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a b s t r a c t

Deep Neural Network (DNN) models are usually trained sequentially from one layer to another, which
causes forward, backward and update locking problems, leading to poor performance in terms of
training time. The existing parallel strategies to mitigate these problems provide suboptimal runtime
performance. In this work, we have proposed a novel layer-wise partitioning and merging, forward and
backward pass parallel framework to provide better training performance. The novelty of the proposed
work consists of (1) a layer-wise partition and merging model which can minimise communication
overhead between devices without the memory cost of existing strategies during the training process;
(2) a forward pass and backward pass parallelisation to address the update locking problem and
minimise the total training cost. The experimental evaluation on real use cases shows that the proposed
method outperforms the state-of-the-art approaches in terms of training speed; and achieves almost
linear speedup without compromising the accuracy performance of the non-parallel approach.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Deep Neural Networks (DNNs) have shown promise in dif-
ferent applications such as computer vision, Natural language
processing and speech recognition. However, training a DNN
remains a significant challenge, which is both computational and
data intensive [1–3]. To mitigate this problem, DNN models are
usually trained in parallel across either homogeneous or hetero-
geneous devices including CPUs and GPUs [4] for better training
performance. One of the common distributed training methods
is model parallelism [5]; model parallelism allocates disjoint
subsets of a DNN model to each dedicated device [6]. This method
requires data communication between computation processes to
update the model in each training iteration. The backpropagation
algorithm [7,8] is usually used for the updates and consists of
two phases: the forward pass and backward pass. The forward
pass calculates and stores intermediate variables such as outputs
for a neural network from the input to the output layer. The
backward pass method calculates the gradients of neural net-
work parameters, in reverse order, from the output to the input
layer. The sequential execution of forward pass and backward
pass requires data communication between computation pro-
cesses to update the model in each training iteration, usually re-
ferred to as forward, backward, and update locking problems [9],
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which lead to inefficient training performance due to computa-
tion dependencies.

Several methods have been proposed to mitigate these prob-
lems. One of these methods is delayed gradients, which breaks
the backward locking [10,11]. However, this method suffers from
large memory usage due to the requirement to store all the
intermediate computation results. In addition, the delayed gradi-
ents method provides suboptimal performance in terms of train-
ing speed and convergence rate when the DNN model becomes
deeper and larger. Another method is feature replay [12,13], which
also breaks backward locking and provides better performance
than delayed gradients in memory consumption. The main dis-
advantage is that feature replay has a greater computational load
than delayed gradients, leading to lower training speed. Finally,
layer-wise parallelisation is a method in which each network
layer is parallelised individually, with the solution to a graph
search problem used to optimise the layer parallelisation [14].
However, this method still incurs communication overhead be-
cause the computations of each layer are performed on a single
device while the entire model is trained on multiple devices using
the data parallelism technique, which requires sharing gradients
across devices consequently limiting training performance.

Unlike existing methods, this paper proposes a novel layer-
wise partitioning and merging approach to minimise communi-
cation overhead between devices without incurring a significant
memory overhead during the training process. Different from the
existing approaches, our proposed method applies both partition
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and merging operations to perform computations of network
layers across available multiple devices to minimise the com-
munication overhead. In addition, we propose a forward pass
and backward pass parallelisation method to address the up-
date locking problem associated with the sequential execution of
forward pass and backward pass computations. Thus, the main
contributions of this paper include:

• We propose a novel layer-wise partitioning and merging
for efficient distribution and processing of network layer
computations across multiple devices. The partitioning and
merging mechanism can minimise communication overhead
between devices in distributed training.
• We propose a forward pass and backward pass paralleli-

sation method for solving locking problems, with an as-
sociated cost function formulation for optimising training
performance by reducing the total training cost.
• We apply the proposed methods to two real use cases repre-

senting different complexity of the models for performance
evaluation of the proposed approach.

The remaining parts of this paper are organised as follows. In
Section 2, we summarise the related research work to this paper.
In Section 3, we introduce a layer-wise partitioning and merg-
ing, forward pass and backward pass parallelisation framework.
We conduct experiments to evaluate our proposed method in
Section 4, and Section 5 concludes the work and highlights the
future work.

2. Related work

The increase in dataset and DNN model sizes has motivated
the use of distributed training of DNN models for better per-
formance. Existing parallel methods are usually developed based
on the data and model parallelism techniques to distribute train-
ing across multiple devices. Data parallelism divides the entire
training dataset into subsets of data and dispatches on multiple
devices. Each device maintains a DNN model replica and its pa-
rameters. On the other hand, model parallelism splits and trains
large DNN models onto multiple computation devices instead of
a single device for efficient training performance [15,16]. In [17],
data parallelism was used for convolutional and pooling layers
and model parallelism for densely connected layers to accelerate
CNNs training performance. Wu et al. [18] adopted data paral-
lelism to allocate the RNN model replica on each node and model
parallelism for intra-node parallelisation. Although these works
improve performance over either data or model parallelism, they
still provide suboptimal performance and scale poorly on large
datasets and multiple devices. Saguil and Akramul [19] proposed
a layer partitioning method to improve the training performance
of neural network-based embedded applications in edge net-
works. The method partitions layers of a model into sub-models
and distributes them among different devices. The method was
shown to reduce the communication overhead between devices
by up to 97% with a tradeoff of 3% in accuracy. Similarly, the
works in [20–24] split neural networks layers and allotted sub-
layers to multiple devices for improved training performance.
Finally, Song et al. [25] proposed layer-wise parallelism which
partitions feature map tensors, kernel tensors, gradient tensors,
and error tensors, subsequently optimising the partition with the
goal of minimising the total communication for the acceleration
of the DNN training.

Aside from the data and model parallelism, pipeline paral-
lelism [26–28], and hybrid parallelism [25,29–31] have been pro-
posed to speed up DNN training further. Pipeline parallelism
partitions model layers into stages and runs them on multi-
ple devices. Huang et al. [32] proposed GPipe, a pipeline paral-
lelism based solution that explores the synchronous approach to

train large models and optimised GPU memory usage. Narayanan
et al. [33] proposed PipeDream, which uses the hybrid method
of data and pipeline parallelism for asynchronous training of the
DNN models. Hybrid parallelism combines the advantages of two
or more types of parallelism while weakening the disadvantages
of each for better performance.

In recent times, more parallel strategies have been proposed to
improve the training performance by addressing forward, back-
ward, and update locking problems [9]. Belilovsky et al. [34]
proposed a greedy algorithm based solution known as Decou-
pled Greedy Learning (DGL) to achieve update unlocking as well
as forward unlocking. The work decoupled and parallelised the
CNN layers training to achieve better convergence performance
than state-of-the-art approaches. Furthermore, Huo et al. [35]
proposed a Decoupled Parallel Back-propagation (DDG, in which
the DG refers to delayed gradients), which splits the network
into partitions and solves the problem of backward locking by
storing delayed error gradient and intermediate activations at
each partition. Similarly, Zhuang et al. [11] adopted the delayed
gradients method to propose a fully decoupled training scheme
(FDG). The work breaks a neural network into several modules
and trains them concurrently and asynchronously on multiple
devices. In DDG and FDG, the forward pass executes sequentially.
The input data flows from one device to the other and computes
sequential activation order. On the other hand, all devices except
the last one store delayed error gradients and execute the back-
ward computation after the forward computation is complete.
DDG and FDG adopt the delayed gradients to split the backward
pass and reduce the total computation time to Tf+Tb/N , where Tf ,
Tb, and N denote forward pass time, backward pass time, and the
number of devices for a mini-batch in Naive sequential method.
However, the two delayed gradients based approaches incur a
large memory overhead due to storing intermediate results and
suffer from weight staleness and the forward locking problem [9].

To address these challenges, Xu et al. [36] proposed Layer-
wise Staleness and Diversely Stale Parameters (DSP), a combination
of parallel DNN model training algorithms, where ‘staler’ infor-
mation is used to update lower layer parameters. DSP overlaps
both forward pass and backward pass computations to the reduce
memory consumption experienced in DDG and FDG during the
training process, improving training performance. However, the
staleness-based methods have slow convergence, especially when
the DNN models become more complex and deeper, thereby
negatively impacting training performance in terms of speed for
the desired accuracy [37].

To address the limitations of the aforementioned parallel
methods, we propose a novel layer-wise partitioning and merg-
ing, forward pass and backward pass parallelisation approach for
accelerating distributed training of the DNN models.

3. The proposed method

In this section, we provide full details of the proposed method,
which divides into two phases: layer-wise partitioning and merg-
ing; and forward pass and backward pass parallelisation. The
proposed method aims to minimise the communication overhead
and address locking problems associated with the sequential
execution of forward pass and backward pass computations in a
distributed environment.

3.1. Problem statement

In deep learning, backpropagation is an algorithm to train
feedforward neural networks, divided into forward pass and
backward pass phases for sequential computations of activation
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Fig. 1. Feedforward neural network.

Table 1
Notation used in this paper.
Notations Descriptions

L Number of network layers.
pl The weight parameter of l layer.
al The activation of layer l.
X = a[0] The input data.
e The input-label.
b The Batch size.
f The Loss function.
m Number of layer computations.
Z Sub-modules from similar or different layers.
z[j] Sub-module such that z ∈ Z and j = {1, 2, . . . , n}
qt Parameter of u and v at iteration t .
n Number of GPUs.
G The activation function.
ωt Gradient of the function at iteration t .
TF Forward pass time.
TB Backward pass time.

and error gradient, respectively. However, the sequential calcula-
tions result in backward locking and forward locking problems
due to computation dependencies between network layers. In
addition, there is also an update locking problem because the
backward pass waits for the forward pass to finish before it starts.

The process of training feedforward neural networks is repre-
sented in Fig. 1, and Table 1 presents the notation used here for
the training parameters.

We assume that a DNN model has L consecutive layers and
p = (p[1], p[2], . . . , p[l]) ∈ Rh where p[l] ∈ Rh

l denotes the weight
parameter at layer l ∈ {0, 1, . . . , L − 1} and h =

∑L−1
l=0 hl. The

activation of each layer l is defined as:

a[l+1] = gl(a[l], p[l]) (1)

where a[l] and a[0] are the input of layer l and input data respec-
tively. Generally, the layer’s activation value can be defined as:

a[l+1] := G(a[1], p[1], p[2], . . . , p[l]) =

gl(...g2(g1(a[1], p[1]), p[2]..., p[l]))
(2)

The loss function is f (a[L], e), where e denotes input-label de-
tail of the training samples. The loss function of the feedforward
neural network can be represented as the following optimisation
problem:

min
f

g(p) = f (G(a[1], p[1], p[2], . . . , p[l]), e) (3)

Gradient descent is used to solve the optimisation problem
given in Eq. (3) by iteratively moving in the direction of the

negative of the gradient of the function at iteration t is defined
as:

ωt
p = [ω

t
p[1] , ω

t
p[2] , . . . , ω

t
p[l] ] (4)

where,

ωt
p[l] =

δg(pt )

δp[l]t
(5)

Typically, either stochastic gradient descent (SGD) [38] or more
recent algorithms such as ADAM [39] are used to update the
model parameters p iteratively as:

p[l]t+1 = p[l]t − αtω
t
p[l] (6)

where αt is the learning rate. When the training sample is large
and bt is mini-batch of b, the gradient vector becomes:

ωt
p[l] =

δgbt (pt )

δp[l]t
(7)

The backpropagation algorithm is usually used to calculate the
model gradients, which consists of two processes: the forward
pass for model prediction and the backward pass for gradient
calculation and model update. In the backpropagation process,
the input of each layer relies on the output of the immediate
previous layer. For instance, the gradient in layer l using the
gradient back-propagated from layer u and v such that l < u < v
can be expressed as:

ωt
p[l] =

δgbt (pt )

δp[l]t
=

δq[u]t

δp[l]t

δgbt (pt )

δq[u]t

=
δq[u]t

δp[l]t
ωt

q[u] (8)

where,

ωt
q[u] =

δgbt (pt )

δq[u]t

=
δq[v]t

δq[u]t

δgbt (pt )

δq[v]t

=
δq[v]t

δq[u]t

ωt
q[v] (9)

Moreover, the backward process waits until the forward pro-
cess is complete. This situation, often referred to as the forward,
backward and update lockings problem, causes delays in the
model updates, leading to poor training performance in terms of
training speed.

3.2. Layer-wise partitioning and merging

To mitigate the aforementioned problem, we propose a novel
layer-wise partitioning and merging method. The method uses
layer-wise partitioning and merging operations to solve forward
and backward locking problems by performing computations of
network layers across available multiple devices rather than a
single device as in the existing layer-wise partitioning methods.
The layer-wise partitioning has two levels. In the first level, given
a DNN consisting of a number of layers (i.e. dimension), we
break the computations of those layers with high computational
load, such as convolution layers, based on a number of available
devices D (such as GPUs). In the case of convolution layers, the
kernel filter slides over the input matrix to get the output vector.
For instance, if the input matrix has dimensions of Mi and Mj,
and the kernel matrix has dimensions of Ei and Ej, then the final
output will have a dimension of Mi − Ei + 1 and Mj − Ej + 1. The
computations to get values of the final output are divided equally
among the available number of GPU n. However, in rare cases
where the number of computations m in the dimension is less
than the available number of GPUs n, i.e.m < n, the computations
will be allocated to m GPUs, and the remaining GPUs n− m > 0
will be left unused. We therefore define nl = min(m, n), the
number of GPUs over which the layer l is parallelised. The second
level regroups the sub-layers and distributes them equally into
sub-modules based on the number of available GPUs nl to ensure
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Fig. 2. Layer partitioning and merging using n number of GPUs.

a well-balanced workload across multiple devices to achieve the
best possible runtime performance while maintaining the original
network accuracy. As shown in Algorithm 1, we split the convolu-
tion layer p[1] into {p[1]1 , p[1]2 , . . . , p[1]nl }, where nl = min(m, n) and
n is the cardinality of the set of available devices D, where D =
di, i ∈ [1, . . . , n]. Subsequently, we partition the new set of DNN
layers into Z sub-modules across the number of available devices
n in which z each sub-module comprises a stack either from
similar or different layers. For instance, if the number of available
devices is three, i.e. nl = 3, and the number of the new set of DNN
layers is seven, which includes sub-layers of a partitioned layer
and non-partitioned layers, the algorithm groups seven layers
equally into the three sequentially, i.e., Z = {z1, z2, z3}, number
of available devices. In this case, the last sub-module gets the
remainder of the layers division, i.e., z1 gets two layers, z2 gets
two layers and z3 gets three layers.

In Fig. 2(a), each GPUi, also represented as di computes each
partition z ji of sub-module z j ∈ Z , where i ≤ n and j =
{1, 2, . . . , n}. The outputs are concatenated and re-partitioned
for the next sub-module j + 1. GPU 1, which serves as a proxy
server, does the merging operation, splitting computations across
the available GPUs, and concatenates activation outputs from the
GPUs for the next splitting operation. In addition, the sub-module
z performs a forward and a backward pass using activation input
and gradient from module z − 1, respectively. From Eq. (1), in
the forward pass for at iteration t , the activation atz−1 of z − 1
is used as input to the sub-module z and produces activation atz .
Likewise, from Eq. (6), in the backward pass at iteration t , the
gradient from sub-module z − 1 is fed input into sub-module z
to produce a new gradient.

However, this method incurs high communication overhead
due to frequent data movement among the devices. To address
this challenge, we merge two or more sub-modules as shown in
Fig. 2(b) such that the output of a sub-module is sent directly to
the next sub-module without involving device computation; this
method also ensures even distribution and all layers benefit from
n GPUs.

3.3. Forward pass and backward pass parallelisation

To further improve DNN training performance, we address the
update locking problem by parallelising the forward pass and
backward pass, and develop a cost model to analyse the total
execution cost.

3.3.1. Forward pass and backward pass parallelisation
Here, we parallelise forward pass, backward pass and pa-

rameter synchronisation processes to address the update locking
problem caused by the sequential execution of forward pass and
backward pass computations. Fig. 3 represents model parallelism

Algorithm 1: Layer partitioning and merging

input : p[l]: weight parameter of l layer
L: Number of network layers.
n : no. of available GPUs
D = di, i ∈ [1, . . . , n]: list of GPUs

output: Z: list of sub-modules
1 set Z to {} ;
2 for l← 1 to L by 1 do
3 if dimension of layer l > 1 then
4 m← no. of computations;
5 nl ← min(m, n);
6 end
7 end
8 K ← number of layers (partitioned and non-partitioned),

K ≥ L ;
9 group the {p[l]1 , p[l]2 , . . . , p[l]K } equally and sequentially into

sub-modules Z ← {z[1], z[2], . . . , z[nl]} ;
10 for l← 1 to L by 1 do
11 split and merge z[l]z[l+1] into z[l,l+1]1 , z[l,l+1]2 , . . . z[l,l+1]nl ;
12 set e to {} ;
13 for i← 1 to nl by 1 do
14 allocate and compute ei = di ← z[l,l+1]i ;
15 e = e← ei;
16 end
17 z[l+2] ← e;
18 end
19 return Z

with non-parallel and parallel forward and backward pass com-
putations. As shown in Fig. 3(a), the forward pass computes the
activation of modules Fi from i = 1 to n and the backward pass
calculates the error gradients Bi in reverse order from output
layer to input layer, that is i = n to i = 1 (as in Eq. (3)), sequen-
tially at iteration t . To reduce dependencies among the layers
for both activation and gradient calculations, we parallelise the
forward and backward passes by splitting the dataset by the num-
ber of available GPUs such that X = {x1, x2, . . . , xn}; each data
batch is divided into minibatches of size b/n. Each sub-module zi,
where i = {1, 2, . . . , n} is fed with different dataset chunks. Each
sub-module computation runs on different GPUs concurrently to
ensure better forward and backward pass throughput as well as
hardware utilisation efficiency. At each iteration, we first perform
input and output computations of a module for the forward and
backward pass before transferring dependencies between the two
propagations. Bi,j represents the backward pass of sub-module i
and micro-batch jwhile Fi,j represents the forward pass of module
i and micro-batch j. For instance, assume there are four available
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Fig. 3. Forward and backward pass computations. The left figure is model parallelism with non-parallel forward and backward pass computations; a single data
batch across GPUs leads to several unutilised hardware. The figure on the right shows parallel forward and backward pass computations with mini-batches for all
GPUs.

GPUs (i.e. n = 4), then there will be four sub-modules, zi, where
i = {1, 2, . . . , 4} as described in Algorithm 1 and four micro-
batches j such that j = {1, 2, . . . , 4}. The forward pass F1, F2, F3, F4
and backward pass B1, B2, B3, B4 in Fig. 3(a) now become F0,0, F0,1,
F0,2, F0,3, F1,0, F1,1, F1,2, F1,3, F2,0, F2,1, F2,2, F2,3, F3,0, F3,1, F3,2, F3,2
for forward pass and B0,0, B0,1, B0,2, B0,3, B1,0, B1,1, B1,2, B1,3, B2,0,
B2,1, B2,2, B2,3, B3,0, B3,1, B3,2, B3,2 for backward pass. To reduce
the idleness of devices occurring in Fig. 3(a) and efficiently utilise
devices’ memories, the computations of the partitioned forward
pass and backward pass are arranged randomly and processed
on the different GPUs simultaneously, as shown in Fig. 3(b).
However, the computations of B0,0 depends on the output of F0,0,
B0,1 depends on the output of F0,1, B0,2 depends on the output
of F0,2 and B0,3 depends on the output of F0,3 in stage 0. Similar
operations are performed in stages 1, 2, and 3.

To improve training performance, asynchronous parameter
update and gradient accumulation methods are used to perform
parameter updates among the module with all training batches
rather than a single batch. At the training process’s start, the first
batch training samples are used for forward pass calculation, and
backward pass starts with the same batch immediately forward
pass finishes. Then the forward and backward pass computations
perform for the subsequent batches. The training process continu-
ously feeds new training batches for forward and backward pass
calculation tasks with different GPUs to ensure throughput and
system utilisation.

3.3.2. Cost model
We formulate a cost model to analyse the computation time

performance of the forward pass and backward pass paralleli-
sation method. First, we define the time taken to perform the
forward and backward passes for module i using micro-batch j
as T (Fi,j) and T (Bi,j) respectively. We assume that these times are
constant such that

T (Fi,j) = TF and T (Bi,j) = TB ∀ (i, j). (10)

The communication time between GPUs to transfer model
weights is taken to be a constant TC . We can now write the cost
model for the computation time for the two cases corresponding
to Figs. 3(a) and 3(b).

For the case without overlapping of forward and backward
passes, depicted in Fig. 3(a), we can write the time to complete a
mini-batch with non-overlapped computation as

TNO = n2(TF + TB + 2TC ), (11)

since each micro-batch/module combination requires a time TF +
TB for its processing, in each case there is a communication cost
of TC incurred, and there are n microbatches over n modules.

For the case with overlapping forward and backward passes,
we note that the initial stage in which the first microbatch is
processed, which is represented by the initial diagonal ramp in
Fig. 3(b), requires a time n(TF + Tc). Similarly the final stage
in which the backward pass is performed on microbatch n − 1
requires n(TB + Tc). In between these times, the processing of

Fig. 4. Speedup due to computation overlap from the cost model presented
in Eq. (13), for three different values of the ratio of communication time to
compute time, with TF = TB .

module n − 1 is the limiting process; this GPU will alternate
between performing forward and backward passes on the micro-
batches in turn. While this is happening, the other processes may
be performing either forward or backward passes. The time taken
for this phase of the computation is therefore 2(n−1)max(TF , TB)
since within each of the 2(n − 1) time slices in the diagram
corresponding to this phase, there are both forward and back-
ward passes being processed. Note there is no communication
between GPUs in this phase, so there is no term in TC . Combining
the terms, we now write the total time taken for the overlapped
computation as

TO = n(TF + TB + 2TC )+ 2(n− 1)max(TF , TB). (12)

We can now write the parallelisation speedup derived from
the overlapping process Soverlap = TNO/TO, as

Soverlap =
n2(TF + TB + 2TC )

n(TF + TB + 2TC )+ 2(n− 1)max(TF , TB)
. (13)

This quantity is plotted for different values of the ratio of com-
munication time to compute time, assuming that TF = TB in
Fig. 4.

We can also compare the contributions to these times due to
communication only, which are 2n2TC for case (a) and 2nTc for
case (b). The proposed overlapping method therefore reduces the
communication cost by a factor n.

4. Experimental evaluation

In this section, we carry out the experiments on the proposed
method. Section 4.1 describes the use cases; DNN models and
datasets used. In Section 4.2, we provide definitions of evaluation
metrics; speedup, accuracy and training time. Section 4.3 pro-
vides the hardware and software settings of the experiments. In
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Section 4.4, we discuss the experimental results and compare the
performance with the existing parallel methods. The goals of the
experiments are to implement the proposed method as described
in Section 3 and evaluate, through realistic use cases, its scalabil-
ity and performance in a multi-GPU environment. Moreover, we
also compare the speedup and accuracy performance with some
state-of-the-art parallel methods including DDG [35], FDG [11],
DSP [36], and GABRA [31].

4.1. Use case description

To provide a robust evaluation of our proposed approach, we
select two use cases including: (1) A real-world application in
relation to Alzheimer’s disease diagnosis based on our original
proposed model (3D-ResAttNet). The original model has been ef-
fective for disease diagnosis. However, it is a non-parallel model.
Given the large size of sMRI images, it is necessary to accelerate
the computing performance. Hence parallelisation is required;
(2) Classification tasks with ResNets and VGG 16 using CIFAR-10
and CIFAR-100 datasets (These models and datasets are widely
used by many researchers for benchmarking evaluation). The
rationale behind these selection are mainly dependent on the
data size and model structure complexity. CIFAR-10 and CIFAR-
100 datasets are two dimensional with relatively small size while
the sMRI data is three dimensional, and is a large dataset. In
addition, our proposed model is 3D ResNet with attention layer,
which is more complex than ResNets and VGG 16, which allows
for evaluating the proposed method with more complex deep
learning models with a range of layer types.

4.1.1. Use case 1: 3D-ResAttNet for Alzheimer’s disease
We apply the proposed method on our previous non-parallel

3D-ResAttNet for automatic detection of the progression of AD
and its Mild Cognitive Impairments (MCIs) - Normal cohort (NC),
Progressive MCI (pMCI), and Stable MCI (sMCI) from sMRI scans
[40]. The network consists of 3D Conv blocks, Residual self-
attention blocks, and Explainable blocks. 3D convolutions exploit
a 3D filter to calculate the low-level feature representations of
the output shape as a 3-dimensional volume space. The residual
self-attention block combines two important network layers: the
residual network layer and the Self-attention layer.

The residual network layer comprises two Conv3D blocks con-
sisting of 3 × 3 3D convolution layers, 3D batch normalisa-
tion and Rectified Linear Unit (ReLU). The explainable block uses
3D Grad-CAM to improve the model decision. We adopt the
dataset from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (http://adni.loni.usc.edu) as the benchmark for
the performance evaluation. The dataset has four classes of MRI
scans images, developed in 2003 by Dr Michael W. Weiner under
the public–private partnership. As shown in Table 2, it contains
1193 MRI scans 389 Alzheimer’s Disease (AD), 400 Normal Co-
hort (NC), 232 Stable Mild Cognitive Impairment (sMCI) and 172
Progressive Mild Cognitive Impairment (pMCI) patients.

4.1.2. Use case 2: ResNets and VGG16 for classification of CIFAR-10
and CIFAR-100 datasets

We also apply ResNet18 [41], ResNet34 [42], ResNet50 [43]
and VGG16 models [44] for the classification of the CIFAR-10
and CIFAR-100 images [45] to further evaluate the robustness
of our proposed method. The ResNet networks consist of 2D
convolutional layers with 3 × 3 filters, batch normalisation, rec-
tified linear unit and residual block layers, ending with an av-
erage pooling layer and a fully-connected layer. The VGG 16
consists of convolutional layers, Max Pooling layers, and Dense
layers. ResNet and VGG model structures are simpler than the
3D-ResAttNet model [40]. The CIFAR-10 and CIFAR-100 datasets

Table 2
ADNI database descriptions.
Class Number/Size Gender

(Male/Female)
Age
(Mean/Std)

MMSE
(Mean/Std)

AD 389/1.4 GB 202/187 75.95/7.53 23.28/2.03
pMCI 172/484 MB 105/67 75.57/7.13 26.59/1.71
sMCI 232/649 MB 155/77 75.71/7.87 27.27/1.78
NC 400/2.4 GB 202/198 76.02/5.18 29.10/1.01

are commonly used for benchmarking DNN models. The CIFAR-
10 dataset contains 60,000 images with 32 × 32 pixels, divided
into 10000 test images and 50000 training images. The images
are classified into ten classes - aeroplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck; each has 6000 images.
The CIFAR-100 dataset contains 100 classes each containing 600
images (500 training and 100 testing images). The CIFAR-100
classes are further grouped into 20 superclasses, and each image
can be identified by class and superclass labels.

4.2. Experimental evaluation metrics

We adopted Speedup (S), Accuracy (ACC) and Training Time
(TT ) for performance evaluation of out proposed method. S mea-
sures the scalability and computing performance and defined as:

S = Ts/Tp (14)

Ts denotes the computing time on a single GPU, i.e. the to-
tal runtime for training process from the beginning to the end
including the layer partitioning, merging, forward and backup
pass operations and other time costs. Tp indicates the computing
time on p GPUs (the total runtime for training process from the
beginning to the end). ACC measures the classification accuracy
and is defined as:

ACC = (TP + TN)/(TP + TN + FP + FN) (15)

where TP = True positives, FP = False positives, TN = True neg-
atives and FN = False negatives. TT measures time taken for
training of the DNN models using the proposed approach and
other existing parallel methods

4.3. System configuration

Hardware: Our experiments are conducted on an Amazon
Web Service (AWS) EC2 p3.16xlarge instance. The p3.16xlarge
instance consists of 8 NVIDIA Tesla V100 GPUs with NVLink
technology, 128 GB GPU memory, 64 vCPUs, 4488 GB memory,
and 25 Gbps network bandwidth.

Software: we exploit the following software configuration
and installation: Ubuntu 18.04 as the backbone for other software
installation, Python 3.7.3, PyTorch 1.2.0 as the deep learning
framework [46], Torchvision 0.4.0, Numpy 1.15.4, Tensorboardx
1.4, Matplotlib 3.0.1, Tqdm 4.39.0, nibabel, fastai, and NVIDIA
Collective Communications Library (NCCL) CUDA toolkit 10.2 - a
library of multi-GPU collective communication primitives [47].

4.4. Experiments results and discussions

We have investigated the accuracy and speedup performances
of the proposed method on the use case 1, 3D-ResAttNets for two
classification tasks: sMCI vs pMCI and AD vs NC, and the use case
2, ResNets and VGG16 on CIFAR-10 and CIFAR-100 with varying
numbers of GPUs (ranging from 1 to 8). Furthermore, we have
also compared performances of the proposed against GABRA [31],
our previous parallelisation method, and other three state-of-art
methods, including DDG [35], DSP [36] and FDG [11]. We have
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Table 3
Use case 1: training performances 3D ResAttNet18 and 3D ResAttNet34 with ADNI dataset using the proposed method.
#GPUs 3D-ResAttNet18 3D-ResAttNet34

sMCI vs. pMCI AD vs. NC sMCI vs. pMCI AD vs. NC

ACC TT (min) ACC TT (min) ACC TT (min) ACC TT (min)

1 0.79 29 0.93 55 0.81 34 0.94 61
2 0.80 11 0.92 22 0.81 14 0.94 24
3 0.81 9 0.92 20 0.82 12 0.95 21
4 0.80 7 0.93 15 0.83 11 0.93 17
5 0.80 6 0.94 13 0.81 9 0.93 15
6 0.79 5 0.93 11 0.82 7 0.95 12
7 0.79 4 0.93 8 0.83 5 0.94 10
8 0.80 3 0.93 7 0.82 4 0.94 8

Table 4
Use case 2: training performances ResNet18, ResNet34, ResNet50 and VGG16 with CIFAR-100 using the proposed method.
#GPUs ResNet18 ResNet34 ResNet50 VGG16

ACC TT (min) ACC TT (min) ACC TT (min)) ACC TT (min)

1 0.94 26 0.94 34 0.94 41 0.93 44
2 0.93 14 0.94 19 0.94 23 0.93 25
3 0.94 13 0.94 16 0.94 20 0.93 22
4 0.94 11 0.93 15 0.94 16 0.94 18
5 0.93 10 0.94 13 0.93 14 0.93 15
6 0.94 8 0.93 10 0.94 12 0.93 14
7 0.94 6 0.93 8 0.94 9 0.93 12
8 0.93 4 0.94 6 0.94 8 0.93 10

Table 5
Use case 2: training performances ResNet18 and ResNet34, ResNet50 and VGG16 with CIFAR-10 using the proposed method.
#GPUs ResNet18 ResNet34 ResNet50 VGG16

ACC TT (min) ACC TT (min) ACC TT (min) ACC TT (min)

1 0.93 25 0.94 32 0.93 39 0.93 42
2 0.94 12 0.94 18 0.94 22 0.94 24
3 0.94 11 0.93 15 0.94 18 0.93 20
4 0.93 10 0.94 14 0.93 15 0.93 17
5 0.94 9 0.94 11 0.93 12 0.94 13
6 0.93 7 0.94 10 0.94 11 0.93 12
7 0.93 5 0.94 7 0.93 8 0.93 10
8 0.94 3 0.94 5 0.93 6 0.94 8

used Rectified linear unit(Relu) as the activation function and
optimised model parameters with SGD, a stochastic optimisation
algorithm. In addition, we set other training parameters, includ-
ing a batch size of six samples, cross-entropy as the loss function,
and 50 epochs for better convergence. We set initial learning
rate (LR) as 1 × 10−4, then reduced by 1 × 10−2 with increased
iterations.

4.4.1. Training time
Table 3 shows the training results of use case 1, 3D-ResAttNets

(3D-ResAttNet18 and 3D-ResAttNet34) on the two classification
tasks: sMCI vs pMCI and AD vs NC. Tables 4 and 5 show the
training results of use case 2, ResNets and VGG16 with CIFAR-
10 and CIFAR-100 using the proposed parallelisation method. In
addition, to further demonstrate the effectiveness of the proposed
method, we have conducted experiments to show the time taken
for merging and splitting, as shown in Table 6, the durations
(communication and computing) are insignificant and have little
or no effect on the training time.

Figs. 5 and 6 visualise the performance of use cases 1 and 2
using the proposed parallelisation method in terms of the training
time with the varying number of GPUs, respectively. Both show
that as the number of GPUs increases, the training time decreases.
For instance, in the use case 1, the sMCI vs pMCI classification task
on 3D-ResAttNet18 gives 29 min when using a single GPU, 11 min
with 2 GPUs, and 3 min with 8 GPUs. The same performance
trend is seen for AD vs NC classification tasks on 3D-ResAttNet18
and sMCI vs pMCI and AD vs NC classification tasks on 3D-
ResAttNet34. Likewise, in the use case 2, the training of ResNet18

Table 6
Splitting and merging times measured for two representative cases. The times
are orders of magnitude smaller than the training times in both cases.
#GPUs Splitting and merging time (s)

Case 1
(3D-ResAttNet18)

Case 2
(ResNet50 with CIFAR-100)

1 – –
2 0.0002548 0.0002382
3 0.0002602 0.0002410
4 0.0002814 0.0002604
5 0.0002879 0.0002697
6 0.0002915 0.0002741
7 0.0002983 0.0002815
8 0.0003011 0.0002879

with CIFAR-100 images gives 26 min with a single GPU, 14 min
with 2 GPUs, and 13 min with 3 GPUs. ResNet34 with CIFAR-
100 dataset gives 34 min on a single GPU, 19 min with 2 GPUs,
and 16 min with 3 GPUs. ResNet50 with CIFAR-100 dataset gives
41 min on a single GPU, 23 min with 2 GPUs, 20 min with 3 GPUs,
and so on. Also, VGG16 with CIFAR-100 dataset gives 44 min on a
single GPU, 25 min with 2 GPUs, 22 min with 3 GPUs, and so on.
As shown in Fig. 6, in all cases of ResNet 18, 34 and 50 and VGG
16, the training time decreases as the number of GPUs increases.
The ResNet 50 takes more training time than the ones of ResNet
18 and 34 in all cases. Since the VGG model is more complex than
ResNets, it has the longest training time. This indicates that the
more the complex model is, the longer the training time.
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Fig. 5. Use case 1: training time performance of 3D-ResAttNet18 and 3D-ResAttNet34 using the proposed method .

Fig. 6. Use case 2:Training time performance of ResNet18, ResNet34, ResNet50 and VGG16 using the proposed method.

4.4.2. Speedup
We investigate the relationship between speedup and the

number of GPUs. The speedup (S) measures the scalability and
computing performance and is defined as in Eq. (14). Figs. 7
(c) and (d) show, for use case 1, the speedup performance of
ResAttNets using the proposed method calculated based on the

training time with varying numbers of GPUs. The figure shows
that the speedup increases almost linearly with the number of
GPUs, which illustrates the scalability of the proposed method.
Specifically, for AD vs. NC classification task with 3D-ResAttNet18,
the training speedup on 1, 2, 3, 4, 5, 6, 7, and 8 GPUs are 1, 2.5,
2.75, 3.67, 4.23, 5, 6.88 and 7.86 respectively. The sMCI vs pMCI
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Fig. 7. Use case 1: speedup performance of 3D-ResAttNets using the proposed method.

Fig. 8. Use case 2: speedup performance of ResNet18, ResNet34, ResNet50 and VGG16 using the proposed method with CIFAR datasets.

classification task with 3D-ResAttNet18, the training speedup for
1, 2, 3, 4, 5, 6, 7, and 8 GPUs are 1, 2.64, 3.22, 4.14, 4.83, 5.8, 7.25
and 9.67 respectively. A similar speedup performance trend was
also observed in the sMCI vs pMCI and AD vs NC classification
tasks with 3D-ResAttNet34.

Also, Fig. 8 shows, for the use case 2, the speedup performance
of ResNets — ResNet18, ResNet34 and ResNet50, and VGG16 using
the proposed method. In Fig. 8(b), for ResNet18 with CIFAR-100,
the training speedup for 1, 2, 3, 4, 5, 6, 7, and 8 GPUs are 1,
1.86, 2, 2.36, 2.6, 3.25, 4.33 and 6.5, respectively, while that of
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Fig. 9. Use case 1: training time of 3D-ResAttNet18 and 3D-ResAttNet34 using the proposed method, FDG, DDG, DSP and GABRA.

ResNet34 with CIFAR-100 are 1, 1.79, 2.13, 2.26, 2.62, 3.4, 4.25
and 5.67, respectively. ResNet50 with CIFAR-100 gives speedup
of 1, 1.78, 2.05, 2.56, 2.93, 3.14, 4.56 and 5.12 for 1, 2, 3, 4, 5,
6, 7, and 8 GPUs, respectively. Similarly, VGG16 with CIFAR-100
gives speedups of 1, 1.76, 2.0, 2.44, 2.93, 3.14, 3.67 and 4.4 for 1,
2, 3, 4, 5, 6, 7, and 8 GPUs, respectively. The same speed perfor-
mance trends are also shown in Fig. 8(a) for ResNet18, ResNet34,
ResNet50 and VGG16 with CIFAR-10. In all cases, the speedup
increases as the number of GPUs increases, which indicates that
the proposed method is scalable.

Although the speedup in all cases increases with the number
of GPUs, within this broad behaviour there are some differ-
ences between models and datasets. In some cases, we observe
superlinear speedup, with parallel efficiencies greater than 1
(ResAttNet18 and ResAttNet34 on the SMCI vs. PMCI task). This
may be explained by lower than expected performance in the
single GPU case. One possible reason for this is the size of a
model which may cause issues on the hardware which do not
manifest when the model is split between GPUs, such as frequent
cache misses. This would result in an artificially high value for the
training time on one GPU, leading to higher apparent speedup
when more GPUs are used. This effect only manifests with the
larger data and models, consistent with the hypothesis. In many
cases we see a performance below the linear trend which then
improves beyond around 4–5 GPUs. There is some indication
of this in the performance model developed in Section 3.3.2,
in which the curves are not linear and dip slightly below the
linear relationship, although the effect observed experimentally

is more pronounced. This may also be due to the superlinear
scaling effect of reducing memory usage on individual GPUs; the
scaling initially follows a line similar to the cost model, with
some increase in speedup for larger numbers of GPUs, as smaller
per-GPU models are able to make more efficient use of cache
memory.

4.4.3. Accuracy
As shown in Tables 3 and 4, the accuracy performance of our

proposed model on two use cases maintains the same accuracy
level with different numbers of GPUs, comparing to the non-
parallel approach. Specifically, there is no correlation between the
test accuracy and the number of GPUs. For instance, in the use
case 1, our proposed method using 3D-ResAttNet34 provides test
accuracies: 0.94, 0.94, 0.95, 0.93, 0.93, 0.95, 0.94 and 0.94 on 1,
2, 3, 4, 5, 6, 7, and 8 GPUs respectively. The same behaviours are
also shown in the accuracy performance of 3D-ResAttNet18 and
the use case 2, ResNet18, ResNet34, ResNet50 and VGG16 with
the different numbers of GPUs.

4.4.4. Comparison of the proposed method and existing parallel
methods

We have compared the proposed method with our previous
parallelisation method, GABRA and other three state-of-art meth-
ods: DDG, DSP and FDG. Figs. 9 and 10 show the experiment
results of use cases 1 and 2, respectively. The proposed method
outperforms the GABRA, DDG, DSP and FDG in terms of training
time. For instance, in use case 1, for 3D ResAttNet18 on AD
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Fig. 10. Use case 2: training time of ResNet18, ResNet34, ResNet50 and VGG16 with CIFAR-100 using the proposed method, FDG, DDG, DSP and GABRA.

Table 7
Memory usage comparison between the existing parallel methods
and our proposed method. The proposed method took an average
of 66% and 58% of the memory to train 3D-ResAttNet34 and
ResNet50 models, respectively and outperforms the GABRA, DDG,
DSP and FDG.
Methods 3D-ResAttNet34

(AD vs. NC)
ResNet50
(CIFAR-100)

Proposed method 66% 58%
FDG 78% 73%
DDG 89% 81%
DSP 69% 62%
GABRA 73% 66%

vs NC and sMCI vs pMCI classification tasks, the training time
incurred by the proposed method is lower than the ones of
GABRA, DDG, DSP and FDG. Similarly, there are related trends
when comparing the proposed method with the GABRA, DDG,
DSP and FDG for the distributed training of 3D-ResAttNet34 for
two classification tasks: AD vs NC and sMCI vs pMCI, for in-
stance, In Fig. 9(c), when training 3D-ResAttNet34 over AD vs
NC on two GPUs, the performance improvements of our pro-
posed model over the existing methods including FDG, DDG,
GABRA and DSP achieves 70%, 74.73%, 17.24% and 11.11% re-
spectively, which demonstrates the effectiveness of our proposed
method. The same performance trend also recorded in the use
case 2, ResNet18, ResNet34, ResNet50 and VGG16 with CIFAR-
100 dataset. In addition, Table 7 shows the comparison of the
memory usage of the exiting methods and our proposed method.

Our proposed method consumed an average of 66% and 58% of the
system memory to train 3D-ResAttNet34 and ResNet34 models,
respectively. In all results, our proposed method outperforms the
existing methods, FDG DDG, DSP and GABRA, in terms of memory
usage as well.

5. Conclusion and future works

In this paper, we have proposed layer-wise partitioning and
merging to solve forward and backward locking problems by per-
forming computations of network layers across multiple available
devices rather than a single device. We have also proposed a
forward pass and backward pass parallelisation method to ad-
dress the update locking problem associated with the sequential
execution of forward pass and backward pass computations. We
applied the proposed method to train two CNNs — our previ-
ous 3D Residual Attention Deep Neural Network (3D-ResAttNet)
model on real-world Alzheimer’s Disease (AD) datasets and the
ResNet and VGG models on CIFAR-10 and CIFAR-100 datasets. The
experimental results show that the proposed method achieves
almost linear speedup without compromising accuracy perfor-
mance, demonstrating its scalability and efficient computing ca-
pability. In addition, the comparison evaluation shows that the
proposed method can earn a considerable speedup and reduced
memory consumption when training the deep feed-forward neu-
ral network and outperforms the state-of-art methods on the
same benchmark datasets. The proposed method ensures a well-
balanced computing workload across multiple GPUs to achieve
the best possible runtime performance while maintaining the
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original network accuracy and has the potential to work effec-
tively in a multi-node environment. Future work will evaluate the
proposed model on more DNN models and across multiple nodes,
each with a certain number of GPUs in a distributed setting.
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