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Abstract

The presence of fluids confined to the nanoscale has been known for some time in nature,

as observed in geological formations, e.g. light hydrocarbon fluids trapped in shale

reservoirs, or in biological systems, e.g. water in aquaporins. However, it is only recently

that technological advances have stimulated interest in studying fluid behaviour under

such conditions in more detail, due to the disruptive potential of engineering applications

at these scales. Three important characteristic lengths can be identified in these flows,

namely the molecular mean free path λ (denoting the average distance travelled by

particles between collisions), the diameter of fluid constituent particles σ, and the channel

size L. At the microscale, λ may become comparable to L, leading to an increased

collision frequency of gas molecules with the confining walls rather than with other

particles. In this scenario, the gas is no longer in quasi-local thermodynamic equilibrium

state as assumed by continuum fluid dynamics, and the Boltzmann equation must be

used to accurately describe its behaviour. At the nanoscale, where L is comparable to σ,

excluded volume effects and non-locality of collisions become significant. Consequently,

the Boltzmann description becomes invalid and alternative kinetic models, such as

the Enskog equation, or a more fundamental approach, such as molecular dynamics

simulations, must be considered. This thesis aims to contribute to the understanding of

transport phenomena at the nanoscale, spanning fluid conditions from the dense to the

rarefied gas, and considering different channel sizes, geometries and surface roughnesses.

In order to do so, a fluid composed of hard spheres confined between mathematical

surfaces has been studied because, despite its simplicity, this model retains the essential

physics of more realistic systems.

Self-diffusion of atoms is the simplest possible transport mechanism, and yet it is not

fully understood in the context of molecularly confined flows. Firstly, in this thesis,

a systematic study of this process was carried out for a fluid within a slit geometry,

delimited by two infinite parallel plates. One of the most distinctive features of the fluid

behaviour in confined conditions is the preferential fluid structuring that occurs next to

the boundaries, due to the limited mobility of particles in the normal dimension to the

wall. To clarify a source of debate in the literature, it is proved that, despite the strong

fluid inhomogeneities, the self-diffusivity based on the Einstein relation can still be used

to describe Fickian diffusion under molecular confinements, the latter being explicitly

computed in simulations by tracking the dynamics of tagged particles. The interplay

of the underlying diffusion mechanisms, i.e. molecular and Knudsen diffusion, is then

identified, by differentiating between fluid-fluid and fluid-wall collisions. The key finding
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is that the Bosanquet formula, previously used for describing the diffusive transport of

rarefied gases, also provides a good semi-analytical description of self-diffusivities for

dense fluids under tight confinements, as long as the channel size is not smaller than five

molecular diameters. Importantly, this allows one to predict the self-diffusion coefficient

in a wide range of Knudsen numbers, including the transition regime, which was not

possible before.

Although diffusion is believed to dominate the fluid transport at the nanoscale, it is

shown that the Fick first law fails to describe the surprising fluid behaviour that occurs

within confined straight channels. For example, since Knudsen’s experimental work circa

1910, it has been known that the Poiseuille mass flow rate along microchannels features

a stationary point as the fluid density decreases, referred to as the Knudsen minimum.

However, when the characteristic length L is further decreased, this minimum has been

reported to disappear and the mass flow rate monotonically increases over the entire

range of flow regimes. In this work, it is shown for the first time, using analytical means,

that this vanishing occurs because the decay of the mass flow rate, due to the decreasing

density effects, is overcome by the enhancing contribution to the flow provided by the

fluid velocity slip at the wall. The latter becomes more important in tight geometries,

ultimately being capable of modifying flow dynamics.

The physical mechanisms underlying fluid slippage at walls are not well understood

at the nanoscale, where dense and confinement effects add several complexities with

respect to the usual rarefied conditions. For example, it is unclear to what extent the

Navier-Stokes equations with slip boundary conditions can accurately describe fluid

behaviour under molecular confinements. Furthermore, the effects of fluid density and

confinement as well as surface properties, such as curvature and microscopic roughness,

on velocity slip are still not fully understood. Using a simple fluid-wall framework, it

is shown that the interfacial friction coefficient, which is inversely proportional to the

slip length, is linear with the peak fluid density at the wall, regardless of the nominal

density, confinement ratio, and wall curvature. The peak density turns out to increase

as the nominal density increases, with a mild dependence on confinement and curvature.

Furthermore, the friction coefficient scales according to the Smoluchowski prefactor

with respect to the influence of the accommodation coefficient, similar to the case of a

rarefied gas when the same gas-surface dynamics are considered — despite the physics

next to the wall are very different.

Altogether, these results represent a significant step forward in understanding the

mechanisms of fluid flow in molecular-scale systems and have important implications

for the design and optimisation of nanofluidic devices.
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Lay Summary

The miniaturisation fever has revolutionised the electronics industry, leading to the

manufacturing of smaller and lighter products that make our lives easier when, for

instance, we have to carry personal belongings such as mobile phones or less chunky but

more powerful laptops. Although less known to the general public, the same principles

have been applied to systems that involve the flow of fluids, leading to the development

of micro-electro-mechanical systems (MEMS). These have found widespread applications

in our day-to-day activities by making devices smaller, more affordable, and highly

functional. For example, inkjet printer heads use this technology to accurately dispense

tiny droplets of ink, resulting in better resolution when printing. Microfluidic-based

accelerometers are used in automotive airbags to detect rapid changes in acceleration for

an optimal airbag deployment. Additionally, MEMS-based monitors offer non-invasive

and precise monitoring of blood pressure for patients, enabling early detection of

hypertension and other cardiovascular diseases.

However, these advancements would not have been possible without a clear understanding

of the underpinning physical processes, permitting to build mathematical models that

capture the system response. The concept of further scaling down is supported by

the remarkable behaviour of biological systems at the tightest of scales. In general,

water-based fluids move between cells through molecular-sized conduits, yielding an ultra-

efficient filtration of materials without significant, if any, loss of valuable throughput.

This ideal performance seems to defy the well known permeability-selectivity trade-off:

it is not possible to obtain large quantities of a high-quality product, and, as such,

we have not yet been able to replicate these promising results in artificial membranes.

However, the results in synthetic structures with nanopores have exceeded the theoretical

expectations, providing optimism for further progress in the field. Nature is therefore

a constant source of inspiration for engineers and scientists, where understanding the

principles of natural phenomena can push the boundaries of innovation and develop

breakthrough technologies that benefit society.

Despite all the complexities that exist in real systems, it may be surprising to know

that accurate descriptions can often be obtained using elegant approximations. These

simplified models, although idealised, have proven to be remarkably useful in many

practical applications, as they capture the very essence of the processes at stake. In

the case of gases, for example, theoretical models treat the many particles as points

that move rapidly and collide very frequently with each other or with the walls of the

recipient they occupy. When the gas is rarefied, i.e. at low pressures, the most general
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governing equation is the Boltzmann equation, from where expressions can be derived

that model the motion of fluids at large scales, such as the flow of air around the wings

of an airplane. However, these simplifications do not longer hold up when a fluid is

confined at very tight scales, and we have to resort to more elaborate models.

Nevertheless, many insights can be gained by thinking of molecules as marbles, to take

account of the fact that they occupy a volume comparable to the space in which they

are confined. In addition, interactions with the impermeable walls confining the gas are

expected to be more important. In our studies, we define the boundaries of the system

in a mathematical way, which allows us to build a robust method for simulating the fluid

confinement without including additional complexities that might obscure the analysis.

This approach demonstrates the power of abstraction and simplification in science and

engineering, allowing us to grasp the fundamental mechanisms of fluid behaviour and

apply them to real-world applications. As might be expected, this subtle change (from

points to marbles) will have some implications on the basic physics, that are already

observed when dealing with the allegedly easier case of a fluid at rest that does not flow.

Let us imagine that there exist sufficiently powerful magnifying glasses that allow to

observe the fluid-constituent particles, and that we pick and tag an individual marble

with a different colour. One would observe that, despite our eye sees the fluid as quiescent,

the tagged particle moves in a rather erratic way when using the loupe, constantly

changing its direction after collisions with the other marbles, as a drunk person leaving

a pub after having too many pints. These “random walks” are important because they

theoretically bridge the small-scale world with the observable one — thanks to Einstein

and his doctoral studies. However, the mobility of the marble is affected by the fluid

structure when packing, which, at the same time, depends on the degree of confinement.

Just imagine how much harder it would be to cross the Royal Mile in Edinburgh if the

space available to people was halved due to some construction works on the footways.

Rationalising these ideas and building up models that systematically capture the fluid

behaviour under tight confinements is one of the aims of this thesis.

The study of fluids in motion, driven by external forces, raises more complicated

phenomena that require further research. For instance, it has recently been discovered

that some results that were taken for granted no longer hold at the nanoscale, which

implies that deeper insights are needed to manipulate fluids in nano-engineering

applications. In this thesis, we clarify why this happens by identifying the most important

contributions to the fluid flow. In order to do so, we shed light on the intricacies that

need to be modelled by treating the fluid as it is, a large number of individual molecules,

where the underlying theories and assumptions are solved by computational means.
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Chapter 1

Introduction

This chapter provides a brief introduction to the challenges of describing simple

fluids confined at the molecular scale (Section 1.1). In particular, the topics of self-

diffusion and pressure-driven flows are explored. While the continuum-based Fick’s

laws (Section 1.2) and Navier-Stokes equations (Section 1.3) have proved effective at

the macroscopic scale, they fail to capture the complex molecular interactions and

confinement effects that characterise these transport mechanisms at the nanoscale. This

emphasises the importance of moving from the traditional continuum approach to a

molecular perspective, which will be discussed in the next chapter.

1.1 Nanofluidics. Tiny Devices for Huge Ideas

In the second half of the twentieth century, significant advances were made in the

understanding of the dynamics of gas flows in small channels. This progress motivated

the development of a new discipline, known as microfluidics, that reached its pinnacle

with the large-scale production of micro-electro-mechanical systems (MEMS). These

are devices with flow characteristic lengths L of less than 1 mm but greater than 1 µm;

that is, a size range of about four orders of magnitude smaller than the traditional

hand-made artefacts but, at the same time, about four orders of magnitude larger than

the size of the smallest atomic species. The flow characteristic length is the dimension

that characterises the length scale of a physical system, which is typically the smallest

one as the gradients of the macroscopic quantities along this direction are usually the

most pronounced. MEMS have found applications in many fields (Gad-el Hak, 1999),

including micro-heat exchangers that optimise the cooling of electronic circuits, micro-

pumps for controlled drug delivery, or accelerometers for airbags in cars, to name a

few. In general, the “active principle” of these small-scale devices is to decrease viscous

shear in the bulk of the fluid, which minimises energy dissipation, and/or to induce

flow-enhancing phenomena such as velocity slip — increasing the MEMS throughput

and, therefore, its performance. However, shrinking the channel size can make the flow

hydrodynamic resistance larger, producing the opposite effect to that desired, and so

this is a challenging issue that requires careful consideration.

1
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As it is known to occur in the field of electronics, one may wonder whether the efficiency

of fluidic operations also improves by decreasing the flow characteristic length scale.

Following the savoir-faire that has been obtained in the now mature field of microfluidics,

nanofluidics has recently emerged as a discipline in its own right (Eijkel & van den

Berg, 2005; Sparreboom et al., 2010). This term refers to the study of fluids confined

at even smaller scales, spanning from the molecular order of magnitude (few Å) to

around 0.1 µm. Fluids confined at the nanoscale are ubiquitous in nature, and a deeper

understanding of their behaviour can have far-reaching consequences in many fields,

increasing the potential for impactful advances. For instance, in biological systems, it is

known that water-based liquids permeate across aquaporin structures of few Å (Murata

et al., 2000), yielding an outstanding permeability-selectivity performance that has not

been replicated yet in artificial membranes. Another example is the presence of light

hydrocarbons within sedimentary strata, where fluids are trapped due to the extremely

high pressures and nanometric size of rock pores. Despite these unfavourable conditions,

the shale gas flow still exceeds the theoretical predictions coming from the long-standing

correlations used in petroleum engineering (Zhang et al., 2019). Therefore, the extension

of the study of fluids within smaller and smaller scales is an attractive goal, which draws

great attention in terms of the breakthrough applications that would be harnessed from

reverse engineering such natural phenomena (Bocquet, 2020).

As a matter of fact, experimental studies with novel materials like carbon nanotubes (Holt

et al., 2006), boron nitride nanotubes (Siria et al., 2013), or graphene-based sheets (Joshi

et al., 2014) have generated considerable optimism in the field of nanofluidic transport.

These materials have demonstrated remarkable capabilities, including unexpectedly large

mass flow rates, immense osmotic energy conversion, and enhanced filtration results.

These are just some examples of membranes with nanopores that might see applications

in social questions of great interest, such as seawater desalination. However, to turn

these practical applications into tangible commercial realities, it is essential to develop

accurate mathematical models that capture the underpinning physical mechanisms.

The theoretical understanding is a challenging task since, for fluids within nanoscale

geometries, a representative fraction of the fluid molecules is in constant interaction

with the confining walls. An in-depth knowledge of both the fluid-fluid and fluid-wall

relationships is needed to accurately control and manipulate fluids at these scales, which

can be almost intractable from a modelling standpoint. This is the reason why, in order

to shed light on the problem, models that approximate the fluid and wall behaviour

are needed. These simplified representations of the system under study are usually

solved numerically with computers; simulations can be quickly designed in comparison

to actual experiments, allow to overcome the issues associated with the measurements

of minute flow rates through single tubes (Secchi et al., 2016), and provide flexibility to

carry out enlightening studies along the relevant scales.



1.1. Nanofluidics. Tiny Devices for Huge Ideas 3

0 1 2 3 4
0

1

2

3

4

Ideal gas

dr

Distance to the sitting particle i, r/σ

N
o
rm

a
li
se
d
R
D
F
(a
n
a
ly
ti
ca
l)

i rr + dr

(a) Typical RDF sketch

−7.5 −5 −2.5 0 2.5 5 7.5
0

1

2

3

4

Bulk-like

n/n0 ≤ 1

Distance to the center, x/σ

N
o
rm

a
li
se
d
d
en
si
ty
,
n
(x
)/
n
0

R = 15
R = 5

(b) Density profiles for different R

Figure 1.1: Resemblance in how density oscillations arise due to geometric constraints
in monatomic fluids, both in the (a) bulk, where the only dependence is on density, and
in (b) confined systems at the nanoscale. Note the unaccessible regions (n = 0) next to
each wall, of σ/2 width, comprising a larger relative portion of R for smaller channels.

Regarding the wall modelling, it is worth noting that the boundaries will simply act

as a space impenetrable to the fluid molecules. This is because the length scales

associated with the oscillations induced by surfaces might reach up to several tens of

nanometers (Kavokine et al., 2021), where quantum effects play no role and do not have

to be modelled. When a fluid comes in contact with a solid interface, it experiences

preferential layering adjacent to the surface due to excluded volume effects and the

interactions between the fluid and the wall (Israelachvili, 2011). Its occurrence is, in

principle, no different to the ordering that occurs in the bulk (Hansen, 2022), which is

quantified through its radial distribution function (RDF), see Figure 1.1a. This property

measures the probability density of finding a particle at a given distance r from a fixed

particle position i, and shows the fundamental differences associated with how molecules

are distributed in the different states of matter. This is depicted in Figure 1.1, where

the analogies between the two different layering phenomena can be easily observed.

A convenient way of defining nanochannels is through their dimensionless confinement

ratio R = L/σ, as the quotient between the flow characteristic length and the diameter of

fluid particles σ. In unconfined geometries (large R values), the impact of the molecular

ordering adjacent to the boundary on the flow outcome is relatively insignificant as the

bulk behaviour, characterised by fluid-fluid interactions, prevails. On the other hand, it

may be predominant in nanofluidic systems because of their larger surface-to-volume

ratio. This is represented in Figure 1.1b, where the fluid behaviour for the same nominal

density and different confinement ratios is shown. For R = 5 (red curve), the density

oscillations extend even to the furthest region with respect to the walls (the middle of
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the channel at x = 0), oppositely to “larger” cases such as R = 15 (represented by the

blue curve), where a homogeneous region shows up in the region between x ≈ −3 and

x ≈ 3. This structuring leads to unique phenomena that, at least locally, differ from the

predictions of the classical fluid modelling based on continuum considerations. As such,

gaps in knowledge are identified even at the most fundamental level of understanding.

1.2 Diffusion. Standing on Fick’s and Einstein’s Shoulders

In nanofluidic systems, where interactions with the boundaries play a non-negligible

role, diffusive transport is anticipated to be important. This is the case, for example,

with materials that have a network of interconnected nanopores spanning a wide range

of connections, as in porous media. In fact, the permeability for these systems has to be

predicted based on diffusive phenomena, rather than using the classical approaches valid

for larger scales (Falk et al., 2015; Obliger et al., 2018). In essence, diffusion processes

are the macroscopic manifestation of the tendency of a system to approach homogeneity,

arising from microscopic collisions that cause the vanishing of gradients related to fluid

properties, e.g. concentration. This can be easily illustrated by a drop of dye spreading

within a glass of pure water, where there is no preferential direction of motion (no

macroscopic flow) induced by a thermodynamic gradient, and yet over time a coloured

liquid is produced. In the simpler case of a single-component quiescent fluid, the mobility

of single “tagged” particles in a pool of otherwise identical molecules is also subjected to

a special kind of diffusion, known as self-diffusion.

The classical modelling approach to diffusive processes in bulk fluids is based on the

phenomenological Fick’s laws (Fick, 1855), from which the diffusion equation, that

describes the evolution of the system according to diffusive processes with time t, can

be derived, i.e.
∂C (r, t)

∂t
= D∇2C (r, t) . (1.1)

Here, C (r, t) is the concentration of tagged particles (in the pool of tagged and untagged

molecules), r is the spatial location of the diffusing material, and D is the self-diffusion

coefficient, also known as self-diffusivity. The partial differential equation in Eq. (1.1) is

derived from the principle of mass conservation, ∂C/∂t+∇·j = 0, where the constitutive

relation is known as the Fick’s first law

j (r, t) = −D∇C (r, t) , (1.2)

that links the flux of diffusing material j (r, t) with its driving force, i.e. the concentration

gradient of tagged molecules. The negative sign is included to denote that particles

move from high to low concentration regions.
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The Fick’s description was devoted to complete the first systematic study of diffusion.

It was carried out by the Scottish chemist Thomas Graham circa 1830, but without

a mathematical relation that captured the experimental results (Graham, 1833). The

basis of this treatment is the continuum hypothesis, which assumes that it is possible to

describe the fluid on a much coarser scale of resolution than the molecular scale, as if

the fluid was an entity that completely filled the space it occupies. This implies that is

possible to define the local properties of the fluid as averages over continuous elements,

which are large compared with the molecular structure of the fluid but small enough

in comparison with the scale of macroscopic phenomena (Gad-el Hak, 1999). Fick had

the intuition that diffusion could be described by the same mathematical formalism

as heat conduction (initially proposed by Fourier in 1822), and concluded that the

constant of proportionality, as in the case of the thermal conductivity, was “dependent

upon the nature of substances”. It is a testament to Fick’s model of diffusion that all of

the subsequent developments have in no way undermined the validity of his conclusions.

However, it contains the self-diffusion coefficient, that can only be determined through

experimentation or theoretically, based on a molecular description of the fluid.

The link between the continuum-like Fick’s laws and a first-principles theoretical basis

was first provided by Albert Einstein. Besides his PhD thesis (from his 1905 annus

mirabilis), he published several seminal papers (Einstein, 1956) on the topic. The

starting point was “a closer consideration of the irregular movements which arise from

thermal molecular movement”, from where he studied how far a molecule travels in

the x−dimension (for ease of understanding, although the conclusions do not change

when generalising the study to the three-dimensional actual motion of molecules) in a

given amount of time. Molecules would move throughout the bulk according to random

walk dynamics, initially discovered by the Scottish botanist Robert Brown (Brown,

1828). Assuming that all particles move independently, let p (x, t) be the probability

density function for a particle to be around location x at time t. After making some

probabilistic assumptions, it is possible to retrieve the same functional form of Eq. (1.1),

∂p/∂t = D∂2p/∂x2. For the initial condition at time t = 0, it is assumed that the N

independent particles start from the origin x = 0, mathematically corresponding to a

Dirac delta function. The partial differential equation is then solved to give

p(x, t) =
N√

4πDt
e
− x2

4Dt , (1.3)

that is, a probability density function of Gaussian nature with a sharp bell-shape at

initial times (corresponding to the peak in the Dirac delta function), and that flattens

down with time until reaching a more uniform distribution — achieved at long times

after particles have spread following diffusive mechanisms, see Figure 1.2a.
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Figure 1.2: (a) Characteristic bell-shaped curves of diffusing particles, from following
independent random walks. Molecules are initially located at the origin, with their
distribution flattening as t goes on. (b) Depiction of Brownian motion for three molecules
in the two-dimesional space, from the experiments of Perrin (Philibert, 2005).

This closed-form mathematical expression allows for an analytical determination of how

far a particle goes, on average, in a given time. If one computes the first moment, the

probability vanishes unexpectedly, as a particle following Brownian motion is equally

likely to move to the left as it is to move to the right. On the other hand, the second

moment produces

〈x2(t)〉 =
1√

4πDt

∫
dxx2e

− x2

4Dt = 2Dt, (1.4)

the famous Einstein relation that links the self-diffusion coefficient, i.e. macroscopic

behaviour of a system, with the mean squared displacement (MSD) of particles 〈x2(t)〉,
i.e. its underlying microscopic dynamics. Therefore, the self-diffusion process is based on

the random molecular motion, that is graphically conceptualised for a two-dimensional

system in Figure 1.2b. If considering an n−dimensional space, the relationship between

the MSD and the self-diffusion coefficient is trivially generalised to 〈r2(t)〉 = 2nDt.

1.2.1 What Happens at the Nanoscale?

Despite self-diffusion constitutes the simplest possible transport mechanism, the ele-

mental physics are still not fully understood in the context of molecularly confined fluids.

The Fickian approach clearly cannot be applied under extremely tight confinements,

where molecules move without being able to overtake each other, abiding to their original

order in the row. This anomalous transport process is known as single-file diffusion (Hahn

& Kärger, 1998), characterised by a slowing down of the diffusive dynamics where the

relationship between the MSD and the self-diffusivity is no longer linear as in Eq. (1.4).
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For “larger” but still moderately confined channels, with R ∼ O(10), the Fick’s first

law is assumed to be valid but there are doubts about the proportionality factor to

be used in its formulation. Specifically, particles travel through regions with different

local densities, e.g. see Figure 1.1b, which will affect the random walk dynamics and,

accordingly, the squared displacements of molecules. Thus, it is not clear whether the

Einstein relation breaks down in this condition, let alone how the self-diffusion coefficient

is affected by confinement. The novel study of these issues is presented in Chapter 3

of this thesis, where we propose a semi-analytical model that allows to evaluate the

transition between the different diffusive mechanisms occurring for different fluid and

wall conditions.

1.3 Flow Transport. Hydrodynamic Governing Equations

The classical modelling approach for fluids in motion relies on the hydrodynamic theories,

which describe the fluid as a continuum in analogy to the Fick’s laws. The axioms of fluid

dynamics in the classical mechanics framework (Leal, 2007) are the mass conservation

and the balances for linear momenta, i.e. Newton’s second law of motion, and energy,

i.e. first law of thermodynamics

∂ρ

∂t
+∇ · (ρv) = 0, (1.5)

∂

∂t
(ρv) +∇ · (ρvv − σ) = F , (1.6)

∂

∂t
(ρE) +∇ · (ρEv − σv + q) = F · v, (1.7)

where ρ is the mass density, v is the macroscopic flow velocity, F are the external forces

acting on the control volume (e.g. gravitational and other external forces), σ is the

stress tensor, E represents the total energy acting on the system (including the internal

and kinetic terms), and q denotes the heat flux vector. The stress tensor consists of the

normal components (P for pressure) and the deviatoric term τ , so that σ = −PI + τ ,

I being the unit tensor. The equations of motion are therefore obtained by considering

the balance of forces experienced by the infinitesimal element of bodies.

The general balances presented in Eq. (1.5) − Eq. (1.7) remain incomplete since the

stress and heat flux terms are unknown, and information based on the fluid microscopic

behaviour is needed to close this approach. The missing piece of the puzzle is provided

by empirical constitutive relations, where the theoretical predictions are compared with

experimental measurements to ascertain their validity. For an isotropic fluid that obeys

Newtonian laws, the deviatoric stress tensor τ is a linear function of the velocity gradient

(strain rate)

τ = µ
[
∇v + (∇v)T

]
+ ζ (∇ · v) I, (1.8)
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where µ is the (shear) first coefficient of viscosity and ζ is the (bulk) second coefficient of

viscosity. For monatomic gases, the two viscosity coefficients are related by the so-called

Stokes hypothesis, ζ + 2/3µ = 0. This implies that the fluid is in quasi-thermodynamic

equilibrium, characterised by a very large amount of collisions between fluid molecules.

An important fact is that Newtonian fluids are also generally found to follow Fourier’s

law of heat conduction in its isotropic form (Leal, 2007), and so this would serve as the

closure for the heat flux. By assuming the less general case of an isothermal fluid in which

the shear viscosity is constant (µ does not depend on the pressure), the Navier-Stokes

equations for the viscous transport of linear momentum in a non-relativistic system,

where mass is conserved, read

ρ

(
∂v

∂t
+ v · ∇v

)
= F −∇P + µ∇2v +

1

3
µ∇ (∇ · v) , (1.9)

which were independently obtained by Navier (Navier, 1823) and Stokes (Stokes, 1845).

In addition to the constitutive relations, an equation of state relating the different

thermodynamic properties (temperature, pressure) is required as well — otherwise, the

final system of equations would be under-determined. Eventually, a system composed

of five coupled equations (one for mass, three for momentum, one for energy) and

the equation of state is built, involving six unknowns, namely ρ, P , T and v. The

formidable challenge posed by the non-linearity of the convective term v · ∇v implies

that analytical solutions are very difficult to obtain. Therefore, the Navier-Stokes

equations are tackled numerically in computational fluid dynamics (CFD) solvers, where

the governing expressions are solved using discretisation techniques.

The Navier-Stokes equations can be used to analytically describe the fluid behaviour in

a channel, where certain simplifications can be applied to the full expression presented in

Eq. (1.9). The comprehensive experimental studies of fluid flows within capillary vessels

performed by Poiseuille (Sutera, 1993) granted that pressure-driven flows in conduits

are broadly named after him nowadays. In the steady state, under the assumption of

low speeds, as is the case for nanofluidic systems, the time-derivative and the convective

terms vanish. The fluid can be considered as incompressible in these conditions, for

which the continuity equation simplifies to ∇ · v = 0, yielding the following equation of

motion for horizontal flows (no gravity effects, and so F = 0)

µ∇2v = ∇P. (1.10)

The solution of Eq. (1.10) with the appropriate boundary conditions produces the

so-called Poiseuille and Hagen-Poiseuille equations for planar and cylindrical geometries,

respectively. These expressions describe the quadratic velocity profile, characterising

pressure-driven flows, in the streamwise direction.
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1.3.1 Boundary Conditions and the Velocity Jump

The hydrodynamic differential equations require a certain number of boundary conditions

(BCs) to produce closed-form mathematical expressions that allow the study of flow

problems. The governing equation, Eq. (1.10), involves a second-order derivative of the

velocity, and so two velocity BCs are required to yield the velocity profile. Firstly, the

normal velocity component at the fluid-solid interface simply states that a fluid cannot

penetrate an impermeable wall, v · ñ|rw = 0, where ñ is the unit vector normal to the

wall and rw is the hydrodynamic wall position that defines the accessible space for the

fluid. Secondly, the tangential velocity component provides information about how the

streamwise momentum is exchanged between the fluid and the wall.

Based on empirical considerations, it was initially assumed that the fluid layer next to

the wall moves with the same velocity as the surface (Stokes, 1846) and that, if slip

existed, it was too small to make any observable difference on the macroscopic scale.

Seminal experiments from Poiseuille, Darcy, and Helmholtz hinted that the velocity of a

fluid adjacent to a solid wall was not necessarily the same of the surface. However, it was

not clear whether the very small values could be considered different from the non-slip

condition, owing to the limitations of the experimental apparatus and measurement

techniques. In the case of Poiseuille flows, where the walls are static, this involves the

definition of the stick boundary condition v · t̃|rw = 0, where t̃ is the tangential unit

vector parallel to the wall in the flow direction.

The idea behind this ad-hoc Dirichlet boundary condition is that within the fluid there

cannot be any finite discontinuity of velocity, as this would involve infinite velocity

gradients. This would result in infinite viscous stresses that destroy the finite relative

motion of particles close to each other. Theoretically, the stick boundary condition is

strictly true if the fluid undergoes an infinite number of collisions with the wall. In

other words, the wall information is entirely transmitted near the boundary, where the

adjacent fluid adopts the wall velocity without affecting the behaviour in the central

(bulk) region of the channel. This is represented by the red line in Figure 1.3, where the

Navier-Stokes equations are solved with the stick boundary condition to predict a null

velocity of the fluid layer immediately next to the wall. Beyond this limit, the fluid-wall

collision frequency is not high enough for the fluid to adopt the wall velocity, and a

certain degree of tangential velocity slip has to be allowed.

This was pointed out by Navier in his groundbreaking studies on the laws of fluids in

motion (Navier, 1823), where he proposed that the tangential fluid velocity follows a

linear Neumann boundary condition with the strain rate

ξ0

(
v · t̃

)
rw

+ µ
∂
(
v · t̃

)
∂ (r · ñ)

∣∣∣∣
rw

= 0, (1.11)
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where the hydrodynamic wall position is not necessarily the same as the actual

wall (Hansen, 2022). Throughout his derivation, Navier acknowledged that the shear

viscosity µ represents the resistance resulting from the sliding of any two fluid layers on

top of each other, and that the interfacial friction coefficient ξ0 represents the resistance

per unit area resulting from the sliding of the fluid layer in contact with the wall. Thus,

two different coefficients of friction, i.e. µ for fluid-fluid and ξ0 for fluid-wall, are needed

to ascertain the behaviour of the fluid adjacent to the boundary. With the advent of

microfluidics and the improvements of experimental techniques (Neto et al., 2005), more

accurate measurements are now available that definitely confirm the need to account

for partial slip BCs, where slip-modified parabolic velocity profiles can even be observed

directly in experimentation (Fratantonio et al., 2020).

By construction, the role of the boundary condition is to simply shift the velocity

profile by the magnitude of the velocity slip value. The flow prediction that results from

using Eq. (1.11) to solve the Navier-Stokes equations is identical to the actual velocity

far away from the boundaries, where the quasi-local equilibrium condition holds, see

green line in Figure 1.3. In contraposition with the bulk region of the fluid, the region

next to the wall is said to be in local non-equilibrium because there are not enough

intermolecular collisions. Therefore, the hydrodynamic treatment does not allow to

retrieve the true velocity field next to the wall (Hadjiconstantinou, 2006) — that can

be only captured by accounting for the molecular structure of the fluid, as the Stokes

hypothesis underpinning Eq. (1.9) breaks down.

Following this approach, the correct Navier-Stokes solution for the velocity field predicts

an apparent velocity at the plane of the wall, vNS
slip, that does not correspond to its actual

value. If the BCs were instead implemented as the true velocity slip, see blue curve in

Figure 1.3, the hydrodynamic equations would not capture the flow dynamics in the

bulk. Nevertheless, the width of the non-equilibrium region (known as Knudsen layer in

the kinetic theory of rarefied gases, see Chapter 2) is very small compared to the flow

characteristic length and, therefore, the discrepancy associated with the poor predictive

capability of the green curve next to the boundaries will not affect the accuracy of the

continuum-based analysis, as the bulk dynamics still prevail.

1.3.2 What Happens at the Nanoscale?

The classical approach to fluid dynamics modelling was developed to explain the

behaviour of fluids on a macroscopic scale, and the question is to what extent it can be

applied to fluids confined in a molecular scale. The rule of thumb is that the continuum

hypothesis surprisingly remains valid for confinements as tight as R ∼ 3, which is

sustained by results coming from experiments and computational simulations (Bocquet
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Figure 1.3: Different analytical predictions based on the BCs choice: stick (red curve),
real slip (blue curve), and apparent slip (green curve). The latter must be used to
retrieve the actual velocity field (empty circles) in the Navier-Stokes framework.

& Charlaix, 2010). On the other hand, the departure with respect to the quasi-local

thermodynamic equilibrium, because of a reduced number of intermolecular collisions,

will more frequently restrict the use of hydrodynamics — with the need to account for

the fluid molecular nature to capture its true physics.

One example of the surprising results found at molecular-like confinements is illustrated

by the study of Poiseuille mass flow rates in straight channels. At the microscale, a

stationary point in the form of a minimum is observed at intermediate densities (Cercig-

nani & Daneri, 1963; Pollard & Present, 1948). However, at the nanoscale, when the

confinement ratio further decreases, the minimum disappears and the mass flow rate

monotonically increases with decreasing density (L. Wu et al., 2016). While molecular-

based approaches hold promise in capturing the physics of fluids, it is still not known

why this happens. This novel study of these issues is presented in Chapter 4 of this thesis,

where, for the first time, an analytical treatment of the underlying flow mechanisms

(diffusion, viscous convection, velocity slip) justifies the vanishing phenomenon.

The key to explain the Knudsen minimum disappearance will be the more predominant

role of the velocity slip at the wall. At the nanoscale, the influence of density and

confinement effects is more involved than in classical rarefied conditions, and so the

conventional assumptions are invalidated. The intricacies of the velocity jump phenomena

are subjected to further studies in Chapter 5. This probe serves as a stepping stone

for a better understand of the velocity slip at the nanoscale, and contributes to the

development of predictive hydrodynamic models for nanofluidic scenarios.



1.4. Thesis Outline 12

1.4 Thesis Outline

The remaining chapters of this thesis read:

Chapter 2 – Theoretical and Computational Background gives an overview of fluid

modelling based on its molecular structure, treating the constituent particles as hard

spheres, which is required to provide a more complete description of the fluid and flow

behaviour. First, the statistical methodology is presented, epitomised by the Boltzmann

and Enskog equations. Second, a comprehensive review of the deterministic procedure

that captures the exact time evolution of the hard-sphere system, event-driven molecular

dynamics (EDMD), is included.

Chapter 3 – Self-Diffusion of Confined Fluids is the first chapter that presents new

results. The contribution to the current knowledge is on some uncertain aspects of the

self-diffusion process for confined fluids. First, the validity of the Einstein relation within

tight geometries is proved by comparing the MSD-based results with explicit Fick’s law

calculations. Second, the crossover between diffusive mechanisms in different regimes is

analysed systematically using appropriate theoretical means.

Chapter 4 – On the Knudsen Minimum Disappearance is the second chapter that

presents new findings. The contribution to the current knowledge is on the explanation

of a recently discovered confined flow phenomenon that does not happen at larger scales.

First, we conclude that diffusion on its own cannot be used to rationalise the transport

phenomena in confined straight channels, in contrast to what occurs in porous media.

Second, using an analytical approach based on the hydrodynamic principles, we show

that the mass flow rate behaviour is justified by the more notorious contribution of

velocity slip in smaller channels.

Chapter 5 – Fluid Velocity Slip at the Nanoscale is the final chapter that presents

original research. The contribution to the current knowledge is on shedding light on the

contradictory results that have been reported for the velocity jump in pressure-driven

flows. First, we study the range of validity of the Navier-Stokes equations with slip

boundary conditions, to clarify whether the criterion established for rarefied gases also

applies to dense fluids. Second, we perform a comprehensive numerical investigation

on how the velocity slip depends on several properties, such as fluid nominal density,

confinement ratio, channel geometry and wall microscopic roughness.

Chapter 6 – Concluding Remarks provides a summary of the main findings and discusses

several possibilities for continuing the work started with this thesis, in the form of research

directions that might be of interest for investigation in the future.



Chapter 2

Theoretical and Computational

Background

This chapter provides a brief overview of the mathematical models and simulation tools

that can be used for the molecular description of fluids at the nanoscale. In all cases,

the fluid is considered to be composed of hard spheres, which means that long-range

interactions are assumed to be negligible compared to the short-range ones (Section 2.1).

It is important to note that different models can be used depending on the density of the

fluid. For extremely dilute conditions, the Boltzmann equation can be used (Section 2.2).

At moderate densities, the Enskog equation must be used because of the need to account

for spatial correlations between molecules (Section 2.3). In the kinetic theory framework,

the wall is modelled as a mathematical surface that conveniently modifies the fluid

distribution around it, using the so-called scattering kernels (Section 2.4). Finally, at

high densities, a more fundamental approach is required, based on molecular dynamics

simulations that follow the motion of individual fluid particles (Section 2.5).

2.1 The Fluid of Hard Spheres. A Game of Marbles

Even though the hard-sphere model is a highly simplified representation of real systems,

it is a powerful and useful tool for theoretical and computational studies of simple

fluids (Dyre, 2016). This is because some of the key properties of fluids are mainly

determined by the excluded volume effect, i.e. molecules are prevented from occupying

the same physical space due to their size and shape. In real systems, this effect occurs

because of the overlap of electron orbitals, which produces a extremely strong repulsion

between atoms when being at very close distances. To mimic this behaviour in a

tractable fluid model, impenetrable hard spheres with no rotational degree of freedom

solely interact with an infinite mutual repulsion whenever a collision takes place, which

is mathematically expressed by a pairwise potential of the form

ΦHS (ri, rj) =

∞, rij ≤ σ,
0, rij > σ,

(2.1)

13
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where rij = ‖ri − rj‖ is the Euclidean distance between the pair of interacting particles

i and j. Thus, the model of hard spheres is a good representation of the behaviour of

extremely dilute, where long-range interactions are relatively small, and/or liquid-like

systems, where short-range interactions dominate. The most important variable in a

fluid of monatomic hard spheres is the dimensionless packing fraction η (also referred to

as reduced density), representing the number of fluid particles in the theoretical volume

occupied by one sphere of diameter σ, η = nπσ3/6. Its equation of state is accurately

predicted by the Carnahan-Starling compressibility factor Z (Carnahan & Starling,

1969)

Z =
1 + η + η2 − η3

(1− η)3 . (2.2)

The hard-sphere fluid model allows to capture one of the key properties in nanofluidics,

in particular the one that underlies the departure with respect to the continuum-like

behaviour of the fluid (Kavokine et al., 2021). Namely, Eq. (2.1) permits to capture the

preferential fluid structuring, see Figure 1.1b, because it is mainly determined by the

dominant repulsive interactions at short-range. Next to the wall, particles pack very

close to each other in a problem where the main constraint is of geometric nature. It is

hypothesised that this fluctuating density profile arises because a portion of the surface

of the spherical particle close to the boundary is shielded from collision, and so it feels a

pushing force towards the wall (Cutchis et al., 1977; Frezzotti, 1997).

A rough sketch of this mechanism is attached in Figure 2.1, which shows how, when two

particles approach each other, there is a portion of the spherical surface protected from

collisions — building up an effective attraction between them. This is depicted by the red

shield in front of each molecule. A similar rationale applies when a particle approaches a

different element in the system, such as the confining wall. This behaviour resembles the

adsorption process, where fluid molecules behave as if they stick to the wall, although

the underpinning physics must necessarily be different. Adsorptive phenomena would

only be possible if there are attractive Van der Waals forces1, not modelled by Eq. (2.1),

between the fluid and wall particles. A more elaborate model that can, for instance,

model adsorption is defined by the Lennard-Jones potential (Allen & Tildesley, 2017),

which, in similarity to the hard-sphere potential, predicts strong repulsions at short

distances. However, there is a mild attraction between atoms at intermediate rij , which

continuously dies out with distance until it becomes negligible. Some insights about the

implications of using the Lennard-Jones model are given in Chapter 6, where possible

extensions of the work presented in this thesis are critically discussed.

1. In general, the Van der Waals potential describes the intermolecular forces, of both repulsive and
attractive nature, that describe interactions for particles separated by a distance larger than σ, i.e. not
undergoing a collision. These must exist in reality to form the liquid and solid states of matter.
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bulk

wall

Figure 2.1: Similarities in the shielding effect that occurs in the bulk and in the region
adjacent to the wall. The more prominent excluded volume effects next to the walls
cause particles to be pushed towards them, with the total force being represented by the
big red arrow. Therefore, the fluid preferentially orders next to the boundary, depleting
the central region of the channel.

To sum up, the fluid of hard spheres encapsulates a rich structural and thermodynamic

behaviour, while keeping a certain degree of simplicity that permits to obtain perspectives

impossible to infer otherwise (Kjellander & Sarman, 1991; Wertheim, 1963). Since the

repulsive forces are modelled by the step function, i.e. it is a discontinuous potential, and

attractive forces are not accounted for in Eq. (2.1), the hard-sphere fluid is unique in

the sense that it is a single-phase fluid, where the only energy available to the particles

is kinetic. Therefore, the results obtained for a fluid of hard spheres can be compared

directly with those coming from standard kinetic equations. Specifically, it presents

gas-phase behaviour at low densities and liquid-phase behaviour at moderate-to-high

densities, before crystallising into a solid-like state at very high densities. Moreover,

it may serve as a foundation for the so-called perturbation theories that accurately

treat more realistic systems (Barker & Henderson, 1967). For all these reasons, and

considering the scope of our research, the use of a fluid of hard spheres is fully justified.

In our investigations, this fluid model is examined over a wide range of fluid reduced

densities and confinement ratios, in which different methodologies can be used to study its

behaviour. These procedures mainly obey two classifications: continuum-based, as those

described in Chapter 1, or molecular-based, which can be statistical or deterministic. The

effective limits of these major approximations are presented in Figure 2.2. The different

molecular approaches (based on the kinetic theory, where the governing analytical

equations are nonetheless solved numerically most of the times owing to its detailed

microscopic description, or event-driven molecular dynamics) will be discussed in the

following sections of this chapter.
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Figure 2.2: EDMD simulations can be used to explore the whole range of fluid densities
and confinements. However, this map shows the most computationally efficient technique
for modelling the hard-sphere fluid (σ = 0.4 nm, T = 298 K) in each region, where the
boundaries (i.e. solid lines for different λ and Kn) are based on major approximations.

2.2 Kinetic Theory. The Boltzmann Equation

The continuum-based description of fluid flows is justified when collisions between mo-

lecules play a dominant role, and so molecular information is homogeneously distributed

throughout the fluid (Struchtrup, 2005). In this condition, the gas approaches the quasi-

local thermodynamic equilibrium state in a short time compared to the characteristic

time scale of the system, from where the phenomenological stress-strain, Eq. (1.8), and

heat flux constitutive relations turn out to be valid. Therefore, the fluid flow can be

captured by the Navier-Stokes equations, see Section 1.3. However, the hydrodynamic

modelling breaks down in physical situations of very different nature, ranging from the

predominant fluid-structure interactions in micro and nano-electro-mechanical systems

to the re-entry of spacecrafts in upper planetary atmospheres. In the former, the flow

characteristic length is very small due to the device dimension, whereas gas rarefaction

effects occur at low pressures in the latter. In all these cases, the common factor is

that there are not enough intermolecular collisions to bring the gas to a quasi-local

equilibrium state and, therefore, a kinetic theory description of gas flows is required.

The kinetic theory considers the gas composed by a large number of molecules that

rapidly move in straight lines in the absence of external body forces, whose trajectories

are briefly interrupted when colliding with each other or with the walls of the recipient

where they are contained (Kremer, 2010). The Scottish physicist James Clerk Maxwell
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was the first one to postulate (Maxwell, 1860) that the gas should be statistically

described by means of a distribution function f (r,u, t) over the microscopic state of

particles, which is defined as the probability to find, at a certain time t, a molecule

within the elementary volume defined by [r, r + dr] and [u,u+ du], i.e. around the

position r = (x, y, z) with a molecular velocity close to u = (ux, uy, uz). The distribution

function evolves in space and time according to a non-linear integro-differential kinetic

equation which typically takes the form of a balance equation in the six-dimensional

phase space — comprising the three spatial and velocity dimensions. It was initially

postulated by Boltzmann, assuming that binary collisions are the only encounter between

particles presenting uncorrelated velocities (the molecular chaos assumption), and thus

was named eponymously after his work (Boltzmann, 1872)

∂f

∂t
+ u · ∂f

∂r
+ Fa ·

∂f

∂u︸ ︷︷ ︸
streaming

= QB (f, f)︸ ︷︷ ︸
collision

, (2.3)

being the central equation of the kinetic theory of rarefied gases. The left-hand side

in Eq. (2.3) is analogous to the material derivative in the Navier-Stokes equations,

Eq. (1.9), but here the molecular velocity is also an independent variable. Essentially, it

describes the evolution of the distribution function with time as the particles move in

space according to their molecular velocities and, if so, as they are accelerated due to an

external body force exerted per unit mass of molecules Fa, e.g. gravity. The right-hand

side, which is referred to as collision integral, is a source/sink term which takes into

account molecular interactions. For a fluid of hard spheres it reads

QB (f, f) =

∫ ∫
g · k̃

[
f ′1
(
r,u′1, t

)
f ′
(
r,u′, t

)
− f1 (r,u1, t) f (r,u, t)

]
d2k̃ du1, (2.4)

where g = u−u1 denotes the relative velocity between the two colliding particles, and k̃

is the unit apsidal vector that assigns the relative position of two molecules at the time

of their impact. The collision integral calculates the effect of collisions on the distribution

of particles with velocity u′, studying possible interactions with particles having all

other velocities u′1. The first term within brackets is the source term, referring to the

particles that had a velocity around u′ and, after an interaction with other particle,

obtain a different velocity u following hard-sphere dynamics, that is u′ = u+ g · k̃ and

u′1 = u1 − g · k̃ for the two molecules undergoing a collision. The second term within

brackets is the sink term, referring to the particles that, after an encounter, obtain

a post-collisional velocity around u. Given the inherent complexity of Eq. (2.4), the

collision integral can be simplified by means of the so-called kinetic models (Sharipov &

Seleznev, 1998), so that an exact method of solution can be applied to these approximate

equations that maintain the fundamental properties of the full form.
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Another seminal contribution coming from Boltzmann is the so-called H−Theorem,

where the H function is always a non-increasing function of time (dH/dt ≤ 0)

H =

∫
f log fdu, (2.5)

which would remain constant (dH/dt = 0) if and only if the distribution function f is

of the original form proposed by Maxwell (Maxwell, 1867)

fM (r,u, t) = n (r, t)
( m

2πkT

)3/2
e
−m (u− v)2

2kT , (2.6)

where n (r, t) denotes the local number density, m the molecular mass, k the Boltzmann

constant, and T the temperature of the system. Since there is a quantity that decreases,

namelyH, any non-equilibrium distribution function would evolve monotonically towards

a Maxwellian due to intermolecular collisions. In other words, the H−theorem proves

that the collision integral in Eq. (2.4) vanishes when the distribution function is evaluated

as fM , whence the gas is said to be in thermodynamic equilibrium. The Maxwellian

distribution can be considered as a basic natural law, as it stipulates the most probable

velocity distribution of a monatomic single-species gas in the equilibrium state, which

can be proved through experimentation using molecular beam techniques (Shen, 2005).

Macroscopic fields, such as number density, flow velocity, temperature, and so forth, are

velocity-weighted moments of the distribution function (Kremer, 2010)

n =

∫
f (r,u, t) du, (2.7)

nv =

∫
f (r,u, t)u du, (2.8)

nT =
m

3k

∫
f (r,u, t) (u− v)2 du. (2.9)

The scalar pressure can be obtained by evaluating the normal stress elements from

which, in combination with the temperature, the equation of state for the rarefied gas

(P = nkT ) can be retrieved. It is hence evident that, starting from Eq. (2.3), one could

determine the distribution function and eventually the observable information (e.g.

thermodynamic properties, transport coefficients) of rarefied gases by integrating over

the microscopic velocity, although this represents a formidable task in itself. Indeed,

before the advent of computers, there were instances in which thousands of random

collisions were computed by hand (Thomson, 1901) to obtain further insights. Of course,

Lord Kelvin did not perform this task himself. Eventually, it took almost 40 years to first

obtain approximate analytical solutions of the Boltzmann equation, from a expansion of

a parameter inversely proportional to the gas density (Hilbert, 1912).
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2.2.1 Knudsen Number. Flow Regimes Classification

Since the Boltzmann equation is defined in a high-dimensional phase space, it is more

convenient to use rational methods that allow to derive transport equations for the

macroscopic quantities. An important concept in kinetic theory is the mean free path λ,

which represents the average distance travelled by particles between two consecutive

collisions. For a fluid of hard spheres (Bird, 1994), given the unambiguous definition of

its molecular diameter, there is a closed-form mathematical expression in the form of

λ =
1√

2πnσ2
, (2.10)

which shows its reciprocal relationship with the gas density. The ratio between the mean

free path and the characteristic length of the channel is an important dimensionless

group known as the Knudsen number Kn = λ/L. As already hinted in Chapter 1,

the characteristic length scale is usually identified with the channel size that bounds

the fluid under study in internal flows. The reciprocal Knudsen number turns out to

weight the collision integral on the right hand side of the Boltzmann equation in its

dimensionless form, with respect to the streaming term due to the motion of molecules

on the left hand side. Despite Eq. (2.3) provides an accurate description of rarefied gas

flows over the entire range of Kn, it is also true that analytical solutions are either very

difficult to obtain or have not been attained yet, and numerical solutions are expensive

when compared to hydrodynamic-based CFD solvers, that model the fluid without a

detailed microscopic description. Therefore, the importance of introducing the Knudsen

number stems from the fact that it helps to classify the gas flow into distinct regimes,

see Figure 2.3, where different approximation methodologies for obtaining solutions

apply.

In the continuum limit when the Knudsen number goes to zero, it is possible to prove, by

using the so-called Chapman-Enskog expansion (Chapman & Cowling, 1952), that the

Boltzmann equation simplifies to the Navier-Stokes equations with stick BCs. However,

even in this limit, the kinetic theory description is richer than the hydrodynamic one

in that it also provides an explicit expression for the transport coefficients, viscosity

and heat conductivity, in terms of the particle interatomic potential of choice. For

slightly rarefied gas flows, where the Knudsen number is no longer zero but is still

small (Kn . 0.1), asymptotic expansions of the Boltzmann equation have shown that

the constitutive relations underpinning the continuum approach are still valid (Sone,

2007), but accurate results are only obtained if modifying the boundary conditions that

complement the governing equations. Therefore, the no-slip boundary conditions must

be changed so that the gas is allowed to slip along the confining surface, see Section 1.3.1,

and so this range of Kn is known as slip regime. All non-equilibrium effects occur in a

very thin region next to the wall (Shen, 2005), which is known as the Knudsen layer,
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Figure 2.3: Classification of flow regimes based on the Knudsen number. For small λ/L
ratios, the Boltzmann equation leads to the exact balance equations of hydrodynamic
fields. When rarefaction strikes, numerical approaches are needed for general solutions.

whose width is on the order of magnitude of λ. It is here where Maxwell introduced the

rather bold assumption of no intermolecular collisions, i.e. the impinging gas stream

towards the wall is of the same character as in the bulk of the gas. A treatment based on

the framework of liquids, where the analysis relies on the interfacial friction coefficient,

is also possible (Kennard, 1938), although less common.

For moderate Knudsen numbers, in the early transition regime (Kn . 1), continuum-like

models can still be analytically derived from kinetic equations, albeit a larger set of

variables and/or higher derivatives are needed in comparison to the classical Navier-

Stokes equations (Gu & Emerson, 2009; Struchtrup, 2005). The highly rarefied behaviour

is found in the free molecular regime, for Kn > 10, where particles undergo ballistic

motion following collisionless flights between interactions with confining walls. It is just

in this regime, in the limit where Kn ∼ ∞, when analytical solutions of the Boltzmann

equation are always achievable given that the collision integral is nought. However, in

order to describe gas flows in a wider range of Knudsen numbers, kinetic equations have

to be solved numerically. The numerical solution of kinetic equations for realistic flows

is a challenging task for, at least, two reasons. The first one is that the distribution

function, which is the unknown, depends on seven variables — three for position, three

for velocity, and time; the second reason is that the collision integral is very complicated.

Numerical methods for solving the Boltzmann equation can be roughly divided into three

groups. Regular and semi-regular methods are similar in that the distribution function

is discretised on a grid in the phase space, and the streaming term is approximated

by using finite difference, finite element or finite volume methods. These procedures

differ in the way the collision integral is evaluated: regular methodologies, such as the

discrete velocity method (Broadwell, 1964; Valougeorgis & Naris, 2003) or based on
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Galerkin methods (Ghiroldi & Gibelli, 2014) amongst many others, adopt deterministic

integration schemes, while semi-regular ones adopt Monte Carlo or quasi Monte Carlo

quadratures (Frezzotti & Sgarra, 1993; Nordsieck & Hicks, 1967). On the other hand,

particle-based methods, such as Direct Simulation Monte Carlo (DSMC), are the most

widely used choice because of their computational efficiency. The basic idea (Bird, 1994)

is to represent f by a number of sample particles which move in the computational

domain and collide according to stochastic rules derived from the kinetic equation.

Macroscopic fields are then obtained by time averaging particle properties.

2.3 Dense Fluids. The Enskog Equation

For the Boltzmann equation to hold, the mean free path of gas molecules has to be much

larger than the molecular size, and so the collision integral is localised as if particles

were point-like. The heuristic generalisation of kinetic theory principles beyond the

dilute gas idealisation, for λ ∼ σ, was first developed by Enskog (1922), considering a

dense gas whose molecules repel one another like hard, smooth, perfectly elastic spheres.

The main difference with respect to the Boltzmann molecular chaos assumption is that

molecules are correlated in space, so that the collision integral reads (Kremer, 2010)

QE(f, f) = σ2

∫ ∫
g · k̃{χHS

[
r, r + σk̃|n

]
f ′1
(
r + σk̃,u′1, t

)
f ′
(
r,u′, t

)
− χHS

[
r, r − σk̃|n

]
f1

(
r − σk̃,u1, t

)
f (r,u, t)}d2k̃ du1, (2.11)

where the pre-collisional velocities (u′,u′1) are transformed into the post-collisional ones

(u,u1) through elastic hard-sphere scattering dynamics, and χHS is the two-point pair

correlation function of a hard-sphere fluid, that gives the probability to find molecules

at positions r and r1 in a density field n(r, t) in equilibrium. Besides extending the

kinetic theory principles to evaluate systems of arbitrary density, the Enskog equation

is also required to study the behaviour of molecularly confined fluids. This is because

L ∼ σ, from where excluded volume effects, underpinning the ordering near the walls,

need to be considered for an accurate flow description. In general, these cannot be

captured with kinetic equations developed for dilute gases, although some derivations

based on the Boltzmann equation have been proposed to study confined systems (Brey

et al., 2016). These agree with results obtained from more general statistical mechanics

approaches (Schmidt & Löwen, 1997), but are restricted to further constraints (L ≈ 2σ).

In this phenomenological theory, the assumption of binary collisions still holds, but now

they occur at a distance of one molecular diameter σ, namely one particle (with velocity

u′) is at point r and the other one (with velocity u′1) is at point r∓ σk when a collision

occurs. The ∓ sign is introduced so that it refers to interactions that take (u,u1) or
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(u′,u′1) as initial velocities, respectively. Likewise, due to the excluded volume effects,

there is an increase in the collision frequency characterised by χHS, which adopts a

value of unity for the rarefied gas and increases with the gas density n. In the standard

Enskog theory framework, χHS is set equal to the equilibrium pair correlation function

χ taken at the midpoint of the line joining the centres of colliding atoms. Where the

Enskog equation is used in the present thesis (see Chapter 5), the actual value of the

density at the contact point is replaced with the value of the density field averaged over

a spherical volume of diameter σ, using the Fischer-Methfessel prescription (Fischer &

Methfessel, 1980). Thus, χHS becomes a functional of the local density

χHS
[
r, r ± σk̃|n

]
= χ

[
n̄

(
r ± 1

2
σk̃, t

)]
, (2.12)

where χ is given by the equation of state of the hard-sphere fluid proposed by Carnahan

and Starling (1969), and

n̄ (r, t) =
3

4πσ3

∫
R3

n (r1, t)w (r, r1) dr1, (2.13)

w (r, r1) =

1, ‖r1 − r‖ ≤ σ,
0, ‖r1 − r‖ > σ.

(2.14)

As in the rarefied gas case, macroscopic quantities are obtained as velocity moments

of the distribution function. The non-locality of collisions implies that the transfer

of momentum and energy owing to intermolecular interactions cannot be neglected

anymore, and hence the equation of state now would read P = nkTZ, where the extra

term Z captures the deviations with respect to the rarefied gas behaviour, see Eq. (2.2).

In the limit for small Knudsen numbers, the application of the Chapman-Enskog method

for getting analytical solutions of the Enskog equation suggests that the Navier-Stokes

equations are still valid (Chapman & Cowling, 1952) for describing the flow behaviour

in the bulk of the fluid. However, large discrepancies from the hydrodynamic behaviour

are expected in the vicinity of solid boundaries, where non-equilibrium effects take place

that will, unsurprisingly, affect transport phenomena and its modelling (Travis et al.,

1997). Given the complex interplay of mechanisms at these scales, the departure with

respect to the classical modelling is very difficult to rationalise, which shows in the lack

of analytical insights. For instance, the functional form of the slip relation cannot be

analytically computed through asymptotic expansions of the Enskog equation, as in the

rarefied gas framework, but strong empirical evidence suggests that the same procedure

holds. That is, modifying the boundary conditions that complement the Navier-Stokes

equations to allow for some tangential velocity of the fluid adjacent to the boundary, in

the form of a velocity jump between the fluid and the wall (Shu et al., 2017).
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In analogy to the rarefied gas scenario, high-order hydrodynamic-like models can be

developed to extend the analytical treatment to the early transition regime (de Haro &

Garzó, 1993; Kremer & Rosa, 1988), where the fluid still behaves as a continuum but

is not in quasi-equilibrium. Finally, in the free molecular regime, analytical solutions

of the collisionless Enskog equation are feasible, although these will be different to the

Boltzmann results in a trivial way owing to the non-locality of collisions of particles with

the walls. Nevertheless, as for when the Boltzmann equation governs the gas dynamics,

numerical solutions are once again required for a general description of the dense

gas behaviour. Following the same rationale presented in Section 2.2.1, particle-based

methods, such as the DSMC extension proposed by Frezzotti (1997), are usually preferred

for simplified problems. In this algorithm, momentum and energy are conserved in every

collision and not just in a statistical sense (Montanero & Santos, 1996). Modifications

with the classical DSMC occur in the collision algorithm due to the non-local structure

of QE , where, in general, collisions involve the closest neighbour cells.

2.4 Stochastic Walls. Maxwell Scattering Kernel

So far, the different descriptions of the gas behaviour have only taken into account

interactions between its constituent particles, but no terms in Eq. (2.4) or Eq. (2.11)

have been introduced to address collisions with the boundaries of the system. Therefore,

unless the distribution function of the velocities next to the wall is defined, the full

description of the gas behaviour will be clearly incomplete. Despite some attempts

have been made to superimpose gas-surface interactions in the collision integral of

kinetic equations (Aoki et al., 2022; Frezzotti & Gibelli, 2008), it is true that their

accuracy requires further research, and so the most common approach involves the use of

empirically-derived kinetic boundary conditions, in the form of the so-called scattering

kernels. By construction, scattering kernels neglect the precise microscopic structure of

the boundary, and simply allow to relate the incident (f i) and reflected (f r) fluxes of

molecules for each possible incident velocity on a surface of interest, in the form of a

probability density function (Kremer, 2010)

f r (u) = −
∫
u′·ñ<0

u′ · ñ
u · ñ S

(
u′ → u

)
f i
(
u′
)
du′, u · ñ > 0, (2.15)

where ñ denotes the unit vector normal to the wall pointing towards the half-space

occupied by the fluid and S (u′ → u) is the scattering kernel representing the probability

that an impinging molecule with velocity u′ is scattered, at the same exact point, with

a velocity u after colliding with the wall. The scattering kernel must satisfy the basic

properties of normalisation (i.e. the surface of the wall is impermeable and gas molecules

re-emerge after collision), positiveness and reciprocity (Kuščher, 1971).
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The first attempt to express “the conditions which must be satisfied by a gas in contact

with a solid planar wall” was carried out by Maxwell (1879). Given its simplicity and

that it serves for the purpose of our work (low-speed flows over engineering surfaces), it

will be the boundary condition used throughout this thesis. Without further delving in

its physical identification (that is, the differentiation between rough and smooth walls),

the Maxwell scattering kernel assumes that a fraction of the incident gas molecules is

diffusely thermalised to the wall temperature Tw, namely molecules can be scattered

to any direction in the half-space occupied by the fluid with a uniform distribution

regardless of their impinging velocities

SD
(
u′ → u

)
=

1

2π
u · ñ

(
m

kTw

)2

e
−mu

2

2kTw , (2.16)

whereas the remaining partition is specularly reflected, where the normal component of

the velocity changes its sign but the impinging momentum is conserved

SS
(
u′ → u

)
= δ

[
u′ − u+ 2 (u · ñ) ñ

]
, (2.17)

where δ is the Dirac delta function. The partition related with diffuse reflections is called

the tangential momentum accommodation coefficient α, also known as TMAC for short,

and so the Maxwell scattering kernel reads

SM
(
u′ → u

)
= αSD

(
u′ → u

)
+ (1− α)SS

(
u′ → u

)
. (2.18)

The computational implementation of the Maxwell scattering kernel in a tube accounting

for appropriate geometric arguments is described in Appendix A, as well as some other

technicalities.

Besides the Maxwell scattering kernel, which is the most used one in the literature by

far, some other descriptions of molecular distributions have been proposed as well (Cao

et al., 2009). Examples of different scattering kernels are attributed to Epstein, whose

distribution function for reflected molecules takes into account the velocities of the

incident particles (Epstein, 1967), and Cercignani & Lampis, which reproduces the

lobular pattern characteristic of molecular beam experiments (Lord, 1991). It is important

to note that the use of stochastic walls is not just limited to the case of solving kinetic

equations — but also when dealing with more direct simulation methods, instead of

explicitly addressing fluid-wall interactions based on the interatomic potential of choice.

Nonetheless, fully understanding the dynamics of gas-surface interactions is a very

complicated task. The detailed investigation of this problem requires the involvement

of expensive molecular dynamics simulations (Y. Chen et al., 2022), as well as results

obtained from experimental setups (Arkilic et al., 2001; Ewart et al., 2007).
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2.5 Event-Driven Molecular Dynamics

The Enskog equation presented in Section 2.3 has been found to be accurate up to

relatively large fluid densities (Frezzotti, 1999), until correlated collision sequences come

into play and the molecular chaos assumption no longer holds. Up to date, there are not

accurate first-principles theories that account for higher density effects (Janssen, 2018),

and most of the analytical work in the field is driven by practical applications using

empirical correlations. This already challenging problem becomes even more formidable

when such fluids are confined to very small spaces. Therefore, one should resort to a

more fundamental description of the fluid behaviour, where further insights are obtained

by directly simulating the flow physics based on the interactions between particles.

These deterministic techniques model the time evolution of individual atoms and their

collisions through pairwise potential energy functions, by solving their corresponding

Newton’s equation of motion. In the case of hard spheres, the exact description in

the whole range of fluid densities is produced using event-driven molecular dynamics

(EDMD) simulations (Alder & Wainwright, 1959). The key assumption underpinning

the EDMD routine is that at any time instant in the entire system, there occurs at

most one collision of infinitesimal duration. Simulations based on discrete potentials,

such as the hard-sphere one in Eq. (2.1), are event-driven, in the sense that the time

of the next collision can be fully determined on beforehand. Therefore, the system

is analytically integrated, in a single numerical time step, to the time at which the

next event occurs. A brief overview of the different steps involved in the algorithm for

EDMD is presented next (Pöschel & Schwager, 2005). Despite the availability of some

open-source alternatives (Bannerman et al., 2011), in this case we have preferred to

develop our own in-house code using Fortran 90 language.

Initially, particles are randomly distributed in the computational domain, ensuring

that they do not overlap, i.e. their centres are separated by a distance larger than σ.

Likewise, the initial velocities are sampled from the Maxwellian distribution by using

the Box-Muller algorithm (Box & Muller, 1958). This process should produce a null

mean velocity if working with an infinite number of particles in the simulation box,

as the Maxwellian in one dimension is a standard normal distribution. Nevertheless,

when working with a finite number of molecules, the mean velocity sampled from this

methodology could be different from zero, and so the initial velocities are re-set by

subtracting the average velocity to each particle i — which, otherwise, might cause

drifting issues in the transient state.

The most computationally demanding part of EDMD simulations is to compute the

collision times of each pair of interacting particles, which are needed to determine the

next collision event occurring in the system. It is worth to emphasise that the system

time is not advanced by a fixed time step as in regular MD, but according to the
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sequence of collision events which depends on the positions and velocities of particles.

In order to determine whether two particles i and j are going to collide based on their

current velocities ui and uj , there must be a solution t∗ij larger than the current time t

that satisfies∣∣∣∣∣
[
ri +

(
t∗ij − t

)
ui +

1

2
Fa
(
t∗ij − t

)2]− [rj +
(
t∗ij − t

)
uj +

1

2
Fa
(
t∗ij − t

)2] ∣∣∣∣∣ =
σi
2

+
σj
2
.

(2.19)

To express this equation in a more convenient quadratic form, we can mathematically

rearrange it as a function of the relative positions rij = ri−rj and velocities uij = ui−uj ,
so that (

t∗ij − t
)2

+ 2
(
t∗ij − t

) rij · uij
u2
ij

+
r2
ij − σ2

ij

u2
ij

= 0, (2.20)

where σij = σi/2 +σj/2. The (trivial) necessary condition for a collision is that particles

must approach each other, rij · uij < 0, which occurs when Eq. (2.20) has a solution,

namely if the following inequality is satisfied[
rij · uij
u2
ij

]2

+
σ2
ij − r2

ij

u2
ij

> 0. (2.21)

The time t∗ij at which the collision between particles i and j occurs is therefore

t∗ij = t+
r2
ij − σ2

ij

−rij · uij +

√
(rij · uij)2 + u2

ij

(
σ2
ij − r2

ij

) . (2.22)

Besides collisions between molecules themselves, the other kind of event that particles

can experience is with the walls of the channel. Provided that all particles continue to

move at their present velocity, the collision time with the boundaries can be determined

based on the distance they have to travel as if there were no other elements in the

system. Importantly, we must account for the finite size of molecules, and so the collision

would take place when the centre of the molecule is one radius σ/2 away from the

wall. For planar geometries, this procedure is straightforward as there are two walls,

whereas for cylindrical ones we would need to determine the exact collision spot with

the circular-shaped wall first. This methodology is detailed in Appendix B.

The behaviour of the particles close to the boundaries of the simulation box in the

non-confined dimensions is described by periodic boundary conditions (PBCs). These

are introduced to mimic the thermodynamic limit, i.e. systems composed of an infinite

number of particles, which cannot be simulated in practice due to computational

constraints. When a particle leaves on one side of the simulation box, it re-enters from

the opposite side at the same plane with its velocity unchanged. Therefore, the use
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of PBCs allows the simulation to proceed as if the simulation box was surrounded by

identical copies of itself. Importantly, the minimum image convention, widely used in

regular MD simulations, is not applicable in event-driven methods because a particle i

does not necessarily collide with the nearest image of the particle j.

An important aspect to consider are rounding errors in the numerical calculations of

the collision times, which can cause overlap between particles in fluid-fluid collisions or

penetration of the particle inside the boundary in fluid-wall collisions. Despite there is

not perfect protection against these errors, most overlaps are avoided by not performing

the propagation step in full length, such that the particles always keep a small distance

before collisions. Therefore, to reduce the occurrence of these problems, a small tolerance

value (in the order of magnitude of 10−8) is subtracted from the earliest collision time

for each event.

The pairwise particle collision times has to be initially computed for all combinations of

molecules i, j in the system, as well as the collision times of all molecules i with the

walls so that the next event can be selected based on the minimum of all of these, t∗.

Once the collision time for the upcoming event has been determined, the positions of all

particles is updated and advanced to this time t∗

r∗i = ri + (t∗ − t)ui +
1

2
Fa (t∗ − t)2 . (2.23)

The post-collisional velocities of the collision partners ci, cj are obtained from the

pre-collisional ones through elastic hard-sphere dynamics

u∗ci = uci −
[
(uci − ucj) · k̃

]
k̃, (2.24)

u∗cj = ucj +
[
(uci − ucj) · k̃

]
k̃, (2.25)

whereas if the event involves a fluid-wall collision, then its post-collisional velocity u∗ci is

calculated from the Maxwell scattering kernel, as detailed in Section 2.4.

The EDMD algorithm advances by seeking the next event, and the standard procedure

involves producing an information list that stores the next collision time and collision

partner (either another molecule or the wall) for each particle in the system. When a

collision occurs, the only entries from this list that are updated from scratch are those

associated with the collision partners, since their velocity vectors have changed according

to the aforementioned rules. The remaining collision times are easily recomputed by

subtracting the time of the current event to the previous calculations, and so the next

event can be identified. This methodology can be further accelerated by building up

more efficient versions using neighbouring lists, link cells methods, and other procedures

more commonly used in expensive MD simulations (Allen & Tildesley, 2017).
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Macroscopic fields are evaluated as weighted averages of the of molecular positions

ri and velocities ui. Computer simulations produce information at the microscopic

level, generating ensembles of the microscopic information for the N molecules in the

system. A larger number of molecules will decrease the intrinsic noise characteristic of

particle-based methods, albeit at the expense of a greater computational burden. In

itself, this information is of little relevance compared to (macroscopic) thermodynamic

quantities, which are generally evaluated using Pt partitions that divide the simulation

domain along the flow characteristic length in “bins” or “cells” of equal width, with

volume Vc. For the fluid-wall system of consideration, we found that cell widths of either

σ/20 or σ/10 did not affect the simulation results. The number density is computed

based on the positions of individual molecules as

〈nc (r)〉 =
〈Nc (r)〉
Vc(r)

=
1

SVc (r)

S∑
k=1

Pt(tk)∑
c=1

Nc (r, tk) , (2.26)

where S is the total number of samples, Nc (tk) denotes the number of molecules

occupying a given cell c at sampling time k and 〈·〉 denotes mean quantities. On

the other hand, for the velocity, several procedures might be carried out as reviewed

by Tysanner and Garcia (2004). In the case of non-equilibrium systems, where an external

force Fa is included in the simulation to induce uni-directional flow, the cumulative

average measurement yields the unbiased mean velocity

〈vc (r)〉 =
vc (r)

Nc (r)
=

S∑
k=1

Pt(tk)∑
c=1

Nc (r, tk)uc (r, tk)

S∑
k=1

Pt(tk)∑
c=1

Nc (r, tk)

. (2.27)

Starting from the microscopic velocities, one can also obtain the temperature of the

system using the famous equipartition theorem (Allen & Tildesley, 2017), that relates

the kinetic energy of the system with its temperature. If the simulations are run for

a sufficiently long time, results based on time averages, i.e. sampling positions and

velocities at different instantaneous times t within a single run, will agree with results

based on ensemble averages, i.e. performing multiple independent runs of the same

system with different initial conditions. This constitutes the so-called ergodic hypothesis,

which states that all accessible microstates are equally probable over a long period of

time, for which there is no general proof but overwhelming practical evidence. The

caveat is that the minimum time for which the ergodic hypothesis holds true is not

known on beforehand, and therefore results are likely to be associated with statistical

uncertainties — that can be attenuated by running for longer simulation times.



Chapter 3

Self-Diffusion of Confined Fluids

N.B. This chapter has been published in: Corral-Casas, C., Gibelli, L., Borg, M.K., Li,

J., Al-Afnan, S.F.K., Zhang, Y. “Self-diffusivity of dense confined fluids”. Physics of

Fluids 33, 082009 (2021). Editor’s Pick.

Molecular transport through tight porous media is crucial to shale gas exploration,

but deeper insights of the elemental physics are still required, particularly under high

pressures and nanoscale confinements, where the Navier-Stokes and Boltzmann solutions

are no longer valid. In this work, a fundamental and systematic study of self-diffusion is

carried out using event-driven molecular dynamics simulations, varying fluid rarefaction,

confinement and surface microscopic roughness. Often a source of debate, here it is

proved that the self-diffusivity from the Einstein relation can still be used with the

Fickian formalism, despite the strong fluid inhomogeneities under confinement. We

differentiate between fluid-fluid and fluid-wall collisions to identify the interplay of the

underpinning diffusive mechanisms, namely molecular and Knudsen diffusion. We find

that the Bosanquet formula, which has been used for describing rarefied gases, is also

able to provide a good semi-analytical description of self-diffusivities in confined fluids,

as long as the pore height is not smaller than five molecular diameters. Importantly,

this allows us to predict the self-diffusion coefficient, regardless of the fluid rarefaction,

confinement state, and surface roughness, in a wide range of Knudsen numbers that

was not possible before. Finally, we notice that a previously identified linear scaling of

self-diffusivities with confinement is only valid in the limit of low densities and frictionless

walls.

3.1 Literature Survey

Fluids confined to nanoscale geometries are ubiquitous in biological and engineering

applications (Casanova et al., 2020; Celebi et al., 2014; Holt et al., 2006), such as in

nanocatalyst construction (Fihri et al., 2011), nanostructured water filtration mem-

branes (Shannon et al., 2008), and proton transport within fuel cells (Z. Liu et al., 2002).

29
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A notable application that motivates this research is the transport of hydrocarbon fluids

stored within sedimentary shale rocks (Cathles et al., 2012; Germanou et al., 2020; Phan

et al., 2020), where the gas-gas and gas-surface physics through the naturally-formed

nanopores deviate from our current understanding and modelling capabilities.

In general, the behaviour of confined fluids is still poorly understood for several reasons.

The first challenge appears when the mean free path (MFP) λ is comparable to the

flow characteristic length, related to the pore height H, and so the ratio between

both quantities, i.e. Knudsen number, is moderately larger than zero. In this case, the

assumption of local thermodynamic equilibrium breaks down (Gad-el Hak, 1999), and

subsequently the continuum description of fluids fails. One of the most recognisable

consequences of non-equilibrium effects at the microscale is the so-called Knudsen

paradox, which shows up when a constant pressure difference drives a rarefied flow along

a narrow straight channel. The mass flow rate displays a characteristic minimum as the

inlet pressure is reduced (Knudsen, 1909), being in sharp contrast with the monotonic

decrease predicted by the Navier–Stokes equations.

A second challenge occurs when the pore characteristic length is similar to the diameter

of fluid molecules σ, as typically occurs in shale reservoirs, where pore sizes are very

tight with mesopores (H ∼ 20–200 Å) and micropores (H < 20 Å) dominating the

storage of light hydrocarbon fluids (Loucks et al., 2009). In these conditions, molecular

ordering happens inside the pores and the effect of dense fluid packing is magnified.

Surprisingly, the recent measurement of Poiseuille mass flow rates through ultra-tight

pores, which are characterised by small confinement ratios R = H/σ, was found to

follow a monotonic increase with Knudsen number (L. Wu et al., 2016). Although the

Boltzmann equation predicts the existence of the Knudsen minimum (Bahukudumbi &

Beskok, 2003; Cercignani & Daneri, 1963; Tatsios et al., 2015) and it may explain its

disappearance in bent (W. Liu et al., 2018) and short (Ho et al., 2020) channels, it cannot

be used to investigate the effects arising due to confinement, which are responsible for

the Knudsen minimum disappearance observed in straight channels.

A third challenge arises when one considers the high pressures in these unconventional

reservoirs. Pressures can range from 5 to 50 MPa (K. Wu et al., 2016), and consequently

fluid densities are beyond the dilute-gas Boltzmann limit (Kremer, 2010). Therefore, the

space correlations of molecules, which are disregarded in the derivation of the Boltzmann

equation, need to be considered. The Enskog equation approximately considers that the

positions of molecules are statistically correlated in dense fluids, and recently it has

been shown to predict the Knudsen minimum disappearance within straight channels of

molecular dimensions (Sheng et al., 2020). However, a satisfactory explanation of the

underlying mechanisms that justify these mass flow rates is missing, particularly in the

transition range of flow regimes (0.1 . Kn . 10).
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A possible theoretical explanation of the Knudsen minimum disappearance in straight

channels relies on a change of the underpinning physics, where mass transport is no

longer occurring because of viscous convection. In pressure-driven flows within very

tight geometries, there is not enough room for molecules to develop different velocities

based on their spatial position, because of the limited number of molecular layers in the

confining direction and the large amount of collisions with walls. Indeed, the fluid velocity

profile switches from the Poiseuille parabolic shape to plug-like as the characteristic

dimension of the channel reduces (J. Chen et al., 2017; Kazemi & Takbiri-Borujeni,

2016), suggesting that diffusion now dictates the fluid dynamics in this context. Given

that the Knudsen minimum only disappears when the confinement is on the molecular

scale, it is clear that a deeper understanding of diffusive dynamics is of paramount

importance to better explain the fluid behaviour, and so this will be the scope of the

present work.

The classical modelling approach to diffusive processes is based on Fick’s law, where

diffusion follows a linear response with the gradient of the species’ concentration along

the streamwise direction. The simplest diffusive phenomenon, i.e. Brownian motion of

identical particles without a net flow induced by a thermodynamic gradient, is referred

to as self-diffusion and can be studied by a process of tagging and tracking particles.

In a bulk system of a pure substance at equilibrium, the self-diffusion is defined as

a measure of the mobility of a single tagged particle within the pool of mechanically

indistinguishable particles. The constant of proportionality, which is known as the

self-diffusivity D, is commonly identified with the mean square displacement (MSD)

of molecules in bulk fluids, see Section 1.2. The value of D depends on the physical

mechanisms that govern diffusion, e.g. molecular and Knudsen diffusion amongst many

others (Xiao & Wei, 1992). Molecular diffusion dominates in the hydrodynamic limit for

Kn . 0.01, when interactions are mainly between fluid particles, whereas for Kn & 10

the diffusive dynamics can be simplified to Knudsen diffusion, consisting of free flights

of particles between collisions with walls.

Although Fick’s law is the cornerstone of modelling diffusion transport in porous

media (Coasne, 2016), its validity at the nanoscale is not obvious and so it has been

subjected to many studies (Cui, 2005; Mon & Percus, 2002). For the range of confined

channels in which single-file diffusion does not take place, this linear theory is assumed

to be valid but some doubts arise with respect to the proportionality factor that has

to be used within its formulation. Specifically, the non-bulk structure of the fluid

may involve the breakdown of the MSD approach for evaluating the self-diffusion

coefficient (MacElroy et al., 2001; Schoen et al., 1988) and, indeed, the lower R threshold

that dictates the validity of the MSD-based self-diffusivity in the Fickian framework
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is still not well defined (McDermott & MacElroy, 2004). Local diffusion coefficients

have also been introduced to cope with the fluid inhomogeneity (Krekelberg et al., 2017;

P. Liu et al., 2004; Mittal et al., 2008), but the procedures for averaging the local values

to compute global quantities are somehow phenomenological in nature.

Molecular dynamics (MD) computer experiments have served as a useful reference for

evaluating the self-diffusion coefficient in both bulk (Alder et al., 1970; Erpenbeck &

Wood, 1991; Sigurgeirsson & Heyes, 2003; Speedy, 1987) and confined fluids (Cracknell

et al., 1995; Krekelberg et al., 2011; Mittal et al., 2006, 2007). However, a satisfactory

overall picture of the diffusion dynamics of fluids under confinement is still lacking,

and there are no analytical derivations to predict self-diffusivities accurately in the

entire range of Knudsen numbers. Importantly, the crossover between molecular and

Knudsen diffusive mechanisms has not been generalised beyond the rarefied description

of non-confined gases (Lund & Berman, 1966; Pollard & Present, 1948; Roberts, 1971),

and as we explain above, this transition flow regime under tight confinement and high

fluid packing is an area with critical implications to shale gas media.

The aim of this chapter is to systematically investigate the effect of rarefaction,

confinement, and wall microscopic roughness on the self-diffusion process. The novelty

of this study is presented next: first, we measure the self-diffusion coefficient in a

wide range of fluid densities (from dense to rarefied), channel heights (from tight to

quasi-bulk), and microscopic wall properties (from rough to frictionless) that has not

been subjected to investigation before. Here, we use event-driven molecular dynamics

(EDMD), which, compared to the Enskog theory, provides the exact description of the

monatomic hard-sphere dynamics in the whole range of reduced fluid densities. Second,

we assess the validity of using the well-known MSD procedure for studying diffusion

in strongly inhomogeneous fluids. Third, we use a splitting procedure of the colliding

molecules to understand the interplay between molecular and Knudsen mechanisms in

the transition regime, and how these are influenced by confinement and rarefaction.

This calls into question previously observed diffusive scaling laws. Fourth, we develop a

semi-analytical theory that predicts the self-diffusion coefficient in the wide parametric

space of consideration, which has so far been missing in the literature.

The rest of the chapter is organised as follows. In Section 3.2 we outline the EDMD

methodology and the procedures for calculating self-diffusivities, from either following

particles’ trajectories through their random walk or according to Fickian theory. Results

for self-diffusivity are presented in Section 3.3, including the validation of MSD and

Fickian approaches, splitting results of diffusive mechanisms, and demonstration of the

proposed theory. Finally, Section 3.4 concludes this piece of work by summarising the

main findings.
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Figure 3.1: Two independent methods for computing the self-diffusivity of confined
fluids: (a) Einstein relation, by measuring the average molecular MSD, and (b) Fick’s
law by changing the colour tag of particles (type A: red, type B: mustard) as these cross
the boundaries, followed by computing the steady-state tagged transport flux.

3.2 Methodology

3.2.1 Problem Formulation

A system composed of N hard-sphere particles with diameter σ is studied in a slit

geometry, defined by two infinite parallel plates at a distance H = h+ σ apart, where

h is the effective transversal space accessible to the centre of spherical molecules (see

Figure 3.1). The walls are assumed to be structureless flat surfaces, and the fluid-wall

interactions are described by the Maxwell scattering kernel with tangential momentum

accommodation coefficient (TMAC). Namely, a fraction of the molecules impinging on

the wall (given by TMAC) is diffusely re-emitted after being thermalised with the wall,

while the remaining partition (1− TMAC) is specularly reflected. This is the simplest

possible simulation setup that permits one to capture the key features of the diffusion

process (H. Liu et al., 1998).

The self-diffusion coefficient is evaluated by two different methods, as illustrated in

Figure 3.1:

(a) Under equilibrium conditions, the self-diffusivity is computed using the Einstein

relation (Einstein, 1956), measuring the squared deviation of each particle position ri,

with respect to a reference position over time t, as follows

DE = lim
t→∞

〈∆r2(t)〉
2dt

= lim
t→∞

1

Nτ

N∑
i=1

τ∑
j=0

|ri(t+ tj)− ri(tj)|2
2dt

. (3.1)
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Here, d is the dimensionality of the system, and 〈∆r2(t)〉 is double averaged over the

number of particles N and multiple time origins τ , where τ > tj for all j. Unlike the

bulk case, diffusion is not an isotropic process in confined geometries (Karniadakis et

al., 2005), and the self-diffusivity in the x−direction takes a lower value than in the

yz−plane, with d = 2 to compute the mean DE in these two symmetric dimensions.

(b) In the presence of a concentration difference in the streamwise direction, the self-

diffusivity is computed by using the phenomenological Fick’s first law (Cussler, 2009),

i.e. as the proportionality factor between the concentration gradient dC/dy and the flux

of particles J that arises as a result of this driving force

DF = − J

dC/dy
. (3.2)

Two remarks are in order. First, the Fick’s law refers to the linear relation between mass

flux and concentration gradient, regardless of the fluid rarefaction state and not only in

the continuum regime (Guo et al., 2019). Second, the Fickian self-diffusivity is different

from the transport diffusivity that is defined in presence of a convective flow (Li et al.,

2021).

Three dimensionless groups can be identified to systematically describe the different

diffusive processes that may take place in the current problem formulation: the Knudsen

number Kn = λ/h, the confinement ratio R = H/σ, and the reduced density η = nπσ3/6,

where n is the number density. Besides differentiating between flow regimes, the Knudsen

number determines the diffusive mechanism that prevails at a given rarefaction and

confinement degrees. The reduced density represents the packing fraction of the fluid,

e.g. larger η implies less free space for the particles to move. By using the Enskog theory,

these groups are interrelated through

Kn =
σ

6
√

2ηχ (η)

1

h
=

1

6
√

2ηχ (η)

1

R
, (3.3)

where χ is the contact value of the pair correlation function in a hard-sphere fluid in

uniform equilibrium (Kremer, 2010). An approximate but accurate expression for χ can

be obtained from the hard-sphere fluid equation of state proposed by Carnahan and

Starling (1969)

χ =
1

2

2− η
(1− η)3 . (3.4)
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3.2.2 Simulation Setup

The time evolution of the hard-sphere dynamics is simulated using event-driven molecular

dynamics (EDMD), which is an adaptation of MD simulations to discrete potential

systems. This simulation technique is event-driven in the sense that the state of the

system jumps from one time to another corresponding to the earliest collision event.

The time step is not constant throughout the simulation run, like in MD simulations, as

it depends on the spatial coordinates and velocities of all molecules in the system. The

algorithm consists of three basic steps: (a) evaluating the time of the earliest collision

event, (b) moving ballistically all particles for that time interval, and (c) updating the

velocity of the particles that have collided with another particle or the wall, according

to hard-sphere dynamics or the Maxwell scattering kernel, respectively. Beyond this

brief outline, a more complete review has been already presented in Section 2.5.

The main advantage of EDMD relies on the computational savings with respect to

simulations that consider soft potentials, like Lennard-Jones, because it avoids the

expensive calculation of multibody intermolecular forces. To simplify the notation and

data analysis in the rest of the paper, all the physical quantities are made dimensionless

by considering the molecular diameter σ as the reference length, the particle mass m as

the reference mass, and σ/
√
kT/m as the reference time, where the denominator is the

reference thermal velocity, with k being the Boltzmann constant and T the temperature.

Accordingly, self-diffusivities will be expressed in dimensionless σ
√
kT/m units.

The computational domain is an orthogonal box of dimensions [H; `y; `z], applying

periodic boundary conditions in the y− and z−directions. The cross section of the

simulation box H × `z is chosen to match the target reduced density η. Note that a

careful choice of the streamwise length `y is required when evaluating the self-diffusivity

through Eq. (3.2), as will be discussed in Section 3.3.1. The number of particles was

set over 5 × 103 in order to reduce the system-size dependence of the computed self-

diffusivities (Yeh & Hummer, 2004). Initially, molecules are randomly placed across the

simulation box ensuring that they do not overlap, and velocities are sampled from the

Maxwell-Boltzmann distribution by using the Box-Muller algorithm. The reduced density

is varied in the range η = [0.00005, 0.35], with confinement ratios within R = [2, 100].

Consequently, the Knudsen number spans all flow regimes, i.e. Kn ∼ [0.001, 1000] as

given by Eq. (3.3).

As detailed in Section 3.2.1, the self-diffusion coefficient has been computed using two

different approaches. The computation of self-diffusivities by Eq. (3.1) is performed

based on equilibrium simulations. Time averaging starts when the initial ballistic regime

dies out and the simulation time is set long enough to ensure that the ergodic hypothesis

is satisfied. Note that there are two main sources of uncertainties in evaluating self-

diffusion coefficients using this technique. First, accurate self-diffusivity results require
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an unbiased MSD, and therefore uncorrelated sampling (Pranami & Lamm, 2015) needs

to be considered when maximising the number of samples per run, e.g. multiple time

origins tj besides the initial simulation time t0. Secondly, using the Einstein relation is

associated with relevant uncertainties, because of the unattainable search of perfectly

linear regions between MSD and time (Fayon & Sarkisov, 2019).

The calculation of the self-diffusivity by Eq. (3.2) uses the same setup, but particles

are tagged as either type A (tracer) or type B (solvent), with all fluid molecules being

mechanically indistinguishable. The overall density, accounting all tagged and non-

tagged particles, remains constant throughout the entire domain in the streamwise

dimension. Initially, all molecules are assigned to type B. During the simulation, those

which cross the right-hand and left-hand side boundaries of the simulation box are

assigned to type A (red) and type B (mustard), respectively, independently of their

initial tag (see Figure 3.1). This mimics the presence of two reservoirs, virtually full

of tracers and of solvent in both ends of the channel. Molecular motion and collisions

are performed in the same manner for both types, but macroscopic quantities such

as number density and mean velocities are collected separately for each of them. The

concentration profile of type A particles is then allowed to relax, and the time averaging

starts at the steady state when the profile becomes linear in the middle of the simulation

box, a few molecular diameters away from the boundaries to avoid non-diffusive end

effects. The concentration gradient is then computed by minimising the mean square

error of the linear fit to the concentration field of type A particles in this central region.

3.3 Results and Discussion

3.3.1 Fickian and Einstein Self-diffusivities

The Einstein and Fickian self-diffusivities match under bulk conditions (Kärger &

Valiullin, 2013), but their agreement has been questioned in tightly confined geometries,

as introduced in Section 1.2.1. Preferential fluid packing next to the walls extends to a

larger relative portion of the channel when R values are low. In this condition, most of the

MSD trajectories are made up of contributions from particles crossing inhomogeneous

areas with different local densities. Accordingly, it is not obvious whether the microscopic

Einstein self-diffusivity still agrees with the coefficient coming from the macroscopic

Fickian theory. In order to shed light on this question, we compute the self-diffusion

coefficients based on Eq. (3.1) and Eq. (3.2) for a wide range of η and R, with emphasis

on large reduced densities that preferentially lead to non-homogeneous density profiles.
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Table 3.1: Self-diffusivities for fluids at different confinements for η = 5× 10−4. The
Fickian (DF ) and Einstein (DE) results are in very good agreement when `y & 2λ,
expressed by bold rows.

η = 5× 10−4 R = 50 R = 2

`y (`y/λ) DF DE DF DE

10 (0.042) 20.157 49.014 1.262 2.319
40 (0.170) 28.688 48.828 1.745 2.261
80 (0.340) 34.243 48.483 1.896 2.301
500 (2.124) 46.862 47.221 2.359 2.340
1000 (4.248) 47.501 48.590 2.376 2.396

Table 3.2: Self-diffusivities for fluids at different confinements for η = 5× 10−3. Again,
the two methodologies are in very good agreement when `y & 2λ.

η = 5× 10−3 R = 20 R = 5

`y (`y/λ) DF DE DF DE

10 (0.430) 7.627 10.376 3.073 3.944
20 (0.859) 8.557 10.357 3.396 3.883
30 (1.289) 9.073 10.383 3.558 3.951
50 (2.148) 10.297 10.241 3.789 3.889
75 (3.222) 10.349 10.368 3.817 3.893

However, a preliminary observation in our results must be made before moving into

a more detailed comparison. As shown in Table 3.1 and Table 3.2, the Einstein self-

diffusivity DE does not significantly depend on the length of the domain in the streamwise

direction, `y, which is expected since the MSD measurements of particles continue

seamlessly across the periodic boundaries, as if to represent an infinitely long slit. On

the other hand, this is not the case for the Fickian self-diffusivity, in which DF is seen

to increase steadily with `y and eventually levels off for `y & 2λ, regardless of the

confinement ratio and the fluid density. This occurs because DF is now influenced by

the inlet− and outlet−type boundary conditions, and a critical length is required to

offset the non-equilibrium perturbation of particles changing tag at the boundaries. We

find this requirement on the streamwise length to be particularly severe in the rarefied

regime, due to the inverse proportionality between η and λ.

Figure 3.2 shows the Einstein and Fickian self-diffusivities as a function of the confinement

ratio R for different large packing fractions, when walls are fully diffuse (TMAC = 1).

For the reasons mentioned above, the Fickian self-diffusivities are obtained by running

simulations where the streamwise length of the computational box is larger than two

molecular mean free paths. Our results reveal that the self-diffusion results obtained

from Eq. (3.1) and Eq. (3.2) are almost indistinguishable in the whole parametric
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Figure 3.2: Self-diffusivities computed using the Einstein relation (filled circles) and
as a proportionality factor according to Fick’s law (empty squares). Comparisons for
accuracy in the large R limit are made with results from Heyes et al. (2007), represented
by solid horizontal lines. Inset: fluid layering in confined channels, deviating from the
homogeneity of bulk fluids defined by n/n0 = 1.

space. Particularly, Einstein and Fickian self-diffusivities agree under tight confinement

(R . 20) despite the strong fluid inhomogeneities that exist (see the inset of Figure 3.2,

note that the density profiles are defined based on H and not in h, as in Figure 1.1b or

in subsequent chapters). It is worth stressing that this conclusion may be a consequence

of the slit geometry considered in this study, which allows particles to swap places in

the spanwise z−direction even in molecular-like confinements (R ≤ 3) where single-file

transport is expected in the streamwise direction. Hence, diffusion is not anomalous

although there is not enough room for particles to overtake their counterparts through

the confining x−dimension, see Table 3.1 for R = 2 results. This 2D planar channel

feature ensures that the linearity between MSD and time assumed by Eq. (3.1) always

holds, and anomalous diffusion never takes place.

Also in Figure 3.2, it can be observed that at a given reduced density η, the molecular

mobility decreases with narrower channels because, on average, particles collide more

frequently with the confining walls. Throughout these collisions, particles experience

a change in momentum that hinders their displacement in the two non-constrained

y, z−directions, parallel to the walls (as TMAC = 1). For this reason, the self-diffusivity

shows a decreasing tendency with increasing confinement, which is logarithmic-like as

predicted theoretically by some studies (Bocquet & Barrat, 1995; Simonnin et al., 2017)

(dashed lines are here included as a guide to the eye). If the confinement ratio is large

(R ≥ 50), an excellent agreement is found between our simulations of a dense fluid
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Figure 3.3: Self-diffusivities from EDMD simulations for various confinement ratios as
they vary with: (a) Knudsen number and (b) reduced density. Dashed lines in (a) show
data at equal packing fractions, where gas is considered as dense for η ' 0.01 and dilute
otherwise. The solid line in (b) represents the theoretical prediction for the molecular
self-diffusivity.

and the bulk self-diffusion coefficients at the same reduced density, with all deviations

below 2.5%. The results shown in Table 3.1, Table 3.2 and Figure 3.2 represent the

validation of the EDMD code, which was developed in house, to accurately compute the

self-diffusion coefficient for both confined and bulk-like fluids.

The self-diffusivity results that are presented in the remaining part of the chapter are

obtained using the Einstein relation from Eq. (3.1). This choice stems from its overall

lower computational cost over the Fickian approach, and also because of the convenience

of producing self-diffusivities independent of `y, as shown in Table 3.1 and Table 3.2. To

provide a more comprehensive picture, besides the self-diffusivities reported in Figure 3.2,

we also show results for the rarefied end of reduced densities (lower η) in Figure 3.3.

Note that η ≈ 0.01 can be roughly considered as the threshold between dense and dilute

gas, since for lower values of the reduced density the compressibility factor of the fluid

deviates from unity (ideal gas behaviour) less than 5%, see Eq. (2.2).

Self-diffusion coefficients are presented as a function of Kn in Figure 3.3a, while the

analysis is performed with respect to η in Figure 3.3b. As expected, self-diffusivities

increase (decrease) with Knudsen number (packing fraction) because particles have more

room to move freely before colliding with another entity in the system. The Knudsen

diffusion mechanism, where Kn goes to infinity because of the zero density limit, is

associated with the largest mobility for a given R. The lower self-diffusivity threshold is

related to larger reduced densities through the molecular diffusion mechanism, where

the fluid enters the metastable regime after freezing at η = 0.494 (Sigurgeirsson & Heyes,

2003).
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3.3.2 Splitting Fluid-Fluid and Fluid-Wall Collisions

Collisions are the main driving mechanism for diffusion, and as such, making a distinction

between fluid-fluid (molecular) and fluid-wall (Knudsen) collisions would give us a better

understanding of how these are influenced by rarefaction and confinement. Particles are

scattered isotropically when they collide with other particles, which is in clear contrast to

when they collide with the wall, where particle re-emission occurs towards the half-space

occupied by the fluid.

Figure 3.4 shows the different collision frequencies, defined per unit molecule, between

fluid particles (υFF ), fluid particles and the wall (υFW ), and the overall sum (υFF +υFW ),

measured directly from our EDMD simulations in two slits characteristic of tight (R = 2)

and unconfined (R = 100) conditions. For“small”Knudsen numbers (Kn . 2), fluid-fluid

collisions dominate as expected. At Kn ∼ 2, we observe a crossover point for both slits

at which fluid-wall and fluid-fluid collisions are similar. For larger Knudsen numbers

(Kn & 2), fluid-wall prevail with respect to intermolecular collisions. A tight confinement

has a role in both increasing the number of collisions (υFW and υFF ), which is attributed

to dense effects becoming more prominent, and in narrowing the difference between

υFW and υFF in the earlier Knudsen numbers, which in this case is at least two orders

of magnitude, i.e. υFW becomes more important for small R.

The fluid-fluid collision frequency υFF can be estimated from elementary arguments of

kinetic theory of a dense gas as the mean thermal speed v̄ over the mean free path λ

υFF =
v̄

λ
=

24√
π

ηχ

σ

√
kT

m
, (3.5)
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while a different theoretical derivation is involved when evaluating the fluid-wall collision

frequency υFW , where the characteristic length is no longer the MFP but the particle-

centre accessible region h

υFW =
1

2

v̄

h
=

1

2

√
8kT

πm

1

h
. (3.6)

Eq. (3.5) for fluid-fluid collisions agrees very well with our EDMD results, except for

slight deviations at low Knudsen numbers in the tight channel (R = 2), which occur

because small density inhomogeneities are apparent in the middle of the channel for

ultra-tight confinements (bulk behaviour is never retrieved within the slit channel).

Fluid-wall interactions deviate significantly from Eq. (3.6) at high fluid packing. This

occurs because the ordering of fluid density near the wall can be several times higher

than the nominal density, on which the theoretical equation has been derived, which

leads to an increase in the collision frequency with the wall. For R = 100, this effect of

fluid-wall collisions due to layering is negligible on the total number of collisions, as can

be seen in Figure 3.4, where υFF � υFW . However, its effect on R = 2 is not negligible.

These findings emphasise the importance of the transition regime (0.1 . Kn . 10), in

which there is an interplay of both fluid-fluid and fluid-wall collisions impacting the

self-diffusivity, which are also influenced by ordering at low Kn and high confinement.

A more convenient parameter that we will use to distinguish the interplay between the

different collision frequencies is the intermolecular collision frequency ratio β, defined as

β =
υFF

υFF + υFW
=

2

2 +Kn
. (3.7)

A very good agreement was found between this theoretical approximation and our

EDMD results for channels with large R, whereas, as shown in Figure 3.5, Eq. (3.7)

overpredicts the actual β with increasing magnitude as R gets smaller. The largest

discrepancies are associated with the dense η limit, which produces the lower Knudsen

numbers according to Eq. (3.3). As before, the underpinning reason of this discrepancy

is that Eq. (3.7) assumes that the fluid is homogeneous, which is not the case for high

confinements.

3.3.3 A Semi-Analytical Model for Self-diffusivity

In this section, we derive a semi-analytical model that allows us to predict the self-

diffusivity results presented in Figure 3.3. The diffusion assessment will be based on the

β values at different flow regimes which, by definition, must take values in the range

[0, 1]. Small Knudsen numbers, i.e. the continuum regime, are related to β close to

unity because of the predominant role of fluid-fluid interactions. On the other hand,

large Knudsen numbers in the free molecular regime are associated with small β, which

eventually tends to zero when there are just collisions with walls in the ballistic limit.
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Figure 3.5: Ratio between fluid-fluid and total (fluid-fluid and fluid-wall) collision
frequencies with respect to Kn.

Finally, the analysis for transitional Knudsen numbers considers intermediate β values,

accounting for both fluid-fluid and fluid-wall collisions in varying degrees. In each case,

we identify the predominant physical mechanism and discuss the appropriate analytical

expressions for the self-diffusivity.

Continuum Regime (large β values)

For β close to unity, fluid-fluid collisions are the most predominant form of interaction,

and the fluid approaches the continuum regime. The classical description of molecular

diffusion in the bulk applies, and the following semi-empirical formula can be used to

predict the molecular self-diffusivity of a hard-sphere fluid (Erpenbeck & Wood, 1991)

Dm = DE

(
1 + c1η + c2η

2 + c3η
3
)
, (3.8)

where the fitting parameters are c1 = 0.0730, c2 = 11.6095, and c3 = −26.9511, and DE

is the first order approximation of the self-diffusivity according to the Enskog kinetic

theory for dense fluids, whose definition involves the Boltzmann-based prediction over

the pair correlation function χ

DE =
σ

16η

√
kTπ

m

1

χ
=

3RσKn

8

√
2kTπ

m
. (3.9)
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Figure 3.6: Comparison between self-diffusivities from EDMD simulations (solid circles)
and Bosanquet predictions, Eq. (3.11) (solid lines). Dashed lines represent the molecular
self-diffusivity approximation from Eq. (3.8), whereas dash-dotted lines show the Knudsen
self-diffusivity from Eq. (3.10). Inset: ratio of predicted self-diffusion values over EDMD
results. Same colour scheme for symbols is used as that in Figure 3.3.

Note that this semi-empirical approximation accurately reproduces simulation results

for β ≥ 0.9, i.e. Kn ≤ 0.1, showing a maximum 5.7% relative error with respect to

our EDMD results when R ≥ 20, as emphasised by the dashed lines in Figure 3.6. In

Eq. (3.8), the term within brackets is a correction factor that accounts for dense effects

not captured by the Enskog theory.

Free Molecular Regime (small β values)

The first comprehensive experimental study of the free molecular regime was carried

out by Martin Knudsen, inspired by the experimental prowess of Poiseuille and the

consequences of the kinetic theory derived by Maxwell and Boltzmann (Knudsen,

1909). By studying the pressure-driven flow of gases through capillaries, Knudsen first

found agreement with the slip-modified version of the laws of Poiseuille, and then kept

decreasing the inlet pressure until the point in which the mean free path was much

larger than the capillaries size, i.e. very large Kn. By doing this, he found that the

representation of the normalised flow output exhibits an unexpected behaviour when

being represented with respect to the inlet pressure, with no clear explanation at the

time1. Specifically, the mass flow rate curve shows a monotonic increase in the free

1. “What the effect of all this will be is hard to say, the problem has not yet been solved even in its first
approximation. Perhaps somebody in the audience would like to solve the problem”. Martin Knudsen
(1933), transcription of a “Molecular flow of gases through tubes” lecture delivered in London.
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molecular regime, which cannot be predicted using hydrodynamic equations. For β close

to zero, fluid-wall collisions are the most predominant form of interaction, and the fluid

accordingly approaches the free molecular regime (Kn ∼ ∞). The first-order kinetic

theory prediction of the Knudsen self-diffusivity in infinite planar channels is given

by Hiby and Pahl (1952)

Dk =

√
8kT

πm

Rσ

4

(
3

4
+ ln

Kn

γ

)
, (3.10)

where γ = eC = 1.781 and C ≈ 0.5772 is the Euler-Mascheroni constant. In Figure 3.6,

the predictions given by Eq. (3.10) are the dash-dotted lines presented in the collisionless

regime, for Kn & 10. Note that Eq. (3.10) underpredicts the self-diffusivity when

Kn . 50, with deviations larger than 5%, because intermolecular collisions are not

properly considered in this range of Kn while still being relevant, i.e. this can be seen

by closer inspection of Figure 3.5, where β ∼ 0.1 for these Knudsen numbers.

It is worth noticing that the Knudsen self-diffusivity, as predicted by Eq. (3.10), scales

linearly with the confinement ratio R and shows a logarithmic divergence with respect

to the Knudsen number. This self-diffusivity singular behaviour can be attributed to

the slit geometry (Arya et al., 2003). Indeed, when Kn goes to infinity, there are a

growing number of outlier molecules with zero (or sufficiently close to zero) x−velocity

components (normal to the walls) that do not experience any collisions. Therefore, their

contribution to the MSD grows linearly in time and eventually causes the self-diffusion

coefficient to grow without any bound. The presence of this type of particle behaviour

is likewise responsible for the mass flux divergence of a flow driven by a pressure

gradient (Cercignani & Daneri, 1963).

Transition Regime (intermediate β values)

For intermediate β values, both fluid-fluid and fluid-wall collisions are relevant and must

be considered. This situation corresponds to the more challenging transition regime,

where self-diffusivities take a value in between the molecular and Knudsen results. From

Figure 3.5, we can roughly estimate that fluid-wall collisions can no longer be neglected

at about Kn ∼ 0.1, as they represent well above 10% of the total number of collisions.

The Bosanquet interpolating formula has been used in the past to deal with bulk and

rarefied gases (Pollard & Present, 1948) inside cylindrical capillaries or porous media.

In this work, we find that the Bosanquet formula is an acceptable model also for dense,

confined fluids, and allows us to predict the self-diffusivity for these intermediate β

values
1

DB
=

1

Dm
+

1

Dk
. (3.11)
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The rationale underlying the applicability of Eq. (3.11) is that in the diffusion process,

particles perform a random walk composed of steps whose length follow the Poisson

distribution, with mean equal to the particle collision frequency. In the transition regime,

both fluid-fluid and fluid-wall collisions must be considered, and the corresponding

collision frequencies sum up because this constitutes the mean of the sum of two

independent Poisson distributions. As the self-diffusivity is proportional to the reciprocal

of the collision frequency, Eq. (3.11) follows this tendency as well.

It is worth noticing that, by construction, the Bosanquet formula agrees exactly with

the molecular self-diffusivity in the continuum regime, and with the Knudsen self-

diffusivity in the free molecular one. However, using Dk from Eq. (3.10) within the

Bosanquet formalism in Eq. (3.11) leads to self-diffusivity predictions in poor agreement

with numerical results in the transition regime. This can be explained by the fact

that the formal definition of Knudsen self-diffusivities encompass two very different

effects, namely the logarithmic divergence due to the slit geometry and the increasing

importance of fluid-wall collisions. In order to decouple these two effects and quantify the

contribution of fluid-wall collisions (which is the only one that the Bosanquet formula

may capture), the Knudsen self-diffusivity has to be defined in a different way, e.g. by

phenomenologically extending the expression derived for a cylindrical capillary (Bonilla

& Bhatia, 2011) to a planar channel configuration

Dk =
Rσ

3

√
8kT

πm
a∗1. (3.12)

The factor a∗1 = 4/5π is a fitting parameter2, which was tuned to match the EDMD data

within the early transition regime, in order to capture the initial deviations with respect

to the continuum values. This approach leads to good predictions of the self-diffusivities

across 0 . Kn . 10 for most of the channel heights considered in our study, as it can

be observed from solid lines in Figure 3.6.

More specifically, Eq. (3.11) provides fairly good predictions of the self-diffusivity except

for tight confinement (i.e. R ≤ 5), with a relative error below 10% — see the inset in

Figure 3.6. The deviations for small confinement ratios R can be explained by the poor

accuracy of the Dm prediction, as given by Eq. (3.8). Indeed, the continuum regime

is never reached in tight channels because the Kn is still remarkably larger than zero

when the freezing reduced density is reached.

2. “With four parameters I can fit an elephant, and with five I can make him wiggle his trunk”. John
von Neumann to Enrico Fermi.
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3.3.4 Scaling of Self-Diffusivities with Confinement

From visual inspection of Figure 3.3a, it seems that self-diffusivities scale linearly with

R, which would imply that D/R ratios are equivalent at a given Knudsen number,

independently on the fluid rarefaction state and channel characteristic length. The

collapse of self-diffusivities, which had already been suggested in previous studies (Mittal

et al., 2006, 2007), may also be inferred from Figure 3.7, where we present the EDMD

simulation results divided by the confinement ratio at which the simulations were

performed. Despite the master curve (representing the scaled results for R ≥ 5) looks

particularly good on a log-log plot, it is needed to point out that the linear scaling of

self-diffusivities with confinement does not actually hold true.

The functional form of Eq. (3.10) reveals that the linear relationship between Dk and

R exists in the free molecular regime, but this is no longer the case in the continuum

regime, where fluid-fluid collisions drive the diffusion process. Indeed, the Enskog self-

diffusivity DE , Eq. (3.9), depends linearly on the confinement ratio R, but the true

molecular self-diffusivity Dm, Eq. (3.8), includes a correction factor that varies with the

packing fraction η and, in turn, with the confinement ratio for equal Kn (as emphasised

in the inset of Figure 3.7). More specifically, at intermediate packing fractions (up

to η ∼ 0.3), the self-diffusivity is larger than the prediction from Eq. (3.9) due to

hydrodynamic enhancement consequences (Alder & Wainwright, 1967), whereas at
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Figure 3.8: Self-diffusivities as a function of the wall microscopic roughness, in tight
(R = 5, squares) and quasi-bulk (R = 100, circles) channels. Coloured solid lines
represent the Bosanquet predictions, defining Dk as in Eq. (3.13).

higher reduced densities, the cage entrapment of particles comes into play causing the

actual self-diffusivity to drop (Speedy, 1987). Since this property breaks down in the

continuum regime, by extension the linear scaling with R cannot be considered as

universal throughout the entire range of Kn.

Regardless, it is worth noticing that the linear scaling assumption may provide a rough

estimate of the self-diffusivity, with deviations within 3% as long as the packing fraction

is low enough, e.g. η . 0.05. Therefore, it is clear that this simplifying assumption

is especially inaccurate for small R, i.e. in shale gas reservoir applications, where the

continuum regime can only be reached at a very large fluid density.

3.3.5 Effect of TMAC on Self-Diffusivities

The wall roughness is anticipated to affect the self-diffusivity, especially for small β

values (Krekelberg et al., 2011). In the Maxwell scattering kernel, the wall roughness

is represented by the tangential momentum accommodation coefficient, i.e. from ideal

perfectly smooth walls (TMAC = 0) to more realistic engineering walls (TMAC = 1).

Simulations are performed at different TMACs = [0, 0.05, 0.125, 0.25, 0.5, 0.75, 1], and

the resulting self-diffusivities are reported in Figure 3.8 as a function of Kn. Results are

presented for two different cases, which are representative of loose (R = 100) and tight

(R = 5) geometries.
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When the fluid is loosely confined, diffusivity results for various TMACs collapse in

the continuum regime (Kn ≤ 0.1) as expected, whereas this is not the case in the

tightly confined scenario. A close inspection of the results for continuum-like Kn reveals

an increase in self-diffusivity with decreasing TMAC, which indicates that fluid-wall

collisions remain important for low R values in this regime, and cannot be neglected.

Note that when molecules are subjected to a specular reflection with the wall, there is

no tangential momentum transfer, and so this represents the zero friction limit where

the presence of walls is no longer felt by the fluid. Accordingly, the upper limit of

self-diffusivities is associated with TMAC = 0.

As in Section 3.3.3, here we also derive a semi-analytical formula for retrieving the

self-diffusivities as a function of TMAC. Although the Maxwell scattering kernel is used

in this study, one cannot expect to use the Smoluchowski prefactor (Bhatia et al., 2011)

to rescale the Knudsen self-diffusivity Dk defined through Eq. (3.12). Indeed, the latter

is just an ad hoc definition introduced to permit one to capture the crossover between

molecular and Knudsen self-diffusivity using the Bosanquet formula.

A phenomenological approach is used here for extending the self-diffusivity predictions to

the case of partial accommodation coefficients. More specifically, numerical experiments

suggest that the following functional form for this prefactor is more appropriate to scale

the Knudsen self-diffusivity (Liang & Li, 2019)

Dk =

(
1 + f

1− TMAC

TMAC

)
DTMAC=1
k , (3.13)

where f = 1.2261 is a fitting parameter and DTMAC=1
k is the Knudsen diffusivity

obtained for fully diffuse walls, as introduced in Eq. (3.12).

In Figure 3.8, we show that Eq. (3.13) provides an accurate estimate of the self-diffusivity

of a fluid confined within walls of different roughness, as a function of TMAC. For the

loose confinement cases, where Eq. (3.8) accurately reproduces the diffusive dynamics

in the continuum regime, the average relative error of the Bosanquet prediction is

below 3.2% for the different accommodation coefficients in our assessment. For tighter

geometries, where the influence of fluid-wall collisions is more notorious, the transition

between molecular and Knudsen self-diffusivities is also successfully predicted at different

TMAC values, when defining Dk as in Eq. (3.13).

Finally, it should be mentioned that Eq. (3.13) predicts an infinite Knudsen self-diffusivity

for fully specular walls, i.e. TMAC = 0. For this case, 1/DK = 0 and this term can be

neglected from Eq. (3.11), giving D = Dm for all Knudsen numbers and confinement

ratios. This prediction is represented by the black solid lines in Figure 3.8, showing the

maximum self-diffusivity at a given rarefaction state, i.e. bulk behaviour of the fluid

with no confinement influence.
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3.4 Conclusions

We have carried out a comprehensive and fundamental study of the self-diffusion process

for a hard-sphere fluid confined between two parallel infinite walls, with data measured

from EDMD simulations. Three dimensionless groups were adopted to characterise

the self-diffusion process, namely the Knudsen number, the confinement ratio and the

reduced density. The tangential momentum accommodation coefficient was used to

define the roughness of the wall.

We found that the Bosanquet formula was able to provide a very satisfactory prediction

of the self-diffusivity from the continuum to the early free molecular regime (Kn ≤ 10),

beyond moderately low confinements (R > 5) and from smooth to rough surfaces (all

TMACs). Importantly, this work provides insights and predictions of self-diffusivity

into the challenging transition regime, that was missing in the literature. A splitting

procedure of the colliding particles has identified the interplay between the underpinning

diffusive mechanisms, namely molecular and Knudsen diffusion for dense, confined fluids.

Some deviations between the theory and the results for extremely tight geometries

(R ≤ 5) were observed, which can be explained by the inability of the fluid to show a

continuum behaviour, i.e. fluid-wall collisions cannot be neglected even at densities close

to the fluid freezing point, that corresponds to the smallest attainable Kn.

In summary, we can now predict self-diffusivity for dense hard-sphere fluids confined in

two-dimensional slit geometries for any roughnesses, using Eq. (3.8), Eq. (3.9), Eq. (3.11),

Eq. (3.12) and Eq. (3.13) for 0 < Kn ≤ 10 and Eq. (3.10) for Kn > 10. In the validation

part of our study, we have analysed the suitability of using the widely established Einstein

relation for describing the diffusion of strongly inhomogeneous fluids. Despite molecules

traverse regions with different local densities, the MSD-based approach yields the same

values as the Fickian benchmark model, and therefore the Einstein self-diffusivity is

valid for predicting the diffusive flux even at the molecular scale.

Finally, we have also assessed previous work on the scaling of self-diffusivities with

confinement. It was concluded that this relationship can only be considered approximately

linear when the fluid is sufficiently rarefied (η ≤ 0.05) or whether it is confined inside

fully specular (frictionless) walls, none of them being appropriate for shale gas flows.

This work lays the foundation to a more precise modelling of dense, confined flows for

engineering applications, where there is an interplay between diffusive and convective

processes, and to build on this for more realistic fluid and surfaces. As a matter of fact,

the self-diffusivity results obtained in this work were later compared with methane gas

results within realistic kerogen samples corresponding to a similar range of confinement

ratios and Knudsen numbers (Alafnan, 2022), showing good quantitative agreement in

general. This shows the capability of our simple, but robust, fluid-wall configuration to

economically capture the true physics in more realistic configurations.



Chapter 4

On the Knudsen Minimum

Disappearance

N.B. This chapter has been published in: Corral-Casas, C., Li, J., Borg, M.K., Gibelli,

L. “Knudsen minimum disappearance in molecular-confined flows”. Journal of Fluid

Mechanics 945, A28 (2022).

It is well-known that the Poiseuille mass flow rate along microchannels shows a stationary

point as the fluid density decreases, referred to as the Knudsen minimum. Surprisingly, if

the flow characteristic length is comparable to the molecular size, the Knudsen minimum

disappears, as reported for the first time by L. Wu et al. (2016). However, there is still no

fundamental understanding why the mass flow rate monotonically increases throughout

the entire range of flow regimes. Although diffusion is believed to dominate the fluid

transport at the nanoscale, here we show that the Fick’s first law fails in capturing this

behaviour, and so diffusion alone is insufficient to explain this confined flow phenomenon.

Rather, we show that the Knudsen minimum disappears in tight confinements because

the decay of the mass flow rate due to the decreasing density effects is overcome by the

enhancing contribution to the flow provided by the fluid velocity slip at the wall.

4.1 Literature Survey

Fluids confined within geometries of molecular dimensions are commonly encountered

in geological and biological systems (Bocquet & Charlaix, 2010), as well as in many

engineering applications, e.g. membrane science (Mistry et al., 2021), that have been

constantly growing in recent years — fostered by the technological progress in the

fabrication of nanofluidic devices (Kavokine et al., 2021). In these flows, three significant

length scales can be identified: the diameter of fluid constituent particles σ, the flow

characteristic length, which is related to the channel diameter d, and the molecular

mean free path (MFP) λ, which represents the average distance travelled by particles

between two consecutive collisions. The interplay of phenomena occurring at these

scales leads to complex fluid behaviour. Indeed, the continuum approach based on the

50
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Navier-Stokes (NS) equations breaks down with increasing rarefaction (λ ∼ d), since the

local thermodynamic equilibrium condition is not fulfilled. Likewise, the standard kinetic

theory description is no longer accurate at the nanoscale where dense (λ ∼ σ) and

confinement (d ∼ σ) effects come into play, implying that the Boltzmann equation must

be replaced by more complicated kinetic models, such as the Enskog equation (Kremer,

2010).

Despite the availability of computational procedures to describe the flow of confined fluids,

the fundamental understanding of many phenomena occurring under tight confinement

is still lacking. A notable example is that, for simple fluids, the Poiseuille mass flow rate

(MFR) is found to monotonically increase in channels of molecular dimensions when the

fluid density decreases, by using numerical solutions of the Enskog equation (L. Wu et

al., 2016) and event-driven molecular dynamics simulations (Sheng et al., 2020). This

behaviour is in sharp contrast with the long-standing recognition of flow mechanics in

microchannels, which instead exhibits a non-monotonic variation of the MFR and the

formation of a stationary point referred to as the Knudsen minimum (Cercignani &

Sernagiotto, 1966; Pollard & Present, 1948; Tatsios et al., 2015), as long as the channel

is sufficiently long and does not contain any bends (Ho et al., 2020).

A possible explanation of the Knudsen minimum disappearance is that the transport in

dense fluids changes from convection to molecular diffusion under tight confinements,

which already served as the foundation for the study presented in Chapter 3. Here,

molecular diffusion is referred to as the diffusive mechanism which is driven by the

interactions between fluid particles in the continuum limit (λ� d), and it is distinguished

from the Knudsen diffusion phenomenon that takes place in the free molecular limit

(λ � d), where particles only collide ballistically with the wall (Xiao & Wei, 1992).

The dominance of diffusive transport at the nanoscale is known to take place for long

alkanes in porous media, where the hydrodynamic description breaks down, although

doubt remains for single-site gas molecules (Falk et al., 2015; Obliger et al., 2018).

Despite there is no unequivocal evidence that this behaviour also occurs for non-tortuous

channels, some hints supporting the diffusive nature of Poiseuille flow transport in

tight geometries are provided by the analysis of velocity profiles. These are no longer

parabolic as expected for force/pressure-driven flows, but show a plug-like behaviour

instead, suggesting the predominance of diffusive mechanisms (Firouzi & Wilcox, 2013).

However, a conclusive proof regarding a crossover from convection to molecular diffusion

in these systems, that is triggered by the fluid confinement, has still not been given.

The aim of this chapter is to perform a detailed investigation of the Knudsen minimum

disappearance in straight nanochannels, and elucidate the underpinning physical reasons.

There are two main findings. First, despite the molecular-like confinements, we show that

diffusion does not dominate transport, and so the convective flow contribution cannot
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be neglected outside the free molecular regime. Second, we show that the monotonic

increase of MFR can be attributed to the larger relative importance of the velocity slip

at the wall, compared to the other physical mechanisms that are normal contenders

at the microscale. The rest of the chapter is organised as follows. In Section 4.2 we

outline the simulation approach used to numerically study the transport process, as well

as the theoretical formulation for predicting the flow of fluids using the Navier-Stokes

equations. In Section 4.3.1 we show that the Knudsen minimum vanishing in straight

nanochannels cannot be attributed to diffusive processes, whereas in Section 4.3.2 we

prove that the contribution of the fluid slippage at the confining solid surface provides

a satisfactory explanation of this recently discovered feature. A summary of the main

results and conclusions follow in Section 4.4.

4.2 Methodology

4.2.1 Simulation Setup and Problem Formulation

We consider force-driven Poiseuille flows inside a long tubular geometry with diameter

d, where the fluid is modelled using a system composed of hard-sphere particles with

molecular diameter σ. The wall is assumed to be a structureless cylindrical surface

and the fluid-wall interactions are described by the Maxwell scattering kernel with

full tangential momentum accommodation coefficient, where impinging particles are

diffusely reflected after being thermalised with the wall. A comprehensive overview of

the EDMD algorithm can be found in Section 2.5, whereas more information on the

simulation setup is presented in Corral-Casas et al. (2021).

Three dimensionless groups can be identified to systematically describe the different

transport processes that may take place in this system, namely the reduced density, the

confinement ratio, and the Knudsen number. The reduced density η = nπσ3/6, where n

is the number density, represents the number of fluid particles in the theoretical volume

occupied by one hard-sphere. This first dimensionless group defines the degree of fluid

rarefaction, allowing to differentiate between dense (large η values) and rarefied (low

η values) gas flows. The confinement ratio R = d/σ provides information about the

degree of fluid inhomogeneity that arises because of the presence of walls, where tight

confinements (low R values) are associated with an increase of the collision frequency of

fluid particles with the wall. Finally, the Knudsen number Kn = λ/ (d− σ) quantifies

the departure of the fluid from its local quasi-equilibrium case. The continuum approach

can be used for Kn . 0.01, while non-equilibrium effects come progressively into play

in the following three regimes: slip (0.01 < Kn . 0.1, where the continuum model

still holds but different boundary conditions are needed to capture the “slippage” of

fluid particles at the solid surface), transition (0.1 < Kn . 10, where the continuum
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description breaks down and kinetic equations must be used instead), and free molecular

(Kn > 10, where molecules move ballistically between collisions with the confining wall).

The expression of the MFP, derived from kinetic theory, is given by (Kremer, 2010)

λ =
16

5π

µ

P

√
πkT

2m
, (4.1)

where m is the molecular mass and P is the pressure, related to the density through

P = nkTZ, in which k is the Boltzmann constant, T the temperature of the system,

and Z is the fluid compressibility factor that can be accurately approximated by the

equation of state in Eq. (2.2). According to the Enskog theory, the shear viscosity µ of

a hard-sphere fluid is given by

µ =
5

16σ2

√
mkT

π
µf =

5

16σ2

√
mkT

π

1

χ

[
1 +

16

5
ηχ+

64

25

(
1 +

12

π

)
η2χ2

]
, (4.2)

where µf is the dense gas correction for the viscosity of a rarefied gas, and χ represents

the contact value of the pair correlation function in a hard-sphere fluid in uniform

equilibrium, which from the aforementioned equation of state reads

χ =
1

nb

(
P

nkT
− 1

)
=

1

2

2− η
(1− η)3 , (4.3)

where b = 2πσ3/3 is the second virial coefficient (Kremer, 2010). Only two out of

the three dimensionless groups are independent, as they are interrelated through the

Knudsen number

Kn =
λ(η)

d− σ =
µf (η)

6
√

2ηZ(η)R
. (4.4)

4.2.2 Flow Analytical Solutions. Hagen-Poiseuille Equations.

The Navier-Stokes equations (in cylindrical coordinates) for the incompressible flow of a

Newtonian fluid through an infinite tubular channel simplify to

1

r

∂

∂r

(
r
∂uz
∂r

)
=

1

µ

dP

dz
, (4.5)

where uz is the fluid macroscopic velocity in the streamwise direction, and r is the radial

direction. The first-order slip at the wall, r = d/2, can be written as

us = −αλ∂uz
∂r

∣∣∣∣
r=d/2

, (4.6)
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where us is the slip velocity, and α = 2/
√
π is the velocity slip coefficient (Lei et al.,

2016). The straightforward solution of the boundary value problem comprising Eq. (4.5)

and Eq. (4.6) reads

uz(r) =
1

4µ

dP

dz

(
r2 − dαλ− d2

4

)
. (4.7)

The spatial integration of the velocity field over the circular cross section yields the

Hagen-Poiseuille solution for the MFR

ṁh = mn

∫ d/2

0
uz(r)2πrdr = −mnπd

4

128µ

dP

dz
(1 + 8αKn) . (4.8)

The dimensionless MFR in the continuum limit, Kn ≈ 0, can be obtained from Eq. (4.8)

by setting α = 0, namely the non-slip solution, and η0 = 0.494, i.e. the freezing density

of a hard-sphere fluid (Sigurgeirsson & Heyes, 2003)

ṁh

ṁn
=

3Rη0

5
√
πµf (η0)

, (4.9)

where ṁn is a normalising factor for the mass flow rate defined as

ṁn = −mn0
πd2

4

1

m

1

n0

dP

dz

d√
kT/m

= − πd3

4
√
kT/m

dP

dz
. (4.10)

4.3 Results and Discussion

4.3.1 Knudsen Minimum Vanishing. Diffusion-Based Analysis

The Knudsen minimum disappearance, which was initially presented for the slit geometry

in L. Wu et al. (2016), is demonstrated for a cylindrical pipe in this work, where it is

seen to occur between R = 20 and R = 8 in Figure 4.1a. Here, we show transport results

from non-equilibrium EDMD simulations that are performed in the presence of an

external unidirectional force per molecule F along the axis of the channel, whose value

is assumed to be sufficiently low so that the flow remains in the linear response regime

— the artificial addition of heat is adequately dissipated by the wall. The numerical

evaluation of the MFR for each case, depending on η and R, is obtained from a spatial

integration of local densities and velocities.

As mentioned in Section 4.1, the Knudsen minimum vanishing might be explained by

supposing that, under molecular confinements, a crossover from convective to diffusive

transport takes place up to the late transition regime (Kn . 10). This hypothesis is

tested by comparing the actual MFR (from EDMD simulations) with the analytical

estimate assuming that the transport is solely driven by diffusion, which is based on the
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ṁ
/ṁ

n

Knudsen number, Kn

EDMD results
Fickian ṁd/ṁn
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Figure 4.1: (a) Comparison between the dimensionless MFR provided by non-equilibrium
simulations (symbols) and the theoretical predictions assuming Fickian diffusion, as given
by Eq. (4.11) (lines). There is good agreement in the free molecular regime (Kn ≥ 10),
whilst Fick’s law underestimates MFR elsewhere, which implies that convective transport
terms cannot be neglected at any confinement. The normalising factor of the mass
flow rate ṁn is presented in Eq. (4.10). (b) Dependence of the self-diffusivity D on
the Knudsen number Kn and the confinement ratio R. Horizontal lines represent the
theoretical value of the Knudsen self-diffusivity from Eq. (4.12) for each R.

Fick’s first law where the MFR of diffusing particles ṁd follows a linear response with

the density gradient along the axial z−direction dn/dz

ṁd = −πd
2

4
mD

dn

dz
= − Dπd2m

4kT
(
Z + η dZdη

) dP
dz
, (4.11)

in which D is the self-diffusion coefficient. Note that the number density n and pressure

P are interconnected using Eq. (2.2), with the pressure gradient being identified with

the force F through the fundamental relation given by −dP/dz = nF .

However, before comparing the MFR simulation results with the predictions given by

Eq. (4.11), self-diffusion results D are needed as this information is unavailable in the

literature for the cylindrical geometry under confinement. Therefore, a set of equilibrium

EDMD simulations is carried out, see details in Chapter 3, where the self-diffusion

coefficients are determined by means of the Einstein relation in the entire range of flow

regimes, for different confinement ratios of interest. These simulation results are shown

in Figure 4.1b, where it can be seen that, from a qualitative standpoint, self-diffusivities

increase with Knudsen number because the MFP becomes larger and therefore particles

have more mobility before colliding with another entity in the system. At the same

time, self-diffusivities increase with the flow characteristic length for a given Kn, as

large R values imply less collisions with the diffuse wall model that hinder the molecular

displacement in the streamwise direction. Note that in the free molecular limit, where
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there are just diffuse collisions with the wall, numerical results perfectly agree with the

analytical Knudsen self-diffusivity prediction from kinetic theory (Xiao & Wei, 1992)

Dk =
(d− σ)

3

√
8kT

πm
, (4.12)

where it has been accounted for the fact that the effective transversal space accessible

to the centre of molecules is d− σ, that is, the flow characteristic length. The dimen-

sionless MFR in the free molecular limit (Kn ∼ ∞) is provided by the equation for

diffusive transport, Eq. (4.11), with the Knudsen self-diffusivity from Eq. (4.12) as the

proportionality factor, Z = 1, and using the normalisation from Eq. (4.10)

ṁd

ṁn
=
Dk

d

√
m

kT
=

2

3

√
2

π

(
1− 1

R

)
. (4.13)

As presented in Figure 4.1a, it is found that the Fick’s first law unsurprisingly reproduces

the MFR simulation results very well in the free molecular regime. The slight disagree-

ment in the tightest of confinements (for R = 3) can be attributed to the transition

from Fickian to anomalous diffusion (e.g. of single-file type) as particles cannot overtake

each other when moving along the channel. However, it is evident that Eq. (4.11)

underestimates the mass transport along the remaining flow regimes (Kn . 10), and

therefore the governing mechanism in this range of Kn is no longer purely diffusive.

This clearly proves that, in straight channels, the supposed crossover from convection

to diffusion does not occur even under tight confinements and, consequently, cannot

explain the Knudsen minimum disappearance. Note that these results do not imply that

diffusion is not the governing transport mechanism within more complex geometries,

such as in nanoporous media, which will need to be addressed separately.

4.3.2 Knudsen Minimum Vanishing. Slip-Based Analysis

As discussed so far, there are a number of mechanisms that influence the MFR through

a channel, and so the best explanation for describing the features of the MFR dynamics

can be inferred in the limits of the continuum (Kn ≈ 0) and free molecular (Kn ∼ ∞)

regimes, as we illustrate in Figure 4.2a. As suggested by the analysis from Section 4.3.1,

the fluid flow is convective in nature in the hydrodynamic regime, regardless of R. When

moving towards the free molecular regime (i.e. decreasing density values), the MFR

initially increases as the viscosity decreases, implying that the fluid velocity arising as

a response to a given external driving force will be larger. By contrast, the fluid flow
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Figure 4.2: (a) Qualitative analysis of the dimensionless MFR curves against the Knudsen
number. In sufficiently large channels (orange colour), where the continuum transport
is larger than the free molecular one, the MFR curve develops two stationary points.
In tighter confinements (blue colour), where the free molecular flow is larger than the
continuum one, the MFR curve could either show the two stationary points or follow
a monotonic increase instead, where the Knudsen minimum disappears. (b) Relative
percentage error of the MFR predicted by the Navier-Stokes equations with slip, for
different confinement ratios. Dashed horizontal lines are the average percentage error
over the displayed range of Kn: the mean error is within 8% for the tighter R = 5,
whereas it reduces to less than 4% for the largest R = 50 considered here. The inset
shows the slip coefficients determined from EDMD simulations, for different R and η
values, obtained by fitting the quadratic velocity profiles.

is driven by Knudsen diffusion in the free molecular regime. This means that, when

moving back towards the continuum regime (i.e. increasing density values), the MFR

decreases as the molecular MFP shortens, implying lower self-diffusivities as observed

in Figure 4.1b.

Under a sufficiently loose confinement, the Knudsen minimum existence follows from

these two limiting behaviours. As the MFR in the continuum limit is always larger than

that in the free molecular one, the MFR curve must show two stationary points as

depicted by the orange curve in Figure 4.2a, namely the Knudsen maximum and the

Knudsen minimum. Therefore, a sufficient condition for the Knudsen minimum to show

up easily follows from the condition that the MFR in the continuum limit, given by

Eq. (4.9), is larger than that in the free molecular regime, given by Eq. (4.13), from

where it turns out that R & 60. On the other hand, if the confinement is tighter, the

continuum MFR is lower than the free molecular one. Accordingly, the flow transport

curve may either form two stationary points, given by the blue dotted line, or else

could show a monotonic increase throughout the entire range of Knudsen numbers, as

represented by the blue solid line.
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It is then clear that, for the confined case, a necessary and sufficient condition for

the Knudsen minimum to appear is that the Knudsen maximum shows up as well.

Indeed, the first derivative is positive in the continuum regime but, by definition, it is

negative in the left neighbourhood of the local minimum. Therefore, before this local

minimum, there must necessarily be a point at which the first derivative changes from

positive to negative, which corresponds to a local maximum. Consequently, proving the

disappearance of the Knudsen minimum is equivalent to demonstrating the Knudsen

maximum vanishing. The latter question is easier to address as this local maximum

falls in the continuum/slip regime (Kn . 0.1), see Figure 2.3, where it can be tackled

analytically using the Navier-Stokes equations with the first-order velocity slip boundary

condition, which in its dimensionless form reads (its derivation has been carried out in

Section 4.2.2)

ṁ =
ṁh

ṁn
=

3Rη

5
√
πµf

(1 + 8αKn) . (4.14)

Note that the velocity slip boundary condition at the wall used to derive Eq. (4.14) is

based on the strain rate and not on the stress tensor, leading to less accurate results if

the wall is not at rest (Lockerby et al., 2004). The validity of Eq. (4.14) in the considered

range of Kn is tested in Figure 4.2b, where we show the relative error with respect to the

EDMD results presented in Figure 4.1a. It is clear that, despite the tight confinements,

the evaluation of the Navier-Stokes equations with the numerical slip coefficients α

presented in the inset of Figure 4.2b predict the MFR very accurately. In the following

analysis, the slip coefficient α is assumed to be constant and equal to that of a rarefied

gas, albeit the slip phenomenon is known to be more complicated when dealing with

liquid-like densities, and the standard kinetic theory treatment is no longer applicable

(Hadjiconstantinou, 2021; Martini et al., 2008; Shan et al., 2022). This fact is also

reflected in the inset of Figure 4.2b, where the non-trivial dependence of α on both the

confinement ratio R and the reduced density η can be observed. The validity of this

assumption will be discussed later in this chapter.

Eq. (4.14) clearly shows that, at constant R, there are three physical terms contributing

to the MFR, namely the viscosity (i.e. via µf ), the density (i.e. via η), and the slip

(i.e. via 1 + 8αKn). These terms vary with the reduced density but, for the following

analysis, we find it more convenient to study the MFR with respect to the reduced

specific volume ν = 1/η, as in this way there is a one-to-one direct correspondence

between ν and Kn. It should be stressed that this choice does not limit the generality of

the conclusions. The relative importance of these terms can be singled out by evaluating

their corresponding partial rates of change

dṁ

dν
=
dη

dν

(
∂ṁ

∂µf

dµf
dη

+
∂ṁ

∂η
+

∂ṁ

∂Kn

dKn

dη

)
=

1

ν2
(Qµ +Qη +Qα) , (4.15)



4.3. Results and Discussion 59

−10

−5

0

5

10

4 6 8 10 12 14 16 18 20

Viscosity term, Qµ

Density term, Q
η

Slip term, Qα

Sum, Qµ +Qη +Qα

P
ar

ti
al

/t
ot

al
ra

te
s

of
ch

an
ge

Reduced specific volume, ν = 1/η

(a) Contribution of individual terms

−4

−3

−2

−1

0

1

2

3

4

4 6 8 10 12 14 16 18 20

R↓

Qα
for all R

Continuum
term

s,

Q
µ +

Q
η

Sum of continuum and slip,
Qµ +Qη +Qα

P
ar

ti
al

/t
ot

al
ra

te
s

of
ch

an
ge

Reduced specific volume, ν = 1/η

R = 10
R = Rt

(b) Evolution of terms at different R

Figure 4.3: (a) Partial rates of change against the reduced specific volume, for R = 20,
under the continuum framework of fluid modelling, which capture how flow transport
is affected by a change of each of the underlying contributions. (b) Interplay between
the continuum (dash-dotted) and the slip (dotted) contributions for different R. For
sufficiently large R values, the continuum contribution dominates and the sum of all
rates of change (solid) cross the x−axis, i.e. the Knudsen maximum appears. However,
for tight channels, the continuum contribution is less relevant whereas slip remains the
same, driving the overall rate of change to be positive throughout the entire range of ν
values, with the Knudsen maximum disappearing as a consequence.

where

Qµ =
3Rη (1 + 8αKn)

5
√
πµ2

f

dµf
dη

, (4.16)

Qη = −3R (1 + 8αKn)

5
√
πµf

, (4.17)

Qα =
24Rηα

5
√
πµf

dKn

dη
. (4.18)

These individual contributions are presented in Figure 4.3a for R = 20, in a range of ν

values corresponding to Kn . 0.1, namely the slip regime. Here, the plot of Eq. (4.16)

shows that the partial derivative of the MFR with respect to the viscosity, Qµ, is always

positive with increasing reduced specific volume. In particular, the rate of change is

higher for low ν values, whereas its value decreases for large reduced specific volumes —

showing that the viscous contribution to the overall flow is no longer the preferential one

when non-equilibrium effects kick in. Eq. (4.17) shows that the MFR partial derivative

with respect to the density, Qη, is always negative with increasing reduced specific

volume. If the slip contribution is temporarily disregarded, the density is seen to become

relevant over the viscosity at ν ≈ 6, and drives the MFR to decrease monotonically

with further increase in the reduced specific volume. Eq. (4.18) shows that the MFR
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partial derivative with respect to the slip, Qα, is always positive with increasing specific

volume. In particular, the rate of change is almost negliglible in the continuum regime

while it becomes larger in the slip regime (ν & 3.33), where rarefaction effects become

more prominent and the fluid slippage at the wall increasingly contributes to the overall

MFR.

Three important observations are in order and presented in Figure 4.3b, that helped us

to understand why the Knudsen minimum disappears only when confinements are tight.

The first remark is that the viscosity and density contributions exactly counterbalance at

the same ν regardless of R. This can be easily proved using Eq. (4.16) and Eq. (4.17), and

it is clearly shown by dashed lines, representing the sum of viscosity and density rates of

change (dubbed the continuum contribution from here onwards), which always crosses

the x−axis at ν = 5.711. A second remark is that the magnitude of the rate of change

of the continuum contribution reduces with tighter channels and so its absolute value

decreases with lower R for a given ν value, as could also be deduced from Eq. (4.16) and

Eq. (4.17). The third remark is that the slip contribution (dotted line) is independent of

R, as it is seen in Eq. (4.18), and so its relative importance grows when the confinement

ratio reduces.

The interplay between the three aforementioned contributions (denoted by solid lines in

Figure 4.3b, representing the sum of continuum and slip terms) significantly depends

on the size of the channel, and we can mainly distinguish between two types of flow

behaviours. For large channel sizes and starting from the continuum regime (low ν), the

viscosity contribution initially dominates and leads the MFR to increase with ν. The

region corresponding to low ν values can then be referred to as viscosity dominated

since this contribution overcomes that of density, and here the slip term is negligible.

Unlike the viscosity term that gets weaker as the fluid rarefaction increases, the density

term becomes progressively more important and causes the Knudsen maximum to form

by eventually driving the MFR to decrease.

For tight confinements, viscosity is initially dominant and drives the MFR increase

as in the previous case. However, now there is an interplay between density and slip

in the region where the transport was previously density dominated, as the relative

contribution of slip becomes more and more important for decreasing R. Indeed, as

emphasised by the magnitude of the continuum and slip contributions in Figure 4.3b,

there might be a threshold confinement ratio R at which the latter overcomes the former,

preventing the formation of the expected Knudsen maximum. Therefore, the velocity slip

at the boundary impels the MFR curve to monotonically increase throughout the entire

range of flow regimes, with the Knudsen maximum (and so, the Knudsen minimum)

disappearing as a consequence.
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It is worth noticing that, within the simplified solution represented by Eq. (4.15), the

Knudsen minimum disappearance can be determined by a simple argument. As the

rate of change of the MFR is a continuous function that takes positive values in the

continuum limit, a sufficient condition for the MFR to cross the x−axis could be defined

by the Bolzano theorem

lim
ν→∞

(Qµ +Qη +Qα) =
8
√

2α− 3R

5
√
π

≤ 0, (4.19)

from where the threshold value of the confinement ratio for the Knudsen minimum

disappearance is Rt < 8
√

2α/3 ≈ 4.3. The numerical results presented in Figure 4.1a

show that the MFR monotonically increases with rarefaction up to about R ≈ 8, and so

the theoretical estimate from Eq. (4.19) only provides a sufficient condition, but not

necessary, for the Knudsen minimum disappearance.

As a concluding remark, it is worth to be noticed that the analysis carried out in this

section is based on two main simplifying considerations. The first assumption consists

on using nominal values for density and viscosity in the Navier-Stokes equations to

predict the MFR values, despite it is well-known that, under tight confinement, density

is non-uniform across the channel and viscosity is no longer a local property of the

position along the channel (Travis et al., 1997). However, there is a large body of

evidence demonstrating that the hydrodynamic framework is valid down to nanoscale

confinements (Bocquet & Charlaix, 2010), and indeed our numerical simulations in

tight geometries also showed an agreement with the theoretical prediction provided by

the Hagen-Poiseuille solution with slip, Eq. (4.14), using nominal values of the fluid

properties — as it is presented in Figure 4.2b.

The second assumption involves the use of a constant slip coefficient although, unlike

the rarefied case, numerical evidence shows that it depends on the channel size and

on the fluid density — see the inset within Figure 4.2b. However, the validity of the

presented analysis can be straightforwardly extended when a more accurate expression

of the slip coefficient is used. As an example, a universal scaling law is derived for

the slip coefficient in a planar geometry by Shan et al. (2022), and it is shown that α

varies signficantly with η, whereas the dependence on R can be neglected. Accordingly,

the slip contribution is still independent of R and the continuum contributions remain

linear functions of R, counterbalancing each other at a specific η value regardless of the

confinement ratio. Therefore, although the curves corresponding to these contributions

are different from the ones depicted in Figure 4.3b, there still must exist a threshold

confinement ratio for which the Knudsen minimum disappears as, when R is small

enough, the decay of the mass flow rate due to the density decreasing is overcome by

the enhancing contribution of the slip.



4.4. Conclusions 62

<latexit sha1_base64="E6NmLrEkm0pGGs9IL6H2fnLYjNE=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBIvgqsxIUZdFN26ECvYBnVIy6Z02NJMMSUYpQ8FfceNCEbd+hzv/xrSdhbYeuHA4597k3hMmnGnjed/O0vLK6tp6YaO4ubW9s+vu7Te0TBWFOpVcqlZINHAmoG6Y4dBKFJA45NAMh9cTv/kASjMp7s0ogU5M+oJFjBJjpa57GKg4uyVaBzji8jHAihgYd92SV/amwIvEz0kJ5ah13a+gJ2kagzCU29favpeYTkaUYZTDuBikGhJCh6QPbUsFiUF3sun6Y3xilR6OpLIlDJ6qvycyEms9ikPbGRMz0PPeRPzPa6cmuuxkTCSpAUFnH0Upx0biSRa4xxRQw0eWEKqY3RXTAVGEGptY0Ybgz5+8SBpnZf+8XLmrlKpXeRwFdISO0Sny0QWqohtUQ3VEUYae0St6c56cF+fd+Zi1Ljn5zAH6A+fzBzZKlak=</latexit> M
as

s
fl
ow

ra
te

<latexit sha1_base64="1oETdnfME1tyAtBVmWPyvZtskwk=">AAAB/XicbVDJSgNBEO1xjXGLy81LYxA8hRkJ6jHoRfASwSyQhNDTqUmadPcMvQhxCP6KFw+KePU/vPk3dpI5aOKDgsd7VVTVCxPOtPH9b29peWV1bT23kd/c2t7ZLezt13VsFYUajXmsmiHRwJmEmmGGQzNRQETIoREOryd+4wGUZrG8N6MEOoL0JYsYJcZJ3cJhW4n0VtqeBtnG0ooQ1LhbKPolfwq8SIKMFFGGarfw1e7F1AqQhnKidSvwE9NJiTKMchjn21ZDQuiQ9KHlqCQCdCedXj/GJ07p4ShWrqTBU/X3REqE1iMRuk5BzEDPexPxP69lTXTZSZlMrAFJZ4siy7GJ8SQK3GMKqOEjRwhVzN2K6YAoQo0LLO9CCOZfXiT1s1JwXirflYuVqyyOHDpCx+gUBegCVdANqqIaougRPaNX9OY9eS/eu/cxa13yspkD9Afe5w/vPZWM</latexit>

Knudsen number

<latexit sha1_base64="X0EJ5yTR2ovkB3ufMnAOzWFOYko=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSyCp5JIUY9FLx4r2A9oQ9hsN+3SzSbsbpQS81O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOFMacf5tkpr6xubW+Xtys7u3v6BXT3sqDiVhLZJzGPZC7CinAna1kxz2kskxVHAaTeY3Mz87gOVisXiXk8T6kV4JFjICNZG8u3qQEZZ6meKsyTPB4I6vl1z6s4caJW4BalBgZZvfw2GMUkjKjThWKm+6yTay7DUjHCaVwapogkmEzyifUMFjqjysvnpOTo1yhCFsTQlNJqrvycyHCk1jQLTGWE9VsveTPzP66c6vPIyJpJUU0EWi8KUIx2jWQ5oyCQlmk8NwUQycysiYywx0SatignBXX55lXTO6+5FvXHXqDWvizjKcAwncAYuXEITbqEFbSDwCM/wCm/Wk/VivVsfi9aSVcwcwR9Ynz/zK5R0</latexit>

uslip 6= 0

Kn min
No Kn min

<latexit sha1_base64="Z1qRbObxv4DQELLArnKeU8V1UPU=">AAACCHicbVDLSgMxFM3UV62vUZcuHCyCqzIjRQU3RTduhAr2AW0pmfROG5pJhiQjlGGWbvwVNy4UcesnuPNvzLSz0NYLgZNz7rnJPX7EqNKu+20VlpZXVteK66WNza3tHXt3r6lELAk0iGBCtn2sgFEODU01g3YkAYc+g5Y/vs701gNIRQW/15MIeiEechpQgrWh+vZhV4bJrRiAxBrS7mV2JYIHZlwIXKd9u+xW3Gk5i8DLQRnlVe/bX92BIHFmJgwr1fHcSPcSLDUlDNJSN1YQYTLGQ+gYyHEIqpdMF0mdY8MMnEBIc7h2puxvR4JDpSahbzpDrEdqXsvI/7ROrIOLXkJ5FGvgZPZQEDNHCydLxRlQCUSziQGYSGr+6pARlphok13JhODNr7wImqcV76xSvauWa1d5HEV0gI7QCfLQOaqhG1RHDUTQI3pGr+jNerJerHfrY9ZasHLPPvpT1ucPGluarg==</latexit>

Moderate confinement

<latexit sha1_base64="duW1CZi8bqRvmvwVeAo6Kzr22Ns=">AAACCXicbVDLSgMxFM3UV62vqks3wSK4KjMiKrgpunEjVLAP6Awlk2ba0DyGJCOUYbZu/BU3LhRx6x+482/MtLPQ1guBk3Puuck9YcyoNq777ZSWlldW18rrlY3Nre2d6u5eW8tEYdLCkknVDZEmjArSMtQw0o0VQTxkpBOOr3O980CUplLcm0lMAo6GgkYUI2OpfhX6iqe3khGcMKQy/zK/YykiO48TYbJ+tebW3WnBReAVoAaKavarX/5A4iQ3Y4a07nlubIIUKUMxI1nFTzSJER6jIelZKBAnOkinm2TwyDIDGElljzBwyv52pIhrPeGh7eTIjPS8lpP/ab3ERBdBSkWcGCLw7KEoYdBImMcCB1QRbNjEAoQVtX+FeIQUwsaGV7EhePMrL4L2Sd07q5/endYaV0UcZXAADsEx8MA5aIAb0AQtgMEjeAav4M15cl6cd+dj1lpyCs8++FPO5w/7cpsr</latexit>

Molecular confinement

Density

Slip

Figure 4.4: Graphical abstract showing the main findings of this piece of work.

4.4 Conclusions

We have studied the Knudsen minimum disappearance that occurs for Poiseuille flows

in tight cylindrical geometries. High-fidelity EDMD simulations have been carried out

in a wide range of reduced fluid densities η and channel confinement ratios R, in

both equilibrium (to obtain the self-diffusivities needed in the Fickian framework) and

non-equilibrium (directly evaluating the mass flow rate) setups. Although diffusion is

supposed to be the main transport mechanism at the nanoscale, we found that the

convective contribution to the mass flow rate cannot be disregarded — even under

confinements of molecular dimensions. This convection-dominated transport, which is

analytically studied using the Hagen-Poiseuille solution with first-order slip, is decoupled

into its three fundamental contributions, namely viscosity, density, and slip.

The individual influence of each of them on transport is assessed for different fluid

rarefaction states and confinement ratios, which revealed that the disappearance of

the Knudsen minimum is a consequence of the interplay between these contributions.

More specifically, the combined contribution of viscosity and density weakens in tight

geometries, whereas the slip term remains the same when R decreases, and so its relative

importance increases in this context. Therefore, the Knudsen minimum vanishing under

tight confinement can be explained by the more accentuated importance of the fluid

slippage at the wall. These results are graphically summarised in Figure 4.4. The

relevance of this work underpins in its qualitative explanation of dense flow mechanisms

at the molecular scale, which may help to better understand how slip, from a fundamental

standpoint, affects the flow of dense gases/liquids confined within tight geometries, such

as the high-pressure methane transport in unconventional shale rocks (Zhang et al.,

2019) or water transport in nano-structured filtration membranes (Falk et al., 2010).



Chapter 5

Fluid Velocity Slip at the Nanoscale

N.B. This chapter has been submitted in a manuscript to Physical Review Fluids, where

is currently under review: Corral-Casas, C., Chen, Y., Borg, M.K., Gibelli, L. “Density

and Confinement Effects on Fluid Velocity Slip”.

Understanding the velocity slip of fluids in channels of molecular length-scales is essential

for accurately manipulating their flow in engineering applications, such as in water

desalination or, by reversing the process, osmotic power generation. This study addresses

two major open questions, namely (a) the range of validity of the Navier-Stokes equations

with slip boundary conditions in describing fluid flows within channels of molecular

confinement, and (b) the effect of fluid density and confinement, as well as surface

properties, such as microscopic roughness and curvature, on fluid slippage along walls.

The results show that the well-known criterion for the slip solution, which is valid in

rarefied conditions, also holds for a dense gas, i.e., for Knudsen numbers Kn . 0.1.

We also find that the key quantity influencing the friction coefficient of a fluid is the

peak density at the walls, rather than the nominal density, the fluid confinement or the

channel curvature, as found in previous studies. In particular, higher nominal densities

lead to higher density peaks, and therefore a decrease in slip, while tighter confinements

lead to lower density peaks, and therefore an increase in slip, regardless of channel

geometry. Furthermore, the velocity slip depends on the microscopic roughness via the

Smoluchowski factor.

5.1 Literature Survey

The study of isothermal gas flows in small channels has been instrumental in the

development of micro-electro-mechanical devices (MEMS) (Gad-el Hak, 1999). In these

systems, gases flow through channels that are only a few micrometres wide, so that

the mean free path λ, or the average distance between collisions for gas molecules,

approaches the same order of the flow characteristic length of the channel, L. As a

result, gas particles tend to collide with the walls of the system rather than with

other particles, which means that they deviate from the quasi-local thermodynamic

63
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equilibrium assumption of continuum fluid dynamics (Kremer, 2010) — the degree of

non-equilibrium being quantified by the Knudsen number, Kn = λ/L. The Boltzmann

equation provides an accurate description of these dilute gas flows over the whole range

of Kn, but for slight non-equilibrium conditions, where Kn . 0.1, its asymptotic solution

shows that the Navier-Stokes equations can also be applied (Hadjiconstantinou, 2006),

provided that the gas is allowed to slip along the surface. The velocity slip at the wall is

typically expressed as the product of the slip length times the velocity gradient normal

to the wall, where the former is simply proportional to the mean free path by a constant

factor known as the slip coefficient (Kennard, 1938), see e.g. Eq. (4.6).

Recent advances in technology have led to a shift in focus from the microscale to the

nanoscale (Kavokine et al., 2021; Sparreboom et al., 2010). In nanoscale engineering

applications, the flow characteristic length becomes similar to the diameter of the fluid

particles σ, which has significant implications, such as the fact that the quasi-local

thermodynamic equilibrium assumption may not hold even at relatively high fluid

densities. Under these conditions, the behaviour of the fluid becomes dependent on the

complex interplay between dense effects (λ ∼ σ) and tight geometries (L ∼ σ), which

leads to spatial inhomogeneities with preferential ordering in the density profile near the

boundaries (Israelachvili, 2011), as well as a material depletion in the central homogen-

eous region when compared to the nominal density (G. J. Wang & Hadjiconstantinou,

2015). A notable example of the unexpected fluid behaviour that occurs within channels

of molecular confinement is that the pressure-driven mass flow rate is found to increase

monotonically with decreasing fluid density (Corral-Casas et al., 2022; L. Wu et al.,

2016), rather than forming a minimum as it does for dilute gas flows (Cercignani &

Daneri, 1963; Pollard & Present, 1948).

While molecular-based approaches, such as the Enskog equation and Molecular Dy-

namics (MD) simulations, have the potential to capture the physics of fluids at the

nanoscale (Sheng et al., 2020), their computational requirements are significant due to

the complexity of the collision integral of the former and the high cost of multi-body force

calculations of the latter. Therefore, extensive experimental (Holt et al., 2006; Majumder

et al., 2005; Whitby et al., 2008) and numerical (Hummer et al., 2001; Skoulidas et

al., 2002; Thomas & McGaughey, 2008b) studies have been carried out to investigate

whether the framework of continuum fluid dynamics can be extended down to the

nanoscale. It has been found that, when the fluid confinement is very tight (L/σ . 10),

the fluid structuring extends throughout the entire channel, making the continuum

approximation inapplicable. In such extreme conditions, a hydrodynamic-like approach

is still possible, but requires the transport coefficients to be spatially dependent and even

non-local if the channel is only a few molecular diameters in size (Bitsanis et al., 1988;

Travis et al., 1997). On the other hand, if the fluid confinement is relatively moderate
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(L/σ & 10), the conventional Navier-Stokes equations with slip boundary conditions

may be valid for some fluid densities. However, the bulk viscosity must be used (Din

& Michaelides, 1997) and the slip length turns out to depend in a highly non-trivial

way on both the fluid state and the wall. For example, the slip length is affected by the

fluid structure induced in the directions parallel to the walls (Thompson & Robbins,

1990) and, beyond a threshold, becomes a non-linear function of the strain rate at

the wall (Thompson & Troian, 1997). Wetting phenomena (Barrat & Bocquet, 1999),

the hydrophobic and hydrophilic nature of walls (Sendner et al., 2009), and surface

macroscopic roughness (Priezjev & Troian, 2006) have also been found to play a role.

Over the years, several models have been developed to describe the slip length from a

molecular perspective, including the variable density Frenkel-Kontorova model (Lichter

et al., 2004; Martini et al., 2008) and expressions based on the so-called molecular kinetic

theory (F. C. Wang & Zhao, 2011; G. J. Wang & Hadjiconstantinou, 2019), among a

myriad of other derivations (Hadjiconstantinou, 2021; Hadjiconstantinou & Swisher,

2022; Priezjev, 2007).

In this work we aim to address two fundamental questions about molecular-confined

fluids that remain elusive despite extensive research: (a) to formulate a quantitative

validity criterion for the solution of the Navier-Stokes equations with slip boundary

conditions, and (b) to determine the dependence of the fluid slippage on the density and

confinement of the fluid, as well as on the surface curvature and microscopic roughness.

The first question has not been examined in the literature and it is uncertain whether the

criterion established for dilute gases at the microscale, based on the Knudsen number, is

applicable to dense, nanoscale-confined fluids. The second question is crucial for resolving

the existing confusion, as results from studies on planar and cylindrical geometries are

inconsistent, with some suggesting that curvature is the primary factor controlling slip

length (Falk et al., 2010; Kannam et al., 2012), while others show different results (Shan

et al., 2022).

To address the above questions, we have considered a fluid composed of hard-spheres

interacting with walls through the Maxwell scattering kernel. Although this modelling

approach does not capture all the details of realistic fluid-wall interactions, it can

provide valuable insights into the velocity slip by unravelling the essential features

with the most relevant impact. An extensive simulation campaign was then carried out

using event-driven molecular dynamics (EDMD), in two geometries (e.g., planar and

cylindrical channels) with varying microscopic roughness (as described by the tangential
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Figure 5.1: Depiction of a planar channel with nominal height H and characteristic
length L = H − σ, with typical density (left) and velocity (right) profiles. The density
profile shows the fluid structuring close to the walls, with the first dip marking the
boundary of the ∆-layer. As highlighted in the inset, three different velocity slips can be
defined: the mean velocity in the ∆-layer, assuming that the density there is constant
(us,∆), the apparent velocity at the boundary, which gives the Navier-Stokes velocity
profile in the fluid bulk (us,app), or the real fluid velocity at the boundary (us,real).

momentum accommodation), and a wide range of fluid rarefaction and confinement

conditions. Complementary molecular dynamics (MD) simulations for argon confined

between platinum surfaces were performed to show that the main results hold for more

realistic systems1.

The remainder of the paper is organised as follows. In Section 5.2 we outline the

theoretical treatment and the different computational methods used to numerically

evaluate the fluid velocity slip. In Section 5.3 we present the key findings of our research,

which are validated with MD simulations in Section 5.4. Finally, in Section 5.5 we

provide an overview of the significance of our work and future directions for research.

5.2 Methodology

5.2.1 Theory for the Slip Boundary Conditions

The streamwise component of the velocity uy of a fluid flowing in a planar channel can

be described by the Stokes equation, see Eq. (1.10)

∂2uy
∂x2

= −nF0

µ
, (5.1)

1. Mr Yichong Chen carried out the MD simulations, following a close collaboration with the author,
and likewise performed the postprocessing of results using scripts written by him.
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where x is the coordinate normal to the wall, n and µ are the bulk fluid number density

and shear viscosity, respectively, and F0 is the external force per molecule, which can

be interpreted as the pressure gradient −dP/dy acting on the fluid, normalised by the

nominal number density.

The governing expression, Eq. (5.1), must be supplemented with a boundary condition.

A first possibility, which seems very natural for a fluid under molecular confinement,

is that presented in Hansen et al. (2011). This is an integral boundary condition that

defines the velocity slip us as the centre of mass velocity of a thin layer of fluid of

constant density and finite width ∆ near the wall, which we will call the ∆-layer. The

width of the ∆-layer is defined as the distance from the wall where the first density

oscillation dip occurs, which varies approximately in the range [σ/2, σ] as the density of

the fluid decreases (see Figure 5.1).

The corresponding integral boundary conditions are

u−s,∆ =
1

∆

∫ −L/2+∆

−L/2
uy dx, at the lower wall, (5.2)a

u+
s,∆ =

1

∆

∫ L/2

L/2−∆
uy dx, at the upper wall, (5.2)b

where, by symmetry, u−s,∆ = u+
s,∆ = us,∆. Alternatively, one can adopt the Neumann

boundary condition for partial slip as derived by Navier (Navier, 1823), commonly used

for dilute gases, which linearly relates the tangential component of the velocity field to

the strain rate normal to the wall (rearranging terms in Eq. (1.11))

u∓s,app = ±Ls
∂uy
∂x

∣∣∣
x=∓L/2

, (5.3)

where Ls is the slip length. The solution to the boundary value problems, Eq. (5.1) and

Eq. (5.2) or Eq. (5.1) and Eq. (5.3), produces the slip-modified Poiseuille equation for

fluid flows in planar channels

uy(x) =
nF0

2µ

(
−x2 +

L2

4
− L∆

2
+

∆2

3

)
+ us,∆ =

nF0

2µ

(
−x2 +

L2

4

)
+ us,app, (5.4)

and the following one-to-one correspondence can thus be found between the two different

velocity slips (see also the inset in Figure 5.1, which illustrates the relationship between

us,∆ and us,app, both of which differ from the actual velocity slip at the wall, us,real)

us,∆ = us,app +
nF0

2µ

(
L∆

2
− ∆2

3

)
. (5.5)
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A model for us,∆ can be derived by considering the balance of forces acting on the

∆-layer (Hansen et al., 2011). These forces include the damping force exerted by the

wall, the shearing force from the overlying fluid, and the total external force driving the

flow. Accordingly, the balance of forces on, for instance, the lower ∆-layer reads

ms

du−s,∆
dt

= −ζ0,∆u
−
s,∆ +Aµ

∂uy
∂x

∣∣∣∣
−L/2+∆

+msF0, (5.6)

where ms accounts for the total mass of the ∆-layer, ζ0,∆ is the so-called zero-frequency

friction coefficient, and A = `y`z is the surface area of the interface located between the

∆-layer and the fluid, where the strain rate should be evaluated. In steady conditions,

using the velocity profile given by Eq. (5.4), the velocity slip can be derived as

us,∆ =
nF0

2ξ0,∆
L, (5.7)

where ξ0,∆ = ζ0,∆/A is referred to as the interfacial friction coefficient, which relates

the transfer of momentum at the boundary with the velocity slip (Bocquet & Barrat,

2007). As shown in Eq. (5.7), the velocity slip and the friction coefficient are linearly

related and can therefore be used interchangeably. Note that a relationship similar to

Eq. (5.7) also relates us,app and ξ0,app, as can be inferred by letting ∆ go to zero. The

analytical determination of the interfacial friction coefficient is still an open problem, so

numerical methods are commonly used. Once the friction coefficient has been found,

the velocity slip follows from Eq. (5.7) and the overall velocity field from Eq. (5.4).

This section presented the slip solution for fluid flow in a planar channel, but a similar

solution can be worked out for the fluid flow in a tubular geometry. The equation for

fluid flow in a cylindrical pipe with axis z using the Stokes equation in cylindrical

coordinates is written as
1

r

∂

∂r

(
r
∂uz
∂r

)
= −nF0

µ
, (5.8)

where uz is the axial velocity component and r is the radial distance from the central

streamline axis of the cylindrical channel. The integral boundary condition complement-

ing the governing equation is

us,∆ =
2

∆ (L−∆)

∫ L/2

L/2−∆
ruz dr, (5.9)

which is equal to the mean velocity of the fluid in the thin shell adjacent to the wall

under the assumption of constant density in the ∆-layer, while the Navier slip boundary

condition reads

us,app = −Ls
∂uz
∂r

∣∣∣
r=L/2

. (5.10)
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The solution to the boundary value problem, either Eq. (5.8) and Eq. (5.9) or Eq. (5.8)

and Eq. (5.10), is referred to as the slip-modified Hagen-Poiseuille solution

uz(r) =
nF0

4µ

(
−r2 +

L2

4
− L∆

2
+

∆2

2

)
+ us,∆ =

nF0

4µ

(
−r2 +

L2

4

)
+ us,app, (5.11)

and the following one-to-one correspondence can thus be found between the two different

velocity slips

us,∆ = us,app +
nF0

4µ

(
L∆

2
− ∆2

2

)
. (5.12)

As for the planar geometry, a momentum balance similar to Eq. (5.6) can be evaluated

for the fluid in the annular ∆-layer

ms
dus,∆
dt

= −ζ0,∆us,∆ +Aµ
∂uz
∂r

∣∣∣∣
L/2−∆

+msF0 = 0, (5.13)

where now the surface area in the delta shell-fluid interface depends on the width of the

annular region, A = π (L−∆) `z, being `z the length of the tube. Accordingly, a linear

relationship between the velocity slip and the friction coefficient can be found as

us,∆ =
nF0

2ξ0

L

2
. (5.14)

5.2.2 Fluid and Geometry Characterisation

In this work, we consider the steady flow of a fluid composed of N hard spherical

particles with diameter σ and molecular mass m confined in two different geometries: a

planar channel defined by two parallel plates separated by a distance H = h+ σ, and a

cylindrical channel with diameter D = d+ σ. The relevant flow characteristic length L

is defined as the effective height h and diameter d of the planar and cylindrical channels,

respectively, to account for the finite size σ of the hard spheres (Herrero et al., 2019),

see Figure 5.1.

The fluid-wall interactions are described by the Maxwell scattering kernel. Accordingly, a

fraction α of the molecules hitting the wall is assumed to be diffusely re-emitted into the

fluid after thermalisation with the wall, while the remaining 1−α is specularly reflected.

The coefficient α can thus be identified with the tangential momentum accommodation

coefficient (TMAC) (Kremer, 2010).

The fluid behaviour is mainly characterised by two dimensionless groups, namely the

nominal reduced density η0 = n0πσ
3/6, where n0 is the nominal number density, and

the confinement ratio R = L/σ. The reduced density indicates the number of fluid

particles in the theoretical volume occupied by one molecule, and is used to measure

the packing fraction, thus distinguishing between dense (high η) and dilute (low η) fluid
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flows. On the other hand, the confinement ratio is a measure of the channel size which,

in turn, determines the extent of fluid inhomogeneities. As discussed in more detail

in Section 5.3.3, larger values of R correspond to stronger ordering in the fluid near

the surface and therefore a more pronounced density peak, whereas lower values of R

are associated with a greater density depletion compared to the nominal density in the

central region of the channel. The Knudsen number can be expressed in terms of the

two dimensionless groups above

Kn(η,R) =
λ

L
=

16

5π

µ

P

√
πkT

2m

1

L
=

µf (η)

6
√

2ηZ(η)R
, (5.15)

where η refers to the bulk reduced density, which is smaller than the nominal one in

confined geometries, see the representation of the density profile in Figure 5.1. The

definition of the mean free path is based on the shear viscosity µ for a fluid of hard

spheres, whose second order Enskog approximation reads (Kremer, 2010)

µ =
5

16σ2

√
mkT

π
µf =

5

16σ2

√
mkT

π

1

χ

[
1 +

16

5
ηχ+

64

25

(
1 +

12

π

)
η2χ2

]
. (5.16)

Note that µf represents the dense gas correction for the shear viscosity of a rarefied

gas, and it depends on the contact value of the pair correlation function χ in uniform

equilibrium, which comes from the equation of state for the hard-sphere fluid P =

nkTZ (Carnahan & Starling, 1969)

χ =
1

nb
(Z − 1) =

1

2

2− η
(1− η)3 , (5.17)

where P is the fluid pressure, k is the Boltzmann constant, T the temperature of the

system, Z the fluid compressibility factor in Eq. (2.2), and b = 2πσ3/3 is the second

virial coefficient (Kremer, 2010).

5.2.3 Simulation Setup

The exact time evolution of the hard-sphere system is calculated using EDMD (Pöschel

& Schwager, 2005). In these simulations, the state of the system jumps from one time

to another corresponding to the next collision event by iteratively repeating three basic

steps: (a) evaluating the time of the earliest collision event, (b) moving all particles

ballistically for that time interval, and (c) updating the velocities of the particles that

have collided with another particle or the wall, according to the laws of elastic hard-

sphere dynamics or the Maxwell scattering kernel, respectively. It is important to note

that the time step is not constant throughout the simulation run, as it depends on the

positions and velocities of all molecules in the system. An exhaustive overview of this
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methodology is detailed in Section 2.5. To simplify the notation and data analysis, all

physical quantities are made dimensionless in the rest of the paper by considering the

molecular diameter σ as the reference length, the particle mass m as the reference mass,

and the thermal velocity
√
kT/m as the reference velocity.

For the planar geometry, the computational domain was a parallelepiped box with

dimensions [H; `y; `z] and periodic boundary conditions in the y and z directions,

whereas for the cylindrical geometry, the computational domain was a cylindrical box

with dimensions [R; `z] and periodic boundary conditions in the z direction. For the

planar and cylindrical geometry, the streamline lengths (`y and `z, respectively) were

chosen to be long enough to avoid end effects, and, for the planar geometry, the spanwise

dimension `z was set to match the desired reduced density η0. In the cylindrical case, the

Maxwell scattering kernel was implemented as described in Verbeek (2010) to properly

account for the surface curvature, see also Appendix A.

The typical simulation was run with over 2.5× 104 particles to reduce the size dependence

of the system and improve the statistical significance of the computed quantities. The

particles were initially placed randomly, with the velocity sampled from the Maxwell-

Boltzmann distribution using the Box-Muller algorithm. The reduced density was varied

in the range η0 = [0.01, 0.30] and the confinement ratios in R = [10, 50], resulting

in Knudsen numbers spanning a wide range of values, i.e. Kn = [0.008, 1]. In the

Poiseuille (planar channel) and Hagen-Poiseuille (cylindrical channel) fluid flows, a

constant external force is applied to the particles. The force was chosen in the range

[0.003, 0.05] so that the flow is in the linear flow regime. This ensured proper dissipation

of the added heat through the wall and prevented the temperature profile from being

affected by the external force.

5.3 Results and Discussion

5.3.1 Numerical Evaluation of the Friction Coefficient

Before addressing the two key questions posed in Section 5.1, we first calculate the

friction coefficient for both planar and cylindrical geometries, over a wide range of

nominal reduced densities η0 and confinement ratios R, for rough surfaces represented

using a fully diffuse setting (α = 1). We have chosen to compute the friction coefficient,

rather than the velocity slip or the slip length, because it only encapsulates information

about fluid-wall interactions and is independent of the channel size, the bulk fluid

properties such as its density or shear viscosity and, in our simulation setup, the external

force. This allows for a more direct comparison of the fluid behaviour next to the wall

across different systems and setups.
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Table 5.1: Planar channels. Comparison of interfacial friction coefficients ξ0,∆ for
nominal reduced densities η0 and confinement ratios R of interest, using non-equilibrium
(left column) and equilibrium (right column) approaches. Walls are fully diffuse (α = 1).

η0 R = 50 R = 40 R = 30 R = 20 R = 15 R = 10

0.30 1.060 0.999 1.047 1.002 1.024 0.994 0.973 0.943 0.961 0.915 0.908 0.883
0.25 0.746 0.772 0.721 0.737 0.704 0.699 0.678 0.687 0.664 0.654 0.633 0.641
0.20 0.496 0.474 0.480 0.467 0.467 0.454 0.468 0.459 0.448 0.431 0.445 0.425
0.15 0.326 0.303 0.321 0.296 0.309 0.299 0.309 0.289 0.301 0.284 0.295 0.296
0.10 0.193 0.186 0.191 0.193 0.189 0.183 0.190 0.179 0.187 0.170 0.184 0.176

0.075 0.143 0.107 0.144 0.107 0.144 0.095 0.141 0.096 0.138 0.095 0.117 0.092
0.05 0.096 0.062 0.097 0.054 0.096 0.058 0.094 0.048 0.071 0.057 0.070 0.057
0.025 0.051 0.024 0.051 0.024 0.035 0.022 0.034 0.027 0.033 0.024 0.032 0.024
0.01 0.014 0.008 0.014 0.008 0.013 0.009 0.013 0.009 0.012 0.008 0.011 0.007

The friction coefficient was calculated using two independent approaches. In the first

approach, which involves non-equilibrium EDMD simulations, ξ0,∆ is calculated using

Eq. (5.7), where us,∆ is evaluated directly from the velocity field as the mean velocity of

the fluid in the ∆-layer according to Eq. (5.2). In the second approach, ξ0,∆ is calculated

as the Laplace transform of the ratio between the force-velocity correlation function

(being the force that is exerted by the fluid on the wall, or viceversa) and the velocity-

velocity autocorrelation function of the fluid in the ∆-layer. These correlation functions

are obtained from equilibrium EDMD simulations in the zero external force limit. It is

important to note that in our simulations, the fluid-wall interaction is modelled using a

step function rather than a continuous potential, such as the Lennard-Jones potential.

Consequently, the force exerted by the surface on the fluid in the ∆-layer was determined

by evaluating the average momentum change of particles colliding with the wall, which

differs from the approach described in the original work (Hansen et al., 2011). A more

detailed description of this procedure is presented in Appendix C.

The results of the different calculations are shown in Table 5.1 for the planar geometry

and in Table 5.2 for the cylindrical geometry. The relative error of the equilibrium and

non-equilibrium predictions with respect to their mean is within 4% for η0 ≥ 0.1, but

diverges rapidly for smaller values, which is not unexpected since for more dilute fluids

the density fluctuations do not allow the correlation functions to be evaluated accurately

enough (Hansen et al., 2011).

It is worth noting that, for the largest channels (i.e., small curvature effect) and smallest

reduced densities (i.e., spatially homogeneous density with a bulk density close to the

nominal value), the coefficients of friction of the planar and cylindrical geometries

evaluated using the non-equilibrium approach agree with each other and approach the
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Table 5.2: Cylindrical channels. Comparison of interfacial friction coefficients ξ0,∆ for
nominal reduced densities η0 and confinement ratios R of interest, using non-equilibrium
(left column) and equilibrium (right column) approaches. Walls are fully diffuse (α = 1).

η0 R = 50 R = 40 R = 30 R = 20 R = 15 R = 10

0.30 0.913 0.907 0.896 0.931 0.896 0.919 0.878 0.861 0.863 0.872 0.794 0.771
0.25 0.623 0.626 0.601 0.595 0.601 0.629 0.613 0.633 0.587 0.610 0.555 0.568
0.20 0.414 0.433 0.427 0.439 0.411 0.447 0.399 0.395 0.393 0.401 0.378 0.391
0.15 0.266 0.268 0.267 0.265 0.257 0.262 0.260 0.253 0.257 0.269 0.247 0.236
0.10 0.152 0.148 0.157 0.146 0.158 0.152 0.157 0.157 0.152 0.141 0.148 0.161

0.075 0.114 0.105 0.114 0.103 0.108 0.102 0.109 0.110 0.108 0.111 0.105 0.105
0.05 0.069 0.056 0.070 0.059 0.069 0.065 0.069 0.056 0.069 0.062 0.066 0.057
0.025 0.034 0.025 0.034 0.026 0.034 0.026 0.033 0.026 0.033 0.027 0.031 0.029
0.01 0.014 0.009 0.014 0.009 0.013 0.009 0.013 0.010 0.012 0.010 0.012 0.010

value predicted by the Boltzmann equation (Kennard, 1938)

ξ0,B =
15

8σ3c̄1

√
2mkT

π
η, (5.18)

where c̄1 = 1.1144 is the (constant) first-order slip coefficient for the hard-sphere

Boltzmann equation (Gibelli, 2012).

5.3.2 Quantitative Criterion for the Validity of the Slip Solutions

The purpose of this section is to address the first key question posed in Section 5.1,

namely to establish a criterion for the applicability of the slip solution to the description

of force-driven fluid flows within molecular confinement. The accuracy of the slip solution

was theoretically evaluated by using the velocity field from Eq. (5.4) and Eq. (5.11)

for planar and cylindrical channels, respectively, with the velocity slip estimated from

non-equilibrium simulations as described in Section 5.3.1, for fully diffuse walls (α = 1).

In these expressions, the curvature of the velocity profile (i.e., the coefficient of the

quadratic term) was obtained by fitting the numerical velocity profile provided by

non-equilibrium EDMD simulations, rather than being calculated directly from the bulk

properties of the fluid. This was necessary because the direct numerical evaluation of

the velocity’s curvature, using bulk values of density and viscosity, is prone to numerical

inaccuracies, which have been found to be up to 15% in the worst case. In fact, as

shown in Eq. (5.4), the velocity curvature depends on the viscosity, which is a highly

non-linear function of the density, as shown by Eq. (5.16), but the accurate estimation

of the density is challenging, especially for large channels where a small force must be

applied to keep the flow in the linear regime.
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Figure 5.2: Range of validity of the slip solution for both planar and cylindrical
geometries, for fully diffuse walls (α = 1). The solid symbols represent flow conditions
for which the slip solution provides an accurate representation of the flow, while the
empty symbols indicate flow conditions for which it does not, i.e. the linear stress-
strain relationship no longer holds. The dashed lines represents the fluid conditions
corresponding to Kn = 0.1.

The results of this investigation are shown in Figure 5.2a and Figure 5.2b for planar

and cylindrical channels, respectively. The solid symbols refer to fluid conditions and

setups where the slip solution allows accurate retrieval of the true velocity field. It can

be seen that the criterion for using the slip approach under dilute conditions also applies

to dense fluids, namely that the Knudsen number must be less than about 0.1. This

means that, although the friction coefficient can be calculated for fluids of any density

and confinement ratio, it can be used within the Navier-Stokes framework (with slip

boundary conditions) to predict the velocity profiles only if Kn . 0.1.

5.3.3 Rationalisation of the Interfacial Friction Coefficient Results

The purpose of this section is to address the second key question posed in Section 5.1,

namely how the density and confinement of the fluid, alongside the curvature of the

channel and roughness of the walls, affect the friction coefficient. The main point to

note is that the friction coefficient represents the transfer of tangential momentum

between the fluid and the wall, and in our simple simulation setup this transfer can

only occur when particles hit the surface. As we have verified in our simulations, the

frequency of fluid-wall collisions is directly proportional to the density peak at the wall,

and therefore a linear relationship between the friction coefficient and the density peak

would be expected. In the literature, such a relationship has been derived under certain

assumptions and supported by MD simulations for a Lennard-Jones fluid with realistic

walls (Barrat & Bocquet, 1999; Priezjev, 2007; G. J. Wang & Hadjiconstantinou, 2019).

However, the average density in the ∆-layer was used rather than the peak density, which
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Figure 5.3: Friction coefficient versus the fluid peak density for the confinement ratios
and nominal densities, corresponding to the solid symbols in Figure 5.2 in cylindrical (red
solid circles) and planar (blue solid squares) channels. The dashed black line represents
the best linear fit of the results, and the solid black line represents the kinetic prediction
for rarefied gases, Eq. (5.18). The inset zooms in this regime at the bottom left-hand
side. Walls are fully diffuse (α = 1).

we believe to be more relevant, as discussed below. More importantly, conflicting results

have been reported, with some suggesting a linear correlation (Barrat & Bocquet, 1999;

G. J. Wang & Hadjiconstantinou, 2019) and others suggesting a power-law relationship

with an exponent other than unity (Priezjev, 2007).

Figure 5.3a clearly shows that in the case of full accommodation, the friction coefficient

scales linearly with the density peak in both planar and cylindrical channels, regardless

of the nominal fluid density, confinement ratio and wall curvature. Two remarks are

in order. First, using the ∆-layer density instead of the peak density would result

in a non-linear relationship — showing that the peak density is more closely related

to the friction coefficient. Second, the observation that the density peak is linearly

proportional with the friction coefficient independent of confinement is not restricted

to the hard-sphere model used in this study, as confirmed by complementary MD

simulations (see Section 5.4) performed on argon gas confined between platinum walls

in a planar geometry. The goodness of the linear fit shown in Figure 5.3a is indicated

by the low value of the chi squared X 2 ≈ 0.0391 statistic and the high value of the

R2 ≈ 0.999 index, and is further supported by the analysis of the residuals and the

Q-Q scatter plot shown in Figure 5.3b. The lack of a clear pattern in the residuals

(top) and the fairly good alignment along the bisector of the first quadrant of the Q-Q

scatter plot (bottom) indicate that the residuals are approximately normally distributed,

as they should be for an ideal linear fit. As can be seen more clearly in the inset of
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Figure 5.3a, the proposed linear fit of the results is not entirely accurate in the limit

of low density. In fact, its slope does not match the slope predicted by the Boltzmann

equation, Eq. (5.18), as it should for these small reduced densities (note that under

these conditions the peak density coincides with the nominal density).

EDMD simulations in dilute conditions are computationally intensive, so we further

support this conclusion by solving the Enskog equation, which gives equivalent results

to EDMD in the low density limit (see empty squares in the inset of Figure 5.3a).

The Enskog equation was solved with an independent code that implements a particle

method (Frezzotti, 1997). Even Enskog solutions fit perfectly the linear relationship

predicted by the Boltzmann equation and deviate from the proposed linear fit (dashed

line). This clearly shows that the discrepancy is due to the proposed fit and not, as

one might have thought, to non-local effects which, unlike the Boltzmann equation,

are included in the Enskog equation even in the low density regime. Note, however,

that these deviations are minimal, so the proposed linear fit is still a good engineering

approximation in the entire range of nominal fluid densities.

The results presented in Figure 5.3a help to resolve some inconsistencies reported

in previous studies. First, our results clarify that the key quantity influencing the

friction coefficient of a fluid is the peak density, rather than the nominal density (Shan

et al., 2022), the fluid confinement (Thomas & McGaughey, 2008b) or the channel

curvature (Falk et al., 2010; Kannam et al., 2012). Furthermore, in Shan et al. (2022) it

was found that, at constant density, the friction coefficient in planar channels decreases

as the confinement becomes tighter, in contrast to the results in Falk et al. (2010) and

Hansen et al. (2011) where it was found to remain unchanged. According to our results,

the friction coefficient decreases because (for a given nominal density) the tighter the

confinement, the lower the density peak (Thomas & McGaughey, 2008a), regardless of

the channel curvature.

This conclusion is clearly shown in Figure 5.4, where the density peak is plotted against

the nominal density. For both planar and cylindrical channels, it is observed that at

constant confinement the peak density increases quadratically with the nominal density,

whereas at constant density, higher degrees of confinement (i.e., lower R values) result in

smaller density peaks (in the fittings X 2 / 0.057 and R2 ' 0.997). This can be explained

by the fact that the bulk density becomes increasingly smaller than the nominal density

when the degree of confinement increases (G. J. Wang & Hadjiconstantinou, 2015), as

it can be seen in the two insets of Figure 5.4. As a result, the net force pushing the

atoms towards the walls (Frezzotti, 1997), which is proportional to the bulk density,

decreases and so does the peak density. It is found that the relationship between the

nominal density and the peak density is well approximated by a polynomial fit, which,
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Figure 5.4: Comparison of peak density at the wall and nominal reduced density for
different confinement ratios, with insets showing the effect of fluid layering on bulk
density reduction, i.e. depletion, at different levels of confinement. Walls are fully diffuse
(α = 1). The same colour scheme as in Figure 5.2 was used for the confinement.

for instance, in the cylindrical geometry reads

ηp = (0.0515R+ 7.7012)η2
0 + (−0.0033R+ 0.5228)η0, (5.19)

with a relative error of less than 10% for η0 ' 0.1.

Finally, we consider the case of walls with a smaller microscopic roughness, or equivalently

a smaller α. Figure 5.5 shows that the friction coefficient remains a linear function of

the peak density, with the results for planar and cylindrical channels superimposed. The

peak density does not depend on α, but the friction coefficient is found to decrease with

it according to the inverse Smoluchowski prefactor α/ (2− α), as is the case under dilute

conditions. Note that the dependence of the friction coefficient on α is not unexpected,

since for the same collision frequency of particles with walls, the transfer of tangential

momentum between fluid and wall becomes less efficient as the accommodation coefficient

decreases. However, this finding further validates our results. Indeed, the scaling based

on the Smoluchowski factor was mathematically derived in rarefied conditions, but if

a linear relationship between the friction coefficient and peak density holds, the same

factor should also allow the results to be rescaled in the dense regime.

The results shown in Figure 5.3, Figure 5.4, and Figure 5.5 together allow us to answer

the question posed at the beginning of this Section. For a given confinement ratio,

the peak density increases significantly as the nominal density increases, especially

for looser confinement of the fluid (Figure 5.4). Accordingly, the interfacial friction

coefficient increases (Figure 5.3a) and the velocity slip decreases. Conversely, for a given

density, the peak density decreases as the confinement ratio increases, especially at

higher densities (insets of Figure 5.4 showing the depletion in the middle region of the
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Figure 5.5: Friction coefficient versus the accommodation coefficient of the wall. As in
the fully diffuse case, results do not depend on the channel geometry for partial TMAC
(planar geometries are represented with empty symbols as a guide to the eye). Coloured
dashed lines represent the Smoluchowski scaling for the black dashed line.

channel), resulting in a decrease in the friction coefficient and an increase in the velocity

slip. Finally, the friction coefficient is independent of wall curvature and decreases with

the Smoluchowski factor as one moves from rough to smooth surfaces, decreasing the

TMAC value (Figure 5.5). Note that in realistic systems, it may be the case that a

change in wall curvature leads to a smoother energy landscape of fluid-wall interactions,

and therefore a decrease in TMAC and a decrease in the friction coefficient (Falk et al.,

2010).

It should be emphasised that the slip phenomenon is often treated on the basis of

transition state theory. In particular, molecules adjacent to walls must overcome an

energy barrier due to fluid-wall interactions and jump between free sites with a preferred

direction for velocity slip to occur. According to this framework, under tight confinement,

velocity slip increases because the energy barrier decreases and molecules jump with

higher frequency along the wall sites (Falk et al., 2010; Martini et al., 2008; Shan et al.,

2022; Thomas & McGaughey, 2008b). In our simulation setup, confinement (governed by

R) and microscopic roughness (governed by α) are decoupled, and the effect of fluid-wall

interactions is primarily controlled by microscopic roughness. However, even when the

roughness remains constant, variations in velocity slip can occur due to changes in

fluid density or confinement. This observation highlights the importance of fluid-fluid
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Table 5.3: Interatomic Lennard-Jones potential parameters (σLJ, εLJ) used in the MD
simulations. Molecular masses m [u]: Ar = 39.948, Pt = 195.084.

Atom pairs σLJ [Å] εLJ/k [K]

Ar−Ar 3.405 119.80
Pt− Pt 2.471 8053.6
Ar− Pt 2.940 79.139

interactions, which determine density peaks by generating a net force that pushes

particles towards the walls. Therefore, we now know that fluid-fluid interactions also

contribute to the friction coefficient (via the density peaks), and such a finding highlights

the unique insights provided by our simple approach.

5.4 Molecular Dynamics Simulations

The observed linear relationship between friction coefficient and density peak shown

in Figure 5.3a is not just an artefact of the hard-sphere model used in EDMD, but

it persists when more realistic intermolecular interactions are considered. To support

this claim, non-equilibrium MD simulations were performed using the open-source

LAMMPS software (Plimpton, 1995). The simulation setup consisted of monatomic

argon (Ar) molecules confined within planar physical walls, defined by platinum (Pt)

atoms following a face-centred cubic array with a lattice parameter of 3.92 Å. The

distance between the walls was assumed to be H, and periodic boundary conditions were

applied in the non-constraining directions where Ly = Lz = 400 Å. The interactions

were modelled using the 12-6 Lennard-Jones potential with a cut-off of 15 Å, and the

velocity Verlet algorithm with a time step of 1 fs was used to integrate the molecular

trajectories. The parameterised length σLJ and energy εLJ scales for the different atom

pairs, including Ar−Ar, Pt−Pt and Ar−Pt (Spijker et al., 2010), are listed in Table 5.3.

An external force of F0 ≤ 5.5× 10−14 N/atom was applied in the streamwise direction,

ensuring that its magnitude was sufficiently small to keep the flow in the linear regime.

Each MD simulation consisted of two steps: equilibration and production. During the

equilibration step, the temperature of both the gas and wall atoms was maintained at

300 K using a Nosé-Hoover thermostat with a time constant of 100 fs. After equilibration,

the thermostat was turned off on the gas molecules to avoid biasing their slipping

behaviour. Similar to EDMD, the quantities in MD simulations were made dimensionless

using the reference values σ = 3.35 Å and m = 6.63× 10−26 kg, and the friction

coefficient was calculated using the procedure described in Section 5.3. The TMAC value

for the gas-surface interaction was found to be α = 0.49, independent of the confinement

ratio.
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Figure 5.6: Friction coefficient versus fluid peak density for MD, in the same range
of confinement ratios and nominal densities to those of the EDMD simulations. The
solid line corresponds to the best linear fit of the MD results, whereas the dashed line
represents the EDMD fit with the TMAC value from MD simulations (i.e., α = 0.49).

Although the MD simulations refer to a more realistic fluid than EDMD, Figure 5.6 shows

that a linear relationship between the interfacial friction coefficient and the density peak

is still observed. The discrepancies between the results of the two simulation setups are

not unexpected and are due to the different intermolecular interactions (Lennard-Jones

in MD versus hard-sphere in EDMD) and the different scattering of molecules at the

walls (real versus stochastic). However, these discrepancies do not detract from the

remarkable qualitative similarity of the results, which clearly demonstrate the ability of

the simpler modelling approach used in this study to provide qualitatively valid results

for real-world scenarios.

5.5 Conclusions

The aim of this study was to investigate the velocity slip of fluids in molecular-scale

channels, in particular the validity of the Navier-Stokes equation with slip boundary

conditions. This study used a hard-sphere fluid model and performed an event-driven

molecular dynamics simulation study, varying fluid properties, confinement degree,

geometry, and surface microscopic roughness.

The results for both planar and cylindrical channels clearly showed that the effect of

surface curvature alone is negligible and that the friction coefficient (or, equivalently,

the velocity slip) depends on two mechanisms. First, the collision frequency of the

molecules with the wall, which determines the “gross” momentum transfer, i.e., the
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adjacent to the walls. The corresponding peak density ηp is a proxy for the collision
frequency of the fluid molecules with the walls. The collision frequency, together with the
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amount of momentum potentially transferable to the walls. Second, the microscopic

roughness of the walls, which determines the “net” momentum transfer, i.e., the amount

of momentum actually transferred to the walls. Specifically, we found that the fluid-wall

collision frequency depends linearly on the density peak that occurs adjacent to the

boundary, rather than on the nominal fluid density or the confinement ratio individually.

Note that this linear relationship is not an artefact of the hard-sphere model used in our

study, as it is confirmed by complementary MD simulations of argon gas on platinum

walls. On the other hand, in our simulation setup, the microscopic roughness is simply

modulated by the accommodation coefficient.

Our study found that the criterion for the slip solution, which is valid in dilute conditions,

also holds for dense gases. That is, the Knudsen number must be less than Kn / 0.1 for

the Navier Stokes with slip boundary conditions to provide an accurate description of

the fluid flow. We also show that:

− For a fixed confinement ratio, the friction coefficient (velocity slip) increases

(decreases) with increasing nominal density. This is because a higher density

results in a larger fluid layering on the walls and therefore a higher fluid-wall

collision frequency, which hinders fluid slippage.

− For a fixed density, the friction coefficient (velocity slip) increases (decreases) with

larger confinement ratios. This is because a tighter confinement leads to a smaller

fluid layering on the walls and therefore a lower fluid-wall collision frequency,

which promotes fluid slippage.
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− The friction coefficient (velocity slip) is independent of the wall curvature and

decreases according to the inverse Smoluchowski prefactor as one moves from

rough to smooth surfaces.

These results, which are visually summarised in Figure 5.7, provide valuable insights into

the physics of confined fluids and represent an important step towards understanding

the molecular mechanisms behind fluid velocity slip in molecular-sized channels. Future

research directions could include a more systematic probe of how the complexity of

the fluid model, such as molecules interacting through continuous potentials, as well as

more realistic fluid-wall interactions, affect fluid slippage at walls. This would help to

resolve the current inconsistencies in the velocity slip literature.



Chapter 6

Concluding Remarks

6.1 Executive Summary

This thesis sheds light on some of the fundamental transport mechanisms that occur at

the nanoscale, where molecular effects dominate the physical landscape. To accurately

capture the anomalous fluid behaviour, new perspectives and computational simulations

are needed, as the conventional approximations underpinning the classical theories

are no longer valid. In general, these discrepancies are attributed to phenomena that

become increasingly important in systems with high surface-to-volume ratios, such as

the layering that occurs next to the boundaries. Our research is based on a fluid of

hard spheres confined between stochastic walls, because the essence of a property of

interest is best revealed in the simplest of configurations in which it occurs. Moreover,

the study of such models provides results that, under certain conditions, can be directly

compared with predictions coming from kinetic theory. The latter provides invaluable

analytical insights by bridging the gap between continuum-based hydrodynamics and

the numerical results obtained from high-fidelity molecular dynamics simulations.

The lack of understanding was not limited to studies of fluids in motion, where external

driving forces are present, but also to equilibrium processes — such as the self-diffusion

process in molecular-like confinements. The first result of this study is that the Einstein

relation, originally derived for the bulk fluid scenario, can still be used to describe

Fickian diffusion under tight confinement. In addition, a semi-analytical treatment,

based on the Bosanquet formula, is proposed to predict the self-diffusivity values over

the entire range of Knudsen numbers, regardless of the governing diffusive mechanism,

for different channel sizes and wall microscopic features. These observations on confined

diffusion mechanisms lay the groundwork for investigating more complicated phenomena,

such as the Knudsen minimum disappearance in straight channels.

The flow of fluids within molecular confinements has been extensively studied for

porous media, since there are practical applications, such as the shale gas seepage,

that immediately benefit from a closer look. In this case, it has generally been found

that the pressure-driven transport becomes diffusive because the fluid is in constant

interaction with the confining solid matrix, which restricts its motion. However, this

83
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problem has been overlooked in simpler geometries until very recently, when the puzzling

disappearance of the Knudsen minimum was first reported. Although the Fick’s law

predicts a monotonic increase in mass flow with decreasing density, we find that its

accuracy is poor whenever Knudsen diffusion does not control the diffusive dynamics. The

second key outcome of this work is that the vanishing of the Knudsen minimum is due

to the evolution of convective mechanisms within tighter confinements. In particular, the

influence of the velocity slip overcomes the relevance of the remaining flow mechanisms.

This finding opens another avenue for further investigation, as the knowledge on fluid

slippage at the nanoscale is not as well developed as for the classical rarefied conditions,

given the complex interplay between dense and confinement effects. To tackle this open

problem, for which contradictory results are stated in the literature, a comprehensive

numerical study of the velocity slip process is carried out. First, the range of validity

of the hydrodynamic framework is established, concluding that the criterion for dilute

conditions (Kn ≤ 0.1) also holds for dense gases. Our simple but robust fluid-wall

system allows to unravel the complicated slip process through the fluid-wall friction,

by decoupling its different contributions, e.g. fluid density, channel size, and energy

landscape exerted by the wall. The key result is a strong dependence on the fluid peak

density, where the transfer of tangential momentum depends on both the fluid-wall

collision frequency and the wall accommodation coefficient. Interestingly, this relationship

is also found to hold for more realistic systems, as similar conclusions are found in

preliminary molecular dynamics simulations of fluids confined within physical walls.

Therefore, these findings will not only help to advance the fundamental understanding of

transport phenomena in nanofluidics, which is crucial for accurate predictions, but also

constitute a promising route for developing effective engineering tools. In the following,

some future research directions are envisaged for the current simulation setup, as well

as more involved numerical studies that contribute to the ongoing progress of the field.

6.2 Future Work

6.2.1 Additional Studies with the Existing Modelling Approach

Although all the transport results presented in this thesis refer to pressure-driven flows in

straight channels, our simple simulation setup can be easily extended to other problems,

such as thermal-driven flows. In analogy to the Knudsen paradox found in pressure-

driven flows, anomalous phenomena are also found in non-equilibrium conditions for

temperature-driven flows. One example is the so-called inverted temperature profile,

that can occur for a fluid between two walls mantained at different temperatures, where

condensation and evaporation processes occur at the boundaries (Frezzotti et al., 2003;
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Koffman et al., 1984). Specifically, under certain conditions, a temperature profile can

be found that is opposite of what thermodynamics predict. Moreover, it would not be

surprising if, as in the pressure-driven case, a different behaviour is found by decreasing

the separation between the confining plates.

A different kind of temperature-driven flow, with a more direct impact on practical

applications, is the thermal creep flow (Akhlaghi et al., 2023), which underlies the working

principle of the so-called Knudsen pump. There is a great interest in the development

of these devices, as they do not contain mechanical elements subject to wear and tear.

This type of flow arises when a fluid comes into contact with a non-isothermal boundary,

characterised by a temperature gradient parallel to the flow direction. Momentum is

transferred to the fluid in the opposite direction to that of the temperature gradient,

resulting in a flow from the cold to the hot region. The thermal transpiration effect

is accentuated under non-equilibrium conditions, i.e. λ ∼ L, and is usually limited

by the temperature that the materials of construction can withstand. Therefore, it is

sensible to wonder whether, by decreasing the channel size, the theoretical efficiency

can be increased by applying smaller driving forces, and/or not having to create an

energy-intensive vacuum to drive the fluid out of thermodynamic equilibrium.

Another interesting transport mechanism that is expected to become important in

confined geometries is surface diffusion. This conjecture is supported by the trajectories

of particles inside such channels, which show that once a molecule gets close to the wall,

it has a long residence time and wanders along the region adjacent to the boundary.

Currently, the understanding of this mechanism is mainly based on phenomenological

relations with little theoretical underpinning. Our simple fluid-wall configuration provides

a robust framework for numerical studies, where, for instance, it would be interesting

to study if the two “independent” surface diffusion processes next to each boundary

linearly superimpose or behave according to some other kind of elementary relationship.

Furthermore, based on the results presented in this thesis, the following questions are

posed: i) does surface diffusion transport allow to accurately predict the mass flow

rate in ultra-tight geometries, namely R . 5?, and ii) what is the actual relationship

between “microscopic” surface diffusion and “macroscopic” velocity slip phenomena?

Regarding question i), this is an interesting gap to fill given that in such confinements

the transport is not governed by regular diffusion and, at the same time, convective

effects cannot be developed given the number of fluid layers that the channel can allocate.

Regarding question ii), theoretical models for slip (Martini et al., 2008; G. J. Wang

& Hadjiconstantinou, 2019) assume a molecular motion similar to surface diffusion,

following the principles of transition state theory, but a possible relationship between

surface diffusion and the velocity jump in the Navier-Stokes framework (or the scattering

dynamics in kinetic theory) has not been established yet.
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6.2.2 Extensions to Different Fluid and Wall Systems

The use of the hard-sphere fluid model with ideal stochastic walls is advantageous

for approximating the behaviour of simple fluids under confinement. However, the

closer a model reflects the essential elements of natural phenomena, the better will

be its usefulness. Thus, the extension of fluid and wall models can provide further

insights, and bridge the gap between elementary understanding and more realistic

systems. First of all, this would imply to investigate the impact that the surface model

has on transport phenomena, acknowledging the importance of the boundary-induced

physics in nanofluidics. The stochastic walls used in this thesis represent a convenient

theoretical construct for the study of confined fluids. Indeed, the assumptions underlying

the introduction of phenomenological scattering kernels are meaningful in the rarefied

gas description. However, this constitutes an oversimplification in the study of dense

fluids, where the time scale of fluid-wall interactions is not much shorter than the time

scale of fluid-fluid interactions. A more comprehensive alternative, which remains in the

framework of kinetic theory, is to include these interactions in the form of a collision

integral (Frezzotti & Gibelli, 2008) when solving the governing kinetic equation.

However, the true fluid-wall interactions can only be modelled using deterministic

molecular dynamics simulations, where walls are no longer mathematically defined,

but represent a physical boundary instead. The influence of the different length and

energy-scale parameters in the Lennard-Jones potential plays an important role, as does

the distribution of the wall atoms on different cristalline lattices. As might be expected,

this is a very complicated problem that needs to decouple the different contributions,

in order to disentangle the actual effect of each parameter. For instance, concerning

the work presented in Chapter 3, more involved self-diffusion studies were performed

using MD simulations for realistic kerogen structures (Alafnan, 2022). The quantitative

similarities in the self-diffusivity results highlight the potential of our simpler setup

to predict results in confined geometries, where interactions with the boundaries are

predominant.

Another interesting avenue for further investigation is a more complete definition of

fluid-fluid interactions, which would also help to describe systems more realistically.

For instance, the hard-sphere model does not allow to reproduce the real temperature

dependence of the viscosity of real gases because of its constant cross-section for collisions.

The variable hard-sphere description (Bird, 1994), in which the collisional cross-section

is a function of the relative velocity of the colliding molecules, captures the right

dependence while keeping the simplicity of the same scattering dynamics, subjected to

standard kinetic equations.
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Further extensions would imply the inclusion of intermolecular Van der Waals forces in

the analysis, which can be done in a first approximation by superimposing an attractive

soft potential tail to the purely repulsive hard-sphere fluid potential. The fluid would

then interact according to the Sutherland potential, which can be solved using the

Enskog-Vlasov equation (Frezzotti et al., 2005) after appropriate simplifying assumptions.

The collision integral remains the same as in the Enskog equation, but the streaming part

is modified to account for the attractive intermolecular forces between particles, with a

Vlasov-like self-consistent force field. By adding this kind of forces, the Enskog-Vlasov

equation has been used to capture the behaviour in more complex systems, e.g. involving

several phases such as liquid-vapour interfaces, from the kinetic theory point of view.

We anticipate that this additional physics can be applied to better study velocity slip

processes, where condensation-like processes (as already observed by Maxwell (1879) and

Knudsen (1909) in their seminal contributions) occur next to the walls. This approach

might also help to build physics-oriented models, as for instance the density layering

in tight geometries, see Figure 5.4, resemble the behaviour predicted by the Brunauer-

Emmett-Teller (BET) theory for multi-layer physical adsorption, in particular type III

isotherms (Brunauer et al., 1940). However, as for fluid-surface interactions, a more

complete picture is provided by the Lennard-Jones potential, which is studied through

MD simulations. Some preliminary results are presented in Chapter 5, which validate the

remarks drawn from EDMD simulations. This was at some point expected, considering

that the main aspects of the fluid structuring (which acts as a gateway to slip, amongst

many other nanofluidic transport phenomena) are determined by the hard-sphere term.

Last but not least, the study of more complicated geometries, such as porous media,

can likewise be devised by distributing frozen spheres (of the same or different sizes)

in the space available for the fluid flow within the channel. This is similar to the basic

assumption considered in the development of the dusty gas model (Mason et al., 1967),

which is an extension of the kinetic theory principles to study gas transport in porous

media. By using this approach, one can ascertain the influence of porosity by completely

decoupling it from tortuosity (channels are still straight), which are often used vaguely

in the context of porous media studies.

The most obvious impact of both of them is to increase the fluid-wall collision frequency,

but it is not clear their individual contribution on the porous media permeability. For

instance, we expect that this methodology would allow to identify the predominance

of diffusive mechanisms within tight confinements, which was not found in studies of

straight channels, see Chapter 4. Moreover, given the simplicity of the hard-sphere

model, it would be possible to decouple the true dependence of transport phenomena on

fluid and wall properties. These are usually intertwined in more realistic configurations,

thus hindering a first-principles understanding in the commonly performed MD studies.



Appendix A

Maxwell Scattering Kernel in

Cylindrical Geometry

The extension of the Maxwell scattering kernel to cylindrical walls is performed following

the approach presented in Verbeek (2010). Contrary to what happens in the planar

wall case, where u = (ux, uy, uz) is sampled from the Maxwell scattering kernel in

Cartesian coordinates, in the cylindrical geometry one should sample u = (ur, ut, uz)

for convenience, where ur and ut are the radial (normal) and tangential components of

the velocity, respectively. The decomposition of these radial and tangential velocities

into their x, y−components involves easy trigonometrics, as one can see in Figure A.1

ur =


ur cos θ = ur

x

r
, for the x−component,

ur sin θ = ur
y

r
, for the y−component,

A.1

ut =


−ut sin θ = −ut

y

r
, for the x−component,

ut cos θ = ut
x

r
, for the y−component,

A.2

where r =
√
x2 + y2 and θ = arctan (y/x), being the 2-argument arctangent, denote the

polar coordinates. In order to ensure that particles are contained within the cylinder and

are not lost after reflection, i.e. u · ñ > 0 where ñ is the inward normal unit vector, the

radial component ur must switch its sign. Hence, the geometric argument that ensures

the appropriate calculation of the velocities upon diffuse scattering (α = 1) can be

expressed concisely in matrix formuxuy
uz

 =
1

r

−x −y 0

−y x 0

0 0 r


urut
uz

 . A.3
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Figure A.1: Decomposition of the circular-based radial (red) and tangential (blue)
velocity components into their linear homologues.

On the other hand, the specular reflection (α = 0) simply changes the sign of the

radial component of the impinging particle, so that its momentum is conserved. The

z−component is left unaltered, and the x and y−coordinates are updated according to

the relationships that permit to switch between linear and circular velocities

ux =
ur + ut tan θ

cos θ + sin θ tan θ
, A.4

uy =
ux sin θ − ut

cos θ
. A.5

The validity of this procedure for computing the post-collisional velocities in cylindrical

geometries is tested by studying the flow transport in the free molecular regime,

which is solely determined by fluid-wall interactions. In this regime, the collisionless

transport follows the Knudsen diffusion mechanism, whose expression for the Knudsen

self-diffusivity can be obtained from kinetic theory as

Dk =
2− α
α

(d− σ)

3

√
8kT

πm
. A.6

The agreement between numerical results (using the Einstein relation) and the theoretical

prediction of the Knudsen self-diffusivity, for different accommodation coefficients α,

confirms the correct implementation of the cylindrical argument.

Another issue that requieres special attention concerning the Maxwell scattering

kernel is the computational implementation of the diffuse term (Tehver et al., 1998).

This technicality is not just related with the cylindrical geometry, and also should

be considered in a planar wall geometry. The parallel components of the velocity
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up = (ut, uz) for the re-emitted particles are chosen from the Maxwellian distribution

function at the wall temperature, whereas the normal component of the velocity (ur

in polar coordinates, ux in Cartesian) must be sampled from a different distribution

function

fN (ur) =
m

kTw
ure
− mu2

r

2kTw . A.7

Otherwise, if sampling the normal component from the Maxwellian too, one would

not properly take into account the velocity-dependent probability with which particles

collide with the wall, and so the distribution function adjacent to the boundary will be

different than in the bulk.



Appendix B

Computation of the Collision Time

with Cylindrical Walls

In two dimensions, the problem of calculating the collision times of fluid particles

with cylindrical walls can be reduced to the simple geometric problem of finding

the intersection points between a line and a circle, denoted by blue and red colours

respectively in Figure B.1. Here, the wall is described by the equation of a circle with

radius R centered in (p, q)

(x− p)2 + (y − q)2 = R2, B.1

and the particle i is located at ri = (xi, yi), moving with velocity ui = (uxi, uyi)

in a linear trajectory with slope mi = uyi/uxi and y−intercept ai = yi −mixi. For

simplicity, it is assumed that the centre of the circle is located in the origin of coordinates

(p, q) = (0, 0), so that the intersection points are trivially found by solving

(
m2
i + 1

)
x2
int,i + (2miai)xint,i + a2

i −
(
R− σ

2

)2
= 0, B.2

which always have two solutions for xint,i, as the line representing the trajectory of the

particle i, by being inside the circle, will always intersect the wall twice. Once the two

intersection points are found, the actual collision point is easy to determine based on

the x−component of the velocity. That is, if uxi is positive, then xint,i would be the

larger value of the two of them, as sketched in Figure B.1, whence yint,i = mxint,i + ai

is obtained. The viceversa reasoning would apply otherwise.

This approach presents a singularity when uxi = 0, as the slope mi would be infinite. In

that case, the x-coordinate of the collision xint,i would correspond to the x−location of

the particle, whereas the y−coordinates easily follow from

yint,i = ±
√(

R− σ

2

)2
− x2

i , B.3
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Figure B.1: Calculation of the collision point of a particle i, based on its velocity, with
a cylindrical wall.

and the actual yint,i will depend on the sign of uyi. By determining the Euclidean

two-dimensional distance between the collision point (xint,i, yint,i) and the instantaneous

location of the particle, the collision time with the wall t∗iw can be obtained by knowing

the particle velocity as

t∗iw = t+

√
(xi − xint,i)2 + (yi − yint,i)2√

u2
xi + u2

yi

. B.4

The wall collision time of each particle in the system is computed and compared with its

current collision time in the information list. If the next event corresponds to this type

of interaction, the post-collisional velocities are sampled from the Maxwell scattering

kernel following the approach presented in Appendix A. Based on this updated velocity,

the next event for the colliding particle is sought so that the algorithm can continue.



Appendix C

Friction Coefficient from Equilibrium

EDMD Simulations

The theoretical framework for the velocity slip is well defined, based on the Navier

boundary condition (Navier, 1823). Its mathematical formulation, Eq. (1.11), contains

two coefficients that need to be determined: the shear viscosity of the fluid and the fluid-

wall friction coefficient. The shear viscosity can be easily computed from well-established

experimental procedures, computer simulations, or theoretical correlations. On the other

hand, the fluid-wall friction coefficient is not so well understood, as evidenced by the

lack of first-principles theories for its analytical determination.

Furthermore, the experimental estimation of the interfacial friction coefficient is difficult,

given the sub-nanometer scales at which the slip phenomena take place. Therefore, it has

to be computed based on numerical studies, where molecular dynamics-like procedures

in both non-equilibrium and equilibrium setups are a powerful tool. Non-equilibrium

simulations imply the application of an external field to the system. However, one

should be aware that, beyond the so-called linear regime, the slip processes heavily

depend on the strength of the field. The caveat is that this threshold is not known on

beforehand, and therefore one should run an extensive campaign to find a compromise

for the external force value, namely large signal-to-noise ratio in the linear regime.

In order to overcome this challenge, simulations can be run in the external zero-force

limit, i.e. in equilibrium conditions. In analogy to the better understood case of friction

between solids, the hydrodynamic friction can be based on the shearing force between

the the first fluid in layer in contact with the boundary of the system and the solid

surface. In this Appendix, we present the approach introduced in Hansen et al. (2011),

which consists on modelling the fluctuating dynamics of a fluid volume element adjacent

to the wall, referred to as slab, of width ∆. For sufficiently small relative velocities

between this slab (us) and the wall, essentially the velocity slip, the friction kernel ζ∆

can be found from the generalised Langevin equation

Fw (t) = −
∫ t

0
ζ∆ (t− τ)us (τ) dτ + Fr (t) , C.1
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Figure C.1: The correlation functions are normalised with respect to their maximum
absolute value. (a) Example of the two correlation functions, showing that decorrelation
occurs for short times. (b) Numerical Laplace transformation of the force-velocity
correlation function, together with the best fit of the memory function.

where Fw is the shear force exerted by the wall on the fluid (or viceversa) and Fr is a

random force term with zero mean, that is uncorrelated with the slab velocity at earlier

times. For steady flows, the time average of Eq. C.1 reads 〈Fw〉 = −ζ0,∆us, namely, the

first term in the right hand side of the force balance summarised in Eq. (5.6).

Now, if one takes the scalar product of Eq. C.1 with us(0) and produces the ensemble

average, an expression for the force-velocity cross-correlation function CFu (t) is derived

〈Fw (t)us (0)〉 = CFu (t) = −
∫ t

0
ζ∆ (t− τ) 〈us (τ)us (0)〉dτ, C.2

as a function of the slab velocity autocorrelation function Cuu (t) = 〈us (t)us (0)〉.
These correlation functions are easy to quantify in equilibrium simulations, based on

the construction of series for the fluid-wall tangential force and the velocity slip at

different times. Some archetypical examples of these correlation functions are presented

in Figure C.1a, where it is observed that the force and the velocity slip are anticorrelated

as CFu (t) < 0 (the wall shear force acts in the opposite direction to the slab velocity),

and that the autocorrelation function for the velocity slip quickly decays to zero.

This approach differs from the original conceptualisation of Navier, which considers

the friction on a plane (the fluid-wall interface) rather than in a volume. Nevertheless,

both approaches are equivalent as it is detailed in Section 5.2.1. As might be expected,

the correlation functions depend in a non-trivial way on the width of the slab under

consideration. For large ∆ values, the force and velocity terms will include not just

frictional forces from the fluid-wall interactions, but also hydrodynamic ones of viscous
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nature arising from the bulk of the fluid. On the other hand, for small ∆ values,

the statistical accuracy will be affected owing to the small number of molecules in

the region. Furthermore, the methodology presented in this Appendix is expected to

work for cases where the density fluctuations are not significant. Thus, the slab-based

methodology is invalid for dilute systems, where the flow description obeys kinetic theory

precepts (Kennard, 1938), and an analytical expression for the friction coefficient can

be obtained from the Maxwell studies on the boundary condition, see Eq. (5.18).

One can transform Eq. C.2, i.e. an integral in the time domain, into a more convenient

algebraic expression by following the convolution theorem, which involves a numerical

Laplace transformation into the s−domain

C̃Fu (s) = −ζ̃∆ (s) C̃uu (s) , C.3

where s is the Laplace coordinate. Technically, one could produce the steady state-based

ζ̃0,∆ directly from Eq. C.3, although this leads to poor statistics and an alternative

approach has to be devised. In order to extract the friction coefficient, we follow here the

methodology reported in Varghese et al. (2021). It assumes that the friction coefficient

can be approximated by a one-term Maxwellian memory function ζ∆ (t) = b1e
−a1t with

two fitting parameters b1 and a1 (see Figure C.1b), whose Laplace transform reads

ζ̃∆ (s) =
b1

s+ a1
. C.4

If one integrates Eq. C.3 along the Laplacian domain, from an arbitrary minimum c1 to

an arbitrary maximum c2, then Eq. C.4 can be rearranged as∫ c2

c1

s+ a1

b1
ds = −

∫ c2

c1

C̃uu (s)

C̃fu (s)
ds =

1

b1

[
c2

2 − c2
1

2
+ a1 (c2 − c1)

]
, C.5

where the ratio between the velocity autocorrelation and the force-velocity cross-

correlation function can be numerically determined from equilibrium EDMD simulations.

Since there are two fitting parameters, another equation is needed, which can be

obtained by taking two different integral limits c3 and c4. The interfacial fluid-solid

friction coefficient is simply determined by taking into account the surface area of the

wall A, as

ξ0,∆ =
ζ0,∆

A
=

b1
a1A

. C.6

The comparison between the friction coefficients obtained by this procedure and using

non-equilibrium simulations is presented in Table 5.1 and Table 5.2. It can be observed

that both procedures agree for large reduced densities η0, specifically when ∆ > λ –

that is, when the density fluctuations next to the walls are not important.
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