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Abstract

Nested optimization, whereby an optimization problem is constrained by the solutions

of other optimization problems, has recently seen a surge in its application to Deep

Learning. While the study of such problems started nearly a century ago in the context

of market theory, many of the algorithms developed since do not scale to modern Deep

Learning applications. In this thesis, I push the understanding and applicability of

nested optimization to three machine learning domains: 1) adversarial games, 2) meta-

learning and 3) deep equilibrium models. For each domain, I tackle a particular goal.

In 1) I adversarially learn model compression, in the case where training data isn’t

available, in 2) I meta-learn hyperparameters for long optimization processes without

introducing greediness, and in 3) I use deep equilibrium models to improve temporal

coherence in video landmark detection.

The first part of my thesis deals with casting model compression as an adversarial

game. Performing knowledge transfer from a large teacher network to a smaller student

is a popular task in deep learning. However, due to growing dataset sizes and stricter

privacy regulations, it is increasingly common not to have access to the data that

was used to train the teacher. I propose a novel method which trains a student to

match the predictions of its teacher without using any data or metadata. This is

achieved by nesting the training optimization of the student with that of an adversarial

generator, which searches for images on which the student poorly matches the teacher.

These images are used to train the student in an online fashion. The student closely

approximates its teacher for simple datasets like SVHN, and on CIFAR10 I improve on

the state-of-the-art for few-shot distillation (with 100 images per class), despite using no
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data. Finally, I also propose a metric to quantify the degree of belief matching between

teacher and student in the vicinity of decision boundaries, and observe a significantly

higher match between the zero-shot student and the teacher, than between a student

distilled with real data and the teacher.

The second part of my thesis deals with meta-learning hyperparameters in the case

when the nested optimization to be differentiated is itself solved by many gradient

steps. Gradient-based hyperparameter optimization has earned a widespread popularity

in the context of few-shot meta-learning, but remains broadly impractical for tasks with

long horizons (many gradient steps), due to memory scaling and gradient degradation

issues. A common workaround is to learn hyperparameters online, but this intro-

duces greediness which comes with a significant performance drop. I propose forward-

mode differentiation with sharing (FDS), a simple and efficient algorithm which tackles

memory scaling issues with forward-mode differentiation, and gradient degradation

issues by sharing hyperparameters that are contiguous in time. I provide theoretical

guarantees about the noise reduction properties of my algorithm, and demonstrate

its efficiency empirically by differentiating through ∼ 104 gradient steps of unrolled

optimization. I consider large hyperparameter search ranges on CIFAR-10 where I sig-

nificantly outperform greedy gradient-based alternatives, while achieving ×20 speedups

compared to the state-of-the-art black-box methods.

The third part of my thesis deals with converting deep equilibrium models to a form

of nested optimization in order to perform robust video landmark detection. Cas-

caded computation, whereby predictions are recurrently refined over several stages, has

been a persistent theme throughout the development of landmark detection models.

I show that the recently proposed deep equilibrium model (DEQ) can be naturally

adapted to this form of computation, given appropriate regularization. My landmark

model achieves state-of-the-art performance on the challenging WFLW facial landmark

dataset, reaching 3.92 normalized mean error with fewer parameters and a training

memory cost of O(1) in the number of recurrent modules. Furthermore, I show that

DEQs are particularly suited for landmark detection in videos. In this setting, it is
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typical to train on still images due to the lack of labeled videos. This can lead to a

“flickering” effect at inference time on video, whereby a model can rapidly oscillate

between different plausible solutions across consecutive frames. I show that the DEQ

root solving problem can be turned into a constrained optimization problem in a way

that emulates recurrence at inference time, despite not having access to temporal data

at training time. I call this “Recurrence without Recurrence”, and demonstrate that

it helps reduce landmark flicker by introducing a new metric, and contributing a new

facial landmark video dataset targeting landmark uncertainty. On the hard subset of

this new dataset, made up of 500 videos, my model improves the accuracy and temporal

coherence by 10 and 13% respectively, compared to the strongest previously published

model using a hand-tuned conventional filter.
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Lay Summary

In an optimization problem, you are trying to find the best strategy to solve a problem.

As humans we use our brain to do this all the time. For example, you solve an

optimization problem when you decide the best time to show up to a party. Too early

and you’ll risk standing around awkwardly. Too late and you’ll risk missing the fun.

You may consider various factors in making the call, like how many of your friends are

coming and how big the venue is. You may also rely on previous experience. Last time

you showed up so early the host asked you to help in the kitchen. No thanks. This time

it has to be just right. It has to be optimal.

Finding the optimal strategy by learning from previous experience is the cornerstone

of deep learning. Basically, we use computers to learn strategies from vast amounts of

data automatically, and use these strategies to make predictions in previously unseen

scenarios. In this thesis I look at a particular flavor of optimization called nested optim-

ization, which, as the name suggests, is an optimization problem that contains another

optimization problem. More specifically, I consider three types of nested optimization

problems: adversarial games, meta-learning, and equilibrium models.

First, let’s look at nested optimization for adversarial games. Here, the host of the

party knows that you’re planning to arrive later than the official start time. The thing

is, her objective is different than yours; she wants everyone to arrive exactly on time.

She is your adversary. The strategy she chooses is to tell you a fake start time, which is

early by the same amount that she reckons you will be late. Smart, but hard. For her

strategy to be optimal, she has to figure out your optimal strategy first, which relies

on all your past experience relating to parties. Therefore, though you are completely

unaware of her treachery, your optimization problem is nested within her optimization

problem.
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Consider now a meta-learning approach to nested optimization. As before, you are

trying to learn from previous party experiences what the optimal turn up time is for

this party. The difference now is that you would like to leverage knowledge from other

related problems you have successfully learned to solve in the past. For instance you

once figured out the optimal morning routine, and the optimal strategy to get your

dad Christmas presents that he likes. Say that in both of these problems, you found

that communication with other people involved was key to your success. This insight

can be helpful in the context of timing your arrival to this party: maybe telling your

plans to your friends will help. In general, figuring out this problem-agnostic insight,

aka meta-knowledge, is a form of nested optimization because it involves solving lots

of individual nested problems, before you can learn something about the big picture.

The third nested optimization model we consider is deep equilibrium models, and our

analogy starts to require more imagination. In this scenario, you decide to take a closer

look at what your brain does when it’s trying to reflect upon a single party experience

you had years ago. Your brain doesn’t immediately jump to a conclusion about what

went right and what went wrong that day. Instead, it starts with an intuition, and

then refines it several times by considering various perspectives about the problem.

Eventually, your brain converges to a conclusion: it has reached an equilibrium. Here,

the very process of producing an opinion about a single memory required solving

an optimization problem, to find this equilibrium. This problem is nested within the

broader problem you seek to solve, which is to make this opinion accurate.

While the above examples are illustrative, they hopefully demonstrate the breadth and

variety of nested optimization. In this thesis, I focus on applications to nested problems

within deep learning, where more traditional methods scale poorly.
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Chapter 1

Introduction

1.1 Prelude

The work presented in this thesis falls under the field of Machine Learning (ML), or

more specifically Deep Learning (DL), the subset of ML that relies on large artificial

neural networks. A popular definition of machine learning is given by (Mitchell, 1997):

“A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E”. Note that performance P (usually measured on

test data) isn’t necessarily what is being optimized for when learning experience E

(e.g. one can learn from E on training data). This definition allows making a key

distinction between machine learning and previous related fields (like optimization and

statistics), namely the concept of generalization, which is paramount throughout this

thesis. Indeed, experience E is typically finite (in time and memory) while the tasks

in T are typically infinite and partially observed (e.g. if they contain samples from

probabilistic distributions), and so experience E needs to be relevant for unseen tasks

drawn from the same task class. In this thesis, I assume that the reader has a general

knowledge of Deep Learning. A comprehensive overview can otherwise be found in

(Goodfellow et al., 2016).

Despite its poorly streamlined early development starting in the 1960s, the success of

Machine Learning (ML) in the past ten years has been second to none. In 2012, the era

of learning machines was kick-started by the convergence of rising computational power

and efficient convolutional neural networks (Krizhevsky et al., 2012), which dominated

alternative pattern recognition approaches on the challenging ImageNet dataset (Deng
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et al., 2009). Since then, machine learning models of ever increasing size have become

the industry standard in fields like computer vision (He et al., 2016), speech recognition

(Oord et al., 2016), generative models (Brock et al., 2019; Ho et al., 2020), and natural

language processing (Brown et al., 2020).

For all this progress, the latest machine learning models still pale in comparison to the

initial tacit ambition of the field, namely building machines with a general purpose

Artificial Intelligence (AI). Putting aside the potentially unrealistic nature of this

endeavor, it remains useful to make statements about the limitations of the machine

learning state-of-the-art by comparing it to human intelligence. While this discussion

was once confined to the academic setting, the recent surge of interest in large language

models, sparked by Chat-GPT (OpenAI, 2023), has helped in making this discussion

more global.

On a superficial level, human intelligence differs from machine intelligence by being

embodied, and naturally augmented with ethics. On a more technical level, it is gen-

erally argued that other major sources of difference fall under 1) adaptability or 2)

scalability. The issue of adaptability refers to the over-specialization of ML models.

Indeed, the most common ML pipeline consists in training a model from scratch on a

single specific task, such as the classification of dog breeds. This “tabula rasa” approach

means that such a model is completely inadequate for other tasks, even if somewhat

related. The lack of adaptation to unseen tasks is in stark contrast with the intelligence

of humans, who are able to reason quickly on a continuum of unseen problems, by

leveraging previous related experiences. Secondly, the issue of scalability refers to the

fact that increasing the size of machine learning models and training datasets exhibits

sharply diminishing return. Indeed, the performance on a task v.s. model size graph is

typically highly sublinear. Considering language translation as an example, scaling up

a small 100M-parameter GPT3 model by 1B parameters increases the BLUE score by

25 points, while scaling it further by 100B parameters increases the BLUE score by less

than 10 points (Brown et al., 2020).
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The nested optimization methods I develop in this thesis, though they are showcased

within specific applications, can be understood as a part of the solutions that the

machine learning community is building to address the adaptability and scalability

issues. In Chapter 3 I tackle the problem of diminishing reward by compressing large

neural networks into smaller ones. More specifically, I show that no data is needed for

effective distillation. Chapter 5 also falls under scalability solutions, as deep equilibrium

models can be seen as a way to represent infinitely deep neural networks with a finite

computation cost and parameter count.

In Chapter 4 I extend meta-learning tools to real-world problems with many gradient

steps. Meta-learning, or learning to learn, is arguably the most promising solution

to the adaptability problem of machine learning, as it explicitly learns task-agnostic

knowledge which can be leveraged for quickly adapting to unseen tasks. In the specific

case of hyperparameter optimization, I make the differentiation of the unrolled learning

procedure more efficient when it consists of thousands of gradient steps.

Nested optimization is a mature field, which far predates the applications tackled in

this thesis. That being said, much of the literature in nested optimization considers

toy problems and make hard assumptions which don’t hold in most machine learning

problems. As such, one of the contribution of this thesis is to extend nested optim-

ization tools to the deep learning setting. This should be considered an independent

contribution to the broader application-specific contributions we make in each chapter.

These include demonstrating that networks can be trained without any training data

in Chapter 3, showing the superiority of non-greedy algorithms in Chapter 4, and the

importance of temporal coherence for landmark detection in Chapter 5.
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Symbol Meaning

x single datapoint input
y single datapoint label
X all dataset inputs
Y all dataset labels

D = (X,Y ) dataset
θ,ϕ,ω learnable parameters

θ∗,ϕ∗,ω∗ optimum or learned parameter
p(u), q(u) probability distributions of u

Eu∼p(u) f(u) expectation of f(u) under p(u)

L(·) loss function

LCE(p(u), q(u)) cross-entropy of p(u) and q(u)

DKL((p(u) || q(u))) Kullback–Leibler divergence of p(u) and q(u)

∥v∥p L-p norm of v

Table 1.1: Common meaning of symbols used

1.2 Notation and conventions

The notation and conventions used are consistent throughout this thesis. Vectors are

denoted by bold lowercase (e.g. u) and matrices by bold uppercase (e.g. A). By

convention, u denotes a column vector while u⊤ denotes a row vector. Scalars are

written as normal uppercase (e.g. N) when they are fixed properties of the problem that

the practitioner cannot change, or as normal lowercase (e.g. α) when they are properties

of the algorithm which the practitioner can change. A function f(·) or F (·) is written

as f(u,v;θ) or F (u,v;θ) to indicate that it inputs u and v, and is parameterized by

θ. The most common meaning of certain symbols is assumed, as defined in Tab. 1.1.

1.3 Supervised learning basics

Supervised machine learning refers to the setting where a label y is available for each

input x, and our task is to predict y from x. More specifically, the tasks considered

in this thesis are either 1) image classification, whereby x is an image and y is a one-

hot probability vector indicating the class of x, or 2) landmark regression, whereby y

represents 2D coordinates for several keypoints of x.
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This section covers some basic machine learning tools relevant to the models introduced

in this thesis. In particular, maximum likelihood estimation is important for Chapters

3-5, maximum a posteriori estimation is important for Chapter 5, while gradient descent

update rules are particularly important for Chapter 4. While these tools aren’t limited

to the supervised learning setting, they are used in this context throughout the thesis.

1.3.1 Maximum likelihood estimation

Our objective is to learn a model pm(y|x;θ) parameterized by θ which approximates

the true (conditional) data distribution pd(y|x):

θ∗
MLE = argmin

θ
DKL(pd(y|x) || pm(y|x;θ)) (1.1)

where the KL divergence between two densities p(y) and q(y) is given by:

DKL(p(y) || q(y)) =
∫

p(y) log
p(y)

q(y)
dx (1.2)

Now since pd(y|x) doesn’t depend on θ the above reduces to

θ∗
MLE = argmin

θ
E

x,y∼pd(x,y)
− log pm(y|x;θ) (1.3)

which is the maximum likelihood estimate (MLE), or equivalently the parameters

that minimize the negative (conditional) log likelihood under the model. In practice

we don’t have access to the joint data generating distribution pd(x,y) and so we

minimize a Monte Carlo estimate of the above expectation over some independent and

identically distributed (iid) samples, which we call the training datapoints: Dtrain =

(Xtrain,Ytrain). In the case of classification, a neural network outputs a vector of prob-

abilities over classes, and the above is called the cross entropy loss LCE between pd(y|x)

and pm(y|x;θ):

θ∗
MLE = argmin

θ
E

x,y∼Dtrain

LCE(pd(y|x), pm(y|x;θ)) (1.4)
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In the case of regression, making the assumption that pm(y|x;θ) ∝ N (y; ŷ, σ21), where

ŷ = ŷ(x;θ) is the output of our neural network and σ some scalar, Eq. (1.3) leads to

minimizing the mean squared error loss LMSE:

θ∗
MLE = argmin

θ
E

x,y∼Dtrain

− logN (y; ŷ, σ21) (1.5)

= argmin
θ

E
x,y∼Dtrain

C +
1

2σ2
(y − ŷ)T (y − ŷ) (1.6)

= argmin
θ

E
x,y∼Dtrain

∥y − ŷ∥22 (1.7)

= argmin
θ

E
x,y∼Dtrain

LMSE(y, ŷ) (1.8)

To evaluate the generalization performance of the learned model, we measure the loss

LCE or LMSE on samples from the data generating distribution which weren’t used

during training, referred to as test datapoints: Xtest,Ytest.

1.3.2 Maximum a posteriori estimation

In some cases, we would like to encourage the learned parameters θ∗ to be close to

some meaningful value θ0. This is best achieved in a Bayesian framework, where we

use Bayes’ rule to write the posterior over parameters as being proportional to the

likelihood and a prior:

p(θ|y,x) ∝ pm(y|x;θ)p(θ) (1.9)

Now in the special case where we assume a Gaussian prior, namely p(θ) = N (θ;θ0, ϵ
21),

maximizing the posterior in the case of regression leads to the following the maximum

a posteriori estimate (MAP):

θ∗
MAP = argmin

θ
E

x,y∼Dtrain

− log p(θ|y,x) (1.10)

= argmin
θ

E
x,y∼Dtrain

− log pm(y|x;θ)− log p(θ) (1.11)

= argmin
θ

E
x,y∼Dtrain

LMSE(y, ŷ) +
λ

2
∥θ − θ0∥22 (1.12)

where λ ∝ σ2ϵ−2
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1.3.3 Gradient descent

Both maximum likelihood and maximum a posteriori estimations boil down to the

minimization of some training loss function Ltrain, which includes the outputs of some

neural network parameterized by θ. Due to the complexity and size of typical neural

networks, the minimizer θ∗ of Ltrain cannot be found analytically, and we must rely on

iterative algorithms like gradient descent. In its simplest form, gradient descent updates

parameters θt at step t by letting:

θt+1 = θt − α

(
∂Ltrain
∂θ

)⊤
(1.13)

where α is the learning rate. Note that I use the numerator convention of matrix

calculus, which means that given some scalar s and two vectors u ∈ RU and v ∈ RV

then ∂s
∂v ∈ R1×V and ∂u

∂v ∈ RU×V . In practice, modern optimizers rely on variants of

stochastic gradient descent, whereby the gradient term is calculated on minibatches of

data rather than the whole training dataset.

1.4 Thesis structure and list of contributions

The work I produced for this PhD thesis includes two first author NeurIPS publications,

and one first author paper currently under review at CVPR 2023. I also significantly

contributed towards a PAMI survey paper as a coauthor. In Chapter 2 I give a more

technical overview of the various flavours of nested optimization relevant to my work.

This chapter leverages concepts and perspectives that were contributed towards in the

making of the following survey:

T. Hospedales, A. Antoniou, P. Micaelli and A. Storkey, “Meta-Learning in
Neural Networks: A Survey” in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. , no. 01, pp. 1-1, 5555, 2020.
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This survey has become the most popular survey on meta-learning in the past two years,

sparking much discussion within the community since publication. It provides an up to

date literature review for a fast moving field, as well as a perspective on the future of

meta-learning and a new taxonomy which enables faster prototyping of meta-learning

solutions.

The remaining chapters correspond to one paper each, with extra background relating

to the specific application domains of each paper. In Chapter 3 I cover my work on

knowledge distillation in the absence of training dataset. The idea is to train a generator

adversarially against a student network: the generator looks for images for which the

student maximally mismatches the teacher network, and the student learns on those

images. This work formed the basis of a spotlight paper published at NeurIPS 2019:

P. Micaelli and A. Storkey, “Zero-shot Knowledge Transfer via Adversarial
Belief Matching”, Advances in Neural Information Processing Systems, 2019.

In this chapter I also give background on model compression, knowledge distillation,

and adversarial attacks. While the field that has been building on this publication

the most deals with the privacy of modern neural networks, much of this literature is

tangential to this thesis and will therefore be given a cursory glance.

In Chapter 4 I present my work on gradient based hyperparameter optimization for

problems with many optimization steps. The forward-mode algorithm proposed therein

tackles a memory limitation of many meta-learning algorithms, and was published at

NeurIPS 2021:

P. Micaelli and A. Storkey, “Gradient-based Hyperparameter Optimization
Over Long Horizons”, Advances in Neural Information Processing Systems,
2021.

In this chapter, I also give an overview of traditional hyperparameter optimization

techniques (which serve as our baselines) and a discussion of forward-mode vs. reverse-

mode differentiation.
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Finally, in Chapter 5 I present work done on video landmark detection using deep

equilibrium models. This work was carried out in partnership with NVIDIA, and was

published at CVPR 2023:

P. Micaelli, A. Vahdat, H. Yin, J. Kautz, P. Molchanov“Recurrence without
Recurrence: Stable Video Landmark Detection with Deep EquilibriumMod-
els”, under review, 2022.

I conclude in Chapter 6 with the main insights uncovered during this PhD, as well as

potential future work.



Chapter 2

Nested Optimization Models

2.1 Overview

An optimization problem is the task of finding the best solution to a problem, according

to some measurable criterion, from a set of feasible solutions. In machine learning,

optimization often reduces to the task of finding the minimum (or maximum) of some

differentiable function F (ω) : RD → R. Since minF (ω) = −max(−F (ω)) ∀F we write

the general form of an optimization problem without loss of generality as follows:

ω∗ = argmin
ω

F (ω) (2.1)

s.t. G(i)(ω) ≤ 0 for i = 1, 2, · · · (2.2)

where G(i)s are an arbitrary number of constraints which define the feasible set (or

search space) for ω∗. Note that we omit writing equality constraints explicitly in the

above equation for the sake of notation clarity, and because any equality constraint can

be expressed by two inequality constraints without loss of generality.

Many relevant problems in machine learning can be expressed as a nested optimization.

This is a type of optimization whose constraints contain another optimization. The

degree of nesting is usually one, in which case nested optimization is synonymous with

bilevel optimization, a term coined in (Candler and Norton, 1977). The general form

10
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for the bilevel optimization problem is as follows:

ω∗ = argmin
ω

F (ω,θ∗) (2.3)

s.t. G(i)(ω,θ) ≤ 0 for i = 1, 2, · · · (2.4)

θ∗ = argmin
θ

f(θ,ω) (2.5)

s.t. g(j)(θ,ω) ≤ 0 for j = 1, 2, · · · (2.6)

where Eq. (2.3) is called the upper (or outer) optimization and Eq. (2.5) is called the

lower (or inner) optimization. The lower objective f(θ,ω) under lower constraints g(j)

has an optimum θ∗ which determines the upper objective function F (ω,θ∗). While it

was omitted in the equations above for clarity, note that the lower level optimum is a

function of the upper variable, i.e. θ∗ = θ∗(ω). This is often called the best-response

function, and it is particularly relevant in the context of meta-learning where it is

challenging to differentiate.

This type of optimization was first investigated by Heinrich Freiherr von Stackelberg

(von Stackelberg et al., 1934; Stackelberg, 1952) in the context of economic game

theory and market equilibrium. There, the problem is posed as a two player game

with a single move per player, with one player (the leader) making their move before

the other (the follower). Each player has their own objective: the upper objective in

Eq. (2.3) corresponds to the leader’s problem, while the lower objective in Eq. (2.5) is

the follower’s problem. The leader ω has the advantage, because it moves first with full

knowledge of the follower’s strategy. The follower θ always optimizes for their objective,

but that objective is determined by the leader’s action, and the leader takes that into

account when choosing their strategy. It is never in the follower’s advantage not to

optimize for their objective, given that there is only a single turn to the game, which

is why the leader has full knowledge of what the follower will do. The above setting is

often referred to as a Stackelberg game.
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This paradigm is best illustrated with an example, inspired from (Colson et al., 2007).

Consider the problem of a highway toll company, whose task is to set the price for

each section of highway under their management, so as to maximize profit. The com-

pany knows that the road users will only use their highways if they correspond to a

competitive offer in terms of speed and cost compared to alternatives like trains and

country roads. To find the best price, the toll company thus has to solve another nested

optimization problem, namely the follower’s problem, who simply finds which mode

of transportation minimizes some function of time and cost. In order to be a bilevel

optimization problem, it must be the case that the toll company has full knowledge

of the follower’s objective, so that the follower’s strategy is entirely determined by the

price chosen by the toll company.

The game theory perspective of bilevel optimization can often give us relevant insight

for machine learning applications. For instance, one thing it points to is that the basic

formulation in Eq. 2.3 – 2.6 lacks clarity when there are several solutions possible to the

lower level problem, i.e. θ∗ ∈ {θ∗
1,θ

∗
2, · · · }. In this case, it is common to make one of two

assumptions, referred to as optimistic and pessimistic. In the optimistic (pessimistic)

assumption, the follower chooses the solution which leads to the best (worse) upper level

objective for the leader. This can be relevant in meta-learning applications (Sec. 2.3)

where a large gap between the optimistic and pessimistic upper level objective function

can lead to a higher generalization error.

Soon after its inception by H. Stackelberg, which focused on applications to markets,

research in bilevel optimization continued as part of the field of mathematical pro-

gramming (Bracken and McGill, 1973; Candler and Norton, 1977; Fortuny-Amat and

McCarl, 1981). There, interest was driven by the surprising complexity of bilevel op-

timization problems, whose hierarchical nature typically produces non-convex problems

with disconnected feasible sets, even when the lower level problem is convex. In fact,

even basic bilevel optimization problems were proven to be NP-hard (Hansen et al.,

1992), and merely checking a proposed solution for bilevel optimality is itself NP-hard

(Vicente et al., 1994).
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Theoretical research in bilevel optimization is still very much active today, and has

branched out into a myriad of sub problems and method classes. This includes evolu-

tionary bilevel optimization (Mathieu et al., 1994; Yin, 2000; Sinha et al., 2014), discrete

bilevel optimization (Vicente et al., 1996; Moore and Bard, 1990; Bard and Moore,

1992), and multi-objective bilevel optimization (Gadhi and Dempe, 2012; Eichfelder,

2007; Ye, 2011). Applications to bilevel optimization have grown exponentially since be-

ing used for market simulations. The most common applications where a leader-follower

Stackleberg game arises include environmental research (Amouzegar and Moshirvaziri,

1999; Sinha et al., 2013; Whittaker et al., 2017), homeland security (An et al., 2013;

Wein, 2009; Brown et al., 2005; Brown et al., 2009), chemistry (Seider and White III,

1985; Clark and Westerberg, 1990; Halter and Mostaghim, 2006), engineering structure

design (Bendsøe, 1995; Herskovits et al., 2000; Christiansen et al., 2001) and control

problems / robotics (Mombaur et al., 2010; Albrecht et al., 2011; Suryan et al., 2016).

Note that virtually all of the tools used in these research and application domains do

not scale to the deep learning setting, which is the context of this thesis. As such, I

do not cover these individually in detail, and instead refer the interested reader to the

following surveys (Sinha et al., 2018; Dempe, 2018; Dempe and Zemkoho, 2021).

2.2 Adversarial learning

Adversarial machine learning usually refers to one of two things. First, it can refer

to the idea of perturbing the training or inference input data in a way that degrades

the performance of a model. For instance, it was observed that high-dimensional input

images to neural networks can be perturbed in small amounts imperceptible to humans,

such that the corresponding network output changes drastically (Szegedy et al., 2014;

Goodfellow et al., 2015). It was also shown that perturbations can be made to the

training dataset in a way that disrupts the learning process and leads to poor model

performance, a method referred to as data poisoning (Zhang et al., 2021a). Adversarial
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attacks cannot always be cast as a nested optimization problem, and are less relevant

to the methods devised in this thesis. In Chapter 3 I use adversarial attacks as a way

to probe decision boundaries of distilled neural networks, and more information on this

attack is given in Sec. 3.1.3.

Another facet of adversarial learning more generally relevant to this thesis is the joint

training of two models, such that each model’s performance is negatively correlated

to the other. For instance, this is at the heart of Generative Adversarial Networks

(GANs) (Goodfellow et al., 2014) where the generator network has a higher loss when

the discriminator’s loss is low and vice versa. This paradigm has shown to be useful

in various applications where images must be generated like in super-resolution (Ledig

et al., 2016), but also in related settings like density estimation (Mescheder et al.,

2017). The network presented in Chapter 3 is adversarially trained with a generator in

a minimax game, which is a specific example of a nested optimization problem. The

following overview is given in the context of GANs without loss of generality.

2.2.1 Minimax training

GANs consist of a generator G and a discriminator D trained adversarially. The dis-

criminator inputs an image x and outputs a probability of this image being real. It is

trained to classify real images, which are sampled pdata(x), from fake images, which

are sampled from pG(x). The generator inputs a noise vector z and outputs an image,

which is equivalent to a sample from pG(x). It is trained to produce images that look

real enough to fool the discriminator. In the simplest GAN formulation, the above

dynamics amount to solving the following minimax objective:

min
G

max
D

V (G,D) (2.7)

where

V (G,D) = E
x∼pdata(x)

logD(x) + E
z∼pz(z)

log(1−D(G(z)) (2.8)
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and where I use the letters D and G to refer to both the functions and their parameters

to make notation clearer, as per the original GAN formulation in (Goodfellow et al.,

2014).

The minimax game in Eq. (2.7) has a leader follower structure, just like the Stackelberg

games introduced in Sec. 2.1. This can be made more evident by rewriting Eq. (2.7) as:

min
G

V (G,D∗) (2.9)

s.t. D∗ = argmax
D

V (G,D) (2.10)

For any fixed generator G, the optimal discriminator is given by

D∗ =
pdata(x)

pdata(x) + pG(x)
(2.11)

Importantly, note that because V (G,D) in a DL setting is highly non-convex non-

concave, the minimax problem isn’t equivalent to a maximin problem (corresponding

to the upper and lower levels being swapped in Eq. 2.9 – 2.10. In the minimax case as

shown above, the generator seeks to fool an optimal discriminator, which corresponds to

learning pG(x) = pdata(x) as wanted. If we were to consider the maximin objective, the

generator would instead seek to map every z value to the single image that maximizes

the discriminator’s output probability. This is called mode collapse, and corresponds

to all of the inputs z being mapped to a single type of image.

2.2.2 Online adversarial learning

In practice, exactly solving the objective of Eq. (2.9) with gradient methods is in-

tractable, because that would require differentiating through the algorithm used to

find D∗. Instead, the original GAN model was trained using the gradient descent-

ascent (GDA) online algorithm, whereby both discriminator and generator are trained

iteratively by taking simultaneous gradient update steps. This approach makes the

distinction between minimax and maximin ambiguous, and thus encourages mode
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collapse (Goodfellow et al., 2014; Goodfellow, 2017). In fact, several authors have shown

that GDA for Stackelberg games like GANs fails to capture the hierarchy of the nested

optimization problem (Daskalakis and Panageas, 2018; Jin et al., 2020), and fail to

converge to a local optimum unless strong assumptions are made.

Some attempts have been made to improve on GDA. In unrolled GANs (Metz et al.,

2017), the authors take several gradient steps on D before taking a single step on G. By

tracking these gradient update steps themselves in autograd and differentiating through

them, this allows for a better approximation of D∗, and for G to take into account how

D will adapt to its update. While this approach can help prevent mode collapse, it is

highly limited in memory due to backpropagation having to store all gradient updates

in memory. As a result, only ∼ 10 update steps are unrolled for the discriminator, which

falls short of the thousands of steps needed in real-world GAN training.

The memory limitation of backpropagation when differentiating through many unrolled

gradient steps is a recurring theme in this thesis. For the adversarial nested optimization

in Chapter 3, I rely on a modified version of GDA that does not unroll the updates of

the discriminator. However, for the meta-learning nested optimization of Chapter 4 I do

unroll the lower level optimization, and circumvent the memory issues of reverse-mode

differentiation by using forward-mode differentiation. More justification for this choice

is given in Sec. 2.3.5.

2.3 Meta-learning

Broadly speaking, meta-learning is best summarized as learning to learn. In most cases

relevant to this thesis, this can be paraphrased as learning how to train a neural network,

and in Chapter 4 I focus on learning optimization hyperparameters as an example.

As the success of deep learning was driven by replacing manual feature extraction

algorithms (Lowe, 2004) with learned features, meta-learning aims to provide a further

revolution by jointly learning the model, features and training algorithm.



2.3. Meta-learning 17

As defined in the recent meta-learning survey (Hospedales et al., 2021), which was

coauthored during this thesis, I take the view that meta-learning can be defined in the

the multi-task or single task setting. In the multi-task setting, the aim is to meta-learn

some task agnostic knowledge that can then be used to quickly solve unseen tasks from

the same task distribution. In the single task setting, the aim is to improve how to solve

a given task by repeating several training episodes. The method presented in Chapter 4

is concerned with the single task setting, but its insights are relevant for the multi-task

setting as well.

Meta-learning allows us to directly tackle the main limitations of deep learning, namely

the need for large quantities of data and computational resources. Indeed, since the

learning algorithm itself can be learned to minimize some meta-objective, this objective

can explicitly target data efficiency or quick convergence. Additionally, the multi-task

view of meta-learning also enables for models that are better at reusing knowledge

learned from past experience, which is another main limitation of the current tabula

rasa paradigm of deep learning.

It is worth noting that the boundaries of what constitutes a meta-learning algorithm can

be somewhat blurry. In the most general sense, many conventional algorithms such as

cross-validation could be defined as a type of“learning to learn”algorithm. Again, I take

the view defined in our survey (Hospedales et al., 2021) that the salient characteristic

of contemporary meta-learning is an explicitly defined meta-level objective, and end-

to-end optimization of the inner algorithm with respect to this objective.

Over the past five years, the applications of meta-learning have grown exponentially,

spanning domains like few-shot learning (Snell et al., 2017), convergence speed (Duan

et al., 2017), unsupervised learning (Hsu et al., 2019), neural architecture search (Liu

et al., 2019), optimizer learning (Ravi and Larochelle, 2017) and many more. Many

of these meta-learning applications are gradient-based, which means that the meta-

learning step requires differentiating over optimization itself. Since reverse-mode dif-

ferentiation requires activations to be stored during the forward pass, these meta-

learning algorithms typically scale poorly in memory. In particular, they only allow
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learning over a handful of gradient steps, such as the few-shot learning setting (Finn

et al., 2017), or they make coarse approximations by e.g. truncating the graph to be

differentiated (Shaban et al., 2019). The algorithm presented in Chapter 4 proposes an

efficient forward-mode differentiation algorithm that directly addresses this wide-spread

meta-learning challenge.

2.3.1 The many-task view

While the model in Chapter 4 is showcased on the single-task meta-learning setting,

it could be applied to the many-task setting, for which I now give a brief overview. I

follow the notation used in our survey (Hospedales et al., 2021).

Let’s contrast the standard machine learning pipeline with the meta-learning pipeline.

Recall that in the conventional supervised setting, we have a training dataset Dtrain =

{(xtraini , ytraini )}Ni=1 and we train a predictive model ŷ = f(x;θ) by solving:

θ∗ = argmin
θ

L(Dtrain;θ,ω) (2.12)

where L is a loss function. The conditioning on ω denotes the dependence of this solution

on assumptions about ‘how to learn’, which are specified manually by the practitioner.

This includes the choice of optimizer to use, its hyperparameters, the function class

and architecture of f etc.. After training, the generalization performance of f(x;θ∗) is

measured by evaluating this loss on test data:

test score = L(Dtest;θ∗) (2.13)

In the many-task meta-learning setting, we seek to learn ω across a multitude of tasks.

Formally, a task T is defined as a dataset and loss function tuple: T = {D,L}. In the

analysis below, I assume the loss is the same for all tasks to simplify notation.
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During the meta-training stage we have access to a set of M source tasks sampled from

a task distribution p(T ): Dsource = {(Dtrain
source,Dval

source)
(i)}Mi=1. Note that each task has

both training and validation data. The source train and validation datasets are often

respectively called support and query sets, and ω is often called the meta-knowledge or

across-task knowledge. The meta-training step of ‘learning how to learn’ can be written

as the following nested optimization:

ω∗ = argmin
ω

M∑
i=1

L(θ∗(i)(ω),ω,Dval (i)
source) (2.14)

s.t. θ∗(i)(ω) = argmin
θ
L(θ,ω,Dtrain (i)

source ) (2.15)

One would best summarize the meta-training step above as follows: the outer level

optimization learns ω such that it produces models θ∗ (i)(ω) that perform well on their

validation sets after training, where the training pipeline is determined by ω.

In the meta-testing stage, we test the performance of ω on Q target tasks Dtarget =

{(Dtrain
target,Dtest

target)
(i)}Qi=1 where each task also has both training and test data. More

specifically, we use the learned meta-knowledge ω∗ to train the base model on each

previously unseen target task i:

test score =

Q∑
i=1

L(θ∗(i),ω∗,Dval (i)
target ) (2.16)

where θ∗(i) = argmin
θ
L(θ,ω∗,Dtrain (i)

target ) (2.17)

Contrary to the conventional pipeline, learning on the training set of a target task i

now benefits from meta-knowledge ω∗ about the algorithm to use. For instance ω could

be an estimate of the initial parameters such that the some gradient based optimizer

converges to a good solution in a few steps (Finn et al., 2017), a hyper-parameter

such as regularization strength (Franceschi et al., 2018), a parameterization of the loss

function to meta-train on (Li et al., 2019), or an optimizer (Ravi and Larochelle, 2017).
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2.3.2 The single-task view

The above formalization of meta-training uses the notion of a distribution over tasks,

and seeks to learn a single meta-knowledge ω that works well for any task sampled

from this distribution. While having many tasks is most common in the meta-learning

literature, it is not a necessary condition for meta-learning. More formally, if we are

given a single train and test dataset, we can artificially create M “source tasks” by

creating M train-val random splits from the single train dataset. At meta-test time,

once ω∗ is learned, we can simply train on the whole original training set and test on

the test set.

To be more precise, since all train splits above are from the same dataset, we are learning

ω over several episodes rather than several tasks per se. But allowing this extension

makes meta-learning tools more evidently relevant to more deep learning applications,

where the training dataset is unique and ω is usually set by hand.

2.3.3 Online meta learning

A naive implementation of the bilevel optimization in Eq. 2.14 – 2.15 is expensive in

both time (because each outer step requires several inner steps) and memory (because

reverse-mode differentiation requires storing the intermediate inner states). For this

reason, much of meta-learning has focused on the few-shot regime (Finn et al., 2017).

However, there is an increasing focus on methods which seek to extend optimization-

based meta-learning to the many-shot regime.

The simplest solution is to alternate updates on ω and θ. This is particularly common

in gradient-based meta-learning models, which I focus on in this thesis. This solution

shortens the horizon of the lower level problem, which refers to the number of gradient

updates taken to find θ∗ before one update of ω is done. For instance, this type of

online meta-learning is used to perform differentiable neural architecture search (Liu

et al., 2019; Zela et al., 2020), to learn optimizer hyperparameters (Baydin et al., 2018)
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or learn optimizers directly (Li et al., 2019). In Chapter 4, I build on the observations of

(Wu et al., 2018b) to reject this approach altogether. Indeed, I argue that online meta-

learning methods introduce greediness in the meta objective function which results in

a poor approximation to ω∗.

2.3.4 Long horizon meta-learning

There exists alternative methods to online meta-learning which do not shorten the

horizon of the inner loop, but instead make approximations to the gradient calculation

in the upper level. These methods include implicit differentiation of ω (Pedregosa, 2016;

Rajeswaran et al., 2019; Lorraine et al., 2019), gradient preconditioning (Flennerhag

et al., 2020), truncation (Shaban et al., 2019), shortcuts (Fu et al., 2016) and inner

loop inversion (Maclaurin et al., 2015). Another family of approaches accelerate meta-

training via closed-form solvers in the inner loop (Bertinetto et al., 2019; Lee et al.,

2019). In contrast to the above approximate methods, in Chapter 4 I use forward-mode

differentiation (Williams and Zipser, 1989; Franceschi et al., 2017) which calculates

upper level gradients exactly.

Each method has different limitations. Implicit gradients scale to large dimensions of

ω but only provide approximate gradients for it, and require the inner task loss to be a

function of ω. Forward-mode differentiation is exact and doesn’t have such constraints,

but scales poorly with the dimension of ω. Gradient degradation is also a challenge in

the many-shot regime, and solutions include warp layers (Flennerhag et al., 2020), or

gradient averaging, as proposed in Chapter 4.

2.3.5 Greediness: adversarial vs. meta-learning setting

In the adversarial model of Chapter 3, I decide against unrolling the lower level of

the nested optimization problem, which means that I use greedy online updates, as

per the original GAN paper (Goodfellow et al., 2014). However, in the meta-learning

approach of Chapter 4 I propose to use forward-mode differentiation to allow for

unrolling. The reason for this dichotomy isn’t just empirically motivated. In adversarial
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learning, we typically care for the last value of the upper level variable. In the case

of GANs for instance, we only care for the final state of the generator to produce

realistic images. In contrast, in gradient-based HPO we often care for the intermediate

hyperparameter values visited during training. For instance, the entire learning rate

schedule matters, not just the final learning rate value. As such, online approximations

to nested optimization is generally more forgiving in the context of adversarial models

(Chapter 3) than meta-learning models (Chapter 4).

2.4 Deep equilibrium models

Deep Equilibrium Models (DEQs) (Bai et al., 2019) are a type of implicit model that

naturally lend themselves to a constrained optimization during the training phase. In

Chapter 5 I modify the DEQ formulation to cast it as a nested optimization for video

landmark detection. In what follows I give a background information on DEQs relevant

to understanding Chapter 5.

2.4.1 Implicit models

DEQs are a type of implicit model, which is a model that is trained to represent an

implicit functions. A function is called implicit in the sense that its output cannot

be explicitly written as a function of its input. Implicit models include three main

families: neural ODEs (Chen et al., 2018; Dupont et al., 2019), optimization networks

(Amos and Kolter, 2017; Djolonga and Krause, 2017; Wang et al., 2019a) and DEQs

(Bai et al., 2019; Bai et al., 2020). Implicit functions are best explained with a toy

example. Consider the 1D map F : x → y. In traditional ML models like MLPs or

ConvNets, we can write this map as a function f of the input and some parameters θ,

e.g . y = f(x; θ) = x2+3xθ−1 if F represents a polynomial. In contrast, f(x; θ) does not

exist for an implicit function, and we instead have an equality condition g(x, y, θ) = 0

relating inputs, parameters and outputs, e.g . y5 + 16y − 32x3 + 8θ2 = 0.
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During the forward pass, we must solve the g(x, y, θ) = 0 equation for y. This is

usually done using a black-box root solver, i.e. a solver whose operations do not

need to be tracked by autograd. This can be an ODE solver for Neural ODEs, an

optimizer for optimization networks, or a fixed point solver for DEQs. In the backward

pass we use gradient computation methods that only input the function g(x, y, θ) and

the final result of the forward pass (no intermediate steps needed as in reverse-mode

differentiation). Typically we use the adjoint sensitivity method (Pontryagin et al.,

1962) for Neural ODEs, and the implicit function theorem (IFT) (Krantz and Parks,

2003) for optimization networks and DEQs.

Note that every explicit function can be written as an implicit function, but not the

other way around. In that sense, the set of implicit functions supersets that of explicit

functions, which is one of the reasons they are attractive in the context of designing

ML models with high representational power.

Let’s consider the type of implicit functions that are commonly implemented. Each of

them can be plugged in as a layer F into a conventional neural network pipeline, in the

sense that they express a differentiable forward pass:

Neural ODEs. Here the implicit function is an ordinary differential equation relating

time, inputs, parameters, and rate of change of input over time. Specifically, a neural

ODE takes the form

F : x0 → y (2.18)

s.t. ẋ = f(x(t),θ, t) (2.19)

where x(t0) = x0 and x(t1) = y (2.20)

where f is some differentiable function modelled with a neural network, most famously

a ResNet. Note that the equality conditions above can be written as gi(x0,y,θ) = 0

constraints trivially. In the forward pass, an ODE solver is used to solve for y. In the

backward pass, the adjoint sensitivity method is used to compute gradients w.r.t. to θ,

t0 and t1. The main advantage of Neural ODEs is their parameter efficiency and their
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support of adaptive compute and adaptive depth. Their main disadvantage is their

limitation to learning smooth homeomorphisms as well as their slow speed compared

to conventional neural networks. Applications include learning a model on irregularly

sampled time series (Rubanova et al., 2019), inferring dynamics of physical systems

for control (Zhong et al., 2020), or motion prediction under uncertainty (Yildiz et al.,

2019).

Optimization networks. These use the optimum of some function f(x,y,θ) as the

output to F :

F : x→ y∗ (2.21)

s.t. y∗ = argmin
y

f(x,y;θ) (2.22)

In the forward pass, we solve for the minimum of f using some closed form solution or

some gradient-based optimizer. In the backward pass, we use the fact that (∂f/∂y)|y∗ =

0 and the IFT to derive the gradients w.r.t. θ. It is common to add simple constraints

on the minimization problem to simplify computation; typically f(x,y;θ) is chosen to

be a convex function so that its minimum is unique and cheaper to find. Applications

of optimization networks include signal denoising (Amos and Kolter, 2017) and the

design of exotic non-linear functions for neural networks (Martins and Astudillo, 2016).

Their main limitation comes from their cubic complexity in the number of variables and

constraints, and the practical restriction to applications relying on convex optimization

problems.

Deep Equilibrium Models. In the case of DEQs, the output is the fixed point y∗ of a

function f(x,y;θ), which is a value of y for which the input and output of f are equal:

F : x→ y∗ (2.23)

s.t. y∗ = f(x,y∗;θ) (2.24)
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In the forward pass, we find the root of g(x,y;θ) = f(x,y;θ) − y using an off-the-

shelf root solver. In the backward pass we use the implicit function theorem and the

fact that g(x,y∗;θ) = 0 to derive gradients w.r.t. θ. Much like Neural ODEs, DEQs

are parameter efficient and naturally support adaptive compute at test time (trading

off compute for accuracy by varying the precision with which the root is found). In

practice, their main limitations are also comparable to that of Neural ODEs, namely

inference speed (due to the cost of root solving), and restrictions to homeomorphisms

(the dimension of the input and output to a DEQ layer must be the same). Since DEQ

layers can be plugged into any deep learning model, their applications are broad. In

practice, they have been particularly successful on optical flow estimation (Bai et al.,

2022) and image classification (Bai et al., 2021; Bai et al., 2020), but usually fall short

of state-of-the-art conventional architectures.

Implicit functions also have a history in statistical modeling (Diggle and Gratton, 1984),

specifically for simulator-based statistical models with intractable likelihood functions

(Gutmann and Corander, 2016). These approaches typically don’t rely on gradient

computation and are less popular compared to the above deep learning models.

2.4.2 How to train your DEQ

Deep equilibrium models are central to Chapter 5 and so a more technical background

about them is given in this section.

Forward pass. Consider the process of root solving for a fixed point y∗ = f(x,y∗;θ).

In the simplest case, f is a contraction mapping and so f ◦ f ◦ f ◦ · · · ◦ f(y0) converges

to a unique fixed point y∗ for any initial guess y0. In practice, it is neither tractable

or helpful to directly take an infinite number of fixed point iteration steps. Instead, it

is common to achieve the same result by leveraging quasi-Newtonian root solvers like

Broyden’s method (Broyden, 1965) or Anderson acceleration (Anderson, 1965), which

find y∗ in fewer iterations by solving for the root of g(x,y;θ) = f(x,y;θ)− y. These

solvers are “quasi-Newtonian” in the sense that they approximate the inverse Jacobian

J−1
n =

(
∂f(yn)
∂yn

)−1
used in Newtonian solvers by Ĵ−1

n for each solver iteration n, such
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that their update takes the form

yn+1 = yn − Ĵ−1
n f(yn) (2.25)

Using solvers as opposed to conventional feed-forward operations means that we can

model a potentially infinite number of feed-forward operations (albeit all using the same

weights) with a finite number of solver steps.

The original deep equilibrium model (Bai et al., 2019) makes no attempt at proving

the existence or the uniqueness of f(x,y;θ). Later DEQ variants seek to design f

functions that are guaranteed a unique fixed point (Winston and Kolter, 2020; Revay

et al., 2020), but this is cumbersome and better performance can be obtained by

relying on regularization heuristics that are conducive to convergence, such as weight

normalization and variational dropout (Bai et al., 2020).

Backward pass. An important property of DEQs is that they are agnostic to the root

solver used. This is because the operations of the root solver aren’t tracked by autograd

during the forward pass. Indeed, gradients are computed from the implicit function

theorem (IFT) and the final y∗ state only. To see this, first consider the chain rule:

∂L
∂θ

=
∂L
∂y∗

∂y∗

∂θ
(2.26)

where the first term on the RHS is determined by operations outside of the DEQ

layer, and is given by conventional reverse-mode differentiation. The difficulty is thus

in finding ∂y∗/∂θ. Explicitly writing out the dependence of y∗ on θ we can write the

following:

g(x,y∗(θ);θ) = 0 (2.27)

dg

dθ
= 0 (2.28)

∂g

∂θ
+

∂g

∂y∗
∂y∗

∂θ
= 0 (2.29)
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and rearrange terms to get:

∂y∗

∂θ
= −

(
∂g

∂y∗

)−1 ∂g

∂θ
(2.30)

∂y∗

∂θ
= −

(
∂g

∂y∗

)−1 ∂f

∂θ
(2.31)

which can be recognized as an application of the IFT to g(x,y∗(θ);θ) = 0. Putting

Eq. (2.31) and Eq. (2.26) together we obtain:

∂L
∂θ

= − ∂L
∂y∗

(
∂g

∂y∗

)−1 ∂f

∂θ
(2.32)

At first sight, the above gradient computation is intractable due to the inverse Jacobian

which cannot be computed or stored in memory for deep learning sized problems.

Thankfully, we can compute the above by casting it as the solution to another fixed

point problem (to be solved for each backward pass). We first write it as:

∂L
∂θ

= uT ∂f

∂θ
(2.33)

where

uT = − ∂L
∂y∗

(
∂g

∂y∗

)−1

(2.34)

uT

(
∂g

∂y∗

)
+

∂L
∂y∗ = 0 (2.35)

which can be further simplified to:

uT

(
∂f

∂y∗ − 1

)
+

∂L
∂y∗ = 0 (2.36)

uT = uT ∂f

∂y∗ +
∂L
∂y∗ (2.37)

This is a fixed point problem to be solved for uT . The first term on the RHS is a

vector-Jacobian product which doesn’t require computing the Jacobian directly, and

the second term is provided by reverse-mode differentiation as usual.
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2.4.3 DEQ: from constrained to nested optimization

Consider that a DEQ is used to predict a ground truth label yGT . By restricting the

output of a DEQ layer to be a fixed point, training a DEQ is equivalent to constrained

optimization:

θ∗ = argmin
θ

LMSE(y
∗(θ),yGT ) (2.38)

s.t. g(x,y∗(θ);θ) = 0 (2.39)

In Chapter 5 I extend this optimization problem by adding constraints on which fixed

points are used, in the case when many fixed points exist. The first step is to recast the

above as a nested optimization:

θ∗ = argmin
θ

LMSE(y
∗(θ),yGT ) (2.40)

s.t. y∗ = argmin
y

∥g(x,y∗(θ);θ)∥22 (2.41)

This isn’t exactly equivalent to the problem in Eq. 2.38 – 2.39 because we now support

cases when exact fixed points don’t exist, in which case an approximate solution y∗ ≃

f(x,y∗;θ) can be helpful nonetheless. In the case where several fixed points exist, we

can disambiguate the above by adding a regularizer loss term h(x,y∗):

θ∗ = argmin
θ

LMSE(y
∗(θ),yGT ) (2.42)

s.t. y∗ = argmin
y

∥g(x,y∗(θ);θ)∥22 + λh(x,y∗) (2.43)
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where λ is a hyperparameter scalar. This formulation of DEQs approaches that of

optimization networks in Eq. 2.21 – 2.22. The key difference is that when solutions

to Eq. (2.43) are approximately keypoints we can still use fast fixed-point solvers

like Anderson acceleration (Anderson, 1965) to find them. This is much faster than

optimizers and means we’re not limited to convex lower level objectives. I build on

this strategy in Chapter 5 and demonstrate how fixed point solvers can be used in the

context of landmark detection in video.



Chapter 3

Zero-shot Knowledge Transfer via

Adversarial Belief Matching

This chapter is about my paper “Zero-shot Knowledge Transfer via Adversarial Belief

Matching”, which was published in NeurIPS 2019 with spotlight distinction. I start by

providing a background section on the application domains relevant to this paper, which

is more exhaustive that the background material included in the original publication.

Following this, the paper itself is included with minor changes.

3.1 Background

3.1.1 Model compression basics

In its simplest form, model compression inputs a pretrained neural network A, and

outputs a network B that is smaller in size, while retaining most of the performance of

model A. A smaller size refers to a smaller latency and/or memory cost at inference,

which is key to enable many applications like real-time ML on smartphones. It is

common to call model A the teacher, and model B the student. Here we give a summary

of model compression techniques that are relevant to this thesis, but we refer the reader

to the survey from (Menghani, 2021) for an in-depth overview. There are several ways

to achieve model compression:

Network pruning. This consists in identifying and excluding the parameters of the

teacher network that are the least relevant towards its performance. Unstructured

pruning removes individual weights by setting them to zero (LeCun et al., 1990; Han

et al., 2015), which leads to sparse architectures that are cheaper to store in memory

30
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and are likely to overfit less. Unfortunately current ML hardware like GPUs struggle

to convert sparse weights into performance improvement, and since the main memory

cost of modern networks lies in the forward pass activations rather that the weights,

the benefits of weight pruning remain very limited. On the other hand, structured

pruning (Li et al., 2017a; Molchanov et al., 2017) removes parameter blocks (like whole

convolutional filters or layers) and typically provides an improvement in latency and

memory that is linear with the amount pruned. In both structured and unstructured

pruning, it is common to change the teacher network progressively, by alternating

pruning and retraining steps. The parameters to prune are identified by designing a

saliency score, which is usually based on second order derivatives of the weights, their

magnitude or their momentum.

Network quantization The standard deep learning libraries like Pytorch (Paszke et al.,

2019) and Tensorflow (Abadi et al., 2015) rely on 32-bit floating-point values for all

operations by default. Quantization refers to lowering the precision of the weights and

activations, usually down to 16 or 8 bits. Quantization can be performed on a 32-bit

teacher after training it (Vanhoucke et al., 2011), but quantization aware training (Jacob

et al., 2017) is also possible, where the quantization range is adapted while training the

student to make sure it matches the teacher best. It is increasingly common to discard

the teacher altogether, and simply train a network in lower precision from scratch.

For instance, Pytorch now supports seamless 16-bit training in a way that matches

32-bit precision in most deep learning applications. This option has recently surged in

popularity due to the increase in the number of half precision cores in modern Nvidia

GPUs, making 16-bit quantization half cheaper in both memory and latency.

3.1.2 Knowledge distillation

Knowledge distillation can be seen as a third way to do model compression. Here the

idea is to use data labels along with the additional outputs of the teacher to train

a student. The intuition is that the outputs of the teacher contain useful information

about the relationship between different classes. For instance, for the CIFAR-10 dataset
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(Krizhevsky, 2009) the car and truck classes are expected to be semantically closer

with each other than with the frog class. Knowledge distillation was first proposed by

(Buciluǎ et al., 2006) as a way to compress a large ensemble into a single network, and

was later made popular by (Ba and Caruana, 2014) and then (Hinton et al., 2015), who

proposed smoothing the teacher’s probability outputs. Since then, the focus has mostly

been on improving distillation efficiency by designing better students (Romero et al.,

2015; Crowley et al., 2018), or getting small performance gains with extra loss terms,

e.g. an attention transfer loss (AT) (Zagoruyko and Komodakis, 2016a). Knowledge

distillation isn’t image specific, and has shown to be useful in various ML domains. Most

famously, DistillBERT (Sanh et al., 2019) uses a custom distillation loss to compress

the natural language model BERT (Devlin et al., 2018) by nearly half while retaining

most of its performance.

Let S(x;θ) be the outputs of a student network parameterized by θ. We can use the

output predictions of a pretrained teacher network T (x;ω∗) parameterized by ω∗ to

train the student network by using the knowledge distillation loss function:

θ∗ = argmin
θ

LKD (3.1)

where

LKD = αLCE(S(x;θ),y)) + (1− α)DKL(S(x;θ) || T (x;ω∗)) (3.2)

and where α is a hyperparameter. The first term is the standard cross entropy loss

term, while the second term encourages the student to match the outputs of the

teacher network, which contain more entropy than the ground truth labels. Since the

predictions of modern neural networks are often very confident, it is common to soften

the predictions of the teacher by increasing the temperature of the softmax that is

applied to its logits (Hinton et al., 2015).
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Using the output probabilities of the teacher to guide the student into learning a richer

representation of the data may be too weak of a signal. Fortunately, it is common for the

teacher and student networks to have architectures somewhat similar in structure. For

instance, ResNets are made of 4 stages, where each stage has a varying number of layers

but always is half the resolution and twice the channel count than the previous stage.

This means that a small ResNet-18 student and a large ResNet-152 teacher both share

extra structure in their activations, which can be used to distill the teacher better, a

process called attention transfer (Zagoruyko and Komodakis, 2016a). Specifically, con-

sider aligning teacher and student activation blocks, written A
(t)
b and A

(s)
b respectively,

where b is the block index b ∈ {1, 2, ..., B}. These blocks typically correspond to the

last last activations of each stage in the ResNet. The attention transfer procedure is

given by:

θ∗ = argmin
θ

LAT (3.3)

where

LAT = αLCE(S(x;θ),y)) + (1− α)
1

B

B∑
b

∥∥∥∥∥∥ ν(A
(t)
b )∥∥∥ν(A(t)
b )
∥∥∥
2

− ν(A
(s)
b )∥∥∥ν(A(s)
b )
∥∥∥
2

∥∥∥∥∥∥
2

(3.4)

where ν(·) is an aggregation function applied to a given activation block. The original

authors suggested using ν(Ab) = (1/Cb)
∑

c a
2
bc where abc is the cth channel of activa-

tion block Ab and Cb the number of channels of block b. The loss function used by the

model in this chapter uses both LKD and LAT as defined above.

3.1.3 Adversarial attacks

Adversarial attacks refers to a type of algorithms aiming to perturb the inputs to a

neural network, so as to maximize the model’s error. Most often, this perturbation

is crafted on test images and is imperceptible to humans, as was first demonstrated

in (Szegedy et al., 2014; Goodfellow et al., 2015). Designing new types of adversarial
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attacks (Kurakin et al., 2017; Papernot et al., 2016) and defenses (Lyu et al., 2015;

Tramèr et al., 2018; Papernot and McDaniel, 2017) has been a major focus of the Deep

Learning community in the last decade. A full review of adversarial attacks is beyond

the scope of this thesis, and can be found in (Chakraborty et al., 2021).

In the following paper, we are interested in targeted white-box attacks. In this case

we have full access to the model under attack, and the aim is to perturb some input

image by a small amount such that it changes model predictions towards another class.

Our aim in the following paper is to monitor the characteristics of a trained neural

network as some input crosses its decision boundaries. As such, we consider the most

basic form of adversarial attack, using a few steps of gradient descent. Consider inputs

x, class predictions from a model ŷ, and target class y ̸= ŷ. We can simply update

x ← x − ξ∂LCE(ŷ,y)/∂x for K times in a row, for a small learning rate ξ. Here the

size of the total change in x is kept small by using a low value of K and ξ. In practice

this is enough to move model predictions from ŷ to y.

3.2 Introduction

Large neural networks are ubiquitous in modern deep learning applications, including

computer vision (He et al., 2016), speech recognition (Oord et al., 2016) and natural

language understanding (Devlin et al., 2018). While their size allows learning from

big datasets, it is a limitation for users without the appropriate hardware, or for

internet-of-things applications. As such, the deep learning community has seen a focus

on model compression techniques, including knowledge distillation (Ba and Caruana,

2014; Hinton et al., 2015), network pruning (Li et al., 2017a; Han et al., 2016) and

quantization (Gupta et al., 2015; Hubara et al., 2016).

These methods typically rely on labeled data drawn from the training distribution of

the model that needs compressed. Distillation does so by construction, and pruning

or quantization need to fine-tune networks on training data to get good performance.

We argue that this is a strong limitation because pretrained models are often released
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without training data, an increasingly common trend that has been grounds for con-

troversy in the deep learning community (Radford et al., 2019). We identify four main

reasons why datasets aren’t released: privacy, property, size, and transience. Respective

examples include Facebook’s DeepFace network trained on four million confidential user

images (Taigman et al., 2014), Google’s Neural Machine Translation System trained on

internal datasets (Wu et al., 2016) and regarded as intellectual property, the JFT-300

dataset which contains 300 million images across more than 18k classes (Sun et al.,

2017), and finally the field of policy distillation in reinforcement learning (Rusu et al.,

2016), where one requires observations from the original training environment which

may not exist anymore. One could argue that missing datasets can be emulated with

proxy data for distillation, but in practice that is problematic for two reasons. First,

there is a correlation between data that is not publicly released and data that is hard to

emulate, such as medical datasets of various diseases (Burton et al., 2015), or datasets

containing several thousand classes like JFT. Secondly, it has been shown in the semi

supervised setting that out-of-distribution samples can cause significant performance

drop when used for training (Oliver et al., 2018).

As such, we believe that a focus on zero-shot knowledge transfer is justified, and our

paper makes the following contributions: 1) we propose a novel adversarial algorithm

that distills a large teacher into a smaller student without any data or metadata, 2)

we show its effectiveness on two common datasets, and 3) we define a measure of

belief match between two networks in the vicinity of one’s decision boundaries, and

demonstrate that our zero-shot student closely matches its teacher.

3.3 Related work

Inducing point methods and dataset distillation. Inducing point methods (Snelson and

Ghahramani, 2005) were introduced to make Gaussian Processes (GP) more tractable.

The idea is to choose a set of inducing points that is smaller than the input dataset,

in order to reduce inference cost. While early techniques used a subset of the training
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data as inducing points (Candela and Rasmussen, 2005), creating pseudo data using

variational techniques was later shown more efficient (Titsias, 2009). Dataset distillation

is related to this idea, and uses a bi-level optimization scheme to learn a small subset of

pseudo images, such that training on those images yields representations that generalize

well to real data (Wang et al., 2018). The main difference with these methods and ours

is that we do not need the training data to generate pseudo data, but we rely on a

pretrained teacher instead.

Privacy attacks. There are a few approaches to making privacy attacks that are related

to our method. In model extraction (Tramèr et al., 2016) we have access to the prob-

ability predictions of a black-box model and the aim is to extract an equivalent model.

The limitation of black-box access makes this task harder and often limited to simple

datasets. In model inversion (Fredrikson et al., 2014; Fredrikson et al., 2015) we have

white-box access to a pretrained model, and we wish to recreate training images from

the weights alone. This is a different aim from that of our task, because we wish to

produce images that are relevant for training regardless of whether or not they resemble

the training data.

Zero-shot learning. In zero-shot learning (Larochelle et al., 2008; Socher et al., 2013),

we are typically given training images with labels and some additional intermediate

semantic representation T , such as textual descriptions. The task is then to classify

images at test time that are represented in T but whose classes were never observed

during training. In our model, the additional intermediate information can be considered

to be the teacher, but none of the classes are formally observed during training because

no samples from the training set are used.

Zero and few-shot distillation. More recently, the relationship between data quantity

and distillation performance has started being addressed. In the few-shot setting, (Li

et al., 2018) obtain a student by pruning a teacher, and align both networks with 1x1

convolutions using a few samples. (Kimura et al., 2018) distill a GP to a neural network

by adversarially learning pseudo data. In their setting however, the teacher itself has

access to little data and is added to guide the student. Concurrent to our work, (Ahn
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et al., 2019) formulated knowledge transfer as variational information distillation (VID)

and to the best of our knowledge obtained state-of-the-art in few-shot performance. We

show that our method gets better performance than they do even when they use an

extra 100 images per class on CIFAR-10. The zero-shot setting has been a lot more

challenging: most methods in the literature use some type of metadata and are limited

to simple datasets like MNIST. (Lopes et al., 2017) showed that training images could

be reconstructed from a record of the teacher’s training activations, but in practice

releasing training activations instead of data is unlikely. Concurrent to our work, (Nayak

et al., 2019) synthesize pseudo data from the weights of the teacher alone and use it to

train a student in zero-shot. Their model is not trained end-to-end, and on CIFAR-10

we obtain a performance 17% higher than they do for a comparable sized teacher and

student.

3.4 Zero-shot knowledge transfer

3.4.1 Algorithm

Let T (x;ω∗) be a pretrained teacher network with weights ω∗, which maps some input

image x to a probability vector t. Similarly, S(x; θ) is a student network paramet-

erized by weights θ, which outputs probability vector s. Let G(z;ϕ) be a generator

parameterized by weights ϕ, which produces pseudo data xp from a noise vector

z ∼ N (0, I). The main loss function we use is the forward Kullback–Leibler (KL)

divergence between the outputs of the teacher and student networks on pseudo data,

namely DKL(T (xp) || S(xp)) =
∑

i t
(i)
p log(t

(i)
p /s

(i)
p ) where i corresponds to image

classes.

Our zero-shot training algorithm is described in Algorithm 1. For N iterations we

sample one batch of z, and take nG gradient updates on the generator with learning

rate η, such that it produces pseudo samples xp that maximize DKL(T (xp) || S(xp)).

We then take nS gradient steps on the student with xp fixed, such that it matches the
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Figure 3.1: A simplified version of our method on a three-class toy problem. The teacher
and student decision boundaries are shown in the top and bottom rows respectively.
The knowledge transfer unfolds left to right and never uses the real data points, which
are shown for visualization purposes. We initialize random pseudo points (yellow/black
crosses) away from the data manifold, and train them to maximize the KL divergence
between the student and teacher. At the same time we train the student to achieve the
opposite. Note how pseudo points use the decision boundaries as channels to explore
the input space, but can also explore regions away from them such as the two isolated
green and blue pockets. After a few steps the student and teacher decision boundaries
are indistinguishable.

teacher’s predictions on xp. The idea of taking several steps on the two adversaries

has proven effective in balancing their relative strengths. In practice we use nS > nG,

which gives more time to the student to match the teacher on xp, and encourages the

generator to explore other regions of the input space at the next iteration.

3.4.2 Extra loss functions

Using the forward KL divergence as the main loss function encourages the student to

spread its density over the input space and gives non-zero class probabilities for all

images. This high student entropy is a vital component to our method since it makes

it hard for the generator to fool the student too easily; we observe significant drops

in student test accuracy when using the reverse KL divergence or Jensen–Shannon

divergence. In practice, many student-teacher pairs have similar block structures, and
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Figure 3.2: Illustration of the proposed model, whereby a large teacher is distilled to a
student without using any training data. The generator is trained to produce pseudo
images that maximize the distillation loss while the student is trained to minimize both
the distillation loss and the attention loss.

so we can add an attention term to the student loss:

LS = DKL(T (xp) || S(xp)) + β

NL∑
l

∥∥∥∥∥∥ f(A
(t)
l )∥∥∥f(A(t)
l )
∥∥∥
2

− f(A
(s)
l )∥∥∥f(A(s)
l )
∥∥∥
2

∥∥∥∥∥∥
2

(3.5)

where β is a hyperparameter. We take the sum over some subset of NL layers. Here,

A
(t)
l and A

(s)
l are the teacher and student activation blocks for layer l , both made up

of NAl
channels. If we denote by alc the cth channel of activation block Al, then we

use the spatial attention map f(Al) = (1/NAl
)
∑

c a
2
lc as suggested by the authors of

AT (Zagoruyko and Komodakis, 2016a). We don’t use attention for the generator loss

LG because it makes it too easy to fool the student. We illustrate our training pipeline

in Fig. 3.2.
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Algorithm 1: Zero-shot KT (Sec. 3.4.1)

pretrain: T (·)
initialize: G(·;ϕ)
initialize: S(·; θ)
for 1, 2, ..., N do

z ∼ N (0, I)

for 1, 2, ..., nG do
xp ← G(z;ϕ)
LG ← −DKL(T (xp) || S(xp))

ϕ← ϕ− η
∂LG

∂ϕ
end

for 1, 2, ..., nS do

LS ← DKL(T (xp) || S(xp)) + β
∑NL

l

∥∥∥∥∥ f(A
(t)
l )∥∥∥f(A(t)
l )

∥∥∥
2

− f(A
(s)
l )∥∥∥f(A(s)
l )

∥∥∥
2

∥∥∥∥∥
2

θ ← θ − η
∂LS

∂θ
end

decay η

end

Many other loss terms were investigated but did not help performance, including sample

diversity, sample consistency, and teacher or student entropy (see Appendix 1). These

losses seek to promote properties of the generator that already occur in the plain model

described above. This is an important difference with competing models such as that

of (Kimura et al., 2018) where authors must include hand designed losses like carbon

copy memory replay (which freezes some pseudo samples in time), or fidelity (Dehghani

et al., 2017).
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3.4.3 Toy experiment

The dynamics of our algorithm is illustrated in Fig. 3.1, where we use two layer MLPs

for both the teacher and student, and learn the pseudo points directly (no generator).

These are initialized away from the real data manifold, because we assume that no

information about the dataset is known in practice. During training, pseudo points can

be seen to explore the input space, typically running along decision boundaries where

the student is most likely to match the teacher poorly. At the same time, the student

is trained to match the teacher on the pseudo points, and so they must keep changing

locations. When the decision boundaries between student and teacher are well aligned,

some pseudo points will naturally depart from them and search for new high teacher

mismatch regions, which allows disconnected decision boundaries to be explored as well.

3.4.4 Potential conceptual concerns

Here we address a number of potential conceptual concerns when dealing with the

application of this approach to higher dimensional input spaces.

Focus. The first potential concern is that G(z;ϕ) is not constrained to produce real

or bounded images, and so it may prefer to explore the larger region of space where

the teacher has not been trained. Assuming that the teacher’s outputs outside of real

images is irrelevant for the classification task, the student would never receive useful

signal. In practice we observe that this assumption does not hold. On MNIST for

instance, preliminary experiments showed that a simple student can achieve 90% test

accuracy when trained to match a teacher on random noise. This is purely due to

the simplicity of the MNIST dataset and corresponding teacher decision boundaries.

Indeed, the distribution for the classes of random noise according to the teacher is close

to uniform. On more diverse datasets like CIFAR-10 however, we observe that uniform

noise is mostly classified as the same class across networks (see Appendix 2). This

suggests that the density of decision boundaries is smaller outside of the real image

manifold, and so G(z;ϕ) may struggle to fool the student in that space due to the

teacher being too predictable.
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Algorithm 2: Compute transition curves of networks A and B, when stepping across
decision boundaries of network A (Sec. 3.5.4)

pretrain: netA
pretrain: netB

for x ∈Xtest do
iA ≡ class of x according to netA
iB ≡ class of x according to netB
if iA = iB = i then

x0 ← x

for j ̸= i do
xadv ← x0

for 1, 2, ...,K do
yA,yB ← netA(xadv), netB(xadv)

xadv ← xadv − ξ
∂LCE(yA, j)

∂xadv

save: yA,yB

end

end

end

end

Adversaries. Another potential concern is that G(z;ϕ) could simply iterate over ad-

versarial examples, which in this context corresponds to images that are all very similar

in pixel space and yet are classified differently by the teacher. Here we refer the reader

to recent work by (Ilyas et al., 2019), who isolate adversarial features and show that

they are enough to learn classifiers that generalize well to real data. The bottom

line is that non-robust features, in a human sense, still contain most of the task-

relevant knowledge. Therefore, this suggests that our generator can produce adversarial

examples (in practice, we observe that it does) while still feeding useful signal to the

student.
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3.5 Experiments

In the few-shot setting, researchers have typically relied on validation data to tune

hyperparameters. Since our method is zero-shot, assuming that validation data exists is

problematic. In order to demonstrate zero-shot KT we thus find coarse hyperparameters

in one setting (CIFAR-10, WRN-40-2 teacher, WRN-16-1 student) and use the same

parameters for all other experiments of this paper. In practice, we find that this makes

the other experiments only slightly sub optimal, because our method is very robust to

hyperparameters and dataset change: in fact, we find that halving or doubling most of

our hyperparameters has no effect on student performance. For each experiment we run

three seeds and report the mean with one standard deviation. When applicable, seeds

cover networks initialization, order of training images, and the subset of M images per

class in few-shot.

3.5.1 CIFAR-10 and SVHN

We focus our experiments on two common datasets, SVHN (Netzer et al., 2011) and

CIFAR-10 (Krizhevsky, 2009). SVHN contains over 73k training images of 10 digits

taken from house numbers in Google Street images. It is interesting for our task

because most images contain several digits, the ground truth being the most central

one, and so ambiguous images are easily generated. CIFAR-10 contains 50k training

images across 10 classes, and is substantially more diverse than SVHN, which makes

the predictions of the teacher harder to match. For both datasets we use WideResNet

(WRN) architectures (Zagoruyko and Komodakis, 2016b) since they are ubiquitous in

the distillation literature and easily allow changing the depth and parameter count.

Our distillation results are shown in Fig. 3.3 for a WRN-40-2 teacher and WRN-16-1

student, when using LS as defined in Eq. (3.5). We include the few-shot performance

of our method as a comparison, by naively finetuning our zero-shot model with M

samples per class. As baselines we show the student performance when trained from

scratch (no teacher supervision), and the student performance when trained with both

knowledge distillation and attention transfer, since that was observed to be better than
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either techniques alone. We also plot the equivalent result of VID (Ahn et al., 2019); to

the best of our knowledge, they are the state-of-the-art in the few-shot setting at the

time of writing. On CIFAR-10, we obtain a test accuracy of 83.69+−0.58% if we use the

student loss described in Eq. (3.5), which is 2% better than VID’s performance when

it uses an extra M = 100 images per class. By finetuning our model with M = 100 our

accuracy increases to 85.91 +− 0.24%, pushing the previous few-shot state-of-the-art by

more than 4%. If we do not use attention (β = 0) we observe an average drop of 2%

across all the architectures in Tab. 3.1.
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Figure 3.3: Performance of our model for a WRN-40-2 teacher and WRN-16-1 student,
on the SVHN and CIFAR-10 datasets, for M images per class. We compare this
to the student when trained from scratch (no teacher), the student when trained
with knowledge distillation and attention transfer from the teacher (KD+AT), and
the performance of (Ahn et al., 2019) (81.59% for M = 100). Our method reaches
83.69+−0.58% without using any real data, and increases to 85.91+−0.24% when finetuned
with M = 100 images per class.

Using all the same settings on SVHN yields a test accuracy of 94.06±0.27%. This is quite

close to 95.88 ± 0.15%, the accuracy obtained when using the full 73k images during

KD+AT distillation, even though the hyperparameters and generator architecture were

tuned on CIFAR-10. This shows that our model can be used on new datasets without

needing a hyperparameter search every time, which is desirable for zero-shot tasks

where validation data may not be available. If hyperparameters are tuned on SVHN

specifically, our zero-shot performance is on par with full data distillation.
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Implementation details. For the zero-shot experiments, we choose the number of iter-

ations N to match the one used when training the teachers on SVHN and CIFAR-10

from scratch, namely 50k and 80k respectively. For each iteration we set nG = 1 and

nS = 10. We use a generic generator with only three convolutional layers, and our

input noise z has 100 dimensions. We use Adam (Kingma and Ba, 2015) with cosine

annealing, with an initial learning rate of 2 × 10−3. We set β = 250 unless otherwise

stated. For our baselines, we choose the same settings used to train the teacher and

student in the literature, namely SGD with momentum 0.9, and weight decay 5×10−4.

We scale the number of epochs such that the number of iterations is the same for all

M . The initial learning rate is set to 0.1 and is divided by 5 at 30%, 60%, and 80% of

the run.

Table 3.1: Zero shot performance on various WRN teacher and student pairs for CIFAR-
10. Our zero-shot technique (M = 0) is on par with KD+AT distillation when it’s
performed with M = 200 images per class. Teacher scratch and student scratch are
trained with M = 5000. We report mean and standard deviation over 3 seeds.

Teacher
(# params)

Student
(# params)

Teacher
scratch

Student
scratch

KD+AT
M = 200

Ours
M = 0

WRN-16-2 (0.7M) WRN-16-1 (0.2M) 93.97 +−0.11 91.04 +−0.04 84.54 +−0.21 82.44 +−0.21

WRN-40-1 (0.6M) WRN-16-1 (0.2M) 93.18 +−0.08 91.04 +−0.04 81.71 +−0.25 79.93 +−1.11

WRN-40-2 (2.2M) WRN-16-1 (0.2M) 94.73 +−0.02 91.04 +−0.04 81.25 +−0.67 83.69 +−0.58

WRN-40-1 (0.6M) WRN-16-2 (0.7M) 93.18 +−0.08 93.97 +−0.11 85.74 +−0.47 86.60 +−0.56

WRN-40-2 (2.2M) WRN-16-2 (0.7M) 94.73 +−0.02 93.97 +−0.11 86.39 +−0.33 89.71 +−0.10

WRN-40-2 (2.2M) WRN-40-1 (0.6M) 94.73 +−0.02 93.18 +−0.08 87.35 +−0.12 86.60 +−1.79

3.5.2 Architecture dependence

While our model is robust to the choice of hyperparameters and generator, we observe

that some teacher-student pairs tend to work better than others, as is the case for

few-shot distillation. We compare our zero-shot performance with M = 200 KD+AT

distillation across a range of network depths and widths. The results are shown in

Tab. 3.1. The specific factors that make for a good match between teacher and student

are to be explored in future work. In zero-shot, deep students with more parameters

don’t necessarily help: the WRN-40-2 teacher distills 3.1% better to WRN-16-2 than

to WRN-40-1, even though WRN-16-2 has less than half the number of layers, and
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a similar parameter count than WRN-40-1. Furthermore, the pairs that are strongest

for few-shot knowledge distillation are not the same as for zero-shot. More modern

distillation experiments usually use a teacher whose structure is very different to the

student, in the hope to teach patterns in the data that are specifically hard for the

student to learn. For example, early vision transformer models did not use convolutions

and therefore relied on large convolutional teachers (Touvron et al., 2021).

Finally, note that concurrent work by (Nayak et al., 2019) obtains 69.56% for M =

0 on CIFAR-10, despite using a hand-designed teacher/student pair that has more

parameters than the WRN-40-1/WRN-16-2 pair we use. Our method thus yields a

17% improvement, but this is in part attributed to the difference of efficiency in the

architectures chosen.

3.5.3 Nature of the pseudo data

Samples from G(z;ϕ) during training are shown in Fig. 3.4. We notice that early in

training the samples look like coarse textures, and are reasonably diverse. Textures

have long been understood to have a particular value in training neural networks, and

have recently been shown to be more informative than shapes (Geirhos et al., 2018).

After about 10% of the training run, most images produced by G(z;ϕ) look like high

frequency patterns that have little meaning to humans.

During training, the average probability of the class predicted by the teacher is about

0.8. On the other hand, the most likely class according to student has an average

probability of around 0.3. These confidence levels suggest that the generator focuses

on pseudo data that is close to the boundary decisions of the student, or uses them

as channels (local optima) to more efficiently search for regions where the student

decision boundaries differ from those of the teacher, which is what we observed in the

toy experiment of Fig. 3.1. It also suggests that the teacher wouldn’t be robust to

adversarial attacks outside of the data manifold, namely noisy images can easily be

classified confidently as an actual class. Finally, we also observe that the classes of
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pseudo samples are close to uniformly distributed during training, for both the teacher

and student. Again this is not surprising: the generator seeks to make the teacher less

predictable on the pseudo data in order to fool the student, and spreading its mass

across all the classes available is the optimal solution.

Figure 3.4: Pseudo images sampled from the generator across several seeds and
hyperparameters. As the training progresses (left to right), pseudo data goes from
coarse and diverse textures to complex high frequency patterns. Note that time is not
to scale and most images look like the last four columns.

3.5.4 Measuring belief match near decision boundaries

Our understanding of the adversarial dynamics at play suggests that the student is

implicitly trained to match the teacher’s predictions close to decision boundaries. To

gain deeper insight into our method, we would like to verify that this is indeed the case,

in particular for decision boundaries near real images. Let LCE be the cross entropy

loss. In Algorithm 2, we propose a way to probe the difference between the beliefs of

network A and B near the decision boundaries of A. First, we sample a real image x

from the test set Xtest such that network A and B both give the same class prediction i.

Then, for each class j ̸= i we update x by takingK adversarial steps on network A, with

learning rate ξ, to go from class i to class j. The probability pAi of x belonging to class

i according to network A quickly reduces, with a concurrent increase in pAj . During

this process, we also record pBj , the probability that x belongs to class j according

to network B, and can compare pAj and pBj . In essence, we are asking the following

question: as we perturb x to move from class i to j according to network A, to what

degree do we also move from class i to j according to network B?
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Figure 3.5: Average transition curves over 9 classes and 1000 images for both SVHN
and CIFAR-10. LEFT, taking adversarial steps w.r.t. the zero shot student model, and
RIGHT, w.r.t. the normal distilled student model. We note that the average of pj is
much more similar between teacher and student when targeting the zero-shot boundary
than when targeting the boundary of the student learnt via normal KD+AT distillation.
Line thickness shows ±2 times the standard error of the mean.

We refer to pj curves as transition curves. For a dataset of C classes, we obtain C − 1

transition curves for each image x ∈Xtest, and for each network A and B. We show the

average transition curves in Fig. 3.5, in the case where network B is the teacher, and

network A is either our zero-shot student or a standard student distilled with KD+AT.

We observe that, on average, updating images to move from class i to class j on our

zero-shot student also corresponds to moving from class i to class j according to the

teacher. This is true to a much lesser extent for a student distilled from the teacher

with KD+AT, which we observed to have flat pj = 0 curves for several images. This is

particularly surprising because the KD+AT student was trained on real data, and the

transition curves are also calculated for real data.
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We can more explicitly quantify the belief match between networks A and B as we take

steps to cross the decision boundaries of network A. We define the Mean Transition

Error (MTE) as the absolute probability difference between pAj and pBj , averaged over

K steps, Ntest test images and C − 1 classes:

MTE(netA, netB) =
1

Ntest

Ntest∑
n

1

C − 1

C−1∑
c

1

K

K∑
k

∣∣pAj − pBj
∣∣ (3.6)

The mean transition errors are reported in Tab. 3.2. Our zero-shot student has much

lower transition errors, with an average of only 0.09 probability disparity with the

teacher on SVHN as steps are taken from class i to j on the student. This is inline with

the observations made in Fig. 3.5. Note that we used the values K = 100 and ξ = 1

since they gave enough time for most transition curves to converge in practice. Other

values of K and ξ give the same trend but different MTE magnitudes, and must be

reported clearly when using this metric.

Table 3.2: Mean Transition errors (MTE) for SVHN and CIFAR-10, between our zero-
shot student and the teacher, and between a student distilled with KD+AT and the
teacher. Our student matches the transition curves of the teacher to a much greater
extent on both datasets.

Zero-shot (Ours) KD+AT

SVHN 0.09 0.64
CIFAR-10 0.22 0.68

3.6 Conclusion

In this work we demonstrate that zero-shot knowledge transfer can be achieved in a

simple adversarial fashion, by training a generator to produce images where the student

does not match the teacher yet, and training that student to match the teacher at the

same time. On simple datasets like SVHN, even when the training set is large, we obtain

students whose performance is close to distillation with the full training set. On more
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diverse datasets like CIFAR-10, we obtain compelling zero and few-shot distillation

results, which significantly improve on the previous state-of-the art. We hope that this

work will pave the way for more data-free knowledge transfer techniques, as private

datasets likely become increasingly common in the future.

3.7 Appendices

Appendix A: Extra loss terms

Here we describe a number of loss terms that have been tried with our method in order

to encourage some behaviour from the generator, but have all resulted in a decrease of

performance from the student. This happens despite finding the optimal scaling for each

loss term, denoted here by γ. In general, we believe that this is due to the generator

already achieving the desired behaviours due to the nature of the adversarial dynamics,

and so extra losses simply create an imbalance between the two adversaries. Extra loss

terms added to LG relate to:

1. The entropy of the teacher: LG += γ ×
(
−∑i t

(i)
p log t

(i)
p

)
where t are the

teacher’s probability outputs on pseudo data xp, and i is the class index. When

positive, this encourages the generator to search regions of the input space where

the teacher is confident, which could correlate with regions close to the real data

manifold.

2. The entropy of the student: LG += γ ×
(
−∑i s

(i)
p log s

(i)
p

)
. This encourages the

generator to take more risks and look for images that the student is confidently

wrong about.

3. The consistency of the images generated: LG += γ × DKL(T (xp) || T (A(xp)))

where A is some augmentation operation, such as Gaussian noise or Gaussian

blurring. Here the idea is to constrain the generator to search images for which

being augmented does not change the output of the teacher. Again this is an

attempt to drive the search closer to real data and away from adversarial images.
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4. The diversity of the images generated: LG += −γ ×
∥∥ννT

∥∥, where ν ∈ RN×D

corresponds to the representation of size D for a batch of N images in the

penultimate layer of the teacher. Here the loss encourages each batch to be diverse

in the space spanned by the teacher’s last layer. So at any one time, the generator

is penalized if all of its samples look too similar according to the teacher.
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Appendix B: Network predictions on noise

On CIFAR-10 we observe that the volume each class occupies in the input space of

common neural networks does not seem to be equal. Here, we produce uniform noise

by sampling each pixel xi ∼ U(0, 255) discretely, and normalizing the resulting images

by the mean and standard deviations of CIFAR-10, as used during training time. The

distribution of the predictions made by common neural networks (pretrained on CIFAR-

10) are shown in Fig. 3.6. The predictions are mostly birds or frogs, which suggests

that decision boundaries have a higher density close to the real images. Another way

to reason about this is that adding uniform noise to a real image is much more likely

to change its class than adding uniform noise to uniform noise.
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Figure 3.6: Distribution of predictions across different architectures when given 1000
images of uniform noise. Interestingly, the predictions are largely focused on two classes.



Chapter 4

Gradient-based Hyperparameter

Optimization Over Long Horizons

This chapter is about my paper “Gradient-based Hyperparameter Optimization Over

Long Horizons”, which was published in NeurIPS 2021. I start by providing a back-

ground section on the application domains relevant to this paper, which is more ex-

haustive that the background material included in the original publication. Following

this, the paper itself is included with minor changes.

4.1 Background

4.1.1 Traditional hyperparameter optimization

Traditionally, hyperparameters refer to parameters that cannot be updated during

training, and are instead set by the user for a given model before training. Examples

include architecture design parameters like width and depth of a neural network,

data augmentation parameters like how much image blurring to include, or optimizer

parameters like learning rate and weight decay values. The field of hyperparameter

optimization (HPO) aims to find hyperparameters that maximize a performance metric

(e.g . validation accuracy) automatically, i.e. without the need for human expertise and

intervention. The goal is to make model design and debugging hyperparameters faster,

but also to make comparison between different models more fair in the deep learning

53



4.1. Background 54

community, since one model that receives more manual hyperparameter tuning can look

artificially better than another. We refer to the performance metric to be maximized as

the target function, which inputs a hyperparameter configuration and outputs a scalar

metric.

HPO has long been of focus of the machine learning community, with origins dating

back to the 1990s (King et al., 1995; Kohavi and John, 1995). The main challenge

in HPO is the size and complexity of the search space for hyperparameters. Indeed,

if we were to naively try every combination of plausible hyperparameter values for

several hyperparameters, a procedure known as grid search, the number of settings

to evaluate grows exponentially with the dimensionality of the configuration space.

Additionally, the range of acceptable values for each hyperparameter can be a mix of

continuous, categorical and conditional hyperparameters. Finally, since the advent of

Deep Learning, an additional challenge has emerged: the cost to evaluate the target

function can be very expensive. A central theme in HPO is to effectively trade off

exploration and exploitation of this target function.

There are various ways to perform modern HPO, including Bayesian optimization

(BO) (Snoek et al., 2015), reinforcement learning (Zoph and Le, 2017), evolutionary

algorithms (Jaderberg et al., 2017) and gradient-based methods (Bengio, 2000). The

state-of-the-art in HPO depends on the problem setting, but black-box methods like

Hyperband (HB) (Li et al., 2017b), and its combination with BO into a method called

BOHB (Falkner et al., 2018) has been the most popular. Contrary to the above, the

HPO method developed in this chapter is gradient-based, making it closer in spirit

to many meta-learning approaches. Nonetheless, some of the methods above make for

strong baselines, and so a more technical description of them is provided below. A more

comprehensive overview of all hyperparameter optimization methods can be found in

(Feurer and Hutter, 2019; Yu and Zhu, 2020).
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Random search (RS). This is the simplest alternative to grid search, and consists in

evaluating random hyperparameter configurations. In most real world applications,

some hyperparameters matter less than others, and random search has been shown

to significantly outperform grid search (Bergstra and Bengio, 2012). In this chapter I

include random search as a baseline because of its simplicity and popularity in deep

learning.

Bayesian Optimization (BO). This is a framework based on two components: a surrogate

model which is fitted to match the target function, and an acquisition function, which

is used to choose the next hyperparameter setting to evaluate. The surrogate model

usually relies on a Gaussian Process, so that it can provide a measure of uncertainty to

the acquisition function, and its posterior, given new observations of the target function,

is computed using Bayes’ rule. The acquisition function can take many forms (usually

expected improvement or probability of improvement) and encodes the exploration vs.

exploitation trade-off. BO has had success in hyperparameter tuning for various deep

learning applications (Snoek et al., 2015; Dahl et al., 2013). A more in-depth overview

of BO methods can be found in (Shahriari et al., 2016).

Bandit-based algorithms. In the multi-armed bandit problem (Katehakis and Veinott,

1987; Slivkins, 2019), the task is to allocate resources to competing options in a way

that maximizes their expected reward. Each option is partially known/understood at

the time of allocation, and becomes better known as an increasing amount of resource

is spent on it over time. A successful bandit-based strategy understands poor options

quickly from little resources and eliminates them. It then allocates more resources to

promising options to find the best option amongst several good ones. In the case of HPO

for deep neural networks hyperparameters, the hyperparameter configurations represent

the arms. If the final objective is validation accuracy after training for 100 epochs on

ImageNet, it’s often the case that many poor hyperparameter configurations can be

ruled out from much fewer epochs or training samples per epoch (Petrak, 2000; Komer

et al., 2014). In this chapter we use the algorithm HyperBand (HB) (Li et al., 2017b) as

a baseline, which extends the bandit-based algorithm SuccessiveHalving (Jamieson and
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Talwalkar, 2016). SuccessiveHalving iteratively evaluates all hyperparameter configur-

ations under consideration for a given budget, removes the half that performed worse,

and doubles the budget for the next iteration. This is repeated until there is only one

hyperparameter configuration left. The main limitation of SuccessiveHalving is the fact

that the user must decide whether to initially try many configurations with a small

budget or fewer configurations with a larger budget. HyperBand addresses this issue

by using several random combinations of number of configurations vs. configuration

budget, and has shown a strong performance in DL.

Bayesian optimized bandit-based hybrids. The recent algorithm BOHB (Falkner et al.,

2018) proposes to combine the benefits of Bayesian optimization and HyperBand. This

is done by replacing the randomness of HyperBand when proposing configurations with

proposals from Bayesian optimization. In practice this means that BOHB enjoys both

the strong anytime performance of HB as well as the strong final performance of BO.

This method was shown to obtain state-of-the-art in a variety of HPO settings, and is

thus a valuable baseline to compare our algorithm against.

4.1.2 Reverse vs. forward mode differentiation

The method proposed in this chapter relies on forward mode differentiation. While

exact derivations in the context of hyperparameter optimization are provided later,

it is worth clarifying the high level differences between reverse and forward mode

differentiation. Note that both reverse and forward mode differentiation are typically

faster than the HPO methods mentioned in the previous section, but they are only

applicable to differentiable hyperparameters.

When differentiating neural networks, we are typically interested in computing gradients

through the composition of several functions, since each layer’s output is the input to

the following layer. As an example, consider the composition z(g(f(x))), where z(·)

outputs a vector z ∈ RZ , g(·) outputs a vector g ∈ RG and f(·) outputs a vector

f ∈ RF . Say that we would like to compute ∂z
∂x , whose expression is given by the chain
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rule as the product of 3 Jacobians:

∂z

∂x
=

∂z

∂g

∂g

∂f

∂f

∂x
(4.1)

Reverse mode differentiation, aka backpropagation, is the workhorse of Deep Learning.

It operates by tracing operations (nodes) in the forward pass, retaining intermediate

information in memory for each computation, which are used to compute gradients in

a backward pass. In Eq. (4.1) the RHS is computed left to right, starting from the

final node: first ∂z
∂f = ∂z

∂g
∂g
∂f is computed, and then ∂z

∂x = ∂z
∂f

∂f
∂x is computed, resulting in

ZGF+ZFX operations. Note how this order of operations relies on storing intermediate

values for g and f in the forward pass, to be used in the backward pass.

In contrast, forward mode differentiation does not use a backward pass, and does not

need to store intermediate values. Intermediate gradient terms are computed during

the forward pass, and this corresponds to computing the RHS of Eq. (4.1) from right

to left: first ∂g
∂x = ∂g

∂f
∂f
∂x is computed, and then ∂z

∂x = ∂z
∂g

∂g
∂x is computed, resulting in

XGF + ZGX operations.

Assuming that G ≃ F for the sake of the argument, it can be seen that reverse-

mode differentiation is cheaper than forward-mode differentiation when the dimension

of the output is smaller than the dimension of the input: Z << X. Conversely, forward

mode differentiation is cheaper when there are more outputs than inputs: X << Z.

In Deep Learning, the reverse mode procedure has two substantial advantages. First,

it is usually the case that z represents a loss function, i.e. a scalar, and x represents

millions of parameters or activation values, which means that Z << X. Secondly, the

intermediate values calculated in the backward pass for reverse mode are also wanted,

while the intermediate gradient values in the forward pass have little relevance. In the

example above, reverse-mode provides ∂z
∂f for free while computing ∂z

∂x , which usually

corresponds to the gradient of the loss w.r.t. the parameters/activations of some other

layer.
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While the two reasons given above make forward mode differentiation irrelevant for most

deep learning applications, the case considered in this chapter tackles the differentiation

of hyperparameters through the whole training process of a neural network. That is,

the gradient descent updates on the neural network weights themselves constitute the

forward pass, in the sense that they involve meta parameters (like learning rate) which

must be differentiated subsequently. In this case, reverse-mode differentiation would

need to store intermediate values for each layer for T gradient steps, which is intractable

for modern networks for T ≳ 10. While forward-mode differentiation incurs a larger

computational cost, especially as the number of hyperparameters grow, it has the benefit

of being tractable in memory, because no intermediate values need to be stored.

4.2 Introduction

Deep neural networks have shown tremendous success on a wide range of applications,

including image classification (He et al., 2016), generative models (Brock et al., 2019),

natural language processing (Devlin et al., 2018) and speech recognition (Oord et al.,

2016). This success is in part due to effective optimizers such as SGD with momentum

or Adam (Kingma and Ba, 2015), which require carefully tuned hyperparameters for

each application. In recent years, a long list of heuristics to tune such hyperparameters

has been compiled by the deep learning community, including things like: how to best

decay the learning rate (Loshchilov and Hutter, 2017), how to scale hyperparameters

with the budget available (Li et al., 2020a), and how to scale learning rate with batch

size (Goyal et al., 2017). Unfortunately these heuristics are often dataset specific and

architecture dependent (Dong et al., 2020). They also don’t apply well to new optimizers

(Loshchilov and Hutter, 2019), or new tools, like batch normalization which allows for

larger learning rates (Ioffe and Szegedy, 2015).
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With so many ways to choose hyperparameters, the deep learning community is at risk

of adopting models based on how much effort went into tuning them, rather than their

methodological insight. The field of hyperparameter optimization (HPO) aims to find

hyperparameters that provide a good generalization performance automatically. Unfor-

tunately, existing tools are rather unpopular for deep learning, largely owing to their

computational cost. The method developed here is a gradient-based HPO approach;

that is, it calculates hypergradients, i.e. the gradient of some validation loss with respect

to each hyperparameter. Gradient-based HPO should be more efficient than black-box

methods as the dimensionality of the hyperparameter space increases, since it is able

to utilize gradient information rather than rely on trial and error. In practice however,

learning hyperparameters with gradients has only been popular in few-shot learning

tasks where the horizon is short, i.e. where the underlying task is solved with a few

gradient steps. This is because long horizons cause hypergradient degradation, and

incur a memory cost that makes reverse-mode differentiation prohibitive.

Greedy gradient-based methods alleviate both of these issues by calculating local hyper-

gradients based on intermediate validation losses. Unfortunately, this introduces some

bias (Wu et al., 2018b) and results in a significant performance drop, which we are able

to quantify in this work. We make use of forward-mode differentiation, which has been

shown to offer a memory cost constant with horizon size. However, previous forward-

mode methods don’t address gradient degradation explicitly and are thus limited to

the greedy setting (Franceschi et al., 2017; Donini et al., 2019).

We introduce FDS (Foward-mode Differentiation with hyperparameter Sharing), which

to the best of our knowledge demonstrates for the first time that hyperparameters can

be differentiated non-greedily over long horizons. Specifically, we make the following

contributions: (1) we propose to share hyperparameters through time, both motivating

it theoretically and with various experiments, (2) we combine the above in a forward-

mode differentiation algorithm, and (3) we show that our method can significantly

outperform various HPO algorithms, for instance when learning the hyperparameters

of the SGD-momentum optimizer.
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4.3 Related work

There are many ways to perform hyperparameter optimization (HPO) (Feurer and

Hutter, 2019), including Bayesian optimization (BO) (Snoek et al., 2015), reinforcement

learning (Zoph and Le, 2017), evolutionary algorithms (Jaderberg et al., 2017) and

gradient-based methods (Bengio, 2000). The state-of-the-art in HPO depends on the

problem setting, but black-box methods like Hyperband (HB) (Li et al., 2017b), and

its combination with BO into a method called BOHB (Falkner et al., 2018) have been

the most popular. Modern work in meta-learning deals with various forms of gradient-

based HPO (Hospedales et al., 2021), but usually focuses on the few-shot regime (Finn

et al., 2017) where horizons are conveniently short (∼ 10 steps) while we focus on long

horizons (∼ 104 steps).

Gradient-based HPO. Using the gradient of some validation loss with respect to the

hyperparameters is typically the preferred choice when the underlying optimization

is differentiable. This is a type of constrained optimization (Franceschi et al., 2018)

which stems from earlier work on backpropagation through time (Werbos, 1990) and

real-time recurrent learning (Williams and Zipser, 1989). Unfortunately, differentiating

optimization is an expensive procedure in both time and memory, and most proposed

methods are limited to small models and toy datasets (Domke, 2012; Maclaurin et al.,

2015; Pedregosa, 2016). Efforts to make the problem more tractable include optimiza-

tion shortcuts (Fu et al., 2016), truncation (Shaban et al., 2019) and implicit gradients

(Larsen et al., 1996; Rajeswaran et al., 2019; Lorraine et al., 2019). Truncation can be

combined with our approach but produces biased gradients (Metz et al., 2019), while

implicit differentiation is only applicable to hyperparameters that define the training

loss (e.g. augmentation) but not to hyperparameters that define how the training loss

is minimized (e.g. optimizer hyperparameters). Forward-mode differentiation (Williams

and Zipser, 1989) boasts a memory cost constant with horizon size, but gradient

degradation has restricted its use to the greedy setting (Franceschi et al., 2017; Donini
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et al., 2019). Finite difference approaches and related SPSA methods (Bhatnagar et al.,

2013) aren’t usually applied to the HPO setting, possibly due to the difficulty of

choosing a scale for the perturbation they rely on, which is robust to both hypergradient

explosion and hypergradient vanishing.

Greedy methods. One trick that prevents gradient degradation and significantly reduces

compute and memory cost is to solve the bilevel optimization greedily. This has become

the default trick in various long-horizon problems, including HPO over optimizers

(Luketina et al., 2016; Franceschi et al., 2017; Baydin et al., 2018; Donini et al.,

2019), architecture search (Liu et al., 2019), dataset distillation (Wang et al., 2018)

or curriculum learning (Ren et al., 2018). Greediness refers to the heuristic-based

problem solving approach of making the locally optimal choice at each step of an

algorithm/strategy. In our context this translates to finding the best hyperparameters

locally rather than globally. In practice, it involves splitting the inner optimization

problem into smaller chunks (often just one batch), and solving for hyperparameters

over these smaller horizons instead; often in an online fashion. We formalize greediness

in Sec. 4.4.2. In this paper we expand upon previous observations (Wu et al., 2018b) and

take the view that greediness fundamentally solves for the wrong objective. Instead, the

focus of our paper is to extend forward-mode differentiation methods to the non-greedy

setting.

Gradient degradation. Gradient degradation of some scalar w.r.t a parameter is a broad

issue that arises when that parameter influences the scalar in a chaotic fashion, such as

through long chains of nonlinear mappings. This manifests itself in HPO as vanishing or

exploding hypergradients, due to low or high curvature components of the validation loss

surface. This leads to hypergradients that have a large variance, making differentiation

through long horizons impractical. This is usually observed in the context of recurrent

neural networks (Bengio et al., 1993; Bengio et al., 1994), but also in reinforcement

learning (Parmas et al., 2018) and HPO (Maclaurin et al., 2015). Solutions like LSTMs

(Hochreiter and Schmidhuber, 1997) and gradient clipping (Pascanu et al., 2013) have

been proposed, but are respectively inapplicable and insufficient to long-horizon HPO.
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Variational optimization (Metz et al., 2019) and preconditioning warp-layers (Flenner-

hag et al., 2020) can mitigate gradient degradation, but these methods are expensive

in memory and therefore are limited to small architectures and/or a few hundred

inner steps. In comparison, we differentiate over ∼ 104 inner steps for WideResNets

(Zagoruyko and Komodakis, 2016b).

4.4 Setting the scene

4.4.1 Problem statement

Consider a neural network with weights θ, trained to minimize a loss Ltrain over a

dataset Dtrain. This is done by taking T steps with a gradient-based optimizer Φ, which

uses a collection of hyperparameters λ ∈ RT . For clarity of notation, consider that Φ

uses one hyperparameter per step, written λ[t], where indices are shown in brackets to

differentiate them from a variable evaluated at time t. We can explicitly write out this

optimizer as Φ : θt+1 = Φ(Ltrain(θt(λ[1:t]),Dtrain),λ[t+1]) ∀t ∈ {1, 2, . . . , T}. Note that

θt is a function of λ[1:t], and it follows that θT = θT (λ[1:T ]) = θT (λ).

We would like to find the hyperparameters λ∗ such that the result, at time T , of

the gradient process minimizing objective Ltrain, also minimizes some generalization

loss Lval on a validation dataset Dval. This can be cast as the following constrained

optimization:

λ∗ = argmin
λ

Lval(θT (λ),Dval) (4.2)

s.t. θt+1 = Φ(Ltrain(θt(λ[1:t]),Dtrain),λ[t+1]) (4.3)
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The inner loop in Eq. (4.3) expresses a constraint on the outer loop in Eq. (4.2). In

gradient-based HPO, our task is to compute the hypergradient dLval/dλ and update

λ accordingly. Note that some methods require θT = argminθ Ltrain(θ,Dtrain,λ) with

Ltrain being a function of λ explicitly (Larsen et al., 1996; Rajeswaran et al., 2019; Lor-

raine et al., 2019), in which case the above becomes a bilevel optimization (Stackelberg,

1952). Our algorithm waives these requirements.

4.4.2 Greediness

Let H be the horizon, which corresponds to the number of gradient steps taken in

the inner loop (to optimize θ) before one gradient step is taken in the outer loop (to

optimize λ). When solving Eq. (4.2) non-greedily we have H = T . However, most

modern approaches are greedy (Luketina et al., 2016; Franceschi et al., 2017; Baydin

et al., 2018; Liu et al., 2019; Wang et al., 2018), in that they rephrase the above problem

into a sequence of several independent problems of smaller horizons, where λ∗
[t:t+H] is

learned in the outer loop subject to an inner loop optimization from θt to θt+H with

H ≪ T . Online methods such as Hypergradient Descent (HD) (Baydin et al., 2018)

are an example of greedy differentiation, where H = 1 and λ[t] is updated at time t.

Instead, non-greedy algorithms like FDS only update λ[t] at time T .

Greediness has many advantages: it mitigates gradient degradation, makes hypergradi-

ents cheaper to compute, and it requires less memory when used with reverse-mode

differentiation. However, greedy methods look for λ∗ that does well locally rather than

globally, i.e. they constrain λ∗ to a subspace of solutions such that θH ,θ2H , ...,θT

all yield good validation performances. In our experiments, we found that getting

competitive hyperparameters with greediness often revolves around tricks like online

learning with a very low outer learning rate combined with hand-tuned initial hy-

perparameter values, to manually prevent convergence to small values. But solving
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the greedy objective correctly leads to poor solutions, a special case of which was

previously described as the “short-horizon bias” (Wu et al., 2018b). In FDS, we learn

global hyperparameters in a non-greedy fashion, which means that the hypergradient

dLval/dλ is only ever calculated at θT .

4.4.3 Forward-mode differentiation of modern optimizers

The vast majority of meta-learning applications use reverse-mode differentiation in the

inner optimization problem (Eq. (4.3)) to optimize θ. However, the memory cost of

using reverse-mode differentiation for the outer optimization (Eq. (4.2)) is O(FH),

where F is the memory used by one forward pass through the network (weights plus

activations). This is often referred to as backpropagation through time (BPTT). In the

non-greedy setting where H = T , BPTT is extremely limiting: for large networks, only

T ∼ 10 gradient steps could be solved with modern GPUs, while problems like CIFAR-

10 require T ∼ 104. Instead, we make use of forward-mode differentiation, which scales

in memory as O(DN), where D is the number of weights and N is the number of

learnable hyperparameters. The additional scaling with N is a limitation if we learn

one hyperparameter per inner step (N = T ). Sharing hyperparameters (Sec. 4.5.1)

mitigates gradient degradation, but also conveniently allows for smaller values of N .

For clarity of notation, we consider forward-mode hypergradients for the general case

of using one hyperparameter per step, i.e. λ ∈ RT . First, we use the chain rule to write

dLval/dλ = (∂Lval/∂θT )(dθT /dλ) where the direct gradient has been dropped since

∂Lval/∂λ = 0 for optimizer hyperparameters. The first term on the RHS is trivial and

can be obtained with reverse-mode differentiation as usual. The second term is more

problematic because θT = θT (θT−1(θT−2(...),λ[T−1]),λ[T ]). We use the chain rule again

to calculate this term recursively:

dθt
dλ

=
∂θt
∂θt−1

∣∣∣∣
λ

dθt−1

dλ
+

∂θt
∂λ

∣∣∣∣
θt−1

which we write as Zt = AtZt−1 +Bt (4.4)
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where θt ∈ RD, λ ∈ RT , Zt ∈ RD×T , At ∈ RD×D and Bt ∈ RD×T . Note that the

columns of Z at step t are zeros for indices t+1, t+2, ..., T , since the hyperparameters

at those steps haven’t been used yet.

The expressions for At and Bt depend on the specific hyperparameters we are dif-

ferentiating. In this work, we consider the most popular optimizer, namely SGD with

momentum and weight decay. To the best of our knowledge, previous work focuses

on simpler versions of this optimizer, usually by removing momentum and weight

decay, and only learns the learning rate, greedily. We use Pytorch’s update rule for

SGD (Paszke et al., 2019), namely θt = Φ(θt−1) = θt−1 − αtvt with learning rate αt,

momentum βt, weight decay ξt and velocity vt = βtvt−1 + (∂Ltrain/∂θt−1) + ξtθt−1.

Consider the case when we learn the learning rate schedule, namely λ = α. If we use

the update rule without momentum (Donini et al., 2019), Bt is conveniently sparse: it is

a D×T matrix that only has one non-zero column at index t corresponding to ∂θt/∂αt.

However, we include terms like momentum and therefore the velocity depends on the

hyperparameters of previous steps. In that case, a further recursive term Ct = (∂vt/∂λ)

must be considered to get exact hypergradients. Putting it together (see Appendix A)

we obtain: 

Aα
t = 1− αt

(
∂2Ltrain
∂θ2

t−1

+ ξt1

)
Bα

t = −βtαtC
α
t−1 − δ⊗t

(
βtvt−1 +

∂Ltrain
∂θt−1

+ ξtθt−1

)
Cα

t = βtC
α
t−1 +

(
ξt1+

∂2Ltrain
∂θ2

t−1

)
Zα

t−1

(4.5)

where 1 is a D × D identity matrix, and δ⊗t (q) turns a vector q of size D into a

matrix of size D×T , whose t-th column is set to q and other columns to 0s. While the

matrices in Eq. (4.5) are updated online, the hyperparameters aren’t. This is because

in the non-greedy setting we don’t have access to the hypergradients until we have

computed Zα
T . A similar technique can be applied to momentum and weight decay to

get Zβ
T and Zξ

T (see Appendix A). All hypergradient derivations in this paper were

checked with finite differences. Note that we focus on learning the hyperparameters of
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SGD with momentum because it is the most common optimizer in the deep learning

literature. However, just like reverse-mode differentiation, forward-mode differentiation

can be applied to any differentiable hyperparameter, albeit with appropriate At and

Bt matrices.

4.5 Non-greedy differentiation over long horizons

4.5.1 Hyperparameter sharing: trading off noise reduction with bias increase

The main challenge of doing non-greedy meta-learning over long horizons is gradient

degradation. In HPO this arises because a small change in Ltrain(θt) can cascade forward

into a completely different θT , resulting in large fluctuations of the hypergradients.

This noise (which we show in Fig. 4.1) makes the generalization loss hard to minimize

(Eq. (4.2)). We find that the two main causes for this noise are the ordering of the

training minibatches, and the weight initialization θ0. Ideally, the hyperparameters we

learn should be agnostic to both of these factors, and so we would like to average out

their effect on hypergradients.

Ensemble averaging The most obvious way to address the above is to compute all

hypergradients across several random seeds, where each seed corresponds to a dif-

ferent dataset ordering and weight initialization. We could then obtain an average

hypergradient µt for each inner step t. Here, µ ∈ RT is often called an ensemble

average in statistical mechanics. The issue with ensemble averaging in our setting is

its computational and memory cost, since each random seed requires differentiating

through T unrolled inner steps for T hyperparameters. This makes both reverse-mode

and forward-mode differentiation intractable. We consider the ensemble average as

optimal in our analysis, which allows us to derive an expression for the mean square

error between our hypergradients estimate and µ.
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Time averaging In FDS, we use the long horizon to our advantage and propose to do

time averaging instead of ensemble averaging, i.e. we average out hypergradients across

the inner loop (Eq. (4.3)) rather than the outer loop (Eq. (4.2)). More specifically,

we sum hypergradients from W neighbouring time steps in the inner loop, which is

exactly equivalent to sharing one hyperparameter over all these steps. The average is

then obtained trivially by dividing by W . For instance, when learning the learning

rate schedule α for H = 104 inner steps, we can learn α ∈ R10 where each learning

rate is used for a window of W = 103 contiguous gradient steps. A stochastic system

where the time average is equivalent to the ensemble average is called ergodic (Walters,

1982) and has been the subject of much research in thermodynamics (Boltzmann, 1896)

and finance (Peters, 2019). In our case, hypergradients aren’t generally ergodic, and so

using a single average hypergradient for W contiguous steps can introduce a bias.

Informally, time averaging contiguous hypergradients leads to both noise reduction and

bias increase, and we flesh out the nature of this trade-off in Theorem 4.5.1.

Theorem 4.5.1. Let each time step t ∈ {1, 2, ..., T} have a corresponding hyperpara-

meter λt and non-greedy hypergradient gt = ∂Lval(θT )/∂λt. Each gt is a random

variable due to the sampling process of the weight initialization θ0 and the inner loop

minibatch selection. Let g = [g1, g2, . . . , gT ] be approximated by a Gaussian distribution

g ∼ N (µ,Σ), with mean µ = [µ1, µ2, ..., µT ] and covariance matrix Σ, where µ

corresponds to the optimal hypergradients. Assume that the changes in the values of µ

over time are bounded, µt+1 = µt+ϵt, where ϵt ∈ [−ϵ, ϵ]. Finally, let c ∈ [0, 1] denote the

maximum absolute correlation between the values of g, i.e. c ≥ |Σtt′ |/
√
ΣttΣt′t′ ∀t ̸= t′.

Then, we show that the mean squared error of the hypergradients with respect to µ

when sharing W contiguous hyperparameters has an upper bound:

MSEW ≤
(1 + c(W − 1))

W
MSE1 + ϵ2

(W 2 − 1)

12
(4.6)

where MSE1 =
1

T

∑
t

Σtt (4.7)
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and so for sufficiently small ϵ and c we have with certainty, MSEW < MSE1 for some

W > 1, where MSE1 is the hypergradient error without any sharing (See Appendix B

for a proof).

Discussion Theorem 4.5.1 demonstrates how sharing W contiguous hyperparameters

has two effects: 1) it reduces the hypergradient noise by a factor O(W/(1 + cW ))

due to the averaging of noisy hypergradients, and 2) it increases the error up to an

amount O(ϵ2W 2) due to an induced bias. Intuitively, averaging contiguous hypergradi-

ents maximally reduces noise when they aren’t correlated (c = 0), and minimally

increases bias when they are drawn from distributions of similar means (ϵ = 0). In

the simpler case where hypergradients are iid and have the same variance at each step,

namely g ∼ N (µ, σ21), the expressions above become MSE1 = σ2 and MSEW ≤

MSE1/W + ϵ2(W 2 − 1)/12. Note that in all cases, the upper bound on MSEW has a

single minimum W ∗ corresponding to the optimal trade-off between noise reduction

and bias increase.

4.5.2 The FDS algorithm

As it is presented in Sec. 4.4.3, forward-mode differentiation would still have a memory

cost that scales as O(DT ) since we are learning one hyperparameter per step. However,

addressing gradient degradation by sharing hyperparameters also conveniently reduces

that memory cost by a factor W down to O(DN), where N = T/W is the number

of unique hyperparameter values we learn. This is because we can safely average

hypergradients without calculating them individually, by reusing the same column of Z

for W contiguous steps. This is shown in Algorithm 3, when meta-learning a schedule

of Nα learning rates with FDS. Here, Zα
[i] refers to the i-th column of matrix Zα. We

don’t need to store H or Aα in memory since we calculate the Hessian matrix product

HZα directly. Most importantly, note that hyperparameters aren’t updated greedily

or online, but are updated once per outer step, which corresponds to differentiating

through the entire unrolled inner loop optimization and getting the exact hypergradients

∂Lval(θT )/∂α.
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Algorithm 3: Simplified FDS algorithm when learning Nα learning rates for the
SGD optimizer with momentum. Each learning rate is shared over W contiguous
time steps

initialize: Nα,W = T/Nα,α = 0N
α

for o in 1, 2, ... do

initialize: Dtrain, Dval, θ0 ∈ RD,
Zα = 0D×Nα

, Cα = 0D×Nα

for t in 1, 2, ..., T do
xtrain,ytrain ∼ Dtrain

gtrain = ∂Ltrain(xtrain,ytrain)/∂θ
i = ⌈t/W ⌉
HZα

[1:i] = ∂(gtrainZ
α
[1:i])/∂θ

Zα
[1:i] = AαZα

[1:i] +Bα
[1:i]

update Cα (Eq. (4.5))
θt+1 = Φ(θt, gtrain)

end
gval = ∂Lval(Dval)/∂θ
α← α− 0.1× gvalZ

α/W

end

The main cost of Algorithm 3 comes from calculating HZα. There exists several

methods to approximate this product, but we found them too crude for long horizons.

This includes first-order approximations or truncation (Shaban et al., 2019), which can

be adapted to FDS trivially. One could also use functional forms for more complex

schedules to be learned in terms of fewer hyperparameters, but this typically makes

stronger assumptions about the shape of each hyperparameter schedule, which can

easily cloud the true performance of HPO algorithms. In practice, we calculate HZα

exactly, and use a similar form to Algorithm 3 to learn α, β and ξ.

4.6 Experiments

Our experiments show how FDS mitigates gradient degradation and outperforms com-

peting HPO methods for tasks with a long horizon. In Sec. 4.6.1 and Sec. 4.6.2 we

consider small datasets (MNIST and SVHN) and a small network (LeNet) to make

reverse-mode differentiation tractable, so that the effect of hyperparameter sharing can
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Figure 4.1: Hypergradients of α on SVHN for 100 seeds in the non-greedy (left) and
greedy (middle) setting. The mean squared error is also shown (right), and is calculated
with respect to the optimal hypergradient (µ), i.e. the ensemble average of non-greedy
hypergradients (dotted line in left figure). We can see that sharing hyperparameters
over W steps lowers the MSE even for the small value of T = 250 used here. The best
trade-off between noise reduction and bias increase is W = 50.

be directly measured. In Sec. 4.6.3 and Sec. 4.6.4, we then showcase FDS on CIFAR-10

where only forward-mode differentiation is tractable. All experiments are carried out

on a single GTX 2080 GPU. More implementation details can be found in Appendix

C.

4.6.1 The effect of hyperparameter sharing on hypergradient noise

We consider a LeNet network trained on an inner loop of T = 250 gradient steps,

and calculate the hypergradients of the learning rate α across 100 seeds. Each seed

is evaluated at the same value of α, but corresponds to a different training dataset

ordering and weight initialization. We can calculate the hypergradients greedily (H =

1) and non-greedily (H = T ). The optimal hypergradients are considered to be the

ensemble average of the non-greedy seeds as per Sec. 4.5.1, which allows an MSE to

be calculated for each method. These results are shown in Fig. 4.1 for a learning rate

schedule initialized to small values. We observe that greediness is a poor approximation

to the optimal hypergradients, and that time averaging contiguous hypergradients in

the non-greedy case can significantly reduce the MSE even when averaging over only

W = 50 steps.
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Figure 4.2: The learning rate schedule α learned for the MNIST and SVHN datasets
using a LeNet architecture over one epoch. We observe that on real-world datasets like
SVHN, both greedy and non-greedy hyperparameter optimizations fail to learn decent
learning rate schedules when using one hypergradient per inner step. However, sharing
learning rates over contiguous steps stabilizes non-greedy hypergradients and allows
us to find learning rates that can even outperform the baseline, which is a common
off-the-shelf schedule in this setting (cosine annealing).

The small size of this toy problem allows us to use reverse-mode differentiation and

obtain a hypergradient value for each step t, which allows us to calculate Σ, c and ϵ as

defined in Theorem 4.5.1, to verify that our upper bound holds and that its shape as a

function of W is realistic. In the setting shown in Fig. 4.1 we find ϵ = max |µt+1−µt| ∼

0.08 and (1/T )
∑

tΣtt ∼ 0.25. The value of the maximum correlation between any two

steps, c, can be quite high which makes the upper bound loose. In practice however, the

shape of the upper bound in Theorem 4.5.1 as a function of W (as plotted in Appendix

B) closely matches that of the measured MSE shown in Fig. 4.1. Note that the values of

ϵ, Σ, and c can vary depending on the value of α. As illustrated in Theorem 4.5.1, we

find that settings that have a smaller values of ϵt benefit from a larger W and reduce

the MSE more (see Appendix D for more examples).
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4.6.2 The effect of hyperparameter sharing on HPO

In the section above, we considered hypergradient noise around a fixed hyperparameter

setting. In this section, we consider how that noise and its mitigation translate to

meta-learning hyperparameters over several outer steps.

In Fig. 4.2, we initialize α = 0 and train a LeNet network over 1 epoch (T ∼ 500

gradient steps) on MNIST and SVHN. We compare the maximally greedy setting (H =

1), the non-greedy setting (H = T ), and FDS (also H = T but with sharing of W ∼ 50

contiguous hyperparameters). In all cases we take 50 outer steps per hyperparameter.

We make greediness more transparent by not using tricks as in Hypergradient Descent

(Baydin et al., 2018), where αt is set to αt−1 before its hypergradients are calculated. As

previously observed by (Wu et al., 2018b), greedy optimization leads to poor solutions

with learning rates that are always too small. While the non-greedy setting without

sharing works well for simple datasets like MNIST, it fails for real-world datasets like

SVHN, converging to much higher learning rates than reasonable. This is due to gradient

degradation, whose negative effect can compound during outer optimization, as a single

large learning rate can increase the hypergradient noise for neighbouring steps. As

we share hyperparameters in FDS, we reduce and stabilize the outer optimization.

This allows us to learn a much more sensible learning rate schedule, which can even

outperform a reasonable cosine annealing off-the-shelf schedule on SVHN.

4.6.3 FDS on CIFAR-10

We demonstrate that our algorithm can be used to learn the learning rate, momentum

and weight decay over 50 epochs of CIFAR-10 (H ∼ 104) for a WideResNet of 16

layers (WRN-16-1). We choose not to use larger architectures or more epochs to enable

compute time for more extensive comparisons and because hyperparameters matter

most for fewer epochs. Note also that we are not interested in finding the architecture

with the best performance, but rather in finding the best hyperparameters given an

architecture. For the learning rate, we choose W such that the ratio of T/W is similar

to the optimal one found in Sec. 4.6.1, and we set W = T for the momentum and
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Figure 4.3: FDS applied to the SGD optimizer to learn (from left to right) the learning
rate schedule α, the momentum β, and weight decay ξ for a WRN-16-1 on CIFAR-10.
For each outer step (color) we solve CIFAR-10 from scratch for 50 epochs, and update
all hyperparameters such that the final weights minimize some validation loss. We use
hyperparameter sharing over W = 10, 50 and 50 epochs for α, β and ξ respectively.
All hyperparameters are initialized to zero and converge within just 10 outer steps to
values that significantly outperform Hypergradient Descent (HD) (Baydin et al., 2018),
the greedy alternative. We match the performance of the best known hyperparameters
in that setting and do so much faster than state-of-the-art black-box methods (see
Sec. 4.6.4).

weight decay since only a single value is commonly used for these hyperparameters. The

schedules learned are shown in Fig. 4.3, which demonstrates that FDS converges in just

10 outer steps to hyperparameters that are very different to online greedy differentiation

(Baydin et al., 2018), and correspond to significantly better test accuracy performances.

Note that having the maximum learning rate be large and occur half way during training

is reminiscent of the one-cycle schedule (Smith and Topin, 2017).

4.6.4 FDS compared to other HPO methods

A common theme in meta-learning research has been the lack of appropriate baselines,

with researchers often finding that random search (RS) can outperform complex search

algorithms, for instance in NAS (Li and Talwalkar, 2019) or automatic augmentation

(Cubuk et al., 2020). In this section we compare FDS to several competing HPO meth-

ods on CIFAR-10, in both the performance of the hyperparameters found and the time

it takes to find them. We consider Random Search (RS), Bayesian Optimization (BO),

Hypergradient Descent (HD) (Baydin et al., 2018), HyperBand (HB) (Li et al., 2017b)
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and the combination of BO and HB, namely BOHB (Falkner et al., 2018). The latter

is typically regarded as state-of-the-art in HPO. We use the official HpBandster (Klein,

2019) implementation of these algorithms, except for HD which we re-implemented

ourselves.

The performance of HPO methods is often clouded by very small search ranges. For in-

stance, in (Falkner et al., 2018) the learning rate is searched over the range [10−6, 10−1].

In the case of DARTS (Liu et al., 2019), expanding the search space to include many

poor architectures has helped diagnose issues with its search algorithm (Zela et al.,

2020). For these reasons, we assume only weak priors and consider large search ranges:

α ∈ [−1, 1], β ∈ [−1.5, 1.5], and ξ ∈ [−4 × 10−3, 4 × 10−3], which includes many poor

hyperparameter values. In FDS we can specify search ranges by using a fixed update

size γ to the hyperparameters, which decays by 2 every time the hypergradient flips

sign, which is common in sign based optimizers (Jacobs, 1988; Riedmiller and Braun,

1993; Bernstein et al., 2018; Safaryan and Richtárik, 2019). We found that black-box

HPO methods did not scale well to more than ∼ 10 hyperparameters for such large

search ranges, and so considered learning 7 learning rates, 1 momentum and 1 weight

decay over 50 epochs. Note that increasing these numbers doesn’t affect the accuracy of

FDS but significantly reduces that of RS, BO, HB and BOHB. The performance over

time of the hyperparameters found by each method is shown in Fig. 4.4. As is common

in HPO, we plot regret (in test accuracy) with respect to the best hyperparameters

known in this setting, which we obtained from an expensive grid search around the

most common hyperparameters used in the literature (more details in Appendix F). To

squeeze the optimal performance out of FDS in this experiment, we match the process

used in HB and BOHB, namely using smaller budgets for some runs, in particular

early ones. We can see that our method reaches zero regret in just 3 hours, while the

next best method (BOHB) reaches zero regret in 60 hours. Other methods did not

reach zero regret in the maximum of 100 hours they were run for. Note also that we

retain the convergence speed of online greedy differentiation (Baydin et al., 2018) while

outperforming its regret by ∼ 10% test accuracy.
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Figure 4.4: Performance of the most popular hyperparameter optimization methods
when learning the learning rate, momentum and weight decay on 50 epochs of CIFAR-
10, for a WideResNet of 16 layers. Non-greedy methods (RS, BO, HB (Li et al., 2017b),
BOHB (Falkner et al., 2018)) solve for global hyperparameters but rely on trial-and-
error which makes them slow. Greedy gradient-based methods (e.g. HD (Baydin et al.,
2018)) are faster but solve for local hyperparameters which makes them suboptimal.
Our method combines the strengths of these two paradigms and outperforms the next
best method while converging 20 times faster. Each curve is the average of 8 seeds.

4.7 Discussion

FDS is significantly better than modern HPO alternatives in the case of learning

differentiable hyperparameters over long horizons. Its main advantage over black-box

methods is its convergence speed, and its main advantage over other gradient-based

methods is that it’s non-greedy. Furthermore, forward-mode differentiation can provide

exact hypergradients for any differentiable hyperparameter, contrary to some other

approaches like implicit differentiation which approximates hypergradients, and can do

so for certain types of differentiable hyperparameters only.

Nonetheless, it is worth pointing out the main limitations of FDS. First, black-box

methods are slower but can readily tackle non-differentiable hyperparameters, while

FDS would need to use relaxation techniques to differentiate through, say, discrete

variables. Then, the computational and memory cost of FDS scales linearly with the

number of hyperparameters. For instance, for a WideResNet of 16 layers we are limited

in memory to ∼ 103 hyperparameters on a single 12 GB GPU, which falls short of

reverse-mode-based greedy methods which scale to millions of hyperparameters. An-

other assumption of FDS is that contiguous hyperparameters in time have close optimal

values, and can thus share a hypergradient. This is true for most hyperparameters
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relevant to deep learning today, but may not always hold in more niche HPO domains.

Finally, while automatic forward-mode differentiation is becoming available for some

toolboxes like JAX (Bradbury et al., 2018), it remains unavailable for the most popular

deep learning libraries, which means that some pen-and-paper work is still required to

derive hypergradients for given hyperparameters (Eq. (4.5)).

The focus of our future work will be on adapting FDS to the many meta-learning

applications that rely on greedy optimization, such as differentiable architecture search,

to improve their performance by making them non-greedy.

4.8 Conclusion

This work makes an important step towards gradient-based HPO for long horizons

by introducing FDS, which enables non-greediness through the mitigation of gradient

degradation. More specifically, we theorize and demonstrate that sharing hyperpara-

meters over contiguous time steps is a simple yet efficient way to reduce the error in

their hypergradients; a setting which naturally lands itself to forward-mode differenti-

ation. Finally, we show that FDS outperform greedy gradient-based alternatives in the

quality of hyperparameters found, while being significantly faster than all state-of-the-

art black-box methods. We hope that our work encourages the community to reconsider

gradient-based HPO in terms of non-greediness, and pave the way towards a universal

hyperparameter solver.

Additionally, it is worth reflecting on the state of hyperparameter optimization in the

field. The hyperparameters learned in this chapter have effectively been grid searched

by the community over years on the datasets considered, and therefore little to no

performance can be gained by using HPO. Generally speaking, it is often the case

that deep learning practitioners or researchers only have a few new hyperparameters to
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search related to the method they introduce, but can reuse most other hyperparameters

from previous research work. As such, grid search remains a favorite due to its simplicity

and the insight it gives about the sensitivity of each hyperparameter. Research in HPO

should therefore focus on the long-horizon many-hyperparameter setting.

4.9 Appendices

Appendix A: Forward-mode hypergradient derivations

Recall that we are interested in calculating

Zt = AtZt−1 +Bt

recursively during the inner loop, where

Zt =
dθt
dλ

At =
∂θt
∂θt−1

∣∣∣∣
λ

Bt =
∂θt
∂λ

∣∣∣∣
θt−1

so that we can calculate the hypergradients on the final step using

dLval
dλ

=
∂Lval
∂θT

ZT

Each type of hyperparameter needs its own matrix Zt, and therefore its own matrices

At, and Bt. Consider first the derivation of these matrices for the learning rate, namely

λ = α. Recall that the update rule of SGD with momentum and weight decay after

substituting the velocity vt in is

θt = θt−1 − αt

(
βtvt−1 +

∂Ltrain
∂θt−1

+ ξtθt−1

)

and therefore it follows directly that
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Aα
t = 1− αt

(
∂2Ltrain
∂θ2

t−1

+ ξt1

)

The calculation of Bα
t is a bit more involved in our work because when using mo-

mentum, vt−1 is now itself a function of α. First we write

Bα
t = −βt

(
∂αt

∂α
vt−1 + αt

∂vt−1

∂α

)
− ∂αt

∂α

(
∂Ltrain
∂θt−1

+ ξtθt−1

)
= −βtαt

∂vt−1

∂α
− δ⊗t

(
βtvt−1 +

∂Ltrain
∂θt−1

+ ξtθt−1

)

Now since

vt = βtvt−1 +
∂Ltrain
θt−1

+ ξtθt−1

we can write the partial derivative of the velocity as an another recursive rule:

Cα
t =

∂vt
∂α

= βtC
α
t−1 +

∂2Ltrain
∂α∂θt−1

+ ξt
∂θt−1

∂α

= βtC
α
t−1 +

(
ξt1+

∂2Ltrain
∂θ2

t−1

)
∂θt−1

∂α

And putting all together recovers the system:



Aα
t = 1− αt

(
∂2Ltrain
∂θ2

t−1

+ ξt1

)
Bα

t = −βtαtC
α
t−1 − δ⊗t

(
βtvt−1 +

∂Ltrain
∂θt−1

+ ξtθt−1

)
Cα

t = βtC
α
t−1 +

(
ξt1+

∂2Ltrain
∂θ2

t−1

)
Zα

t−1

For learning the momentum and weight decay, a very similar approach yields
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Aβ
t = 1− αt

(
∂2Ltrain
∂θ2

t−1

+ ξt1

)
Bβ

t = −βtαtC
β
t−1 − δ⊗t (αtvt−1)

Cβ
t = δ⊗t (vt) + βtC

β
t−1 +

(
ξt1+

∂2Ltrain
∂θ2

t−1

)
Zβ

t−1

and



Aξ
t = 1− αt

(
∂2Ltrain
∂θ2

t−1

+ ξt1

)
Bξ

t = −βtαtC
ξ
t−1 − δ⊗t (αtθt−1)

Cξ
t = δ⊗t (θt−1) + βtC

ξ
t−1 +

(
ξt1+

∂2Ltrain
∂θ2

t−1

)
Zξ

t−1

Appendix B: Theorem 4.5.1 Proof

Preamble Consider that each time step t ∈ {1, 2, ..., T} has a corresponding hyper-

parameter λt and hypergradient gt = ∂Lval(θT )/∂λt. Each gt is viewed as a random

variable due to the sampling process of the weight initialization θ0 and the inner loop

minibatch selection. Assume that g = [g1, g2, . . . , gT ] is sufficiently well approximated

by a Gaussian distribution, where g ∼ N (µ,Σ), with mean µ = [µ1, µ2, ..., µT ] and

covariance matrix Σ. Assume that the values of µ can be written as the ϵ-Lipschitz

function µt+1 = µt+ϵt, where ϵt ∈ [−ϵ, ϵ]. Note that in general, the gradients at different

time steps may be correlated. Let the magnitude of the correlation be bounded by

c ∈ [0, 1]:

|Σtt′ |√
ΣttΣt′t′

≤ c ∀ t ̸= t′ (4.8)

Let W define the size of a non-overlapping window over which hypergradients are

averaged. This produces K windows, where each window k ∈ {1, 2, ...,K} contains

the time steps S(k) i.e. S(1) = {1, 2, . . .W}, S(2) = {W + 1,W + 2, . . . 2W}, etc. For

simplicity of analysis 1 we assume the chosen window sizes are divisors of T such that

1. This assumption is unnecessary and can be relaxed but would result in a more cumbersome theorem
statement, as the final window of size < W would need to be considered.
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K = T/W . Sharing hyperparameters over W contiguous time steps amounts to using

the average hypergradient ḡ(k) for each step in that window, where

ḡ(k) :=
1

W

∑
t∈S(k)

gt (4.9)

We can now consider the mean squared error across all time steps when averaging

contiguous hypergradients in non-overlapping windows of size W :

MSEW =
1

K

∑
k

1

W

∑
t∈S(k)

E

[(
ḡ(k) − µt

)2]
(4.10)

where all expectations in our proof are over g ∼ N (µ,Σ). Note the case MSE1 gives

the standard case where no averaging occurs (K = T ).

Theorem Then

MSE1 =
1

T

∑
t

Σtt (4.11)

MSEW ≤
(1 + c(W − 1))

W
MSE1 + ϵ2

(W 2 − 1)

12
(4.12)

Proof The case for MSE1 follows trivially from the definition of variance:

MSE1 =
1

T

∑
t

E[(gt − µt)
2] =

1

T

∑
t

Σtt (4.13)

and so the mean squared error is the average of the variances. We now focus on the

W > 1 case. Consider a window enumerated by k, and the vector of gradients within

that window g(k) = (gt|t ∈ S(k)). Under the Gaussian assumption, that vector is

Gaussian distributed with covariance Σ(k), which is a block of the covariance matrix Σ

corresponding to the variables in g(k). Let µ̄(k) = (1/W )
∑

t∈S(k) µt be the average of

means in window k. We consider the mean squared error from window k as :
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MSE(k) =
1

W

∑
t∈S(k)

E

[(
ḡ(k) − µt

)2]
(4.14)

=
1

W

∑
t∈S(k)

E

[(
ḡ(k) − µ̄(k)

)2
+
(
µt − µ̄(k)

)2
− 2

(
ḡ(k) − µ̄(k)

)(
µt − µ̄(k)

)]
(4.15)

= E

[(
ḡ(k) − µ̄(k)

)2]
+

1

W

∑
t∈S(k)

(
µt − µ̄(k)

)2
(4.16)

Now ḡ(k) = (1/W )1Tg(k), and µ̄(k) = (1/W )1Tµ(k), and so ḡ(k)−µ̄(k) = (1/W )1T (g(k)−

µ(k)). Hence

E

[(
ḡ(k) − µ̄(k)

)2]
=

1

W 2
E

[
1T
(
g(k) − µ(k)

)(
g(k) − µ(k)

)T
1

]
(4.17)

=
1

W 2
1TΣ(k)1 (4.18)

Now let D be the diagonal matrix of variances, i.e. Dii = Σ
(k)
ii ∀i and Dij =

0 ∀i ̸= j. We use the correlation bound (Eq. (4.8)), which can be written as |Σ(k)
ij | <

c
[
D

1
211TD

1
2

]
ij
∀i ̸= j, and this allows us to write an upper bound for the expression

above:

E
[
(ḡ(k) − µ̄(k))2

]
≤ 1

W 2
1T [(1− c)D + cD

1
211TD

1
2 ]1 (4.19)

=
(1− c)

W 2

∑
i

Dii + c

[
1

W
1TD

1
21

] [
1

W
1TD

1
21

]
(4.20)

=
(1− c)

W 2

∑
i

Dii + c

[
1

W

∑
i

√
Dii

]2
(4.21)

=
(1− c)

W 2

∑
i

Σ
(k)
ii + c

[
1

W

∑
i

√
Σ

(k)
ii

]2
(4.22)
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This expression can be simplified further using Jensen’s inequality for square roots:

E
[
(ḡk − µ̄k)

2
]
≤ (1− c)

W 2

∑
i

Σ
(k)
ii +

cW

W 2

∑
i

Σ
(k)
ii (4.23)

=
1 + c(W − 1)

W 2

∑
i

Σ
(k)
ii (4.24)

Now we return to the second part of (Eq. (4.16)). This second term can be bounded

using the Lipschitz constraints. In particular for window size W , the maximum error is

given when there is maximum deviation from the mean, which occurs when µt = µt−1+

ϵ. If we write the first mean in window k as µ
(k)
1 we have µt = µ

(k)
1 +(t−1)ϵ ∀t ∈ S(k) and

in that case µ̄(k) = 1
W (µ

(k)
1 +(µ

(k)
1 +ϵ)+(µ

(k)
1 +2ϵ)+. . .+(µ

(k)
1 +(W−1)ϵ) = µ

(k)
1 + (W−1)ϵ

2

and so µt− µ̄k = (t− 1)ϵ+ (W−1)ϵ
2 . Note that this quantity is the same for all windows

k. We can use it to write an upper bound as follows:

1

W

∑
t∈S(k)

(
µt − µ̄(k)

)2
≤ 1

W

W∑
j=1

ϵ2
(
(j − 1)− W − 1

2

)2

(4.25)

=
ϵ2

W

W−1∑
j=0

(
j − W − 1

2

)2

(4.26)

=
ϵ2

W

W−1∑
j=0

j2 − (W − 1)j +
(W − 1)2

4
(4.27)

=
ϵ2

W

(
W (W − 1)(2W − 1)

6
− (W − 1)

W (W − 1)

2
+

W (W − 1)2

4

)
(4.28)

= ϵ2
(W 2 − 1)

12
(4.29)

Hence combining (Eq. (4.24)) and (Eq. (4.29)) together into (Eq. (4.16)) we have

MSE(k) ≤ 1 + c(W − 1)

W 2

∑
i

Σ
(k)
ii + ϵ2

(W 2 − 1)

12
(4.30)

and so incorporating it into (Eq. (4.10)) we get
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MSEW =
1

K

K∑
k=1

MSE(k) (4.31)

≤ W

T

K∑
k=1

(
(1 + c(W − 1))

W 2

∑
i

Σ
(k)
ii + ϵ2

(W 2 − 1)

12

)
(4.32)

=
(1 + c(W − 1))

WT

∑
i

Σii + ϵ2
(W 2 − 1)

12
(4.33)

=
(1 + c(W − 1))

W
MSE1 + ϵ2

(W 2 − 1)

12
□

For sufficiently small ϵ and c we have with certainty, MSEW < MSE1 for some W > 1.

Discussion We assume that means µ can be written as the ϵ-Lipschitz function µt+1 =

µt + ϵt, where ϵt ∈ [−ϵ, ϵ] . Generally speaking, contiguous hyperparameters have

optimal values which are close, and therefore have close hypergradients during outer

optimization. This assumption breaks if hyperparameters are initialized randomly, and

so we initialize all of our hyperparameters to zero in our experiments. Ideally, we would

solve for whole inner loop several times so that we can use the mean hypergradient

[µ0, µ1, ..., µH ] for each individual step, without doing any sharing. While we consider

this to be the optimal hypergradients, this is too expensive in practice, and instead

we consider averaging hypergradients from neighbouring inner steps. The result above

indicates that when contiguous hypergradients are sufficiently de-correlated (small c),

we can reduce the mean squared error by a factor W compared to not averaging.

However, if means µt drift over time by an amount ϵt ≤ ϵ this introduces some bias

which increases the error and eventually results in MSEW > MSE1.

Finally, it is worth considering the simpler scenario when each hypergradient is con-

sidered to be drawn independently, i.e. g ∼ N (µ, σ21). In that case, c = 0 and the

mean squared errors become:

MSE1 = σ2 (4.34)

MSEW ≤
MSE1

W
+ ϵ2

(W 2 − 1)

12
(4.35)
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Figure 4.5: Several µt profiles and their corresponding mean squared error when sharing
over W contiguous steps, as a function of W . The blue and yellow curve correspond to
the maximal and minimal drifts scenarios respectively.

Visualizing the MSE for various µt profiles. Since the mean squared error depends on

the specific shape of µt, we sample random µt profiles and show how their MSE evolves

as a function of W . This illustrates how tight the upper bound is.

Appendix C: Implementation Details

We use a GeForce RTX 2080 Ti GPU for all experiments. We found that much of the

literature on greedy methods uses the test set as the validation set, which creates a risk

of meta-overfitting to the test set. Instead, we always carve out a validation set from

our training set.

Figure 1 Here we used very similar settings as Figure 4 for FDS, except we learned 7

learning rates to make the search space a bit more challenging. We use the HyperBanster

HPO package for RS, BO, HB and BOHB. For HB and BOHB, the minimum budget

argument is set to 1 epoch to allow for lots of fast evaluations, and the maximum

budget is set to 50 epochs. We also use this technique to bring down our convergence

time from ∼ 10 hours to ∼ 3 hours, namely we calculate hypergradients based on 10

epochs for some outer steps, rather than calculate all hypergradients on 50 epochs.

Since HD needs the user to specify initial hyperparameter values, we random search

over those for several consecutive HD runs.
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Figure 2 We calculate the hypergradient with respect to some learning rate schedule

over 100 seeds, where each seed corresponds to a different training set ordering and

network initialization. The learning rate schedule is fixed, and initialized to be a cosine

decay over the full 250 batches, starting at 0.01. The batch size is set to 128, and 1000

fixed images are used for the validation data.

Figure 3 Here we used a batch size of 128 for both datasets to allow 1 epoch worth of

inner optimization in about 500 inner steps. Clipping was restricted to ±3 to show the

effect of noisy hypergradients more clearly. Since MNIST and SVHN are cheap datasets

to run on a LeNet architecture, we can afford 50 outer steps and early stopping based

on validation accuracy. All learning rates were initialized to zero.

Figure 4 We learn 5 values for the learning rates, 1 for the momentum and 1 for the

weight decay, to make it comparable to the hyperparameters used in the literature for

CIFAR-10. A batch size 256 is used, with 5% of the training set of each epoch set

aside for validation. We found larger validation sizes not to be helpful. Hypergradient

descent uses hyperparameters initialized at zero as well, and trains all hyperparameters

online with an SGD outer optimizer with learning rate 0.2 and ±1 clipping of the

hypergradients. As described in appendix G, we used a sign based outer optimizer

with adaptive step sizes rather than some hand-tuned outer learning rate schedule. We

used initial values γα = 0.1, γβ = 0.15 and γξ = 4 × 10−4 but the performance barely

changed when these values were multiplied or divided by 2. Since we take 10 outer steps

and initialize all hyperparameters at zero, this defines a search ranges: α ∈ [−1, 1],

β ∈ [−1.5, 1.5], and γ ∈ [−4 × 10−3, 4 × 10−3]. The Hessian matrix product is clipped

to ±10 to prevent one batch from having a dominating contribution to hypergradients.
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Appendix D: Other hypergradient examples

Fig. 4.1 depends on the value of α at which hypergradients are calculated. For some

learning rate schedules, contiguous hypergradients are sampled from closer distribution

(ϵ small) and so sharing over larger windows is beneficial, as shown in the figure below.
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Figure 4.6: Similar to Fig. 4.1 but for a smaller ϵ. We can see that averaging
hypergradients helps even more.

Appendix E: Hypergradients

Here we provide the raw hypergradients corresponding to the outer optimization shown

in Appendices: Figure 1. Note that the range of these hypergradients is made reasonable

by the averaging of gradients coming from contiguous hyperparameters.
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Figure 4.7: Hypergradients have a reasonable range but fail to always converge to zero
when the validation performance stops improving.
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Appendix F: Baselines

The objective here is to select the best hyperparameter setting that a deep learning

practitioner would reasonably be expected to use in our experimental setting, based on

the hyperparameters used by the community for the datasets at hand. For CIFAR-10,

the most common hyperparameter setting is the following: α is initialized at α0 = 0.2

(for batch size 256, as used in our experiments) and decayed by a factor η = 0.2 at

30%, 60% and 80% of the run (MultiStep in Pytorch); the momentum β is constant

at 0.9, and the weight decay ξ is constant at 5 × 10−4. We search for combinations of

hyperparameters around this setting. More specifically, we search over all combinations

of α0 = {0.05, 0.1, 0.2, 0.4, 0.6}, η = {0.1, 0.2, 0.4}, β = {0.45, 0.9, 0.99}, and ξ = {2.5×

10−4, 5× 10−4, 1× 10−3}. This makes up a total of 135 hyperparameter settings, which

we each run 3 times to get a mean and standard deviation. The distribution of those

means are provided in Fig. 4.8, and the best hyperparameter setting is picked based

on validation performance, which corresponds to 89.2± 0.2%. Preliminary experiments

showed that using schedules for the momentum and weight decay did not improve test

accuracy.
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Appendix G: Using Hypergradient Signs

While hyperparameter sharing produces stable hypergradients with a reasonable range

(see Appendix E), tuning the outer learning rate schedule can be tedious and unin-

tuitive, and doesn’t allow the user to specify a range to search hyperparameters over.

A simple and fairly common learning rate schedule consists in decaying the learning

rate (e.g. by a factor of 2) every time the gradient changes sign (Jacobs, 1988). The

idea of using the sign of gradients to improve the efficiency of gradient descent dates

back to the RPROP optimizer (Riedmiller and Braun, 1993). More recently, gradient

signs have also been used to improve efficiency in the context of distributed learning

(Bernstein et al., 2018), which has led to the discovery of robust convergence properties

of sign-based SGD even in the case of biased gradients (Safaryan and Richtárik, 2019).

Using such a learning rate schedule for the outer optimizer frees us from having to tune

the outer learning rate, but fails to define a search range for HPO. We can achieve
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this by updating each hyperparameter by an amount sgn(g)× γ, and letting γ ← γ/2

when the hypergradient g changes sign across 2 consecutive outer steps. This allows for

convergence after hypergradients have changed signs a few times. Being able to define

the range of hyperparameter search more explicitly is especially useful to compare FDS

to other HPO algorithms which also use a fixed search range (Sec. 4.6.4).



Chapter 5

Recurrence without Recurrence:

Stable Video Landmark Detection

with Deep Equilibrium Models

This chapter is about my paper “Recurrence without Recurrence: Stable Video Land-

mark Detection with Deep Equilibrium Models”, which is currently under review. The

background information needed to understand this chapter is already given in Sec. 2.4.2.

Basic knowledge of landmark detection is assumed.

5.1 Introduction

The field of facial landmark detection has been fueled by important applications such as

face recognition (Masi et al., 2018; Wang and Deng, 2018), facial expression recognition

(Li and Deng, 2020; Jung et al., 2015; Kim et al., 2017; Yan et al., 2016; Hasani and

Mahoor, 2017), and face alignment (Zhu et al., 2015; R et al., 2015; Zhang et al.,

2013). Typically, facial landmarks are considered a valuable summary statistics of

the image because of their compactness and robustness to natural image variations.

Early approaches to landmark detection relied on a statistical model of the global

face appearance and shape (Edwards et al., 1998; Cootes et al., 2001; Cristinacce and

Cootes, 2006), but this was then superseded by deep learning regression models (Wu

et al., 2018a; Feng et al., 2018; Xia et al., 2022). Both traditional and modern approaches

have relied upon cascaded computation, an approach which starts with an initial guess

of the landmarks and iteratively produces corrected landmarks which match the input

90
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face more finely. These iterations typically increase the training memory cost linearly,

and do not have an obvious stopping criteria. To solve these issues, we adapt the recently

proposed Deep Equilibrium Model (Bai et al., 2019; Bai et al., 2020; Bai et al., 2021) to

the setting of landmark detection. We show that our Landmark DEQ (LDEQ) achieves

state-of-the-art performance on the WFLW dataset, while enjoying a constant memory

with the number of cascaded iterations, and a natural stopping criteria.

Furthermore, we explore the benefits of DEQs in landmark detection from facial videos.

Since obtaining landmark annotation for videos is notoriously expensive, models are

virtually always trained on still images and applied frame-wise on videos at inference

time. When a sequence of frames have ambiguous landmarks (e.g ., occluded faces or

motion blur), it often leads to flickering landmarks, which rapidly oscillate between

different possible configurations across consecutive frames. This poor temporal coher-

ence is particularly problematic in applications where high precision is required, which

is typically the case for facial landmarks. These applications include face transforms

(MediaPipe, 2020; MediaPipe, 2021), face reenactment (Zhang et al., 2019), video

emotion recognition (Jung et al., 2015; Kim et al., 2017; Yan et al., 2016; Hasani and

Mahoor, 2017), movie dubbing (Garrido et al., 2015) or tiredness monitoring (Jabbar

et al., 2020). Since DEQs solve a root finding problem in the forward pass, we propose

to modify their objective at inference time to include a new recurrent loss term that

encourages temporal coherence. We measure this improvement on our new WFLW-

Video dataset (WFLW-V), demonstrating superiority over traditional filters, which

typically reduce flickering at the cost of reducing landmark accuracy.

5.2 Related work

Deep Equilibrium Models (Bai et al., 2019) are part of the family of implicit models,

which learn implicit functions such as the solution to an ODE (Chen et al., 2018; Dupont

et al., 2019), or the solution to an optimization problem (Amos and Kolter, 2017;

Djolonga and Krause, 2017; Wang et al., 2019a). These functions are called implicit
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Figure 5.1: (a) Common Stacked-Hourglass cascaded architecture (Newell et al.,
2016), whereby each refining stage increases the memory cost and the number of
backpropagation operations. (b) Our LDEQ model, which adapts an equilibrium model
(Bai et al., 2019) to the landmark detection setting, enjoys a constant memory cost as we
increase the number of refining stages. At each stage, we compute landmark probability
heatmaps, and encourage convergence to an equilibrium by lowering their entropy.

in the sense that the output cannot be written as a function of the input explicitly.

In the case of DEQs, the output is the root of a function, and the model learned is

agnostic to the root solver used. Early DEQ models were too slow to be competitive, and

much work since has focused on better architecture design (Bai et al., 2020) and faster

root solving (Bai et al., 2021; Fung et al., 2021; Geng et al., 2021). Since the vanilla

formulation of DEQs does not guarantee convergence or uniqueness of an equilibrium,

another branch of research has focused on providing convergence guarantees (Winston

and Kolter, 2020; Revay et al., 2020; Pabbaraju et al., 2021a), which usually comes at

the cost of a performance drop. Most similar to our work is the recent use of DEQs for

videos in the context of optical flow estimation (Bai et al., 2022), where slightly better

performance than LSTM-based models was observed.

A common theme throughout the development of landmark detection models has been

the idea of cascaded compute, which has repeatedly enjoyed a better performance

compared to single stage models (Wang and Deng, 2018). This is true in traditional

models like Cascaded Pose Regression (CPR) (Dollár et al., 2010; Cao et al., 2012;

Xiong and De la Torre, 2013; Sun et al., 2013; Asthana et al., 2014), but also in most
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modern landmark detection models (Yang et al., 2017; Wu et al., 2018a; Wan et al.,

2021; Kumar et al., 2020; Wang et al., 2019b; Huang et al., 2021; Lan et al., 2021),

which usually rely on the Stacked-Hourglass backbone (Newell et al., 2016), or an RNN

structure (Trigeorgis et al., 2016; Lai et al., 2018). In contrast to these methods, our

DEQ-based model can directly solve for an infinite number of refinement stages at a

constant memory cost and without gradient degradation. This is done by relying on

the implicit function theorem (Krantz and Parks, 2003), as opposed to tracking each

forward operation in autograd. Furthermore, our model naturally supports adaptive

compute, in the sense that the number of cascaded stages will be determined by how

hard finding an equilibrium is for a specific input, while the number of stages in, say,

the Stacked-Hourglass backbone, must be constant at all times.

Our recurrence without recurrence approach is most closely related to test time adap-

tion methods. These have been most commonly developed in the context of domain

adaptation (Sun et al., 2020; Wang et al., 2021), reinforcement learning (Hansen et al.,

2021), meta-learning (Zhang et al., 2021b), generative models (Jiang et al., 2021; Mu

et al., 2021), pose estimation (Li et al., 2021) or super resolution (Assaf Shocher, 2018).

Typically, the methods above finetune a trained model at test time using a form of self-

supervision. In contrast, our model doesn’t need to be fine-tuned at test time: since

DEQs solve for an objective function in the forward pass, this objective is simply

modified at test time.

5.3 DEQs for landmark detection

Consider learning a landmark detection model F parameterized by θ, which maps an

input image x to landmarks z. Instead of directly having z as 2D landmarks, it is

common for z to represent L heatmaps of size D × D, where D is a hyperparameter

(usually 64) and L is the number of landmarks to learn. While typical machine learning

models can explicitly write down the function z = F (x;θ), in the DEQ approach this

function is expressed implicitly by requiring its output to be a fixed point of another
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function f(z,x;θ):

F : x→ z∗ s.t. z∗ = f(z∗,x;θ) (5.1)

where z∗ denotes the fixed point, or equivalently the root of g(x, z;θ) = f(z,x;θ) −

z. The function f must have inputs and outputs of similar shape, but beyond this

restriction there is still limited understanding of its desired properties in machine

learning. For simplicity, we build f from the ubiquitous hourglass module h (similar to

a Unet):

f(z,x;θ) = σ(h([x, z];θ)) (5.2)

where h inputs the concatenation of x and z, and σ is a normalization function. For

clarity, we omit from our notation that image x is downsampled with a few convolutions

to match the shape of z.

To evaluate f in the forward pass, we must solve for its fixed point z∗. When f is a

contraction mapping, f ◦ f ◦ f ◦ · · · ◦ f(z(0)) converges to a unique z∗ for any initial

heatmap z(0). In practice, it is neither tractable or helpful to directly take an infinite

number of fixed point iteration steps. Instead, it is common to achieve the same result by

leveraging quasi Newtonian solvers like Broyden’s method (Broyden, 1965) or Anderson

acceleration (Anderson, 1965), which find z∗ in fewer iterations. Similarly to the original

DEQ model, we use z(0) = 0 when training our LDEQ on still images.

Guaranteeing the existence of a unique fixed point by enforcing contraction restrictions

on f is cumbersome, and better performance can often be obtained by relying on reg-

ularization heuristics that are conducive to convergence, such as weight normalization

and variational dropout (Bai et al., 2020). In our landmark model, we did not find these

tricks helpful, and instead used a simple normalization of the heatmaps to [0, 1] at each

refining stage:

σ(z) = exp

(
z −max(z)

T

)
(5.3)

where T is a temperature hyperparameter. This layer also acts as an entropy regu-

larizer, since it induces low-entropy (“peaked”) heatmaps, which we found to improve

convergence of root solvers.
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We contrast our model in Fig. 5.1 to the popular Stacked-Hourglass backbone (Newell

et al., 2016). Contrary to this model, our DEQ-based model uses a single hourglass

module which updates z until an equilibrium is found. The last predicted heatmaps,

z∗, are converted into 2D landmark points p̂ = Φ(z∗) using the softargmax function

Φ(z) proposed in (Luvizon et al., 2017). These points are trained to match the ground

truth p, and so the DEQ landmark training problem can be seen as a constrained

optimization:

θ∗ = argmin
θ

LMSE (Φ(z∗),p)

s.t. z∗ = f(z∗,x;θ)

(5.4)

To differentiate our loss function LMSE through this root solving process, the implicit

function theorem is used (Bai et al., 2019) to derive

∂LMSE

∂θ
= −∂LMSE

∂z∗ J
−1
gz∗

∂f(z∗,x;θ)

∂θ
(5.5)

where the first two terms on the RHS can be expressed as the solution to a fixed point

problem as well. Solving for this root in the backward pass means that we do not

need to compute or store the expensive inverse Jacobian term J −1
gz∗ directly (Bai et al.,

2019; Zico Kolter, 2019). Importantly, this backward-pass computation only depends

on z∗ and doesn’t depend on the operations done in the forward pass to reach an

equilibrium. This means that these operations do not need to be tracked by autograd,

and therefore that training requires a memory cost of O(1), despite differentiating

through a potentially infinite recurrence.

5.4 Recurrence without recurrence

Low temporal coherence (i.e. a large amount of flicker) is illustrated in Fig. 5.2. This

can be a nuisance for many applications that require consistently precise landmarks for

video. In this section, we describe how our LDEQ model can address this challenge by

enabling recurrence at test time without recurrence at training time (RwR).
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Figure 5.2: Model predictions (▲) and ground truth landmarks (•) for (a) a model
with high temporal coherence and (b) a model with the same accuracy but exhibiting a
worse temporal coherence, due to ambiguity at the chin. This causes flickering around
the ground truth, as illustrated in the landmark trajectory (right). This flickering is
common when video frames are evaluated individually, as opposed to recurrently.

Recall that in the DEQ formulation of Sec. 5.3, there is no guarantee that a unique

fixed point solution exists. This can be a limitation for some applications, and DEQ

variants have been proposed to allow provably unique solutions at the cost of additional

model complexity (Winston and Kolter, 2020; Pabbaraju et al., 2021b). In this work,

we instead propose a new paradigm: we leverage the potentially large solution space of

DEQs after training to allow for some additional objective at inference time. This new

objective is used to disambiguate which fixed point of f(z,x;θ∗) is found, in light of

extra information present at test time. We demonstrate this approach for the specific

application of training a landmark model on face images and evaluating it on videos.

In this case, DEQs allow us to include a recurrent loss term at inference time, which

isn’t achievable with conventional architectures.

Let f(z,x;θ∗) be our DEQ model trained as per the formulation in Eq. (5.4). We would

now like to do inference on a video of N frames x1,x2, · · · ,xN . Consider that a given

frame xn has a corresponding set of fixed points Z∗
n = {z s.t. f(z,xn;θ

∗) = z},

representing plausible landmark heatmaps. If we select some z∗
n ∈ Z∗

n at random for

each frame n, the corresponding heatmaps z∗
1 , z

∗
2 , · · · , z∗

N often exhibit some flickering

artefacts, whereby landmarks rapidly change across contiguous frames (see Fig. 5.2).
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We propose to address this issue by choosing the fixed point at frame n that is closest

to the fixed point at frame n − 1. This can be expressed by the following constrained

optimization:

z∗
n = argmin

z

∥∥z − z∗
n−1

∥∥2
2

(5.6a)

s.t. f(z,xn;θ
∗) = z (5.6b)

The problem above is equivalent to solving for the saddle point of a Lagrangian as

follows:

min
z

max
λ

∥∥z − z∗
n−1

∥∥2
2
+ λT (f(z,xn;θ

∗)− z) (5.7)

where λ are Lagrange multipliers. Effectively, we are using the set of fixed points Z∗
n

in Eq. (5.6b) as the trust region for the objective in Eq. (5.6a). In practice, adversarial

optimization is notoriously unstable, as is typically observed in the context of GANs

(Goodfellow et al., 2014; Arjovsky et al., 2017; Srivastava et al., 2017). Furthermore,

this objective breaks down if Z∗
n = ∅ for any xn. We can remedy both of these problems

by relaxing the inference time optimization problem to:

min
z
∥f(z,xn;θ

∗)− z∥22 +
α

2

∥∥z − z∗
n−1

∥∥2
2

(5.8)

where α is a hyperparameter that trades off fixed-point solver error vs. the shift in

heatmaps across two consecutive frames. This objective can be more readily tackled

with Newtonian optimizers like L-BFGS (Liu and Nocedal, 1989). When doing so, our

DEQ at inference time can be described as a form of OptNet (Amos and Kolter, 2017),

albeit without any of the practical limitations (e.g ., quadratic programs) related to

making gradient calculations cheap.
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Figure 5.3: Recurrence without recurrence (RwR) on video data, from an LDEQ that

was trained on still images. We use the initialization z
(0)
1 = 0 for the first frame, and

then reuse z
(0)
n = z∗

n−1 for n > 1. Combined with early stopping, this is equivalent
to regularizing the fixed point zn so that it is more temporally coherent with all its
predecessors.

Converting our root solving problem into an optimization problem during the forward

pass of each frame can significantly increases inference time. Thankfully, the objective

in Eq. (5.8) can also be solved by using root solvers. First, note that it is equivalent to

finding the MAP estimate given a log likelihood and prior:

log p(xn|z;θ∗) ∝ −∥f(z,xn;θ
∗)− z∥22 (5.9a)

p(z) = N (z; zn−1, α
−11) (5.9b)

It has been demonstrated in various settings that this prior, when centered on the

initialization to a search algorithm, can be implemented by early stopping this algorithm

(Sjöberg and Ljung, 1992; Bishop, 1995; Santos, 1996; Grant et al., 2018). As such, we

can approximate the solution to Eq. (5.6a-5.6b) by simply initializing the root solver

with z
(0)
n = z∗

n−1 (“reuse”) and imposing a hard limit on the number of steps that it can

take (“early stopping”). We call this approach Recurrence without Recurrence (RwR),

and illustrate it in Fig. 5.3.
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5.5 Video landmark coherence

In this section we describe the metric (NMF) and the dataset (WFLW-V) that we

contribute to measure the amount of temporal coherence in landmark videos. These are

later used to benchmark the performance of our RwR paradigm against alternatives in

Sec. 5.6.2.

5.5.1 NMF: a metric to track temporal coherence

The performance of a landmark detection model is typically measured with a single

metric called the Normalized Mean Error (NME). Consider a video sequence of N

frames, each containing L ground truth landmarks. A single landmark point is a 2D

vector denoted pn,l ∈ R2, where n and l are the frame and landmark index respectively.

Let rn,l = pn,l − p̂n,l be the residual vector between ground truth landmarks and

predicted landmarks p̂n,l. The NME simply averages the ℓ2 norm of this residual across

all landmarks and all frames:

NMEn =
1

L

L∑
l=1

∥rn,l∥
d0

(5.10a)

NME =
1

N

N∑
n=1

NMEn (5.10b)

Here d0 is usually the inter-ocular distance, and aims to make the NME better correlate

with the human perception of landmark error. We argue that this metric alone is

insufficient to measure the performance of a landmark detector in videos. In Fig. 5.2

we show two models of equal NME but different coherence in time, with one model

exhibiting flickering between plausible hypotheses when uncertain. This flickering is a

nuisance for many applications, and yet is not captured by the NME. This is in contrast

to random noise (jitter) which is unstructured and already reflected in the NME metric.
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To measure temporal coherence, we propose a new metric called the Normalized Mean

Flicker (NMF). We design this metric to be orthogonal to the NME, by making it

agnostic to the magnitude of rn,l, and only focusing on the change of rn,l across

consecutive frames:

NMFn =

√√√√ 1

L

L∑
l=1

∥rn,l − rn−1,l∥2
d21

(5.11a)

NMF =

√√√√ 1

N

F∑
n=2

NMF2
n (5.11b)

We replace the means in the NME with a root mean square to better represent the

human perception of flicker. Indeed, this penalizes a short sudden changes in rn,l

compared to the same change smoothed out in time and space. The value d21 is chosen

to be the face area. This prevents a long term issue with the NME score, namely the

fact that large poses can have an artificially large NME due to having a small d0.

5.5.2 A new landmark video dataset: WFLW-V

Figure 5.4: Example of ground truth labels (•) obtained semi-automatically from an
ensemble of 45 models (▲). Ensembling these diverse models provides ground truth
labels that do not flicker and can thus be used to measure flickering against. Note how
landmark points with the most uncertainty are the most prone to having flickering
predictions across consecutive frames.
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Due to the tedious nature of producing landmark annotations for video data, there are

few existing datasets for face landmark detection in videos. Shen et al. have proposed

300-VW (Shen et al., 2015), a dataset made up of ∼ 100 videos using the 68-point

landmark scheme from the 300-W dataset (Sagonas et al., 2013). Unfortunately, two

major issues make this dataset unpopular: 1) it was labelled using fairly weak models

from (Chrysos et al., 2015) and (Tzimiropoulos, 2015) which results in many labelling

errors and high flicker (see Appendix B), and 2) it only contains 100 videos of little

diversity, many of which being from the same speaker, or from different speakers in

the same environment. Taken together, these two issues mean that the performance

of modern models on 300-WV barely correlates with performance on real-world face

videos.

We propose a new video dataset for facial landmarks: WFLW-Video (WFLW-V). It

consists of 1000 Youtube creative-commons videos (i.e., an order of magnitude more

than its predecessor) and covers a wide range of people, expressions, poses, activities and

background environments. Each video is 5s in length. These videos were collected by tar-

geting challenging faces, where ground truth landmarks are subject to uncertainty. The

dataset contains two subsets, hard and easy, made up of 500 videos each. This allows

debugging temporal filters and smoothing techniques, whose optimal hyperparameters

are often different for videos with little or a lot of flicker. This split was obtained by

scraping 2000 videos, and selecting the top and bottom 500 videos based on the variance

of predictions in the ensemble. To evaluate a landmark model on the WFLW-V dataset,

we train it on the WFLW training set, and evaluate it on all WFLW-V videos. This

pipeline best reflects the way large landmark models are trained in the industry, where

labelled video data is scarce.

Contrary to the 68-landmark scheme of the 300-VW dataset, we label videos semi-

automatically using the more challenging 98-landmark scheme from the WFLW dataset

(Wu et al., 2018a), as it is considered the most relevant dataset for future research in

face landmark detection (Khabarlak and Koriashkina, 2022). To produce ground truth

labels, we train an ensemble of 45 state-of-the-art models using a wide range of data
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Method Params (M) Full Large poses Expressions Illumination Makeup Occlusion Blur

LAB (Wu et al., 2018a) CVPR 12.3 5.27 10.24 5.51 5.23 5.15 6.79 6.32
Wing (Feng et al., 2018) CVPR 25 4.99 8.43 5.21 4.88 5.26 6.21 5.81
MHHN (Wan et al., 2021) TIP - 4.77 9.31 4.79 4.72 4.59 6.17 5.82
DecaFA (Dapogny et al., 2019) ICCV 10 4.62 8.11 4.65 4.41 4.63 5.74 5.38
HRNet (Sun et al., 2019) TPAMI 9.7 4.60 7.94 4.85 4.55 4.29 5.44 5.42
AS (Qian et al., 2019) ICCV 35 4.39 8.42 4.68 4.24 4.37 5.60 4.86
LUVLI (Kumar et al., 2020) CVPR - 4.37 7.56 4.77 4.30 4.33 5.29 4.94
AWing (Wang et al., 2019b) ICCV 24.2 4.36 7.38 4.58 4.32 4.27 5.19 4.96
SDFL (Lin et al., 2021) TIP - 4.35 7.42 4.63 4.29 4.22 5.19 5.08
SDL (Li et al., 2020b) ECCV - 4.21 7.36 4.49 4.12 4.05 4.98 4.82
ADNet (Huang et al., 2021) ICCV 13.4 4.14 6.96 4.38 4.09 4.05 5.06 4.79
SLPT (Xia et al., 2022) CVPR 19.5 4.12 6.99 4.37 4.02 4.03 5.01 4.79
HIH (Lan et al., 2021) - 22.7 4.08 6.87 4.06 4.34 3.85 4.85 4.66

LDEQ (ours) - 21.8 3.92 6.86 3.94 4.17 3.75 4.77 4.59

Table 5.1: Performance of our model and previous state-of-the-art on the various WFLW
subsets, using the NME metric (↓) for comparison. Models using pre-training on other
datasets have been excluded for fair comparison (Bulat et al., 2021; Zheng et al., 2021;
Yu and Tao, 2021).

augmentations of both the test and train set of WFLW (amounting to 10,000 images).

We use a mix of large Unets, HRNets (Sun et al., 2019) and HRFormers (Yuan et al.,

2021) to promote landmark diversity. The heatmaps of these models are averaged to

produce the ground truth heatmap, allowing uncertain models to weight less in the

aggregated output. Ensembling models provides temporal coherence without the need

for using hand-tuned filtering or smoothing, which are susceptible to misinterpreting

signal for noise (e.g . closing eye landmarks mimic high frequency noise).

We provide examples of annotated videos in Fig. 5.4. Note that regions of ambiguity,

such as occluded parts of the face, correspond to a higher variance in landmark predic-

tions. While the ground truth for some frames may be subjective (e.g . occluded mouth),

having a temporally stable “best guess” is sufficient to measure flicker of individual

models. We found that 45 models in the ensemble was enough to provide a low error

on the mean for all videos in WFLW-V. While we manually checked that our Oracle

was highly accurate and coherent in time, note that it is completely impractical to use

it for real-world applications due to its computational cost (∼ 2B parameters).

We checked each frame manually for errors, which were rare. When we found an error

in annotation, we corrected it by removing inaccurate models from the ensemble for the

frames affected, rather than re-labeling the frame manually. We found this approach

to be faster and less prone to human subjectivity when dealing with ambiguous faces,
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such as occluded ones. Occlusion has been characterized as one of the main remaining

challenges in modern landmark detection (Wu and Ji, 2019), being most difficult in

video data (Shen et al., 2015). Finally, the stability of our oracle also depends on

the stability of the face bounding box detector. We found the most popular detector,

MTCNN (Zhang et al., 2016) to be too jittery, and instead obtained stable detection

by bootstrapping our oracle landmarks into the detector. More details about scraping

and curating our dataset can be found in Appendix A.

5.6 Experiments

The aim of these experiments is to demonstrate that: 1) LDEQ is a state-of-the-art

landmark detection model for high precision settings like faces, and 2) the LDEQ

objective can be modified at inference time on videos to include a recurrence loss.

This increases temporal coherence without decreasing accuracy, a common pitfall of

popular filters.

Metric Method Full Large poses Expressions Illumination Makeup Occlusion Blur

FR10

LAB 7.56 28.83 6.37 6.73 7.77 13.72 10.74
HRNet 4.64 23.01 3.50 4.72 2.43 8.29 6.34
AS 4.08 18.10 4.46 2.72 4.37 7.74 4.40

LUVLi 3.12 15.95 3.18 2.15 3.40 6.39 3.23
AWing 2.84 13.50 2.23 2.58 2.91 5.98 3.75
SDFL 2.72 12.88 1.59 2.58 2.43 5.71 3.62

(↓) SDL 3.04 15.95 2.86 2.72 1.45 5.29 4.01
ADNet 2.72 12.72 2.15 2.44 1.94 5.79 3.54
SLPT 2.72 11.96 1.59 2.15 1.94 5.70 3.88
HIH 2.60 12.88 1.27 2.43 1.45 5.16 3.10

LDEQ 2.48 12.58 1.59 2.29 1.94 5.36 2.84

AUC10

LAB 0.532 0.235 0.495 0.543 0.539 0.449 0.463
HRNet 0.524 0.251 0.510 0.533 0.545 0.459 0.452
AS 0.591 0.311 0.549 0.609 0.581 0.516 0.551

LUVLi 0.557 0.310 0.549 0.584 0.588 0.505 0.525
AWing 0.572 0.312 0.515 0.578 0.572 0.502 0.512
SDFL 0.576 0.315 0.550 0.585 0.583 0.504 0.515

(↑) SDL 0.589 0.315 0.566 0.595 0.604 0.524 0.533
ADNet 0.602 0.344 0.523 0.580 0.601 0.530 0.548
SLPT 0.596 0.349 0.573 0.603 0.608 0.520 0.537
HIH 0.605 0.358 0.601 0.613 0.618 0.539 0.561

LDEQ 0.624 0.373 0.614 0.631 0.631 0.552 0.574

Table 5.2: AUC10 and FR10 on the WFLW test set.
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Figure 5.5: NME (accuracy) vs NMF (temporal coherence) for various models, on the
hard (left) and easy (right) WFLW-V subsets. We compare our RwR scheme (blue)
to a conventional filter (exponential moving average) using three different smoothing
coefficients (gray). For hard videos susceptible to flicker, RwR on LDEQ decreases
NMF by 12% without increasing NME, contrary to the conventional filter alternative.
For easy videos that contain little to no flicker, conventional filters can increase both
NME and NMF, while our model converges to the same fixed point with or without
RwR. These results are given in tabular form in Appendix C.

5.6.1 Landmark accuracy

We compare the performance of LDEQ to state-of-the-art models on the WFLW dataset

(Wu et al., 2018a), which is based on the WIDER Face dataset (Yang et al., 2016) and

is made up of 7500 train images and 2500 test images. Each image is annotated with

a face bounding box and 98 2D landmarks. Compared to previous datasets, WFLW

uses denser facial landmarks, and introduces much more diversity in poses, expressions,

occlusions and image quality (the test set is further divided into subsets reflecting these

factors). This makes it uniquely appropriate for training landmark detectors meant to

be deployed on real-world data, like the videos of WFLW-V.

The common evaluation metrics for the WFLW test set are the Normalized Mean Error

(see Eq. (5.10b)), the Area Under the Curve (AUC), and the Failure Rate (FR). The

AUC is computed on the cumulative error distribution curve (CED), which plots the

fraction of images with NME less or equal to some cutoff, vs. increasing cutoff values.

We report AUC10, referring to a maximum NME cutoff of 10 for the CED curve. Higher

AUC is better. The FRX metric is equal to the percentage of test images whose NME

is larger than X. We report FR10; lower is better.
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We train our LDEQ for 60 epochs using the pre-cropped WFLW dataset as per (Lan

et al., 2021), and the common data augmentations for face landmarks: rotations, flips,

translations, blurs and occlusions. We found the Anderson and fixed-point-iteration

solvers to work best over the Broyden solver used in the original DEQ model (Bai

et al., 2019; Bai et al., 2020). By setting a normalization temperature of T = 2.5,

convergence to fixed points only takes around 5 solver iterations. The NME, AUC and

FR performance of LDEQ can be found in tables 5.1 and 5.2. We outperform all existing

models on all three evaluation metrics, usually dominating individual subsets as well,

which is important when applying LDEQ to video data.

5.6.2 Landmark temporal coherence

We evaluate the performance of LDEQ on the WFLW-V dataset, for both landmark

accuracy (NME) and temporal coherence (NMF). We use RwR with early stopping

after 2 solver iterations, allowing some adaptive compute (1 solver iteration) in cases

where two consecutive frames are almost identical. Our baselines include previous state-

of-the-art models that have publicly available weights (Lan et al., 2021; Xia et al., 2022;

Lin et al., 2021; Wang et al., 2019b), as well as common architectures of comparable

parameter count, which we trained with our own augmentation pipeline. We apply a

conventional filtering algorithm, the exponential moving average, to our baselines. This

was found to be more robust than more sophisticated filters like Savitzky-Golay filter

(Savitzky and Golay, 1964) and One Euro filter (Casiez et al., 2012).

The NME vs. NMF results are shown in Fig. 5.5 for all models, for the hard and easy

WFLW-V subsets. For videos that contain little uncertainty in landmarks (WFLW-V

easy), there is little flickering and conventional filtering methods can mistakenly smooth

out high frequency signal (e.g . eyes and mouth moving fast). For videos subject to more

flickering (WFLW-hard), these same filtering techniques do indeed improve the NMJ

metric, but beyond a certain smoothing factor this comes at the cost of increasing

the NME. In contrast, LDEQ + RwR correctly smoothes out flicker for WFLW-W
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hard without compromising performance on WFLW-V easy. This improvement comes

from the fact that the RwR loss in Eq. (5.8) contains both a smoothing loss plus a

log likelihood loss that constrains output landmarks to be plausible solutions, while

conventional filters only optimize for the former.

5.7 Conclusion

We adapt Deep Equilibrium Models to landmark detection, and demonstrate that our

LDEQ model can reach state-of-the-art accuracy on the challenging WFLW facial data-

set. We then bring the attention of the landmark community to a common problem in

video applications, whereby landmarks flicker across consecutive frames. We contribute

a new dataset and metric to effectively benchmark solutions to that problem. Since

DEQs solve for an objective in the forward pass, we propose to change this objective

at test time to take into account new information. This new paradigm can be used to

tackle the flickering problem, by adding a recurrent loss term at inference that wasn’t

present at training time (RwR). We show how to solve for this objective cheaply in a way

that leads to state-of-the-art video temporal coherence. We hope that our work brings

attention to the potential of deep equilibrium models for computer vision applications,

and in particular, the ability to add loss terms to the forward pass process, to leverage

new information at inference time.

5.8 Appendices

Appendix A: More details on making our WFLW-V dataset

In this section we detail the procedure used to collect, label and curate the 1000 videos

that make up the WFLW-V dataset.
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Step 1: Video search. We start by producing a list of 100 YouTube search strings, that

we think would be correlated with videos conducive to landmark uncertainty. These

search strings fall within 7 categories: “Skin care & Makeup” (e.g . how to put lipstick),

“Hair & Beard care” (e.g . how to cut your own hair), “Singing & Podcasts” (e.g . how

to setup your mic), “Brass instruments” (e.g . learn to play the French horn”), “Eating”

(e.g . how to eat fast), “Smoking” (e.g . how to smoke the cigar), and “Miscellaneous”

(e.g . how to brush your teeth”). Each English search string is translated to 10 languages,

to produce more diverse videos: French, German, Spanish, Italian, Portuguese, Catalan,

Czech, Danish, Estonian, Dutch.

We use YouTube filters to search for videos less than 4 minutes long, and with a CC

BY licence. This licence is the most permissive creator licence. It allows reusers to

distribute, remix, adapt the video, and even to use it for commercial use. We only

consider videos that have a frame rate between 24 and 31 fps inclusive. This is mostly

to exclude all videos like kid cartoons that have very low fps. In total, this step produces

around 15, 000 videos.

Step 2: Video cleaning. Our task is now to find 5s of contiguous clean face for each video.

A clean face is a real human face, at least 20% visible, from a single person, without

video or camera filters (e.g . face filters, jump cuts). We also limit the number of videos

that come from the same youtuber, so as not to lower diversity. We use the most

popular face detector, the Multi-task Cascaded Convolutional Networks (MTCNN)

(Zhang et al., 2016) to help with video cleaning. In total, this leaves around 2, 000

videos.

Step 3: Video annotation. We use an oracle made up of 45 pretrained models, including

15 large Unets (larger than our LDEQ backbone), 15 HRNets-W48, and 15 HRFormer-

B. We average the final heatmap of each model to create a mean heatmap, from which

we extract our oracle predictions. We found that the bounding box from the MTCNN

model are jittery, which in turns facilitates jitter and flicker for landmarks. To fix

this we bootstrap our oracle to the bounding box detection. This is done by using the

original MTCNN bounding box, finding landmarks, defining a new bounding box based



5.8. Appendices 108

on the smallest/largest landmark coordinates and a scaling margin factor of 1.2, finding

landmarks in this new bounding box, and so on. This is repeated for 3 iterations, after

which the bounding box values have have converged. We use the landmark predictions

on the final bounding box as our oracle predictions.

Step 4: Video verification. We verify each video frame by frame for issues. In some

cases, videos are discarded because the degree of uncertainty or occlusion is too high

that even a “human best guess” wouldn’t be good. This includes videos with very large

poses as well. In other cases, particularly for hard videos, some models in the ensemble

are visibly mistaken. These models are singled out and removed for problematic frames.

These cases are rare (∼ 25) but worth correcting so we don’t bias the dataset by only

including videos where our oracle does best.

Step 5: Subset creation. Since we have access to all 45 model predictions in the ensemble,

it is easy to see the average variance of these models for each video. This score correlates

well with uncertainty, and we use it to rank all videos from hard to easy. We used the

top 500 videos for WFLW-hard, and the bottom 500 for WFLW-easy.

Appendix B: Errors in 300-VW

The 300-VW dataset (Shen et al., 2015) was labelled using the now obsolete models

from (Chrysos et al., 2015) and (Tzimiropoulos, 2015). This results in several labelling

errors (Fig. 5.6) that have gone unnoticed. Errors in the ground truth of datasets lead

to misleading insights and models that generalize poorly to real-world settings.

We also note that many (perhaps all) of the videos in 300-VW do not have a creative

commons licence, and so the legality of their use for industrial research labs may be

more ambiguous.
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Figure 5.6: Examples of poorly labelled videos in the 300-VW dataset. We show three
levels of labelling errors from top to bottom: medium, bad, very bad. Our new WFLW-
V dataset uses much stronger labellers and was checked frame by frame to avoid such
errors.

Appendix C: WFLW-V Results

We show the results of Figure 5 in tabular form in Tab. 5.3. We compare our RwR

scheme to the exponential moving average (ema), and show that contrary to ema,

our method can improve temporal coherence without lowering accuracy. We tried the

following ema weights: [0.005, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9]. When considering all baselines at once, we found that a weight 0.15 struck the

best balance between lowering NMF without increasing NME too much. This was also

better than the grid searched Savitzky-Golay filter (Savitzky and Golay, 1964) and One

Euro filter (Casiez et al., 2012). The only exception was the HIH model which is both

very jittery and flickery, and for which we used an ema weight of 0.3.
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Method WFLW-V hard WFLW-V easy WFLW-V FULL

NME NMF NME NMF NME NMF

HIH 3.93 423.11 2.48 294.94 3.20 359.03
+ ema 4.15 313.07 2.54 208.60 3.34 260.84

StackedHourglass 3.93 255.74 2.33 125.91 3.13 190.82
+ ema 3.99 231.52 2.37 119.35 3.18 175.43

HRFormer-S 3.92 289.50 2.29 150.91 3.11 220.21
+ ema 3.98 255.85 2.33 136.37 3.15 196.11

HRNet-W18 3.61 236.96 2.16 127.72 2.89 182.34
+ ema 3.68 215.26 2.20 119.13 2.94 167.20
SDFL 3.13 207.68 1.83 115.22 2.48 161.45
+ ema 3.21 192.77 1.87 108.35 2.54 150.56
Awing 2.90 277.86 1.68 171.48 2.29 224.67
+ ema 2.96 242.95 1.70 146.71 2.33 194.83

HRNet-W32 2.60 203.15 1.45 105.35 2.03 154.25
+ ema 2.71 186.69 1.51 99.62 2.11 143.15
Unet 2.53 189.28 1.38 94.35 1.95 141.81
+ ema 2.65 175.76 1.45 91.58 2.05 133.67
SLPT 2.42 216.56 1.32 105.93 1.87 161.25
+ ema 2.52 195.35 1.39 98.79 1.96 147.07

DEQ 2.31 197.16 1.24 84.03 1.77 140.59
+ RwR 2.30 172.95 1.24 82.74 1.77 127.85

Table 5.3: NME and NMF on the WFLW-V dataset, comparing the effect of an
exponential moving average smoothing (ema) with our recurrence without recurrence
scheme.

Finally, we found that more augmentations can help performance on WFLW-V while

reducing performance on the WFLW test set. This is likely because the WFLW-V data-

set is more diverse than the WFLW test set, and unecessary augmentations on WFLW

can reduce performance. We therefore retrained LDEQ with more augmentations to

get the best performance on WFLW-V.



Chapter 6

Conclusion

Nesting optimization is a key component of a vast number of deep learning methods

and applications. As such, developing efficient nested optimization tools is key to the

development of the field of AI in general. In this thesis, I considered three forms of

nested problems: adversarial games, meta-learning, and deep equilibrium models. These

settings were respectively applied to model compression, hyperparameter optimization

and video landmark detection. In each case, I pushed the understanding of previous

work to obtain state-of-the-art performance.

Nested adversarial games like the minimax problem have a leader-follower structure

that allows training the leader by jointly improving a nested adversarial follower. In

Chapter 3, I used this paradigm to perform knowledge distillation from a large teacher

network to a small student network, in the case when the dataset used to pretrain the

teacher network isn’t available. Remarkably, I showed that nesting the optimization of

the student with that of an adversarial generator leads to the student learning to match

the teacher for real-world data, despite never using any during training.

Meta-learning was also a large focus of this thesis. The paradigm of “learning to

learn” can be most naturally formulated as a nested optimization problem, and in

Chapter 4 I proposed a novel forward-mode differentiation algorithm that enables

learning hyperparameters for optimization problems that are solved in many gradient

steps. This algorithm is faster and more accurate than previous state-of-the-art methods

in the case of differentiable hyperparameters. While greedy approximations work well

in the context of adversarial games, I demonstrated that they are largely inappropriate

in the context of meta-learning.

111
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Finally, I considered a variant of deep equilibrium models in Chapter 5 that can be

cast as a nested optimization problem. I used it to improve temporal coherence in the

context of landmark detection for video, showing how traditional fixed point solvers

can be used along with early stopping to simulate MAP estimation. In this work, I also

created a dataset and metric for benchmarking future models interested in reducing

landmark flicker.

My thesis benefited very little from the traditional bilevel optimization literature, des-

pite its long history. A perhaps cynical lesson learned is that scaling up these traditional

algorithms, which are often developed on toy problems with strict assumptions, is in

a sense just as hard as developing new nested optimization algorithms independently.

It is worth noting as well that nested optimization in the context of deep learning is

itself just barely starting to leave the toy problem setting: arguably, only Chapter 3

and Chapter 5 have demonstrated performance on real-world tasks, since in Chapter 4

I learned hyperparameters whose optimal values where already known on a relatively

small dataset.

A main limitation of all the models proposed in this thesis is their efficiency. Indeed,

whether it be the forward-mode algorithm in Chapter 4 or the DEQ model in Chapter 5,

the methods I have built upon are still too costly to be popular among deep learning

practitioners. This is due to the nature of nested optimization: solving the upper level

problem with an iterative algorithm like gradient descent often requires solving the

lower level problem several times. Solving both problems simultaneously can be an

efficient alternative, as I’ve shown in the adversarial setting of Chapter 3, but it can

sometimes approximate the nested structure poorly, as I’ve shown in the meta-learning

setting of Chapter 4. Generally speaking, future work should focus on formalizing this

efficiency vs. performance trade-off for the field of nested optimization more generally,

as most progress on that front remains empirical.
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The challenges pointed out above should also be considered as research questions

produced by this thesis. The nested optimization tools I used and built upon have

endless applications, as demonstrated by the diversity of problems tackled in this thesis

alone. Furthermore, much of the contributions made are only relevant to the particular

application domains tackled, independently from nested optimization. However, having

reached state-of-the-art performance in these popular deep learning applications will, I

hope, continue to drive more interest to the field of scalable nested optimization as a

whole.
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Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., and Ristenpart, T. (2016). Stealing

machine learning models via prediction apis. CoRR, abs/1609.02943.
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