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Abstract

At high temperature and density, strongly interacting matter experiences a phase

transition from a hadronic phase to a quark-gluon plasma. Heavier hadrons are able

to survive longer inside the quark-gluon plasma, but their properties change as they

approach deconfinement. This thesis aims to investigate the onset of deconfinement

and the properties of heavy hadrons as they approach this state, with a particular

focus on baryons under extreme conditions. The research will utilise non-relativistic

potential models and will build upon the method of Silvestre et al. (2020) [1], which

utilises a variational approach to solve three-body potential models through expansion

of the wave function in a simple harmonic oscillator basis. The project will also extend

this method to solve spin-dependent baryon models. The main focus of this thesis

is the application of this method to temperature-dependent baryon potential models.

To this end, we will solve two such models that include a spin-spin interaction term.

We find that the masses of heavy baryons decrease as temperature is increased, less

so for the heavier baryons, for the heaviest baryons Ωbbb we found its mass to actually

increase as temperature was increased. We have also used our method to predict the

dissociation points of some heavy baryons and have found that heavier baryons are

able to survive for longer, as temperature is increased. Furthermore, all baryons grow

quickly in size as temperature is increased, reaching infinite size at criticality.
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1
Introduction

Hadrons are a class of subatomic particles that are composed of quarks and antiquarks.

Although hadrons come in many different shapes and flavours, they mainly fall into

one of two categories: baryons or mesons. Baryons are made up of three quarks,

while mesons are made up of a quark and an antiquark. In this thesis, we will study

hadrons under extreme conditions using non-relativistic potential models.

1.1 Potential Models and Quantum Field Theories

Potential models are mathematical representations of quantum mechanical systems.

In general, they are based on the principles of quantum mechanics. They are an

essential tool for understanding the behaviour of quantum mechanical systems and

for predicting their properties. Potential models are, as the name suggests, models,

usually, of an underlying quantum field theory, QCD in the case of strong interactions,

and are often adapted to fit phenomenological results [2].

In particle physics, potential models and quantum field theories are used for slightly

different purposes. Quantum field theories provide a more comprehensive and funda-

mental description of physical systems and are used to better understand the standard

1
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model of particle physics and to explore new phenomena. Potential models, on the

other hand, are simpler models that are often used to compliment QFT results or

for phenomenology, such as analysing experimental data from particle collisions and

predicting the energy spectra of excited hadron states, something QCD currently

struggles with [3]. While potential models can be useful tools, they have their limi-

tations and are not able to capture all of the phenomena described by quantum field

theories.

1.2 Introduction to Hadron Potential Models

In the early 1970s, numerous authors used the principles of QCD along with phe-

nomenological considerations to devise the form of a strongly interacting potential

between a quark and an antiquark [4–6]. Since then, the most widely adapted non-

relativistic potential model for describing the strong force is the Cornell potential. In

its most basic form, the Cornell potential is a combination of a Coulomb type term

and a linear term

VCornell(r) = −α
r

+ σr, (1.1)

with r being the relative distance between the quark-antiquark pair. In the Cornell

potential model, the linear term shown in Eq. (1.1) models the confinement of quarks.

The linear term captures the effect of the attraction between quarks which increases

with increasing separation. When two quarks are forced to separate, the energy stored

up by the strong force will eventually reach a point where a new quark-antiquark pair

can be created, effectively resetting the process. Currently, the only way to detect lone

quarks is through indirect measurements of the quark gluon plasma where lone quarks

roam freely. The potential between two quarks, rather than between a quark and an

antiquark can be modelled by a potential similar to that of the Cornell potential, with

the difference being a multiplicative factor in front of the potential which is called the

colour factor. This factor, when calculated comes out to be 1/2. So, when we will be
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dealing with baryons, we will have to use the appropriate potential which models the

force between quarks, as opposed to mesons where the appropriate potential is given

by Eq. (1.1).

Potential models have initially been used to study the heavy quarkonia, particularly

focusing on the J/Ψ (cc̄) and Υ (bb̄) mesons, as the mass of their constituent parti-

cles is large enough, relative to the ΛQCD scale, so that they are less dependent on

relativistic effects and can be studied using simple non-relativistic potential models.

The J/Ψ meson, with its relatively low mass, was of particular interest as it could

be produced in early particle collision experiments, allowing for a comparison with

predictions from simple non-relativistic potential models [5, 7] which are based on

the Cornell potential shown in Eq. (1.1). Subsequently, other authors [7–10], used

non-relativistic potential models to obtain observables of other mesons like the bb̄, tt̄

and even attempted to obtain observables of lighter mesons such as the ss̄ states.

The second advancement in potential models was the addition of hyperfine corrections

to non-relativistic models, some works can be found in Refs. [10–16]. Another step

forward was the addition of relativistic corrections, which allowed for the study of

lighter mesons and also more accurate study of the heavier states, these can be found

in Refs. [17–21], some of which also include hyperfine interactions. As a result of these

efforts, potential models have covered a large portion of the mesonic sector, potential

models are able to predict the masses of most known mesons to a great detail where

some models are only few MeVs shy off experimental meson masses, see for example

Refs. [20, 21].

However, new hadrons are constantly being detected and better experimental results

of current known hadrons are being produced, see Ref. [22] for example. One of

the struggles of detecting particles is that although their mass can be determined,

identifying their quantum numbers can sometimes be a challenge. In some cases

potential models can be used to provide candidates for the detected particles. This

has been done in the past, for example in Ref. [7], Eichten et al. (1979) used a
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simple potential model to provide the candidates for the discovered ψ′(3772) state

whose mass was close to their predicted mass of 3.81 GeV for the 1D cc̄ state. On

top of that, Eichten et al. also computed the masses of various bottomonium states

although no experimental results for the bottomonium states yet existed at the time.

An example of a more recent challenge can be found in Ref. [23].

With such a large body of work around potential models, many different methods

have been developed for solving them numerically. Some of the techniques have

been mentioned in the introduction of Ref. [1] and although they were presented as

techniques used to solve three-body potential models, same techniques can also used

to solve two-body models. The numerical techniques mentioned are; quantum Monte

Carlo method, Faddeev equations, hyperspherical formalism, stochastic variational

method and expansion on orthogonal bases, for example harmonic oscillator (OH),

where the last is the technique that we will be using to solve two and three-body

potential models. We would also like to add the Gaussian expansion method to the

list of techniques used to numerically solve potential models [23]. We note that, no

one method is better as they have their advantages and disadvantages, for a short

review see introduction of Ref. [1].

In a similar fashion as with mesons, there also exist many potential models used

to study baryons. Although these were developed slightly later due to lesser initial

interest and increased complexity of solving a baryon potential model, as it is a three-

body problem. But just like for mesons, there exist naive baryon potential models

which do not take into account relativistic nor hyperfine corrections, for example

Ref. [2]. Then, there are also baryon models which include hyperfine corrections [1,

24–31]. Finally, models which consider relativistic corrections can be found in Refs.

[32–34]. As such, there exists a vast body of literature devoted to studying baryons at

zero-temperature using potential models. Similarly as for mesons, potential models

are still being used to-date to analyse experimental results of detected baryons, see

[23] for example.
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During experiments, detectors are only able to directly study/detect Hadrons that

have been ejected from the centre of collision and have had time to cool down. This

means that our understanding of Hadrons at zero-temperature is more detailed than

of hadrons at finite temperatures, as no direct probes currently exist for studying the

dynamics of hadrons inside the quark-gluon plasma, we are thus forced to resort to

indirect measurements of the QGP through processes such J/Ψ suppression, which

will be discussed in the next section. Throughout the years, potential models served

and continue to serve as great tools for identifying the detected particles in particle

collision experiments. This is done based on analysis of quantum numbers and binding

energies of detected particles and comparing them with the predictions of potential

models. The Particle Data Group (PDG) currently holds data on hundreds of hadrons

(mesons and baryons), storing various properties such as their mass, decay modes and

many other properties. On the contrary, the PDG currently holds no information

about the behaviour of hadrons at finite temperature, i.e. how their mass changes

as a function of temperature or when certain hadrons become deconfined. This is

because, the effects of temperature on hadrons are still in their exploration phase,

many models and predictions do exist and efforts are being made to better understand

the dynamics of hadrons under such extreme conditions.

1.3 Hadrons at Finite Temperature

One of the focuses in high energy particle physics, is on understanding the properties

of hadrons at finite temperature and the mechanisms behind their phase transition.

At finite temperature, quantum chromodynamics (QCD), predicts that hadrons un-

dergo a phase transition from a hadronic phase, in which they are bound by the strong

nuclear force, to a quark-gluon plasma phase, in which they are deconfined [35]. This

phase transition has been studied through a variety of experimental and theoretical

approaches, including lattice QCD simulations [36–40] and heavy-ion collision exper-
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Figure 1.1: Plot of a screened quark-antiquark potential from Ref. [52] shown at
different values of screening mass µ(T ).

iments [41–47].

In 1986, Matsui and Satz first proposed a reliable probe for detecting the quark gluon

plasma in particle collision experiments through the mechanism of J/ψ suppression

[48]. The probe is based on the idea that at sufficiently high energies, the production

rate of the J/ψ particle will be suppressed in the presence of a quark-gluon plasma,

leading to a suppression of its production which can be detected in an experiment. A

series of experiments were conducted to measure the predicted suppression and less

than a year after their publication, J/ψ suppression has been observed at CERN [49,

50], suggesting the formation of a quark-gluon plasma.

The basic mechanism responsible for deconfinement of hadrons present in a dense and

hot medium of quarks and gluons is the Debye screening of the quark colour charge

[51]. Quarks become deconfined when the screening radius rD becomes smaller than

their binding radius rH , i.e., smaller than the hadron radius [48].

Lattice QCD simulations can be used to motivate the form of a temperature dependent

interquark potential, some examples include [52–56]. Those allow us to study hadrons

at non-zero temperatures using potential models. Lattice QCD simulations find that

the linear part of the potential between two quarks flattens when the bound state

is present in a dense, strongly interacting medium at a high temperature. There

6



CHAPTER 1. INTRODUCTION

exist various parameterisations for the flattening of the potential due to the effects of

colour charge screening. Karsch et al. (1988) propose one such parameterisation in

Ref. [52], which has been illustrated in Fig. 1.1 for different values of the screening

mass µ(T ) = 1/rD(T ) (an effective temperature parameter).

The study of mesons at finite temperature via potential models has started relatively

early, with one of the pioneering papers being the one by Karsch et al., (1988) [52],

after which, more studies of mesons at finite temperature followed, some examples

include [57–59]. However, a similar investigation for baryons only began recently. The

only two publications that we have encountered in this area is the work by Peng Cheng

et al., (2018) [60] where they have used the Gaussian expansion method to study the

dissociation of nucleons. The second paper that has been found was by Abu Shady

et al., (2020) [61] who use the Nikiforov-Uvarov method to study the dissociation

of nucleons and heavy baryons but in an anisotropic hot and dense QCD medium.

Our methods focus on isotropic media and on using the method of expanding the

wavefunction on a SHO basis, which we will detail in future chapters.

1.4 Summary

In this work, we aim to expand the scope of research of baryons at finite temperature

through the use of potential models. We will study baryons through two different

temperature dependent potential models, previously only applied to study mesons at

finite temperatures. For our numerical approach, we will use the variational method,

which involves expanding the system’s wavefunction on the SHO basis. During the

development of our method, Silvestre et al. (2020) independently developed the same

technique for solving three-body systems [1]. We will highlight some of the similarities

and differences between our approaches in more detail in Ch. 4 and 6. Silvestre et al.,

used their technique to solve two different baryon potential models detailed in [14] and
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[18] with the latter containing both a non-relativistic and a semi-relativistic baryon

model. All models were spin-independent and dealt with baryons at zero temperature.

In our work we will use techniques developed in [1] with slight differences to solve

two different temperature-dependent and spin-dependent baryon potential models.

In summary, the achievement of this work will be two-fold. Firstly, will be using

the techniques outlined by Silvestre et al. in [1] to solve two temperature-dependent

baryon potential models. Secondly, we will be building upon the work in Ref. [1] by

extending it to spin-dependent potentials.

This work is divided into 10 chapters, with the first one being the introduction. In

Chapter 2, we will discuss the main difficulty of solving a three-body problem using

the variational method. We will also introduce some general concepts and techniques

used throughout this work, such as the variational method, the Jacobi coordinates,

the SHO basis for two and three-body systems. We will also describe a method used to

simplify the form of the two and three-body Hamiltonians as well as provide analytical

solutions for relevant matrix elements of various operators encountered in our work. In

Chapter 3, we will solve a two-body meson potential model with hyperfine interaction

terms treated perturbatively and compare our results with literature. In Chapter 4,

we will introduce the Talmi-Moshinsky transformations and describe how we can use

them to obtain a matrix representation of a three-body potential. In Chapter 5, we

will test our method for solving three-body potential models by solving the three-

body simple harmonic oscillator, which can be solved analytically. This will serve as

a benchmark for our numerical method. In Chapter 6, we will describe the procedure

for obtaining symmetrized coupled SHO basis sets for solving the baryon potential

model. In Chapter 7, we will solve the first baryon model proposed by Silvestre (1996)

in Ref. [2] using the variational method and compare our results. In Chapter 8, we

will solve two temperature-dependent meson potentials: a simple one motivated by a

temperature-dependent string tension, and a more complex one proposed and solved

by Karsch et al. (1988) [52]. In Chapter 9, we will use the temperature-dependent

interquark potentials from Chapter 8 to motivate and solve two baryon models at
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finite temperature. Finally, in Chapter 10 we will conclude our findings.

9



2
Overview of the Method

In this chapter, we will go over some of the general concepts, equations and operators

which we will be using throughout this work. We will give details of our method for

numerically solving the Schrödinger equation, namely the variational method. We will

provide details of the basis wavefunctions used for solving the two and three-body

systems as well as discuss the main issue when solving a three-body problem with

this method. We will also give matrix representations of some of the key operators

encountered in this work and more.

2.1 The Variational Method

In this section, we will describe the variational method as a tool for numerically

solving the Schrödinger equation,

H|Ψi〉 = Ei|Ψi〉. (2.1)

The Schrödinger equation can be used to determine the spectrum of the model/system.

A quantum mechanical system can be found in different states |Ψi〉 with energies Ei

which are the eigenstates and eigenvalues of the Hamiltonian H, respectively. Mathe-
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matically, the Schrödinger equation is a partial differential equation and unfortunately

lacks analytical solutions for many potentials of interest. As a result, we must rely

on numerical approximations to find its solutions.

There exist various methods for solving the Schrödinger equation numerically, the

method we have chosen in this project is the variational method. The variational

method is discussed by Griffiths and Schroeter in their book "Introduction to Quan-

tum Mechanics" [62]. In this section, we will give the basic idea of the method.

Fundamentally, the variational method is based on guessing a trial wavefunction

|Ψ̃i〉 for a system in question, which is approximated using a linear combination

of appropriate basis functions and a set of adjustable parameters called variational

parameters, sometimes referred to as size parameters as they often determine the

size of the basis functions. These parameters can be adjusted until the energy Ẽi

of the trial wavefunction is minimised [62]. The resulting trial wavefunction and its

corresponding energy are approximations to the exact wavefunction and its energy.

In general, the numerical value of of the energy will be equal or higher than the "true"

energy of the system [62]. The energy will only be equal in the special cases where

either the basis functions used, perfectly represent the system. For example, using

the SHO basis functions to study the SHO quantum system would yield the exact

energy of the system that would match the analytical result, we will show this in

Ch. 5. If the basis functions do not perfectly represent the system but satisfy the

completeness relation then the predicted energy will lie above the true energy of the

system. In this case, we would only be able to obtain the exact energy if we utilise

all the basis functions but unfortunately there are an infinite amount of them.

In this section, we will use the tilde symbol to denote approximations to the exact

quantities. We can always expand the trial wavefunctions in a basis which form a

complete set
∑∞

j=1 |φj〉〈φj| = 1, where |φj〉 are placeholders for a generic basis wave-

function, with j representing a generic label for all the quantum numbers describing

the basis state. We can represent a trial wavefunction in terms a of a truncated set

11
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of basis functions, as follows:

|Ψ̃i〉 =

Nφ∑
j=1

|φj〉〈φj|Ψi〉, (2.2)

where in the limit as Nφ → ∞, we recover |Ψ̃〉 → |Ψ〉. In Eq. (2.2), 〈φn|Ψi〉 are the

expansion coefficients and Nφ is the number basis functions used for the approxima-

tion, the larger the Nφ the better is the approximation. Due to limited computing

power we can only consider a finite number of basis functions. Therefore, the de-

gree of the approximation will depend on the number of basis functions used for the

approximations and the choice of the size parameters of the basis functions.

Given the expansion in Eq. (2.2), the Schrödinger equation (2.1) becomes

N∑
j=1

〈φj′|H|φj〉〈φj|Ψi〉 = Ei〈φj′ |Ψi〉, (2.3)

with 〈φj′|φj〉 = δj′j, i.e. the basis is orthonormal. The matrix representation of the

Schrödinger equation in a generic basis |φ〉 is given as:


〈φ1|H|φ1〉 〈φ1|H|φ2〉 . . . 〈φ1|H|φN〉

〈φ2|H|φ1〉 〈φ2|H|φ2〉 . . . 〈φ2|H|φN〉
...

... . . . ...

〈φN |H|φ1〉 〈φN |H|φ2〉 . . . 〈φN |H|φN〉




〈φ1|Ψi〉

〈φ2|Ψi〉
...

〈φN |Ψi〉

 = Ei


〈φ1|Ψi〉

〈φ2|Ψi〉
...

〈φN |Ψi〉

 ,

(2.4)

where the numerical values of the matrix elements 〈φj′|H|φj〉 can be obtained by

projecting them onto the appropriate coordinate basis and computing integrals over

all space. In section 2.5 we will compute the elements of some relevant operators in

the SHO basis and show explicitly solutions to those integrals.

The variational method therefore relies on choosing a complete basis set of wave-

functions |φj〉 in which we can express the trial wavefunction |Ψi〉, of the system

in question. The basis set used to represent |Ψi〉 will be truncated, leading to an
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approximated solution.

2.2 The Three-Body Problem

V 12
(|x

1
−
x 2
|) V

23 (|x
2 −
x

3 |)

V31(|x3 − x1|)
x1

x2

x3

Figure 2.1: A depiction of three particles held together via a pair-wise central
potential.

In this section, we will outline the main issues when solving the three-body potential

using the variational method. In the two-body case the potential has the form

Vtwo-body = V (|x1 − x2|), (2.5)

where xi is the position of the i’th particle. However, in the three-body case we have

three terms in the potential, each corresponding to a pair of quarks, i.e.

Vthree-body = V12(|x1 − x2|) + V23(|x2 − x3|) + V31(|x3 − x1|), (2.6)
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Figure 2.2: Diagram of different choices of basis of the Jacobi coordinates.

as depicted in Fig. 2.1. The problem lies in the fact that we have to choose a preference

when defining our coordinate basis. Our choice of coordinates for the three-body

problem are the Jacobi coordinates which are defined as follows,

r3 = x1 − x2,

R3 =
m1x1 +m2x2

m1 +m2

− x3, (2.7)

R =
m1x1 +m2x2 +m3x3

m1 +m2 +m3

,

where mi is the mass of the i’th particle. Descriptively, r3 is the distance between

particles 1 and 2, R3 is the distance between particle 3 and the centre of mass of

particles 1 and 2 and R is the position of the centre of mass of the system. With this

choice of Jacobi coordinates, we have expressed a preference for dealing with particles

one and two. Using the Jacobi coordinate system, Eq. (2.6) becomes,

Vthree-body = V12(|r3|) + V23

(
|R3 −

m2

m1 +m2

r3|
)

+ V31

(
| −R3 −

m1

m1 +m2

r3|
)
.

(2.8)

The difficulty when solving the three-body problem arises from the terms V23 and V31,

even a simple Cornell potential seen before, becomes quite complicated in this basis.

Since the basis wavefunctions for the three-body problem also require a commitment

to a coordinate basis, we are left with two choices at this stage: Deal with the

complicated potential and solve the three-body problem in a single basis or introduce

two new frames to simplify the form of the potential at the cost of having to find a
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way of expressing SHO basis wavefunctions in the new frames.

In our work and as has been done by Silvestre et al. [1], we choose the latter option

where two more Jacobi frames are introduced with each frame preferring a single pair

of particles, as shown in Fig. 2.2.

The seemingly strange choice of suffixes is used to ensure that cyclic permutations

will hold throughout our equations. Using the newly introduced Jacobi frames, we

can now express Eq. (2.8) simply as

Vthree-body = V12(r3) + V23(r1) + V31(r2), (2.9)

which looks much more manageable. But having the potential expressed in three

different basis does not solve all our problems. It does allow us to treat each pair of

quarks in a consistent manner. What we will find in later chapters is that rather than

obtaining a one large matrix representation of the entire potential, we will be able to

obtain three separate matrices, one for each term in the potential. Each term will be

dealt with in their own Jacobi frame and the problem will very much resemble three

copies of the two-body problem, rather than one large three-body problem. We find

this approach to the three-body problem to be most pragmatic.

We have mentioned earlier that this method comes at the cost of finding a way of

transforming the SHO basis wavefunctions between the different Jacobi frames. This

transformation method will be detailed later in chapter 4.

2.3 Basis Functions

In this section, we will describe the complete sets of wavefunctions which we will use

for constructing the trial wave function in the two-body and three-body problems.
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2.3.1 Two-Body Basis

For the two-body problem in three-dimensional space we will use the simple harmonic

oscillator (SHO) wavefunctions as our complete set of basis wavefunctions for con-

structing the trial wavefunctions. The SHO w.fs. are chosen as the basis not only

because they are the standard choice of basis in the field but also this choice of basis

is essential for our three-body treatment later on.

The SHO basis functions are obtained by solving the Schrödinger equation for the

two-body simple harmonic oscillator potential

VSHO(r) =
1

2
kr2 =

1

2
µω2r2, (2.10)

where r = x1 − x2 is the distance between the two particles and µ = m1m2

m1+m2
is their

reduced mass, ω = (k/µ)1/2 corresponds to the classical angular frequency of the

oscillator [63]. The potential in Eq. (2.10) is one of very few potentials for which the

Schrödinger equation can be solved exactly. The spectrum of the three dimensional

isotropic harmonic oscillator in quantum mechanics is given as [63]

ESHO = ω(2n+ l +
3

2
), (2.11)

where n is a radial quantum number and l represents the orbital angular momentum.

In our work, we will express the SHO wavefunctions using dimensionless variables

ρ ≡ αr, with α ≡ √µω. (2.12)

Note, the dimensions of r are GeV−1 and the dimensions of √µω is GeV, making ρ

a dimensionless variable. The harmonic oscillator wavefunctions are characterised by

three quantum numbers n, l and m where m is the projection of the orbital angular
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momentum. Mathematically they can be written as

〈ρ, θ, φ|nlm〉 = ψnlm(ρ) = Rnl(ρ)Ylm(θ, φ), (2.13)

where Ylm(θ, φ) are the well known spherical harmonics and

Rnl(ρ) = cnlρ
le−ρ

2/2Ll+1/2
n (ρ2),

cnl =

[
2(n!)

Γ(n+ l + 3/2)

]1/2

,

Ll+1/2
n (ρ2) =

n∑
k=0

dnlkρ
2k,

dnlk =
(−1)kΓ(n+ l + 3/2)

(n− k)!Γ(k + l + 3/2)(k)!
,

(2.14a)

(2.14b)

(2.14c)

(2.14d)

where Ll+1/2
n (ρ2) are the associated Laguerre polynomials and Γ represents the Gamma

function. The above expressions will serve as a basis for computing most integrals

in this work, and in turn obtaining matrix elements of various operators in both the

two and three-body problems.

The SHO wavefunctions form a complete set over the Hilbert space, i.e.

∑
nlm

|nlm〉〈nlm| = 1, (2.15)

and satisfy the following orthonormality conditions

∫
dρρ2Rnl(ρ)Rn′l′(ρ) = δn′n, (2.16)∫
dΩ Y ∗lm(r)Yl′m′(r) = δl′lδm′m, (2.17)∫
dρρ2

∫
dΩ ψ∗nlm(ρ, θ, φ)ψn′l′m′(ρ, θ, φ) = δn′nδl′lδm′m, (2.18)

where dΩ ≡ dθdφ sin θ and the integrals are performed over all space.

Some radial functions have been plotted in Fig. 2.3, to highlight their symmetry
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Figure 2.3: Radial functions Rnl(ρ), see Eq. (2.14a). The radial functions are
symmetric for even l and anti-symmetric for odd l.

properties. In general, they are symmetric(antisymmetric) when l is even(odd) under

the transformation r → −r, this will become an important fact later one when we

come to Ch. 6.

2.3.2 Three-Body Basis

Since the three-body system is parameterised by the Jacobi coordinates r,R, defined

in Eq. 2.7, the basis for a three-body system will be constructed from a Clebsch-

Gordan sum of coupled SHO wavefunctions, where each SHO function belongs to a

single degree of freedom[27],

However, similarly as in the two-body case, we will represent the coupled SHO func-

tions in a dimensionless coordinate basis, therefore, we will introduce

ρ ≡ αr, λ ≡ βR, (2.19)
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where similarly as in Eq. (2.12) we have

α ≡ √µrωr, β ≡ √µRωR. (2.20)

The form of µr and µR will be given in section 2.4.2.

We note that in the two-body case, where each basis function consisted of a single SHO

wavefunction, there was only a single size parameter ω. However, in the three-body

case, each basis function will consist of two coupled SHO wavefunctions, therefore,

we will have two size parameters ωr and ωR. Later in Ch. 4 we will restrict the two

to be equal, such that ωr = ωR = ω, reducing the number of variational parameters

to one.

Finally, the three-body basis functions will have the following form

〈ρ,λ|nl,NL : ΛMΛ〉 =
∑
mM

〈lm, LM |ΛMΛ〉ψnlm(ρ)ψNLM(λ), (2.21)

where Λ = l + L is the vector sum of the orbital angular momenta coupled to

each Jacobi coordinate, combining to give the total orbital angular momentum. The

quantities, 〈lm, LM |ΛMΛ〉 are the vector coupling constants otherwise known as,

Clebsch-Gordan coefficients, MΛ = m + M and ψnlm(ρ) and ψNLM(λ) are the same

SHO basis functions as encountered in the two-body problem in Eq. (2.13).

2.4 Two and Three-Body Hamiltonians

In this section, we will give a general description of the two and three-body Hamilto-

nians used throughout this work for general central potentials. The Hamiltonian for

a general N -body system can be constructed by taking into account the total kinetic
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and potential energy of the system,

H = T + V, (2.22)

with T being the total kinetic energy and V the total potential energy. The general

form for the kinetic energy of a relativistic N -body system is given as

Trel =

NP∑
i=1

√
m2
i + p2

i , (2.23)

with mi being the mass of particle i and pi being its momentum and where NP is the

number of particles in the system. In the non-relativistic limit where pi � mi, Eq.

(2.23) can be expanded up to the leading term to give

Tnon-rel =

NP∑
i=1

[
mi +

p2
i

2mi

]
. (2.24)

In this study, we will focus exclusively on non-relativistic models. This choice restricts

our analysis to heavy hadrons that possess at least one charm quark or a quark of

greater mass. The utilisation of non-relativistic models in investigating baryons at fi-

nite temperature can be supported by our primary interest in observing general trends

and patterns within three-body temperature-dependent potential models. Addition-

ally, we aim to develop a technique for solving three-body systems with hyperfine

interactions using the variational method.

Although future investigations using relativistic potentials and more intricate tem-

perature dependent potentials to achieve high precision results are worthwhile, it is

currently justifiable to employ the non-relativistic approach. This is due to the ab-

sence of experimental data or high precision lattice QCD data for result comparison

at this early stage of exploring baryons at finite temperature. Nonetheless, the tech-

niques developed here pave the way for potential future exploration into the realm of

high precision results using more intricate potential models.
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From now on we will refer to Tnon-rel simply as T to save unnecessary notation. A

general central potential for an N -body system is given as

V =

NP∑
i<j

V (|xi − xj|), (2.25)

where xi is the particle position and NP is number of particles. The sum then goes

over all pairs of particles in the system, i.e., in a two-body system, there is only one

pair of particles and in the three-body system there are three pairs, and so on.

2.4.1 Two-Body Hamiltonian

In this section, we will detail the form of the Hamiltonian for a two-body system

sitting in a central potential. Moreover, we will use the fact that we are using SHO

wavefunctions as the basis for finding the trial wavefunction |Ψ〉 to simplify the form

of the two-body Hamiltonian.

Using Eq. (2.24) and (2.25), the two-body Hamiltonian can be expressed as

Htwo-body =
2∑
i=1

[
mi +

p2
i

2mi

]
+ V (|x1 − x2|). (2.26)

To simplify the Hamiltonian in Eq. (2.26), we will switch to Jacobi coordinates for two-

bodies by performing a variable substitution where r = x1−x2 and R = m1x1+m2x2

m1+m2
,

which is the centre of mass coordinate. We will also be working in spherical coordi-

nates where r = {r, θ, φ}. On top of that, we will choose the centre of mass of the

system as our frame of reference, this yields us the following

Htwo-body =
2∑
i=1

mi +
p2
r

2µ
+ V (r), (2.27)
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where

µ =
m1m2

m1 +m2

. (2.28)

Note that the centre of mass (c.o.m.) motion has been eliminated. To simplify Eq.

(2.27), we can now take advantage of the fact that we use the SHO basis wavefunctions

|nlm〉 as a basis for representing the trial wavefunction |Ψ〉. The spectrum of a three-

dimensional isotropic harmonic oscillator is given as [63]

[T + VSHO]|nlm〉 = ω(2n+ l + 3
2
)|nlm〉, (2.29)

with VSHO defined in Eq. (2.10). Using (2.29) we can write,

T |nlm〉 = [T + VSHO − VSHO]|nlm〉

= [ω(2n+ l + 3
2
)− VSHO]|nlm〉, (2.30)

allowing us to write the Hamiltonian in Eq. (2.27) as

Htwo-body =
2∑
i=1

mi + ω(2n+ l + 3
2
)− 1

2
µω2r2 + V (r), (2.31)

where we have effectively substituted

p2
r

2µ
←→ ω(2n+ l + 3

2
)− 1

2
µω2r2. (2.32)

2.4.2 Three-Body Hamiltonian

In a series of similar steps as (2.26)→ (2.27) and using the Jacobi coordinates defined

in Eqs. (2.7) to parameterise the three-body system, we can obtain

Hthree-body =
3∑
i=1

mi +
p2
r

2µr
+
p2

R

2µR

+ V12(r3) + V23(r1) + V31(r2), (2.33)
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with,

µr =
m1m2

m1 +m2

, and µR =
m3(m1 +m2)

m1 +m2 +m3

. (2.34)

Note that the centre of mass motion has been implicitly set to zero and therefore there

are only two terms for the kinetic energy. Using the same trick as in the two-body

case (Eq. (2.32)), to replace the p2

2µ
operators in the three-body Hamiltonian with the

spectrum of a simple harmonic oscillator, we have

Hthree-body =
3∑
i=1

mi + ωr(2n+ l + 3
2
)− 1

2
µrω

2
rr

2

+ωR(2N + L+ 3
2
)− 1

2
µRω

2
RR

2

+V12(r3) + V23(r1) + V31(r2).

(2.35)

Note that in a special case when the potential between particles takes the form of the

simple harmonic oscillator, the Hamiltonian can be reduced to

HSHO
three-body =

3∑
i=1

mi + ωr(2n+ l + 3
2
) + ωR(2N + L+ 3

2
), (2.36)

which is exactly the energy of a three-body harmonic oscillator. We will revisit this

in more detail in Ch. 5.

2.5 Operators in the SHO basis

In this section, we will obtain expressions of matrix elements for relevant operators in

the SHO basis. Since we are dealing with central potentials only, we will not encounter

operators dependent on the angular degrees of freedom θ or φ, except for the δ(r)

operator which will be treated as an isolated special case. As such, we will first give

a solution to a general r dependant operator and later obtain explicit solutions to

specific operators found in the two and three-body systems.
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The element of a general operator O(r) in the SHO basis can be obtained by by

computing the integral

〈n′l′m′|O(r)|nlm〉 =

∫ ∞
0

dρρ2Rn′l(ρ)O(
ρ

α
)Rnl(ρ)δl′lδm′m, (2.37)

where we have used the orthogonality of the spherical harmonics to obtain the delta

functions. Note that on the right hand side, we have expressed the operator in the

dimensionless coordinate basis so that we can perform the integration.

2.5.1 The Constant Operator

The constant operator will be important as there exist different constant operators,

such as the quark mass mi or other constant terms added to a potential. We will

represent a general constant with the parameter c. We can use Eq. (2.37) to obtain

the matrix element of c in the SHO basis giving us

〈n′l′m′|c|nlm〉 = cδn′nδl′lδm′m, (2.38)

which is simply the identity matrix multiplied by the constant c,

ĉ = c


1 0 0 . . . 0

0 1 0 . . . 0
...

...
... . . . ...

0 0 0 . . . 1

 . (2.39)

Therefore, any constant term in the Hamiltonian will have a similar representation,

it will consist of the identity matrix multiplied by the constant.
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2.5.2 The ry Operator

This operator will appear in all potential models encountered in this work, in multiple

forms. The Cornell potential in Eq. (1.1) alone contains an r−1 term and a linear term

r. Furthermore, we have seen the r2 term appear in both the two and three-body

Hamiltonians in Eqs. (2.31) and (2.35). Therefore, we will aim to obtain the general

form for the element of an ry operator with y ∈ R. Using Eq. (2.37) we have

〈n′l′m′|ry|nlm〉 =

∫ ∞
0

dρρ2Rn′l(ρ)
ρy

αy
Rnl(ρ)δl′lδm′m, (2.40)

Using the definition of Rnl(ρ) given in Eq. (2.14a). we can rewrite (2.40) as

〈n′l′m′|ry|nlm〉 =
1

αy
cn′lcnl

n′,n∑
k′,k=0

dn′lk′dnlk

∫ ∞
0

dρ ρ2p+2+ye−ρ
2

δl′lδm′m, (2.41)

where p = k′ + k + l. Rewriting the sums in terms of k and p one obtains,

〈n′l′m′|ry|nlm〉 =
1

αy
cn′lcnl

l+n′+n∑
p=l

∑
k

dn′lp−k−ldnlk

∫ ∞
0

dρ ρ2p+2+ye−ρ
2

δl′lδm′m, (2.42)

where the limits on k are {Max[0, p− l−n′],Min[n, p− l]}. The integral in Eq. (2.42)

can be looked up in Ref. [64], the solution to that integral is given as

∫ ∞
0

dρ ρ2p+2+ye−ρ
2

= Γ(p+ 1
2
y + 3

2
). (2.43)

The final equation reads:

〈n′l′m′|ry|nlm〉 =
1

αy
cn′lcnl

∑
p,k

dn′lp−k−ldnlkΓ(p+ 1
2
y + 3

2
)δl′lδm′m. (2.44)
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2.5.3 The Exponential Operator

This operator will appear in a temperature-dependent model given by Karsch et

al. [52]. And since we will encounter it multiplied by the r operator, what we are

interested in is the general operator,

O(r) = rye−ξr =
ρy

αy
e−

ξ
α
ρ, (2.45)

for y ∈ R and with ξ > 0 being a positive scaling parameter. Using Eq. (2.37) we

have

〈n′l′m′|rye−ξr|nlm〉 =

1

αy
cn′lcnl

∑
p,k

dn′lp−k−ldnlk

∫ ∞
0

dρρ2p+2+ye−ρ
2− ξ

α
ρδl′lδm′m. (2.46)

The integral in the above equation has an analytical solution that can be looked up

in Ref. [64]. For the particular form here, the solution is given as:

∫ ∞
0

dρρ2p+2+ye−ρ
2− ξ

α
ρ = 2−( 2p+3+y

2
)Γ(2p+ 3 + y)e

ξ2

8α2D−(2p+3+y)(
ξ√
2α

), (2.47)

where Dν(z) are the Parabolic Cylinder functions D. Combining these equations one

gets

〈n′l′m′|rye−ξr|nlm〉 =

1

αy
e
ξ2

8α2 cn′lcnl
∑
p,k

dn′lp−k−ldnlk(2
− 2p+3+y

2 )Γ(2p+ 3 + y)D−(2p+3+y)(
ξ√
2α

)δl′lδm′m. (2.48)
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2.5.4 The Gaussian Operator

The Gaussian operator will be found in a hyperfine interaction term conjugate to the

spin-spin term in a potential given by Silvestre [2] which we will aim to solve. In

general, this operator can be written as

O(r) = e−σ
2r2

, (2.49)

with σ being a positive constant. Once again, we can use Eq. (2.37) to write

〈n′l′m′|e−σ2r2|nlm〉 = cn′lcnl
∑
p,k

dn′lp−k−ldnlk

∫ ∞
0

drr2p+2e−(1+
σ2

α2 )ρ2

δl′lδm′m, (2.50)

The integral in the above equation has an analytical solution that can be looked up

in Ref. [64]. For the particular form here, the solution is given as:

∫ ∞
0

drr2p+2e−(1+
σ2

α2 )ρ2

=
Γ(2p+3

2
)

2(1 + σ2

α2 )
2p+3

2

. (2.51)

In full, the final equation for an element of a Gaussian operator in the SHO basis is

given as:

〈n′l′m′|e−σ2r2|nlm〉 = cnlcn′l
∑
p,k

dnlkdn′lp−k−l
Γ(2p+3

2
)

2(1 + σ2

α2 )
2p+3

2

δl′lδm′m. (2.52)

2.5.5 The Delta Operator

The delta function is an important operator as it can be used to obtain the expecta-

tion value of the wavefunction at the origin. Also, this operator sometimes appears

together with the spin-spin term in an interquark potential. The delta function in
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spherical coordinates is defined as

δ(3)(r) =
1

r2 sin θ
δ(r)δ(θ)δ(φ), (2.53)

which is the only operator in this work that depends on variables θ and φ. We can

transform the delta function to dimensionless variables, using the property δ(αx) =

1
|α|δ(x), where α is a scaling parameter. With the dimensionless variable ρ defined in

Eq. (2.12) we can express the delta function in Eq. (2.53) as

δ(3)(r) =
α3

ρ2 sin θ
δ(ρ)δ(θ)δ(φ). (2.54)

An element of the delta function operator can be written as

〈n′l′m′|δ(3)(r)|nlm〉 = α3Rn′l′(0)Yl′m′(0, 0)Rnl(0)Ylm(0, 0). (2.55)

To evaluate this we need to look at the general expression for Rnl(ρ) given in 2.14a.

We can see that Rnl(0) is only non-zero when l = 0, in which case we have Rn0(0) =

cn0L
1/2
n (0). The value of the spherical harmonics for l = 0 is Y00(0, 0) = 1/(2

√
π).

Putting all this together we have

〈n′l′m′|δ(3)(r)|nlm〉 =
α3

4π
cn′0 cn0 L

1/2
n′ (0)L1/2

n (0)δl′0δl0δm′m, (2.56)

where L1/2
n (0) are the generalised Laguerre polynomials evaluated at the origin.

2.6 Numerical Method

A large portion of this work was devoted to developing a computational framework

for numerically solving the Schrödinger equation of three-body potential models. In

this section, we will discuss the computational side of the method and some tricks
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we have employed to speed up the calculations. For the computation, we have used

Mathematica as a programming platform. In this discussion, we will be evaluating

the computational side of the method from the point of view of solving the three-body

rather than the two-body problem since it is an extension of the two-body problem.

On the technical side, the problem we are solving is the one outlined in Sec. 2.1. The

main idea is to construct the Hamiltonian matrix of a system represented in the SHO

basis, see Eq. (2.4) for reference. Once a Hamiltonian matrix is constructed we are

able to obtain its Eigenvalues and Eigenvectors using the built-in Mathematica

functions. The size of the Hamiltonian matrix is directly dependent on the number

of SHO basis functions used for the calculation. The more basis functions the better

the approximation but also the more matrix elements we have to compute. The bulk

of the computational time is spent building the Hamiltonian matrix, rather than

obtaining its eigenvalues or eigenvectors, which only takes a fraction of a second even

when the matrix sizes are in the hundreds. On the other hand, computing the entire

Hamiltonian matrix can take anywhere from few seconds to few minutes depending

on the number of basis functions used. Each element of the Hamiltonian matrix is

individually calculated, therefore, the more basis functions, the more elements there

are to calculate. The number of elements to calculate goes as N2 where N is the

number of basis functions, however, the first few elements in the upper left part of

the matrix take less time to be computed than the last elements towards the lower

right part of the matrix due to sums such as one seen in Eq. (2.44), therefore, the

time complexity of the algorithm is not simply O(N2).
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Figure 2.4: Showing the computation time of the diagonal elements of the r2

operator with l = 0 as defined in Eq. (2.44), using our Mathematica code. The
fitted line is a third degree polynomial.

In Fig. 2.4 we show the amount of time taken to compute the diagonal only elements

of the r2 operator as defined by Eq. (2.44) where we set l = 0. By fitting a third

degree polynomial we find the relationship between the time taken to compute the

N th diagonal element seems to be cubic in nature. We therefore see that computing

elements which are further down and to the right of the matrix take longer to compute

than elements closer to the upper left part of the matrix, as mentioned previously.

We also note that computations of individual elements for this operator take only

fractions of seconds. This data serves as a good proxy for the time complexity for

constructing the elements of other operators encountered in this work such as the

exponential and Gaussian operators found in Eqs. (2.48) and (2.52), respectively,

which share a similar mathematical fidelity with the ry operator. We note that a

third degree polynomial fit is only used when the second degree polynomial fit is not

able to fit to the data.

For the rest of this analysis we will be pushing our code to include basis functions up
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NQ Matrix Size (n× n)
0 2
2 8
4 20
6 40
8 70
10 112
12 168

Table 2.1: Relationship between NQ and matrix size of operators for the combi-
nation J = 1

2
, P = +1,Λ = 0 and S = 1

2
.

to NQ = 12, where NQ is defined as the energy of the coupled SHO basis functions.

Mathematically, this is defined as

NQ = 2n+ l + 2N + L, (2.57)

where the coupled SHO basis functions are denoted by |nlNL : Λ〉. However, we

will show the relationship between computation time and matrix size rather than NQ

because matrix size is a better indicator of the number of computations that need to

be performed than NQ. The relation between matrix size and NQ is dependent on the

quantum numbers J, P,Λ and S. For this analysis we will be looking at the "lowest"

possible combinations of these quantum numbers, ones we believe are trivial which

are J = 1/2, P = +1,Λ = 0 and S = 1/2. For this combination of quantum number

the relation between matrix size and NQ can be found in Tab. 2.1.

Note that in Tab. 2.1 when NQ = 0 the matrix size is 2. This may seem strange as

there is only a single combination of the quantum numbers of 2n + l + 2N + L that

equals 0, this is only possible when n = l = N = L = 0. However, the basis functions

for spin-dependent models also include the spin degrees of freedom and there are

two spin basis functions with total spin S = 1
2
, those are |S, S12〉 = |1

2
, 0〉 or |1

2
, 1〉.

Therefore, even though only a single spatial basis function is allowed when NQ = 0,

there are two possible spin basis functions when S = 1
2
, yielding two separate total

spin-space basis functions, one being |0000 : 0〉|1
2
, 0〉 and the other being

|0000 : 0〉|1
2
, 1〉. Note, the same is true for NQ > 0. This will be discussed in more
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detail in Ch. 6.
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Figure 2.5: Showing the time taken to compute matrix representation of the r2

operator in the SHO basis, defined in Eq. (2.44) with l = 0, using our Mathe-
matica code. The fitted line is a second degree polynomial.

In the next series of figures; 2.5, 2.6 and 2.7, we show the time taken to compute

the matrix representations of the r2, exponential and Gaussian type operators in the

SHO basis using our code. We find that the time complexity to compute the matrix

representations of these operators is either quadratic or cubic with respect to the

number of SHO basis functions used. We find that the exponential operator takes

the most amount of time to be computed, over 10 seconds in the case of NQ = 12

or Matrix Size = 168, equivalently. This is most likely due to the parabolic cylinder

functions that need to be computed for this operator, see Eq. (2.48). The exponential

operator will appear in most of the potential models which we will encounter in this

work with the exception being the zero-temperature baryon model.
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Figure 2.6: Showing the time taken to compute matrix representation of the expo-
nential operator in the SHO basis, defined in Eq. (2.48), using our Mathematica
code. The fitted line is a third degree polynomial.
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Figure 2.7: Showing the time taken to compute matrix representation of the
Gaussian operator in the SHO basis, defined in Eq. (2.52), using our Mathematica
code. The fitted line is a second degree polynomial.

To solve the three-body problem we also must compute the Talmi-Moshinsky co-

efficients [65], responsible for transforming coupled SHO basis functions from one

Jacobi frame to another. In what follows, we will briefly discuss the amount of time

taken to compute these coefficients as they are detrimental to solving the three-body

problem and are a costly part of the calculation in terms of computation time. We

will also discuss some tricks performed to avoid constantly recalculating these coeffi-

cients, significantly reducing computation time. In our work, we will be constructing

matrices containing the Talmi-Moshinsky coefficients and using those to transform

operators by sandwiching them between what we will call the generalised transfor-

mation matrices. The details of computing the generalised transformation matrices

will be discussed in Sec. 6.2. In this part of the discussion, we are mostly interested

in the time taken to compute the generalised transformation matrices, defined in Eq.

(6.9). In Fig. 2.8 we illustrate the time taken to compute the generalised transfor-

mation matrices which involve the Talmi-Moshinsky coefficients. The matrices that
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Figure 2.8: Showing the time taken to compute the generalised transformation
matrices defined by Eq. (6.9), using our Mathematica code. The best fit is ob-
tained by a fourth degree polynomial.

we have computed are responsible for transforming operators from the 12 to the 23

Jacobi frame, see Fig. 2.2 for reference. We find that the time taken to compute the

generalised transformation matrix for NQ = 12 takes over 200 seconds. We also find

that to fit the computation time we need to use a polynomial fit to the 4th degree to

obtain a good fit, showing that the computation time grows very quickly as matrix

size increases. We find that computing the generalised transformation matrices takes

a significant amount of computation time.

We would like to preface the following discussion by saying that the Talmi-Moshinsky

coefficients in our work are independent of the size (or variational) parameters that

determine the size of the basis functions. The only dimensionful quantities that the

Talmi-Moshinsky coefficients are dependent on are the quark masses. To alleviate

some of the time spent on calculating the Talmi-Moshinsky coefficients we have sep-

arated the calculation into two parts, a part that does not depend on quark masses,

such as obtaining summation variables which is a costly computation, and another
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part which performs the summation and involves the quark masses. This allows us to

pre-compute and store the results of the part of the computation that is independent

of model parameters, such that when we want to compute specific coefficients, we

can call back on the stored results and only compute the part which is dependent on

model parameters. This trick allows us to save a significant amount of time during

calculations. In computer language the process of pre-computing and storing results

to save time in future calculations is called memoisation. We have also implemented

memoisation for other parts of our calculation where possible, i.e. for parts of calcula-

tions that do not depend on any model parameters, in that way the amount of storage

required for the "memoised" quantities is kept to a minimum, only taking up a few

megabytes but saving a considerable amount of computational time. Whenever a new

model is presented or any model parameters are changed, we only need to recalculate

a small portion of the calculation rather than recalculating everything from scratch.

To see this process at work we will perform the same calculation of the generalised

transformation matrices in two runs, the first run will generate the matrices using

the quark masses m1 = m2 = m3 = 1 GeV as if it was doing this calculation for

the first time. During that run, parts of the calculation which are independent of

model parameters will be automatically saved and on the second run we will change

the quark masses to m1 = 1 GeV,m2 = 2 GeV and m3 = 3 GeV and we will show

that the second run will take significantly less time. The results are presented in Tab.

2.2. We see that on the second run, the same calculations take much less time, for

instance the calculation which computes the elements of the 168 × 168 generalised

transformation matrix in the first run takes 203 seconds where as in the second run for

different quark masses only 0.5 seconds. Whenever the algorithm computes something

it has not seen before, it will compute it and save the parts which do not need to be

recalculated saving significant amount of time on all the runs after that.
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Matrix Size Run 1 (s) Run 2 (s)

2 0.01 0.0008

8 0.02 0.004

20 0.08 0.02

40 0.56 0.04

70 4.97 0.09

112 33.30 0.23

168 203.59 0.50

Table 2.2: Time taken in seconds to calculate the generalised transformation
matrices in the first run and second run of the calculation. During the first run,
certain parts of the calculation are memorised such that they do not need to be
recalculated again in the second run. We show this for different matrix sizes.
In the first run we choose {m1,m2,m3} = {1, 1, 1} GeV and in the second run
{m1,m2,m3} = {1, 2, 3} GeV

.

By this point in the discussion of the numerical method we have illustrated the compu-

tation time of various operators and the generalised transformation matrices. These

form the key components for obtaining the Hamiltonian matrix. Therefore next, we

will illustrate the time taken to compute the Hamiltonian matrix as a function of

matrix size. We will be obtaining the Hamiltonian matrix while utilising the memoi-

sation trick discussed earlier. This will show us the true performance of the code as

it is used in practice. The model that we will be using in this discussion is a zero-

temperature baryon model discussed in Sec. 7.1. We will be obtaining a Hamiltonian

matrix for the Λc baryon system defined by the model parameters specified in Eq. 7.5

and by the quantum numbers J = 1
2
, P = +1,Λ = 0 and S = 1

2
and we must specify

the symmetry of the flavour wavefunction which is symmetric in the case of the Λc

baryon, this in turn limits the number of basis functions used for the calculation, this

is discussed in more detail in Ch. 6. For this calculation we have chosen an arbitrary

value for the size of the basis functions, which is set by ω = 1GeV.

37



CHAPTER 2. OVERVIEW OF THE METHOD

Data

4th degree poly fit

0 2 4 6 8 10 12

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

NQ

T
im
e
(s
)

Time taken to compute the Hamiltonian matrix

for different values of NQ

Figure 2.9: Showing the time taken to compute the Hamiltonian matrix defined
by Eq. (7.2), using our Mathematica code. The best fit is obtained by a fourth
degree polynomial.

In Fig. 2.9 we see that it takes just under 8 seconds to compute the entire three-body

Hamiltonian matrix for NQ = 14. This involved computing all the necessary opera-

tors, the Talmi-Moshinsky coefficients and performing the required manipulations to

obtain the Hamiltonian matrix.

The remaining part of the calculation is to optimise the size of the basis functions,

i.e. vary the ω parameter until we find a minimum of the energy of the excited state

that we are interested in. For this discussion, we will focus on the ground state of the

Λc baryon and therefore optimise the value of ω for that excited state. This involves

setting a value of ω, computing the Hamiltonian, finding the lowest eigenvalue of the

Hamiltonian matrix and rerunning the calculation with a different value of ω and

repeating this process until we minimise the energy of the ground state. To help us

do this we are using the golden section search algorithm which is designed to search

for a minimum of a function. This algorithm works by choosing a lower and an upper
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limit (a section) of the function, where a minimum is believed to exist and gradually

narrowing down the limits and honing on the minimum, the search is ended once a

chosen tolerance level is reached, given the two final limits, we choose the midpoint

between them to give us a value of ω that we are satisfied with. This algorithm was

chosen as it does not rely on computing gradients of a function which can be costly

for this particular problem. Searching for the minimum takes up the most time of

the calculation since the Hamiltonian needs to be recalculated multiple times with

a different value of ω each time. Luckily thanks to memoisation, this process takes

much less time than if we had to compute the Hamiltonian from scratch each time.

Usually, we are able to obtain a good value of ω in under a minute, which of course

depends on the value of NQ. As we can see in Fig. 2.9 the time taken to compute the

Hamiltonian matrix for NQ = 12 is just under 4 seconds, this calculation will need to

be performed multiple times with different values of ω until convergence is reached.

In Fig. 2.10 we illustrate the time taken to optimise the ω parameter, for different

values of NQ using the golden section search algorithm. We find that it takes just

under 40 seconds to find an optimum value of ω when NQ = 12.
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Figure 2.10: Showing the time taken to optimise ω for different values of NQ,
using the golden section search algorithm. The best fit is obtained by a fourth
degree polynomial.
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3
Two-Body Potential Model

In this chapter, will solve a two-body, spin-dependent meson model using the varia-

tional method. We will use perturbation theory to include the hyperfine contributions,

splitting the spin-averaged states. The meson model that we will be solving has been

proposed by Li et al. (2009) [16]. We will compare our results with the ones given

in the paper in order to ensure that our numerical approach for solving potential

models using the variational method works as intended before we move on to solving

three-body systems.

In the following sections, we will outline the potential model and describe how per-

turbation theory can used to include the hyperfine corrections to the meson masses.

Finally, we will compare the results of different meson states energies obtained by us

to those obtained by Li.
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3.1 Meson Potential
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Figure 3.1: Plot of the spinless part of the potential (Eq. 3.1)). We compare
the screened potential used in this chapter with a standard unscreened Cornell
potential.

The potential used in [16] is a screened potential which differs slightly from the

commonly used Cornell potential. In Fig. 3.1 we compare the screened potential used

in this work with the standard Cornell potential. We see that the two are very similar

and only begin to differ at large r. Therefore, the screening affects mostly larger states

i.e. highly excited or very light meson states whose size is larger than that of heavy

mesons or mesons in their ground states. Li et al. propose the screened potential

to correct for the tendency of common potentials (such as the Cornell potential) to

overestimate the energy values of highly excited states. They show that the screened

potential gives better predictions for the highly excited states.

We will use the work produced by Li et al. to test our numerical method for solving

models which include hyperfine interactions. We will ensure that we are able to solve

hadron models which include spin as we are ultimately interested in solving baryon

models with spin interactions. Solving two-body spin dependent models is simpler
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αC ξ C mb σ Λ

0.37 0.056GeV 0.677GeV 4.4GeV 3.3GeV 0.21GeV2

Table 3.1: Table of parameters used in the Hamiltonian, obtained from Ref. [16].

than three-body spin-dependent models, hence, this is where we start. The full meson

potential is defined in Ref. [16] as,

Vscr(r) = VV (r) + VS(r),

VV (r) = −4

3

αC
r
,

VS(r) = Λ

(
1− e−ξr

ξ

)
+ C,

(3.1)

where VV (r) is the long-range vector like potential arising from one-gluon exchange

and VS(r) is the scalar like potential responsible for short range interactions. The

hyperfine interactions which will be treated perturbatively in this chapter are given

as,

HSS =
32παC
9m1m2

δ̃σ(r)S1 · S2, (3.2)

where S1 and S2 are the spins of quarks 1 and 2, respectively. Normally, the δ̃σ(r) is

taken to be the regular Dirac-delta function, however, Li et al. use a smeared delta

function i.e. a Gaussian function defined as δ̃σ(r) = (σ/
√
π)3e−σ

2r2 . The spin-orbit

term is given as

HLS =
1

2m1m2r
(3V ′V (r)− V ′S(r))L · S, (3.3)

where L is the total orbital angular momentum of the meson state and S is the total

spin of the meson. Finally, the tensor term is given as

HT =
1

12m1m2

(
1

r
V ′V (r)− V ′′V (r)

)
T. (3.4)
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The full Hamiltonian is then given as

Htot =
2∑
i=1

mi + Vscr(r) +HSS +HLS +HT . (3.5)

The parameters for this model are given in Tab. 3.1. We will give the expectation

values of the spin-dependent terms. First, for the spin-spin term we have

〈n′l′m′|S1 · S2|nlm〉 =

(
1

2
S2 − 3

4

)
δn′nδl′lδm′m. (3.6)

For the spin-orbit term, we have

〈n′l′m′|L · S|nlm〉 =
1

2
(J(J + 1)− L(L+ 1)− S(S + 1)) δn′nδl′lδm′m, (3.7)

where J is the total angular momentum of the meson defined as J = L+S. Lastly, the

tensor operator T has non-vanishing diagonal matrix elements for L > 0, spin-triplet

states only, which are

〈3LJ |T |3LJ〉 =


− L

6(2L+3)
, J = L+ 1,

1
6
, J = L,

− (L+1)
6(2L−1)

, J = L− 1.

(3.8)

3.2 Perturbative Treatment of Spin-Term Corrections

For the perturbative treatment, the Hamiltonian will be split into two parts

H = H0 +HI , (3.9)
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where H0 is the unperturbed part of the Hamiltonian which can be expressed as

H0 =
2∑
i=1

mi + ω(2n+ l + 3
2
)− 1

2
µω2r2 + Vscr(r), (3.10)

where we have used the previously obtained general form for a two-body Hamiltonian,

which can be found in Eq. (2.31). The potential term Vscr(r) is defined in Eq. (3.1).

The spin-averaged energies of the mesons are obtained by solving

H0|ψ(n)
0 〉 = E

(n)
0 |ψ

(n)
0 〉, (3.11)

where n is a generic label describing the spin-averaged meson state. The hyperfine

correction terms split the spin-averaged energies based on the four different combina-

tions of S and J quantum states that a meson can be found in. The four combinations

are presented in Tab. 3.2.

S 0 1 1 1

J L L− 1 L L+ 1

Table 3.2: Four different combinations of S and J quantum states that a meson
can be found in.

Therefore, we have four different perturbative terms H
2s+1LJ
I each corresponding to a

particular combination of 2s+1LJ quantum numbers, they are defined as

H
2s+1LJ
I = H

2s+1LJ
SS +H

2s+1LJ
LS +H

2s+1LJ
T . (3.12)

The energies of the four various states can be obtained as follows

E
(n)
2s+1LJ

= E
(n)
0 + 〈ψ(n)

0 |H
2s+lLJ
I |ψ(n)

0 〉, (3.13)

which is the energy of the spin-averaged state plus one of the four possible perturba-

tions. The equations in (3.13) are four separate equations which can be expressed in
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matrix form as
E1LL

E3LL−1

E3LL

E3LL+1

 =


1 −3/4 0 0

1 1/4 −(L+ 1) L+1
2L−1

1 1/4 −1 −1

1 1/4 L L
2L+3



E0

∆SS

∆SO

∆T

 , (3.14)

where we have used Eqs. (3.6), (3.7) and (3.8), to obtain the 4× 4 matrix containing

the spin part of the hyperfine corrections. The vector on the right hand side contains

the radial parts of the hyperfine corrections to the potential. For example ∆SS =

32παC
9m1m2

〈ψ(n)
0 |δ̃σ(r)|ψ(n)

0 〉.

To obtain matrix representation of the H0 and HI operators in the SHO basis we can

use solutions obtained in Sec. 2.5. For instance, H0 contains an operator mi which

is a constant, the matrix representation of mi can be obtained using Eq. (2.38).

Another operator found in H0 is the r2 operator found in the −1
2
µω2r2 term, to

obtain the matrix representation of that operator in the SHO basis, we can use Eq.

2.44. Similarly, for the Gaussian operator found in HSS term, we can use Eq. 2.52.

Therefore, we have all the tools for constructing H0 and HI in the SHO basis, and

we can use the matrix representations to diagonalise H0 and obtain its eigenvalues

and eigenvectors necessary for perturbative treatment. In the next section, we will

present the results obtained using our numerical method for solving the meson model

presented in this chapter.
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3.3 Variational Parameter ω
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Figure 3.2: Energy of the spin-averaged Υ(bb̄) 1S ground state as function of
the variational parameter ω on the left and number of basis functions NQ on the
right.

In this section, we will discuss the role of the variational parameter ω when obtaining

various system observables. This is the first time in this work that we get to see

the role of the variational parameter ω used in a specific example. The variational

method depends on optimising the variational parameter ω such that the energy of

a state is minimised, as discussed in Sec. 2.1. We used the Mathematica program

to diagonalise the Hamiltonian, as described in the numerical method in Sec. 2.6, to

obtain plots such as the ones seen in Fig. 3.2.

In Fig. 3.2 we plot the energy of the spin-averaged bb̄ meson ground (1S) state as a

function of the variational parameter ω on the left and as a function of the number

of SHO basis functions used for the numerical approximation on the right. The first

thing we see in the plot on the left is the presence of a minimum energy. The optimal

ω value lies where the energy is minimum. Secondly, we see that as we include more

SHO basis functions in our calculations, the minimum energy decreases but eventually
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we reach a plateau where adding more basis functions results in very small changes to

the minimum energy. This is most pronounced in the plot on the right. And lastly, we

note that as we increase the number of basis functions NQ used, the approximation

becomes less dependant on ω. We see this through the flattening of the curves in the

plot on the left. For example, for NQ = 20 in the plot on the left, we see that the

energy of the state varies very little in the range of 1GeV ≤ ω ≤ 3GeV. Comparing

that with the curve generated using NQ = 7 we see that the energy is more dependent

on the variational parameter ω. This behaviour is expected since in the limit where

an infinite set of basis functions is used (NQ →∞), we expect no dependence on ω.

Lastly, the plot on the right in Fig. 3.2, demonstrates the stability condition for our

calculations. We can see that for ω = 1GeV or 2GeV the energy of the state has

stabilised, i.e. if we keep increasing NQ, we will see very little improvement in the

results (very little decrease in energy). However, in the case where ω = 0.1 or 4, we

can see that stability has not yet been reached, even when NQ = 20.

From those two plots we can see that we do not only have to ensure to choose the

optimum ω but we also need to ensure that our calculations reach stability, i.e. we

must use enough basis functions such that increasing the number of basis functions

decreases the minimum energy by very little. In the plot on the right in Fig. 3.2 we

can see that 20 basis functions is enough to achieve stable results, given we choose

an appropriate value of ω, in this case 1GeV ≤ ω ≤ 2GeV would suffice.

All our results will be obtained by finding the minima of E vs. ω plots for sufficient

number of basis functions. We will be using the golden section search algorithm for

finding the minima of such curves. The golden section search algorithm has been

discussed in more detail in Sec. 2.6
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3.4 Comparing Results

In this section, we present the results obtained by our numerical method and compare

them with the results obtained by Li et al. in Ref. [16]. We compute the energies of

various excited bottomonium states and present them in tables below. The orbital

excitations (S, P and D - wave states) have been split into three separate Tables 3.3,

3.4 and 3.5, respectively, within which we show the radial excitations of those states.

Using the variational method and solving the model perturbatively we find that we

are able to reproduce the results found in the paper with largest discrepancy between

energies being only 4 MeVs. In Tabs. 3.3, 3.4 and 3.5 we also record the value of the

optimised variational parameter ω used for each state. The value of ω was determined

using the optimisation procedure described in Secs. 2.1 and 2.6, i.e. by identifying the

minimum of energy vs. ω plots.

We note that that the value of ω decreases for higher excited states. The value of ω

is closely tied with the size of the basis functions used for the approximations. The

smaller the ω the larger the size of the basis functions. This indicates that the states

increase in size, as they become more excited. Later, for different hadron models we

will investigate the size of a hadron through observables such as the root mean square

radius between quarks for different excited states and find that higher excited states

indeed increase in size.

This concludes the chapter, we have used the variational method and perturbation

theory to solve a meson model with hyperfine interaction terms. We were able to

successfully reproduce results found in the literature. We can conclude that our

method for solving two-body hadron models with hyperfine interactions has been

well developed. We are ready to move on to solving three-body models, including

baryons, using similar techniques.
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State ω Theor. of ours Theor. of Ref. [16]

1S
ηb(1

1S0)
1.9

9.389 9.389

Υ(1 3S1) 9.461 9.460

2S
η′b(2

1S0)
0.9

9.988 9.987

Υ(2 3S1) 10.016 10.016

3S
ηb(3

1S0)
0.5

10.332 10.330

Υ(3 3S1) 10.351 10.351

4S
ηb(4

1S0)
0.4

10.597 10.595

Υ(4 3S1) 10.612 10.611

5S
ηb(5

1S0)
0.3

10.820 10.817

Υ(5 3S1) 10.832 10.831

6S
ηb(6

1S0)
0.23

11.014 11.011

Υ(6 3S1) 11.024 11.023

7S
ηb(7

1S0)
0.18

11.187 11.183

Υ(7 3S1) 11.195 11.193

Table 3.3: Comparison of obtained masses for the bb̄ S states using our model vs
that of Ref. [16]
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State ω Theor. of ours Theor. Ref. [16]

1P

hb(1
1P1)

0.7

9.903 9.903

χb0(1 3P0) 9.859 9.865

χb1(1 3P1) 9.900 9.897

χb2(1 3P2) 9.917 9.918

2P

hc(2
1P1)

0.5

10.256 10.256

χb0(2 3P0) 10.221 10.226

χb1(2 3P1) 10.254 10.251

χb2(2 3P2) 10.268 10.269

3P

hb(3
1P1)

0.3

10.529 10.529

χb0(3 3P0) 10.498 10.502

χb1(3 3P1) 10.527 10.524

χb2(3 3P2) 10.539 10.540

4P

hb(4
1P1)

0.257

10.757 10.757

χb0(4 3P0) 10.729 10.732

χb1(4 3P1) 10.755 10.753

χb2(4 3P2) 10.766 10.767

5P

hb(5
1P1)

0.2

10.955 10.955

χb0(5 3P1) 10.931 10.933

χb1(5 3P1) 10.954 10.951

χb2(5 3P2) 10.964 10.965

Table 3.4: Comparison of obtained masses for the bb̄ P states using our model vs
that of Ref. [16]
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State ω Theor. of ours Theor. of Ref. [16]

1D

ηc2(1 1D2)

0.4

10.152 10.152

ψ(1 3D1) 10.144 10.145

ψ2(1 3D2) 10.152 10.151

ψ3(1 3D3) 10.155 10.156

2D

ηc2(2 1D2)

0.3

10.439 10.439

ψ(2 3D1) 10.431 10.432

ψ2(2 3D2) 10.439 10.438

ψ3(2 3D3) 10.442 10.442

3D

ηc2(3 1D2)

0.25

10.677 10.677

ψ(3 3D1) 10.670 10.670

ψ2(3 3D2) 10.677 10.676

ψ3(3 3D3) 10.680 10.680

4D

ηc2(4 1D2)

0.2

10.883 10.883

ψ(4 3D1) 10.876 10.877

ψ2(4 3D2) 10.883 10.882

ψ3(4 3D3) 10.886 10.886

5D

ηc2(5 1D2)

0.16

11.066 11.066

ψ(5 3D1) 11.059 11.060

ψ2(5 3D2) 11.066 11.065

ψ3(5 3D3) 11.069 11.069

Table 3.5: Comparison of obtained masses for the bb̄ D states using our model vs
that of Ref. [16]
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4
Talmi-Moshinsky Transformations

To address the three-body problem in quantum mechanics using the variational

method, we adopt the Jacobi coordinates as a natural coordinate basis to charac-

terise the system. In Section 2.2, a brief summary is provided. Our primary choice

is the 12 basis1, as depicted in Figure 2.2. However, this choice introduces complex-

ity in expressing potentials that depend on the distances between particle pairs 23

and 31. To overcome this challenge, we employ all three Jacobi coordinate bases,

each representing the distance between one of the three particle pairs. This approach

involves separating the three-body pair-wise potential into three distinct terms, effec-

tively treating them as three individual two-body potentials. Subsequently, we solve

each component of the potential within its respective Jacobi frame.

The next step involves expressing each of the two-body components of the three-body

potential in their respective Simple Harmonic Oscillator (SHO) basis. As the 12 basis

is the main choice, it is necessary to perform transformations that allow us to convert

the coupled SHO basis wavefunctions from the 12 basis to the 23 and 31 bases. This is

where the Talmi-Moshinsky transformations come into play. In this chapter, we will

provide a comprehensive explanation of how these transformations can be effectively

utilised to solve three-body potential models in the realm of quantum mechanics.
1This should be read as the ’one-two’ basis rather than the ’twelve’ basis, similarly for the 23

and 31 basis, these are the ’two-three’ and ’three-one’ basis.
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During the course of this study, specifically in 2020, Silvestre et al. published a

paper in which they applied the Talmi-Moshinsky transformations to solve a spin-

independent baryon potential model [1]. It is important to acknowledge their con-

tribution, as their utilisation of the Talmi-Moshinsky transformations enabled the

resolution of the three-body problem. While our approach and implementation differ

slightly from that presented in Ref. [1], the fundamental ideas remain the same. To-

wards the end of this chapter, we will delve into a discussion on the similarities and

differences between our methods.

In our approach, we will employ the method proposed by Buck et al. (1996) [66] to

obtain the expansion coefficients required for transforming coupled Simple Harmonic

Oscillator (SHO) wavefunctions between different coordinate bases. This method is

particularly effective when the coordinate bases are connected through orthogonal

transformations, such as rotations.

However, since the Jacobi frames depicted in Figure 2.2 are generally not related

by orthogonal transformations due to the potential variation in particle masses, we

will introduce modified sets of Jacobi coordinate bases that satisfy this condition.

Essentially, we will transition to utilising dimensionless Jacobi coordinates.

Once we have elaborated on the dimensionless Jacobi basis, we will explain the tech-

nique for transforming the coupled SHO basis functions between these bases. Lastly,

we will elucidate the procedure for representing the complete three-body potential

within the 12 SHO basis.

Throughout the subsequent discussion, we will occasionally refer to the 12 basis as

frame 3, the 23 basis as frame 1, and the 31 basis as frame 2. This nomenclature is

derived from how we label the Jacobi variables, where r3 ≡ x1 − x2 represents the

distance between particles 1 and 2 in the 12 basis, and the same logic applies to the

23 and 31 bases.
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4.1 Three Jacobi Frames

The dimensionful Jacobi frames illustrated in Fig. 2.2 can be mathematically defined

as

r3 = x1 − x2, R3 =
m1x1 +m2x2

m1 +m2

− x3,

r1 = x2 − x3, R1 =
m2x2 +m3x3

m2 +m3

− x1, (4.1)

r2 = x3 − x1, R2 =
m1x1 +m3x3

m1 +m3

− x2,

the c.o.m. coordinate is given as R = (m1x1 + m2x2 + m3x3)/M where M = m1 +

m2 + m3, which is equivalent in all frames. The r coordinate specifies the distance

between two particles and the R coordinate is the distance from the centre of mass of

the two particles to the position of the third particle. Note, cyclic permutation holds

for this specific definition of our parameters.

To make this discussion more concise and clear we will describe the basis transfor-

mations using matrix notation. In this spirit, equations (4.1) can be expressed as

Ki = ΩiX, where, Ki =

riRi

R

 and X =

x1

x2

x3

 . (4.2)

The Ωi’s are the transformation matrices between the two coordinate systems. For

example,

Ω3 =


1 −1 0
m1

m1 +m2

m2

m1 +m2

−1

m1

M

m2

M

m3

M

 . (4.3)

Using Eq. (4.2), we can obtain the transformation relations between the different

Jacobi coordinate systems,

Ki = W ijKj, where W ij = ΩiΩ
−1
j . (4.4)
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Therefore, W ij is a transformation matrix relating frames i and j. As the three-body

problem will be specified initially in the 12 basis, we will always want to express

K3 in terms of K1 or K2, thus we are mostly interested in matrices W31 and W32.

Note, W ij are 3× 3 square matrices with det(W ij) = 1, also W ij are not in general

orthogonal. In the next section, we will find a set of scaled Jacobi coordinates, such

that they will be related by orthogonal transformations.

4.2 Dimensionless Jacobi Coordinates

The dimensionless Jacobi coordinates will be defined as

(
ρi
λi

)
=

(
αi 0

0 βi

)(
ri
Ri

)
, (4.5)

with αi and βi being scale factors having dimension of energy [E] = GeV, making ρi
and λi dimensionless. These scale factors have previously been encountered in Eq.

(2.20). Note, we are ignoring the c.o.m. coordinate R which is not important for this

discussion.

We now need to find appropriate scale factors αi and βi, such that

(
ρi
λi

)
= Oij

(
ρj
λj

)
, where Oij =

(
cosϕij − sinϕij
sinϕij cosϕij

)
, (4.6)

i.e. Oij is an orthogonal transformation matrix relating the dimensionless Jacobi

frames i and j. To find the appropriate scale factors αi and βi, we will start by

truncating the transformation matrix W ij defined in Eq. (4.4), by removing the

elements related to the c.o.m. coordinate, i.e. we will focus only on the upper left

2 × 2 quadrant of that matrix, which will be denoted as W ij. We can decompose

W ij as

W ij = D−1
i OijDj, (4.7)
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where Di are diagonal matrices and Oij is the orthogonal matrix defined in (4.6).

Using Eq. (4.4) we can write

Ki = W ijKj, where Ki =

(
ri
Ri

)
. (4.8)

Using the decomposition in Eq. (4.7), we can write (4.8) as

DiKi = OijDjKj, (4.9)

which has the same form as Eq. (4.6) with

Di =

(
αi 0

0 βi

)
. (4.10)

We now have all the tools ready to obtain the scale factors αi and βi. Let us consider

an example using the transformation matrix W 31 to find D1 and D3. Using the

definition of Wij in Eq. (4.1), W 31 is given as

W 31 =

 − m3

m2 +m3

−1

m2(m1 +m2 +m3)

(m1 +m2)(m2 +m3)
− m1

m1 +m2

 , detW 31 = 1. (4.11)

Decomposing W 31 as prescribed in Eq. (4.7) we have

W 31 =

 1
α3

0

0 1
β3

cosϕ31 − sinϕ31

sinϕ31 cosϕ31

α1 0

0 β1


=

α1

α3
cosϕ31 − β1

α3
sinϕ31

α1

β3
sinϕ31

β1

β3
cosϕ31

 . (4.12)

Constraints:

• In order to preserve the determinant ofW 31 being 1 we require det(D−1
3 O31D1) =

1, yielding the first constraint; α1β1 = α3β3.
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• By interpreting Di as re-scaling factors, we constrain αi, βi ≥ 0, with i = 1 and

3.

• By comparing the right hand side of (4.12) with Eq. (4.11) and paying special

attention to the signs, we find that ϕ31 lies in the second quadrant, i.e. π
2
≤

ϕ31 ≤ π.

• Similarly, comparing the product of the cross terms in the rhs of Eq. (4.12) and

Eq. (4.11) we get

sin2 ϕ31 =
m2M

(m1 +m2)(m2 +m3)
, (4.13)

cos2 ϕ31 =
m1m3

(m1 +m2)(m2 +m3)
, (4.14)

∴ tanϕ31 = −
√
m2M

m1m3

. (4.15)

Equation (4.15) gives us a relation for the angle of rotation between frame 3 and

frame 1 which is dependent on the masses of the particles.

We can compare the elements of Eq. (4.11) with those in the rhs of Eq. (4.12) to

obtain expressions for α1 and β1 in terms of α3, β3 and the masses,

α1 = −
(

m3

(m2 +m3) cosϕ31

)
α3 =

(
m2M

(m1 +m2)(m2 +m3) sinϕ31

)
β3, (4.16)

β1 =

(
1

sinϕ31

)
α3 = −

(
m1

(m1 +m2) cosϕ31

)
β3. (4.17)

Now, as long as α1 and β1 satisfy equations (4.16) and (4.17), this will ensure that

equations (4.6) will also be satisfied, meaning that the transformation between the

basis described by ρ3 and λ3 and basis described by ρ1 and λ1 will be orthogonal. We

have mentioned previously that we have already encountered αi and βi in Eq. (2.20).

Thus, for convenience and following the two-body prescription it will be natural to

set

α3 =
√
µrωr, β3 =

√
µ
R
ω
R
, (4.18)

58



CHAPTER 4. TALMI-MOSHINSKY TRANSFORMATIONS

with µr and µR being defined in Eq. (2.34) and ωr and ωR are the two size parameters

related to the coupled SHO basis functions defined in Eq. (2.21). This choice of α3

and β3 fixes α1 and β1 via the conditions in Eqs. (4.16) and (4.17).

Following a similar set of steps for W 32 as was done above for W 31, we obtain

α2 = −
(

m3

(m1 +m3) cosϕ32

)
α3 = −

(
m1M

(m1 +m2)(m1 +m3) sinϕ32

)
β3, (4.19a)

β2 = −
(

1

sinϕ32

)
α3 = −

(
m2

(m1 +m2) cosϕ32

)
β3, (4.19b)

tanϕ32 =

√
m1M

m2m3

,
π

2
≤ ϕ32 ≤ π. (4.19c)

We can use any of the Eqs. (4.16), (4.17), (4.19a) or (4.19b) to obtain the relation

(α3

β3

)2

= − m1m2M

(m1 +m2)2m3

, (4.20)

with the definition of α3 and β3 given in (4.18) we find that we must restrict the basis

size parameters such that

ωr = ω
R
. (4.21)

We arrive at one of the key differences between our method and the method discussed

in Ref. [1], where both parameters (ωr and ωR) are allowed to vary independently

where as in our work they are constrained to be equal. In our work we will treat

both the size parameters as a single parameter, ωr = ω
R

= ω. While this restriction

may potentially impact the accuracy of our results for less symmetric systems (where

particle masses are drastically different [1]), it does result in reduced computation time

during optimisation of variational parameters as we only have a single parameter to

optimise. In later chapters, we will find good agreement with results found in the

literature, indicating that restricting both basis functions to a single size parameter

does not significantly compromise accuracy.

To summarise, our main goal was to introduce new sets of Jacobi frames which will

59



CHAPTER 4. TALMI-MOSHINSKY TRANSFORMATIONS

be related by orthogonal transformations. We did this by introducing dimensionless

frames described by the variables ρi and λi defined in Eq. (4.5) with αi and βi defined

in Eqs. (4.16) → (4.19b). The angle of rotation that takes us from frame 3 to frame

1 is given by Eq. (4.15) and the angle of rotation from frame 3 to frame 2 is given by

Eq. (4.19c).

4.3 Talmi-Moshinsky Transformations

In this section, we will outline the method of transforming any coupled SHO basis

wavefunction expressed in the ρ3, λ3 basis into the ρi, λi basis, with i = 1, 2. These

are the only transformations we are interested in as we have limited our need to only

"one-directional" transformations (from frame 3→ 1 and 3→ 2). In this section, we

will drop the index corresponding to frame 3 in order to avoid cluttering. We will

refer to ρ3 simply as ρ and to λ3 as λ, in other words, we will drop any index which

refers to the "parent" frame. The following is an expansion of an SHO basis function

in frame 3 onto frames 1 or 2.

〈ρ,λ|nl,NL : Λ〉 =
∑

niliNiLi

〈nili, NiLi : Λ|nl,NL : Λ〉︸ ︷︷ ︸
Talmi expansion coefficients

SHO w.f. in new frame︷ ︸︸ ︷
〈ρi,λi|nili, NiLi : Λ〉, (4.22)

where i = 1 or 2 corresponding to frame 1 and 2. The sum extends over all quantum

numbers which are constraint by the condition

2n+ l + 2N + L = γ = 2ni + li + 2Ni + Li. (4.23)

Also, note that the total orbital angular momentum Λ is the same on both sides of

Eq. (4.22). Due to these constraints the sum is finite. In Eq. (4.23), γ is proportional

to the energy of the coupled SHO basis wavefunction.

The full expression for the Talmi expansion coefficients is given by Buck et al. found
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in Ref. [66]. The expression for the Talmi coefficients is a relatively long equation

involving many sums, sums over 9j symbols as well as Clebsch-Gordan coefficients.

It is not so easy to efficiently implement this equation, however, some simplifications

can be made by realising that a lot of the quantities are not dependent on any pa-

rameters of the coordinate system and thus can be calculated once and stored into

memory. Another important fact about this implementation of the Talmi-Moshinsky

coefficients is that they are independent of the variational parameter ω meaning they

do not need to be recalculated every time the ω changes, this saves a lot of time

when applying the variational method when looking for the minimum energy. This is

not true in the method proposed in Ref. [1], which states that the Brody-Moshinsky

coefficients need to be recalculated each time the size parameters change, costing

considerable amount of time during optimisation.

4.4 Three-Body Potential

In this section, we will outline how we deal with the three-body potential by using

the Talmi-Moshinsky transformations.

The three-body potential can be divided into three terms as previously seen in Eq.

(2.9). Each term corresponds to a single pair of particles. Using the dimensionless

Jacobi variables defined in Eq. (4.5), Eq. (2.9) can be expressed as

V (ρ, ρ1, ρ2) = V12(
ρ

α
) + V23(

ρ1

α1

) + V31(
ρ2

α2

). (4.24)

Note, that ρ and α with no index refer to ρ3 and α3, respectively. Our main goal is

61



CHAPTER 4. TALMI-MOSHINSKY TRANSFORMATIONS

to obtain matrix representation of V (ρ, ρ1, ρ2) in the 12 SHO basis, defined as

〈φ12
i′ |V (ρ1, ρ2, ρ3)|φ12

i 〉 =

〈φ12
i′ |V12( ρ

α
)|φ12

i 〉+ 〈φ12
i′ |V23( ρ1

α1
)|φ12

i 〉+ 〈φ12
i′ |V31( ρ2

α2
)|φ12

i 〉. (4.25)

The element of V12( ρ
α

) can be calculated relatively easily without any involvement of

switching basis. The problem lies in the two remaining terms in the potential, to solve

them we will require to switch basis. Let us take a look at how we can compute the

element of V23( ρ1

α1
) in the 12 basis. To do this we will define a basis transformation

as

|φ12
i 〉 =

∑
j

|φ23
j 〉〈φ23

j |φ12
i 〉, (4.26)

the expansion coefficients 〈φ23
j |φ12

i 〉 are nothing else but the Talmi transformation

coefficients defined earlier in Eq. (4.22). We would like to note here that in later

chapters, when we come to include spin in our models, the basis functions |φ12
i 〉 will

in general be wavefunctions containing both spin and spatial degrees of freedom, thus

the expansion coefficients 〈φ23
j |φ12

i 〉, will be slightly more complicated than here, but

for now they are simply the Talmi-Moshinsky coefficients. Using (4.26), we can write

〈φ12
i′ |V23( ρ1

α1
)|φ12

i 〉 =
∑
j′j

〈φ12
i′ |φ23

j′ 〉〈φ23
j′ |V23( ρ1

α1
)|φ23

j 〉〈φ23
j |φ12

i 〉, (4.27)

we will next make use of the property of dummy indices, i.e.

〈φ23
i′ |V23( ρ1

α1
)|φ23

i 〉 = 〈φ12
i′ |V12( ρ

α1
)|φ12

i 〉, (4.28)

which is a simple index permutation, note that the index on the α remains the same,

as it is a parameter and not a variable. Also, note that the ρ with no index is referring

to ρ3. We can use (4.28) to rewrite (4.27) as

〈φ12
i′ |V23( ρ1

α1
)|φ12

i 〉 =
∑
j′j

〈φ12
i′ |φ23

j′ 〉〈φ12
j′ |V12( ρ

α1
)|φ12

j 〉〈φ23
j |φ12

i 〉. (4.29)
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We want to transform Eq. (4.29) into a matrix form. To do that, we will first write

Eq. (4.26) in matrix form

φ12 = t1φ
23, (4.30)

where

φ12 ≡


|φ12

1 〉

|φ12
2 〉
...

 , φ23 ≡


|φ23

1 〉

|φ23
2 〉
...

 , (4.31)

and

t1 ≡


〈φ23

1 |φ12
1 〉 〈φ23

1 |φ12
2 〉 . . .

〈φ23
2 |φ12

1 〉 〈φ23
2 |φ12

2 〉 . . .
...

...

 , (4.32)

where t1 is the matrix containing the Talmi-Moshinsky coefficients defined in (4.22).

Note that that the subscript on t1 is chosen because it is the matrix which transforms

the spatial basis functions from frame 3 to frame 1. This matrix will be referred to

as the Talmi transformation matrix. By analogy, the Talmi transformation matrix

which transforms the spatial basis functions from frame 3 to 2 will be denoted as t2

and will have the form

t2 ≡


〈φ31

1 |φ12
1 〉 〈φ31

1 |φ12
2 〉 . . .

〈φ31
2 |φ12

1 〉 〈φ31
2 |φ12

2 〉 . . .
...

...

 . (4.33)

Lastly, we will define

V12(α) ≡


〈φ12

1 |V12( ρ
α

)|φ12
1 〉 〈φ12

1 |V12( ρ
α

)|φ12
2 〉 . . .

〈φ12
2 |V12( ρ

α
)|φ12

1 〉 〈φ12
2 |V12( ρ

α
)|φ12

2 〉 . . .
...

...

 , (4.34)

which is the matrix representation of the potential between particles 1 and 2 in the

|φ12
i 〉 basis for a varying parameter α. Then we can use (4.30) and (4.34) to write
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(4.29) in matrix form as

V23 = tT1 V12(α1)t1, (4.35)

where V23 is the matrix representation of V23( ρ1

α1
) in the |φ12

i 〉 basis. The Talmi trans-

formation matrices t1 are used to transform V12(α1) to V23. Similarly, we can also

obtain

V31 = tT2 V12(α2)t2. (4.36)

Altogether, the total potential in matrix form reads

V = V12(α) + tT1 V12(α1)t1 + tT2 V12(α2)t2. (4.37)

Note, that the Talmi transformation matrices t1 and t2 are doing all the heavy-lifting.

We only need to compute the matrix representation of the V12(α) operator in the 12

SHO basis for different parameters; α, α1 and α2, and the matrices t1 and t2 take

care of the rest. Since, V12 is a two-body potential, we have effectively turned a

complicated three-body problem into three copies of the two-body problem.

Lastly, to obtain the 12 representation of a general operator element expressed in the

23 basis, we can use the Talmi-Moshinsky transformations as follows

〈φ12
i′ |O(ρ1, λ1;α1, β1)|φ12

i 〉 =
∑
j′j

〈φ12
i′ |φ23

j′ 〉〈φ12
j′ |O(ρ, λ;α1, β1)|φ12

j 〉〈φ23
j |φ12

i 〉, (4.38)

where we have used similar logic that took us from Eq. (4.27) → (4.29), and where

j′ and j are the same summation variables present in Eq. (4.22) obeying the same

conditions. Similarly, to obtain the 12 representation of an operator expressed in the

31 basis, its element can be obtained as follows,

〈φ12
i′ |O(ρ2, λ2;α2, β2)|φ12

i 〉 =
∑
j′j

〈φ12
i′ |φ31

j′ 〉〈φ12
j′ |O(ρ, λ;α2, β2)|φ12

j 〉〈φ31
j |φ12

i 〉. (4.39)

For example, let us say we wanted to represent an element of the r1 = ρ1

α1
operator, in

the 12 SHO basis. It is one of many operators which can appear in the V23( ρ1

α1
) term
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describing the force between particles 2 and 3. Using Eq. (4.38), we have

〈φ12
i′ |
ρ1

α1

|φ12
i 〉 =

∑
j′j

〈φ12
i′ |φ23

j′ 〉〈φ12
j′ |

ρ

α1

|φ12
j 〉〈φ23

j |φ12
i 〉, (4.40)

where the element 〈φ12
j′ |

ρ
α1
|φ12
j 〉 can be easily computed with the aid of Eq. (2.44).

Similarly, for the r2 = ρ2

α2
operator, we can use Eq. (4.39) to get

〈φ12
i′ |
ρ2

α2

|φ12
i 〉 =

∑
j′j

〈φ12
i′ |φ31

j′ 〉〈φ12
j′ |

ρ

α2

|φ12
j 〉〈φ31

j |φ12
i 〉. (4.41)

All of the equations (4.38), (4.39), (4.40) and (4.41) can be expressed in matrix

notation by "packaging" the Talmi-Moshinsky coefficients into a matrix as defined in

Eqs. (4.32) and (4.33). So, instead of performing the transformations on individual

elements, we can use the t1 (t2) matrix to obtain the 12 representation of an operator

expressed in the 23 (31) basis. Such that,

matrix︷ ︸︸ ︷
O12(ρ1, λ1;α1, β1) =

product of three matrices︷ ︸︸ ︷
tT1O12(ρ, λ;α1, β1)t1, (4.42)

where O12(ρ1, λ1;α1, β1) is the matrix representation of the O(ρ1, λ1;α1, β1) operator

in the 12 basis. Equation (4.42) is the matrix form of Eq. (4.38). And for an operator

expressed in the 31 basis, we have

O12(ρ2, λ2;α2, β2) = tT2O12(ρ, λ;α2, β2)t2. (4.43)

4.5 Ordering of SHO Basis Functions

In this section, we will describe how we order the coupled SHO basis functions for the

three-body problem. The scheme for which basis states will be used in the calculations

depends on the properties of Talmi-Moshinsky transformations which conserve the
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γ {n, l, N, L} combinations

0 {0,0,0,0}
2 {0,0,1,0}, {0,1,0,1}, {1,0,0,0}
4 {0,0,2,0}, {0,1,1,1}, {0,2,0,2}, {1,0,1,0}, {1,1,0,1}, {2,0,0,0}
...

...

Table 4.1: Possible n, l, N and L combinations given a value of γ for positive
space parity (P = +1) states coupled to total orbital angular momentum Λ = 0.

γ {n, l, N, L} combinations

1 {0,0,0,1}, {0,1,0,0}
3 {0,0,1,1}, {0,1,0,2}, {0,1,1,0}, {0,2,0,1}, {1,0,0,1}, {1,1,0,0}
...

...

Table 4.2: Possible n, l, N and L combinations given a value of γ for negative
space parity (P = −1) states coupled to total orbital angular momentum Λ = 1.

energy of the coupled SHO wavefunction γ = 2n+2N+l+L, space-parity P = (−1)l+L

and total orbital angular momentum Λ. When generating a set of SHO basis functions

for our computations, we must therefore, specify the spatial parity P , the total orbital

angular momentum Λ and γmax (the maximum energy of states we want to consider),

and in return we receive all the basis functions which satisfy those criteria.

For example, if we want to generate a set of coupled SHO basis functions for a positive

space-parity state with total orbital angular momentum Λ = 0, and we only want to

use basis states up to γmax = 4, this will give us all the states in Table 4.1 with γ ≤ 4

which yields a total of 10 spatial basis functions.

On the contrary, for an odd parity state, with Λ = 1 and for γmax = 3, we will have

all the states found in Tab. 4.2 with γ ≤ 3 yielding 8 spatial basis states.

Our basis functions will be ordered according to their γ value. If we want to include

more basis states for our calculations we simply increase the value of γmax. We must

note that although, including more basis functions yields better approximations, it

significantly increases computation time. Note also that the number of spatial basis
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functions is "quantised", in the sense that we cannot use any number of spatial basis

functions for our approximations but only fixed amounts which are dependent on the

choice of P,Λ and γmax, some examples are shown in Fig. 4.1.

P Λ γmax Nφ

+1 0 0 1

+1 0 2 4

+1 0 4 10

+1 0 6 20

P Λ γmax Nφ

-1 1 1 2

-1 1 3 8

-1 1 5 20

-1 1 7 40

Figure 4.1: Number of basis functions Nφ for various combinations of P , Λ and
γmax. On the left are states with positive space-parity and on the right negative
space-parity states.

You might also note that we always go up in steps of γ = 2, as in Fig. 4.1. This is

because there are zero basis states with positive spatial parity and an odd γ value,

and vice-versa for negative space-parity states. Hence, it only makes sense that γ

values go up by two.
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5
Simple Harmonic Oscillator Potential Tests

In this chapter, we will perform a series of tests to ensure the robustness of our

method for solving three-body quantum mechanical systems. In this test case, we

will be solving the three-body quantum harmonic oscillator potential model. We

have chosen this as our test case due to its simple nature, and mainly because there

exist analytical solutions for this system. We will solve this model both analytically

and numerically using the techniques discussed in Ch. 4 to test our numerical method.

The tests will consist of comparing our numerical predictions of various observables,

such as the spectrum of the model, expectation values of the root mean square radii

between different pairs of particles in the system and the expectation value of the

wavefunction at the origin, against their analytical solutions. We will also investigate

the eigenvectors predicted by our numerical method and we will check whether we

are able to numerically satisfy the virial theorem.

Accurately predicting the analytical solutions for this system will serve as strong

validation that our numerical method is effective, which will be useful as we move on

to attempting to solve more complex three-body systems.
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5.1 Three-Body Harmonic Oscillator Potential

1
2
µ 3
ω

2
3
r

2 3

1
2 µ

1 ω
21 r 21

1
2
µ2ω

2
2r

2
2

r1

r2

r3

Figure 5.1: A system of three bodies held together by simple harmonic potentials
where ω1, ω2 and ω3 are allowed to have different values.

In this section, we will outline the Hamiltonian for the three-body simple harmonic

oscillator and describe how we will solve it numerically as well as analytically.

Each pair of particles ij in the system will be joined by a simple harmonic oscillator

potential defined as

V SHO
ij (rk) =

1

2
µkω

2
kr

2
k, (5.1)

where,

µk =
mimj

mi +mj

. (5.2)

The potential in Eq. (5.1) acts between each pair of particles as illustrated in Fig.

5.1. Note that ωk can be different for different pairs of particles and that the ωk’s

we see here are different from the ω previously seen, for example in Sec. 3.4, where

it was used to denote the variational/size parameter of the SHO basis wavefunctions

used for the numerical method. Here, the ωk’s are used to denote the "strength" of

the "springs" holding the particles in the system together. The reason for allowing

different ωk’s is because the model can be easily solved analytically when the ωk’s

take up special values, more on this soon.
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Previously, in Eq. (2.33) we have obtained the general form for a three-body Hamilto-

nian expressed in Jacobi coordinates. We can substitute the SHO potential specified

in Eq. (5.1) to get the three-body SHO Hamiltonian, which reads

HSHO =
3∑
i=1

mi +
p2
r

2µr
+
p2

R

2µR

+
1

2

(
µ3ω

2
3r

2
3 + µ1ω

2
1r

2
1 + µ2ω

2
2r

2
2

)
, (5.3)

where µr and µR are defined in Eq. (2.34).

For the purpose of solving the three-body SHO system analytically, we will modify

Eq. (5.3) by expressing the potential in terms of the Jacobi coordinates r3 and R3,

the reason for this will soon become clear. To do this let us introduce the following

relations
r1 = − m1

m1 +m2

r3 +R3,

r2 = − m2

m1 +m2

r3 −R3.
(5.4)

If we substitute in Eqs. (5.4) into Eq. (5.3) we see that cross terms proportional to

r3R3 would arise due to the r2
1 and r2

2 terms in Eq. (5.3). What we would like is a

Hamiltonian that can be expressed with out the cross-terms in the following way,

HSHO =
3∑
i=1

mi +
p2
r

2µr
+
p2

R

2µR

+
1

2
µrw

2
rr

2
3 +

1

2
µRw

2
RR

2
3, (5.5)

where wr and wR are to be determined. The cross-terms can be eliminated by imposing

the following constraint

ω2 = ω1

(
m1 +m3

m2 +m3

)1/2

, (5.6)

note that there are no constraints on ω3. This was the reason for introducing the

three different ωi’s. Moving on, we can use Eqs. (5.4) together with the constraint in

Eq. (5.6) to find that

wr =

√
2cr
µr
, wR =

√
2cR

µR

, (5.7)

where

cr =
m1m2(m3ω

2
1 + (m2 +m3)ω2

3)

2(m1 +m2)(m2 +m3)
, cR =

(m1 +m2)m3ω
2
1

2(m2 +m3)
. (5.8)
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Having obtained the desired form of the Hamiltonian in Eq. (5.5), we see that it can

be separated out into two separate two-body simple harmonic oscillators. Since the

spectrum of a single two-body harmonic oscillator is given by Eq. (2.29), therefore,

in this special case where the system is constrained by Eq. (5.6) the energy of the the

three-body SHO system is simply given as a sum of two two-body SHO systems,

ESHO = wr(2n+ l + 3
2
) + wR(2N + L+ 3

2
). (5.9)

We can now use the analytically derived spectrum to produce a set of energies and

test them against our numerical approach.

For the numerical approach, we will express the kinetic part of the Hamiltonian in

Eq. 5.3 in terms of the SHO spectrum, similarly as has previously been done to

arrive at Eq. (2.35). However, we can now use the property from Eq. (4.21), namely,

ωr = ωR = ω, to write (5.3) as

HSHO =
3∑
i=1

mi + ω(2n+ l + 3
2
)− 1

2
µrω

2r2
3

+ ω(2N + L+ 3
2
)− 1

2
µRω

2R2
3 (5.10)

+
1

2

(
µ3ω

2
3r

2
3 + µ1ω

2
1r

2
1 + µ2ω

2
2r

2
2

)
,

where ω is the variational parameter used for the variational method and is different

from ωi’s which are parameters of the potential. This will be the Hamiltonian used for

our numerical method which is just the three-body SHO Hamiltonian but expressed

in a way that is more efficient for our code.

We can now use our variational method and see how well we are able to reproduce

the analytical spectrum of the three-body SHO system.
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m1 m2 m3 ω1 ω3 Λ wr wR E(1S1S) E(1S2S) E(1D1D)
1 1 1 1 1 0

√
3/2

√
3/2 3.67423 6.12372 8.57321

Table 5.1: Parameters for the three-body SHO Hamiltonian plus analytically
obtained energies of some states. Λ is the total angular momentum.

5.2 Equal Mass Tests

In this section, we will start with the most trivial case, we will be investigating

various three-body SHO observables when the masses of all particles are identical

(m1 = m2 = m3 = 1). For this section we will also set ω1 = ω3 = 1, note that

ω2 is fixed according to Eq. (5.6). Given this choice of parameters we find that

wr = wR =
√

3/2. The analytically derived energy spectrum as defined by Eq. (5.9)

is then given as,

Eequal-mass =

√
3

2
(2n+ l +

3

2
) +

√
3

2
(2N + L+

3

2
). (5.11)

We have used the above equation to obtain a few bound state energies and have

recorded them in Tab. 5.1. We will use our numerical method to compute the energies

of the same states and see whether they agree. The accuracy of our predictions will

depend mainly on the number of spatial basis functions NQ. We expect that including

more basis functions will result in more accurate predictions of observables. We will

plot the energies as a function of the variational parameter ω and we expect there to

be an optimum value of ω which minimises the energy.

5.2.1 Energy Tests

In this section we will be checking whether our numerical method can reproduce the

analytically derived energies presented in Tab. 5.1. In Fig. 5.2 we plot our numerical
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Figure 5.2: Plots of eigenvalues as obtained by the code as a function of ω for
different numbers of basis functions NQ. The more states we consider the better
the approximation becomes and the less dependent on ω it is.
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predictions of energies for the three different states as a function of ω for three different

numbers of basis functions NQ. In each state, we have also plotted a reference line

that corresponds to the analytical value of that state’s energy. We can see, that for

each state our numerical method is able to reproduce the correct value of energy,

i.e. the minimum energy coincides with the analytical value of the states energy.

Moreover, when the variational parameter ω =
√

3/2, we are able to exactly match

the analytical solution. We can see that our predictions agree with the analytically

derived energy around the region of ω =
√

3/2, the region gets larger as we increase

the number of basis functions. Therefore, the more basis functions we include in our

calculation the less dependant the model is on the value of ω. This is in agreement

with our expectations as for an infinite number of basis functions we expect the

eigenvalues to be independent of ω.

5.2.2 Eigenvector Tests

In this section, we will investigate the behaviour of the components of eigenvectors

produced by our numerical method. We obtain the eigenvectors by diagonalising

the Hamiltonian matrix expressed in the SHO basis. The eigenvectors represent

the components of each basis function used in the numerical approximation. For

example, if we use ten basis functions to approximate the wavefunction of the 1S1S

three-body SHO bound state we expect the contribution from the 1S1S basis function

to be the largest and the contributions from other basis functions, such as the 1S2S

or 1P1P to be significantly smaller. In Fig. 5.3, we plot the numerically obtained

eigenvector components of the 1S1S three-body SHO bound state for different values

of the variational parameter ω. In the final plot (bottom right) we focus on the

1S1S component of the eigenvector only, to see how its value depends on ω. In the

figure, we can see how the Hamiltonian slowly becomes diagonal when ω →
√

3/2.

Specifically, we see that the contribution of the 1S1S basis function is exactly 1 when
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Figure 5.3: Eigenvector components of the 1S1S state as computed by the code.
First five graphs plot all eigenvector components for specific values of ω. The last
graph contains plots of only the first component as a function of ω for different
numbers of basis functions.
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the variational parameter ω =
√

3/2, i.e. no other basis function contributes to

the states eigenfunction (the Hamiltonian becomes diagonal at that point). In the

plot where we focus only on the 1S1S component of the eigenvector we see that as we

increase the number of basis functions, the curves become more sharply peaked about

ω =
√

3/2. This could be explained by the fact that there are more possible non-zero

eigenvector components when we include more basis functions. In other words, had

we only used a single basis function (the 1S1S basis function) then the contribution

from it would of course be largest, but as we start adding more basis functions then

the contribution from the 1S1S state must diminish given that the contribution from

other basis functions are non-zero. This is why the curves in the last plot become

sharper as we increase the number of basis states.

From the analysis of the 1S1S eigenvector and its components as illustrated in Fig.

5.3 we see that the eigenvector behaves as expected for varying values of ω and for

increasing number of basis functions. However, same is not true for the excited states

in the equal mass case. We would like to comment on an interesting observation

when investigating the components of eigenvectors of excited states in the equal mass

case. We find that the eigenvector components of the excited states fluctuate dis-

continuously as we vary ω. We believe this happens due to the degeneracy between

the states when all particle masses are the same. We illustrate this behaviour in Fig.

5.4, where we plot the absolute square of the components of the 1S2S eigenvector

as a function of the size-parameter ω. We only show the components whose energy

matches the energy of the eigenfunction, i.e. only the contribution from the 1S2S,

1P1P and 2S1S SHO basis states. We also plot the sum of their components as a

black line which we see is continuous. We also mark the point where ω =
√

3/2 and

where |c2| = 1. In the plot we find that the 1S2S and 2S1S components, represented

by the green and red dashed lines overlap and do not exceed |c2| = 0.5 and the 1P1P

component contributes most when the 1S2S and 2S1S components are contributing

least. When we set ω =
√

3/2 we find that the 1S2S component becomes equal to

one and all other components become null, which is the expected behaviour. What is
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Figure 5.4: Plot of components of the 1S2S eigenvector as a function of ω for the
equal mass case.

not expected is the discontinuity but as mentioned previously this behaviour is only

found in the equal mass case and has no effect on the energy of excited states.

5.2.3 Root Mean Square Radius Test

In this section, we will be investigating the expectation value of the root mean square

(r.m.s.) radius of the 12 pair of particles. We will obtain the expectation value

analytically as well as numerically and see how the two compare. We define the

r.m.s. radius of particles 1 and 2 as 〈r2
3〉1/2. For a general observable, its expectation
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Figure 5.5: Plot of the expectation values of r.m.s. radius for the three identical
pairs of particles in the system as a function of ω for the 1S1S state and for
different numbers of quanta.

value is given by,

〈O〉 = 〈Ψ|O|Ψ〉 =
∑

n′l′N ′L′
nlNL

〈Ψ|n′l′N ′L′〉〈n′l′N ′L′|O|nlNL〉〈nlNL|Ψ〉, (5.12)

which is the operator matrix represented in the SHO basis, sandwiched between the

eigenvectors of the system’s Hamiltonian also represented in the SHO basis. Nu-

merically, we are able obtain the expectation value as a function of the variational

parameter ω. Analytically, the expectation value of r2
3 can be obtained using Eq.

(2.44). For the 1S1S state, where ωr =
√

3/2 we get 〈r2
3〉1/2 = 1.565GeV−1. In

Fig. 5.5 we plot the analytical result as a dashed horizontal line. We find that our

numerical method accurately predicts the expectation value. We also find that the

approximation becomes less dependent on on the variational parameter as the number

of basis functions Nφ increases.
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Figure 5.6: Plot of expectation value of the delta operator for the 1S1S state as
function of ω and for different number of basis functions. This plot is conjugate
to particle pair {1, 2}.

5.2.4 Wave Function at the Origin

In this section, we will test our numerical method to see if we can predict the correct

value of the wave function at the origin for the 12 pair of particles defined as 〈δ(3)(r3)〉.

Analytically, we can obtain the expectation value of the δ operator using Eq. (2.56).

In the equal mass case, for the 1S1S state δ(3)(r3) = 0.0861GeV3. In Fig. 5.6 we plot

the analytical value as a horizontal dashed line along with the numerical predictions

for different numbers of basis functions Nφ. We find that we are able to accurately

reproduce the analytical result at the optimum value of the variational parameter

ω =
√

3/2.

5.3 Unequal Mass Tests

Eunequal-mass = 2

√
2

5
(2n+ l +

3

2
) +

√
6

5
(2N + L+

3

2
). (5.13)
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m1 m2 m3 ω1 ω3 ωr ωR E(1S1P) E(1P1D)
1 2 3 1 1 2

√
2/5

√
6/5 4.63598 6.99634

Table 5.2: Unequal mass simple harmonic oscillator potential parameters plus
analytically determined energies of states 1S1P and 1P1D.
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Figure 5.7: Plots of eigenvalues as computed by the code for states 1S1P and
1P1D as functions of ω and for different number of basis functions Nφ.

In this section, we will move away from the trivial, equal-mass case and test our

numerical method when all the particle masses are different. The parameters that

will be used for the unequal mass case are given in Tab. 5.2 along with computed

values of ωr, ωR and the energies of two different bound states. We want to obtain the

masses of those states using our numerical method and check how they compare with

the analytical results. We will also be looking at various other observables like we did

in the equal mass case and ensure that we are able to obtain expectation values that

agree with analytical results in the unequal mass case.
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5.3.1 Energy Tests

In this subsection, we compare the energies of two SHO bound states obtained nu-

merically and analytically. In Fig. 5.9 we plot the energy of the states as a function

of the variational parameter ω for different numbers of SHO basis functions Nφ. We

also mark the analytical value of the energy for each state as a dashed line. We find

that our numerical method is able to predict the correct energy of the state and its

accuracy improves as we include more basis functions.

We want to comment on the plot on the right in Fig. 5.7. When we only use 8 basis

functions we can see a small gap between the analytical and numerical predictions

of the energy. In other words, there is no value of ω where the two are equal. If

we recall back to the equal mass case we found that at the value of ω =
√

3/2 our

code was able to exactly reproduce the analytical result. However, in the unequal

case this is no longer the case. Instead, we get an upper bound of the energy, we

really see the variational method at play, where the numerical prediction lies above

the true (analytical) value and as we increase the number of basis functions we get

closer to the true value. The reason we see this here and not in the equal mass case

is because in the equal mass case we had ωr = ωR and we were able to match that

with our variational parameter ω, in the unequal mass case this is no longer possible

since ωr 6= ωR.

5.3.2 Eigenvector Test

In Fig. 5.8 we plot the 1S1P eigenvector component of the 1S1P SHO bound state for

the unequal mass case as a function of ω for different numbers of basis functions. We

find that, similarly as with the energy plots in previous subsection, none of the lines

actually touch the horizontal dashed line corresponding to |c2
1| = 1. This is expected
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Figure 5.8: Dominating eigenvector component (1S1P) of the 1S1P SHO bound
state as function of ω for different numbers of basis functions.

since, again, ωr 6= ωR. Besides that, the component has similar behaviour as in the

equal mass case, see Fig. 5.3.

5.3.3 Root Mean Square Radius

In this subsection, we will test our numerical method for obtaining the expectation

value of the r.m.s. radius between particles 1 and 2 〈r2
3〉1/2 for the unequal mass case.

To obtain the analytical value for this observable we can use Eq. (2.44). For the 1S1P

state we have 〈r2
3〉1/2 = 1.334GeV−1 and for the 1P1D state 〈r2

3〉1/2 = 1.722GeV−1.

These values have been marked on Fig. 5.9. We find that our code predicts the correct

value of the observable.
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Figure 5.9: Plots of expectation values of the rms distance between the 12 pair
of particles for the 1S1P and 1P1D states. Dashed horizontal line marks the
analytical value.

83



CHAPTER 5. SIMPLE HARMONIC OSCILLATOR POTENTIAL TESTS

5.3.4 Wave Function at the Origin
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Figure 5.10: Expectation values of the delta function of states 1S1P as function
of ω.

In this subsection, we will show that we can use our numerical approach for obtaining

the expectation value of the wave function at the origin for particles 1 and 2, defined

as 〈δ(3)(r3)〉, for the unequal mass case. We will be comparing the prediction of our

numerical method to the analytical value obtained using Eq. (2.56). For the 1S1P

state 〈δ(3)(r3)〉 = 0.139GeV3. We find that our method is able to correctly identify

the value of the wave function at the origin as demonstrated in Fig. (2.56).

5.4 Virial Theorem Test

In this last section, we will show that our numerical method satisfies the virial theo-

rem. Virial theorem states that for a system of particles in a simple harmonic potential

the expectation value of the kinetic energy 〈T 〉 should be equal to the expectation

value of the potential energy 〈V 〉,

〈T 〉 = 〈V 〉. (5.14)
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Figure 5.11: Plots of 〈T 〉 and 〈V 〉 for the 1S1S state for both the equal and
unequal mass cases.

We will use our numerical method to obtain the expectation values of the kinetic and

the potential energy and check if they are equal. From Eq. (5.10) we have

T =
3∑
i=1

mi + ω(2n+ l + 3
2
)− 1

2
µrω

2r2
3 + ω(2N + L+ 3

2
)− 1

2
µRω

2R2
3,

V =
1

2

(
µ3ω

2
3r

2
3 + µ1ω

2
1r

2
1 + µ2ω

2
2r

2
2

)
.

(5.15)
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Figure 5.12: Plots of 〈T 〉 and 〈V 〉 for the 1P1S state for both the equal and
unequal mass cases.
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In Fig. 5.11, we plot the expectation values 〈T 〉 and 〈V 〉 for the 1S1S state for the

equal mass case (left) and unequal mass case (right) as a function of the number of

basis functions Nφ. We plot the same quantities for the 1P1S state in Fig. 5.12 and

find that the virial theorem is satisfied for both states when sufficient number of basis

functions are used for the calculations. For the equal mass case we have used model

parameters specified in Tab. 5.1 and for the unequal mass case, we have used the

parameters specified in Tab. 5.2.

This concludes the chapter, we have tested our numerical method against analyt-

ical results for the three-body SHO system and found that our method of solving

three-body systems using Talmi-Moshinsky transformations is able to reproduce the

analytical results to a high degree of accuracy. We have tested the model for an equal

mass case where all particles had the same mass and for an unequal mass case where

all particles had different masses. Our code was able to perform well in all cases and

is able to correctly predict the expectation values of various observables such as the

r.m.s. radius or the value of the wave function at the origin.
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6
Baryon Spin-Space Basis Sets

Before we embark on solving baryon potential models, we will address the added

complication in constructing the spin-space basis sets for a baryon system, which

arises due to the Pauli exclusion principle.

In Ref. [1], Silvestre et al. described dealing with systems containing three identical

quarks as "painful", due to the Pauli exclusion principle being imposed on all pairs

of identical quarks. This requires the construction of symmetrised basis sets. While

the task is relatively straightforward in cases with zero or two identical quarks, it

becomes more complex in the case of three identical quarks where, the symmetrised

spin-space basis functions will in general be given as linear combinations of coupled

SHO wavefunctions.

In this chapter, we will describe our method for constructing the symmetrised spin-

space basis, which will heavily rely on a previously developed framework for trans-

forming SHO basis wavefunctions, described in Ch. 4. We will extend the concepts

developed in that chapter to include the spin degrees of freedom. Generating the

symmetrised spin-space basis sets will then come at very little extra cost as it will

rely on techniques we are already familiar with.
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6.1 Introduction to Spin-Space Basis Functions

The total baryon wavefunction will be described as the product of the colour, flavour,

spin and space wavefunctions. When a baryon state contains pairs of identical quarks,

in order to satisfy the Pauli exclusion principle, we must ensure that the total wave-

function will explicitly be made antisymmetric under the interchange of the identical

pairs. Since the colour wavefunction is always totally antisymmetric, we will only need

to ensure that the flavour-spin-space part of the wavefunction is made symmetric un-

der the interchange of the identical pairs of quarks. For an (anti)symmetric flavour

wavefunction we need to construct an (anti)symmetric spin-space wavefunction. We

note that the only role of the flavour wavefunction, in this work, will be to fix the

symmetry of the spin-space basis.

To construct the appropriately symmetrised spin-space basis for each type of baryon,

we introduce the following different types of eigenstates which we will encounter in

this chapter,

|ψn〉 = |ψ1〉, |ψ2〉, . . . , (6.1)

|ϕa〉 = |ϕ1〉, |ϕ2〉, . . . , (6.2)

|φi〉 = |φ1〉, |φ2〉, . . . , (6.3)

where n, a and i are generic labels representing all the quantum numbers describing

that state. The wavefunctions |ψn〉 represent the total spin-space wavefunctions cor-

responding to a particular baryon state, they are defined as the eigenstates of the

Hamiltonian

H|ψn〉 = En|ψn〉. (6.4)

The eigenstates |ψn〉 will be expanded on the symmetrised spin-space basis denoted

as |ϕa〉 which will be specially crafted to obey the Pauli exclusion principle for a given
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baryon

|ψn〉 =
∑
a

|ϕa〉〈ϕa|ψn〉. (6.5)

The expansion coefficients 〈ϕa|ψn〉 are obtained by diagonalising the Hamiltonian

in the |ϕa〉 basis denoted as Hϕ. The symmetrised basis functions |ϕa〉 are in turn

constructed out of the spin-space basis functions |φi〉 which are agnostic to the Pauli

exclusion principle

|ϕa〉 =
∑
i

|φ12
i 〉〈φ12

i |ϕa〉, (6.6)

most of this chapter will be devoted to constructing the |ϕa〉 wavefunctions out of the

|φ12
i 〉 spin-space basis functions. i.e. determining the expansion coefficients 〈φ12

i |ϕa〉.

Lastly, the spin-space basis functions |φ12
i 〉 are defined as the Clebsch-Gordan sum of

a spatial and a spin basis function with a combined angular momentum J = Λ + S,

expressed in the 12 basis

|φ12
i 〉 =

∑
MΛMS

〈JMJ |ΛMΛSMS〉〈ρ,λ|nlNL : ΛMΛ〉|S12SMS〉, (6.7)

where, Λ = l + L is the states total orbital angular momentum and S = S12 + S3

is its total spin. Therefore, we have a hierarchical structure of eigenstates where, the

total spin-space wavefunction |ψn〉 is constructed out of symmetrised basis functions

|ϕa〉 which are in turn constructed out of the |φ12
i 〉 basis functions.

6.2 Generalised Transformation Matrices

Similarly as in Sec. 4.4, we will define here the relation between the spin-space basis

functions in the 12 basis, denoted as |φ12
i 〉, and the spin-space basis functions in the

two remaining basis |φ23
i 〉 and |φ31

i 〉. In Sec. 4.4, we have described such transforma-

tions only for the spatial basis functions, using the matrices ti defined in Eqs. (4.32)

and (4.33) In this section, we will obtain the analogue of these, which will now also
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include the spin degrees of freedom.

The transformation of the spin-space basis functions from the 12 to the 23 coordinate

basis can be expressed as

|φ12
i 〉 =

∑
j

|φ23
j 〉〈φ23

j |φ12
i 〉. (6.8)

Then the generalised transformation matrix will be defined as

T1 =


〈φ23

1 |φ12
1 〉 〈φ23

1 |φ12
2 〉 . . .

〈φ23
2 |φ12

1 〉 〈φ23
2 |φ12

2 〉 . . .
...

...

 , (6.9)

which is a matrix of expansion coefficients defined in Eq. (6.8). We will now show

how we can obtain the elements of the T1 matrix. To do this let us write out |φ12
i 〉 in

full. Since |φ12
i 〉 is a combination of the spatial and spin basis functions it is described

by the following quantum numbers

|φ12
i 〉 = |nlNL : Λ〉|S12S〉, (6.10)

where we have separated out the spatial and spin wavefunctions. In a similar fashion,

the spin-space basis function in the 23 basis is given as

|φ23
i 〉 = |n1l1N1L1 : Λ〉|S23S〉, (6.11)

The expansion in Eq. (6.8), can now be written as

|nlNL : Λ〉|S12S〉 =∑
n1,l1N1L1

S23

|n1l1N1L1 : Λ〉|S23S〉〈n1l1N1L1 : Λ|nlNL : Λ〉〈S23S|S12S〉, (6.12)

where 〈n1l1N1L1 : Λ|nlNL : Λ〉 are the familiar Talmi coefficients and 〈S23S|S12S〉
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are the expansion coefficients related to the basis transformation of the spin wave-

functions. The necessary expansion coefficients for the transformations of spin basis

functions are given as

|S12, S〉 ≡ |0, 1
2
〉12 = −1

2
|0, 1

2
〉23 −

√
3

2
|1, 1

2
〉23, (6.13)

|1, 3
2
〉12 = |1, 3

2
〉23, (6.14)

Similarly for the 12 to 31 basis transformation, we have

|0, 1
2
〉12 = −1

2
|0, 1

2
〉31 +

√
3

2
|1, 1

2
〉31, (6.15)

|1, 3
2
〉12 = |1, 3

2
〉31. (6.16)

The factors of −1
2
and ±

√
3

2
(expansion coefficients) can be looked up in Ref. [67] and

involve the use of 6− j symbols. The elements of the T1 matrix are thus products of

Talmi coefficients and the appropriate spin transformation coefficients found in Eqs.

(6.13) through to (6.16). The same steps can be followed to obtain the generalised

transformation matrix T2 which is defined as

T2 =


〈φ31

1 |φ12
1 〉 〈φ31

1 |φ12
2 〉 . . .

〈φ31
2 |φ12

1 〉 〈φ31
2 |φ12

2 〉 . . .
...

...

 , (6.17)

which is responsible for the 12 to 31 transformation of the spin-space basis functions.

We can use the generalised transformation matrices to obtain matrix representations

of operators expressed in the 23 and 31 coordinate basis using the same prescription

as in Eq. (4.38), i.e.

Oij = T Tk O12(αk)Tk, (6.18)

with ij = 23 or 31, and Oij is a general operator matrix represented in the |φ12
i 〉 basis.

For example, if we wanted to obtain the matrix representation of the operator S2 ·S3

in the |φ12
i 〉 basis. Which is an operator that appears in the spin-spin interaction term
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between quarks 2 and 3, we can use the T1 matrix, to get


〈φ12

1 |S2 · S3|φ12
1 〉 〈φ12

1 |S2 · S3|φ12
2 〉 . . .

〈φ12
2 |S2 · S3|φ12

1 〉 〈φ12
2 |S2 · S3|φ12

2 〉 . . .
...

...

 =

TT
1


〈φ12

1 |S1 · S2|φ12
1 〉 〈φ12

1 |S1 · S2|φ12
2 〉 . . .

〈φ12
2 |S1 · S2|φ12

1 〉 〈φ12
2 |S1 · S2|φ12

2 〉 . . .
...

...

T1. (6.19)

Another similar example is the ρ2 operator, which appears in the linear part of the

Cornell potential for the 31 pair of quarks. To obtain its matrix representation in the

|φ12
i 〉 basis we can perform the same trick; obtain the representation of the ρ operator

in the 12 basis and use the generalised transformation matrices to get,


〈φ12

1 |ρ2|φ12
1 〉 〈φ12

1 |ρ2|φ12
2 〉 . . .

〈φ12
2 |ρ2|φ12

1 〉 〈φ12
2 |ρ2|φ12

2 〉 . . .
...

...

 =

TT
2


〈φ12

1 |ρ|φ12
1 〉 〈φ12

1 |ρ|φ12
2 〉 . . .

〈φ12
2 |ρ|φ12

1 〉 〈φ12
2 |ρ|φ12

2 〉 . . .
...

...

T2. (6.20)

6.3 Components of the Total wavefunction

In this section, we will describe what determines the symmetries of the colour, flavour,

spin and space components of the total baryon wavefunction. Each of these compo-

nents can be symmetric or antisymmetric, or neither in the case of the flavour wave-

function, under the interchange of pairs of quarks. In order to understand how to

construct symmetrised basis sets, let us look into what determines the symmetry of

each component of the total wavefunction.
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6.3.1 Colour

The colour wavefunction is always totally antisymmetric under the interchange of any

pair of quarks.

6.3.2 Flavour

In the case where all quarks are different, the flavour wavefunction will neither be

symmetric nor antisymmetric under the exchange of any pair of quarks.

For the case of two equal quarks, if the identical quarks are the heavy ss, cc or bb

pairs then the flavour wavefunction will only be symmetric under the interchange of

those quarks.

However, if the two identical quarks are the up and the down quark, the flavour

wavefunction can be either symmetric or antisymmetric. This is because we assume

an SU(2) (u, d) flavour symmetry, due to their masses being approximately equal.

This gives rise to an Isospin doublet. The up and down quarks can combine to form

either a singlet or a triplet state, with the triplet being a symmetric state and the

singlet being antisymmetric. In flavour SU(2), the baryon multiplets that arise are

|I, Iz〉 = |0, 0〉 =
1√
2

(ud− du)

}
antisymmetric isospin 0 singlet, (6.21)

|1, 1〉 = uu

|1, 0〉 =
1√
2

(ud+ du)

|1,−1〉 = dd


symmetric isospin 1 triplet. (6.22)

In our work, the models that we use, assume the triplet states to be degenerate, re-

sulting in only two separate states originating from the SU(2) approximate symmetry.
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Those two separate states will be referred to as Λq(udq) and Σq(uuq) with q being

either the charm or the bottom quark, in our work.

Lastly, in the case of all equal quarks, where we will only be looking at ccc and bbb

combinations, the flavour wavefunction will be totally symmetric under the inter-

change of any pair of identical quarks. See Tab. 6.1 for a summary.

Baryon 12 23 31 I

All quarks different − − − −

(qq)q′ (q = s, c or b) S − − −

Λq(udq) (q = c or b) A − − 0

Σq(uuq) (q = c or b) S − − 1

(qqq) (q = c or b) S S S −

Table 6.1: Symmetry of the flavour wave function under the interchange of each
quark pair for different quark configurations, I = Isospin, q′ represents a quark
different from q, A=Antisymmetric, S=Symmetric and the symbol ’−’ means not
applicable.

6.3.3 Spin

The spin wavefunction which we denote as |SijS〉, can be symmetric or antisymmetric

under the interchange of quarks i and j depending on the quantum number Sij =

Si + Sj. Each quark possesses spin Si = 1
2
, two quarks can combine to produce an

antisymmetric singlet state with spin Sij = 0 or a symmetric triplet state with spin
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Sij = 1, i.e. 1
2
⊗ 1

2
= 0⊕ 1, or in more detail,

|Sij,M ij
s 〉 = |0, 0〉 =

1√
2

(↑↓ − ↓↑)
}

antisymmetric spin 0 singlet, (6.23)

|1, 1〉 = ↑↑

|1, 0〉 =
1√
2

(↑↓ + ↓↑)

|1,−1〉 = ↓↓


symmetric spin 1 triplet. (6.24)

where M ij
s is the projection of Sij, the up and down arrows represent a spin up or

spin down quark, respectively. Therefore, the symmetry of the spin wavefunction is

determined by the quantum number Sij, if it is 0 it means it is antisymmetric and if

1, it is symmetric under the interchange of quarks i and j. Similarly, as in flavour,

we treat the triplet spin states as degenerate, as the models that we work with are

not sensitive to the projections of spin.

6.3.4 Space

The spatial basis functions are constructed from coupled SHO wavefunctions. A

coupled SHO basis function in the 12 basis is given as a Clebsch-Gordan sum of a

product of SHO wavefunctions

〈ρ,λ|nl,NL : ΛM〉 =
∑
mM

〈lmLM |ΛM〉〈ρ|nlm〉〈λ|NLM〉, (6.25)

There also exist spatial basis sets defined for the 23 and 31 coordinate basis

〈ρ1,λ1|n1l1, N1L1 : ΛM〉 =
∑
m1M1

〈l1m1L1M1|ΛM〉〈ρ1|n1l1m1〉〈λ1|N1L1M1〉, (6.26)

〈ρ2,λ2|n2l2, N2L2 : ΛM〉 =
∑
m2M2

〈l2m2L2M2|ΛM〉〈ρ2|n2l2m2〉〈λ2|N2L2M2〉. (6.27)
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The symmetry of the spatial basis function in Eq. (6.25) under the interchange of

quarks 1 and 2 is determined by the orbital angular momentum coupled to the ρ

coordinate, namely the quantum number l. The spatial wavefunction is symmet-

ric/antisymmetric under the interchange of particles 1 and 2 when l is even/odd, we

have illustrated this in Fig. 2.3.

If only quarks 1 and 2 are identical, then the symmetry constraint is only imposed

on the spatial basis functions in the 12 basis, constraining the value of l. However,

if all quarks are identical, then this also limits the other two spatial basis defined for

the 23 and 31 coordinate basis shown in Eqs. (6.26) and (6.27). When all quarks

are identical this constraints not only l but also the quantum numbers l1 and l2.

Therefore, the more identical quarks there are in our system, the more restricted our

pool of spatial basis functions will become.

6.4 The Three Separate Cases

In this section, we will discuss how we will construct the symmetrised basis |ϕa〉

for baryons containing zero, two and three identical quarks. The |ϕa〉 sets will be

dependent on the symmetry of the flavour wavefunction and the number of identical

quarks present in the system.

We note that the method we are using for dealing with equal quarks has mainly been

developed with the three-equal-quarks case in mind. Nevertheless, for consistency

we will use the same method for obtaining the appropriately symmetrised spin-space

basis sets |ϕa〉 for the two remaining cases (zero and two identical quarks).
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6.4.1 General Method

What we are mainly interested in is obtaining the symmetrised Hamiltonian matrix

Hϕ defined as

Hϕ =


〈ϕ1|H|ϕ1〉 〈ϕ1|H|ϕ2〉 . . .

〈ϕ2|H|ϕ1〉 〈ϕ2|H|ϕ2〉 . . .
...

...

 , (6.28)

which is ensured to obey the Pauli exclusion principle. The general approach for

obtaining Hϕ will start with building the Hamiltonian Hφ

Hφ =


〈φ1|H|φ1〉 〈φ1|H|φ2〉 . . .

〈φ2|H|φ1〉 〈φ2|H|φ2〉 . . .
...

...

 , (6.29)

we note that Hφ breaks up into diagonal blocks with equal J , P , Λ and S quantum

numbers, where P = (−1)l+L is the parity of a state. Thus, we will preemptively

only construct single blocks of Hφ and when generating a set of |φi〉 basis functions

we will ensure that the set only contains states with equal J , P , Λ and S quantum

numbers. Note that Λ and S are good quantum numbers, only because the considered

Hamiltonians do not include the spin-orbit or tensor terms, but only the spin-spin

term. Had we also included those terms, Hφ would break up into blocks of equal J

and P quantum numbers but not necessarily equal Λ and S.

Let us present here an example of a spin-space basis set {|φi〉} which we will generate

using our code with the following quantum numbers JP = 1
2

+, Λ = 0 and S = 1
2
with

γ ≤ 2, where γ = 2(n+N)+ l+L. For this combination of inputs, the code generates
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all the states satisfying those conditions,

{|φi〉} =



n l N L Λ S12 S

0 0 0 0 0 0 1/2

0 0 0 0 0 1 1/2

0 0 1 0 0 0 1/2

0 0 1 0 0 1 1/2

0 1 0 1 0 0 1/2

0 1 0 1 0 1 1/2

1 0 0 0 0 0 1/2

1 0 0 0 0 1 1/2



. (6.30)

There are 8 space-spin basis functions |φi〉 in total satisfying the chosen quantum

numbers. We could generate a larger set of spin-space basis functions for a better

approximation by increasing the threshold γ which limits the number of spin-space

basis functions. However, for this demonstration it will suffice to use γ ≤ 2. You can

check that all states in (6.30) satisfy the selected quantum numbers.

The relation between Hϕ and Hφ can be obtained by using the expansion in Eq. (6.6),

the element of Hϕ then can be expressed as

〈ϕa′ |H|ϕa〉 =
∑
ii′

〈ϕa′ |φi′〉〈φi′ |H|φi〉〈φi|ϕa〉 = ϕ†a′Hφϕa, (6.31)

with

ϕa ≡


〈φ1|ϕa〉

〈φ2|ϕa〉
...

 . (6.32)
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We can substitute (6.31) into (6.28) to obtain

Hϕ =


ϕ†1Hφϕ1 ϕ†1Hφϕ2 . . .

ϕ†2Hφϕ1 ϕ†2Hφϕ2 . . .
...

...

 =


ϕ†1

ϕ†2
...

Hφ

(
ϕ1 ϕ2 . . .

)
= ϕ†Hφϕ, (6.33)

where

ϕ ≡
(
ϕ1 ϕ2 . . .

)
≡


〈φ1|ϕ1〉 〈φ1|ϕ2〉 . . .

〈φ2|ϕ1〉 〈φ2|ϕ2〉 . . .
...

...

 , (6.34)

i.e. ϕ is the matrix of expansion coefficients defined previously in Eq. (6.6). In fact,

Eq. (6.33) can be generalised to any operator O as

Oϕ = ϕ†Oφϕ, (6.35)

where any operator in the |φi〉 basis can be transformed into an operator in the

symmetrised |ϕa〉 basis by using the ϕ transformation matrices.

We note that the spin-space basis expansions are supposed to be over infinite sets

but of course we truncate the expansion to deal with finite sums. After truncating

the number Nφ of states in the |φi〉 basis, the number of states in the |ϕa〉 basis is

Nϕ ≤ Nφ. Thus ϕ as defined in Eq. (6.34) will not in general be a square matrix. To

summarise, the pipeline for obtaining Hϕ in all cases is shown in Fig. (6.1).

99



CHAPTER 6. BARYON SPIN-SPACE BASIS SETS

1. Choose J, P,Λ, S, γmax and generate {|φi〉}

2. Construct Hφ

3. Obtain projection matrix ϕ

4. Apply Projection: Hϕ = ϕ†Hφϕ

Figure 6.1: A simplified procedure flowchart for obtaining Hϕ using our code.

The missing link that remains, is obtaining the matrix ϕ which will take us from Hφ

to Hϕ. To give a feel for what one might expect, in the case with no equal quarks,

the ϕ matrix will just be an identity matrix as no additional symmetry constraints

need to be imposed on the |φi〉 basis. We will show how to obtain ϕ for each separate

case in the following sections.

6.4.2 No Identical Quarks

Starting with the trivial case where all quarks are different, which is true for e.g.

the Ξc(usc) baryon, composed of three different quarks; up, strange and charm. The

flavour wavefunction of this state is neither symmetric nor antisymmetric under the

interchange of any pair of quarks, meaning there are no restrictions on the symmetry

of the spin-space basis wavefunctions. In this case, we have 〈φi|ϕa〉 = δia, meaning

that the ϕ matrix is just the identity matrix. And Hφ is equal to Hϕ.
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6.4.3 Two Identical Quarks

Because the spatial basis functions are defined in the 12 coordinate basis, when dealing

with baryon states containing two identical quarks, it will be most convenient to label

the two identical quarks as quarks 1 and 2.

As an example, we will use the Ωc(ssc) baryon state whose flavour wave function is

symmetric under the interchange of flavour labels of quarks 1 and 2 (the ss pair). As

such, we must ensure that the spin-space basis functions are also symmetric under

the interchange of the spin and space labels of quarks 1 and 2.

To impose the symmetry constraints on the |φi〉 basis, we will define the permutation

operator P12 which interchanges the spin and spatial labels of quarks 1 and 2. The

operator is defined as

P12|φi〉 = (−1)S12+l+1|φi〉, (6.36)

where |φi〉 are eigenstates of the P12 operator. Note that the symmetry of the spin-

space wavefunctions under the interchange of particles 1 and 2 is dependant on the

quantum numbers S12 and l, see sections 6.3.3 and 6.3.4 for more details.

In the example set of spin-space basis functions in Eq. (6.30) we see that the first

state from the top is antisymmetric (P12 = −1) under the interchange of quarks 1

and 2, the second one is symmetric (P12 = +1) etc. Note that we could at this

point manually pick out the symmetric spin-space states and use them to construct

Hϕ. However, the same approach would not be possible in the case with three equal

quarks, thus for completeness, we will use a more general method for obtaining Hϕ

which involves obtaining the ϕ matrix. This will allow us to extend this approach

naturally to the three-identical-quark case.

In general, to extract the eigenstates |φi〉 with eigenvalues P12 = ±1, we will define
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operators Q±12 which we will use to obtain states |ϕa〉

Q±12 =
1

2
(P12 ± 1). (6.37)

If we have a set of space-spin basis functions |φi〉 which are a mixture of P12 = ±1

states, we can use Q±12 to project out only the P12 = ±1 states. Since in our example

the flavour wavefunction is symmetric, we will be using the Q+
12 operator. First, we

will obtain its matrix representation in the |φi〉 basis

Q+
12 =


〈φ1|Q+

12|φ1〉 〈φ1|Q+
12|φ2〉 . . .

〈φ2|Q+
12|φ1〉 〈φ2|Q+

12|φ2〉 . . .
...

...

 . (6.38)

As the operator Q+
12 does not mix |φi〉 states, it will be a matrix with 1s or 0s on the

diagonal and 0s everywhere else. We can use our code to generate the Q+
12 matrix

which for the particular set of spin-space basis functions given in (6.30) gives

Q+
12 =



0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


. (6.39)

Comparing (6.39) and (6.30) we can see that Q+
12 only projects out the symmetric

basis functions. The 1s represent the states we want to keep and 0s the states to

reject i.e. states which violate the Pauli exclusion principle. From (6.39) we see that

there is a total of 4 symmetric spin-space basis states in the list of states in Eq. (6.30)

and they are in positions 2, 4, 5 and 8.

Next, we will discuss how we can use the Q+
12 matrix to obtain ϕ defined previously

in Eq. (6.34). Since |φi〉 are eigenstates of Q+
12, we can extract all the eigenvectors

of Q+
12 matrix with the eigenvalue equal to 1. Those eigenstates will be exactly the
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eigenstates that we want for our calculations:

Q+
12|φi〉 = λi|φi〉. (6.40)

The ϕ matrix can then be composed out of the eigenvectors of the Q+
12 operator with

λi = 1. In this example, there are four such eigenstates, We can use our code to

generate ϕ, giving us

ϕ =
(
ϕ1 ϕ2 ϕ3 ϕ4

)
=



0 0 0 0
0 0 0 1
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0
0 0 0 0
1 0 0 0


. (6.41)

We can now use the generated ϕ matrix to produce the Hamiltonian Hϕ = ϕ†Hφϕ

which will be a 4× 4 matrix. In summary, we went from an 8× 8 Hamiltonian Hφ to

an appropriately symmetrised 4 × 4 Hamiltonian Hϕ. The Pauli exclusion principle

has limited the number of spin-space basis functions that we are allowed to use.

Note that in the case of the Λc(udc) baryon whose flavour wavefunction is antisym-

metric under the interchange of quarks 1 and 2, the spin-space basis functions must

be antisymmetric. In which case we would use the Q−12 operator and the matrix ϕ

would be composed out of the eigenvectors of Q−12 matrix with the eigenvalues λi = 1.

In conclusion, for two identical quarks, The symmetrised set |ϕa〉 is simply a a subset

of the |φi〉 set. The case with three identical quark will be more complicated because

making the wavefunctions symmetric under the interchange of quarks 1 and 2 does not

ensure that the wavefunctions will be symmetric under interchange of the identical

pairs 23 and 31. In this case the set |ϕa〉 will no longer simply be a subset of the |φi〉

basis but will involve linear combinations of |φi〉 wavefunctions.
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6.4.4 Three Identical Quarks

For baryon states with three identical quarks whose flavour wavefunctions will be to-

tally symmetric, we will need the spin-space basis states to also be totally symmetric.

Meaning they must be eigenstates of not only the operator P12 but also of operators

P23 and P31. We need spin-space basis states which satisfy

P12 = P23 = P31 = 1. (6.42)

Note that if we can find a state satisfying

P12 = P23 = 1, (6.43)

then P31 = 1 is automatic. Thus we want to select the eigenstates of the operator

Q+
12Q

+
23 with eigenvalue +1. Note,

Q+
12Q

+
23 = 1

2
(P12 + 1)1

2
(P23 + 1). (6.44)

So we want to construct states |ϕa〉 constrained to satisfy

Q+
12Q

+
23|φa〉 = λa|φa〉, (6.45)

with λa = 1. In order to obtain a matrix representation of the Q+
12Q

+
23 operator we

will need to use the generalised transformation matrices defined previously in Eq.

(6.18) to write the operator Q+
23 as

Q+
23 = TT

1 Q
+
12T1, (6.46)

∴ Q+
12Q

+
23 = Q+

12T
T
1 Q

+
12T1. (6.47)

Given that we can obtain the matrices T1 and with the knowledge that we can obtain

the Q+
12 matrix which we have shown an example of in Eq. (6.39), we can thus obtain

104



CHAPTER 6. BARYON SPIN-SPACE BASIS SETS

the matrix representation of Q+
12Q

+
23 = Q12T

T
1 Q12T1. We can use our code to generate

this matrix for us which (up to 2 decimal places) returns

Q+
12T

T
1 Q

+
12T1

=



0. 0. 0. 0. 0. 0. 0. 0.
−0.43 0.25 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0.
0. 0. −0.11 0.44 0.27 0.15 −0.32 −0.19
0. 0. −0.15 0.27 0.63 −0.22 0.15 −0.27
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. −0.32 −0.19 −0.27 −0.15 −0.11 0.44


. (6.48)

The above matrix only contains a single eigenvector ϕa with the desired eigenvalue

λa = 1. This eigenstate is given as

ϕa =



0
0
0

1/2√
1/2
0
0
−1/2


. (6.49)

In the case of three identical quarks, out of the whole set of spin-space basis functions

listed in Eq. (6.30), we can only generate a single totally symmetric spin-space basis

function. The totally symmetric spin-space basis function is a linear combination of

the wavefunctions found in the {|φi〉} set listed in Eq. (6.30).

The Hamiltonian matrix Hϕ = ϕ†Hφϕ is then only a 1 × 1 matrix, which of course

is not enough to obtain a reliable approximation of the spin-space wavefunction for

any baryon state. We must therefore consider a much larger set of spin-space basis

functions {|φi〉} by increasing the energy threshold γ. In our calculations we will

consider basis sets with at least 100 |φi〉 spin-space basis functions in order to still

have a large enough representation in the |ϕa〉 set.
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6.5 Similarities and Differences with Existing Method

In this section, we will discuss the similarities and differences between our method for

solving the three-body problem, with a focus on baryons, and the method proposed by

Silvestre et al. [1]. Firstly, both our approaches rely on the principles of the variational

method which means expanding a trial wavefunction onto a finite subset of the infinite

set of SHO basis wavefunctions. In both of our methods the three-body system is

parameterised by two Jacobi coordinates, meaning we need to use coupled SHO basis

functions, see Eq. (2.21), i.e. two separate sets of SHO basis functions. Also, both

our approaches rely on using the Talmi-Moshinsky coefficients for transforming the

coupled SHO wavefunctions between different Jacobi frames, necessary for computing

complex integrals that would otherwise be mathematically cumbersome to deal with.

One of the achievements of the work presented by Silvestre et al. is the possibility of

tuning the size parameters of both sets of SHO basis functions, independently. This

gives their method more flexibility which as mentioned in their paper is especially

important for asymmetric systems where the masses of the three particles are very

different. However, this brings with it an added layer of complexity by having to opti-

mise both size parameters simultaneously, which is a three-dimensional optimisation

problem as opposed to a two-dimensional as is the case in our approach. However,

when we come to compare our results with literature in Ch. 7 we will find that using

a single size parameter for both SHO basis sets did not negatively impact results as

we will still be able to accurately reproduce results found in the literature obtained

using a different numerical method for solving three-body problems.

Additionally, in the method proposed by Silvestre et al. their calculation of the Talmi-

Moshinsky coefficients is tied to the size parameters, meaning that the coefficients

need to be recalculated each time any of the size parameters change, which can

be costly. In our method, the Talmi-Moshinsky coefficients are only tied to the

masses of the particles, meaning that for a given three-body system we only need to
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calculate the Talmi-Moshinsky coefficients once and not have to recalculate them in

the optimisation part of the calculation.

Furthermore, although Silvestre mentions that the method in their paper could also

be applied to systems including spin interactions, they have only shown their work

applied to spin-averaged models. In our work we show how the method can be

implemented for spin-dependent models such as the one in Ch. 7. This involves not

only using spatial basis functions, i.e. the coupled SHO basis functions but also

considering the spin basis functions, adding an extra layer of complexity.

The main similarities and differences have been summarised in Tab. 6.2.

Description Ours Silvestre

et al. [1]

• Uses variational method X X

• Uses SHO wavefunctions as basis functions X X

• Uses Moshinsky coefficients X X

• Number of optimisable size parameters 1 2

• Needs to recalculate Moshinsky coefficients ev-

ery time size parameters change

7 X

• Includes spin X 7

Table 6.2: Similarities and differences between our method for solving the three-
body problem using the variational method and Silvestre et al.’s method [1].
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7
Three-Body Cornell Potential - Baryons

In this chapter, we will solve a baryon potential model previously solved in Ref.

[2]. Our approaches for solving the model numerically are different, however, we are

mainly interested in agreement between our results to ensure that the variational

method that we have developed specifically for baryons in Ch. 6 works. More specif-

ically, before we move on to solving baryon models at finite temperature we want

to ensure that our method for constructing the symmetrised spin-space basis sets

outlined in Ch. 6 works as intended.

We will start this chapter by outlining the potential model and then obtain results

for some of the observables that were computed in the paper, aiming to reproduce

his results.

7.1 Baryon Model

In this section, we will describe the baryon potential, which will be the potential

found in Ref. [2]. The model we will be solving is denoted as the AL1 model in the

paper.

In Eq. (2.35), we have obtained the Hamiltonian describing a general three-body
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system with particles related by pairwise central potentials expressed in dimensionless

variables. We will write the Hamiltonian here for our convenience,

Hthree-body =
3∑
i=1

mi + ωρ(2n+ l + 3
2
)− 1

2
ωρρ

2

+ ωλ(2N + L+ 3
2
)− 1

2
ωλλ

2 (7.1)

+ V12(ρ3) + V23(ρ1) + V31(ρ2).

The pairwise central potential used to describe the quark-antiquark interactions is

given in Ref. [2] as

V qq̄
ij (rk) = − κ

rk
+ σrk −K +

8κ′

3mimjπ1/2r3
0

exp
(
− 1

r2
0
r2
k

)
Si · Sj, (7.2)

with

r0(mi,mj) = A
( 2mimj

mi +mj

)−B
. (7.3)

However, what we are interested in is the quark-quark interaction which is defined

as V qq
ij = 1

2
V qq̄
ij where the 1

2
comes from a λiλj colour dependence [2]. On top of the

potential, the paper explains that a phenomenological three-body contribution will

be deducted from the final energies of states. The justification for this term is that

it leads to very good results. The contribution is defined as

V123 =
C

m1m2m3

. (7.4)

The parameters of the model are then given as

mu = md = 0.315GeV; ms = 0.577GeV; mc = 1.836GeV; mb = 5.227GeV;

κ = 0.5069; σ = 0.1653GeV2; K = 0.8321GeV; κ′ = 1.8609; (7.5)

A = 1.6553GeVB−1; B = 0.2204; C = 2.02 · 10−3GeV4.
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7.2 Optimisation Procedure

In this section, we will demonstrate the optimisation procedure for the case of baryons.

Which means finding the most optimum value for the variational parameter ω for a

given baryon state. The optimisation procedure in the three-body case will be very

similar as the one previously seen in the meson case, chapters 3 and 5. Following the

principles of the variational method (see Sec. 2.1), we will obtain the optimum value

of ω using a golden section search algorithm described previously in Sec. 2.6.
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Figure 7.1: Plotting the optimisation procedure of two distinct baryon states.
Showing increasing stability as number of basis functions (NQ) increases.

The variational method will always give energies that are slightly above the "true"

value. How much above the "true" value will be dependent on the number of basis

functions we use for the approximation. The more basis functions we use, the closer

we get to the true value. The plots in Fig. 7.1 demonstrate the stability of the results.

As we increase the number of spin-space basis functions NQ, the minimum value of

energy decreases. We can see that if we continued to increase the number of basis

functions the minimum energy would only decrease by a few MeV. Eventually a point
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will be reached where increasing the number of basis functions decreases the energy

by an insignificant amount. At this point we can be confident that the generated

results are stable. When calculating various observables we will make sure to use

enough basis functions to yield stable results.

7.3 Results

In this section, we will compare the results obtained using our code with ones pre-

sented in Ref. [2]. We will be comparing various different observables starting with

the masses of the baryons and moving on to expectation values of; the wavefunction

at the origin, the rms radii of different quark pairs for different baryon states. As well

as the mass mean-square radius of different baryons. We will also show diagrams of

the shapes of different baryon states deduced from the obtained rms radii expectation

values between quarks.

7.3.1 Masses

In Tab. 7.1, we compare ground state (JP = 1
2

+) baryon masses obtained using our

method with other works and the Particle Data Group (PDG) records. Note that

the model we solved in our work has been taken from Ref. [2], thus we expect to

reproduce their results. We divided the table into three sections, where the first

section is reserved for baryons with all different quarks. The second section, contains

baryon states which are composed of two identical quarks and one different quark,

and the last section contains baryon states with all identical quarks.

The size of the set of spin-space basis functions we have used for our predictions is

determined by the the maximum energy of the basis states γmax. We only consider
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spin-space basis functions with energies γ ≤ γmax. In chapter 6 we have shown an

example of a spin-space basis set where we have chosen γmax = 2 which has yielded 8

spin-space basis functions |φi〉 (see Eq. 6.30)). For our ground state mass predictions

here, we have used γmax = 14 yielding us 240 spin-space basis functions. However,

as discussed in chapter 6, for baryons with two or three identical quarks, the pool

of basis functions is reduced due to the Pauli exclusion principle. Yielding only 120

spin-space basis functions for baryons with two equal quarks and only 31 for baryons

with three identical quarks.

112



CHAPTER 7. THREE-BODY CORNELL POTENTIAL - BARYONS

Baryon Our Work Ref. [2] Ref. [27] PDG

Ξc(usc) 2464 2467 2466 2467.71 ± 0.23
Ξb(usb) 5802 5806 5806 5791.90 ± 0.50
Ξcb(ucb) 6914 6915 7011 -
Ωcb(scb) 7002 7003 7136 -
Λc(udc) 2279 2285 2268 2286.46 ± 0.14
Σc(uuc) 2454 2455 2455 2453.97 ± 0.14
Ωc(ssc) 2674 2675 2718 2695.20 ± 1.70
Ξcc(ccu) 3606 3607 3676 3621.60 ± 0.40
Ωcc(ccs) 3708 3710 3815 -
Λb(udb) 5632 5638 5612 5619.69 ± 0.17
Σb(uub) 5844 5845 5833 5810.56 ± 0.25
Ωb(ssb) 6033 6034 6081 6045.20 ± 1.20

Ωccb(ccb) 8018 8019 8245 -
Ξbb(bbu) 10195 10194 10340 -
Ωbb(bbs) 10267 10267 10454 -
Ωbbc(bbc) 11217 11217 11535 -
Ωccc(ccc) 4799 4799 5325 -
Ωbbb(bbb) 14401 14398 15097 -

Table 7.1: Comparing masses obtained using our method with other works and
the Particle Data Group (PDG) records. Note the model we solved in our work
has been taken from Ref. [2], thus we expect to reproduce their results. First
section contains baryons with all different quarks, second section contains baryons
with two equal quarks and last section contains baryons with all equal quarks.
Same number of quanta used for each group of baryons, (2n+l+2N+L ≤ 14,) but
different number of basis functions. For first group there are 240 basis functions,
120 for two-equal-mass case and for all-equal-mass case we have a total of 31
basis functions.

Looking at Tab. 7.1, we find that we are able to reproduce the results obtained in Ref.

[2]. The largest mass difference observed is found in the Λc(udc) baryon, our method

predicts its mass to be 6 MeV less than found in Ref. [2]. An interesting observation

is that for the lighter baryon states, our predictions tend to be lower than ones found

in Ref. [2], and for the heavier states, our predictions either agree or are only slightly

higher than in Ref. [2], as is the case for the two heavy baryons Ξbb(bbu) or Ωbbb(bbb).
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The masses obtained in Ref. [27] listed in Tab. 7.1 were obtained using a very similar

variational approach to ours, however, with a significantly lower number of basis

functions used, this could explain the rather large disparity between our results and

the fact that that masses obtained by Ref. [27] are higher than the ones obtained in

our work. This could in part be explained by the fact that the variational method

obtains an upper bound on the particle mass, and the more basis functions used, the

closer the result will be to the model’s ground truth. Since we have used a much

larger set of basis functions our results are expected to lie closer to the true baryon

mass predicted by the model. On the other hand, the disparity could also be in part

due to the use of different models that were solved by us and Ref. [27].

7.3.2 Mass Mean-Square Radius

In this section, we will compare our calculation of the mass mean-square radius with

the results found in Ref. [2], for different baryons. We will also give our results of the

root mean square (r.m.s.) radius for each pair of quarks in a given baryon.

In Ref. [2], the mass mean-square radius which is an observable used to analyse the

overall size of a baryon is defined as

〈R2
m〉 = 〈Ψ|

3∑
i=1

mi

M
(xi −R)2|Ψ〉. (7.6)

Where, R is the centre of mass (c.o.m.) coordinate of the three-body system and xi

are the positions of the three quarks in the system. M is the total mass of all quarks.

The quantity (xi −R) is related to Ri as follows,

(xi −R) = −mj +mk

M
Ri. (7.7)
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Therefore, we can express 〈R2
m〉 in terms of Ri’s

〈R2
m〉 =

3∑
i=1

mi

M

(
mj +mk

M
Ri

)2

. (7.8)

This expression for the mass mean-square radius is linear in R, making integrals easy.

We have also obtained results for the root mean square radius between each pair of

quarks which we define as 〈r2
i 〉1/2. We compare our results of 〈R2

m〉 with Ref. [2] in

Tab. 7.2 where we also give values of rrms for each unique pair of quarks.
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Table 7.2: Results of the root mean square radius (rrms) between different pairs
of quarks in baryons, given in femtometers and as ratios. Table also contains
comparison of the mass mean-square radius 〈R2

m〉 obtained using our numerical
method compared with results found in Ref. [2].

Pair rrms (fm) rrms (ratios) 〈R2
m〉Ours [fm2] 〈R2

m〉Silv [fm2]

Λc(udc)
ud 0.7699 1

0.105 0.104
uc 0.7072 0.92

Σc(uuc)
uu 0.924 1

0.121 0.121
uc 0.751 0.81

Λb(udb)
ud 0.764 1

0.045 0.045
ub 0.675 0.88

Σb(uub)
uu 0.930 1

0.055 0.054
ub 0.739 0.79

Ξc(usc)

us 0.729 1

0.104 0.104uc 0.702 0.96

sc 0.612 0.84

Ωc(ssc)
ss 0.721 1

0.108 0.108
sc 0.611 0.85

Ξb(usb)

us 0.721 1

0.048 0.048ub 0.668 0.93

sb 0.567 0.79

Ωb(ssb)
ss 0.721 1

0.055 0.054
sb 0.583 0.81

Ξcc(ucc)
uc 0.688 1

0.083 0.083
cc 0.477 0.69

Ξcb(ucb)

uc 0.677 1

0.046 0.046ub 0.662 0.98

cb 0.400 0.59

Ξbb(ubb)
ub 0.657 1

0.33 0.33
bb 0.296 0.45
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Ωcc(scc)
sc 0.575 1

0.79 0.78
cc 0.466 0.81

Ωcb(scb)

sc 0.560 1

0.46 0.045sb 0.537 0.96

cb 0.390 0.70

Ωbb(sbb)
sb 0.524 1

0.032 0.032
bb 0.289 0.55

Ωccc(ccc) cc 0.455 1 0.069 0.069

Ωccb(ccb)
cc 0.426 1

0.041 0.040
cb 0.368 0.86

Ωcbb(cbb)
cb 0.342 1

0.028 0.028
bb 0.269 0.787

Ωbbb(bbb) bb 0.248 1 0.021 0.021

In Tab. 7.3, we compare the same pair of quarks found in different baryons. We find

that the distance between a pair of quarks changes depending the on the mass of the

third quark, generally decreasing as the third quark increases in mass. As expected,

we also see that the size of the baryon, defined by the observable 〈R2
m〉 decreases for

heavier baryon states.
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uu ud us uc ub ss sc sb cc cb bb
√
〈R2

m〉(fm)

Λc(udc) - 0.770 - 0.707 - - - - - - - 0.324

Σc(uuc) 0.924 - - 0.751 - - - - - - - 0.348

Λb(udb) - 0.764 - - 0.675 - - - - - - 0.212

Σb(uub) 0.930 - - - 0.739 - - - - - - 0.232

Ξc(usc) - - 0.729 0.702 - - 0.612 - - - - 0.322

Ωc(ssc) - - - - - 0.721 0.611 - - - - 0.329

Ξb(usb) - - 0.721 - 0.668 - - 0.567 - - - 0.219

Ωb(ssb) - - - - - 0.721 - 0.583 - - - 0.232

Ξcc(ucc) - - - 0.688 - - - - 0.477 - - 0.288

Ξcb(ucb) - - - 0.677 0.662 - - - - 0.400 - 0.214

Ξbb(ubb) - - - - 0.657 - - - - - 0.296 0.182

Ωcc(scc) - - - - - - 0.575 - 0.466 - - 0.279

Ωcb(scb) - - - - - - 0.560 0.537 - 0.390 - 0.212

Ωbb(sbb) - - - - - - - 0.524 - - 0.289 0.179

Ωccc(ccc) - - - - - - - - 0.455 - - 0.263

Ωccb(ccb) - - - - - - - - 0.426 0.368 - 0.200

Ωcbb(cbb) - - - - - - - - - 0.342 0.269 0.167

Ωbbb(bbb) - - - - - - - - - - 0.248 0.145

Table 7.3: The rrms ≡ 〈r2
i 〉1/2 [fm], for each pair of quarks in a given baryon.
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Figure 7.2: Visualisation of expectation values of the rrms = 〈r2〉1/2 (the distance
between each pair of quarks in a baryon) for different baryons. Drawn to scale
presented in femtometers (fm).

In Fig. 7.2, we plot the relative distances between quarks showing the estimated

shapes of different baryons in their ground states. We note that the plots are drawn

to scale, moreover, all shapes are plotted on the same scale to be able to compare the

shapes of different baryons. In Fig. 7.3 we show how the shape of the Λc(udc) baryon

changes for different excited states. In Fig. 7.4 we show the same style of plots but

for excited states of the Ξbb(ubb) baryon. We can see that the b-quarks clump closer

together and the u-quark sits further away, this is most prominent for the n = 0 and

n = 4 excited states.
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Figure 7.3: Visualisation of how the rrms radius for each pair of quarks changes
for different excited states of the Λc baryon. n = 0 is the ground state, n = 1 is
the first excited state, and so on. Scale presented in femtometers (fm).
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Figure 7.4: Visualisation of how the rrms radius for each pair of quarks changes
for different excited states of the Ξbb baryon, n = 0 is the ground state, n = 1 is
the first excited state, and so on. Scale presented in femtometers (fm).
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7.3.3 Ladder Plots

In this final section, we compare the plots of excited states with results found in Ref.

[2]. The paper showcases plots of various excited baryon states showing their energies

for both negative and positive parity baryons with 1
2
≤ J ≤ 7

2
.

However, no numerical result tables of the masses of these states have been provided,

together with the ladder plots, we only made comparisons between ours and those

found in the paper by-eye. By comparing our results we have found a good degree of

agreeableness.
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Figure 7.5: Excited states of single-heavy-quark baryons. The y-axis in each plot
starts from the mass of the ground state of that baryon. We only show excited
states which are up to 1 GeV above the ground state.

In Fig. 7.5 we plot the excited states of baryons with a single heavy quark. The
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y-axis starts from the ground state of each baryon and and we only include excited

states that are up to 1 GeV above the ground state. We would like to note that if

we take a look at the patterns of the excited states of the Λc and the Λb baryons,

they are approximately similar. This is expected since the only difference between

the two states is the mass of the third quark which is responsible for slightly different

signatures. For example, if we look at the two degenerate negative parity states with

JP = 1
2

−
, 3

2

− we see that those appear both in the Λc and Λb baryons, and then above

those two states, there is a collection of 5 states (2 degenerate states and above them

3 degenerate states) however, in the Λb baryon they seem to be closer together in

energy than in the Λc baryon. Similar patterns can be seen if we compare the Σc and

the Σb baryons.
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Figure 7.6: Excited states of baryons of type (usQ) in the upper part and (ssQ)
in the lower part. The y-axis in each plot starts from the mass of the ground
state of that baryon. We only show excited states which are up to 0.8 GeV above
the ground state.
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In Fig. 7.6 we plot the same ladder plots but for usq baryons in the top two plots

and ssq in the bottom two with q being either the c or b quarks. As in the previous

plots, the y-axis start from the ground state energy and we include all states that are

up to 0.8 GeV above the ground states. We would like to one more time draw the

attention to the general patterns between the excited states of the Ξc and Ξb baryons

and likewise for the Ωc and Ωb baryons. The excited states have similar patterns

because the only difference between each of the two states is the mass of the third

quark. Again, we have found a good degree of agreeableness between ours and ones

found in Ref. [2] for the baryons and their excited states presented in this figure.
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8
Mesons at Finite Temperature

In this chapter, we will discuss two different temperature dependent meson models.

We will demonstrate the features of the potentials and how temperature affects the

various meson observables, such as meson mass or size in each of the two poten-

tials. The potentials considered in this chapter will be spin-independent, therefore

the obtained results will correspond to spin-averaged meson states.

We will be using the same temperature dependent potentials when we come to baryons

at finite temperature in Ch. 9. Since this area is relatively unexplored, this chapter

will serve as a precursor for our results of baryons at finite temperature. We will

be drawing parallels between mesons and baryons in the two chapters to establish a

strong case for our baryon results at finite temperature.

In this chapter, we will first present a simpler finite temperature model (Sec. 8.1)

and then a relatively more complex one (Sec. 8.2). The latter has been obtained

and solved by Karsch et al. [52], we will aim to find solutions to the model with

our standard approach using the variational method and we will compare our results

with the paper in order to ensure that our method is correct. For the simpler, model

presented first, we do not have any prior results to guide us. We use the simpler

model because it is relatively easy to implement, and as our main goal is to study

baryons at finite temperature, it will serve as a good place to start.
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8.1 Simple T-dependent Potential

In this section we will use a simple temperature dependent model, where the tem-

perature dependence appears in the form of a temperature dependent string tension

σ(T ) = σ[1 − (T/TC)2]1/2, where TC is a critical temperature at which the string

tension vanishes. This model was proposed by Pisarski et al. in Ref. [68]. We will use

it to compute masses of various mesonic states as a function of T/TC .

8.1.1 Potential Description

The full temperature-dependant meson potential used in this section is a modified

version of the Cornell potential based on a temperature-dependent string tension

proposed in Ref. [68] and is given as,

V (r, T ) = −α
r

+
(
σ
√

1− T 2/T 2
C

)
r, (8.1)

where, α = 0.471, σ = 0.192GeV2, mc = 1.320GeV and mb = 4.746 GeV. We see

that at T = 0 we recover the standard Cornell potential. At T = TC , the string

tension completely vanishes and the potential is no longer confining. When T = TC

the potential at infinity is simply V (∞, TC) = 0 if we ignore the mass of the quarks.

This means that the energy of any bound states at T = TC will be below 0 and the

energy of all other states will lie in the continuum regime. The parameters for this

model have been borrowed from Ref. [52] which outlines the potential that will be

used in Sec. 8.2. Due to the similarity of the two models we are able to use the same

model parameters for both, this results in the two models being equivalent at zero

temperature, this is useful for comparing the two models.

In Fig. 8.1 we illustrate the potential specified in Eq. (8.1). The first feature of the
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Figure 8.1: Plot of Eq. (8.1) at T = 0 and T = TC with α = σ = 1, demonstrates
"flattening" of the potential as temperature increases.

potential that we notice is that increasing the temperature T leads to a flattening

of the potential. In the figure, we see that the potential tends to zero as T → TC .

The temperature parameter T suppresses the linear (confining) term of the potential.

Therefore, this temperature dependent model allows us to study the influence of the

linear part of the potential on meson observables. In the next section we will see how

the masses of various mesons change as a function of T/TC .
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8.1.2 Results
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Figure 8.2: Energy of the charmonium ground state as a function of ω for various
temperatures as a fraction of TC .

First, we will showcase the variational method for this model. The variational method

relies on diagonalising the Hamiltonian matrix and finding an optimum value of ω

such that the eigenvalue of interest is minimised. In Fig. 8.2 we show the energy of

the charmonium ground state as a function of ω for various values of T/TC . In the

plot we can see that a minimum energy can be obtained at all temperatures including

the critical temperature (T/TC = 1). The presence of a minimum is indicative of

bound states. Although the minimum is not as pronounced at critical temperature

as it is at T/TC = 0.9, we are still able to identify a minimum. Therefore, for this

model we still possess bound states even at critical temperature. We are pointing this

out because when we come to the second temperature-dependent model in Sec. 8.1,

at a certain value of the effective temperature parameter µ(T ), we will not be able

to identify a minimum, the energy will decrease monotonically with ω. Which is how

we will be able identify the critical point for that model.

Let us now look at how this potential affects the masses of various meson states. In

Fig. 8.3 we plot the masses of various excitations of the charmonium (cc̄) state as a
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function of T/TC .
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Figure 8.3: Charmonium state masses as function of T/TC for the potential in
Eq. (8.1), E0 = 2mc

What we find is the mass of the cc̄ states decreases as temperature increases. We also

plot in Fig. 8.3 the line E0 = 2mc. And we find that, at critical temperature, all the

states fall under the line. This happens because bound states must have an energy

less than or equal to the potential at infinity. At T = TC the potential at infinity is

equal to 2m (the linear term vanishes and the Coulomb term is proportional to 1/r

which goes to zero as r →∞) therefore in this model the only terms that remain are

the masses of the quarks.

In Fig. 8.4 we make a similar plot as the one above but for the bottomonium states.

We see a similar pattern with all the states falling below the line E0 = 2mb at T = TC .

130



CHAPTER 8. MESONS AT FINITE TEMPERATURE

0.0 0.2 0.4 0.6 0.8 1.0
9.2

9.4

9.6

9.8

10.0

10.2

10.4

10.6

T/TC

E
[G
e
V
]

1S

2S

3S

1P

2P

1D

2D

E0

Bottomonium

Figure 8.4: Bottomonium state masses as function of T/TC for the potential in
Eq. (8.1), E0 = 2mb.

8.2 Debye Mass Screened Potential

In this section we will be solving a second finite temperature meson model. In this

model both the linear and the Coulomb part of the confining potential are affected

by colour charge screening. We use the same potential as found in a paper by Karsch

et al. (1996) [52]. We will first describe the potential and then present our obtained

results for various observables and compare them with the results presented in the

paper.

131



CHAPTER 8. MESONS AT FINITE TEMPERATURE

8.2.1 Potential Description
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Figure 8.5: Plot of Eq. (8.2) at different µ(T ) with σ = 0.192GeV and α = 0.471,
demonstrates "flattening" of the potential as µ(T ) increases.

The screened potential that we will be using in this section is described in Ref. [52]

as

V (r, T ) = −α
r
e−µ(T )r +

σ

µ(T )
(1− e−µ(T )r), (8.2)

where µ(T ) = 1/rD(T ), µ(T ) will be referred to as the screening mass and rD(T )

is the screening length. The parameters of this model are given as σ = 0.192GeV2,

α = 0.471, mc = 1.320 GeV and mb = 4.746 GeV [52]. The same model parameters

have been used previously in Sec. 8.1, thus the potentials in Eqs. (8.1) and (8.2) are

the same when µ(T ) = T = 0.

Since µ(T ) completely contains the temperature dependence of the model, we will

sometimes refer to µ(T ) as the effective temperature parameter. A few examples of

Eq. (8.2) with different values of µ(T ) have been shown in Fig. 8.5. The effect of colour

charge screening is similar to the one seen in the first potential in Fig. 8.1; increasing

the effective temperature paramter µ(T ) leads to a flattening of the potential. Note

that, at µ(T ) = 0 the Cornell potential is recovered.
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One new property of this potential when compared to the one in Eq. (8.1) is that

the critical point, i.e. a point at which a state is deemed to be deconfined is not

so trivial. In Sec. 8.1, the temperature parameter has been defined as a fraction of

the critical temperature, with T/TC = 1 being the critical point, there was never a

need for identifying TC explicitly. For the potential we will be using in this section,

determining a critical point µ(T = TC) ≡ µc is necessary. Each state will have a

unique value of µc at which it dissociates. In the paper, Karsch et al. [52] obtained

this through the dissociation energy defined as

Edis(µ) = 2m+
σ

µ
− E(µ), (8.3)

which is positive for bound states and negative for the continuum [52]. The dis-

sociation energy is defined as the value of the potential at infinity (r = ∞) minus

E(µ), where E(µ) is the energy of a meson state at temperature µ(T ), obtained by

diagonalising the Hamiltonian. The critical point µc is then defined as

Edis(µc) = 0. (8.4)

The values of µc for various meson states have been obtained by Karsch et al. and are

given in Tab. 8.1. We will be using our own method for determining the critical value

µc which will be based around the variational method. We will define µc as the point

at which we no longer can find a minimum in the E vs. ω curves. This is illustrated

in Fig. 8.6. We will also be using the boundary between bound and continuum states

defined as 2m+ σ/µ to ensure that our method accurately identifies µc.
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8.2.2 Results
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Figure 8.6: Energy of the charmonium (cc̄) ground state as a function of ω at
different temperatures µ(T ). For these plots we have used only 10 basis functions
Nφ = 10.

First, let us discuss the variational method for this temperature dependent model. As

an example we will take a look at plots of E vs. ω for the ground state of charmonium

(cc̄) at different values of µ(T ) as illustrated in Fig. 8.6. The variational method relies

on finding the minimum of a states energy as we vary the variational parameter ω.

What we see in the plots is that such a minimum only exists up to a certain value of

µ(T ), after which point the energy of the state decreases monotonically as ω decreases.

We will define the last value of µ(T ) for which a minimum can be identified as µc, the

point at which the state dissociates. In Ref. [52], Karsch et al. estimate the critical

point for the cc̄ ground state to be µc = 0.699GeV. They do this by using Eq. 8.4 to

find at what point the state dissociates. Using our analysis, we find the critical point

for the cc̄ ground state to be at µc = 0.67GeV. Similarly for other meson states, we

find our estimates of µc to be lower than ones found by Karsch et al.

In the next set of figures, we show that for most calculations for low lying excited
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Figure 8.7: Plots showing the energy of the cc̄ ground state, and the 1P and
2S excited states as a function of µ(T ), until dissociation occurs, for different
numbers of basis functions Nφ

states, like the 1S, 1P and 2S states, which are the states we will be focusing on for

this model, it is sufficient to use 10 to 20 basis functions to approximate the observable

of those states. In Fig. 8.7 we show the energy of three different excitations of the

charmonium meson as a function of the screening parameter µ(T ) until the state

dissociates. For each plot we show the approximations obtained using 5, 10 and 20

basis functions. We find that the energies for these states overlap showing that there

are no significant changes to the results when considering more basis functions, as

such, we will be using between 10-20 basis functions for most calculations for this

model.

In Fig. 8.8, we plot the optimised value of the variational parameter which we denote
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Figure 8.8: On the left, is the energy of the cc̄ 1P state as a function of µ(T ) for
different numbers of basis functions Nφ. On the right, is the same plot but for
the 2S state.

as ω0 as a function of temperature for different numbers of basis functions for the

cc̄ ground state. We see that the general trend is that the value of ω0 decreases as

temperature increases. Since ω0 is negatively correlated with the size of the SHO basis

functions, this is an indication of the cc̄ state getting larger in size as temperature

increases. What is also reassuring is that around critical temperature the value of ω0

tends to 0, indicating that at that point the state becomes infinitely large and can be

considered no longer bound.
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Figure 8.9: Energy of the ground and two excited cc̄ states as a function of the
effective temperature parameter µ(T ). The red region represents an area where
bound states no longer exist, Edis(µ) > 0, defined in Eq. (8.3).
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In Fig. 8.9, we plot the masses of various excited states of charmonium as a function of

µ(T ) up to our identified value of µc recorded in Tab. 8.1. We also plot the boundary

between the bound and unbound states defined by Eq. (8.3). As we see in the plot,

we were able to correctly identify the value of µc using our method as no state enters

the red region but only meets it. We also find in Fig. 8.9, that the masses of the cc̄

ground and excited states decrease as µ(T ) increases. We also see that the masses of

the excited states decrease more rapidly compared to the energy of the ground state

seeming to be more sensitive to temperature effects.
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Figure 8.10: Energy of the ground and two excited bb̄ states as a function of the
effective temperature parameter µ(T ). The red region represents an area where
bound states no longer exist, Edis(µ) > 0, defined in Eq. (8.3).

In Fig. 8.10 we obtain similar predictions as shown in Fig. 8.9 but for the states of

the bb̄ meson. Contrary to the cc̄ meson, in this plot we can see the mass of the

ground bb̄ state increase as temperature increases. This is believed to be the case

because the bb̄ ground state is relatively small, approximately half the size of the cc̄

ground state (see Tab. 8.2). This makes it more sensitive to the short range part of

the potential i.e. the Coulomb part. The decrease in mass of a state can be attributed

to the flattening of the linear part of the potential as established in Sec. 8.1. Because

the bb̄ ground state is relatively small, it is not sensitive to long range effects. At

small temperatures it is more sensitive to the short range Coulomb type interaction
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which has the opposite effect. We can see that after about µ(T ) = 1.2GeV the mass

of the ground state starts to decrease, this fits with our interpretation since at higher

temperatures the size of the state increases, after which point the meson becomes

more sensitive to the linear part of the potential causing the mass to decrease.

Mours [GeV] Mref [GeV] M c
ours [GeV] M c

ref [GeV] µoursc [GeV] µrefc [GeV]

cc̄

1S 3.070 3.070 2.926 2.915 0.670 0.699
1P 3.500 3.500 3.182 3.198 0.356 0.342
2S 3.698 3.698 3.196 3.177 0.346 0.357

bb̄

1S 9.445 9.445 9.627 9.615 1.441 1.565
1P 9.898 9.897 9.815 9.829 0.599 0.558
2S 10.005 10.005 9.810 9.778 0.606 0.671

Table 8.1: Comparing masses at zero and at critical µ(T ), with results obtained
by Karsch et al. [52].

In Tabs. 8.1 and 8.2 we compare our results of masses and root-mean-square (rms)

radii for various meson ground and excited states with the results obtained by Karsch

et al. [52]. We find that our masses at µ(T ) = 0 agree with the literature very well.

Comparing the masses at critical screening mass µc we find that our results differ,

this is mostly due to the disparity between our obtained µc values. In most cases we

predict the state to melt sooner than estimated by Karsch et al. The opposite is true

for the 1P state, we predict the state to melt at a higher value of µ(T ) than Ref. [52]

for both the charmonium and bottomonium mesons.

rours (fm) rref (fm) [52]

cc̄

1S 0.453 0.453
1P 0.696 0.696
2S 0.875 0.875

bb̄

1S 0.226 0.226
1P 0.408 0.408
2S 0.509 0.509

Table 8.2: Comparing our estimate of the r.m.s. radius (
√
〈r2〉) at µ(T ) = 0 with

results obtained by Karsch et al. [52].

In Tab. 8.3, we compare the zero-temperature masses of spin-averaged mesons with

the work of others. We find good agreement between different models used. In
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Tab. 8.4, we compare the obtained critical values of µc obtained by different authors.

Very similar models are used for all four columns of the table to study the critical

temperature of mesons, those are mainly based on the work of Karsch et al. [52].

However, the authors of Ref. [69] consider relativistic corrections to the model to

study the dissociation of mesons. They find that the dissociation energy increases

when relativistic corrections are taken into account.

M (GeV) Our Work M (GeV) [52] M (GeV) [14] M (GeV) [8]

cc̄

1S 3.070 3.070 3.097 3.095
1P 3.500 3.500 3.519 3.522
2S 3.698 3.698 3.685 3.684

bb̄

1S 9.445 9.445 9.433 9.460
1P 9.898 9.897 9.933 -
2S 10.005 10.005 10.028 10.016

Table 8.3: Comparing our zero-temperature masses [GeV] of spin-averaged
mesons with the work of others.

µc (GeV) Our Work µc (GeV) [52] µc (GeV) [70] µc (GeV) [69]

cc̄

1S 0.670 0.699 0.70 0.895
1P 0.356 0.342 0.34 0.450
2S 0.346 0.357 0.36 0.455

bb̄

1S 1.441 1.565 1.55 1.665
1P 0.599 0.558 0.57 0.700
2S 0.606 0.671 0.66 0.720

Table 8.4: Comparing the obtained critical temperature [GeV] of spin-averaged
mesons with the work of others.
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9
Baryons at finite temperature

In this chapter, we will present our results for two different temperature-dependent

baryon models. The baryon models will be obtained by modifying the baryon po-

tential outlined in Eq. (7.2) to include temperature effects. We will be using the

same model parameters for the temperature-dependent models as specified in Eq.

(7.5). Such that, in the special "zero-temperature" case we will be able to recover

said model and obtain same observable values as presented in Ch. 7.

The modifications to the temperature-independent baryon model will be based on two

temperature-dependent models we have previously seen in Ch. 8 when working with

mesons at finite temperature. One difference between mesons and baryons at finite

temperatures is that for the meson case we did not include any hyperfine interactions

i.e. the models were spin-independent. However, for baryons at finite temperature

we will be including the same spin-spin term that has been considered in the original

baryon potential in Eq. (7.2).
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9.1 Simple T-Dependent Potential

In this section we will present the first temperature dependent baryon potential model,

it is a simple model because it only takes into account how the string tension is

affected by temperature. The model depends on a temperature dependent string

tension proposed in Ref. [68]. The string tension slowly vanishes as T → TC where

T is temperature and TC is some critical temperature at which the string tension

vanishes completely. With this model we will be able to isolate the effect of the

linear term in the potential and see its effect on the different properties of various

baryons. We understand that the linear dependence in the potential is responsible for

confinement thus it will be interesting to see what happens as the term gets suppressed

until eventually it vanishes. We note that we have seen a similar model previously

used for mesons in Sec. 8.1.

9.1.1 Potential Description

For this model the potential between a quark and an antiquark is defined as

V qq̄
ij (rk, T )

= − κ
rk

+
(
σ
√

1− T 2

T 2
C

)
rk −K +

8κ′

3mimjπ1/2r3
0

exp
(
− 1

r2
0
r2
k

)
Si · Sj. (9.1)

This model is similar to the one seen in the meson case, see Eq. (8.1). Because

we want to adapt this potential for baryons we need the corresponding quark-quark

potential which is defined as

V qq
ij (rk, T ) =

1

2
V qq̄
ij (rk, T ), (9.2)
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where the factor of a half comes from the λiλj colour dependence [2]. The total

potential for all pairs of particles in the three-body baryon system is then given as

V (r1, r2, r3, T ) =
1

2

(
V qq̄

12 (r3, T ) + V qq̄
23 (r1, T ) + V qq̄

31 (r2, T )
)

(9.3)

When T < TC , the model contains an infinite number of bound states, this is due to

the presence of the linear part of the potential, consequently, there are no unbound

states in this case.

However, at T = TC , the linear term in the potential vanishes, in which case, the

model then contains an infinite number of bound states and an infinite number of

unbound states. The energies of the bound states will lie below E∞, which is defined

as

E∞ =
3∑
i=1

mi + V (r1 = r2 = r3 =∞, T = TC)− C

m1m2m3

, (9.4)

which is the value of the potential with quarks being infinitely far apart and by default

at T = TC , plus the rest masses of the quarks and reduced by the factor C
m1m2m3

which

is the three-body contribution, discussed in Sec. 7.1 and specified in Eq. (7.5). From

the definition in Eq. (9.4) and using Eqs. (9.3) and (9.1), we get

E∞ =
3∑
i=1

mi −
3

2
K − C

m1m2m3

, (9.5)

where the potential, as the relative distances between quarks go to infinity and at

T = TC , is reduced to the constant 3
2
K. The spectrum of the bound states which

lie below E∞ will resemble the spectrum of the hydrogen atom since at T = TC the

linear term vanishes and all that is left is the Coulomb term and the spin-spin term.

It is important to note that this is only an artefact of this model and not a true

representation of what happens to baryons at T = TC .
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9.1.2 Results
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Figure 9.1: A plot of the JP = 1
2

+, Λc baryon state energies using the potential
in Eq. (9.1) at different T/TC as function of ω plotted on a log scale.

First, we will illustrate the E vs. ω curves which we use to obtain the energies of our

states via the variational method. We use the curves to obtain an optimum value of

the variational parameter ω by finding the minimum of such plots. In Fig. 9.1 we

plot the energy vs. ω for the ground state of the Λc baryon. We find that a minimum

exists at each value of T/TC . Upon closer inspection, i.e. taking a closer look at

the T/TC = 1 curve in Fig. 9.1, we also find that a minimum exists at T/TC = 1,

indicating the presence of bound states even at critical temperature, for this model.

This is expected as we have mentioned previously that we should still expect bound

states due to the remaining Coulomb term in the potential. We note that this plot is

also very similar to the one seen in the corresponding meson case in Fig. 8.2.
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Figure 9.2: Energy of the negative and positive parity Λc, J = 1/2 baryon ground
states as function of T/TC .

In the next series of Figures (9.2→ 9.5), we plot the energy of various baryon ground

states as a function of T/TC comparing the masses of the positive and negative parity

states. We also plot the quantity defined in Eq. (9.5) which is the value of the potential

at infinity. We find that the mass of both the positive and negative parity baryons

decreases as temperature T increases. When critical temperature is reached the mass

of the state falls below E∞ marked on the plots.
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Figure 9.3: Energy of the negative and positive parity Σc, J = 1/2 baryon states
as function of T/TC .
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Figure 9.4: Energy of the negative and positive parity Ξc, J = 1/2 baryon states
as function of T/TC .
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Figure 9.5: Energy of the negative and positive parity Ωc, J = 1/2 baryon states
as function of T/TC .

We can conclude that the flattening of the linear part of the potential leads to a

decrease of a states energy. This will become important later when we come to the

second temperature dependent model in Sec. 9.2, where both the Coulomb and the

linear term will be affected by colour charge screening. We will find that in the

second model the mass of some of the heavier baryon states will actually increase as

we increase the effective temperature parameter, as we know this cannot be due to

the flattening of the linear part of the potential, the increase in energy will occur due
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to the change in the Coulomb part of the potential. This makes sense because only

the heavier baryons will exhibit an increase in their energy, and these are the baryons

whose form factor is relatively small, therefore, being more sensitive to the potential

at small r which is Coulombic in nature and not the linear part which happens at

large r.

In Fig. 9.6 we plot the energy of the ground and some of the excited states of the

Λc baryon with JP = 1/2+ as a function of T/TC . We see that all of them follow a

similar pattern and all fall below the line which marks E∞ as defined in Eq. (9.5).
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Figure 9.6: Energy of the ground and several excited states of the of the Λc

baryon as a function of T/TC .

9.2 Debye Mass Screened Potential

In this section we will present a second temperature dependent baryon model based

on the potential proposed in Ref. [52]. Previously we have used this potential in our

chapter on mesons at finite temperature in Sec. 8.2. We will describe the potential as

well as obtain and discuss the predictions of various baryon observables as a function

of the screening mass parameter µ(T ).
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9.2.1 Potential Description

The temperature dependence for this model will be completely contained by the

screening/Debye mass parameter µ(T ), where µ(T ) = 1/rD(T ) and rD(T ) is the

inverse screening length [52]. There exists a vast literature space devoted to describing

the relation between the Debye mass µ(T ) and the physical temperature T , some

examples include Refs. [71] and [72]. However, performing this translation is beyond

the scope of this work, as such, we will express our observables as a function of µ(T ).

We will sometimes refer to µ(T ) as an effective temperature parameter. Similarly as

in Sec. 9.1 we will modify the baryon potential used in Ch. 7 to include effects of

colour charge screening. The modified baryon potential is the following

V qq̄
ij (rk) =

− κ

rk
e−µ(T )rk +

σ

µ(T )
(1− e−µ(T )rk)−K +

8κ′

3mimjπ1/2r3
0

exp
(
− 1

r2
0
r2
k

)
Si · Sj, (9.6)

where as usual V qq
ij = 1

2
V qq̄
ij and all the parameters of the temperature dependent

potential are the same as the ones specified in Eq. (7.5). Unlike in the case of the

simple temperature-dependent potential used in in Sec. 9.1, the critical point at which

the state gets deconfined will have to be determined and will be different for each

baryon state. The critical point will be determined as the point at which we can no

longer find a minimum energy of a state. We have used the same method previously

for meson in Sec. 8.2.2. We will revisit it for the baryon case in the section that

follows. Another method for determining the critical point would be through the

dissociation energy as has been proposed by Karsch et al. in Ref. [52]. For the baryon

Hamiltonian with the potential specified in Eq. (9.1) the dissociation energy is defined

as

Edis(µ) =
3∑
i=1

mi +
3

2

(σ
µ
−K

)
− C

m1m2m3

− E(µ), (9.7)

147



CHAPTER 9. BARYONS AT FINITE TEMPERATURE

which is the value of the potential at r =∞minus the energy of the baryon state E(µ)

at effective temperature µ(T ) obtained by diagonalising the Hamiltonian. For values

of σ,K and C see the list of model parameters in Eq. (7.5). Critical temperature is

then defined as

Edis(µc) = 0. (9.8)

We can use Eq. (9.7) to plot the quantity

Edis(µ) + E(µ) =
3∑
i=1

mi +
3

2

(σ
µ
−K

)
− C

m1m2m3

, (9.9)

which is the boundary between allowed bound states and dissociated states. We have

illustrated the analogue of this quantity in the meson case, see Figs. 8.9 and 8.10. We

will use Edis + E(µ) as a guide to ensure that our primary method for determining

µc works correctly. We should not find any states surviving above the boundary

Edis(µ) + E(µ). For examples, see Figs. 9.9 → 9.12.

9.2.2 Results
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Figure 9.7: A plot of the Λc baryon ground state energies using the potential in
Eq. (9.6) at different µ(T ) as function of ω plotted on a log scale.
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In Fig. 9.7 we illustrate our method for obtaining the critical value µc. We define

µc as the the value of µ(T ) for which there no longer exists a minimum in the E vs.

ω curve. In the plot we see that at low values of µ(T ) there exists a clear defined

minimum energy. However, at µ(T ) = 0.35GeV, this is no longer the case, the energy

continues to fall monotonically as ω decreases. Since at µ(T ) = 0.35GeV we can no

longer identify a minimum, the critical value of µ(T ) must lie somewhere between

µ(T ) = 0.3GeV and µ(t) = 0.35GeV.
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Figure 9.8: Determined critical screening mass for different charmed baryons

In Fig. 9.8 we plot the critical screening mass µc for different charmed baryons.

We choose baryons which are only composed of up/down and charm quarks with

increasing content of charm quarks. We see that as the number of charm quarks

increases, so does the value µc at which the state melts. We can see that heavier

states which are generally bound closer together tend to dissociate at higher µ(T )

values.
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Figure 9.9: Mass of the positive and negative parity states of the Λc(udc) baryon
with total angular momentum J = 1

2
as a function of µ(T ).

Next, in Figs. 9.9→ 9.12, we plot the mass of the positive and negative parity ground

states for different baryons as a function of µ(T ) up to critical screening mass µc. We

find that our determined values of µc coincide very well with the dissociation energy

curve defined in Eq. (9.9). We also find that for most states, their mass decreases as

µ(T ) increases. The exception is the Ωbbb baryon whose mass actually increases for

both the positive and negative parity states presented. This is a similar behaviour

as we have seen with the heavy bottomonium meson ground state, whose mass also

exhibited an increase as µ(T ) increased, see Fig. 8.10. Another feature we see in Figs.

9.9→ 9.12 is that in all cases the negative parity ground states dissociate sooner than

the positive parity ones.
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Figure 9.10: Mass of the positive and negative parity ground states of the Ξcc(ccu)
baryon with total angular momentum J = 1

2
as a function of µ(T ).
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Figure 9.11: Mass of the positive and negative parity ground states of the Ωccc

baryon with total angular momentum J = 3
2
as a function of µ(T ).
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Figure 9.12: Mass of the positive and negative parity ground states of the Ωbbb

baryon with total angular momentum J = 3
2
as a function of µ(T ).

In Fig. 9.13 we plot the mass mean square radius 〈R2
m〉 as defined in Eq. (7.8) for

three different charmed baryons as a function of µ(T ). This observable is a good

proxy for the overall size of the baryon [2]. We see that as expected, the size of the

baryon increases as µ(T ) increases until the baryon eventually becomes infinite in size

which happens around the determined value of µc for each baryon.

Λ c
(u

d
c)

Ξ
c

c
(c

c
u
)

Ω
c
c
c
(c

c
c
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

μ(T) [GeV]

〈R
m2
〉
[f

m
2
]

J
P=1/2+

Figure 9.13: Mass mean square radius as defined in Eq. (7.8) for different charmed
baryons as a function of µ(T ).
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Figure 9.14: Shape of Ξcc(ccu), JP = 1/2+ ground state at different values of
µ(T ). The scale is in units of femtometers (fm).

In Fig. 9.14 we aim to illustrate the shape of the Ξcc(ccu), JP = 1/2+ baryon as we

increase µ(T ) up to just before µc. We do this by plotting the observable
√
〈r2
i 〉 which

is the r.m.s. radius of each pair of quarks and we plot it in femtometers (fm) where

each plot uses the same scale. We see that the state grows but we also see that the

rate at which the cc pair of quarks separates is slower than the separation of the u

quark from the c quarks. In other words, the cc pair seem to be bonded more tightly

than a cu pair and are less sensitive to µ(T ). We see this more clearly in Fig. 9.15

where we plot the distance between the two pairs of quarks (cc and cu), we see that

the distance between the cu pairs grows faster than the distance between the cc pair

as we increase µ(T ).
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Figure 9.15: The separation between the two pairs of quarks (cc and cu) in the
Ξcc(ccu) baryon as a function of µ(T ) up to µc.

In Fig. 9.16, we illustrate the critical value of µc for different hadrons. This is our

predicted order of melting of various hadrons inside the QGP. Given that the relation

between µc and T can be obtained, this could potentially be used as a thermometer

for the quark-gluon plasma. To make the plot more readable, we staggered the lines

which mark the µc values of hadrons. We only show the µc values of ground state

baryons JP = 1
2

+ for the Λc(udc) and Ξcc(ucc) baryons, and JP = 3
2

+ for the Ωccc and

Ωbbb baryons. We only show the µc values of spin-averaged meson states, obtained

earlier in Ch. 8. Our "thermometer" should however only be treated as a toy model

since the potential models used to obtained these quantities are somewhat naive in

that they do not take into account any relativistic corrections and the interquark

models are based on our understanding of colour screening in the 1980s, it would be

interesting to produce a similar plot with more up to date models including relativistic

corrections to the energy, as it has been shown in Tab. 8.4, they can quite significantly

influence the dissociation energy of hadrons.
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Figure 9.16: The critical value of µc obtained using our numerical method for
various ground baryon and some excited meson states.

This concludes our chapter on baryons at finite temperature. Comparing our results

to mesons at finite temperature we find that the baryons exhibit similar behaviour

to mesons. We can conclude that the variational approach together with the Talmi-

transformations provides a very effective method for solving three-body problems.
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Conclusion

The goal of our work was to study hadrons at finite temperature using potential

models. We implemented our own version of the variational method which has also

been proposed by Silvestre et al. in Ref. [1]. It is one of many methods used to nu-

merically solve three-body potential models. We extended this method to include the

spin degrees of freedom as well as used it to study temperature and spin-dependent

non-relativistic baryon potential models. In this thesis, a very general and useful

methodology has been developed to study a large range of three-body potential mod-

els which include spin interactions. We demonstrated our method for building sym-

metrised spin-space basis sets necessary to satisfy the Pauli exclusion principle for

baryon systems with zero, two and three identical quarks.

In Ch. 9, using the variational method, we solved two different temperature-dependent

baryon potential models with a spin-spin hyperfine interaction term. We investigated

how the mass and the size/shape of baryons change in the two potential models

due to temperature effects. We also developed a method for determining the critical

point at which a baryon state deconfines, determined by the value µ(T ) at which a

minimum energy of a state no longer exists. This method is specific to the variational

method and potentials described in Secs. 8.2 and 9.2. In our analysis, we observed

that the energies of most baryons decrease as they tend towards deconfinement, with

the exception of very heavy and low lying states whose energy in fact increases as a
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function of µ(T ). We found that heavier, lower lying states tend to be less sensitive

to the effects of colour charge screening. The baryon bound state radii become larger

as temperature increases in all cases. We also found that heavier, lower lying baryon

states deconfine at higher values of µ(T ).

One current limitation of our work is the ability to compare results with lattice QCD

simulations. For this, we still need a way of relating the screening mass parameter

µ(T ) present in potentials used in Secs. 8.2 and 9.2, directly to a temperature pa-

rameter T . Those relations have previously been considered and there exists a large

body of literature dedicated to this problem, some examples that deal with this can

be found in [60, 71–74]. However, due to time constraints we have not been able to

make that link possible.

Future work could focus on bridging the gap between lattice QCD simulations and

µ(T )-dependent potential models used in this work. Furthermore, including the spin-

orbit and tensor terms in the baryon potential, would allow us to better understand

the baryon spectrum at finite temperature, those terms can be added with very little

changes to the current method used in this work. It would also be good to calculate

the root mean square of the velocity operator as a fraction of the speed of light

〈v2〉1/2/c for different systems, this would allow us to investigate the validity of the

non-relativistic limit, particularly important for lighter hadrons.

Furthermore, for some time now, the focus of potential models at finite temperature

has shifted towards models which go beyond T = TC , it would be interesting to see

if we could study these models using the variational method.
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