0 25.0 25.0 25.0 

1.4–0    33.33 33.33 33.33 

 

The minirhizotrons were packed at a DBD of 1.5 g cm-3, adjusted and kept at 15% 

gravimetric moisture content by weighting each of them every 2-3 days and adding the 

required amount of tap water to return them to 15%. 5 ml of the standard Hoagland's solution 
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for nutrients were added every 3 days to all the samples. The experiment itself took place on 

early November of 2017 and had a duration of 3 weeks. 

2.4.14 Rhizotron Scanning Surface Selection 

To redefine the LLWR in terms of root traits it is essential to be able to measure those traits 

as accurately as possible. This includes both coarse features (roots) and features of finer 

scale, e.g., root hairs. Thus, it was critical to increase the quality of the images obtained in RS 

to increase the detection probability of the root system features. This experiment was 

designed to investigate the effect that different scanning surfaces have on image quality, more 

specifically the degree of image sharpness (ISI). The scanning surface with the highest ISI 

values could then be integrated in the existing RS design.  

The experimental aims of this experiment could be summarised as: 

• Aim 1: ISI assessment for different rhizotron scanning surfaces. 

• Aim 2: Identification of the rhizotron scanning surface with the highest ISI value. 

Three different scanning image surfaces were assessed for their ISI values. These were 4 mm 

thick low iron glass (Jaytec Glass Limited), 5 mm thick acrylic (PlasticSheets.com) and 2 mm 

thick acrylic (PlasticSheets.com). The minirhizotron design A was used with the test growth 

medium, “Flourite Black Sand”. This time lapse study took place in early February of 2018 

and lasted for a period of 2 weeks with scanning taking place once a week. The entire 

rhizotron area was scanned at 1,600 dpi with a flatbed scanner (EPSON Expression 

10000XL) and saved as a TIFF file. Three minirhizotron replicates were allocated per 

treatment. 

2.4.15 Assessment of plant responses to alternative growth 

substrate (“Flourite Black Sand”) 

The initial assessment of growth substrate in the minirhizotron design A, provided evidence 

that the initial selections of sands produced much reduced root growth rates compared with 

the two soil treatments (Section 2.4.12). To remedy that issue an alternative sand (Flourite 

Black) was introduced and its particle size distribution was modified to make its properties 

more comparable to soil (Section 2.4.13) but this required validation through comparison 

with soil. In addition, changing the scanning surface to improve image sharpness (Section 

2.4.14) required modifications to the minirhizotron design A to be able to support the much 

thinner scanning surface. A further design change was added in the form of leaky pipes to 
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improve the control and allow automation of watering. In order to validate the final RS 

design the new system containing “Black Fluorite” growth substrate will have to be 

compared with the same design containing soil as the growth substrate. 

The main aims may be summarised as follows: 

• Aim 1: Test the new minirhizotron design B. 

• Aim 2: Compare ISI values of the RS substrate to soil substrates. 

• Aim 3: Compare root growth of RS substrate to soil substrates. 

Minirhizotron design B was used to compare the ISI and ARGR values of four different RS 

substrates. The treatments compared were “Flourite Black”, “Pilmore Soil”, “Bullion Soil”, 

and “Flourite Black & Soil”. The “Flourite Black” substrate was the 4-0 mm treatment 

identified in the particle size distribution experiment (Section 2.4.13). The soil used in 

“Pilmore Soil” and the “Bullion Soil” was once again collected from their respective fields 

and sieved to 4 mm. An additional substrate “Flourite Black & Soil” was created by mixing 

the Flourite Black, Pilmore Soil and Bullion Soil on a mass basis of 50, 25 and 25 % 

respectively. This was done to assess if the soil component could increase root growth rates 

to be more similar to those of the pure soil treatment and to assess if soil addition leads to 

inferior imaging quality. The minirhizotron area section which contained visible root 

segments was manually selected, scanned at 1,600 dpi with a flatbed scanner (EPSON 

Expression 10000XL), and saved as a TIFF file. The experiment took place in mid-May of 

2018 with scanning being performed on the 7th, 14th and 21st day of the experiment. Four 

minirhizotron replicates were allocated per treatment.       

2.5 Results 

Figure 2.3 shows example representative images of each treatment used in the experiment 

designed for selecting a minirhizotron-based substrate described in Section 2.4.12.  

 

 

 

 

B C 
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Figure 2.3: Spring barley root systems, growing in the four different substrates A) Bullion 

soil, B) Pilmore Soil, C) Black sand and D) Blue sand in minirhizotron design A.  Images 

obtained using Epson scanner at 1600 dpi, on day 14 since transfer of seedling rhizotron. 

Figure 2.4 (A), is a summary graph for the ARGR of each substrate and it demonstrates that 

the ARGR within the “Black Sand” treatment was statistically significantly less at 6.424 ± 

1.433 mm day-1, than both the “Bullion Soil” at 15.544 ± 0.298 mm day-1 and the “Pilmore 

Soil” treatment at 15.428 ± 1.311 mm day-1 with a 95% CI of (-12.427, -5.812) and (-12.304, 

-5.704) respectively. Likewise, the “Blue Sand” treatment at 3.007 ± 2.929 mm day-1 was 

statistically significantly less than both the “Pilmore Soil” and the “Bullion Soil” treatments 

with a 95% CI of (-19.454, -5.619) and (-18.738, -6.104) respectively. Therefore, both sand 

treatments significantly inhibited ARGR in comparison with the soil treatments. 

Figure 2.4 (B), is a summary graph for the AVGR of each substrate and it demonstrates that 

the AVGR within the “Black Sand” treatment was statistically significantly less at 6.737 ± 

1.901 mm day-1 than both the “Bullion Soil” at 18.432 ± 0.499 mm day-1 and the “Pilmore 

Soil” treatment at 17.68 ± 1.991 mm day-1 with a 95% CI of (-16.016, -7.373) and (-15.612, -

6.274) respectively. Likewise, the “Blue Sand” treatment at 3.086 ± 3.581 mm day-1 was 

statistically significantly less than both the “Pilmore Soil” and the “Bullion Soil” treatments 

with a 95% CI of (-23.749, -6.943) and (-22.219, -6.969) respectively. Therefore, both sand 

treatments significantly inhibited AVGR in comparison with the soil treatments. 

Figure 2.4 (C), is a summary graph for the AHGR of each substrate and it demonstrates that 

the AHGR within the “Black Sand” treatment was statistically significantly less at 5.945 ± 

1.641 mm day-1 than both the “Bullion Soil” at 11.118 ± 1.464 mm day-1 and the “Pilmore 

2 cm 
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Soil” treatment at 11.977 ± 0.504 mm day-1 with a 95% CI of (-8.918, -1.428) and (-9.714, -

2.351) respectively. Likewise, the “Blue Sand” treatment at 2.886 ± 1.935 mm day-1 was 

statistically significantly less than both the “Pilmore Soil” and the “Bullion Soil” treatments 

with a 95% CI of (-12.447, -4.016) and (-13.492, -4.69) respectively. Therefore, both sand 

treatments significantly inhibited AHGR in comparison with the soil treatments. 

Figure 2.4 (D), is a summary graph for the VRL of each substrate and it clearly demonstrates 

that the vertical root length was less for both sands when compared to the soils. It also 

demonstrates that most samples for the soil treatments had almost reached the 400 mm limit 

of the RS by the end of week 2. This will imply that the difference in AVGR between the soil 

and the sand treatments will be even higher if they were not restricted by the size of the RS. It 

can also be observed, that the VRL of the “Black Sand” was higher in comparison to the 

“Blue Sand”. 

Figure 2.4 (E), is a summary graph for the HRL of each substrate and it clearly demonstrates 

that the horizontal root length was less for both sands when compared to the soils. It also 

demonstrates that most samples for the soil treatments had almost reached the 261 mm limit 

of the RS by the end of week 3. The figure also suggests that the HRL of the “Black Sand” 

was higher in comparison to the “Blue Sand”. 
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Figure 2.4: Summary graphs of spring barley root growth in growth substrates (Black sand, 

Blue sand, Bullion soil and Pilmore Soil) in rhizotrons for a period of 21 days, A) ARGR vs. 

substrate, B) AVGR vs. substrate, C) AHGR vs. substrate, D) VRL vs. time and E) HRL vs. 

time.    

Both coloured sands tested had a statistically significantly lower ARGR, AVGR and AHGR 

when compared to the soil treatments which implied that the sands were unsuitable for future 

experiments. Comparisons of root lengths in both the vertical and the horizontal directions 

also supported this conclusion. This was a clear indication that the sands tested had properties 

which differed from soil. However, this could potentially be explained, at least partially, by 

the observation that a noticeable amount of substrate slumping occurred across the samples as 

the scanning surface was not robust enough to support the weight of the growth matrix across 

the entire RS surface. The reduction in substrate occupied volume led to changes in the dry 
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bulk density which depends on volume. This added an additional uncertainty component as to 

whether the differences in root growth were the result of differences in substrate properties or 

compaction caused by slumping. Ultimately, this error was affecting all of the samples which 

made it a random error, and in consideration of the rather strong root growth differences 

between both soil treatments to the sand treatments, it was decided that future experiments 

would explore the use of alternative natural sands to ensure P4 was satisfied. 

In addition, this experiment revealed a number of issues with minirhizotron design A that 

could be potentially improved in future work:    

1) The packing of the rhizotrons clearly demonstrated the issue of estimating the 

rhizotron volume accurately as the scanning surface was not thick enough to support 

the weight of the growth matrix across the A3 size, which allowed bowing and 

slumping of the substrates giving misleading volume estimates and imprecise 

calculated dry bulk densities. 

2) The addition of nutrient solution was a laborious/time consuming task because it 

required making large volumes of Hoagland's solution prior to the experiment in 

addition to weighting and manually adding the appropriate amount for each rhizotron 

every time. 

Figure 2.5 shows summary root growth graphs of each treatment used in the experiment 

designed for selecting an optimum particle size range for the “Flourite Black” substrate 

described in Section 2.4.13.  

Figure 2.5 (A), is a summary graph for the ARGR of each PSR and it demonstrates that the 

ARGR within the “4-0” treatment was statistically significantly higher than the “1.4-0”, “2-

0” and the “2.8-0” treatments with a 95% CI of (-0.067, 5.513), (0.031, 5.636) and (-0.099, 

6.993) respectively. The mean values of the treatments were 10.9 ± 1.199, 8.177 ± 0.607, 

8.066 ± 0.857 and 7.452 ± 1.483 mm day-1 respectively. 

Figure 2.5 (B), is a summary graph for the AVGR of each PSR and it demonstrates that the 

ARGR within the “4-0 mm” treatment was statistically significantly higher than the “1.4-0”, 

“2-0” and the “2.8-0” treatments with a 95% CI of (0.133, 6.514), (1.047, 7.567) and (2.384, 

8.732) respectively. A statistically significant difference was also observed for the 

comparison of “2.8-0” and “1.4-0” with a 95% CI of (-4.718, 0.249). The mean values of the 

treatments were 12.815 ± 1.365, 9.491 ± 0.979, 8.508 ± 1.098 and 7.257 ± 0.938 mm day-1 

respectively. 
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Figure 2.5 (C), is a summary graph for the AHGR of each PSR and it demonstrates that the 

AHGR within the “4-0” treatment was statistically significantly higher than the “1.4-0” 

treatment with a 95% CI of (-0.642, 4.248). The mean values of the treatments were 7.964 ± 

1.005, 6.162 ± 0.33, 7.39 ± 1.419 and 7.752 ± 2.696 mm day-1 in the order given in the 

previous paragraph. 

Figure 2.5 (D), is a summary graph for the VRL of each PSR and it suggests that the vertical 

root length was highest for the “4-0” treatment across each time point. 

Figure 2.5 (E), is a summary graph for the HRL of each PSR and it appears to indicate that 

the horizontal root length was similar among treatments across each time point.  
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Figure 2.5: Summary graphs of spring barley root growth in growth substrates (1.4-0, 2.0-0, 

2.8-0 and 4.0-0) in rhizotrons for a period of 21 days, A) ARGR vs. substrate, B) AVGR vs. 

substrate, C) AHGR vs. substrate, D) VRL vs. time and E) HRL vs. time.    

Root growth appears to be improved for the “Flourite Black Sand” when it has an increased 

proportion of larger sized particles (4-0 mm) rather than a smaller particle size range. This is 

probably because this combination of particles generated physical properties that had a higher 

degree of similarity to the soil treatments in terms of both the water release and penetrometer 

resistance curves. However, the growth rates observed in this experiment, were comparable 

to the previously tested “Black Sand” and “Blue Sand” from experiment 1 (Section 2.4.12). 

This similarity in growth rates could be explained by the rather different environmental 

conditions when comparing the Scottish climate on mid-May and early November. Even 

though both experiments did take place in a glasshouse, differences in temperature and light 

do exist across seasons and at that time it was hypothesized that this was probably the reason 

for the comparable growth rates. As a consequence, this led to the decision to adopt the 4-0 

mm mixture as the standard RS substrate in future experiments. 

Figure 2.6 shows examples of images obtained through the different imaging surfaces tested 

as described in Section 2.4.14. Root hairs can be seen much clearer in the image taken 

through the 2 mm acrylic surface (Figure 2.6 (C)).  However, to produce an objective test for 

the image quality, ISI was (see Section 2.4.10) used to assess the images. Figure 2.7 

summarises the comparison between the different scanning surfaces, and it demonstrates that 

the 2 mm thick acrylic had a higher ISI relative to both the 4 mm glass and the 5 mm acrylic 

with a 95% CI of (25.033, 55.830) and (34.773, 65.668) respectively. The mean ISI values 

for each treatment were 67.922 ± 15.409, 27.491 ± 5.17 and 17.702 ± 5.641 respectively. 
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Figure 2.6: Rhizotron scanning surface experiment comparing imaging quality for A) 4 mm 

thick, low iron, reinforced glass, B) acrylic - 5 mm thick and C) acrylic - 2 mm thick, 

scanned at 1,600 dpi. 

 

B A C 
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Figure 2.7: ISI boxplot comparison for three different RS scanning surfaces. Higher Image 

Sharpness (ISI) score indicates a higher quality image. 

The 2 mm acrylic substrate had the highest ISI index value and as such, it was selected to be 

scanning surface to be integrated in future RS designs. However, issues with the strength 

resulting in bowing of the imaging surface meant that the minirhizotron design A would need 

be modified to ensure that the 2 mm acrylic can resist the combination of forces coming from 

the sand substrate, the water solution added to the rhizotron, and the growing root system.  

Figure 2.8 and Figure 2.9 are summary graphs of the comparison between the different 

minirhizotron substrates described in Section 2.4.15. 

Figure 2.8 summarises the image quality comparison between the different rhizotron 

substrates, and it demonstrates that the ISI value of “Flourite Black” at 58.662 ± 27.825 was 

statistically significantly higher relative to both “Pilmore Soil” at 29.24 ± 20.837 and 

“Bullion Soil” at 34.898 ± 8.03 with a respective 95% CI of (7.411, 51.432) and (4.743, 

42.784). The same was true when comparing it with “Flourite Black & Soil” at 34.707 ± 

14.547 with a 95% CI of (3.789, 44.121), indicating that this uniform substrate gives a 

sharper image.  
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Figure 2.8: ISI boxplot comparison for four different RS substrates. Higher Image Sharpness 

(ISI) score indicates a higher quality image. 

Figure 2.9 (A), is a summary of the ARGR values obtained from this experiment and it 

demonstrates that no statistically significant effects could be detected across the different 

substrates. The 95% CI of “Flourite Black” relative to “Flourite Black & Soil”, “Bullion Soil” 

and “Pilmore Soil” was (-15.361, 6.951), (-14.19, 8.527) and (-17.905, 7.193) respectively. 

The mean values of the treatments were 11.109 ± 5.44, 18.924 ± 5.677, 16.732 ± 6.823 and 

19.228 ± 2.207 mm day-1 respectively. 

Figure 2.9 (B), is a summary graph for the AVGR values obtained from this experiment and 

it demonstrates that no statistically significant effects could be detected across the different 

substrates. The 95% CI of “Flourite Black” relative to “Flourite Black & Soil”, “Bullion Soil” 

and “Pilmore Soil” was (-18.303, 9.309), (-18.29, 9.348) and (-21.792, 9.262) respectively. 
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The mean values of the treatments were 12.865 ± 6.368, 22.991 ± 8.076, 21.564 ± 8.047 and 

23.194 ± 3.818 mm day-1 respectively. 

Figure 2.9 (C), is a summary graph for the AHGR values obtained from this experiment and 

it demonstrates that no statistically significant effects could be detected across the different 

substrates. The 95% CI of “Flourite Black” relative to “Flourite Black & Soil”, “Bullion Soil” 

and “Pilmore Soil” was (-11.55, 4.035), (-9.569, 8.933) and (-12.03, 4.105) respectively. The 

mean values of the treatments were 8.416 ± 4.306, 12.691 ± 2.449, 9.327 ± 5.644 and 13.149 

± 2.37 mm day-1 respectively. 

Figure 2.9 (D), is a summary graph for the VRL of each substrate and it suggests that the 

vertical root length was less for “Flourite Black” when compared to the rest of the treatments 

although, it does generally appears to overlap to varying degrees with the other treatments. It 

also demonstrates that some samples for the soil treatments had almost reached the 400 mm 

limit of the RS by the end of week 2, which was similar to experiment 1 (Section 2.5.1). This 

will imply that the difference in AVGR between the “Flourite Black” and the other 

treatments will be higher if they were not restricted by the size of the RS. The samples for the 

rest of the treatments had almost completely reached the 400 mm limit of the RS by the end 

of week 3.    

Figure 2.9 (E), is a summary graph for the HRL of each substrate and it generally indicates a 

similar trend with that observed for VRL. It also demonstrates that most samples for the soil 

treatments had almost reached the 261 mm limit of the RS by the end of week 3. The figure 

also suggests that the HRL of the “Flourite Black” was higher in comparison to the “Blue 

Sand”. 
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Figure 2.9: Summary graphs of spring barley root growth in growth substrates (Flourite 

Black, Flourite and soil, Bullion soil and Pilmore soil) in rhizotrons for a period of 21 days, 

A) ARGR vs. substrate, B) AVGR vs. substrate, C) AHGR vs. substrate, D) VRL vs. time 

and E) HRL vs. time.    

Image sharpness was clearly superior for “Flourite Black”. This was also the case when 

comparing it to the mixed substrate as the soil component of this treatment reduced the image 

quality.  

Root growth for “Flourite Black” was generally less than the treatments “Flourite and soil”, 

Pilmore soil and Bullion soil. However, the failure to detect a statistically significant effect 

seems to suggest that they were still comparable. This was a positive outcome because P4 

was reasonably achieved with the introduced changes to the system. It should also be noted 
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that the root growth rates observed here are superior to those observed in experiment 2 which 

had comparable growth rates to experiment 1. The difference being that this experiment was 

performed around mid-May the same period as experiment 1 as opposed to early November 

for experiment 2, suggesting that seasonality does have an effect. Although, this could also be 

explained in part by the rather large reduction in substrate slumping achieved with 

minirhizotron design B.    

In conclusion, based on the results of this validation experiment minirhizotron design B 

including the “Flourite Black” growth substrate will become the standard RS unit in future 

LLWR experiments. 

In addition to the above, by using the methodology outlined in Section 2.4.4, the water 

release curve, and the penetrometer resistance curve were obtained for each of the various RS 

substrate candidates which enabled an assessment of the physical properties of each substrate. 

Figure 2.10 (A) demonstrates the fitted loess models which estimate the conditional mean of 

penetrometer resistance to the matric suction of the soil. Although there was high variability 

for the fitted models on average the 4-0 mm substrate was somewhat closer to the soil 

treatments than the 2-0 mm substrate however, both sand treatments were noticeably different 

from the soil treatments. It should also be noted that at matric suction of just 20 kPa the PR 

values were >= 2 MPa, the LLWR threshold.    

Figure 2.10 (B) demonstrates the fitted van Genuchten models describing the relationship 

between the volumetric water content and the matric suction of the soil. Although, there was 

high variability at low water potentials the model demonstrates that the water release curves 

of both of the “Flourite Black” followed a similar trend to that observed from the PR curve. It 

also appears that the water release curve of the 4-0 mm “Flourite Black” treatment is quite 

similar to a mixture of clay loam soil (< 2 mm) and pebble (3 – 5 mm) mixed on a percentage 

mass basis of 35 and 65 % respectively (see Figure 1 in Wang et al., 2013) which in hindsight 

is not surprising as the material is listed as a commercial aquarium sand.    

Figure 2.10 (C) demonstrates the estimated effective pore diameter (d) for each substrate 

which was obtained from the water release curve fitted van Genuchten model (Section 2.4.4). 

Given its relation to the water release curve the same conclusion follows as discussed above. 
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Figure 2.10: Physical properties of “Pilmore Soil”, “Bullion Soil” and “Flourite Black” 

packed at 1.5 g cm-3 for different PSD in terms of A) Water Release Curves (van Genuchten 

model), B) Penetrometer Resistance (loess regression) with mean and standard deviations 

shown and C) effective pore diameter profile. 

Finally, by using the methodology outlined in Section 2.4.9, the RGB spectra were obtained 

for each of the various RS substrate candidates which enabled an assessment of the optical 

properties of each substrate. This is because differences in the distribution of the individual 

RGB spectra could potentially be exploited to obtain a better root segmentation from the 

background. Figure 2.11 demonstrates the RGB spectra obtained from each material in 

addition to that from manually segmented root systems grown in RS. Two points of interest 

need to be pointed out concerning the spectra for roots (A) and “Flourite Black” (F): 
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1. The distributions of both the RGB and greyscale spectra are approximately identical 

suggesting, that a greyscale-based approach will provide almost identical results than 

methods exploiting differences in RGB spectra. This is significant because it implies 

that retaining only the greyscale spectrum does not lead to loss of image information. 

In practical terms, this translated to reduced scanning times during image acquisition, 

reductions in image file size and faster access speed during image processing.      

2. The peaks of the RGB spectra of roots relative to those of “Flourite Black” are 

noticeably distinct which suggests that segmentation of roots might be possible with 

an automated image processing strategy.  
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Figure 2.11: Histograms of RGB and greyscale spectra of tested rhizotron growth substrates 

with RGB mean values for A) Roots, B) Blue Sand, C) Black Sand, D) Bullion Soil, E) 

Pilmore Soil and F) Flourite Black.  
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2.6 Discussion 

The process of developing the RS required consideration of a list of desirable properties that 

the system should have and as such, all the reported experiments were directly linked to the 

process of achieving those properties. As discussed in Section 2.2 existing systems did not 

completely satisfy all the requirements in imaging, size, growth substrate and costs which 

motivated the development of the RS system.  

The first step was the development of a prototype, i.e., minirhizotron design A, which then 

had to be screened for its ability to satisfy the desired properties. The first experiment 

involved an assessment of different growth substrates to determine basic root growth 

parameters within this system. However, minirhizotron design A had a statistically significant 

lower root growth rate for artificial sands compared to soil. As a result, an alternative natural 

clay-based sand was sourced, i.e., “Flourite Black”, for future testing. The results of RGB 

histogram analysis also indicated that a black-coloured sand was more desirable to make the 

image processing step of separating roots from background easier as its RGB spectra were 

more distinct from roots than both soils and the other coloured sands. As such, “Flourite 

Black” was used in further minirhizotron optimisation experiments. 

The second step was to try to remedy the issue of reduced root growth rates by testing the 

hypothesis that the physical properties of the sand could be made closer to the properties of 

the tested soils thus, achieving similar root growth rates. The results obtained supported the 

hypothesis as the 4-0 mm treatment of “Flourite Black” sand had a water release curve that 

was more similar to the soil treatments compared to the 2-0 mm treatment. This helped 

explain the statistically significantly higher root growth for the larger sized range of particles 

i.e., 4-0 mm. As a result, the 4-0 mm treatment of “Flourite Black” sand became the substrate 

which would be used in future experiments. 

The third step involved testing of different rhizotron imaging surfaces to identify the one with 

superior image quality and as such, will increase the probability of detecting finer root traits 

such as root hairs. Among the different thicknesses of acrylic and glass tested the results 

indicated that image sharpness was statistically significantly higher for the 2 mm acrylic. 

However, integrating that into minirhizotron design A required modifications to the existing 

design. This in conjunction with the need to reduce the laborious and time-consuming task of 

manual watering of RS had motivated the development of minirhizotron design B. The 
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addition of screws and leaky pipes enabled the replacement of the imaging surface and 

removed the need for manual watering. 

The final step in RS development was the validation of the latest design through comparison 

with soil. The results demonstrated that although a generally higher root growth rate was 

observed for the soil treatments, no statistically significant difference could be detected 

between Flourite sand and the soils with the same being true when comparing it to “Flourite 

Black” sand mixed with soil. However, the introduction of soil into the mixture led to a 

degradation in image sharpness with “Flourite Black” sand having a statistically significantly 

higher value than all other substrates. As such, the final design to be carried forward was 

based on minirhizotron design B with the 4-0 mm Flourite sand used as the growth substrate.   

However, like all systems there are several limitations to the RS. In order to balance the 

requirements for root growth and image quality an artificial substrate was used. Although 

“Flourite Black” is an improvement compared to the other artificial sands it still lacks the 

complexity of soil. For example, it lacks organic matter which influences water retention 

properties (Kay et al., 1997), and it doesn’t have the biological complexity of organisms that 

characterize soil. Furthermore, even if soil was used as a substrate the RS substrate will still 

have a repacked structure which is not an accurate reflection of the spatial variability 

encountered in field soil. For example, penetrometer resistance is greater for field soils than 

packed cores (Perfect et al., 1990) and even when comparing root growth in structured field 

soil containing clods to a homogenously compacted soil, root morphological differences can 

be detected (Konôpka et al., 2009). Another intrinsic disadvantage of minirhizotron systems 

is that root growth is effectively restricted to a thin layer which can potentially distort the 

naturally complex 3D root architecture and as such, the RS is technically classified as 

pseudo-3D. Furthermore, continuous root to glass contact could induce thigmotropic 

responses from the roots (Downie et al., 2015) which can give misleading representations of 

the norm. In summary, whether the results obtained from the system are directly applicable to 

field soil is something to be established through field trials, but such a task will require a 

significant investment in time and resources and as such, it is outside the scope of this study. 

It should also be noted that although significant efforts were made to provide as much 

information as possible in terms of measured physical properties of the sand it will be 

interesting to also study its chemical properties. For example, cation-exchange capacity is of 

great importance for root nutrient availability (Hillel, 2003). However, such investigations are 

also outside the scope of this study.   
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2.7 Conclusions 

This chapter was dedicated to describing both the motivation and the development of an 

experimental unit, i.e., RS, which will provide the basis for conducting future experiments. 

The proposed RS system was developed with the specific criteria of superior image quality 

and the root growth rate in the RS substrate being comparable to those from a soil substrate. 

This process involved the selection of (1) the imaging surface of the RS and (2) the root 

growth substrate used in the RS. In the case of (1) the imaging surface chosen was an acrylic 

surface of 2 mm thickness having outperformed the acrylic of 5 mm thickness and the low 

iron glass of 5 mm thickness in terms of the ISI index, a measure of image sharpness. For the 

case of the RS substrate a comparison of artificial sands and soil types led to the selection of 

a black coloured sand (Flourite Black) as it was judged to have a superior contrast. However, 

to ensure (2) the selected sand was sieved to a range of sized fractions and each was 

compared to the soil substrates. The 4-0 mm sized fraction of sand was determined to be the 

most similar relative to the soil treatments based on the comparison of root growth rates. The 

resulting RS unit was developed to be a sand-based, particle size adjusted substrate which 

enables the manipulation of the LLWR stressors while giving comparable root growth rates 

to soil and sufficiently detailed images for imaging fine root traits such as root hairs. As a 

consequence, the minirhizotron-based system was judged to sufficiently satisfy its design 

requirements and allow for the modification of the LLWR model through the integration of 

root traits.  
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3. Root trait imaging and image analysis 

3.1 Introduction 

Roots are responsible for numerous functions that determine the survival and growth of plants. 

Roots provide anchorage to the soil, acquire mineral nutrients and water, transport and store 

resources and synthesize a plethora of metabolites (Gregory, 2008; Schmidt, 2014). 

Furthermore, they have a central role in ecosystem functioning (Bardgett, et al., 2014). For 

example, plant roots influence nutrient and carbon cycling in terrestrial ecosystems (de Kroon 

and Visser, 2003) and root turnover is estimated to account for approximately one third of the 

global primary productivity (Gill and Jackson, 2000). Root biomass itself accounts for a 

significant amount of the total plant biomass which can range from 16 % in tropical forests to 

77 % in grasslands (Poorter et al., 2012). Roots also have a myriad of dynamic interactions 

with soil microbial organisms which can have both positive and negative outcomes for plant 

health (Hinsinger et al., 2009; Raaijmakers et al., 2009). As such, strategies for enhancing the 

resource acquisition of crops are more frequently identified as of increasing importance for 

achieving sustainable food production (Tian and Doerner, 2013). A number of those strategies 

aim for more efficient utilization of soil resources through selection of root traits in order to 

facilitate the transition from high-input monoculture based agriculture to productive, 

sustainable agroecosystems with low inputs (Schmidt, 2014). In particular, root morphology is 

increasingly recognized to be of vital importance to a range of fields including plant nutrition, 

physiology, breeding, and ecology (Rogers and Benfey, 2015) with some characterising it as 

the most important of all (Lu, Wang and Wang, 2019). As such, the ability to image roots in 

real time in an accurate and precise way can be a catalyst for increasing crop yield and quality 

in agriculture (Chen et al., 2018).  

 

More traditional approaches to study roots are based on destructive root sampling such as soil 

auguring and ingrowth cores (do Rosário et al., 2000) or excavation trenches (Van Noordwijk 

et al., 2000). However, those methods are labour intensive, time-consuming and make the 

repeated measurement of roots impossible without the introduction of undesirable effects 

(Taylor et al., 1991). Other proposed methods which are less direct such as “the core break 

technique” also have several limitations, e.g., soil core crumbling during its removal from the 

sampling tube (Bennie et al., 1987). However, since the 1990s non-destructive imaging 

methods have become increasingly popular in plant sciences (Li et al., 2014). In general, 
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imaging of plant root systems has evolved in two directions: (1) high-throughput phenotyping 

using high resolution 3D methods for small scale processes, and (2) high-throughput 

phenotyping using optical methods. The 1st category involves powerful set-ups such as Xray 

Computed Tomography which is widely used to build and test root-soil interactions models 

(Dunbabin et al., 2013). Unfortunately, these methods are not generally considered to be high 

throughput due to costs and other factors (Li, Zhang and Huang, 2014). The latter category 

includes “minirhizotrons”, which are usually transparent tubes in field applications (Vamerali 

et al., 2012). A portion of the root system will then grow along the interface of the soil and the 

transparent container and the images can be captured by installing a coloured camera (and a 

light source) or some other custom-made imaging system, e.g., scanners (Rewald and Ephrath 

2013). The advantages of this method are its high imaging speed and its non-destructive 

nature which avoids the introduction of undesirable effects from modifying the soil during 

measurements across different time points thus, enabling time-lapse studies (Johnson et al., 

2001). Unfortunately, one of the biggest limitations of minirhizotrons is the time consuming 

step of image processing as standard image processing methods can involve manually tracing 

the root system (Yu et al., 2019). This limitation is further exacerbated due to the high 

replication which should ideally be chosen in experiments to account for the heterogeneous 

horizontal distribution of roots (Rewald and Ephrath, 2013). Alternatively, minirhizotron 

systems may be used as a flat/box closed system for monitoring of root growth along its 

transparent surface. A number of examples exist which utilize a wide range of substrates for 

root support and include gel (Bengough et al., 2004), filter paper (Gioia et al., 2017), glass 

beads (Courtois et al., 2013), grids of toothpicks (Nguyen and Stangoulis, 2019), peat 

(Dresbøll et al., 2013) and soil (Le Marie et al., 2016).  

 

In Chapter 2 the development of a flat/box type minirhizotron system (RS) was described 

satisfying a series of criteria one of which was the ability to image roots growing in the RS. 

As sufficiently high-quality imaging was achieved the next step in this process was the 

development of methods which enable the detection and quantification of the root traits of 

interest before and after destructive sampling of the root system. The standardization of the 

image environment and quality was hypothesized to offer the opportunity for automated 

analysis instead of manual analysis of the images. This chapter describes a set of 3 different 

algorithms which were custom developed, in order to help reduce the amount of time required 

for image processing and help optimise the procedure of quantifying root traits. 
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3.2 Minirhizotron System 

3.2.1 Minirhizotron-based root imaging methods 

Minirhizotrons enable inspection of their root/glass interfaces by using a miniature video 

camera to obtain continuous, non-destructive recordings of roots that can then be analysed 

(Upchurch and Ritchie, 1983). This process was further optimised by the development of 

methods designed to facilitate the analysis of minirhizotron recordings by manually tracing 

the roots (Cheng et al., 1991). Further developments led to the introduction of software which 

enables the user to interactively identify and trace roots with a PC mouse (Hendrick and 

Pregitzer, 1993). This development also enables a higher precision in estimates of root count 

at different time points but generally requires more time than manual counting methods 

(Vamerali et al., 1999). 

Today, there are several imaging platforms which have completely automated algorithms for 

root detection, e.g., systems involving the growth of seedlings on filter paper (Dupuy et al., 

2017). However, the process of segmenting roots which are growing in soil is a complex one 

with most of the available software requiring the user to manually perform this segmentation 

(Möller et al., 2019). Thus, the majority of tools currently available to researchers are 

designed to offer an efficient and user-friendly interaction by using a mouse point and click 

system (Möller et al., 2019) for both commercial (e.g. WinRHIZO Tron (Regent 

Instruments)) and non-commercial (e.g. RootNav (Pound et al., 2013)) software. 

At the same time, there are also software designed to automatically segment roots from soil in 

2D images. In general, most of the algorithms in use involve a contrast enhancement step 

prior to subsequent thresholding and binarization. Usually, geometric features of the root 

system (e.g. the ratio of root length to diameter) are used at the end of the algorithm to assign 

a pixel to either the background or foreground (Zeng et al., 2008). However, automated root 

detection in rhizotron systems is a rather complicated process due to the low contrast of the 

image. The issue of the root background being complex will invariably mean that the images 

obtained will vary with soil conditions, lighting and root colour and as such, unsupervised 

machine learning methods will have mixed performance results (Yu et al., 2019). As a result, 

the process of separating foreground from background is a complex one and proposed 

algorithms are invariably composed of multiple steps (Stockman et al., 1990).  
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Root segmentation algorithms are usually “bottom-up” approaches which apply successively 

several filters until the only pixels remaining correspond to the root foreground (Pound et al., 

2013). Nater et al., (1992), introduced the concept of artificial neural systems to increase the 

accuracy of automated root detection in rhizotron images. This method requires an initial 

training set calibration and as such, the accuracy of the results produced will be dependent on 

the degree of similarity between the sample and training images. Other authors recognising 

this complexity have used miSVM based methods to enhance the speed of re-training their 

model and achieve more optimum results when the background varies (Yu et al., 2019). 

Vamerali et al., (1999), identified the blue band of the spectrum as the starting point of their 

algorithm to better detect roots when their luminescence is similar to the background. In 

contrast, Zeng et al., (2006), used the green band of the spectrum to extract the roots. Their 

method involved local entropy thresholding and machine learning (AdaBoost) as well as pre-

processing steps such as linear stretching and matched filters. The algorithm was 

demonstrated to give good results for young bright roots however, the pre-processing step of 

matched filtering imposes restrictions on the shape of roots and as a result of that can miss 

small or jagged roots (Yu et al., 2019). More recently, the same authors proposed another 

AdaBoost approach which effectively uses a Gibbs point process with a modified Candy 

model to detect roots (Zeng et al., 2010). Although, the algorithm produced excellent results 

for their dataset the resolution of the images was rather low (640 × 480 dpi) making the 

computational cost of such an approach unfeasible for our images. Shojaedini and Heidari, 

(2013), defined level sets to achieve root segmentation from the background. This method 

was later modified by the addition of more pre-processing steps such as curvelet 

transformation to enhance weak root edges (Rahmanzadeh and Shojaedini, 2016). Lu et al., 

(2019), used a hybrid of pre-processing methods and mathematical morphology to segment 

the roots from the soil background. Another option is the “RootFly” software which provides 

both manual annotation and automatic root detection functionality (Zeng et al., 2008). The 

algorithm uses several pre-processing steps with subsequent matched filtering convolutions 

and classifiers to better detect roots. However, it does require an RGB image which has 

roughly a 3-fold memory size compared to a greyscale image. An additional overview of 

minirhizotron software can be found in the literature, e.g., Möller et al., (2019). 

Ultimately, if one was to consider the numerous possible combinations of experimental set-

ups and treatments, the wide range of plants and varieties, and the extremely variable nature 

of the soil, it becomes clear that no single image processing method will be suitable to all 
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experimental conditions. The process of automated root detection will only be successful 

when the experimental conditions are standardized, and the image quality becomes 

reasonably consistent. As the RS unit was made to provide a consistent environment for 

imaging, it was hypothesized that the development of an automated algorithm may be 

feasible for this application. If successful, the algorithm would offer great speed in the image 

processing component of data collection. The process of root detection will inevitably require 

consideration of the root features, e.g., the length/width ratio of root segments (Stockman et 

al., 1990). As such, the problem of root detection could be classified as a feature recognition 

problem, requiring knowledge of the geometrical architecture of root systems. However, even 

with clearly defined features detection issues arise, e.g., images of mature root systems have 

complex branched structures, composed of thousands of overlapping and crossing segments 

(Lobet et al., 2017). Furthermore, the biological nature of root systems implies a dynamic 

environment which constantly changes, e.g., new roots have a light colour which becomes 

darker with age (Wells and Eis-senstat, 2001). In addition to the above, other aspects such as 

the resolution of the image can affect both the accuracy and precision of even basic 

parameters such as root length or diameter (Arnaud et al., 2019).  

3.2.2 Root hair imaging-based methods 

Conventional methods used to measure root hairs include root excavation from soil or 

hydroponics and subsequent imaging with light or electron microscopy (Gahoonia and 

Nielsen, 1997;  Xie et al., 2020). However, those methods have several disadvantages 

(Hammac et al., 2011) including: 

1. Root hairs have an estimated radius of only 3-8 µm (Leitner et al., 2010) and as such, 

the process of washing roots grown in soil makes it very difficult to estimate the 

degree of root hair loss prior to the washing process (Koebernick et al., 2017).  

2. Light and fluorescent microscopes are tedious to use because root hairs are 3D objects 

and as such cannot be constrained to a single focal plane. 

3. The addition of stains, e.g., glutaraldehyde, in the fixation step of electron-microscopy 

damages the root hairs. 

Imaging of root hairs in 3D soil volumes is also possible with synchrotron‐based X‐ray 

tomography although, the sample size at this resolution is at present extremely limited (Keyes 

et al., 2013). Another option is to use high‐resolution imaging to visualize the interaction of 

root hairs and particles in artificial media, e.g., transparent soil (Downie et al., 2012). It 
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should also be noted, that root hairs may also be imaged using simpler setups such as high-

resolution flatbed scanners but the measurements are normally done by manual tracing 

(Hammac et al., 2011). 

However, root hairs are much more difficult to measure relative to bulk roots and there are a 

few studies that have attempted to quantify them. Although camera-microscope tracing 

techniques can be used in simple transparent media such as petri dishes to quantify root hair 

area (Yazdanbakhsh and Fisahn, 2009) such methods again require simple substrates and 

become more difficult to use with increasing complexity in root architecture. Vincent et al., 

(2017), commented on how root hair area estimation in minirhizotron studies was based on 

manual tracing and that to the best of their knowledge they could not find any minirhizotron 

based studies that quantified root hair area. The authors later presented a semi-automatic 

method based on multivariate logistic regression that uses both ImageJ and R to obtain 

estimates of root hair area for minirhizotron images. Although, this application is certainly 

time efficient it has being recently criticized by failing to provide measurements of root hair 

length and not having a clearly defined reference point where the measurement takes place 

along the root (Guichard et al., 2019). Semi-automated methods for detecting root hairs have 

also been proposed (Inoue et al., 1995; Narukawa et al., 2009) although the user is required 

to manually select a number of binarization threshold and only 3.2 mm of root area was used 

for the analysis (Guichard et al., 2019). Perhaps, the most common approach is manual 

tracing of roots hairs but, it has as disadvantage that it is prone to errors due to user bias. For 

example, in order to reduce errors from subjective user interpretation only clearly visible root 

hairs were segmented in the study of Koebernick et al., (2017). In a similar manner, Chai et 

al., (2019), assigned the task of manually counting root hairs to a researcher who was blind to 

the experimental condition due to concerns about researcher bias. 

3.2.3 Algorithm 1 - Root length and root hair analysis  

The main steps of the proposed algorithm may be summarised as follows: 

1. Pre-processing (Figure 3.1 (B)): This step effectively isolates a sub-set of the image 

by negating the pixel values not satisfying a certain set of criteria. The main steps 

involve: 

a. Circle removal filter 

b. Variance and greyscale thresholding 

c. Particle removal (pixel count < 1,500 and circularity > 0.6) 
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d. Region growth 

2. Vessel enhancement (Figure 3.1 (C)): This step enhances vascular structures to 

achieve a better segmentation from the background. This is achieved by applying the 

filter proposed by Frangi et al., (1998) at a scale/sigma of 10 pixels. 

3. Root segmentation (Figure 3.1 (D)): This step isolates the root areas from the 

background. The main steps involve: 

a. (ImageJ) IsoData threshold (Ridler and Calvard, 1978) 

b. Particle removal (pixel count < 5000 or circularity > 0.6) 

c. Region expansion 

The main outputs of the algorithm are root length, x and y dimensions of root length, total 

projected root area and mean root hair width to root width per unit segments. The root hair 

area is obtained by applying the (ImageJ) IsoData threshold (Ridler and Calvard, 1978) on 

the area adjacent to the detected roots after the end of step 3 (Figure 3.2). The mean value of 

the width of the root hair zone is then estimated, along with the mean width of the root in a 

unit segment of 10 pixels.  
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Figure 3.1: A) Minirhizotron image of a 14 day old spring barley seedling, B) Pre-processing 

for image subset selection, C) Vessel enhancement step for enhancing roots and D) Root 

segmentation step for extracting roots. 
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3.2.4 Root length and root hair area algorithms validation 

The validation procedure for the root detection algorithm can be summarised as: 

1. 10 minirhizotron images were randomly selected among a pooled dataset taken at 14 

and 21 days of growth from previously performed experiments.  

2. The skeleton of the visible root system (centre line) was traced manually by using the 

“Segmented Line” tool of Fiji (http://www.fiji.sc). 

3. The algorithm predicted estimates of X and Y dimensional root lengths were 

compared to the manual ones.  

 

The validation procedure for the root hair detection algorithm can be summarised as: 

1. 5 minirhizotron images were randomly selected among a pooled dataset taken at 14 

and 21 days of growth from previously performed experiments.  

2. 4 image sections (300 x 300 pixels) containing root hairs were subjectively chosen by 

a user so that the sections spanned the length of the root system. 

3. The root hair boundary was traced manually by using the “Polygon Selections” tool of 

Fiji. 

4. The percentage of the root hair boundary area which was larger or equal to the 

(ImageJ) IsoData threshold value was estimated.  

Figure 3.2: Magnified image of spring barley grown in the RS and scanned at 1,600 dpi. A) 

Raw image and B) Root hair boundary (blue) and detected root hair area (red) after 

thresholding the area adjacent to the root. 
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The execution speed of the algorithm was measured for a set of 8 images of 3-week-old 

seedlings grown in RS. This was achieved by using the R base function “system.time” and 

extracting the elapsed time from the outputs. The algorithm was estimated to have an average 

(x̄ ± s) execution time of 151.02 ± 34.20 sec. The system properties of the PC were: 

 

Processor: Intel® Core™ i5-6200U @ (Base) 2.30GHz (Max Turbo) 2.40GHz. 

Installed memory (RAM): 16.0 GB (15.9 GB usable).  

System type: 64-bit operating system, x64 based processor. 

Windows Version: Windows 10.  

 

3.3 Root cap and border cell measurements 

3.3.1 Root cap and border cell imaging methods 

The plant root cap is an important structure which offers protection to the root tip meristem 

from physical stresses exerted on it by the soil and determines the direction of root growth 

(Bengough and McKenzie, 1997). Specifically, 2 root cap associated traits are of interest 

here, (1) the geometry of the root tip and (2) the count of the root border cells (RBCs) 

produced by it. In terms of quantifying root tip geometry, there is currently only one 

published method for estimating root tip geometry in an automated way, the software known 

as ROSTA (Colombi et al., 2017). This MatLab implementation enables the automated 

quantification of the root tip geometry for single root tips in images captured at a high 

resolution (2,400 dpi) flatbed scanner. The method essentially involves global thresholding to 

extract the root tip and subsequent ellipse fitting of the root tip perimeter to estimate 

eccentricity. 

In contrast, there are a significant amount of reported methods for extracting, imaging and 

quantifying RBCs. Hawes et al., (2000), immersed root tips in water for 30 seconds to extract 

RBCs and determined cell viability by using a vital stain, i.e., fluorescein diacetate (FDA). In 

a similar manner, Wuyts et al., (2006), used a light microscope to count RBCs and assessed 

cell viability by also using FDA. Pan et al., (2001), assessed average RBC count per root tip 

by counting them in five 20-µl aliquots (100 µl) under a light microscope. The authors also 

used a compound staining dye, i.e., fluorescein diacetate–propidium iodide (FDA–PI) to stain 

root tips and assess RBC viability under a fluorescent microscope. Furthermore, the authors 

also attempted to quantify RBCs in hydroponics but concluded that the estimates obtained 
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were not reliable due to RBCs dropping to the bottom of the water tanker. Vicré et al., 

(2005), used bright field microscopy to assess RBC viability by immersing root tips in a drop 

of Calcein-AM about 10 to 15 min before acquisition of the images. Wang et al., (2013), 

determined RBC viability in 8 μl aliquots by staining them with 8 μL of 0.4% “Trypan blue” 

for 3-5 min and subsequently counting white and blue cells (live / dead) under a Phenix100 

optical microscope. Tran et al., (2016), visualized RBCs under an Olympus BX60F5 

fluorescence compound microscope by collecting them from root tips dipped into sterile 

water for 5 min, incubating them with 1x10 8 CFU/ml. R. solanacearum-GFP for 30 min and 

then staining them with SYTOX Green or DAPI. It should also be stated that confocal laser 

scanning microscopy (CSLM) for 3D imaging is a relevant recent development in this 

context. For example, Kamiya et al., (2016), used a Nikon C2 confocal microscope to image 

dead and live RBCs by soaking roots in staining solutions of 10 µM of propidium iodide and 

2 µg/ml FDA respectively. In a similar manner, Bennett et al., (2014), reported the use of a 

green fluorescent protein (GFP) or an alternative yellow fluorescent protein (YFP) for 

counting viable RBCs. Unfortunately, the above-mentioned methods all rely on manual 

counting of RBCs and do not offer automated image processing tools. 

As a consequence, if the approach used here to quantify both root traits relied on existing 

methodologies, there will be 2 main limitations: 

1. The time requirement for manually counting RBCs will be large, especially when 

multiple root tips are sampled from a single seedling. 

2. After RBC counting, the same root tips will have to be cleared from the staining dyes 

and subsequently transferred and re-imaged in a high-resolution flatbed scanner. 

If the RS was to become a high throughput system, then a more efficient methodology is 

required for quantifying the root micro traits after destructive sampling. As such, it was 

decided to use the method reported by Pan et al., (2001), as a basis for quantifying RBC 

numbers. The method involves the use of a compound staining dye (FDA-PI) to directly 

assess RBC viability of root tips under a fluorescence microscope thus, avoiding the need for 

aliquots. The only major difference is the replacement of manual counting with an automated 

image processing algorithm after imaging of the root tips. This will reduce the amount of 

time required for image processing. A further optimisation was further made to the proposed 

methodology by developing a second automated image processing algorithm for determining 

root tip geometry from the images obtained from the microscope as the image quality was 

judged to be sufficient for quantifying root tip geometry.    
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3.3.2 Root tip staining and imaging procedure 

After root destructive sampling, a cut was made with a scalpel ~10 mm above a selected root 

tip and gently placed on a microscope slide with tweezers. Any attached sand particles were 

then carefully picked off with the tweezers and the slide was immediately stained with a few 

drops of the FDA-PI compound (Pan et al., 2001) and immediately covered with aluminium 

foil. After 5 minutes the slide was covered with a 1.7 mm thick cover slip and imaged by 

locating the appropriate focal plane and subsequently imaging using a Leica binocular 

microscope MFZ III under the GFP filter (FDA) and the Texas-Red filter (PI) with UV 

excitation. 

3.3.3 Algorithm 2 – Root tip geometry and border cell analysis 

3.3.3.1 Root tip geometry 

In order to quantify root tip geometry, the algorithm uses the following sequence of steps: 

1. Greyscale (8-bit) conversion of PI stained root, imaged with Texas Red filter. 

2. Morphological opening (Disk SE - radius = 20) 

3. Otsu thresholding (Otsu, 1979) 

4. Binary shape hole filling (if required) 

5. Root contour extraction 

6. Contour rotation 

7. Skeletonization (Xia, 1986) 

8. Savitzky-Golay polynomial filter (Savitzky and Golay, 1964) / convolution coefficients 

(Gory, 1990). 

9. Conic model fitting / Braikenridge–Maclaurin theorem (Coxeter and Greitzer, 1967). 

Figure 3.3 (A), illustrates the original RBG image of the PI stained root tip obtained from the 

optical microscope. Figure 3.3 (B), illustrates the greyscale display of the image by using 

only the values of the red channel which corresponds to the PI emission signal. Figure 3.3 

(C), shows the result of applying a morphological opening operator to enhance larger 

structures. Figure 3.3 (D), is the result of binary transformation to isolate the root. Figure 3.3 
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(E), is the output of root contour extraction to isolate the boundary of the root. Figure 3.3 

(F), is the rotated version of the root outline to ensure that the root tip has a vertical 

orientation for technical reasons relating to the efficiency of the polynomial filter applied in 

the next step. Figure 3.3 (H), is the result of fitting a conic section equation to the root tip 

extremum. This is achieved by first approximating the root contour with a 3rd order 

polynomial filter (Savitzky and Golay, 1964) and subsequently fitting a conic equation by 

using the Braikenridge-Maclaurin theorem (Coxeter and Greitzer, 1967). The conic with the 

minimum distance between the root contour and itself is selected by randomly sampling 5 

points around the root tip extremum. 
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Figure 3.3: Root tip geometry algorithm, A) Raw image, B) Greyscale conversion, C) Morphological opening, D) Binarization, E) Root 

Contour extraction, F) Root contour rotation and H) Conic fitting.
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3.3.3.2 Dead border cell segmentations 

In order to quantify the count of non-viable RBCs, the algorithm uses the following sequence 

of steps: 

1. Greyscale (8-bit) conversion of PI stained root, imaged with Texas Red filter. 

2. (White) Top-hat filter (Disk SE, r = 15) 

3. Blob enhancement filter (Li, Sone and Doi, 2003) 

4. Cell nuclei binarization  

5. Cell nuclei count 

Figure 3.4 (A), illustrates the original RBG image of the PI stained root tip obtained from the 

optical microscope.  Figure 3.4 (B), illustrates the greyscale display of the image by using 

only the values of the red channel which corresponds to the PI emission signal. Figure 3.4 

(C), shows the result of applying a morphological (white) top hat operator to remove larger 

structures. Figure 3.4 (D), is the output of applying a blob enhancement filter (Li, Sone and 

Doi, 2003). Figure 3.4 (E), is the result of binary transformation to segment the cell nuclei. 
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Figure 3.4: Non-viable RBCs algorithm, A) Raw image, B) Greyscale conversion, C) Top hat filter, D) Blob enhancement and E) Binarization.
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3.3.3.3 Live border cell segmentations 

In order to quantify the count of viable RBCs, the algorithm uses the following sequence of 

steps: 

1. Greyscale (8-bit) conversion of FDA stained root 

2. (White) Top-hat filter (Disk SE, r = 15) 

3. Vessel enhancement filter (Frangi et al., 1998) 

4. Cell binarization 

5. Cell count 

Figure 3.5 (A), illustrates the original RBG image of the FDA stained root tip obtained from 

the optical microscope. Figure 3.5 (B), illustrates the greyscale display of the image by using 

only the values of the green channel which corresponds to the FDA emission signal. Figure 

3.5 (C), shows the result of applying a morphological (white) top hat operator to remove 

larger structures. Figure 3.5 (D), is the output of applying a vessel enhancement filter (Frangi 

et al., 1998). Figure 3.5 (E), is the result of binary transformation to segment the cells. 
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Figure 3.5: Viable RBCs algorithm, A) Raw image, B) Greyscale conversion, C) Top hat filter, D) Vessel enhancement and E) Binarization.
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3.3.4 Root border cell algorithm validation 

In order to assess the accuracy of algorithms described in Section 2.3.2 the following 

procedure was performed: 

1. 5 images were randomly selected from a pooled set of images and their corresponding 

FDA and PI stained images were extracted. 

2. The area of RBCs nuclei and cells in the PI and FDA stained images respectively, 

were manually segmented by using the “Polygon selections” tool in Fiji. 

3. The binary masks obtained were then overlaid to their respective algorithm output 

images to assess their prediction accuracy in the form of an error matrix. 

 

3.3.5 Root border cell quantification 

In order to obtain RBC estimates from the output of the segmentation algorithms described 

above the following method was used: 

1. The RBC segmented areas mentioned in the segmentation validation analysis above 

were examined and 20 clearly defined cell outlines were selected from each of the 5 

images. 

2. A total of 100 cell outlines were then pooled together and imported in the statistical 

software R. 

3. The R package “fitdistrplus” was then used to assess the goodness of fit of various 

probability distributions to the training dataset. 

4. The selected distribution parameters were then integrated into their respective 

algorithms to generate estimates of cell numbers by using the particle binary areas 

from the output images produced by the algorithms.   

 

3.4 Washed root system assessment 

3.4.1 Root morphology methods based on destructive sampling 

One of the most common methods for obtaining root morphological information involves the 

destructive sampling, washing and subsequent measurement of the plant root system. The 

process of measuring “Washed Root Systems” (WRS) is both invariably time consuming and 

labour demanding but, it is usually the only available option for obtaining information about 

the root system as opposed to the much more accessible stem of the plant (Box, 1996). In 
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general, WRS quantification methods could be classified as being either manual or automatic. 

Manual methods are very common and are usually based on the line-intersect method 

(Newman, 1966) which estimates the “Total Root Length” (TRL) by visually counting the 

grid line-root intercepts and obtaining the product of the number of intersects with a 

conversion factor pertaining to the size of the grid system (Tennant, 1975). The main 

advantage of this method is its simplicity, but it is time-consuming and inaccurate, with the 

error being proportionally increased with the number of fine roots in the sample (Costa et al., 

2002).              

Automated methods on the other hand, involve the imaging and digitization of the WRS 

which is subsequently analysed with either a semi-automated or fully automated image 

processing algorithm to obtain estimates of root traits, including the TRL. These methods are 

becoming more popular today due to the development and accessibility of both computer 

hardware and software and, the software’s ability to process simple RGB or greyscale images 

in a range of settings. For example, IJ-Rhizo (Pound et al., 2013) is a plugin which was 

designed to perform semi-automated analysis of roots in the popular and freely available 

software “ImageJ”. Another example of a semi-automated and freely available software is 

RootNav (Pierret et al., 2013) and does not require any previously installed software to use 

(i.e., stand-alone software). However, perhaps the most widely used software in root research 

today is WinRHIZO™ (Arsenault et al., 1995), another stand-alone software but not freely 

available. Unfortunately, despite its popularity, this software requires a high contrast between 

the root and the background, which restricts it’s use to very clear images, e.g., washed root 

systems on uniform background (Svane et al., 2019). In other words, the presence of image 

noise such as scratches, non-uniform illumination or background break-ups, could give 

erroneous estimates of TRL.  

In the images obtained in this research it was found that the lack of resistance to noise was 

responsible for noticeable errors. In practise, that required the addition of a pre-processing 

step for noise removal to mitigate this issue prior to image analysis. Fortunately, most 

available software’s have utilities to filter out noise, e.g., dust filter which can mitigate the 

errors. However, even after testing with various software, errors persistent in most cases and 

adaptation of the algorithm parameters for each software was a time-consuming step. 

Furthermore, software such as WinRHIZO™ require a commercially available licence and 

can only be installed on a single PC per licence. As such, to increase the efficiency of the 

overall process of analysing WRS an algorithm (A3) was developed for the retrieval of basic 
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root architecture in a more robust and automated way. As previously, A3 was written in the 

Rcpp language to make it more accessible and user friendly. A description of the algorithm 

follows (Section 2.4.2) with a subsequent validation of the proposed algorithm (Section 2.4.3) 

and discussion (Section 2.4.4). 

However, it should be noted from the onset that A3 was designed to obtain a robust and fast 

way to extract the basic root parameters of WRS. In theory, numerous root traits could be 

defined and quantified when studying WRS, specific root length (SRL) and root length 

density (RLD) are perhaps most commonly studied (Weemstra et al., 2016). SRL (root length 

per unit root biomass) is a morphological trait that provides information about the amount of 

resources needed to increase the surface area between roots and soil (Kramer-Walter et al., 

2016). RLD (root length per unit volume of soil) is an architectural trait describing the 

capacity of a root network to explore a given volume of soil and acquire limited resources 

(Ravenek et al., 2016). However, the estimation of both SRL and RLD, requires estimation of 

the total root length (TRL) of the WRS (Delory et al., 2017). This was one of the primary 

reasons why the validation analysis in Section 2.4.3 used TRL as the parameter of the 

analysis. 

3.4.2 Algorithm 3 – WRS total root length analysis 

In order to quantify TRL, the algorithm uses the following sequence of steps: 

1. Greyscale (8-bit) conversion (if input image is in RGB format) 

2. Median filter (r = 2)  

3. Maximum entropy thresholding (Li and Lee, 1993)  

4. Particle removal based on pixel size threshold (threshold = 10, 000) 

5. Morphological closing (Disk SE, radius = 5)   

6. Morphological opening (Line (135 and 45 degrees) SEs, radius = 2) 

7. Particle removal based on pixel size threshold (threshold = 3, 000)  

8. Morphological dilation (Disk SE, radius = 2)  

9. Region growth with binary mask  

10. Particle removal based on pixel size threshold (threshold = 30, 000)  

11. Skeletonization (Xia, 1986)  

12. Skeleton pruning (Solís Montero and Lang, 2012)  

13. Root system analysis 
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Figure 3.6 (A), illustrates the original greyscale image of washed root system. Figure 3.6 

(B), is the result of thresholding (maximum entropy) to obtain a binary image containing both 

root and noise. Figure 3.6 (C), shows the output of the particle removal process to remove 

some of the noise. Figure 3.6 (D), is the output of a series of morphological operators and 

area reconstruction to further reduce noise and reconstruct the original root binary area. 

Figures 3.6 (D) and (E) are the results of skeletonization and subsequent skeleton pruning 

respectively, to arrive at the final root skeleton image. 

After the segmentation of the WRS from the background the following root parameters were 

estimated: 

1. Total Root Length (TRL) was estimated by skeletonization of the foreground material 

and subsequent multiplication of the number of pixels by an image size conversion 

factor. 

2. Total Root Area (TRA) (or Projected Area) was estimated by counting the foreground 

pixels and again multiplying it by a size conversion factor.    

3. Root Average Diameter (RAD) was estimated by averaging the Euclidean distance 

map values of the root skeleton. 
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Figure 3.6: TRL quantification image processing main steps A) Median filtering (Step 2), B) Maximum entropy thresholding (Step 3), C) 

Particle removal (Step 4), D) Binarization (Step 10), E) Skeletonization (Step 11) and F) Skeleton pruning (Step 12). 
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3.4.3 WRS parameter extraction algorithm validation 

In order to validate A3, seedlings (n = 14) were grown in the RS for a period of three weeks. 

At the end of the growth period, the seedlings were extracted from the rhizotrons, their stems 

were cut, and their root systems were gently washed with tap water to remove attached RS 

sand particles. The seedlings were then placed on a moistened rectangularly shaped (420 x 

297 x 2 mm) scanning acrylic and scanned at 800 dpi. The obtained images were then 

downsized to a 400 dpi resolution by using Fiji (to reduce their file size to a size which 

allowed for image analysis across all of the following image processing software:   

1. ARIA, (Pace et al., 2014) 

2. EZ-Rhizo, (Armengaud et al., 2009) 

3. GiaRoots, (Galkovskyi et al., 2012) 

4. RootReader2D, (Clark et al., 2013) 

5. WinRHIZO™ (Regent Instruments, Québec, Canada) 

 

The reduced resolution images were then analysed in Fiji by manually tracing the skeleton of 

the visible root systems (centre line) with the “Segmented Line” tool. The traced skeletons 

were used to obtain observed TRL estimates which were then compared to the predicted TRL 

estimates of the automated image processing software tested. For each software used, a 

regression relationship was fitted between the observed and predicted estimates of TRL by 

using the R base function “lm”. The function “linearHypothesis” from the R package “car” 

was then used to test the hypothesis that the slope of each of the fitted linear regression 

models was equal to 1.  

It should be stated that every effort was made to provide identical parameters for each of the 

above-mentioned software and ensure identical settings however, due to intrinsic differences 

such as different noise removal strategies/options, the parameters used may deviate in some 

cases. The mean (x̄ ± s) user execution time of the above described algorithm was ≈ 18.27 ± 

8.50 sec (see Section 3.2.4 for PC specifications). The reason user time is reported instead of 

elapsed time is because the algorithm uses parallel processing which means that the user time 

> elapsed time. 
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3.5 Results 

Figure 3.7 demonstrates the relationship between the manually measured estimates of X and 

Y dimensional root lengths and the algorithm predicted estimates (Section 3.2.4). The slope 

of the fitted linear regression models for X and Y root lengths were 0.94 and 1.01 

respectively with a residual sum of squares value of 0.39 and 0.04 which indicates a good 

agreement between the algorithm and the measured data.   

Figure 3.8 is a summary of the root hair area overlap between the algorithm predicted root 

hair area and the manually traced total root hair area. The mean root hair overlap value for the 

analysed sections was 78.083 ± 15.945 % which shows that most of the root hair area is 

correctly captured.  

 

 

Figure 3.7: Validation graph for A1 demonstrating the observed vs. predicted X and Y 

dimensional root lengths. 
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Figure 3.8: Root hair area overlap of the predicted root hair area relative to the manually 

traced total root hair area for 20 different (300 x 300 pixels) image sections. The dashed lines 

represent the 0 (min), 1st, 2nd (Median), 3rd and 4th (max) quartiles. 

Table 3.1 is an error matrix which summarises the binary prediction accuracy between the 

algorithm predicted area covered by border cells and the manually measured area for the 

FDA (viable cells) and the PI (non-viable cells) images (Section 3.3.4). The combined mean 

percentage of true positives and true negatives are 99 % for both the FDA and the PI images 

which indicates an excellent agreement between the predicted and observed border cell areas. 

The elapse execution time of the above described algorithm was ≈ 3 sec (see Section 3.2.4 for 

PC specifications). 
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Table 3.1: Error matrix showing the % pixel prediction errors of 5 images for the algorithms 

described in Section 3.3.2. 

 Img 1 Img 2 Img 3 Img 4 Img 5 x̄ ± s 

FDA  

True 

Positives 

(TP) 

0.21 1.4 1.71 1.47 0.52 1.062 ± 

0.656 

True 

Negatives 

(TN) 

98.85 97.28 97.32 97.56 98.56 97.914 ± 

0.737 

False 

Positives 

(FP) 

0.15 0.11 0.31 0.24 0.06 0.174 ± 

0.101 

False 

Negatives 

(FN) 

0.78 1.21 0.66 0.73 0.86 0.848 ± 

0.215 

PI  

True 

Positives 

(TP) 

0.51 0.07 0.34 0.37 0.05 0.268 ± 

0.201 

True 

Negatives 

(TN) 

99.07 99.26 99.08 99.03 99.72 99.232 ± 

0.362 

False 

Positives 

(FP) 

0.27 0.66 0.41 0.49 0.21 0.408 ± 

0.304 

False 

Negatives 

(FN) 

0.15 0.01 0.17 0.11 0.02 0.092 ± 

0.456 

 

Figure 3.9 and Table 3.2 summarise the goodness of fit of four probability distribution 

models relating the cell (FDA) and nuclei (PI) binary areas obtained from the algorithm to the 

number of border cells counted in the training dataset (Section 3.3.5). The log-normal 
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distribution was then selected for integration into the algorithm because of its good 

performance and ease of programming into the programming language RCPP. 
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A B 

Figure 3.9: Probability distribution fitting diagnostic plots for A) live (FDA) and B) dead (PI) RBC populations. 
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Table 3.2: Summary goodness of fit statistics for live (FDA) and dead (PI) RBC populations. 

FDA 

 Normal Lognormal Loglogistic Gamma 

Kolmogorov 

Smirnov statistic 

0.0692 0.0758 0.0688 0.0618 

Cramer von 

Mises statistic 

0.0959 0.1249 0.1268 0.085 

Anderson 

Darling statistic 

0.7728 0.8073 0.9113 0.5923 

Akaike's 

Information 

Criterion 

1141.116 1134.894 1141.574 1133.992 

Bayesian 

Information 

Criterion 

1146.327 1140.104 1146.785 1139.203 

PI 

 Normal Lognormal Loglogistic Gamma 

Kolmogorov 

Smirnov statistic 

0.16 0.1293 0.1217 0.1416 

Cramer von 

Mises statistic 

0.4016 0.1918 0.1998 0.242 

Anderson 

Darling statistic 

2.4261 1.061 1.2013 1.3824 

Akaike's 

Information 

Criterion 

738.422 720.2671 726.5632 723.9357 

Bayesian 

Information 

Criterion 

743.6323 725.4774 731.7736 729.1461 
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Figure 3.10 demonstrates the relationship between the observed and the algorithm predicted 

total root length for the proposed method and a range of other software (Section 3.4.3). Table 

3.3 is a summary of the goodness of fit statistics obtained for testing the hypothesis that the 

slope of the regression line for each software was equal to 1. 
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Figure 3.10: Observed vs. Predicted values of TRL for tested automated 2D software and the 

proposed algorithm. The solid black line represents the 1:1 identity line. 

Table 3.3: Summary statistics for the linear regression model of the form y = x. 

Software RSS Sum of Sq F Pr(>F) 

Proposed 221.58 2048.4 55.467 8.65E-07*** 

RootReader2D 1,581.1 10,302 39.092 5.55E-06*** 

GiaRoots 2,869 30,821 64.45 3.82E-07*** 

ARIA 5,882 47,947 48.908 1.70E-06*** 

EZ_Rhizo 12,567 547.91 0.2616 0.7741 

WinRHIZO™ 27,260 53,070 11.681 0.001527** 

 

3.6 Discussion 

The algorithms described above enable the detection and quantification of roots and root 

hairs of spring barley seedlings grown in the RS (A1), root border cells and root tip geometry 

from microscope images (A2) and a more accurate estimate of TRL after washing of the root 

system (A3). The validation analysis in Section 3.2.4 enabled an estimation of the error 

associated with the proposed algorithm (A1) for detecting and quantifing roots grown in the 

RS. The percentage error (x̄ ± s) for the X (HGR) and Y (VGR) root system dimensions 

were respectively 9.89 ± 10.58 % and 5.37 ± 2.7 % so the approximate percentage error in 

RGR was estimated as 15.26 ± 13.28 %. As discussed with numerous examples in Section 

3.2.1 the majority of softwares used are for manual tracing of the root systems in 

minirhizotron studies. As such, if the tolerance for error is judged to be acceptable then the 

user can benefit from a significant reduction in the time required for analysing images. The 

estimated amount of time required for executing the algorithm was 151.02 ± 34.20 sec for 

seedlings at 3 weeks of growth. The amount of time it takes for manual tracing of the root 

system even with commercial software such as WinRHIZO Tron will clearly be significantly 

longer even for an experienced user. Furthermore, the reported timing of the software is 

expected to have an inverse relationship with the seedling age as the visible part of the root 

system will only cover a fraction of the RS area depending of course on the cultivar and the 
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experimental treatment. The operator could simply scan only the section of the visible system 

and achieve reductions in both scanning times and image processing times. Finally, it should 

be noted that other automated algorithms exist such as the one proposed by Zeng et al., 

(2010). Although, obtaining excellent results for the test images, the resolution was only 640 

× 480 dpi. The effective RS root containing area is approximately 11,200 x 18,200 dpi at the 

1,600 dpi scanning resolution used. In other words, the previous resolution contains only 0.15 

% of the pixels in comparison to our application which was projected to lead to unaceptable 

image processing times, assuming that the software does support such an image size. An 

alternative option would be to then crop the images and analyse small sections but the 

process will be laborious and require significant amounts of time. Similarly, reducing the 

image resolution to lower than 1,600 dpi was found to make root hair structures 

indistinguishable in the obtained images.  

The root hair area is quantified by creating a buffer zone of 0.5 cm around the root and 

applying a binary threshold. It should be emphathized here that the estimate of root hair area 

is simply an indication of the projected area covered by root hairs. The analysis is restricted 

to the focal plane of the image which means that there will always be root hairs that are not 

visible, either because they are out focus or are covered by other root material or sand 

particles. This is however, an intrinsic limitation of the RS, the analysis is only restricted to 

the thin interface of the scanning surface the substrate/root mixture. Furthermore, although a 

number of authors tend to consider only clearly visible root hairs (Koebernick et al., 2017; 

Chai et al., 2019) in their analysis this was avoided here because it was found to give a 

misleading underestimation of the total root hair area, especially at areas of high root hair 

density. In theory, a second order derivative based approch for edge detection could work for 

segmentating reasonably defined root hair segments but that was later rejected due to the 

above reasons. 

The proposed RBC and root tip assesment using a microscope based method has the 

advantages of allowing both the determination of RBC viability and the assesment of root tip 

geometry from the same set of images. The algorithm itself requires approximately 3 seconds 

due to the small file size of the images. This enables rapid assessment of two of the root 
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microtraits of interest and helps in making the RS data analysis step more efficient. It must be 

noted that the procedure of generating random observations of cell area from the underlying 

lognormal distribution untill the cell agregate area is covered, is similar in principle to the 

approach used by Bengough et al., (2001). The authors estimated cell numbers in root cross 

sections by effectively modelling the number of cells with the observed dimensions and 

fitting them into a circle of varying radius. This sequence of 2D sections form the basis for 

extrapolating to the 3D case of the root cap but the 3D case was not considered here. The 

proposed method effectively provides an overview of cell projected area which is then 

translated into an unbiased estimate of the number of border cells. However, cells are 3-D 

structures and as such a number of them are either overlapping with other cells or are out of 

focus although, the latter issue can be reduced by taking more than 1 image to capture the out 

of focus cells and subsequently summing them. In terms of the root tip shape, this 

geometrical parameter is usually reported to be modelled as an (approximate) ellyptical half-

spheroid (Mckenzie et al., 2013;  Colombi et al., 2017). As such the choise of modelling the 

root tip cross section as a conic section should be a similar but more flexible approach as an 

ellipse is just one case of the conic with the parabola and hyperbola cases allowed for in cases 

when the root tip eccentricity exceeds that of the elipse.  

Although a range of methods were compared in Section 3.4.3, perhaps the most commonly 

reported method for quantifying WRS is the system known as WinRHIZO™ (Regent 

Instruments, Québec, Canada). WinRHIZO™ is a commercially available image analysis 

system composed of both image acquisition components such as flatbed scanners (although 

not required) and a computer program for image processing. It estimates a range of root 

morphology and architectural traits (e.g. projected root area), providing significantly more 

information for the root system than simply its TRL. Other properties that contributed to 

WinRHIZO™ becoming a standard image processing tool are its ability to detect and correct 

for root overlap and produce root diameter distributions for the total root system (Arsenault et 

al., 1995). As such, WinRHIZO™ is often used as a reference to evaluate the accuracy of 

new image analyses tools (Himmelbauer et al., 2004; Pierret et al., 2013). However, 

examination of Figure 3.10 and Table 3.3 clearly suggest that it had the poorest performance 

with the largest model RSS by some margin. In contrast, the proposed algorithm had the 
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smallest model RSS when testing the hypothesis that its regression line was the 1:1 line 

(Table 3.3). The reason for the poor accuracy of WinRHIZO™ was probably root 

overlapping which results in a significant underestimation of TRL (Bauhus and Messier, 

1999). Although, the software uses a root correction factor to correct for this it can be 

insufficient when root clusters occur such as the presence of root stumps in the root system 

(Wang and Zhang, 2009). More recently Delory et al., (2017), suggested that procedures such 

as increasing the contrast between fine roots and background by staining the roots and to 

avoid overlapping roots by not exceeding a RLD of 1 cm cm-2 can increase the accuracy of 

WinRHIZO™. However, the aim is always efficiency and the addition of extra steps will 

only make the process of obtaining TRL more complex and time demanding. Of course, 

results will always vary between software packages, image acquisition systems and resolution 

(Rose and Lobet, 2019) but the validation analysis did try to keep all parameters as similar as 

possible. In summary, the proposed method could be potentially useful as an alternative tool 

although, there other candidates such as RootReader2D that also performed well. 

3.7 Conclusions 

This chapter is dedicated to the introduction of three image processing algorithms which 

could be integrated into the RS overall measurement methodology and extract estimates of 

both macro and micro traits either in situ or ex situ. The first algorithm (A1) allows for 

automated root detection and quantification of the root system grown in the RS. This tool also 

allows for an estimation of the projected root hair area after the root detection part of the 

algorithm is complete, with root hair to root width estimation. The benefits of the algorithm 

are that it obtains in situ estimates of root traits in an automated way, offering significant 

reductions in image processing times relative to manual tracing methods provided that the 

user is willing to accept an error tolerance of around 15 % in their RGR estimate. The second 

algorithm (A2) was designed to retrieve estimates of the number of viable and non-viable 

root border cells after staining extracted root tips in a compound FDA/PI mixture and 

imaging under a fluorescence microscope. This method also quantifies the geometry of the 

extracted root tips from the same set of pair images. The very quick image processing times 

(3 seconds) offer a very convenient and efficient way to extract information about two of the 
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root micro-traits considered in this study. The third algorithm (A3) involves the detection and 

quantification of WRS, more specifically its TRL and diameter profile. The motivation 

behind the design of this application was to further complement the collection of methods 

with a fast (18.27 sec), user friendly, free of cost and of a higher accuracy method relative to 

most alternatives. In summary, these custom developed methods will be an essential 

component in developing the overall experimental procedure of manipulating the LLWR soil 

stressors in the RS and subsequently assessing the root trait response to those treatments for 

different cultivars in Chapters 4 and 5. 
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4. Constraints to the application of the LLWR 

4.1 Introduction 

Global food security is a major challenge for current and future generations (FAO, 2009). 

Major issues such as drought stress are negatively influencing plant growth, survival and 

reproduction (Barnabas et al., 2008) and are responsible for large crop yield reductions (Khan 

et al., 2015; Ryan et al., 2016). Drought severity is also projected to increase due to 

increasing global temperatures (Asseng et al., 2015). Similar concerns also exist for flooding 

frequency and severity (Trenberth, 2011), especially considering that approximately 10 % of 

cultivated land surface that suffers from poor drainage and waterlogging (Koevoets et al., 

2016). The above climatic effects are exacerbated when one considers the negative 

consequences of soil compaction brought upon by heavy agricultural machinery which 

increase the mechanical resistance of the soil and, reduces the oxygen availability to roots by 

modifying soil pore structure (Lipiec et al., 2012). As such, it is important to understand how 

the soil physical conditions of water stress, oxygen stress and mechanical stress interact to 

impact root growth (Mohammadi et al., 2010). 

The least limiting water range (LLWR) is model which connects the important soil stressors 

of penetrometer resistance (a measure of mechanical resistance), lack of oxygen and water 

potential to the physiological limits of plant growth (da Silva et al., 1994). The physiological 

limits of plant growth are practically interpreted to be limiting values for penetrometer 

resistance (PR - 2 MPa), air filled porosity at hypoxic conditions (AFP - 10%), matric suction 

at field capacity (FC - a measure of soil water-holding capacity) (0.01 MPa) and matric 

suction at the permanent wilting point (PWP - 1.5 MPa). PR, AFP, PWP values represent the 

point at which root growth effectively stops and by integrating them in the LLWR model it is 

possible to estimate in a computationally feasible way the range of soil volumetric water 

concentration for optimum plant growth. FC represents the maximum likely water level under 

field conditions, unless geographic condition mean water is held in the soil location. 

However, this model makes the (erroneous) implicit assumption that all plants have identical 

physiological responses, something which contradicts the fact that plant responses to soil 

physical stresses are known to be influenced by a range of root traits (Bengough et al., 2011). 
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The variable spectrum of plant root responses to the soil stressors must be considered in order 

to reformulate the LLWR. 

Root micro-traits are known to have a wide range of functions that are critical for plant root 

growth and survival. For example, root hairs are a common anatomical characteristic of most 

vascular plants and are known to dramatically increase the total surface area of the root 

system (Jones and Dolan, 2012) and, have a major role in the uptake of both nutrients and 

water (Gilroy and Jones, 2000). The presence and abundance of root hairs are known to 

significantly increase root water uptake (Carminati et al., 2017) by enhancing root-soil 

contact (Carminati et al., 2009). Furthermore, they can increase soil adhesion to roots 

(Moreno-Espındola et al., 2007; Czarnes et al., 1999), and offer greater mechanical 

anchorage to the plant (Bengough et al., 2016; Haling et al., 2014). Root hairs also increase 

the ability of roots to penetrate through soil (Haling et al., 2013), which is of great 

importance in compact soils (Lynch et al., 2014) and, influence soil structure development 

(Koebernick et al., 2017). In a similar manner, the plant root cap offers advantages in root 

soil penetration. Experiments involving the removal of the root cap in roots clearly 

demonstrated that removal of the root cap reduces the ability of the root to penetrate 

compacted soil (Iijima et al., 2003; Vollsnes et al., 2010). There is also evidence that the 

geometry of the root tip can influence the ability of the root to successfully penetrate the soil 

(Colombi et al., 2017). Another root cap associated trait are root border cells defined as “the 

cells that disperse into suspension within seconds when root tips are placed into water” 

(Hawes, et al., 2000). The root tip excreted mucilage-border cell matrix acts as a lubricant 

which reduces the coefficient of root-soil friction (Mckenzie et al., 2013). Roots grown in 

compacted soil conditions often respond by increasing the rate of production of the mucilage-

border cell matrix (Iijima et al., 2000). As a consequence, root micro-trait assessment is 

necessary as they determine the root growth response in a range of LLWR soil associated 

conditions. 

The purpose of this chapter is to describe the design and implementation of an experimental 

protocol whose purpose was to effectively combine the experimental unit described in 

Chapter 2 with the methodologies developed in Chapter 3. This will enable the creation of an 
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experimental setup which allows for the monitoring of root growth while manipulating the 

LLWR soil stressors and ultimately, enable the quantification of a range of root micro-traits 

via destructive sampling. The examination of the responses can then be used to explain how 

root traits influence root elongation rates for the various LLWR stressors.   

4.2 Aims 

The main aims could be summarised as: 

• Design and implement a multifactorial experiment with factors being the LLWR 

stressor variables. 

• Assess whether root micro-traits can be measured with the methods described in 

Chapter 3. 

• Determine the effect that the LLWR stressor variables have on root growth. 

• Determine the effect that the LLWR stressor variables have on root micro-traits.  

 

This experiment relied on the manipulation of the LLWR limits of substrate strength and 

water availability. As such, to facilitate the description of the experiment the following two 

definitions are introduced here for clarity: 

 

Dry Bulk Density (DBD) – a measure of RS substrate density. 

Irrigation Event (IRE) – a 3-minute slow dripping irrigation event. 

4.3 Methods 

4.3.1 Experimental Procedure 

The seeds used in this experiment were the same as in Chapter 2, i.e., spring barley (Hordeum 

vulgare var. Optic). The germination procedure for the seeds was as described in Section 

2.4.5. The experiment took place at the James Hutton Institute, Invergowrie, Dundee DD2 

5DA, Scotland, between the start of March and end of April in 2019. The glasshouse growth 

conditions were as described in Section 2.4.6. RS scanning was performed every 7 days for a 

period of 3 weeks by using the procedure specified in Section 2.4.7. 
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The experiment had a 3 by 3 factorial design with the factors being DBD and IRE. In order to 

impose the LLWR soil constraints the experiment had a randomized (blocked) structure with 

the RS units arranged in two parallel linear rows with 4 treatment replicates. The treatments 

for DBD were 1.4, 1.5 and 1.6 g cm-3 and the treatments of IRE were 2, 4 and 6 irrigation 

events per day (Table 4.1) with an event having a duration of 3 minutes. The original 

Hoagland’s nutrient delivery system was replaced with an alternative controlled release 

fertiliser, i.e., “Scotts Osmocote”, manufactured by “Everris”. This change was made to 

better mimic the slow release of nutrients in soil systems rather than delivering all the 

nutrients in single non-continuous water-carried events. This was achieved by individually 

grinding to dust 0.3 g of fertilizer with a mortar and pestle for each RS unit and subsequently 

mixing the fine powder with the required mass of RS substrate and mixing them thoroughly 

prior to RS packing. 

At the end of the 3-week period the RS units were opened one at a time and a total of 6 

actively growing root tips were selected from the actively growing region, to be stained and 

imaged as described in Section 3.3.2. After, the root systems were cut from the RS units and 

stored in 50% ethanol:dH2O in tubes. At a later date the roots were washed and imaged using 

an A2 flatbed scanner (Epson Expression 1600XL-PRO (300 dpi/82 µm – 1500 dpi/15 µm)). 

Table 4.1: 3-minute irrigation event timings used in each of the three levels for the 

experimental factor IRE. 

 2 IRE 4 IRE 6 IRE 

07:00    

09:00    

11:00    

13:00    

15:00    

17:00    
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4.3.2 Root growth parameters 

Root growth parameters and root hair area estimation were measured from the RS images 

obtained at 7, 14 and 21 days via analysis using algorithm 1 (see Section 3.2.3). Root border 

cells and root tip eccentricity were measured from the optical microscope images obtained 

during destructive sampling and analysed by using algorithm 2. In addition to the root growth 

parameters defined in Section 2.4.7 additional definitions are introduced here: 

Root Hair to Root Ratio (RHtRR): The ratio of the root hair zone width to the root zone 

width for unit segments of a length of 10 pixels (mm mm-1). 

Root Border Cell Count (RBCC): The sum of viable and non-viable root border cells. For 

clarity, a root border cell is defined to be a cell that is detached from the root tip when in 

solution (n). 

Root Tip Eccentricity (RTE): The geometrical eccentricity of the root tip modelled as a conic 

section (dimensionless). A higher value indicates a blunter root tip shape. 

4.3.3 Statistical Analysis 

The statistical analysis of the data was performed using the software R (version 3.5.0). The 

statistical significance test used for comparing the arithmetic averages of the experimental 

treatments was implemented with the “t2way” function from the R package “WRS2” Wilcox, 

(2017). This test is similar to ANOVA but performs better with small sample sizes by using 

an adjusted critical value and thus, does not report degrees of freedom. Post-hoc analysis was 

performed with the “mcp2atm” function from the same package. The degree of statistical 

significance is represented by *, ** and *** corresponding to a p value in the interval of 

(0.05, 0.01], (0.01, 0.001] and (0.001, 0] respectively. Principal components analysis (PCA) 

was performed with the R basic function “prcomp” and the data was centered and scaled for 

the analysis. Visualization of the biplots and 3D PCA plots was achieved with the packages 

“ggfortify” and “pca3d” respectively. The graphical outputs were also produced in R with the 

“ggplot2” and the “grid” packages. 
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4.3.4 LLWR for RS Substrate 

In order to put the results of this chapter into context of the LLWR concept the LLWR range 

had to be determined for the RS substrate. As such, the RS substrate used was packed into to 

a series of cylindrically shaped rings (4.5 mm diameter x 5.0 mm height) to create repacked 

soil cores of different dry bulk densities (1.4, 1.5 and 1.6 g cm-3) with 4 replicates per 

treatment. The gravimetric moisture content of each soil core was first adjusted to 20 % to 

give it consistency and make packing of the core easier. Cores were saturated with degassed 

water, then subjected to a sequence of different matric suctions (5, 10, 20 and 50 kPa) via the 

use of sand and tension tables and their penetrometer resistance and mass were measured at 

each stage to estimate the soil strength and the water release curve respectively (Bengough 

and Mullins, 1990). The resulting data were then used to estimate the LLWR range by using 

the function “llwr” from the R package “soilphysics”. It should also be noted that the reason 

for the small upper limit of -50 kPa was because that by -50 kPa ~95% of the pores were air 

filled (see Figure 2.10 (C)). 

 

4.4 Results 

A statistically significant difference was detected for ARGR (psi = 42.6274, p = 0.0215*) 

between the comparison of 1.4 vs. 1.6 g cm-3 DBD treatments. This was also the case for 

AHGR (psi = 28.1657, p = 0.0438*) and AVGR (psi = 52.0637, p = 0.0357*). This suggests 

that the above three variables had significant reductions at a higher substrate density. In 

addition to the above, a statistically significant difference was also detected for ARGR (psi = 

30.5872, p = 0.0444*) between the comparison of 4 vs. 6 IRE treatments with the higher 

water concentration having reduced growth rates. However, for the cases of AHGR and 

AVGR there were no statistically significant differences. A statistically significant 

interaction effect was detected for ARGR (psi = 33.4462, p = 0.0467*) between the 

comparison of 2 vs. 4 IRE treatments in both the 1.4 and 1.6 g cm-3 DBD treatments. A 

higher ARGR was observed for the lowest water concentration treatments when compared to 

medium water concentration treatments at lower densities with the opposite effect being true 

for higher densities. A similar interaction effect was also detected for AVGR (psi = 56.5362, 
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p = 0.0227*). Furthermore, a second interaction effect was detected for ARGR (psi = 

44.7760, p = 0.0097**) between the comparison of 2 vs. 6 IRE treatments in both the 1.4 and 

1.6 g cm-3 DBD treatments. A higher ARGR was observed for the lowest water concentration 

treatments when compared to the largest water concentrations treatments at lower densities 

with the opposite effect being true for higher densities. A similar interaction effect was also 

detected for AVGR (psi = 66.3187, p = 0.0102*). In general, given the overlap of statistically 

significant differences for ARGR and AVGR the results suggest that the growth response 

was primarily dominated by vertical instead of horizontal growth.  

Table 4.2, is a summary of the rank scores of ARGR, AHGR and AVGR, for each of the 

experimental treatments.  The largest ARGR value corresponded to the 1.4 g cm-3 DBD and 

2 IRE treatment while the smallest corresponded to the 1.6 g cm-3 DBD and 2 IRE treatment. 

In other words, for the driest treatments of two IRE the DBD value determined the ARGR 

with a higher density slowing down growth rates. A similar pattern appears to exist for the 

cases of AHGR and AVGR with the exception that the 2 IRE and 1.4 g cm-3 DBD treatment 

was ranked 2nd instead of 1st for the case of AHGR. In summary, it will appear that both 

horizontal and vertical root growth rates responded similarly in each treatment as did the 

overall measure of root growth. Figure 4.1, summarises the root values for ARGR, AHGR 

and AVGR obtain by application of A1 and demonstrate the relationships between the 

various DBD and IRE experimental treatments. Figure 4.2, displays the actual root lengths as 

a function of time for the above described experimental treatments. 
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Figure 4.1: Average spring barley growth rates for a period of 21 days as a function of IRE 

and grouped by DBD for root (A) Vertical length (B) and Horizontal length (C). 
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Figure 4.2: Horizontal and vertical root lengths of spring barley grown for a period of 21 

days and grouped by IRE for 1.4 (A, D), 1.5 (B, E) and 1.6 (C, F) DBD (g cm-3) treatments. 
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Table 4.2: Root growth rankings for ARGR, AHGR and AVGR averages across DBD and 

IRE treatments. 

DBD  

(g cm-3) 

IRE ARGR  

(mm day-1) 

AHGR 

(mm day-1) 

AVGR 

(mm day-1) 

1.4 

2 8.98 (1) 5 (2) 11.58 (1) 

4 7.34 (2) 6.1 (1) 8.16 (2) 

6 4.74 (7) 3.86 (5) 5.31 (8) 

1.5 

2 5.44 (4) 3.75 (6) 6.55 (4) 

4 5.31 (6) 4.04 (3) 6.14 (6) 

6 4.54 (8) 3.29 (8) 5.35 (7) 

1.6 

2 3.23 (9) 3.2 (9) 3.25 (9) 

4 6.37 (3) 4.01 (4) 7.9 (3) 

6 5.38 (5) 3.73 (7) 6.45 (5) 

 

Similar to the root growth rates figures above, Figure 4.3 summarises the average values for 

RHtRR and demonstrate its relationships between the various DBD and IRE experimental 

treatments. Figure 4.4, shows the observed RHtRR values as a function of time for all the 

treatments. 

Global statistical comparisons for RHtRR across different treatments of DBD (F = 3.1590, p 

= 0.257) and IRE (F = 0.3193, p = 0.861) failed to detect any simple main effects. 

Furthermore, global testing failed to detect any statistically significant interaction effects (F = 

1.4971, p = 0.861).   

Table 4.3, is a summary of the rank scores of RHtRR, for each of the experimental 

treatments. The largest RHtRR value corresponded to the 1.6 g cm-3 DBD and 6 IRE 

treatment while the smallest corresponded to the 1.5 g cm-3 DBD and 6 IRE treatment. This 

suggests that for the wettest treatments of 6 IRE the DBD value determined the RHtRR with 

a lower density reducing the values. However no statistically significant effects were 

observed and the average difference among the treatments was 0.63. 
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Figure 4.3: Average spring barley RHtRR grown for a period of 21 days as a function of 

IRE and grouped by DBD. 
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Figure 4.4: RHtRR of spring barley grown for a period of 21 days and grouped by IRE for 

1.4 (A, D), 1.5 (B, E) and 1.6 (C, F) DBD (g cm-3) treatments. 
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Table 4.3: Rankings for RHtRR averages across DBD and IRE treatments. 

DBD  

(g cm-3) 

IRE RHtRR 

(mm mm-1) 

1.4 

2 2.35 (5) 

4 2.17 (8) 

6 2.35 (6) 

1.5 

2 2.43 (4) 

4 2.32 (7) 

6 2.16 (9) 

1.6 

2 2.6 (2) 

4 2.56 (3) 

6 2.79 (1) 

 

Figure 4.5, demonstrates the RBCC values across DBD (A) and IRE (B) treatments.  

Global testing for RBCC indicated statistically significant differences across the DBD (F = 

8.0872, p = 0.047*) treatments but not for the IRE treatments (F = 0.8362, p = 0.68) and their 

interaction effects (F = 3.9328, p = 0.528). Post hoc testing indicated statistically significant 

differences for RBCC between the highest DBD treatment (1.6 g cm-3) and the lower DBD 

treatments of 1.4 g cm-3 (psi = -62, p = 0.0246*) and 1.5 g cm-3 (psi =-56.75, p = 0.0325*) 

with higher RBCC values being observed at higher substrate density treatments.  

Table 4.4, is a summary of the rank scores of RBCC, for each of the experimental 

treatments.  The largest RBCC value corresponded to the 1.6 g cm-3 DBD and 6 IRE 

treatment while the smallest corresponded to the 1.4 g cm-3 DBD and 6 IRE treatment. This 

suggests that for the wettest treatments of 6 IRE the DBD value determined the RBCC with a 

lower density reducing the number of RBCs. 

The reason RBCC was defined as the sum of viable and non-viable cells was because for 

most cases the non-viable cells were almost entirely the entire population of cells present. 
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Figure 4.5: RBCC of spring barley at the end of a 21-day growth period as a function of IRE 

and grouped by DBD. 
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Table 4.4: Rankings for RBCC averages across DBD and IRE treatments. 

DBD (g cm-3) IRE RBCC 

1.4 

2 42 (4) 

4 35 (7/8) 

6 27 (9) 

1.5 

2 37 (6) 

4 35 (7/8) 

6 38 (5) 

1.6 

2 50 (2) 

4 46 (3) 

6 70 (1) 

 

Figure 4.6, demonstrates the RTE values across DBD (A) and IRE (B) treatments. Global 

testing indicated statistically significant differences across the DBD treatments (F = 11.9108, 

p = 0.013*) but not for the IRE treatments (F = 0.0644, p = 0.971) and their interaction 

effects (F = 4.0423, p = 0.518). Post hoc testing indicated statistically significant differences 

for RTE between the highest DBD treatment (1.6 g cm-3) and the lower treatments of 1.4 (psi 

= -3.8039, p = 0.0048**) and 1.5 (psi = -3.2055, p = 0.0124*) with the higher substrate 

densities having more eccentric root tip geometries suggesting a less curved root tip shape.  

Table 4.5, is a summary of the RTE associated results from the statistical comparisons across 

different treatments of DBD and IRE. The largest RTE value corresponded to the 1.6 g cm-3 

DBD and 2 IRE treatment while the smallest corresponded to the 1.4 g cm-3 DBD and 2 IRE 

treatment. This suggests that for the driest treatments of 2 IRE the DBD value determined the 

RTE with a lower density reducing the RTE. 
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Figure 4.6: RTE of spring barley at the end of a 21-day growth period as a function of IRE 

and grouped by DBD. 
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Table 4.5: Rankings for RTE averages across DBD and IRE treatments. 

DBD (g cm-3) IRE RTE 

1.4 

2 1.42 (9) 

4 1.61 (5) 

6 1.58 (6) 

1.5 

2 1.51 (7) 

4 1.45 (8) 

6 2.24 (4) 

1.6 

2 3.05 (1) 

4 2.97 (2) 

6 2.39 (3) 

 

In summary, plant root ARGR, AHGR and AVGR were higher for the lowest bulk density 

treatments in comparison to the highest bulk density treatments. A medium amount of water 

gave higher ARGR when compared to the wettest treatments. Furthermore, at the highest 

bulk density treatments increasing amounts of water had a positive effect on ARGR and 

AVGR. In contrast, at the lowest bulk density treatments the driest treatments had a higher 

ARGR and AVGR. Root hair area did not appear to be responsive to either experimental 

factor of bulk density and water. RBCC increased at the highest bulk density treatments but 

did not vary significantly with water quantity. RTE also had similar effects with RBCC with 

the highest bulk density treatments having a higher RTE resulting in less curved root tips but, 

the amount of water did not have a significant influence on root tip shape. 

To assess the level of correlation between the different root traits principal components 

analysis was applied, using the ARGR, AVGR, AHGR, RHtRR, RBCC and RTE 

variables. Figure 4.7, is a series of PCA biplots for all possible combinations of the first three 

principal components. Table 4.6, is a summary of the variance explained by each principal 

component and also of the correlations between the variables and the components. Inspection 

of the above-mentioned figure and table suggest the following conclusions based on the 

relationship of PC1 and PC2 capturing a total of 64.34 % of variation: 
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1. Root hair to root ratio was positively correlated with root border cell count. 

2. Root hair to root ratio and root border cell count were not correlated with root tip 

geometry and average root growth rate. 

3. Root tip geometry and average root growth rate were negatively correlated. 

4. Average root growth rate was slightly more correlated with average vertical growth 

rate in comparison to average horizontal growth rate. 

5. No evidence of clustering for each treatment category. 

Figure 4.8, demonstrates a snapshot of a 3D PCA plot rotated at 90 °. This plot captures a 

larger amount of variation by integrating the 3rd PCA component accounting for 79.99 % of 

the total variation. Examination of this figure suggests: 

1. Root hair to root ratio, root border cell count and root tip geometry were not 

correlated between them and with average root growth rate. 

2. Average root growth rate was slightly more correlated with average vertical growth 

rate in comparison to average horizontal growth rate. 

3. Some evidence of a separation of the 1.6 g cm-3 DBD from the other DBD treatments. 
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Figure 4.7: Principal Component Analysis biplots for A) PC2 vs. PC1, B) PC3 vs. PC1 and 

C) PC3 vs. PC2. 
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Figure 4.8: Principal Component Analysis 3D plot snapshot with loadings and coloured by 

experimental treatment. 
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Table 4.6: Principal Components Analysis (PCA) of component importance, correlations and 

statistical significance.  

Importance of components   

 PC1 PC2 PC3 PC4 PC5 PC6 

Standard 

deviation 

1.638 1.0858 0.9688 0.8887 0.6411 1.58E-10 

Proportion 

of variance 

0.447 0.1965 0.1564 0.1316 0.0685 0.00E+00 

Cumulative 

Proportion 

0.447 0.6434 0.7999 0.9315 1 1.00E+00 

Data/Components Correlations   

 PC1 PC2 PC3 PC4 PC5 PC6 

ARGR -0.5962 0.0854 -0.0624 0.1572 -0.1904 -0.7565 

AHGR -0.5047 -0.1471 0.0731 0.1417 0.8112 0.2004 

AVGR -0.5621 0.1511 -0.0994 0.1454 -0.4926 0.6225 

RHtRR -0.0981 0.4947 0.8064 -0.3085 0.0099 1.67E-11 

RBCC -0.0194 0.6819 -0.573 -0.3908 0.2315 -4.31E-

11 

RTE 0.2525 0.4884 0.0468 0.8284 0.0968 -3.40E-

11 

3-way statistical significance tests (F, p) 

 PC1 PC2 PC3 PC4 PC5 PC6 

DBD 8.9205, 

0.036* 

21.1522, 

0.001* 

0.0706, 

0.967 

0.8475, 

0.674 

2.0326, 

0.409 

0.821, 

0.681 

IRE 4.384, 0.16 1.2625, 

0.562 

0.0098, 

0.996 

1.2832, 

0.554 

0.9038, 

0.663 

4.9008, 

0.125 

DBD:IRE 11.4852, 

0.094 

2.3567, 

0.734 

1.5237, 

0.856 

5.1051, 

0.398 

10.1474, 

0.136 

1.5257, 

0.854 
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Figure 4.9 (A), illustrates the predicted LLWR range for the RS substrate. The figure 

demonstrates that the LLWR area can’t be defined as the regression lines corresponding to 

the limiting values of aeration, field capacity and permanent wilting point are identical and 

correspond to 0. Further investigation revealed that the reason for this was mainly the poor fit 

in Busscher’s PR model (Figure 4.9 (B)) with an r2 value of almost 0 which was estimated 

with the function “fitbusscher” from the same “soilphysics” package. The fit for de Silva’s 

model (Figure 4.9 (C)), was much better with an r2 value of almost 1. Nevertheless, as the 

LLWR model uses both sub-models then the LLWR is clearly erroneous for our data and no 

predictions can be made.  

The soil strength (Figure 4.10 (A)) and water release (Figure 4.10 (B)) curves of cores filled 

with RS sand, packed at 1.4, 1.5 and 1.6 g cm-3 DBD are shown below. Table 4.7 

summarises the established relationship (see Figure 2.10) between volumetric water content, 

degree of saturation and air-filled porosity at a matric potential range of -1 - -100 kPa for the 

4 mm treatment of “Flourite Black” packed at 1.5 g cm-3. The degree of saturation was 

estimated to be 36, 27 and 16 % for the 6, 4 and 2 IRE treatments respectively, with the 

values being almost identical across DBD treatments. This was achieved by weighting a 

subsample (n = 2) of the RS units at random times between 07:00 – 17:00 throughout the 3-

week growth period and subsequently averaging the values obtained for each sample. Based 

on the established water release curve of the RS substrate (Table 4.7) the above-mentioned 

values will respectively correspond to a matric potential (Ψ) of -5, -7 and -10 kPa and an air-

filled porosity of 26.47, 28.81 and 32.34 %. The PR mean values corresponding to -5, -7 and 

-10 kPa matric potential were respectively 0.9377, 1.4743 and 2.2792 MPa.  

Finally, Table 4.8 is a summary of whether a statistically significant effect was detected for 

each of the measured variables and the PC components for the experimental factors used and 

their interaction. 
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Figure 4.9: Least Limiting Water Range for RS substrate (A), with sub models fitted for 

Buescher’s PR model (B) and Silva’s volumetric water content model (C).  

 



147 
 
 

 

 

 

Figure 4.10: x̄ ± s of RS substrate strength curves (A) and water release curves (B) for dry 

bulk density values of 1.4, 1.5 and 1.6 g cm-3 with connecting lines for the mean values. 
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Table 4.7: RS sand volumetric water content (θ), degree of saturation (s) and air-filled 

porosity (fa) corresponding to different matric potential (Ψ) for cores packed at a density of 

1.5 g cm-3. 

Ψ (kPa) θ (%) s (%) fa (%) 

-1 32.91 ± 3.33 81.22 ± 8.66 7.39 ± 3.67 

-5 13.02 ± 3.23 36.42 ± 12.51 26.47 ± 4.03 

-10 5.68 ± 1.32 15.92 ± 4.49 32.34 ± 3.31 

-20 4.62 ± 1.08 12.48 ± 3 34.66 ± 2.07 

-50 2.45 ± 0.98 6.41 ± 2.57 37.29 ± 2.38 

-100 1.56 ± 0.16 4.14 ± 0.6 38 ± 1.41 

 

Table 4.8: Statistically significant effects summary for variables and PC components. 

 DBD IRE Interactions 

ARGR    

AVGR    

AHGR    

RHtRR    

RBCC    

RTE    

PC1    

PC2    

PC3    

PC4    

PC5    

PC6    
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4.5 Discussion 

Bengough et al., (2011), suggested maize root elongation rate is halved at a matric potential 

of -500 kPa and a PR value of 2 MPa. In terms of matric potential only a fraction of that 

magnitude was achieved in this study compared to the reported value in maize. The reason 

for this narrow range in Ψ and large range in θ was clearly due to the dominance of the large 

pores in the RS substrate (see Section 2.5.5). Nevertheless, the gradual decrease in θ offered a 

spectrum of decreasing water availability and enabled for the manipulation of water stress 

although it was restricted on the macro-pore scale, with a 23% reduction in ARGR between 

the 2 and 6 IRE treatments. As for the estimated PR range a spectrum was also ranging from 

0.9377 to 2.2792 MPa. This time the reduction in ARGR was 29 % between the 1.4 and 1.6 g 

cm-3 DBD treatments. Again, this reduction in root growth indicates that an increase in the 

DBD translates to an increase in mechanical impedance by reducing root elongation rates. 

The findings obtained were thus, in agreement with the general trend of an inverse 

relationship between DBD and root elongation rates (Jin et al., 2013). As for the 50 % 

reduction in growth LLWR associated threshold, i.e., ARGR = 4.49 mm day-1, this was 

achieved for the treatments of 1.5 g cm-3 DBD at 6 IRE (4.54 mm day-1, rank = 8) and for 1.6 

g cm-3 DBD at 2 IRE (3.23 mm day-1, rank = 9). It is interesting that at medium density the 

slowest growth rate was observed for the most wet treatments but for high density the slowest 

growth rate corresponded to the driest treatments, implying an interaction effect (Table 4.8).  

Bengough et al., (2016), concluded root hairs enhanced root penetration ability in low density 

(1.0 – 1.2 g cm-3) soils but not in higher bulk density (1.5 g cm-3). In a similar manner, no 

significant differences could be detected for the RHtRR root trait across the 1.4 – 1.6 g cm-3 

bulk density range tested (p = 0.257). A potential explanation of this effect stems from the 

fact that the PR values for the treatments were not sufficiently distinct at -5 kPa although they 

were somewhat more distinct at -10 kPa. Nevertheless, no clear conclusion could be made as 

to the true magnitude of the difference among the treatments due to the inherent variability, at 

least for a matric potential range of 0 – 50 kPa. Although, the difference was large enough to 

induce a statistically significant difference in terms of ARGR this effect was perhaps not 

enough to induce a change in root hair area. Root hairs are also critical for solute absorption 
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(Carminati et al., 2017) and as such, intuitively at least, one might expect a reduced RHtRR 

for the higher IRE treatments. However, there was no evidence of a statistically significant 

difference between the IRE treatments (p = 0.861). Results from Haling et al., (2014), also 

suggest a differential response in root hair length among different strength and water 

treatments. Although, root hair length is not reported here a differential response between 

treatments will have affected the estimates of root hair area which will in turn affect RHtRR 

but, no such variation was detected here. However, it must be considered that the minimum 

and maximum PR values of the treatments used by Haling et al., (2014), were 0.03 and 4.45 

MPa respectively so the range used was wider than the range used here, i.e., 0.9377 to 2.2792 

MPa. In a similar manner, the high and low water concentration treatments had a matric 

potential of around -7.5 and -40 kPa respectively with a significantly lower matric potential 

limit in comparison to the one used in this study, i.e., -10 kPa. This could help explain why 

the corresponding RHtRR responses were not detected in the results reported here.  

Iijima et al., (2003), reported that the effect of compaction on the rate of cell division in the 

cap meristem was a positive one for compacted roots. The authors estimated the sum of 

viable and non-viable cells to be 4960 and 3540 in compacted (PR = 3.8 MPa) and loose (PR 

= 0.2 MPa) sand respectively. Although the lower and upper values of PR used in this study 

were larger and smaller respectively, the range of PR values used was sufficient to induce a 

similar response. Results from Somasundaram et al., (2009), further support the conclusion 

that a more compact soil increases RBC production. This effect was also detected here with 

the 1.6 g cm-3 DBD treatment having a statistically significant higher RBCC relative to the 

1.4 (p = 0.02464*) and 1.5 (p = 0.03254*) treatments. The same authors also examined the 

interaction between soil density and water and found a higher RBC production for wet soil 

relative to dry soil. However, our results are not in agreement with this conclusion (F = 

0.8362, p = 0.68). They also detected an interaction effect between soil mechanical 

impedance and soil water status which suggested that the number of RBCs increased with soil 

moisture content in compact soil treatment. However, there was no evidence of such an 

interaction effect in this study (F = 3.9328, p = 0.528). It should also be noted, that the 

RBCC values reported are in truth an underestimation of the true values. This is because a 

portion of the cells will have adhered to the adjacent sand particles and the acrylic surface. 
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Furthermore, some detached RBCs will also inevitably leach towards the lower parts of the 

RS unit. This could potentially be assessed at some point in the future by collecting the 

solutes at the bottom and the adjacent sand particles for analysis. 

In terms of RTE, a statistically significant difference was detected among DBD treatments (F 

= 11.9108, p = 0.013*). More precisely, the 1.6 g cm-3 DBD treatment differed with both the 

1.4 (p = 0.00482**) and the 1.5 (p = 0.013*) treatments. The findings reported here are in 

agreement with those reported by Iijima et al., (2003), who found maize root caps were 

reduced in size under a higher mechanical impedance. Colombi et al., (2017), reported that a 

smaller tip radius-to-length ratio accounted for an increased root elongation rate under high 

(1.45 – 1.6 g cm-3) and moderate (1.2 g cm-3) soil DBD across 14 Swiss winter wheat 

(Triticum aestivum) cultivars. Iijima et al., (2003), also found that the removal of the root cap 

in maize resulted in blunter shape for the decapped root tip which had a higher penetration 

resistance (0.52 MPa) relative to the intact root cap (0.31 MPa). This is because a blunter root 

tip is known to have a more spherical deformation pattern as opposed to a cylindrical one 

thus, enhancing the penetration force (Greacen et al., 1968). 

This study had limitations, some of which could be overcome but others could not. For 

example, an intrinsic limitation was the inability to measure the RS substrate matric potential 

and instead relying on the water release curve and weighting of the RS units. It must be 

considered that although this method was valid at the start of the experiment it will probably 

underestimate matric potential at later stages of root growth when the mass and the water 

requirements of the root system increase and these factors cannot be separated from the 

overall RS unit. Unfortunately, preliminary tests indicated that assessing the matric potential 

of the sand was not possible due to the poor connectivity between the sand and the mini-

tensiometer’s probe as the RS substrate layer thickness was only 4 mm and raised 

uncertainties as to whether the estimates provided were true. An alternative option would 

have been to simply flood the rhizotron to varying degrees. However, this option was avoided 

due to difficulties in achieving and maintaining viable root growth rates in the thin sand layer. 

Furthermore, similar setups examining the effect of waterlogging on plants indicated that the 

effect of waterlogging on root growth was to simply halt its development beyond the 
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waterlogged layer (Dresbøll et al., 2013). This effect in conjunction with the study having a 

duration of 3 weeks was the reason behind the use of irrigation events.     

One limitation that could be overcome in future studies is the issue of the sample size. 

Practical limitations allowed for a maximum sample size of 4 minirhizotrons per treatment. 

This will inevitably limit the accuracy of statistical estimation as factorial experiments 

normally require a minimum sample size of 10 (Everitt, 1975). Other authors also further 

suggest that in addition to the previous recommendation, that the subjects-to-variables ratio 

should be no lower than 5 (Bryant and Yarnold, 1995). However, this limitation, could be 

addressed in other experiments where time and resource availability is not as limited. 

Finally, there was a fundamental problem in designing this study as no reports of this type 

existed at the start of this work. To the author’s knowledge only partial comparisons could be 

made, mostly in relation to root elongation rate with PR and matric suction but not 

accounting for the variation in root-micro traits when both factors are being manipulated 

except, for the case of RBC examined by Somasundaram et al., (2009) but for maize plants 

not barley. At the same time, it is this lack of empirical data which motivated the design and 

implementation of this novel experiment always considering the limitations discussed above. 

4.6 Conclusions 

Minirhizotron units have being used widely in the past to assess root growth (Johnson et al., 

2001) and in some cases even succeeded in measuring fine root traits such as root hairs in situ 

(Koebernick et al., 2017). However, to the author’s knowledge, this is the first-time that 

automated imaging-based methods were integrated into an experimental protocol which 

enabled both the manipulation of the LLWR soil stressors and the measurement of fine root 

traits. The minirhizotron unit was successfully used to induce a spectrum of root growth 

responses across the DBD and IRE treatments required to assess the LLWR responses. 

Furthermore, in situ estimates of root hair area and ex situ estimates of root border cells and 

root tip geometry were successfully captured. 

ARGR values were statistically significantly higher for the lower DBD treatment of 1.4 g 

cm-3 when compared to the highest DBD treatment of 1.6 g cm-3. In a similar manner, ARGR 
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was higher for the medium IRE treatment of 4 when compared to the wettest IRE treatment 

of 6. The RHtRR values were unresponsive to both the experimental treatments of DBD and 

IRE. A higher DBD treatment (1.6 g cm-3) also increased the values of both RBCC and RTE 

in comparison to the lower DBD treatments (1.4 and 1.5 g cm-3). The same effect was not 

observed in relation to IRE treatments. There was also no strong evidence of a correlation 

between the root micro-traits and root growth rates and between the root micro-traits 

themselves across the experimental treatments.   

In conclusion, this chapter demonstrated by using the barley cultivar “Optic” that the 

suggested experimental protocol can be successfully used to measure root micro-traits in 

barley under various LLWR soil stressor treatments. This in turn will enable the design of a 

larger scale experiment which will attempt to assess if any differences in root micro-traits 

exist across different genotypes of barley. The measured responses will in turn, allow for an 

assessment of how the root micro-traits influence the LLWR boundaries. 
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5. Variation in root traits associated with LLWR 

5.1 Introduction 

The majority of modern crop plants have high-water requirements and lack drought tolerance 

(FAO and ITPS, 2015). However, the costs associated with the supply of irrigation water are 

increasing (White et al., 2013). In addition, the issue of water availability will be exacerbated 

by climate change which will have a wide spectrum of effects on crop plants (Srivastava and 

Misra, 2018). Combating the above-mentioned issues while trying to increase food 

production for an ever-increasing global population is a major challenge (FAO, 2009). 

Furthermore, other issues such as soil compaction due to heavy machinery use in modern 

agricultural practices increase the mechanical resistance of the soil and reduce its porosity 

with corresponding reductions in the amount of oxygen available to plant roots (Lipiec et al., 

2012). As such, several models have attempted to model the complex and dynamic 

relationship between the three soil stressors of soil mechanical impedance, water availability 

and oxygen consumption in relation to root growth (Keller et al., 2015; Bartholomeus et al., 

2008). 

One example of a model that attempts to describe the above mentioned relationship is the 

least limiting water range (LLWR) model (da Silva et al., 1994). This aims at integrating the 

three soil stressors mentioned above in a single index-like variable within the context of plant 

growth. It is a mathematically quantitative model, computationally feasible and clearly 

integrates important soil variables such as dry bulk density, porosity, matric suction and soil 

strength (usually measured as penetrometer resistance). The plant component of the model is 

considered in the form of a set of 4 limiting values representing the point where root growth 

effectively stops. Those values are penetration resistance (PR - 2 MPa), air filled porosity at 

hypoxic conditions (AFP - 10%), matric potential at field capacity (FC - a measure of soil 

water-holding capacity) (0.01 MPa) and matric suction at the permanent wilting point (PWP - 

1.5 MPa). The resulting output is a range of soil volumetric water concentration within which 

plant growth is believed to be optimum. Unfortunately, the model is limited by not 

considering that the plant responses to soil physical stressors are strongly influenced by the 
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range of root traits that the plant has (Bengough et al., 2011). For the model to become more 

accurate, it must take account of the effect of the root traits. 

Chapter 4 introduced an experimental protocol which effectively integrated the minirhiztron 

system (RS) developed in Chapter 2 and the imaging techniques of Chapter 3. It was 

demonstrated that the experimental procedure allowed the manipulation of LLWR soil 

stressors and succesfully induced a spectrum of responces on the barley varient Optic, in 

terms of root growth as an increase in substrate bulk density and water availability caused a 

corresponding increase in root growth rates similar to what was reported in the literature, e.g.,  

Jin et al., (2013). The root micro-traits were then successfully imaged and quantified by using 

a mixture of in situ and ex situ techniques and the differences between the treatments were 

assessed.  

As a consequence of the above, the aim of this chapter was to finally demonstrate that the 

procedure could be used to capture the genotypic variability in root traits of spring barley. 

This was achieved by applying the previously mentioned protocol to a total of 4 spring barley 

genotypes grown in the RS system. The spring barley (Hordeum vulgare) varieties chosen for 

this experiment were Optic (1), KWS Sassy (2), Derkado (3) and Golden Promise (4). These 

varieties were chosen based on results from Newton et al., (2020), from two field-grown 

plant trials involving all four of the above mentioned varieties. In the 2013-2015 trial Optic 

had a 15.17 % reduction in yield when switching from inversion to non-inversion tillage 

practises while Golden Promise experienced only a much smaller 4.17 % reduction in yield, 

suggesting that it’s much more adapted to compacted soil conditions. Derkado also had a 

smaller reduction in yield (10.76 %) suggesting it’s also better adapted to non-inversion 

tillage relative to Optic but, Optic had a higher yield (10 %) under inversion tillage 

suggesting that Optic performed better under less compacted conditions. In the 2016 trial 

Optic experienced a 20.14 % reduction in yield but KWS Sassy performed marginally better 

(17.16 %). However, KWS Sassy also had a higher yield (10 %) relative to Optic under 

inversion tillage suggesting it also performs better under less compacted conditions.  

The responses obtained in terms of root growth rates and root micro-traits were then 

measured with the established methodologies and the extent to which root growth could be 
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explained as a function of the root micro-traits was investigated. This was done in order to try 

to answer the primary research question of this thesis, i.e., if root trait variation due to 

genotypic differences could explain the relative performance of plants in different soil 

conditions.  

5.2 Aims 

The main aims could be summarised as: 

• Demonstrate the validity of the experimental protocol as a plant phenotyping platform 

by applying the protocol to 4 different barley cultivars.  

• Determine the effect that the LLWR stressor variables have on root growth for each 

cultivar. 

• Determine if root trait variation can explain potential differences between cultivars in 

terms of root elongation rates   

• Assess if a root micro-trait based function model is an appropriate descriptor of the 

root growth responses. 

 

5.3 Methods 

The germination procedure for the seeds was as described in Section 2.4.5. The experiment 

took place at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, starting 

in August 2019 and completing in mid-March 2020. The glasshouse growth conditions were 

as described in Section 2.4.6. RS scanning was performed every 7 days for a period of 3 

weeks by using the procedure specified in Section 2.4.7. The experiment was a three-way, 4 x 

2 x 3, ANOVA with the factors being Variety, DBD and IRE. Table 5.1, is a summary of the 

year of introduction, pedigree and breeder of the varieties used. The experiment itself had 

once again a randomized (blocked) structure with the RS units arranged in two parallel linear 

rows with 4 treatment replicates. The treatments for DBD were 1.4, and 1.6 g cm-3 and the 

treatments of IRE were 2, 4 and 6 irrigation events per day with an event having a duration of 

3 minutes. As described previously in Section 4.3.1 this experiment also made use of a 

controlled release fertiliser (Scots Osmocote) for nutrient delivery by grinding it and 
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subsequently mixing it with the RS substrate prior to RS packing. RS scanning and 

destructive sampling methods used in this experiment were as described in Section 4.3.1.  

Table 5.1: Year of introduction, pedigree and breeder information for the varieties used in 

this experiment.  

Variety Year Pedigree (Newton et 

al., 2020) 

Breeder 

Optic 1992 (Corniche*Force)*Chad New Farm Crops 

Ltd. (Syngenta) 

KWS Sassy NA Publican*Concerto KWS 

Derkado 1988 Lada*Salome VEB Berlin 

Golden Promise 1968 Maythorpe Gamma-

Ray Mutant 

Zenica 

 

In summary, the experiment described here had an identical methodology to the one 

described in the previous chapter except for two points: 

1) The 1.5 g cm-3 DBD treatment was removed to make the number of treatments 

manageable. 

2) The experiment was split in 4 batches with each batch consisting of a single replicate 

from all the treatments, i.e., 4 x 2 x 3 = 24 RS units. Each successive batch was setup 

2 weeks apart from each other so that everything could become manageable due to its 

scale. 

The statistical analysis performed was identical to the one described in Section 4.3.3. In 

addition, the three-way ANOVA test function “t3way” was used from the same R package. 

The correlation coefficient reported here is “percentage bend variance” implemented with the 

function “pbcorp” using defult parameters, from the same R package. Principal components 

analysis (PCA) was performed with the R basic function “prcomp” and the data was centered 

and scaled for the analysis. 
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5.4 Results 

In order to determine the treatment effects on the varieties chosen the RS units were scanned 

every 7 days for 21 days. Figure 5.1, displays the observed vertical root lengths as a function 

of time across a 3 week period. The graphs are grouped by the IRE factor, column arranged 

by the DBD factor and row arranged by the Variety factor. Figure 5.2, shows the observed 

horizontal root length in a format similar to Figure 5.1. Figure 5.3, is a series of graphs 

which summarise the AHGR (A), AVGR (B) and ARGR (C) values against the IRE 

treatments and grouped by the DBD factor with the 1st, 2nd, 3rd and 4th row graphs 

corresponding to the Optic, KWS Sassy, Derkado and Golden Promise varieties respectively. 

No statistically significant 3-way interaction effects were detected among the factors of 

Variety, DBD and IRE (F = 9.4748, p = 0.2990). Furthermore, no statistically significant 2-

way interactions were detected between DBD and IRE (F = 5.8456, p = 0.077), Variety and 

IRE (F = 2.6050, p = 0.895) and Variety and DBD (F = 1.859, p = 0.638). In terms of main 

effects, no statistically significant effect was detected for the factor of Variety (F = 0.3680, p 

= 0.96). However, statistically significant main effects were detected for the factors of DBD 

(F = 165.2779, p = 0.0001**) and IRE (F = 78.6173, p = 0.001*). Subsequent pair-wise 

comparisons for the IRE treatments found that all pairwise comparisons differed in a 

statistically significant way with an increase in IRE corresponding to an increase in root 

growth rates. A similar relationship was also found for both AVGR and AHGR. The only 

statistically significant effects were the main effects of DBD for AVGR (F = 93.5490, p = 

0.0001**) and AHGR (F = 38.9383, p = 0.001*) and also, of IRE for AVGR (F = 20.8185, p 

= 0.0001**) and AHGR (F = 15.1172, p = 0.003*). A lower DBD had a positive effect on the 

root growth rates of all three variables. As such, the best performing treatment was for the 

lowest DBD treatment and the highest IRE treatment. 

Table 5.2, is a summary of the average values of ARGR, AVGR and AHGR for each 

experimental treatment and also their rank among the varieties (rows). However, no 

discernible patterns to the growth rates are identified as the ranks are randomly distributed 

and more importantly, the differences among the values are very small with a mean ARGR 
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treatment difference of 0.831 mm day-1 suggesting no practical difference when comparing 

the varieties. 

 

 

Figure 5.1: Vertical root length summary graphs for 21 days grouped by IRE treatment for 

1.4 (X1) and 1.6 (X2) DBD (g cm-3) treatments. The varieties used were Optic (A), KWS 

Sassy (B), Derkado (C) and Golden Promise (D). 
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Figure 5.2: Horizontal root length summary graphs for 21 days grouped by IRE treatment for 

1.4 (X1) and 1.6 (X2) DBD (g cm-3) treatments. The varieties used were Optic (A), KWS 

Sassy (B), Derkado (C) and Golden Promise (D). 
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Figure 5.3: Average horizontal (A), vertical (B) and root (C) growth rates vs. IRE treatment 

grouped by DBD treatments. The varieties used were Optic (X1), KWS Sassy (X2), Derkado 

(X3) and Golden Promise (X4). 
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Table 5.2: Root growth rankings for ARGR, AHGR and AVGR averages across DBD and 

IRE treatments for the varieties Optic, KWS Sassy, Derkado and Golden Promise. Values in 

parenthesis are the rank order in any row. 

DBD  

(g cm-3) 

IRE Optic KWS Sassy Derkado Golden 

Promise 

ARGR (mm day-1) 

1.4 

2 9.3 (1) 9.28 (2) 9.12 (3) 8.88 (4) 

4 9.39 (4) 9.69 (3) 9.86 (2) 10 (1) 

6 10.97 (1) 10.75 (2) 10.31 (3) 10.15 (4) 

1.6 

2 5.02 (4) 5.63 (3) 6.57 (2) 6.79 (1) 

4 8.08 (1) 7.83 (2) 7.47 (3) 7.12 (4) 

6 8.22 (4) 8.46 (3) 8.61 (2) 8.63 (1) 

AVGR (mm day-1) 

1.4 

2 11.33 (3) 11.19 (4) 11.83 (1) 11.67 (2) 

4 12.25 (3) 11.42 (4) 12.62 (2) 12.67 (1) 

6 13.24 (2) 13.78 (1) 12.46 (3) 12.31 (4) 

1.6 

2 6.06 (4) 7.11 (3) 7.9 (1) 7.7 (2) 

4 10.07 (1) 9.64 (2) 9.09 (3) 8.83 (4) 

6 10.19 (3) 10.79 (2) 11.09 (1) 10.06 (4) 

AHGR (mm day-1) 

1.4 

2 6.18 (2) 6.35 (1) 4.96 (3) 4.6 (4) 

4 5.01 (4) 7.03 (1) 5.63 (3) 5.91 (2) 

6 7.5 (1) 6.11 (4) 7.02 (2) 6.82 (3) 

1.6 

2 3.41 (3) 3.35 (4) 4.54 (2) 5.4 (1) 

4 5.01 (2) 5.05 (1) 4.98 (3) 4.5 (4) 

6 5.21 (2) 4.9 (3) 4.81 (4) 6.43 (1) 
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Figure 5.4, displays the RHtRR values across 21 days. The graphs are grouped by the IRE 

factor, column arranged by the DBD factor and row arranged by the Variety factor. Figure 

5.5, is a series of graphs which summarise the average RHtRR values against the IRE 

treatments and grouped by the DBD factor with the 1st, 2nd, 3rd and 4th row graphs 

corresponding to the Optic, KWS Sassy, Derkado and Golden Promise variety respectively. 

No statistically significant 3-way interaction effects were detected among the factors of 

Variety, DBD and IRE (F = 10.9797, p = 0.168). Furthermore, no statistically significant 2-

way interaction effect was detected between Variety and IRE (F = 6.5353, p = 0.458), Variety 

and DBD (F = 1.7942, p = 0.635) and DBD and IRE (F = 3.0362, p = 0.237). In addition to 

the above, no statistically significant main effects were detected for the factors of Variety (F 

= 3.8307, p = 0.320), DBD (F = 0.0178, p = 0.900) and IRE (F = 0.7037, p = 0.710). In 

general, the RHtRR parameter was unresponsive to all experimental factors.  

Table 5.3, is a summary of the average RHtRR values for each experimental treatment and 

also their rank among the varieties (rows). No pattern is apparent in the rankings and the 

mean differences are small for each treatment, suggesting that the across Variety comparison 

effects were not significant. 
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Figure 5.4: RHtRR summary graphs for 21 days grouped by IRE treatment for 1.4 (X1) and 

1.6 (X2) DBD (g cm-3) treatments. The varieties used were Optic (A), KWS Sassy (B), 

Derkado (C) and Golden Promise (D). 
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Figure 5.5: Average RHtRR of spring barley grown for 21-days as a function of IRE and 

grouped by DBD treatment. The varieties used were Optic (A), KWS Sassy (B), Derkado (C) 

and Golden Promise (D). 
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Table 5.3: Rankings for RHtRR (mm mm-1) averages across DBD and IRE treatments for 

the varieties Optic, KWS Sassy, Derkado and Golden Promise. Values in parenthesis are the 

rank order in any row. 

DBD  

(g cm-3) 

IRE Optic KWS Sassy Derkado Golden 

Promise 

1.4 

2 2.33 (3) 2.57 (1) 2.08 (4) 2.47 (2) 

4 2.31 (3) 2.34 (1/2) 2.11 (4) 2.34 (1/2) 

6 2.4 (3) 2.52 (1) 2.49 (2) 2.33 (4) 

1.6 

2 2.07 (4) 2.42 (3) 2.72 (1) 2.5 (2) 

4 2.35 (3) 2.47 (1/2) 2.25 (4) 2.47 (1/2) 

6 2.41 (1) 2.33 (2) 2.13 (4) 2.29 (3) 

 

Figure 5.6, is a series of graphs that summarise the RBCC values against the IRE treatments 

and grouped by the DBD factor with the 1st, 2nd, 3rd and 4th row graphs corresponding to the 

Optic, KWS Sassy, Derkado and Golden Promise variety respectively. 

No statistically significant 3-way interaction effects were detected among the factors of 

Variety, DBD and IRE (F = 2.2045, p = 0.919). There was also a no statistically significant 2-

way interaction effect between Variety and IRE (F = 9.1212, p = 0.273). However, a 

statistically significant 2-way interaction effect was detected between DBD and IRE (F = 

7.9347, p = 0.03*). Further examination revealed a statistically significant difference in 

RBCC values for the 4 vs. 6 IRE comparison in the 1.4 and 1.6 DBD treatments (psi = -30, p 

= 0.007*). For the highest bulk density treatments the 4 IRE treatment had a higher RBCC 

compared to the 6 IRE treatment with the opposite effect being true for the lowest bulk 

density treatment. In addition to the above, a statistically significant 2-way interaction effect 

was detected between Variety and DBD (F = 9.1384, p = 0.05*). Further examination 

revealed a statistically significant difference in RBCC values for the 1.4 vs. 1.6 DBD 

comparison in the Derkado and Optic varieties (psi = 30.7500, p = 0.0157*). Furthermore, a 

statistically significant difference was detected for the 1.4 vs. 1.6 DBD comparison in the 

Derkado and KWS Sassy varieties (psi = 31, p = 0.0255*). Derkado had a higher RBCC for 
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the 1.4 DBD treatments whereas KWS Sassy and Optic had a higher RBCC for the 1.6 DBD 

treatments. No statistically significant main effects were detected for the factors of Variety (F 

= 0.9186, p = 0.84) and IRE (F = 3.1775, p = 0.225). However, a statistically significant main 

effect was detected for the factor of DBD (F = 6.7426, p = 0.013*) with the higher DBD 

treatments having higher RBCC compared to the lower DBD treatments. 

Table 5.4, is a summary of the average RBCC values for each experimental treatment and 

also their rank among the varieties (rows). It is of note, that for the 1.4 DBD treatments the 

Optic variety had the lowest RBCC averages across the water treatments. 
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Figure 5.6: RBCC spring barley at the end of a 21-day growth period as a function of IRE 

and grouped by DBD treatment. The varieties used were Optic (A), KWS Sassy (B), Derkado 

(C) and Golden Promise (D). 

Table 5.4: Rankings for RBCC averages across DBD and IRE treatments for the varieties 

Optic, KWS Sassy, Derkado and Golden Promise. Values in parenthesis are the rank order in 

any row. 
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DBD  

(g cm-3) 

IRE Optic KWS Sassy Derkado Golden 

Promise 

1.4 

2 34 (4) 36.75 (3) 49 (1) 39 (2) 

4 18.5 (4) 24 (2) 22 (3) 25.25 (1) 

6 21.75 (4) 23.5 (3) 51 (1) 46 (2) 

1.6 

2 46.75 (3) 64.75 (1) 28.25 (4) 62 (2) 

4 63 (1) 62.75 (2) 36.5 (4) 40.25 (3) 

6 33.5 (3) 26.5 (4) 34 (2) 41 (1) 

 

Figure 5.7, is a series of graphs which summarise the RTE values against the IRE treatments 

and grouped by the DBD factor with the 1st, 2nd, 3rd and 4th row graphs corresponding to the 

Optic, KWS Sassy, Derkado and Golden Promise variety respectively. A higher RTE 

signifies a deviation from circular geometry and a less curved root tip.  

No statistically significant 3-way interaction effects were detected among the factors of 

Variety, DBD and IRE (F = 8.5947, p = 0.33). Furthermore, no statistically significant 2-way 

interactions were detected between DBD and IRE (F = 3.6449, p = 0.192), Variety and IRE 

(F = 12.1444, p = 0.158) and Variety and DBD (F = 8.0003, p = 0.083). In addition to the 

above, a statistically significant main effect was detected for the factor of DBD (F = 49.0434, 

p = 0.0001**) with a higher bulk density increasing the RTE. Also, a statistically significant 

main effect was detected for the factor of Variety (F = 10.5093, p = 0.037*). Subsequent pair-

wise comparisons for the Variety treatments found that the differences were between the 

Optic vs. Golden Promise (psi = 1.4547, p = 0.0164*) and the Optic vs. KWS Sassy (psi = -

1.0424, p = 0.0235*) comparisons. Golden Promise and KWS Sassy had generally higher 

values for RTE and therefore more elliptical root tips when compared to Optic across 

treatments. In addition, a statistically significant main effect was detected for the factor of 

IRE (F = 7.2187, p = 0.0460*). Subsequent pair-wise comparisons for the IRE treatments 

found that the difference was between the 4 vs. 6 (psi = 1.1870, p = 0.0214*) comparison 

with the 4 IRE treatments generally having larger RTE values.  
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Table 5.5, is a summary of the average RTE values for each experimental treatment and also 

their rank among the varieties (rows). It should be noted that the variety KWS Sassy had the 

highest ranks for the 1.4 g cm-3 DBD treatments while Golden Promise had the largest values 

for the 1.6 g cm-3 DBD with the exception of the small diference for the 6 IRE treatment. 

 

Figure 5.7: RTE spring barley at the end of a 21-day growth period as a function of IRE and 

grouped by DBD treatment. The varieties used were Optic (A), KWS Sassy (B), Derkado (C) 

and Golden Promise (D). 
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Table 5.5: Rankings for RTE averages across DBD and IRE treatments for the varieties 

Optic, KWS Sassy, Derkado and Golden Promise. Values in parenthesis are the rank order in 

any row. 

DBD  

(g cm-3) 

IRE Optic KWS Sassy Derkado Golden 

Promise 

1.4 

2 1.12 (3) 1.43 (1) 1.26 (2) 1.01 (4) 

4 1.31 (4) 1.51 (1) 1.48 (2) 1.39 (3) 

6 1.04 (2/3) 1.8 (1) 1.04 (2/3) 1.12 (2) 

1.6 

2 2.17 (3) 1.58 (4) 2.89 (2) 3.07 (1) 

4 1.61 (4) 3.18 (3) 3.46 (2) 4.27 (1) 

6 1.73 (3) 2.6 (1) 1.65(4) 2.47 (2) 

 

Figure 5.8, is a series of PCA biplots for all possible combinations of the first three principal 

components. Table 5.6, is a summary of the variance explained by each principal component. 

the correlations between the variables and the components and their statistical significance. 

Figure 5.9, demonstrates a snapshot of a 3D PCA plot and it captures a larger amount of 

variation by integrating the 3rd PCA component.  

Based on the relationship of PC1 and PC2 capturing a total of 59.67 % of variation the 

following conclusions can be made: 

1. ARGR and RHtRR were not correlated. 

2. ARGR was strongly negatively correlated with RTE and moderately negatively 

correlated with RBCC. 

3. RBCC and RTE were correlated. 

4. No evidence of clustering for each treatment category. 

In addition, based on the relationship of PC1, PC2 and PC3 accounting for 74.88% of the 

total variation we can further conclude: 

1. RBCC and RTE were moderately correlated. 
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2. RHtRR and RTE were slightly negatively correlated. 

3. RHtRR and RBCC were negative correlated. 

4. ARGR was slightly more correlated with AVGR in comparison to AHGR. 

5. No evidence of clustering across different treatments.  

 

Figure 5.8: Principal Component Analysis biplots for A) PC2 vs. PC1, B) PC3 vs. PC1 and 

C) PC3 vs. PC2. 
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Figure 5.9: Principal Component Analysis 3D plot snapshot with loadings and coloured by 

spring barley cultivar. 
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Table 5.6: Principal Components Analysis (PCA) of component importance, correlations and 

statistical significance. 

Importance of components   

 PC1 PC2 PC3 PC4 PC5 PC6 

Standard deviation 1.5396 1.1 0.9553 0.8901 0.8455 2.32E-10 

Proportion of 

variance 

0.3951 0.2016 0.1521 0.132 0.1192 0.00E+00 

Cumulative 

Proportion 

0.3951 0.5967 0.7488 0.8808 1 1.00E+00 

Data/Components Correlations   

 PC1 PC2 PC3 PC4 PC5 PC6 

ARGR 0.628189 0.166386 -0.07876 0.120571 0.139415 7.33E-01 

AHGR 0.571595 0.097005 0.029188 0.486893 0.189072 -6.25E-01 

AVGR 0.385004 0.228352 -0.28259 -0.8025 -0.05912 -2.69E-01 

RHtRR 0.014148 0.588197 0.756565 -0.07191 -0.27616 -1.44E-11 

RBCC -0.17902 0.566189 -0.57702 0.312701 -0.46546 -1.32E-11 

RTE -0.31334 0.494182 -0.08804 -0.03802 0.805237 1.23E-12 

3-way statistical significance tests (F, p) 

 PC1 PC2 PC3 PC4 PC5 PC6 

Variety 0.8906, 

0.84 

2.7748, 

0.47 

0.5607, 

0.92 

0.4086, 

0.95 

3.8793, 

0.32 

6.7546, 

0.13 

DBD 325.7024, 

0.0001*** 

1.0169, 

0.32 

0.6926, 

0.42 

0.0001, 

0.99 

2.3716, 

0.13 

0.1233, 

0.73 

IRE 105.0729, 

0.001** 

0.5439, 

0.77 

2.7954, 

0.278 

0.6089, 

0.745 

10.3642, 

0.011* 

1.9027, 

0.413 

Variety:DBD 2.2847, 

0.548 

2.5564, 

0.497 

0.7674, 

0.87 

2.9599, 

0.435 

17.2253, 

0.004** 

3.3362, 

0.397 

Variety:IRE 3.0754, 

0.843 

1.3953, 

0.973 

0.9471, 

0.991 

4.478, 

0.685 

24.8699, 

0.007** 

23.5292, 

0.013* 
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DBD:IRE 3.9309, 

0.164 

6.4162, 

0.06 

10.0345, 

0.017* 

0.2213, 

0.898 

1.5908, 

0.466 

4.0402, 

0.165 

Variety:DBD:IRE 17.1978, 

0.05 

1.8778, 

0.944 

0.5426, 

0.998 

5.2521, 

0.601 

6.4271, 

0.478 

7.071, 

0.44 

 

Based on the analysis of the correlation between ARGR and the micro-traits of RHtRR (cor 

= 0.0803, p = 0.4368), RBCC (cor = -0.1501, p = 0.14425) and RTE (cor = -0.4192, p = 2e-

05**) the traits of RBCC and RTE were selected for modelling. This was because they both 

had the same-sign, negative correlation with ARGR, even though the only statistically 

significant correlation was with RTE. A 2-variate linear interaction model was then 

constructed with the function “lm” in R and then the subsequently predicted vs. observed 

ARGR values were plotted (Figure 10). The plot clearly demonstrates the lack of fitness 

between the predicted and observed values which suggests a poor prediction ability for the 

interaction model. To further understand the pattern of the data a running interval smoother 

(Wilcox, 2017) estimating the conditional mean value was added to Figure 5.10 (non-linear 

curve). The pattern suggests that the root-trait based model could be used to predict not the 

individual points but the average for ARGR values >= 8 mm day-1. Furthermore, the model 

itself becomes approximately linear beyond the 8 mm day-1 threshold value and this is 

demonstrated by estimating the Theil-Sen (Wilcox, 2017) regression line (linear segment) 

shown on Figure 5.10. In other words, the average ARGR can be predicted with a linear 

model for values >= 8 mm day-1 with a fair amount of accuracy but with low precision. 

Finally, Table 5.7 is a summary of whether a statistically significant effect was detected for 

each of the measured variables and the PC components for the experimental factors used and 

their interaction. 

 



178 
 
 

 

 

 

Figure 5.10: Predicted ARGR vs. Observed ARGR plot. The non-linear curve estimates the 

conditional mean value and the linear segment represent the Theil-Sen regression line. 
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Table 5.7: Statistically significant effects summary for variables and PC components. 

 DBD IRE Variety Interactions 

ARGR     

AVGR     

AHGR     

RHtRR     

RBCC     

RTE     

PC1     

PC2     

PC3     

PC4     

PC5     

PC6     

 

5.5 Discussion 

ARGR, AVGR and AHGR all displayed a similar pattern across varieties. Root growth rates 

were influenced not by the type of variety but by the substrate bulk density and water status 

with increased water content and decreased substrate bulk density giving higher growth rates. 

Water concentration had a contrasting effect from that reported in Chapter 4 for the Optic 

variety, but this was probably because of the higher water demand for roots due to the hot 

months of August and September. Perhaps the most significant point is the fact that 

differences across contrasting varieties were very small with the average maximum 

difference across varieties for each treatment being only 1.21 mm day-1. This clearly supports 

the lack of statistically significant differences reported above and suggests that no variety 

truly performed best or worst. The results obtained are not similar to those reported by other 

authors (Bengough and Mullins, 1991; Colombi et al., 2017; Wang et al., 2021), who 

detected statistically significant differences between genotypic root elongation rates for 

various density treatments of wheat (Triticum aestivum) grown in soil columns. A potential 
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explanation for the lack of statistical significance could be that the above-mentioned studies 

all used different varieties of wheat instead of barley. Furthermore, the plants were grown in 

soil filled plastic tubes with diameter and height ranging from 4.9-15 cm and 4-45 cm 

respectively. In contrast, the RS unit was a rectangular solid with a width of just 0.8 cm and 

as such root growth was significantly more restricted in the horizontal direction. The 

differences in species and growth conditions could all be factors influencing whether 

statistical significance is found. Nevertheless, the results are in agreement with the general 

observed pattern of an inverse relationship between DBD and root elongation rates reported 

in the literature (Jin et al., 2013). 

RHtRR lacked any statistically significant interaction effects or any main effects with the 

experimental factors considered here. Root hairs are known to vary significantly across 

different cereals species and varieties at the seedling stage (Haling et al., 2010), so the 

findings are not in agreement with this for the tested conditions. Furthermore, root hairs were 

demonstrated to be highly responsive to abiotic stresses such as high soil strength (Haling et 

al., 2011) which increases root-soil contact and as such, causes reductions in root hair length 

(Haling et al., 2013). Haling et al., (2014) reported root hair length differed for a range of 

different strength and water treatments which had a range of PR between 0.04 - 4.45 MPa and 

matric potential between -7.5 to -40 kPa. The lack of any statistically significant effects could 

be potentially explained by the range of PR and matric potential values used here was 

narrower, being respectively 0.9377 - 2.2792 MPa and -5 to -10 kPa with other studies which 

detected significant differences, e.g., Haling et al., (2014).  

For RBCC, there were no 3-way interaction effects but there was a statistically significant 2-

way interaction effect between Variety and DBD. However, the effect of that interaction was 

not clear based on the inspection of their interaction plot. Interestingly the p value obtain was 

exactly 0.05 and as such it is debatable whether to technically accept it as a statistically 

significant difference, especially when no clearly discernible differences exist. In addition, 

there was a second significant interaction between DBD and IRE which demonstrated that the 

4 vs. 6 IRE comparison was influenced by the DBD with Optic and KWS Sassy differing for 

the 1.6 DBD treatments and Derkado and Golden Promise differing for the 1.4 DBD 
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treatments. In other words, for the higher density treatments Optic and KWS Sassy produced 

more RBCs under medium water availability (4 IRE) but for the lower bulk density 

treatments Derkado and Golden Promise produced more RBCs under high water availability 

(6 IRE). Somasundaram et al., (2009), examined the interaction between soil bulk density 

and water content in maize and concluded that the number of RBCs increased with soil water 

content in compact soil treatment. As such, the results reported here are not in agreement as 

for the case of Optic and KWS Sassy the higher bulk density treatments produced the most 

RBCs under medium water availability and for the case of Derkado and Golden Promise the 

highest RBCC was observed for the low bulk density treatments. Finally, RBCC was 

increased in a more compact soil environment which is in agreement with the literate (Iijima 

et al., 2003; Somasundaram et al., 2009) but once again, there were no significant differences 

across varieties. 

RTE, lacked any statistically significant interaction effects but, statistically significant main 

effects were detected for all factors. An increase in DBD increased RTE (more elliptical root 

tips) which is in agreement with what was reported by other authors when the soil density 

increases (Iijima et al., 2003; Colombi et al., 2017). For IRE, the statistically significant 

difference was between the 4 vs. 6 comparison with a percentage difference of 35.26 % on 

favour of the 4 IRE treatment. RTE was also the only trait showing differences with Variety 

as the variety Optic also differed in comparison to both KWS Sassy and Golden Promise with 

the latter varieties having a higher RTE with a percentage increase of 34.82 and 48.60 % 

respectively relative to KWS Sassy.  

Since the primary objective of this study was to determine if root trait variability could help 

explain the variation in root growth rates of varieties and it is unfortunate that all the 

measured variables had no statistically significant differences among varieties with the 

exception for RTE. In fact, one of the key findings was the measured root growth rates and 

root traits all responded to the manipulation of DBD and IRE which proved to be significant 

factors, something which generally was not the case for the factor Variety. This was further 

supported by the fact that the only significant correlation with ARGR was that of RTE. The 

interaction model of RBCC and RTE was clearly of a poor fit yet, it must be noted that the 
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model does predict with high accuracy the average response for ARGR values >= 8 mm day-

1 and can be approximated very well with a linear form which is convenient. Interestingly, the 

samples corresponding to an ARGR < 8 mm day-1 all shared one feature, they were all 

packed at 1.6 g cm-3 DBD and collectively made up 26 % of the total population. A possible 

interpretation could be that for cases where growth is “sufficient” (>= 8 mm day-1) the 

average response could be predicted accurately but with poor precision by having knowledge 

of RBCC and RTE. A statement about the average response is simply the extent to which we 

can make predictions in this context.   

It should also be noted that a recent study from Newton et al., (2020), indicated that KWS 

Sassy demonstrated an adaptation when switching from inversion to non-inversion tillage by 

having a relative small reduction in yield in comparison to the other varieties tested which 

included Optic and Golden Promise. As suggested by the authors, the higher soil density of 

the non-inversion tillage treatment may indicate the presence of contrasting root traits that 

offer an advantage to the other cultivars in the higher strength soil. However, all the root 

traits measured here showed no statistically significant differences for variety except for the 

case of RTE when comparing Optic to Derkado and Golden Promise. This raises the question 

if the differential response was due to either (1) root micro-traits and or other traits (e.g., stem 

or leaves) not considered here or (2) the possibility of a differential response in root micro-

traits among different varieties when exposed to the more complex substrate of soil and the 

variable field conditions and (3) the likelihood that the varieties tested simply did not differ to 

any significant extend but other varieties may differ. All the above must be considered in 

future experiments to find an explanation to the obtained results.  

5.6 Conclusions 

The results demonstrated that the RS unit combined with the image analysis is a valid 

approach in plant root phenotyping. A spectrum of root responses was achieved after 

manipulation of the RS substrate conditions and a range of macro and micro root traits were 

successfully imaged and quantified using a mixture of time-lapse scanning and optical 

microscopy. ARGR, AVGR and AHGR all demonstrated similar behaviour, increasing with 

higher water availability and decreasing with a higher substrate density. However, there was 
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no evidence of any significant variation between varieties used, with the average maximum 

difference across varieties for each treatment being small (1.21 mm day-1). RHtRR also 

lacked any variation among varieties but, this could have been due to the treatment range not 

being extreme enough in terms of PR and matric potential. RBCC was higher with increased 

substrate bulk density but different varieties produced more RBCs under different conditions 

of bulk density and water. RTE showed a similar increase with a higher substrate bulk 

density but performed best for medium water availability. Furthermore, RTE was the only 

trait which showed a strong correlation with AVGR suggesting that perhaps root geometry 

could be a more distinguishable micro-trait among varieties, at least for spring barley. 

Finally, the root trait-based interaction model developed with the data demonstrated that not 

all micro-traits are relevant when trying to predict root growth and even then, sometimes the 

best outcome to be expected is a reasonably good prediction of the average response and 

always subject to conditions. 
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6. General discussion and conclusions 

6.1 Introduction 

Barley (Hordeum vulgare L.) is the fourth largest cereal crop produced worldwide (Stanca et 

al., 2016). It is largely used as an animal feed (80-90 %), with approximately 10 % of it used 

in beer production. It is also used as a staple crop for human consumption (Stanca et al., 

2016) as well as a high valued product in whisky. However, drought stress is a major limiting 

factor in many places around the world such as West Asia and North Africa where yield is 

limited due to factors such as low (< 300 mm) rainfall (Solh and van Ginkel, 2014). Drought 

effects are predicted to become more severe with increasing global temperatures (IPCC, 

2014) which constitutes a major challenge for achieving sustainability in agriculture (Fleming 

and Vanclay, 2010). In order to address those issues it is vital to understand the complex 

relationship between the various root traits and the way they influence root elongation rates 

under different soil conditions. In order, to study this complex interaction however, an 

appropriate experimental system had to be selected which will enable for the quantification of 

the above mentioned variables while limiting the variation originating from the complex field 

soil conditions.  

Minirhizotrons systems have been used ever since they were originally proposed by Bates in 

1937 (Upchurch, 1987). They have the advantages of allowing repeated, non-destructive, in 

situ measurement of roots growing against its transparent surface (Johnson et al., 2001). The 

first objective of this study was to develop a minirhizotron system (RS) which enabled the 

manipulation of the LLWR soil stressors of mechanical impedance, water and oxygen 

availability while also allowing for the quantification of root micro-traits in barley seedlings 

of at least 3 weeks old (Chapter 2). To achieve that, a list of 4 properties was created which 

clearly specified the requirements that the proposed RS unit should have. This in turn, led to a 

series of experiments to determine (1) the RS substrate type and particle size range which 

allowed for sufficient root elongation rates and (2) the imaging surface material type and 

thickness for imaging the finer root trait of root hairs. An acrylic based design was chosen for 

the RS unit because of its higher hardness, transparency and reduced effects on root growth 
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(Cai, 2006) which also kept the cost of the RS unit low (£10) and allowed for the imaging of 

roots and root hairs. 

The second objective was to make the RS platform as efficient as possible by reducing the 

time required for analysing data. This was achieved through the development of image-

processing algorithms which enable the automatic detection and quantification of both coarse 

and fine root traits (Chapter 3). Algorithm 1 (A1) allowed for the detection and measurement 

of (visible) roots and root hairs growing in the RS units which enabled an assessment of root 

growth rates and root hair area. Algorithm 2 (A2) enabled the detection and quantification of 

root tip border cells and eccentricity after destructive sampling of the root system and 

imaging under a fluorescence microscope. Algorithm 3 (A3) enabled the detection and 

quantification of root length parameters at the final stage of destructive sampling, the 

scanning of the washed root system. Each of the presented algorithms was custom developed 

and implemented in the Rcpp language, a hybrid of C++ and R which may be run from the R 

console for user accessibility and ease of usage. Collectively, these algorithms allowed for an 

assessment of the root traits of interest for this study in an efficient way which in turn, 

allowed for an upgrade in the number of RS units used in future experiments. 

The third objective was to effectively integrate the above described methods into a single 

experimental protocol which will allow for the systematic manipulation of the LLWR soil 

stressors and the measurement of coarse and fine root traits (Chapter 4). Chapter 4 

investigated the validity of this protocol by successfully inducing a spectrum of root growth 

responses for a range of experimental treatments by manipulating sand dry bulk density and 

the degree of saturation and, subsequently measuring the root traits of interest either in situ or 

ex situ. It was found that root growth rates in the form of ARGR, AHGR and AVGR were 

largest for the driest and lowest density treatment with a higher density causing reductions in 

growth something which is consistent with other studies reported in the literature, e.g., (Jin et 

al., 2013). RHtRR was demonstrated to be unresponsive to the LLWR soil stressors as 

neither increasing density nor water availability caused a significant response in contrast to 

results from Haling et al., (2014). RBCC increased with both substrate density and water 

availability which was in agreement with the literate, e.g., Somasundaram et al., (2009). RTE 
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also increased in higher density treatments similar to what was reported by, e.g., Colombi et 

al., (2017), however, this effect was only observed for the drier instead of wetter treatments 

suggesting that the amount of water influences that relationship. 

The fourth objective was to investigate how root traits potentially shift the LLWR upper and 

lower limits. Chapter 5 examined this by applying the experimental protocol from Chapter 4 

to the spring barley cultivars of Optic, KWS Sassy, Derkado and Golden Promise. The 

application of LLWR soil stressors induced a spectrum of responses similar to those found 

for the variety Optic in the previous chapter. A decrease in substrate density and an increase 

in water availability had the effect of generally increasing root growth rates for all varieties. 

However, the effect of water appears to contradict the results obtained in Chapter 4 for the 

Optic variety. A possible explanation for this might be that the experiment in Chapter 4 

started in March and finished in April of 2019 in a 2-month period. In contrast, the 

experiment in Chapter 5 started in August 2019 and finished in March 2020. It is possible 

that the warm months of August and September created a higher water demand for the plant 

roots and as such growth was enhanced under a higher water concentration as almost 2 of the 

replicates were both finished by mid October 2019. Nevertheless, there were no significant 

differences across varieties for both root growth rates and root micro-traits except for some 

cases in RTE. This was unfortunate, as it effectively meant that there were no genotypic 

differences to develop the root trait-based model. Nevertheless, a simple linear interaction 

model was tested by using the root micro traits of RBCC and RTE. This interaction model 

could be used to obtain an accurate, but imprecise, linear approximation of AVGR for the 

spring barley cultivars tested subject to the condition that ARGR was “sufficient”, i.e., 

ARGR >= 8 mm day-1.     
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6.2 Genotypic variation of root traits  

In Chapter 5 the genotypic variation of root micro-traits was investigated by studying 4 

cultivars of spring barley. Table 6.1 summarises the overall grand average responses of root 

micro-traits to the experimental treatments and demonstrates that there were no statistically 

significant differences between the cultivars in terms of both root growth rates and micro-

traits. One way to interpret this result is the lack of significant differences in root micro-traits 

was responsible for the lack of significant differences in root growth rates between the 

cultivars. If we assume root growth rates are a function of the micro-traits, then that will 

mean that either (1) the root cultivars did not differ to any significant extent or (2) the range 

of conditions tested were not extreme enough to induce a differential response or (3) the 

variability between sample replicates exceeded the variability between root traits.  

For (1), it is unfortunately difficult to assess to what extent differences exist due to the 

difficulty in locating studies which compare their relative performance. However, a recent 

study from Newton et al., (2020), described a field-based trial which included the cultivars 

KWS Sassy, Optic and Golden Promise. The authors found evidence that KWS Sassy and 

Derkado was better adapted when switching tillage practices from inversion to non-inversion 

tillage. The varieties Optic and Golden Promise could also be identified as potentially tillage 

treatment-adapted however, these older varieties had a lower yield. The non-inversion tillage 

treatment had a higher soil bulk density and as a result it was theorised that the presence of 

contrasting root traits could explain the above observation. However, based on the results 

presented in Chapter 5 there were no significant genotypic differences for any of the 

measured root traits. One explanation could be that that the plants used in the seasonal trials 

were grown for significantly longer and as such, any significant genotypic differences did not 

manifest at such an early growth stage. At more mature plant stages other root traits not 

considered here such as increased branching at depth could be significant factors explaining 

the difference among cultivars. However, such traits are highly dependent on soil and 

seasonal climatic differences as well as plant phenological stage (Wasson et al., 2012). All of 

those need to be considered when trying to extrapolate from seedling to mature stages. 
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For (2), the range of PR and matric potential achieved were respectively 0.9377 - 2.2792 MPa 

and -5 to -10 kPa. In the LLWR model the PR critical value corresponds to 2.0 MPa and as 

such the required PR range was achieved in this study. The LLWR 50 % root growth 

reduction threshold criterion was achieved for the condition of 1.6 DBD at 2 IRE. As for the 

matric potential range the values corresponding to the field capacity and the permanent 

wilting point were respectively -10 kPa and -1,500 kPa. As a consequence, it must be 

recognized that the lower limit of the range used corresponded to the upper limit of the 

LLWR model, i.e., -10 kPa. However, as was demonstrated in Chapter 2 this was the result of 

the particle size manipulation which resulted in the water release curve deviating from that of 

more developed soils. In particular, the reason for the very high “dry end” was because 

almost all the pores (~ 95%) were restricted to only up to -50 kPa. This effectively means that 

the substrate lacked a significant fraction of meso-pores and any micro-pores. As a 

consequence, the sand dried fast and seedling mortality was found to be very high for sand 

treatments less than 2 IRE. 

Another thing to be recognized are the intrinsic limitation of the RS system used as 

minirhizotron-based systems are pseudo-3D and effectively limit growth to an approximately 

2D scale. This limitation will of course have an impact on root growth since the size 

restriction will in turn impose physical limitations on roots and influence future root 

elongation rates (Poorter et al., 2012). In addition, continuous root to glass contact could 

induce thigmotropic responses from the roots (Downie et al., 2015) which can give 

misleading representations of the norm. Ultimately, the validity of any method should be its 

approximation to field soil conditions, but soil is a much more complex material compared to 

the RS substrate. The RS sand based substrate lacks organic matter which influences water 

retention properties (Kay et al., 1997), and it does not have the biological complexity of 

organisms that characterize soil. The repacked structure of the sand is also very different 

from that of soil and does not accurately reflect the spatial variability of structure encountered 

in field conditions. PR values in field soil are known to be higher and more variable in 

comparison to repacked soil systems (Perfect et al., 1990) and it is not unusual to detect root 

morphological differences even when comparing field soil to a homogenously compacted soil 

(Konôpka et al., 2009).  
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As such, it is very much an active debate whether root phenotyping on seedlings yields valid 

predictions about future root growth as root architecture at later stages can deviate from that 

during its early stages (Atkinson et al., 2014). The same may be said about root properties 

aside from architecture which can influence root survival and growth under soil stress. For 

example, biomechanical properties such as root tensile strength and Young’s modulus are 

known to increase with age, probably due to the accumulation of compounds such as 

cellulose (Loades et al., 2015). This will naturally influence the root ability to grow under 

conditions of higher soil strength. Nevertheless, the study of seedling root morphology could 

yield useful information about the root morphology at later stages of growth (Tuberosa et al., 

2002). For barley there are studies which used root traits at the seedling stage as an indicator 

of enhanced yield at later stages and detected significant correlations under different drought 

conditions (Chloupek et al., 2010; Svacina et al., 2014).  

Another limiting factor in this study was the large variability due to the inherent restrictions 

in the sample size used. Ideally it is best to have an estimate of the sample size needed when 

designing an experiment. However, this was not possible here due to the lack of comparable 

studies found in the literature. At best only partial comparisons were possible as most of the 

articles identified examined the relationship between root elongation rates and the soil 

stressor factors of PR and matric suction. However, no measurements were performed on the 

range of root micro-traits considered here except for the study of Somasundaram et al., 

(2009) but even then, the study was restricted only to RBCC and the plant species used was 

maize and not barley which was used in this study. On the other hand, the experiment 

reported in Chapter 4 enabled an indication of the sample size required by performing power 

analysis on AVGR and the theoretical sample size required was practically unfeasible (n > 

54) based on the resource availability. An alternative option would have been to use basic 

guidance in factorial experiment designing with authors recommending a minimum sample 

size of 10 (Everitt, 1975) and that the subjects-to-variables ratio should be no lower than 5 

(Bryant and Yarnold, 1995). The latter option will require a sample size of 25 minirhizotrons 

and even if one was to adopt only the previous suggestion of using just 10 minirhizotrons 

then the study will still have been unfeasible. In summary, resource availability was a major 

limitation in this study, but the highest practically possible sample size was used, and this 
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was mitigated by the reduction in image analysis by the development of the analysis 

algorithms. 

Something that must be considered is the difficulty in scaling from root micro-traits to the 

coarse scale of the root system. For example, root hairs aid the penetration of roots into soil 

and this was demonstrated when comparing hairless to wildtype varieties for both barley 

(Haling et al., 2014) and maize (Bengough et al., 2016). However, although this effect was 

demonstrated for individual roots it is not clear how to translate this effect when considering 

the coarser scale of the root system. For instance, Bailey et al., (2002), compared the pull-out 

resistance of hairless Arabidopsis mutants with wild types and failed to detect any 

statistically significant differences. Similar argument could also be constructed about the 

other micro-traits considered in this study. Although there is evidence of the importance of 

root border cell production and root tip geometry in aiding root penetration (Mckenzie et al., 

2013; Colombi et al., 2017), it is difficult to express in a mechanistic way the advantages in 

root penetration ability originating from those traits. 

Another issue to consider is the extent to which more complex long-term effects may 

influence root growth but are difficult to quantify and to consider when trying to make 

predictions about root growth rates. An example of that could be the formation of 

“rhizosheath”, a layer of strongly bound and more aggregated soil that adheres firmly to the 

root surface (Koebernick et al., 2017). This structure is rather variable both in terms of 

dimensional extent and chemical composition between species (Brown et al., 2017) and 

between genotypes of the same species (George et al., 2014). The influence of this 

rhizosheath on changing the adjacent soil structure can be significant as it is believed to 

influence the overall stability of the rhizosphere (Hallett et al., 2009). Yet, the formation and 

development of this complex mixture of microbes and root exudates requires time and due to 

its nature, it will be extremely difficult to assess to what extent such effects could be 

integrated in a mechanistic model. 
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Table 6.1: The overall responses (grand average among varieties ± grand standard deviation) of root micro-traits to the experimental treatments 

used in the experiment described in Chapter 5. 

DBD  

(g cm-3) 

IRE ARGR  

(mm day-1) 

AVGR  

(mm day-1) 

AHGR  

(mm day-1) 

RHtRR  

(mm mm-1) 

RBCC RTE 

1.4 

2 9.15 ± 0.19 11.51 ± 0.3 5.52 ± 0.87 2.36 ± 0.21 39.69 ± 6.54 1.21 ± 0.18 

4 9.74 ± 0.26 12.24 ± 0.58 5.9 ± 0.84 2.28 ± 0.11 22.44 ± 2.95 1.42 ± 0.09 

6 10.55 ± 0.38 12.95 ± 0.69 6.86 ± 0.58 2.44 ± 0.09 35.56 ± 15.09 1.25 ± 0.37 

1.6 

2 6 ± 0.83 7.19 ± 0.83 4.18 ± 0.98 2.43 ± 0.27 50.44 ± 16.78 2.43 ± 0.69 

4 7.63 ± 0.42 9.41 ± 0.56 4.89 ± 0.26 2.39 ± 0.11 50.63 ± 14.23 3.13 ± 1.11 

6 8.48 ± 0.19 10.53 ± 0.49 5.34 ± 0.75 2.29 ± 0.12 33.75 ± 5.92 2.11 ± 0.49 

 

ARGR: Average root growth rate 

AVGR: Average vertical growth rate 

AHGR: Average horizontal growth rate 

RHtRR: Root hair to root ratio 
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RBCC: Root border cell count 

RTE: Root tip eccentricity 
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6.3 LLWR modification 

In order to improve upon the LLWR it is necessary to understand its current limitations. An 

intrinsic limitation is the models’ interpretation of the plant root growth limiting conditions 

being determined solely by volumetric water content and dry bulk density. Consideration of 

the critical value of the soil field capacity from a process-based approach will require 

assessment of a number of soil properties which include (Mohammadi et al., 2010): (1) 

Saturated hydraulic conductivity of the soil (2) Pore size distribution index used in the 

Campbell soil moisture characteristics model (3) Saturated volumetric water content and (4) 

Air filled porosity at – 10 kPa matric potential. Furthermore, the state of field capacity will 

also be dependent on plant associated variables: (1) Soil oxygen consumption rate and (2) 

Root zone depth. For the case of the permanent wilting point, the critical value of the average 

water content at the onset of plant stress will depend on the properties (De Jong et al., 2006): 

(1) potential transpiration rate and (2) soil hydraulic properties, e.g., conductivity. 

Furthermore, plant associated variables such as root density will also have a strong influence 

on the limiting value of stress onset while evidence supports that other traits such as a 

narrower angular spread of roots are also significant (Jin et al., 2015). In a similar manner, 

determining the minimum air porosity of the soil will require an assessment of variables 

which are known to significantly influence the process and include (Bartholomeus et al., 

2008): (1) Soil type, (2) Soil temperature and (3) Soil depth. As for the limiting value for soil 

penetration resistance, i.e., 2 MPa, it is known that stress onset occurs in the form of a linear 

decrease in root elongation rates until they reach a high penetrometer pressure (Whalley et 

al., 2006). This limiting value was demonstrated to vary among species, e.g., 0.8 MPa for 

cotton roots (Bengough et al., 2011). Root traits that are known to influence this include: (1) 

an increase in the steepness of root angular spread (Jin et al., 2015) and (2) the (poorly 

understood) ability of roots to exploit networks of continuous channels in soil (Bengough et 

al., 2006). 

At this point it should be emphasized that when the LLWR was first formulated in the work 

of da Silva et al., (1994), the authors explicitly demonstrated that factors such as soil texture 

can have a strong influence on the LLWR limits. In fact, the subsequent development of soil 
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pedo-transfer functions (da Silva and Kay, 1997; Silva et al., 2008) clearly demonstrated the 

dependency of the LLWR on soil properties such as clay content and organic carbon content. 

This demonstrates that the existing model does indeed take into account existing soil 

conditions and temporal changes in soil texture. However, it will be instructive to consider 

how the LLWR could be generalized to better reflect temporal soil changes. For example, 

Keller et al., (2015), integrated the LLWR model into a previously published soil compaction 

model known as SoilFlex (Keller et al., 2007). This enabled an assessment of dry bulk 

density changes around the wheel-soil interface created during the movement of heavy 

agricultural machinery. The corresponding variation in LLWR caused by the variation in dry 

bulk density could then allow for an understanding of the effect that agricultural machinery 

has on root growth conditions in the context of water availability. Future integration of 

models with good prediction abilities in the LLWR model could increase its importance as a 

soil quality index.   

Another issue with the LLWR is that there is a certain degree of ambiguity when it comes to 

the dimensional extent of the soil system considered in the LLWR. Originally, the LLWR 

model only considered the top 20 cm of the soil system. However, if one was to consider the 

soil system beyond the top 20 cm limit then an agricultural soil for example would be 

expected to be directly affected by the nature of the agricultural practises used (Bengough et 

al., 2006) which will subsequently influence the LLWR across different time points. In a 

similar manner, if one was to assess the LLWR at different time points then it should vary 

with factors such as changing soil structure, climatic variability, soil diversity, etc. 

Furthermore, the soil water release curve sub-model used by the LLWR will be expected to 

vary across the season rather erratically at times due to hysteresis effects. In other words, the 

location, time, anthropogenic and non-anthropogenic factors will not be constant effects in 

the LLWR model.  

Finally, the limitations in the sub-models used by the LLWR needs to be considered. In 

section 4.4 it was demonstrated that the Busscher model for PR values was a poor descriptor 

for the dataset associated with the RS substrate. As such, the LLWR itself could not be 

defined for this application and preventing a direct comparison of the LLWR model 
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predictions about optimum growth with the observed growth rates. The fit of both sub-models 

used by the LLWR should always be checked and if alternative models exist which are 

applicable and have a better fit then they need to be considered as alternatives. For instance, it 

might be of use to consider alternative PR models such as the one proposed by Jakobsen and 

Dexter, (1987) and compare the fitness of the models. It will be interesting if this model 

could be integrated in the “llwr” function of the R package “soilphysics” so that users may 

compare the results. 

6.4 Summary of key conclusions 

1. Custom-developed minirhizotron-based root phenotyping platforms allow for high 

resolution imaging, but their development must be guided by specific criteria which 

define the properties that the system should have.  

2. A variety of root micro-traits can be imaged by using only basic lab equipment.   

3. The proposed RS based experimental protocol successfully induced a spectrum of 

root growth responses when manipulating the LLWR related soil stressors of DBD 

and IRE.  

4. Significant differences in ARGR, AVGR, AHGR, RBCC and RTE were detected 

among different treatments of the soil stressor factors of DBD and IRE. 

5. Genotypic variability was not a factor causing significant differences for the four 

spring barley varieties tested except RTE. 

6. Root micro-traits could not explain the differences in root growth rates among the 

different substrate treatments on the variety level however, they were successful in 

predicting the average response on the individual plant level. 

7. Future experiments should try to extend the system to A2 dimensions and assess if 

any genotypic differences can be detected at later development stages. The integration 

of sensors to measure water potential will also be ideal. 

8. It is strongly recommended to select genotypes with known root trait differences e.g., 

root hair density, or varieties which are known to have contrasting growth rates in 

different soil conditions based on several published field-based experiments. 
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Furthermore, the sample size should increase from 4 to 8 to increase subject to 

variable ratio and reduce the errors in the descriptive and inferential statistics. 

 

6.5 Future research 

Oxygen sensors (150 x 6 mm) have been used in the past to assess the oxygen status of 

minirhizotrons (Dresbøll et al., 2013). Perhaps a slight extension to the RS width could still 

have a good enough focusing plane of the root/scanning surface for good quality images and 

allow for an in situ estimate of the oxygen concentration. In a similar manner it is possible to 

use mini-tensiometers that also have a shaft with a diameter of 6 mm. However, as mentioned 

in Chapter 4 there is the issue of poor connectivity between the probe and the substrate. 

Increasing the width of the rhizotron by 2 mm should provide better contact between the 

probe and the sand (Figure 6.1 (A)) but perhaps, the addition of finer sand particles could 

still be required to achieve adequate readings. If successfully integrated into the existing RS 

design, these probes will offer a much more accurate and repeated assessment of the oxygen 

and water status of the RS substrate. 

Based on the root growth conditions used in this study seedlings can be grown at least three 

weeks for the four spring barley cultivars tested. It will be interesting to extend beyond this 

time period in a more long-term study but that will require an increase in the dimensions of 

the RS and its associated flatbed scanner. Although, the RS system and the flatbed scanner 

were both A3 sized (297 x 420 mm) the system could be modified to work on an A2 scale 

(420 x 594 mm). This will require an enlargement of the standard RS unit which should be 

easy enough to do and subsequently scanning the RS unit twice, one for each half of the RS 

unit (Figure 6.1 (B)). That will of course require a larger manual input, scanning times and 

time required for image analysis but it is theoretically possible to achieve that. However, if 

the proposed design is successfully implemented, the list of benefits will probably shadow 

those disadvantages as the RS will allow for root growth for a period of up to 5 weeks 

potentially and in situ estimates of oxygen concentration and matric potential. Furthermore, if 

the design is strictly implemented with mechanical precision such as the accurate drilling of 

the holes in the RS scanning surface there could be further benefits in the image processing 
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component. For example, a fixed RS could reduce the computation times of several steps in 

the algorithms used since the effective root growth area will always be in a set of specific 

coordinates, excluding the outer area of the RS and the screw areas and implementing the 

algorithm only for the RS substrate covered zone.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Schematic diagram of the proposed A2 sized RS unit A) Top view and B) Front 

view. 

It should also be noted that although this study focused on the root traits of ARGR, AVGR, 

AHGR, RHtRR, RBCC and RTE, the list of traits doesn’t have to be restricted to only 

those. For example, examination of root cortical regions could yield useful information 

between DBD treatments and can be integrated to the existing experimental protocol by using 
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laser ablation tomography (Chimungu et al., 2015). In a similar manner it will not be difficult 

or time consuming to obtain information about other parts of the plant which are easily 

accessible e.g. stem diameter. If the above proposed method allows for seedlings to reach 

more mature stages, then with additional time investment a significant amount of information 

could be obtained in comparison to the current list of traits.  
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