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ABSTRACT 
 
The value of machine lubrication is well understood, but all lubricants must be periodically 
tested to verify their condition. This has driven intense research towards the development of 
efficient, low cost and timely degradation monitoring solutions. However, the periodic testing 
currently used results in a difficult decision between the labour and downtime costs of testing 
more frequently and the risk of inter-inspection faults if testing is delayed. 
 
A series of six metal oxide semiconductor gas sensors has been used within an artificial 
olfactory system (e-nose) to monitor the volatile compounds released by samples of mineral 
oil at different levels of thermal degradation. Data collected from the sensors has been used 
to train an artificial intelligence pattern recognition system based on principal component 
analysis and a support vector machine for both classification and regression predictions. The 
classifier achieved a 95.5% accuracy and the regression was accurate within a root-mean-
square error of 2.47 showing the effective performance of an e-nose when applied to oil 
condition monitoring.  
 
 
1. INTRODUCTION 
 
Over the last decades the world has been transformed by increasing industrialization. As more 
countries develop their industrial base, there is a greater level of competition now than any 
point in history. Tribology as a field has grown since the landmark 1966 report which coined 
the term  [1], and now its influence can be seen in almost every industry and aspect of society. 
An improved understanding of lubricant condition would allow an operator to maximise 
lifetime of equipment and minimise lubricant wastage.  
 
When an organic lubricant degrades it is mainly through autoxidation. In this process, the 
carbon-carbon bonds are attacked by peroxide free radicals in a self-propagating chain-
reaction and the bonds broken  [2]. Over time this results in a shortening of the average chain 
length, changes in the functional groups, and the generation of volatile organic compounds 
(VOCs). Shortening of the chain length results in degraded lubricant performance, while the 
VOCs are released into the lubricant headspace  [3]. Since the VOC composition must depend 
on the lubricant composition: a system may be developed which targets VOCs and reflects the 
lubricant condition.  
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Figure 1. Function of a MOS gas sensor. As oxygen binds to the active surface its resistance increases; this 
resistance then decreases as reducing gases out-compete the binding sites. 

 
One class of sensors commonly used to detect VOCs are the metal oxide semiconductor (MOS) 
conductometric sensors  [4–6]. These are composed of 3 key components, as can be seen 
illustrated in Fig. 1. The MOS acts as an active surface which is mounted on a substrate and 
placed on top of a heater. When the substrate is heated, charge carriers collect on the surface 
of the semiconducting material and act as binding sites. If an n-type MOS is used, as is in the 
system discussed here, then the charge carriers are free electrons which bind to oxygen that 
reaches the active surface. The oxygen will remain on the active surface until a reducing gas 
removes it. The presence of a bound species on the surface causes a local depletion of charge 
carriers, and so generates a potential barrier that increases the resistance of the bulk MOS, 
which then reduces once the bound species is removed. The sensor response is the 
measurement of resistance across the active surface and follows a power-law relationship 𝑅𝑅 =
 𝛼𝛼𝑃𝑃𝛽𝛽, where R is the resistance, α a scaling constant, P is the partial pressure of target gas, and 
β is a constant defined by the active surface and the gas  [7].   
 
While a gas sensor can be used to measure the presence of a target gas, it is difficult to 
engineer a sensor that reacts only to the target. This cross-sensitivity is a major issue for gas 
sensors and great efforts are undertaken to try and limit this cross-sensitivity. Efforts to do this 
mainly focus on altering the sensor function through nanomaterials, catalytic, or biological 
treatments  [8–10]. However, Persaud and Dodd showed in 1982 that a sensing device 
mimicking the mammalian olfactory system could be developed to analyse gases in a new 
way  [11]. This time, an array of sensors is used which utilises the different cross-sensitivities of 
different sensors and an attached pattern recognition system to deduce the gases present. 
Such an artificial olfactory system is referred to as an e-nose. The authors have already 
conducted investigations to prove the effectiveness of an e-nose for lubricant condition 
monitoring  [12]. 
 
Once a sensor response has been acquired the data is processed through a series of stages, 
as illustrated in Fig. 2. The first stage, pre-processing, aims to remove underlying effects on the 
sensors unrelated to the detection of VOCs. These effects are either differences in sensor 
scaling or changes in how the sensor responds over time (sensor drift). Feature extraction aims 
to turn the raw sensor response curves into descriptive data points (features) which are 
extracted from either the transient or steady state response. Features are collated and together 
become the feature vector which is then evaluated and unnecessary, redundant, or ineffective  
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features then removed. Correlated features may be removed using principal component 
analysis (PCA), a common statistical tool in the field of e-noses. PCA is an algorithm which uses 
the original features to define a new set which captures the maximum variance in as few 
variables as possible. Once a reduced feature vector is obtained, it is passed to a machine 
learning algorithm for either training or to make a prediction on an already trained 
algorithm  [13,14]. For pattern recognition, support vector machines (SVMs) have seen a good 
amount of usage as the prediction tool for e-noses in recent years  [15–17].  
 
This report aims to highlight the potential for an e-nose to monitor the VOCs released by 
samples of thermally degraded lubricant and use pattern recognition tools to relate it to the 
original heating time the samples were subjected to. The longer term aim is to support the 
development of a system to automatically monitor the lubricant degradation due to 
tribological strains in a machine application.  
 
 
2. METHODOLOGY 
 
Quantities of 50 mL of mineral oil (Sigma-Aldrich, product code 330760) were separated into 
3 bottles and heated on a hotplate at a constant temperature measured with a probe to be 160 
ºC. The heating ran for a range of times, 4 h, 18 h, 24 h. 5 mL and 10 mL aliquots of each heating 
time were transferred into specially made headspace sampling bottles for attachment to the 
sampling system. 
 
A recirculating headspace configuration was used to transfer the sample headspace to the 
sensors. The recirculation minimises VOC loss ensuring measurement of the total VOC release 
of the mineral oil is taking place and not the VOC release rate – which may be slow given the 
long chain hydrocarbon solution that is the mineral oil. The configuration of the delivery system 
is illustrated in Fig. 3. The sensor array chamber was connected to the other components of 
the sampling system through a series of 4 mm polyurethane tubing connections.  

Figure 2. A diagram of the e-nose workflow. 
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Figure 3. A schematic diagram of the experimental setup. There are two paths for gas to flow: filtered air is 
used during recovery and is immediately exhausted, sample air is recirculated between the sensor 
headspace and then back into the sample headspace. Note that the e-nose has eight but only six sensors are 
used. 

 
Data collection was performed using an array of six gas sensors. All sensors are from the TGS 
series of MOS gas sensors from Figaro Engineering Inc. Details of sensor connections, 
readings, and the gas flow may be viewed in  [12]. Control of the system was performed with 
an Arduino Leonardo microcontroller.  
 
Due to the nature of the repeating redox reaction on the surface of the MOS sensors the sensor 
headspace must be exposed to an oxidising airflow to re-establish the baseline after 
measurement. The oxidising airflow was obtained by running the recovery path seen in Fig. 3. 
The recovery passes air collected from the external environment through moisture and 
hydrocarbon traps. The recovery path was active for 750 s after each lubricant measurement 
period of 150 s (a 15 min total cycle time).   
 
Following the procedure set out in Fig. 2 the sensor response curves, once obtained, were pre-
processed. First, the recovery phase was removed completely from the curve – then each of 
the individual measurement curves was normalised to between 0 – 1. That is to say that the 
corrected value, 𝑔𝑔, follows:  

 

          𝑔𝑔 =  
𝑓𝑓 −  𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀

                                                                          (1) 

 
Where 𝑓𝑓 is the uncorrected curve, 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 is the minimum response value for each cycle, and 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 
is the maximum response value for each cycle.  
 
Once the measurement curves were fully pre-processed, the features were extracted and 
passed to PCA for the feature reduction. The features were calculated on each of the six sensor 
and were: mean response, response range, time taken for 50% of response range, and the 
response value at time 5 s, 15 s, 30 s, 60 s, 90 s, 120 s, and 140 s. PCA reduced the original 
feature vector of 60 features into 11 principal component features. The reduced feature vector 
was used to train an SVM machine learning algorithm for classification and regression 
predictions. SVM’s can use various kernel functions and for this analysis a quadratic kernel was 
applied. No separate test set was kept aside, instead a 5-fold cross-validation method was used 
to test effectiveness of the algorithm. This method splits the feature vector into 5 subsets and 
trains 5 independent algorithms – using each subset as a test set once – and then takes the 
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mean test error as the result. Additional testing has been performed which explore several 
combinations of machine learning algorithms and dimensionality reduction algorithms and will 
be published separately. 
 
 
3. RESULTS AND DISCUSSION 
 
Data was collected from the e-nose and predictions of lubricant heating time made. Both 
classification and regression algorithms have been tested and their performance compared. 
For both, the same feature vector was prepared and used for training. 
 
The initial feature vector created from the measurement curves was processed through the 
principal component analysis (PCA) algorithm for feature extraction. 11 principal                    
components were used which described a cumulative total of 99.995% of the variance. A scree 
plot illustrating the explained variance of each principal component contributing over 0.001% 
variance may be seen in Fig. 4. Prior to the PCA analysis, each feature in the feature vector was 
mean-centred and scaled to unit variance. The score plot for principal component one (PC-1) 
and two (PC-2) can be seen in Fig. 5. This score plot shows clearly that the data is statistically 
separable into at least four classes; PC-1 separates the four main classes and PC-2 appears to 
imply an additional grouping. The inclusion of multiple quantities was intentional and results 
in a trained algorithm which is more robust to changes in quantity of an unknown lubricant,  

Figure 4. Scree plot for the explained variance of each principal component 
contributing over 0.1% variance. The total explained variance is 99.995%. 
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while making the current test performance weaker. Since PCA is used as a feature reduction 
method and is not used for pattern recognition it is important not to overemphasise the 
importance of extra groupings within these two principal components.  
 
An SVM was then trained on the reduced feature vector. For an SVM classifier, a 99.5% 
validation accuracy was achieved using the 11 principal components and a quadratic kernel 
SVM. For a regression SVM, a RMSE of 2.47 h was calculated. 
    
The oil samples studied were quite distinct in their visual appearance and so it is not 
unexpected that classification has a very strong performance. The lost 0.5% accuracy 
corresponds to a  
single reading within the 24 h sample that was predicted to be a 18 h sample. The classification 
approach acts as a good demonstration the system’s ability to discriminate the age of a 
lubricant via the VOCs it releases, but any practical application will have non-fixed heating 
times and so must rely on regression. 
 
The regression approach is more challenging. Predicting a continuous variable will leave far 
more potential for error, while in classification the algorithm just needs to find the closest class. 
While the RMSE describes the total predictive error, another measure for the goodness-of-fit 
is the R-squared metric; a common statistical measure for how much variance is explained by 
the model. This model reached an R-squared value of 0.93, such that the model explained a 
very encouraging 93% of the variance in the features. The RMSE corresponded to 9.72% of the 
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Figure 5. The PCA Score plot for the first two principal components. PC-1 is describing 46.4% 
of the variance and PC-2 is describing 23.3%. Four main groupings are labelled 1-4 and a fifth 
potential grouping labelled 5.  
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test range. If these results hold true for larger testing periods then the ability to discern an 
equivalent heating time of a lubricant to within 2.5 h would be an encouraging step on the 
path towards automating industrial maintenance. 
 
 
4. CONCLUSION 
 
The purpose of this study was to investigate the feasibility and effectiveness of monitoring 
lubricant health through artificial olfaction (e-noses). Predictions of heating time of a lubricant 
through analysis of the VOCs with an e-nose was performed with a 6-sensor array. PCA and an 
SVM were used in combination for dimensionality reduction and training of a classification and 
regression algorithm and the performance of those methods presented. 
Classification achieved a 95.5% cross-validation accuracy, and regression achieved a RMSE of 
2.47 and an R-squared value of 0.93. Both results suggest that an e-nose is effective at oil 
condition monitoring and the technology should be developed further. Since the technology 
is based within artificial intelligence pattern recognition, further testing expanding the size of 
the database and applying the system to new and similar applications will both improve 
performance and prove the robustness of the system.  
 
While heating time is informative, it would be more useful to know the impact of specific 
tribological conditions of the lubricant. With that in mind work is currently being done to 
predict meaningful parameters of a lubricant as it degrades under mechanical operation 
through use of this same e-nose system.  
 
Potential application of an effective e-nose sensing system for lubricant degradation 
monitoring includes manufacturing and transport. However, there are other applications 
where such a device would be revolutionary, they include energy generation, mining, 
aerospace, and other applications. Specific uses may include applications like space 
mechanism lubrication or other hard to reach places for maintainers where access to such an 
e-nose would provide an inexpensive and effective tool to inform decisions and prevent 
failures between ordinarily planned maintenance. 
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