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Abstract—In this paper, a novel dynamic multi-objective opti-
mization algorithm (DMOA) is proposed based on a designed
hierarchical response system (HRS). Named as HRS-DMOA,
the proposed algorithm mainly aims at integrating merits from
the mainstream ideas of dynamic behavior handling (i.e., the
diversity-, memory-, and prediction-based methods) so as to make
flexible responses to environmental changes. In particular, by two
pre-defined thresholds, the environmental changes are quantified
as three levels. In case of a slight environmental change, the
previous Pareto set-based refinement strategy is recommended,
while the diversity-based re-initialization method is applied in
case of a dramatic environmental change. For changes occur-
ring in a medium level, the transfer-learning-based response is
adopted to make full use of the historical searching experiences.
The proposed HRS-DMOA is comprehensively evaluated on a
series of benchmark functions, and the results show an improved
comprehensive performance as compared with four popular
baseline DMOAs in terms of both convergence and diversity,
which also outperforms other two state-of-the-art DMOAs in
10 out of 14 testing cases, exhibiting the competitiveness and
superiority of the algorithm. Finally, extensive ablation studies
are carried out, and from the results, it is found that as compared
with randomly selecting the response methods, the proposed HRS
enables more reasonable and efficient responses in most cases.
In addition, the generalization ability of the proposed HRS as
a flexible plug-and-play module to handle dynamic behaviors is
proven as well.

Index terms— Dynamic multiobjective optimization algo-
rithm (DMOA); transfer learning (TL); hierarchical response
system; evolutionary algorithm

I. INTRODUCTION

Dynamic multiobjective optimization problems (DMOPs)
composed of conflicting objective functions are inevitably
encountered in many real-world scenes [9], [14], [62], [66],
[67], where both the objectives and constraints may change
with time [5], [12], and this has attracted wide research
attention to the design of effective dynamic multiobjective
optimization algorithms (DMOAs) [6], [15], [20], [32], [34],
[44]. The population-based evolutionary algorithms have been
proven to be effective under various optimization scenarios
in searching for the optimal solutions [2], [4], [7], [38], [40],
[54], [56]. Particularly, owing to the wide existence of dynamic
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behaviors, the DMOAs are required to timely update the
obtained Pareto solutions to ensure the convergence in each
environment. In order to track the time-varying Pareto front,
it is of vital significance for the DMOAs to make effective
responses to the environmental changes, which is quite a
challenging issue.

To address above basic and important issue in handling
DMOPs, the existing DMOAs can be generally divided into the
memory- [45], [59], prediction- [42], [48]–[50], [57], [70], and
diversity-based methods [12], [35], [36]. Additionally, some
hybrid algorithms have also been proposed [8], [21], [31], [53],
[69], and in particular, a novel trend of developing DMOAs
has emerged recently, which combines the memory mechanism
and the prediction method, where the transfer learning (TL)
technique has been adopted to make full use of history knowl-
edge to accelerate convergence in a new environment, see [25],
[26], [33], [39], [55], [60] for some successful applications.
For a clear inspection of above mainstream algorithms, their
main ideas are summarized in Table I (see Section II-B for
more discussions of their advantages and disadvantages).

TABLE I: Overview of the mainstream DMOAs

Mainstream algorithms Main idea

Diversity-based
Enrich or maintain diversity of

the population for sufficient search

Memory-based
Recall the useful historical Pareto
solutions in the new environment

Prediction-based
Predict the varying Pareto set

in advance to accelerate convergence

Hybrid methods
Apply several different strategies
to collaboratively handle changes

It should be highlighted that all of the existing mainstream
DMOAs have already been proven effective in many cases,
which are popular and reliable in coping with the environ-
mental changes. In [35], a novel coevolutionary multi-swarm
particle swarm optimizer has been proposed to solve DMOPs,
where once a change is detected, 20% of the swarm is gen-
erated randomly to enhance the population diversity, and the
experimental results have shown that the proposed algorithm
performs well in the rapidly changing environment. In [45], an
explicit memory has been adopted to store non-dominated so-
lutions, where a novel minimum distance search-based updat-
ing technique is used. When there is an environmental change,
the stored solutions are reused in later stages for population
initialization, and from the results, the proposed algorithm has
shown its competitiveness in tracking the true Pareto front.
An individual-based self-learning prediction method has been
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proposed in [42], whose major innovation is the employment
of adjustable reference points, which can effectively alleviate
the situation of inaccurate prediction caused by the non-
uniform Pareto front. From the experiments, it is found that
the proposed algorithm can well balance the convergence
and diversity. Similarly, an adaptive reference vector-based
adjustment strategy has been introduced in [70] along with a
linear prediction strategy, whose effectiveness is demonstrated
on twelve functions with diverse dynamic characteristics.

Aiming at recovering diversity in a short time, the authors
in [21] have devised a subspace-based diversity maintenance
strategy, which can identify gaps between population distri-
bution to maintain the diversity regardless of the environ-
mental changes. Moreover, another layered prediction strategy
has been proposed in [21], which benefits making prompt
responses and improving the accuracy of predicted evolution-
ary direction. Similarly, a hybrid DMOA of prediction- and
diversity-based strategy has been developed in [69], where it is
regarded that too much reliance on the prediction method may
reduce the diversity. Therefore, the authors have employed
several mechanisms to generate different seed sets, which
obtains satisfactory results on series of benchmark evalua-
tions, and the proposed algorithm is also promising to handle
the unpredictable DMOPs. Additionally, the memory- and
prediction-based strategy have been combined in [31], where
the similarity among the environmental changes is compared.
If the current detected change is dissimilar to any historical
records, then individuals in the new environment are predicted
based on the differential population center in the previous two
environments. Otherwise, memory mechanism is adopted to
deal with the similar changes, and the experimental results
have shown the robustness of the proposed hybrid strategy.

Recently, more and more advanced DMOAs have been
proposed. To cope with the irregular patterns in stochastic
changes, a Mahalanobis distance-based approach has been
developed in [22] to estimate the correlation between the
current environment and the previous ones, which performs
significantly better than some latest algorithms when handling
the stochastic DMOPs. In [61], a knowledge-guided Bayesian
(KGB) classification method has been proposed to make
robust prediction, which follows the same idea of TL-based
DOMAs to sufficiently exploit the history information, and
the effectiveness of the proposed KGB is demonstrated on
different test suites.

In [60], the authors have developed a clustering difference-
based TL method to solve DMOPs, where the k-means al-
gorithm is applied to divide the population into five clusters,
whose centroid is then adopted to construct the target domain
by the first-order difference. By increasing the similarity be-
tween source and target domains, the phenomenon of negative
transfer is expected to be alleviated. For the same purpose,
a knowledge reconstruction method has been proposed in
[17], where the fuzzy neural network is applied to extract
domain knowledge from two successive Pareto sets, which
is evaluated and screened via a pre-designed mechanism.
Consequently, the suitable knowledge can be selected to guide
the evolution, and the proposed algorithm has presented both
better convergence and diversity performance in comparison

to some other algorithms.
A noticeable issue is that the most existing methods have

paid a great many of attention to designing effective response
strategies, while the in-depth analysis is relatively limited on
the dynamic behaviors (e.g., the changing severity), whose
precise characterization is conducive to tracking the varying
Pareto front [18], [46]. Even in those emerging hybrid al-
gorithms that have applied different novel response methods,
few attention has been paid to the quantification of the envi-
ronmental changes, which motivates us to cover this research
gap. Additionally, in case of dynamic behaviors, it would be
tough to figure out the useful historical experiences in the
absence of further analysis about response-making; in cases
of some slight changes, introducing the new individuals seems
unnecessary and moreover, the prediction-based responses
might lead the evolution to an inappropriate direction when
dramatic changes exist in the environment. In this regard, the
DMOAs should be sensitive to the environmental changes to
enable both timely and appropriate responses. Accounting for
the respective merits of the previously mentioned methods,
a promising way to endow the DMOAs with comprehensive
performances is to make efficient and rational integration of
diverse response mechanisms.

Motivated by above discussions, in this study, we aim to
design a novel DMOA capable of quantitatively measuring
the environmental changes so as to take appropriate response
strategies accordingly. To be specific, in case of a slight en-
vironmental change, the previous Pareto set-based refinement
strategy is recommended to save unnecessary computations
and track the almost unchanged Pareto front. On the contrary,
in case of a dramatic change, an intuitive idea (of introducing
individuals in the new environment) is adopted due to the fact
that searching for Pareto solutions in a totally different envi-
ronment can be directly regarded as solving a new problem. In
addition to above two extreme cases, the TL-based response
strategy is applied to accelerate the convergence, whose main
idea is to transfer useful history knowledge to provide a
high-quality initial population in the new environment. It is
noticeable that different from those hybrid methods where
several types of advanced strategies have been designed, the
main innovation of this study is to rationally adopt appropriate
responses based on the quantification of the changes, which is
supposed to encourage and promote more in-depth investiga-
tions of the dynamic behaviors in DMOPs.

In this paper, a novel dynamic multi-objective optimization
algorithm is proposed based on a hierarchical response system
(HRS), where the environmental changes are quantified and
divided into three levels. The proposed algorithm (named
as the HRS-DMOA) is, in essence, a two-stage algorithm
where 1) half of the non-dominated solutions in the previous
environment are firstly selected as the sensors to quantify the
dynamic behaviors; and accordingly, based on two predefined
thresholds, 2) three response strategies can be later adopted
to generate the initial population in the new environment to
accelerate the convergence. In particular, the diversity-based
strategy is adopted in case of severe changes, and when the
changes are in a medium level, the novel frontier of TL-based
response method is considered, which combines the popular
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ideas of memory and prediction in solving DMOPs. It should
be pointed out that the flexible response strategies can make
the proposed HRS-DMOA adaptive to different situations,
which enables the responses to have little blindness so as to
efficiently handle the dynamic behaviors.

The major contributions of this paper are listed as follows.
1. The dynamic behaviors in the DMOPs are characterized

both qualitatively and quantitatively in the proposed HRS-
DMOA.

2. Advantages complementation of the mainstream response
methods in existing DMOAs is realized in the developed
hierarchical response system.

3. The established flexible response modes can endow the
proposed algorithm with adaptivity (to diverse situations) and
strong generalization ability.

4. The proposed HRS is proven a reliable and effective plug-
and-play module to solve DMOPs, which can be integrated
with different static optimizer.

The remainder of this paper is organized as follows. Some
preliminaries of this work are provided in Section II. The pro-
posed HRS-DMOA is elaborated in Section III, experimental
results and discussions are presented in Section IV. Finally,
conclusions are drawn in Section V.

II. PRELIMINARIES

In this section, some preliminaries related to this study are
provided. To make this paper easy to follow, annotations of
the frequently used symbols are presented in Table II.

TABLE II: Major symbols and corresponding annotations

Symbols Annotations
x, z Decision variable
F Objective function set
fi The i-th objective
g (·) Inequality constraints
h (·) Equality constraints
m The number of objective functions
n The dimension of decision space
t Time variable
nt Change severity
τt Change frequency
τ The maximum generation

PSt Pareto set at time t

PFt Pareto front at time t

CD Change degree
LT Lower-threshold of CD

HT Higher-threshold of CD

Ds Source domain
Dt Target domain
Q (·) Quality factor
Pini Initialized population
N Population size

A. Formulation of DMOP

Without loss of generality, a minimized DMOP is defined
as:{

min F (x, t) = {f1(x, t), f2(x, t), ..., fm(x, t)}
s.t. g(x, t) ≤ 0, h(x, t) = 0

(1)

where x ∈ Rn is the decision vector, F (·) is a set of
m objective functions, and g(·) and h(·) are inequality and
equality constraints, respectively. t is the time variable that
can occur in both objectives and constraints. Based on the
above formulation, some definitions are provided as follows.

Definition 1: Dynamic Pareto domination.
At time t, the decision vector x1 dominates x2 (denoted as

x1 ≺t x2) only in conditions of:{
∀ i ∈ {1, 2, ..., m}, fi(x1, t) ≤ fi(x2, t)

∃ j ∈ {1, 2, ..., m}, fj(x1, t) < fj(x2, t)
(2)

Definition 2: Dynamic Pareto set (PS).
Pareto set at time t (denoted as PSt) is composed of current

Pareto solutions x that cannot be dominated by any other
decision vector x′ ∈ Rn, which is defined as

PSt = {x∗|¬∃ x ∈ Rn, x ≺t x
∗} (3)

Definition 3: Dynamic Pareto front (PF).
Pareto front at time t (denoted as PFt) can be obtained via

mapping PSt to the objective space:

PFt = {F (x, t)|x ∈ PSt} (4)

B. Responses to Dynamic Behaviors

The existence of the dynamic behaviors makes it difficult to
handle DMOPs, and thus has aroused great research interests
on how to make effective responses to the environmental
changes. When the population enters a new environment,
diversity enhancement is a natural response manner. In [12],
population initialization in the new environment has been real-
ized by random generation and Gaussian mutation. As a result,
partial previous individuals in the population are replaced by
the newly generated ones so that the diversity is increased.
Another intuitive response strategy is to directly adopt the
obtained Pareto solutions in the previous environment (as the
initial population) to search for the updated Pareto solution
in the new environment such that population state is main-
tained and no extra computations are required for subsequent
evolvement. It is worth mentioning that the above methods
are somehow blind due to their common procedure of simply
re-starting the search without analysis on the environmental
changes, which may lead to poor convergence. Though, in
some situations with dramatic environmental changes, the
large diversity in the population is able to facilitate a thorough
search in the new environment.

The memory-based methods aim to store and recall the his-
torical searching experiences to form the initial population in
the new environment [59], and thus are feasible to solve those
periodically changing DMOPs. In dynamic situations without
the periodic changes, it is hard to realize rapid but efficient
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responses with the stored solutions in the memory, which mo-
tivates the development of the prediction-based methods due
to correlations between consecutive environments may benefit
further exploration on the stored solutions. For example, in
[72] and [68], the knee- and center-points of the population
have been employed to predict the trace of PS, respectively.
In the predictive strategy proposed in [28], different types
of special points have been sufficiently utilized with three
mechanisms. An ensemble learning-based prediction strategy
has been proposed in [52], which aims at overcoming the
shortcomings of inaccurate and unstable prediction. Similarly,
several sub-prediction models have been integrated in [16],
and the proposed ensemble method is applied to estimate
the fitness of individuals in the new environment, which has
presented better robustness than the single prediction model.
Above methods have concentrated on developing various novel
prediction strategies, which can accelerate the convergence in
the new environment and accordingly save some searching
efforts, while as pointed out in some work, the prediction
model may also suffer from the inaccurate tracking of PS and
the extra computational costs [16], [52], especially when the
change is either too severe or slight.

Considering that those historical experiences may still have
some reference values to search in the new environment,
the TL technique has paved a feasible path in solving the
DMOPs by combining the memory- and prediction-based
strategy, whose idea is to transfer the useful knowledge to
assist learning in similar tasks. Under the assumption that there
may be inherent associations among individuals in successive
environments, developing TL-based DMOAs is an emerging
and promising direction [51], where an important concern is
to alleviate the negative transfer phenomenon, which may lead
the evolution towards wrong directions.

Based on above discussions, it is clear that each kind
of the mainstream strategy in solving DMOPs has the own
advantages and disadvantages without a certain one always
being the best choice. More importantly, it seems feasible
and promising to realize the complementary performance by
quantifying the environmental changes. As previously men-
tioned, if the environment is dramatically changed, it might be
better to re-initialize the population to restart searching than
to figure out the useful history solutions to accomplish the
initialization. On the contrary, in case of a very slight change,
it might be unnecessary to apply any advanced prediction
models. Consequently, in this paper, we aim to realize an
efficient and rational integration of different response strategies
based on the quantification of environmental changes, which
provides a novel idea to develop a competitive DMOA with
comprehensive performance.

III. METHODOLOGY

In this section, the proposed HRS-DMOA is elaborated,
whose main idea is to grade the environmental changes via
some quantification procedure so that hierarchical responses
can be adopted accordingly.

A. Environmental Change Quantification

As previously mentioned, one of the most important issues
in handling DMOPs is to make effective responses to the
dynamic behaviors therein, of which the premise is to detect
the environmental changes. The popular change detection
manner contains the population- and sensor-based methods [1],
[44], and in this study, we hold the belief that it is important to
not only detect but also quantify the environmental changes,
which is conducive to adopting appropriate response strategies.
In this regard, half of the non-dominated solutions in the
previous environment are selected to form the sensor set S,
which is used to estimate the change degree (denoted by CD)
of objective function as [46]:

CDi =
∑
j∈S

fi,j(t)− fi,j(t− 1)

fi,j(t− 1) + µ
, i = 1, 2, ...,m (5)

where m is the number of objective functions, fi,j(t) denotes
the i-th fitness value of sensor j in environment t, and
µ = 0.001 is a smoothing value that avoids the denominator
equaling to zero. Then, the overall change degree of the
environment is defined as:

CD = λ max
1≤k≤m

{CDk} (6)

where λ is an amplification factor, which is set to m − 1 as
the same in [46].

B. Hierarchical Response System

In the proposed HRS-DMOA, the essence of response is to
re-initialize the population to start searching in a new environ-
ment, where the major concern is how to improve reliability
of the initialized population. Hence, a hierarchical response
mode is taken to realize tailored and appropriate reactions
to environmental changes in different extents. To be specific,
based on the change degree CD of environment in Eq. (6), two
predefined thresholds LT and HT are used to divide CD into
three levels, and accordingly, the response modes of refinement
(if CD < LT ), TL (if LT ≤ CD ≤ HT ), and re-initialization
(if CD > HT ) are adopted.

When CD is fewer than the lower-threshold LT , it is
deemed that the change is negligible, that is, the new envi-
ronment (denoted as t) is similar to the previous one (denoted
as t− 1). Therefore, PSt−1 is encouraged to keep improving
the convergence and searching for the Pareto solutions, where
mutation operators are adopted to further supplement the
diversity. If CD is larger than the higher-threshold HT , then
the change is regarded so dramatic that most of the previous
searching experience is no longer useful. As a result, such
situation is treated as a new optimization problem and the
evolution is re-started, where only a few solutions in PSt−1

are reserved in the re-initialized population. In particular, if
CD falls between LT and HT , then the TL-based response is
applied, where knowledge acquired in previous environments
is used to train a prediction model, and more details are
presented in the next subsection.

It is noticeable that, in essence, LT and HT determine the
probability of selecting above three response strategies, and
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in this paper, (LT,HT ) is set to (0.03, 0.78). In addition,
the framework of the proposed hierarchical response system
is summarized in Algorithm. 1.

Algorithm 1 Hierarchical response system

Require:
Predefined lower-threshold LT and higher-threshold HT

Ensure:
Response strategy

1: Calculate change degree (CD) according to
Eqs. (5) and (6)

2: If CD < LT
3: Refinement
4: else if CD > HT
5: Re-initialization
6: else
7: TL
8: EndIf

C. TL-based Population Initialization

The essence of transfer learning is to apply the learned
knowledge from the source domain Ds to assist solving related
but not the same tasks in the target domain Dt. In the pro-
posed HRS-DMOA, the main idea of the TL-based response
is to make full use of the historical searching experiences
to initialize population in the new environment, which is
required to have high quality to accelerate the convergence
[26]. Consequently, PS in the previous environment with some
mutations is selected as the source domain Ds. In addition, to
guarantee knowledge is transferred towards a correct direction,
another group of transfer reference points (TRPs) is screened
in the new environment to form the target domain Dt. To
be specific, a local search strategy is applied to assign each
individual with a quality factor Q(·) as [3]:

Q(x) = min
z∈P\{x}

max
(
fj(z, t)−fj(x, t)

)
, j ∈ {1, 2, · · · ,m}

(7)
where P stands for the population, and the individuals with
larger Q(·) value are deemed to have better quality. Then,
based on Eq. (7), tournament is performed between two
populations in the new environment to obtain a set of TRPs to
form the Dt. The details are displayed in Algorithm. 2, where
simulated binary crossover and polynomial mutation operators
are applied to further enhance the diversity.

Let T = {X,Y } denote the training set, where X =
Ds∪Dt and Y = {0, 1} is the ground-truth label determined
by the domination relationship at the new time t (Y = 1
for non-dominated individuals). In the proposed HRS-DMOA,
the transfer learning process is realized via the sample-based
TrAdaboost technique [11], where several base learners are
trained by approximating the mapping from X to Y , and
the weight of training samples is updated according to the
weighted errors on Dt of the trained classifier. Then, the
ensemble learning method is adopted to form a strong classifier
H(·) which is later used to generate an initial population
with high quality in the new environment. In Algorithm. 3,

Algorithm 2 Construction of the target domain

Require:
Two populations P1 = {x1

i }Ni=1 and P2 = {x2
i }Ni=1 in the

new environment, mutation probability pm
Ensure:

Target domain Dt

1: Initialize Dt = ∅
2: For n from 1 to N
3: Crossover x1

n and x2
n to generate x̃1

n and x̃2
n

4: Define competition group Gc = {x1
n,x

2
n, x̃

1
n, x̃

2
n}

5: Calculate Q(x), x ∈ Gc according to Eq. (7)
6: Dt ← arg max

x∈Gc

Q(x)

7: EndFor
8: For each individual x̃ ∈ Dt

9: Generate a random number rand
10: If rand < pm
11: x̃′ = mutation(x̃)
12: If Q(x̃′) ≥ Q(x̃)
13: Substitute x̃ with x̃′

14: EndIf
15: EndIf
16: EndFor
17: Return Dt

the implementation details of above TL-based initialization
strategy are presented.

D. Overall Framework of HRS-DMOA

The overall flowchart of the proposed HRS-DMOA is shown
in Fig. 1, where the main contributions (i.e., the proposed
HRS) are illustrated in the red dashed box. In addition, the
support vector machine (SVM) [10] is adopted as the base
learner in the TL-based response strategy, and the MOEA/D
[64] is employed as the static optimizer, which is a rep-
resentative multi-objective problem solver that decomposes
the problem into several scalar sub-problems. Since that the
MOEA/D has been successfully applied in various situations,
it is deemed that MOEA/D is competent in searching for the
Pareto solutions in each individual environment when solving
a DMOP.

Explanations of the proposed hierarchical response modes
are further summarized as follows.
(1) Refinement. At time t, polynomial mutation is performed

on PSt−1 to enhance the diversity, and Pini is obtained
by selection from the augmented PSt−1.

(2) TL. At time t, the TL-based initialization is applied to
generate Pini, where the augmented PSt−1 is adopted
as the source domain, and a group of TRPs is screed to
form the target domain (see Section III-C for details).

(3) Re-initialization. At time t, only a few of the individuals
in PSt−1 are reserved in Pini, whereas the rest of Pini

is directly generated by random initialization.
It is noticeable that the TL technique is only adopted

when the environmental changes are regarded in a medium
level. The merits of this setting contain mainly two aspects.
On one hand, if the environment slightly changes, it seems
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Fig. 1: Flowchart of HRS-DMOA, where the proposed HRS (in the red dashed box) is responsible for generating the initial
population (Pini) to the static optimizer, which accomplishes the searching in each environment and can be any

multi-objective problem solver (the MOEA/D is employed in this study). By comparing the calculated change degree (CD)
with the two thresholds, the responses based on TL, refinement, and re-initialization are adopted when LT ≤ CD ≤ HT ,

CD < LT , and CD > HT , respectively. Additionally, the “TRP Acquisition” refers to the construction of target domain Dt.

unnecessary to introduce the prediction model, which will no
doubts burden the computation. On the other hand, dramatic
environmental changes may lead to few correlations between
the successive environments, and in this case, the negative
transfer phenomenon easily occurs. As a result, the advantages
of different strategies are effectively integrated in the proposed
hierarchical response system, which is, in fact, a rational
combination of them. In Algorithm. 4, a brief pseudocode of
the proposed HRS-DMOA is presented for a clear view.

Remark 1: In the first environment t = 1, the initial
population Pini is directly generated by the static optimizer
Opt(·). In other cases, Pini is provided to Opt(·) by the
adopted response strategy.

E. Complexity Analysis

Given that N is the population size, m is the number
of objectives and n is the dimension of decision vector.
The following cases are mainly considered to estimate the
computational complexity of the proposed HRS-DMOA.

1) MOEA/D is used to search for Pareto solutions in each
environment, whose computational complexity is O(NmT )
[64], where T is the size of applied neighborhood.

2) The computational complexity is O(n) for both polyno-
mial mutation and simulated binary crossover.

3) The computational complexity is O(N) when calculating
the fitness value of the sensors in a new environment.

4) The computational complexity is O(Nm) when calculat-
ing the quality factor Q(·) to select transfer reference points
to form Dt.

5) In the TL-based initialization, SVM is employed as the
base learner, whose computational complexity is O(N2mn)
[10].

6) In the re-initialization response mode, the computational
complexity is O(Nmn).

7) In the refinement response mode, only polynomial mu-
tation operation and a selection process are involved. Hence,
the computational complexity is O(Nn) +O(N).

In general, N is far larger than m and n. Consequently,
the computational complexity of the proposed HRS-DMOA is
O(N2mn).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, benchmark evaluations are performed to
validate the effectiveness of the proposed HRS-DMOA in
solving DMOPs, and sufficient ablation studies are carried out
to verify the superiority of the developed HRS.

A. Experimental Environment

The proposed HRS-DMOA is comprehensively evaluated
on 14 DMOPs in the CEC2018 test suites [27], where the
provided benchmark DMOPs can well characterize the prop-
erties of dynamic problems in various real-world optimization
scenarios, such as time-varying PS and disconnected PF, etc.
The 14 benchmark functions are named as DF1 to DF14,
and one can find more information of the applied test suites
in [27]. For the evaluation metrics, the inverted generational
distance (IGD) and the hypervolume (HV) are adopted. To
be specific, IGD reflects the convergence of algorithms by
measuring distance between the obtained PF and the real one.
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Algorithm 3 Transfer learning-based initialization

Require:
The number of base learner Nb, source domain Ds, target
domain Dt, and population size N

Ensure:
Initialized population Pini in the new environment

1: Calculate ns = |Ds| and nt = |Dt|
2: Obtain training set T = {X,Y } where X = Ds ∪Dt and

corresponding ground-truth label Y = {yi}ns+nt
i=1

3: Initialize weight for each training sample by

ω(x) =

{
1/ns, x ∈ Ds

1/nt, x ∈ Dt

4: For j from 1 to Nb

5: Weight normalization by ω(x) = ω(x)/
∑

z ω(z)
6: Train a base learner Lj with (T ;ω)
7: Calculate error εj of trained Lj on target domain Dt

according to εj =
∑

(x,y)∈Dt

ω(x)|Lj(x)− y|

8: Define βj =
εj

1−εj
and β = 1

1+
√

ln(n2
s)/Nb

9: Update weight for each training sample based on

ω(x) =

{
ω(x) · β |Lj(x)−y|, (x, y) ∈ Ds

ω(x) /β
|Lj(x)−y|

j , (x, y) ∈ Dt

10: EndFor
11: Integrate base learners to form a strong classifier as

H(x) = sgn[
∑Nb

j=1−ln(βj)Lj(x)]
12: Generate a selection pool Ps in the new environment

(|Ps| >> N )
13: Screen high-quality solutions from Ps based on P̃s =
{z| H(z) = 1, z ∈ Ps} until |P̃s| = N

14: Return Pini = P̃s

Algorithm 4 Framework of HRS-DMOA

Require:
Static optimizer Opt(·), thresholds LT and HT , optimiza-
tion problem F , and the time variables t = {1, 2, ..., ⌊ τ

τt
⌋}

Ensure:
Pareto sets {PSt} of all environments

1: Initialization procedure
2: While t ≤ τ

τt
3: If t = 1
4: PSt ← Opt(F , t)
5: else
6: Determine the response mode via Algorithm. 1
7: Generate the Pini by the adopted strategy
8: PSt ← Opt(F , t, Pini)
9: EndIf

10: t← t+ 1
11: EndWhile
12: Return {PSt}

⌊ τ
τt

⌋
t=1

Considering the time-varying property of DMOPs, IGD at time

t is calculated as:

IGDt =

∑
x∈ ˜PFt

dist(x, PFt)

| ˜PFt|
(8)

where dist(·) is the Euclidean distance and ˜PFt stands for
the true PF at time t. HV refers to the volume of the
hypercube surrounded by individuals in the obtained PF and
corresponding reference point in the objective space. Let ν(·)
denote the volume of the mentioned hypercube, then HV at
time t is given as:

HVt =
⋃

x∈PFt

ν(x) (9)

In addition, another commonly used performance indicator
MS (short for the maximum spread) is adopted to compre-
hensively evaluate the diversity of the five DMOAs, which
measures the scope that the true PF is covered by the obtained
one. The larger MS, the better diversity, whose definition is
given as:

MSt =

√√√√ 1

m

m∑
k=1

[min{Fmax
k , fmax

k } −max{Fmin
k , fmin

k }
Fmax
k − Fmin

k

]2
(10)

where Fmax
k and Fmin

k , fmax
k and fmin

k represent the max-
imum and minimum values of the k-th objective in the true
and obtained PF at time t, respectively.

In the average level, the above three indicators are reported
and calculated as:

MIGD =
1

τ

τ∑
t=1

IGDt

MHV =
1

τ

τ∑
t=1

HVt

MMS =
1

τ

τ∑
t=1

MSt

(11)

where τ is the maximum generation.
Moreover, to further verify the competitiveness of the pro-

posed HRS-DMOA, other four popular DMOAs are employed
as baseline models for comparison, including the second ver-
sion of the dynamic non-dominated sorting genetic algorithm
(NSGA)-II [12], the change-responsive NSGA-II [46], the TL-
based DMOA in [25], and the knee-point-based imbalanced
TL-DMOA in [26]. For convenience, above four algorithms
are denoted as DNSGA-II-B, CR-DMOEA, Tr-DMOEA, and
KT-DMOEA, respectively. Notice that the response strategy
based on diversity is applied in the former two methods, and
the TL-based response strategy (which can be regarded as the
combination of the memory- and prediction-based ones) is
adopted with different implementation manners in the latter
two algorithms. Hence, above four models are employed as
baselines for comparison to validate whether the proposed
HRS-DMOA can realize better comprehensive performance
via the rational integration of different mainstream strategies.

In addition, the dynamic behavior of DMOPs is depicted
as t = 1

nt
· ⌊ τ

τt
⌋, where the number of the environments is

set to 50 (τ = 50 × τt), τt and nt stand for the frequency
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and severity of change, respectively. On each benchmark, three
groups of evaluation are performed based on different dynamic
parameters, including (nt = 5, τt = 10), (nt = 10, τt = 5)
and (nt = 10, τt = 10). For a fair comparison, all algorithms
are evaluated with the same parametric conditions on each
benchmark, where the dimension of test problems is set to
10, the population size for bi- and tri-objective optimization
problem is set to 100 and 150, respectively. 10 epochs of
search in each individual environment is fixed for all DMOAs,
that is, the searching times for Pareto solutions by the applied
static optimizer in all algorithms are the same and, by doing so,
the effectiveness of the responses to the environmental changes
can be reflected to some extents. Moreover, considering that
while applying the TL technique to make responses, it is
inevitable to consume some evaluations in advance at the
new environment to establish the target domain, for those
algorithms that do not involve extra evaluations, six more
epochs of search for the static optimizer are added to promote
the fairness of comparison.

All algorithms have run 20 times individually on each
benchmark to alleviate the influence of randomness, and
results in average level are reported along with the Wilcoxon
rank sum test at the significance level of 0.05 [13]. Comparison
results in terms of MIGD, MHV, and MMS are presented in
Table III, Table IV, and Table V, respectively, where “+/-”
indicates that the proposed HRS-DMOA is significantly bet-
ter/worse than the corresponding algorithm, and “=” denotes
there is no significant difference between the two algorithms
in a statistical sense.

B. Benchmark Evaluations Results
1) Convergence: As reported in Table III, HRS-DMOA

achieves 26 out of 42 best results in terms of MIGD, which
performs significantly better than KT-DMOEA, Tr-DMOEA,
CR-DMOEA and DNSGA-II-B in 32, 35, 29 and 39 cases,
respectively, reflecting the reliability of the proposed method
in adapting to the varying environments in DMOPs. According
to the Wilcoxon rank sum test, there are 135 cases where HRS-
DMOA performs significantly better than other algorithms,
which shows that the proposed method is a competitive DMOA
with outstanding convergence. Notice that on the problems
DF7, the DNSGA-II-B performs slightly better than the pro-
posed HRS-DMOA in two situations, which may mainly
due to the time-varying PF ranges of DF7 are in dissimilar
scales, and simultaneously the corresponding PS center is
fixed, thereby making it extremely hard to realize efficient
knowledge transfer towards a proper direction.

In addition, for the tri-objective problem DF11, not only the
centroid of its PF oscillates by expanding and shrinking with
multiple scales, but also the density of solutions changes with
time, which brings great challenges to the algorithms. On one
hand, the population is required to rapidly converge with a
considerable diversity so that the obtained PF can well cover
the true one. On the other hand, the population should also
realize timely escape from the local optimum. Such a high
requirement on maintaining diversity in the objective-space
makes DF11 quite hard to handle, whereas the proposed HRS-
DMOA still ranks second on DF11 and performs only slightly

worse than the KT-DMOEA, which shows the competitiveness
of our method.

2) Diversity: According to Table IV, HRS-DMOA achieves
half of the best results in terms of MHV, and the sub-optimal
algorithm Tr-DMOEA wins in 14 cases, which implies the
advantage of the proposed algorithm regarding to the compre-
hensive performance. Furthermore, as displayed in Table V,
it is found that the proposed HRS-DMOA obtains 22 best
MMS out of the 42 results, and in totally 106 cases, our
method performs significantly better than other comparison
models. Combining the results reported in both Table IV and
Table V, it can be concluded that the proposed algorithm yields
considerable diversity as well. While on the problem DF6, the
MHV of our method is not so satisfactory as compared with
other algorithms, which may due to that the time-varying PF
of DF6 has the geometric property of long-tails and knee-
regions. By observing the response manner of our method
when solving DF6, it is found that in almost 65.3% of the total
50 environment, the initial population is randomly generated
within the re-initialization mode. Simultaneously, it can be
inferred that the negative transfer phenomenon may occur in
the left 34.7% cases where the TL-based response is adopted,
as in the unstable environment it is hard to accurately identify
the useful knowledge. Consequently, the random initialization
is performed in most cases, and recalling the historical experi-
ences makes few contributions, which collaboratively lead to
a poor performance.

It is also noticeable that the PF of problem DF2 keeps
unchanged in a period of time (while the PS changes), which
requires the algorithms to not only monitor environmental
changes, but also maintain the population diversity to obtain
considerable result. From the reported results, with different
dynamic parameter settings, the proposed HRS-DMOA ob-
tains almost all the best MHV and MMS on DF2, exhibiting
the superiority of HRS in handling dynamic behaviors with
multiple concerns.

To sum up, the proposed HRS-DMOA ranks first in most
testing cases, which is competent in handling complex dy-
namic behaviors in DMOPs with satisfactory comprehensive
performance. Moreover, according to the above results, it is
found that the DNSGA-II-B has achieved few best results in
terms of MIGD although a competitive diversity is presented,
which indicates that the diversity-based response strategy does
have some limitations in practice. Meanwhile, in various dy-
namic situations, it is also hard to guarantee the performances
of DMOAs with only TL-based strategy. Hence, it can be
concluded that the designed HRS is effective and practical,
which successfully integrates the merits of different response
strategies.

C. Comparisons with Other Hybrid DMOA
In this subsection, two additional hybrid methods SVM-

DMOA [24] and PPS-RM-MEDA [71] are employed for
comparisons. In Table VI, the results on DF series testing
problems are presented, where the number in parenthesis
denotes the rank (from 1st to 3rd) of corresponding algorithm,
and the data of above two comparison models are cited from
[37] and [58], respectively.
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TABLE III: Performance of five DMOAs on MIGD

Problems nt, τt
Algorithms

DNSGA-II-B [12] Tr-DMOEA [25] CR-DMOEA [46] KT-DMOEA [26] HRS-DMOA

DF1
5, 10 0.4305±1.18e-01(+) 0.2919±1.25e-01(+) 0.0849±1.22e-02(+) 0.1427±2.17e-02(+) 0.0740±1.62e-02
10, 5 2.3232±7.40e-01(+) 0.2727±6.34e-02(+) 0.1102±5.41e-02(=) 0.1326±2.27e-02(+) 0.0859±1.94e-02
10, 10 2.0923±6.29e-01(+) 0.3594±6.94e-02(+) 0.1038±2.54e-02(=) 0.1261±1.94e-02(+) 0.0884±1.80e-02

DF2
5, 10 0.2667±7.12e-02(+) 0.5891±1.00e-01(+) 0.0242±4.11e-03(-) 0.1093±1.29e-02(+) 0.0505±1.68e-02
10, 5 1.2338±5.04e-01(+) 0.5183±7.52e-02(+) 0.0347±1.87e-02(=) 0.1196±1.04e-02(+) 0.0419±1.31e-02
10, 10 1.3458±5.50e-01(+) 0.5227±7.06e-02(+) 0.0402±1.66e-02(=) 0.1095±1.09e-02(+) 0.0482±1.37e-02

DF3
5, 10 0.8344±1.86e-01(+) 0.7486±3.67e-01(=) 0.6393±3.50e-01(=) 0.8366±8.29e-02(+) 0.5182±1.33e-01
10, 5 2.4443±8.07e-01(+) 0.6780±1.75e-01(=) 0.3807±7.25e-02(-) 0.7350±1.24e-01(+) 0.5680±1.44e-01
10, 10 2.7178±7.92e-01(+) 0.8917±4.27e-01(=) 0.3943±1.18e-01(-) 0.7128±9.16e-02(=) 0.5916±1.57e-01

DF4
5, 10 1.6360±2.44e-01(+) 3.7776±4.93e-01(+) 1.2742±1.41e-01(+) 1.6231±1.43e-01(+) 0.3620±7.49e-02
10, 5 1.8601±3.52e-01(+) 5.1859±2.01e-01(+) 1.3296±1.47e-01(+) 1.7109±9.97e-02(+) 0.4296±6.97e-02
10, 10 1.7133±3.27e-01(+) 5.4790±2.25e-01(+) 1.3684±1.81e-01(+) 1.7089±1.14e-01(+) 0.4310±7.83e-02

DF5
5, 10 0.3309±5.93e-02(+) 0.1653±2.79e-02(+) 0.0698±5.30e-02(+) 0.4060±4.98e-02(+) 0.0361±7.22e-03
10, 5 1.5103±5.20e-01(+) 0.1605±3.31e-02(+) 0.0594±2.09e-02(+) 0.3623±6.79e-02(+) 0.0367±9.04e-03
10, 10 1.4960±4.17e-01(+) 0.1916±3.56e-02(+) 0.0655±4.32e-02(+) 0.3501±6.63e-02(+) 0.0366±5.65e-03

DF6
5, 10 6.2760±1.45e+00(+) 2.2846±6.85e-01(+) 2.7808±2.50e+00(=) 3.2694±3.06e-01(+) 1.5302±6.95e-01
10, 5 1.8258±6.45e-01(=) 3.9235±1.05e+00(+) 5.9046±4.39e+00(+) 3.7916±4.24e-01(+) 1.7784±6.44e-01
10, 10 1.8768±1.04e+00(+) 1.5666±4.28e-01(+) 6.8773±3.12e+00(+) 3.9172±3.90e-01(+) 1.2066±6.06e-01

DF7
5, 10 2.8578±5.82e-01(+) 3.5497±9.14e-01(+) 2.3553±7.25e-01(+) 2.9380±7.64e-01(+) 0.9094±2.12e-01
10, 5 1.1209±1.35e-01(-) 3.6926±9.29e-01(+) 9.1002±7.34e+00(+) 4.4453±7.07e-01(+) 1.2286±1.74e-01
10, 10 1.1154±1.53e-01(=) 2.1510±7.00e-01(+) 5.7568±2.25e+00(+) 2.9671±4.29e-01(+) 1.1298±1.53e-01

DF8
5, 10 0.3023±5.64e-02(+) 0.6467±1.64e-02(+) 0.9582±1.32e-01(+) 1.0937±1.53e-02(+) 0.1373±6.89e-02
10, 5 0.2783±5.55e-02(+) 0.5996±2.09e-02(+) 1.0822±1.38e-01(+) 1.0736±2.32e-02(+) 0.1232±3.16e-02
10, 10 0.2749±5.93e-02(+) 0.6068±2.63e-02(+) 1.0353±1.20e-01(+) 1.0904±1.78e-02(+) 0.1108±3.15e-02

DF9
5, 10 1.1643±2.73e-01(+) 2.1294±2.93e-01(+) 0.2699±1.11e-01(=) 0.6778±7.75e-02(+) 0.2189±3.09e-02
10, 5 1.1467±2.80e-01(+) 3.1613±5.44e-01(+) 0.2797±1.12e-01(+) 0.6427±1.09e-01(+) 0.1993±3.56e-02
10, 10 1.0891±2.99e-01(+) 3.1626±4.40e-01(+) 0.2953±1.40e-01(+) 0.6567±8.32e-02(+) 0.1965±2.64e-02

DF10
5, 10 0.8708±1.70e-01(+) 0.1923±3.90e-02(-) 0.4345±8.85e-02(+) 0.3086±1.91e-02(+) 0.2661±7.70e-02
10, 5 1.2816±3.47e-01(+) 0.1280±1.72e-02(-) 0.3933±7.34e-02(+) 0.2836±2.15e-02(-) 0.3283±2.28e-02

10, 10 1.2348±3.28e-01(+) 0.1158±1.45e-02(-) 0.3504±6.57e-02(=) 0.2946±1.33e-02(-) 0.3230±2.76e-02

DF11
5, 10 0.7717±1.56e-01(+) 0.3433±3.16e-02(+) 0.3868±5.11e-03(+) 0.1636±5.54e-03(+) 0.1492±3.68e-03
10, 5 0.8730±1.55e-01(+) 0.4038±4.48e-02(+) 0.4847±8.07e-03(+) 0.1634±8.18e-03(-) 0.3677±2.78e-03
10, 10 0.9039±9.84e-02(+) 0.3728±4.60e-02(=) 0.4776±1.52e-02(+) 0.1643±8.74e-03(-) 0.3666±2.20e-03

DF12
5, 10 0.8208±6.17e-02(+) 2.5764±1.73e-01(+) 0.3076±1.14e-02(-) 0.6093±5.28e-02(=) 0.5108±1.78e-01
10, 5 0.8656±7.23e-02(+) 1.4244±9.61e-02(+) 0.3051±3.42e-03(=) 0.6321±5.39e-02(=) 0.4643±1.81e-01
10, 10 0.9036±7.61e-02(+) 1.4266±1.16e-01(+) 0.3074±3.26e-03(-) 0.6358±7.12e-02(=) 0.6236±1.69e-01

DF13
5, 10 0.5057±1.04e-01(+) 0.3911±3.42e-02(+) 0.2554±1.82e-02(+) 0.4067±4.16e-02(+) 0.2409±7.86e-03
10, 5 1.6747±4.90e-01(+) 0.3841±2.29e-02(+) 0.3052±1.93e-02(+) 0.3789±3.80e-02(+) 0.2556±1.20e-02
10, 10 1.6450±6.22e-01(+) 0.4262±4.73e-02(+) 0.3031±9.74e-03(+) 0.3741±3.30e-02(+) 0.2527±1.26e-02

DF14
5, 10 0.4126±1.07e-01(+) 0.2410±5.64e-02(+) 0.1246±2.11e-02(+) 0.1310±1.44e-02(+) 0.0972±4.35e-03
10, 5 3.0028±8.52e-01(+) 0.2174±5.35e-02(+) 0.1570±2.06e-02(+) 0.1253±1.16e-02(=) 0.1216±3.71e-03
10, 10 3.0825±1.14e+00(+) 0.1938±3.51e-02(+) 0.1614±2.42e-02(+) 0.1210±1.32e-02(=) 0.1231±3.97e-03

+ / - / = \ 39 / 1 / 2 35 / 3 / 4 29 / 4 / 9 32 / 4 / 6 \

As can be seen from Table VI, the proposed HRS-DMOA
ranks first and second in 13 and 14 cases, respectively. In
particular, on the complex tri-objective benchmark problems
DF13 and DF14, our method yields considerable convergence
performance, which owes to that the changing severity is
taken into account when making response to the environmental
changes, and it enables the generated initial population well
adapt to the new environment. It should be pointed out that
the static optimizer can also make great contribution to the

results, and according to our algorithm configuration, it is
difficult for the static optimizer to always obtain sufficient
high-quality Pareto solutions within only 10 epochs of search
in each environment, which accounts for that our algorithm
may present performance declination as compared with the
optimal one in some situations.

In addition, the proposed HRS-DMOA is further compared
with the MoE [43], which is a state-of-the-art DMOA that
has employed multiple prediction mechanism. To make a fair
comparison, the basic experimental settings are made the same
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TABLE IV: Performance of five DMOAs on MHV

Problems nt, τt
Algorithms

DNSGA-II-B [12] Tr-DMOEA [25] CR-DMOEA [46] KT-DMOEA [26] HRS-DMOA

DF1
5, 10 0.1838±5.31e-02(+) 0.2526±7.37e-02(+) 0.4500±1.54e-02(=) 0.3811±1.63e-02(+) 0.4587±3.15e-02
10, 5 0.0089±3.60e-02(+) 0.2493±3.75e-02(+) 0.4241±6.92e-02(=) 0.3909±1.69e-02(+) 0.4633±3.03e-02

10, 10 0.0108±3.39e-02(+) 0.2100±4.08e-02(+) 0.4236±3.82e-02(+) 0.3940±1.57e-02(+) 0.4697±4.19e-02

DF2
5, 10 0.2317±7.41e-02(+) 0.5531±1.11e-01(+) 0.6872±8.42e-03(=) 0.5862±1.04e-02(+) 0.6990±2.31e-02
10, 5 0.0516±1.14e-01(+) 0.6777±3.12e-02(-) 0.6743±2.50e-02(-) 0.5895±9.76e-03(+) 0.6595±2.02e-02

10, 10 0.0465±8.94e-02(+) 0.6439±8.38e-02(+) 0.6661±1.66e-02(+) 0.5976±1.28e-02(+) 0.6818±1.76e-02

DF3
5, 10 0.0305±4.37e-02(+) 0.1724±2.57e-02(=) 0.0878±7.50e-02(=) 0.1495±1.06e-02(-) 0.1196±8.54e-02
10, 5 0.0087±3.91e-02(+) 0.2009±1.54e-02(=) 0.1628±5.45e-02(-) 0.1655±1.40e-02(-) 0.1069±6.22e-02

10, 10 0.0050±2.33e-03(+) 0.2013±1.74e-02(=) 0.1609±7.74e-02(=) 0.1634±7.47e-03(=) 0.1304±5.94e-02

DF4
5, 10 0.1625±3.79e-02(+) 0.0209±2.64e-02(+) 0.6013±5.63e-02(-) 0.4960±3.08e-02(=) 0.5218±3.35e-02
10, 5 0.1489±6.04e-02(+) 0.0188±1.61e-02(+) 0.5185±5.31e-02(=) 0.4840±3.13e-02(+) 0.5193±2.72e-02

10, 10 0.1813±5.76e-02(+) 0.0027±2.89e-03(+) 0.5709±5.39e-02(-) 0.4705±3.54e-02(+) 0.5216±2.87e-02

DF5
5, 10 0.2538±4.22e-02(+) 0.4330±3.43e-02(+) 0.4971±5.73e-02(=) 0.2335±2.46e-02(+) 0.5293±1.22e-02
10, 5 0.0282±6.65e-02(+) 0.4303±3.15e-02(+) 0.4999±3.00e-02(+) 0.2719±2.37e-02(+) 0.5306±1.69e-02

10, 10 0.0166±4.68e-02(+) 0.4055±2.88e-02(+) 0.4932±5.37e-02(+) 0.2777±2.35e-02(+) 0.5284±1.08e-02

DF6
5, 10 0.0012±3.19e-03(+) 0.9480±7.03e-02(-) 0.2471±4.22e-02(-) 0.0271±1.19e-02(=) 0.0268±1.13e-02
10, 5 0.0635±9.28e-02(=) 0.8041±1.08e-01(-) 0.1745±4.44e-02(-) 0.0299±1.34e-02(=) 0.0260±9.25e-03

10, 10 0.0785±6.97e-02(=) 0.8315±1.03e-01(-) 0.2412±2.41e-02(-) 0.0289±1.22e-02(=) 0.0275±1.22e-02

DF7
5, 10 0.1285±3.17e-02(=) 0.9479±9.08e-02(-) 0.0124±1.25e-02(+) 0.2334±2.03e-02(-) 0.1269±1.62e-02
10, 5 0.1400±3.17e-02(=) 0.8986±7.02e-02(-) 0.0315±2.15e-02(+) 0.2692±3.50e-02(-) 0.1347±3.30e-02

10, 10 0.1398±2.99e-02(=) 0.8392±7.24e-02(-) 0.0379±1.78e-02(+) 0.2471±2.12e-02(-) 0.1382±2.96e-02

DF8
5, 10 0.6909±3.88e-02(+) 0.9042±1.10e-02(-) 0.9340±1.51e-02(+) 0.9115±6.78e-03(-) 0.9532±1.28e-02
10, 5 0.6484±5.18e-02(+) 0.8954±1.22e-02(-) 0.9439±1.84e-02(=) 0.9133±5.97e-03(-) 0.9442±1.69e-02

10, 10 0.6445±3.04e-02(+) 0.8988±7.67e-03(-) 0.9402±1.69e-02(-) 0.9123±7.45e-03(-) 0.9255±1.82e-02

DF9
5, 10 0.0555±3.79e-02(+) 0.5656±2.55e-02(-) 0.3232±9.77e-02(=) 0.1698±1.88e-02(+) 0.3161±3.47e-02
10, 5 0.0495±3.63e-02(+) 0.1104±3.65e-02(+) 0.3020±9.94e-02(=) 0.1958±2.34e-02(+) 0.3391±4.16e-02

10, 10 0.0634±4.50e-02(+) 0.1294±1.90e-02(+) 0.2753±1.20e-01(=) 0.1842±1.53e-02(+) 0.3443±3.07e-02

DF10
5, 10 0.0371±1.37e-01(+) 0.6399±2.59e-02(+) 0.9115±3.26e-02(=) 0.6142±2.17e-02(+) 0.8791±1.36e-01
10, 5 0.0530±1.75e-01(+) 0.8712±1.91e-02(+) 0.9066±1.73e-02(=) 0.6605±1.57e-02(+) 0.9150±1.83e-02

10, 10 0.0407±1.40e-01(+) 0.8841±1.14e-02(+) 0.9161±1.81e-02(+) 0.6581±1.26e-02(+) 0.9247±1.76e-02

DF11
5, 10 0.1093±2.03e-01(+) 0.1336±1.54e-02(+) 0.4875±8.77e-03(+) 0.2193±2.94e-03(+) 0.7670±1.62e-02
10, 5 0.0561±1.91e-01(+) 0.1402±2.17e-02(+) 0.6350±1.03e-02(+) 0.2224±3.19e-03(+) 0.7775±9.94e-03

10, 10 0.0548±1.90e-01(+) 0.1414±1.33e-02(+) 0.6307±2.01e-02(+) 0.2231±2.20e-03(+) 0.7728±1.65e-02

DF12
5, 10 0.9800±1.55e-02(-) 0.7480±4.12e-02(+) 0.8960±8.09e-03(-) 0.7784±1.38e-02(+) 0.8375±3.47e-02
10, 5 0.9486±3.99e-02(-) 0.6676±4.37e-02(+) 0.9089±3.54e-03(-) 0.7988±6.90e-03(=) 0.8371±5.48e-02

10, 10 0.9649±2.56e-02(-) 0.6630±6.25e-02(+) 0.9075±6.50e-03(-) 0.7957±8.83e-03(+) 0.8141±6.23e-02

DF13
5, 10 0.4643±1.16e-01(=) 0.5326±2.97e-02(-) 0.5135±2.02e-02(-) 0.4044±2.37e-02(+) 0.4549±1.63e-02
10, 5 0.0933±1.08e-01(+) 0.5011±1.81e-02(-) 0.3020±2.54e-02(+) 0.4223±2.17e-02(+) 0.4506±1.17e-02

10, 10 0.1045±1.08e-01(+) 0.4889±1.12e-02(-) 0.2953±1.99e-02(+) 0.4232±2.11e-02(+) 0.4544±6.67e-03

DF14
5, 10 0.0281±1.39e-02(+) 0.3516±6.45e-02(+) 0.4226±3.28e-02(+) 0.4063±1.91e-02(+) 0.4884±1.03e-02
10, 5 0.0027±1.22e-02(+) 0.3733±5.11e-02(+) 0.4116±1.59e-02(+) 0.4276±1.65e-02(+) 0.4801±9.70e-03

10, 10 0.0018±8.25e-03(+) 0.3960±3.58e-02(+) 0.4096±1.58e-02(+) 0.4326±1.38e-02(+) 0.4791±1.01e-02
+ / - / = \ 33 / 3 / 6 25 / 14 / 3 17 / 12 / 13 28 / 8 / 6 \

as mentioned in [21], and the comparison results on JY series
problems [23] are displayed in Table VII, where data of the
algorithm MoE are cited from [21].

According to Table VII, the proposed HRS-DMOA wins
the state-of-the-art MoE in 15 cases, and on problems of JY1
and JY5, the MoE yields better performance than our method.
Particularly, on these two problems, the results obtained by
the proposed HRS-DMOA merely reach the level of 10−1,
whose major reason is that the main focus of this study is

to realize rational and efficient integration of the mainstream
strategies, thus only several basic response methods are applied
in the proposed HRS-DMOA, which may limit the algorithm
performance as compared with the meticulously designed
advanced strategies in MoE.

It is also noticeable that on the rest five JY problems,
the proposed HRS-DMOA obtains the best results under all
dynamic parameter settings, which is a promising and inspiring
result as it implies that even the basic methods could realize
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TABLE V: Performance of five DMOAs on MMS

Problems nt, τt
Algorithms

DNSGA-II-B [12] Tr-DMOEA [25] CR-DMOEA [46] KT-DMOEA [26] HRS-DMOA

DF1
5, 10 0.7769±5.89e-02(+) 0.7443±1.39e-01(+) 0.8912±8.68e-02(=) 0.7694±1.82e-02(+) 0.9084±4.65e-02
10, 5 0.9113±6.31e-02(=) 0.9064±2.50e-02(=) 0.8752±1.00e-01(+) 0.7654±2.86e-02(+) 0.9137±3.56e-02

10, 10 0.8646±1.08e-01(+) 0.8606±4.52e-02(+) 0.8781±8.70e-02(+) 0.7701±4.12e-02(+) 0.9040±2.95e-02

DF2
5, 10 0.8513±4.88e-02(+) 0.5661±1.10e-01(+) 0.9174±4.79e-02(=) 0.7866±2.54e-02(+) 0.9216±3.17e-02
10, 5 0.8047±5.25e-02(+) 0.5548±8.51e-02(+) 0.9271±6.30e-02(=) 0.7382±2.55e-02(+) 0.9373±2.77e-02

10, 10 0.8112±7.64e-02(+) 0.5510±1.25e-01(+) 0.8940±7.61e-02(=) 0.7531±2.40e-02(+) 0.9297±4.15e-02

DF3
5, 10 0.3554±9.02e-02(+) 0.5532±3.83e-02(-) 0.3715±1.51e-01(+) 0.5541±3.14e-02(-) 0.4140±1.09e-01
10, 5 0.8493±1.52e-01(-) 0.6196±7.01e-02(-) 0.4165±1.06e-01(=) 0.5297±7.05e-02(-) 0.4244±1.04e-01

10, 10 0.8780±1.76e-01(-) 0.6380±4.57e-02(-) 0.4259±1.28e-01(=) 0.4953±4.04e-02(=) 0.4879±8.93e-02

DF4
5, 10 0.4351±5.95e-02(+) 0.5384±1.22e-01(+) 0.7662±8.33e-02(+) 0.4607±2.44e-02(+) 0.9429±3.37e-02
10, 5 0.3068±8.30e-02(+) 0.5556±9.31e-02(+) 0.7601±1.01e-01(+) 0.4760±3.10e-02(+) 0.9235±5.10e-02

10, 10 0.2836±8.99e-02(+) 0.3909±6.13e-02(+) 0.7400±1.00e-01(+) 0.4613±2.41e-02(+) 0.9060±4.01e-02

DF5
5, 10 0.9698±4.51e-04(=) 0.9637±3.60e-04(+) 0.9292±1.31e-01(=) 0.8683±1.95e-02(+) 0.9808±1.22e-02
10, 5 0.9686±2.53e-03(+) 0.9719±1.62e-04(=) 0.9551±6.32e-02(=) 0.8760±1.80e-02(+) 0.9754±1.23e-02

10, 10 0.9491±1.70e-03(+) 0.9779±3.22e-04(=) 0.9661±4.31e-02(=) 0.8626±2.51e-02(+) 0.9788±1.26e-02

DF6
5, 10 0.9988±2.65e-03(-) 0.9940±4.71e-03(=) 0.8729±1.88e-01(+) 0.7458±3.74e-02(+) 0.9552±6.03e-02
10, 5 0.9997±1.34e-03(=) 0.9948±3.50e-03(-) 0.9153±2.39e-01(+) 0.7610±4.17e-02(+) 0.9913±2.73e-02

10, 10 0.9999±5.24e-04(-) 0.9927±3.42e-03(=) 0.9989±2.31e-03(-) 0.7573±3.31e-02(+) 0.9576±6.68e-02

DF7
5, 10 0.8251±3.56e-02(+) 0.8178±1.27e-01(=) 0.9127±5.43e-02(=) 0.7114±4.08e-02(+) 0.8878±3.69e-02
10, 5 0.7918±2.53e-02(+) 0.6464±1.32e-01(+) 0.8258±6.04e-02(+) 0.6057±4.41e-02(+) 0.8778±3.10e-02

10, 10 0.7999±3.07e-02(+) 0.6598±8.29e-02(+) 0.8061±5.45e-02(+) 0.6271±5.98e-02(+) 0.8727±2.46e-02

DF8
5, 10 0.9321±2.87e-02(-) 0.6392±2.43e-02(+) 0.3383±1.04e-01(+) 0.2264±1.37e-02(+) 0.8508±3.56e-02
10, 5 0.9674±2.15e-02(-) 0.6378±1.65e-02(+) 0.3006±1.46e-01(+) 0.2200±1.05e-02(+) 0.8671±1.43e-02

10, 10 0.9683±2.06e-02(-) 0.6421±2.04e-02(+) 0.3689±1.49e-01(+) 0.2238±1.22e-02(+) 0.8739±2.29e-02

DF9
5, 10 0.9946±1.28e-02(-) 0.9530±4.65e-02(=) 0.7751±1.87e-01(+) 0.8053±3.60e-02(+) 0.9261±3.81e-02
10, 5 0.9983±2.14e-03(-) 0.9759±8.82e-03(=) 0.8130±1.73e-01(+) 0.7497±3.13e-02(+) 0.9414±3.94e-02

10, 10 0.9992±1.60e-03(-) 0.9707±1.53e-02(-) 0.9023±1.29e-01(=) 0.7809±5.64e-02(+) 0.9170±4.44e-02

DF10
5, 10 0.8952±1.15e-02(+) 0.9087±3.85e-03(-) 0.6635±1.44e-01(+) 0.8159±3.05e-02(+) 0.9102±2.08e-02
10, 5 0.8826±3.44e-02(+) 0.8935±5.35e-05(+) 0.7003±1.98e-01(+) 0.8094±2.06e-02(+) 0.9191±2.88e-02

10, 10 0.8850±3.65e-02(+) 0.8772±8.68e-09(+) 0.8149±1.20e-01(+) 0.8027±2.25e-02(+) 0.9153±2.44e-02

DF11
5, 10 0.9725±2.86e-02(+) 0.9882±1.28e-02(=) 0.8530±1.44e-02(+) 0.9606±5.77e-03(+) 0.9986±1.39e-03
10, 5 0.7343±1.99e-02(+) 0.9883±5.09e-03(-) 0.7523±6.39e-03(+) 0.9592±6.01e-03(-) 0.9523±4.30e-03

10, 10 0.7247±4.19e-02(+) 0.9920±4.66e-03(-) 0.7639±2.22e-02(+) 0.9612±9.65e-03(-) 0.9513±2.03e-03

DF12
5, 10 0.5946±1.16e-01(+) 0.7350±8.84e-02(+) 0.5985±5.25e-02(+) 0.6382±3.05e-02(+) 0.7943±6.41e-02
10, 5 0.7137±9.75e-02(+) 0.6971±4.75e-02(+) 0.5514±7.51e-03(+) 0.6026±3.71e-02(+) 0.7986±7.50e-02

10, 10 0.7094±5.77e-02(=) 0.6731±4.06e-02(+) 0.5543±7.65e-03(+) 0.6036±4.31e-02(+) 0.7499±9.66e-02

DF13
5, 10 0.9852±2.21e-02(-) 0.9962±1.61e-03(-) 0.9265±5.56e-02(+) 0.8499±2.20e-02(+) 0.9526±2.01e-02
10, 5 0.9982±5.58e-03(-) 0.9968±1.07e-03(-) 0.9470±4.43e-02(=) 0.8431±1.68e-02(+) 0.9504±2.83e-02

10, 10 0.9997±1.14e-03(-) 0.9966±4.10e-03(-) 0.9184±5.90e-02(+) 0.8378±1.61e-02(+) 0.9563±1.89e-02

DF14
5, 10 0.8935±1.65e-02(+) 0.9245±1.06e-02(+) 0.7087±8.65e-02(+) 0.9215±1.40e-02(=) 0.9326±1.13e-02
10, 5 0.9930±3.10e-02(-) 0.9415±1.63e-02(-) 0.6398±7.91e-02(+) 0.9139±1.12e-02(-) 0.8729±1.12e-02

10, 10 0.9926±3.28e-02(-) 0.9582±4.06e-02(-) 0.6268±5.33e-02(+) 0.9126±1.44e-02(-) 0.8723±1.23e-02
+ / - / = \ 23 / 15 / 4 20 / 13 / 9 29 / 1 / 12 34 / 6 / 2 \

considerable overall performance via rational integration. In
addition, it can be inferred that to sufficiently exploit the
merits of those meticulously designed advanced methods, an
in-depth analysis on the specific situation is necessary and
helpful, which indicates the reliability and superiority of the
core idea in the proposed quantification-based hierarchical
scheme. Simultaneously, above inference motivates us to pro-
vide more thorough insights on the dynamic behaviors, and
to seek potential integration of some state-of-the-art response

strategies.

D. Generalization Ability of HRS

As a comprehensive approach to deal with the dynamic
behaviors in DMOPs, the proposed HRS is proven com-
petitive in above presented experimental results. To further
validate the effectiveness and generalization ability of HRS,
in this subsection, another well-known algorithm NSGA-II is
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TABLE VI: Comparisons with other hybrid algorithms on
DF series problems in terms of MIGD

Problems nt, τt
Algorithms

SVM-DMOA [24] PPS-RM-MEDA [71] HRS-DMOA

DF1
10, 10 0.4310±4.85e-02(3) 0.0365±7.34e-03(1) 0.0884±1.80e-02(2)
10, 5 1.3278±8.55e-02(3) 0.0949±2.11e-02(2) 0.0859±1.94e-02(1)

DF2
10, 10 0.2962±2.26e-02(3) 0.0408±8.58e-03(1) 0.0482±1.37e-02(2)
10, 5 0.8960±6.07e-02(3) 0.0917±7.86e-03(2) 0.0419±1.31e-02(1)

DF3
10, 10 0.5159±5.47e-02(2) 0.2012±6.02e-03(1) 0.5916±1.57e-01(3)
10, 5 1.2482±2.07e-01(3) 0.2809±3.57e-02(1) 0.5680±1.44e-01(2)

DF4
10, 10 0.1219±3.83e-03(1) 1.0118±1.78e-02(3) 0.4310±7.83e-02(2)
10, 5 0.1990±4.03e-02(1) 1.0861±1.48e-02(3) 0.4296±6.97e-02(2)

DF5
10, 10 0.1482±4.32e-02(2) 1.1942±1.30e-02(3) 0.0366±5.65e-03(1)
10, 5 1.2815±2.70e-01(2) 1.3787±6.25e-02(3) 0.0367±9.04e-03(1)

DF6
10, 10 3.9768±5.77e-01(3) 3.0892±3.07e-01(2) 1.2066±6.06e-01(1)
10, 5 9.5840±1.09e+00(3) 6.5176±5.38e-01(2) 1.7784±6.44e-01(1)

DF7
10, 10 0.5220±5.70e-02(1) 2.9774±2.83e-01(3) 1.1298±1.53e-01(2)
10, 5 0.6959±1.22e-01(1) 5.7018±5.14e-01(3) 1.2286±1.74e-01(2)

DF8
10, 10 0.0752±1.12e-02(1) 0.8673±7.93e-03(3) 0.1108±3.15e-02(2)
10, 5 0.1940±1.42e-02(2) 0.7860±2.10e-02(3) 0.1232±3.16e-02(1)

DF9
10, 10 0.4151±6.63e-02(2) 1.5801±1.13e-02(3) 0.1965±2.64e-02(1)
10, 5 1.0983±1.63e-01(2) 1.6691±3.88e-02(3) 0.1993±3.56e-02(1)

DF10
10, 10 0.6037±3.84e-02(3) 0.1389±1.84e-03(1) 0.3230±2.76e-02(2)
10, 5 0.6188±3.34e-02(3) 0.1874±2.68e-03(1) 0.3283±2.28e-02(2)

DF11
10, 10 0.6717±2.15e-03(3) 0.1565±1.09e-02(1) 0.3666±2.20e-03(2)
10, 5 0.6933±3.06e-03(3) 0.1783±7.75e-03(1) 0.3677±2.78e-03(2)

DF12
10, 10 0.3829±3.86e-03(1) 1.1756±5.61e-03(3) 0.6236±1.69e-01(2)
10, 5 0.4262±6.10e-03(1) 1.1760±5.61e-03(3) 0.4643±1.81e-01(2)

DF13
10, 10 0.5733±5.07e-02(2) 1.3815±2.58e-02(3) 0.2527±1.26e-02(1)
10, 5 1.4883±2.57e-01(2) 1.6325±3.88e-02(3) 0.2556±1.20e-02(1)

DF14
10, 10 0.2556±5.73e-02(2) 0.8579±7.83e-03(3) 0.1231±3.97e-03(1)
10, 5 0.8887±2.44e-01(2) 1.0334±4.22e-02(3) 0.1216±3.71e-03(1)

TABLE VII: Comparisons with the state-of-the-art MoE
algorithm on JY series problems in terms of MIGD

Problems nt, τt
Algorithms

MoE [43] HRS-DMOA

JY1
10, 10 2.43e-2±4.24e-3 1.16e-1±2.05e-2
10, 20 9.36e-3±6.17e-4 1.10e-1±1.99e-2
10, 30 7.01e-3±2.43e-4 1.01e-1±1.80e-2

JY2
10, 10 1.68e-1±1.63e-3 3.11e-2±1.39e-3
10, 20 1.64e-1±1.46e-4 3.28e-2±1.51e-3
10, 30 1.63e-1±7.22e-5 3.20e-2±1.87e-3

JY3
10, 10 3.16e-1±6.93e-3 1.51e-2±2.91e-2
10, 20 3.12e-1±1.88e-3 1.56e-2±2.97e-2
10, 30 3.13e-1±2.77e-3 1.44e-2±2.46e-2

JY4
10, 10 1.51e-1±1.78e-3 9.09e-2±2.60e-2
10, 20 1.36e-1±2.86e-4 7.43e-2±1.76e-2
10, 30 1.35e-1±8.84e-5 8.47e-2±2.01e-2

JY5
10, 10 9.89e-3±4.54e-4 1.51e-1±4.95e-2
10, 20 7.59e-3±1.99e-4 1.73e-1±6.03e-2
10, 30 7.12e-3±1.70e-4 1.65e-1±3.97e-2

JY6
10, 10 1.64e+0±1.35e-1 5.34e-1±6.53e-1
10, 20 9.45e-1±1.01e-1 3.96e-1±6.13e-1
10, 30 5.86e-1±4.90e-2 2.90e-1±1.40e-1

JY7
10, 10 2.69e+0±5.09e-1 1.20e+0±1.88e-1
10, 20 2.27e+0±8.53e-1 1.31e+0±2.65e-1
10, 30 2.20e+0±6.58e-1 1.30e+0±1.96e-1

employed as the static optimizer, and the integrated HRS-
NSGA-II is evaluated on the 14 benchmark problems with
(nt, τt, τ) = (10, 10, 200). Moreover, the evaluation results are
compared with the baseline algorithm D-NSGA-II and other

two state-of-the-art methods, namely KGB [61] and TCD [60],
respectively, which are integrated to the NSGA-II algorithm
as well to form the DMOAs.

According to the results reported in Table VIII, it is found
that our HRS-NSGA-II yields 10 best MIGD out of the 14
benchmarks, which is also an inspiring result. On one hand,
it exhibits the superiority of the proposed HRS in comparison
to other advanced response approaches to the environmental
changes; on the other hand, the proposed HRS is demonstrated
a flexible plug-and-play module with considerable general-
ization ability, which can be integrated with any other static
optimizer to effectively solve the DMOPs.

E. Sensitivity Analysis of Thresholds LT and HT

In the proposed HRS-DMOA, the thresholds LT and HT
play important roles in grading the change degree to adopt dif-
ferent response strategies. Hence, in this subsection, influences
of the two thresholds are investigated.

Fig. 2: Change degree of 14 DF problems.

As previously mentioned that, in essence, LT and HT
determine the proportion of selecting three response strategies,
which also depends on the change degree CD of the environ-
ment. In Fig. 2, the changing curves of CD are illustrated in
the three given dynamic conditions of all test problems. Based
on the CD values shown in Fig. 2, three proportions of adopt-
ing refinement, TL and re-initialization response modes are
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TABLE VIII: Comparisons against other DMOAs with NSGA-II serving as the static optimizer in terms of MIGD

Problems
Algorithms

KGB-NSGA-II TCD-NSGA-II DNSGA-II-B HRS-NSGA-II
DF1 0.3113±1.39e-03 0.1887±4.93e-02 0.7182±1.54e-01 0.2257±4.71e-02
DF2 0.2198±1.64e-03 0.1146±1.74e-02 0.4638±1.12e-01 0.1380±1.91e-02
DF3 0.9593±1.19e-02 0.5371±6.67e-02 1.0556±2.24e-01 0.4983±2.02e-01
DF4 3.1503±2.84e-01 0.1487±4.20e-02 2.0526±2.28e-01 0.1812±1.76e-02
DF5 0.4004±3.05e-03 0.3427±1.46e-01 0.6813±6.67e-02 0.0232±4.40e-03
DF6 19.8500±4.97e+00 6.6381±6.96e-01 6.0010±1.07e+00 3.3446±9.41e-01
DF7 0.4575±5.85e-03 8.0032±3.77e+00 1.1040±1.23e-01 0.5021±5.62e-02
DF8 0.2130±2.51e-04 0.3057±2.54e-02 0.4431±1.08e-01 0.0441±8.75e-03
DF9 0.5932±6.34e-03 0.5954±1.42e-01 2.2331±5.79e-01 0.2155±3.39e-02
DF10 0.1892±4.71e-04 0.1814±1.70e-02 1.3771±3.14e-01 0.1317±8.44e-03
DF11 10.3910±3.06e-02 0.2670±4.09e-02 1.0163±2.24e-01 0.2108±1.73e-02
DF12 0.5650±3.03e-03 4.4655±5.09e+00 0.7770±6.64e-02 0.2290±2.53e-02
DF13 0.5854±2.49e-03 0.7456±2.24e-01 0.6401±1.10e-01 0.2603±1.30e-02
DF14 0.2267±5.72e-04 0.8972±5.40e-01 0.5049±1.23e-01 0.1907±3.05e-03

investigated, including 10% : 80% : 10%, 15% : 70% : 15%
and 20% : 60% : 20%, where the corresponding (LT,HT )
takes value from {(0.01, 0.97), (0.03, 0.78), (0.05, 0.68)},
respectively. Using IGD as the evaluation metric, algorithm
performances with different settings of (LT,HT ) are shown
in Fig. 3, where the dynamic parameters of all 14 benchmark
functions are fixed at τt = 10, nt = 10.

As is shown, when LT and HT are set to 0.03 and 0.78, the
algorithm presents a more stable performance. To be specific,
poor convergence is found on problems DF3 and DF6 when
LT = 0.01, HT = 0.97. It may because that the two thresh-
olds are too marginalized to enable the hierarchical response
system timely adapt to the varying environments such as the
concave/convex change on a certain objective function. On the
contrary, if LT and HT are set to 0.05 and 0.68, the designed
response system becomes highly sensitive to the environmental
changes, which can be reflected from the sharp variation
tendency of the IGD value on problems DF12 and DF13.
Under this circumstance, once a disconnected time-varying PF
occurs, the algorithm is likely to treat it as a dramatic change
and accordingly take the re-initialization strategy, which may
cause adverse effects on the convergence. Therefore, it is also
inappropriate to set too centralized thresholds, which cannot
take full advantages of the hierarchical response system. As
a result, LT = 0.03 and HT = 0.78 are recommended and
they are adopted in other reported experiments in this study.

In addition, we also make another attempt to adaptively
select the response modes (rather than based on the fixed
thresholds), which benefits further strengthening the con-
nections between the response manner and the severity of
environmental changes. To be specific, by taking the average
value of CD (in Eq. (5)) regarding to the cardinality of
sensor set S, an environmental changing degree is obtained
as Ecd = 1

|S| max{CDi} (i = 1, 2, ...,m), which is deemed
as the objective-wise influences of the current change to all
sensors in average level. Meanwhile, one can also obtain the
maximum changing degree for each sensor (Scd) in objective-

wise by:

Scd = max
fi,j(t)− fi,j(t− 1)

fi,j(t− 1) + µ
, i = 1, 2, ...,m (12)

where j stands for the sensor individual.

Accordingly, if it satisfies that Scd ≥ Ecd, it can be regarded
that the corresponding individual is greatly influenced by
the fluctuation in environment, which is not quite a reliable
solution in the new environment. By calculating the proportion
of those unreliable sensors to the whole sensor set, severity
of the changes can be reflected. Then, considering the three
optional response modes, the interval (0, 1) is uniformly
divided into three sub-intervals, thereby realizing the adaptive
selection of different response modes. (1) If more than two
thirds of sensors are unreliable, then the change is deemed
severe and the re-initialization strategy is applied; (2) in
case of fewer than one third of the sensors are unreliable,
the refinement mode is adopted; (3) otherwise, the TL-based
response is taken.

Benchmark valuation results obtained by the HRS with
fixed thresholds (LT,HT ) = (0.03, 0.78) and the HRS
with adaptive thresholds (denoted as HRS*) are displayed in
Table IX, where it is found that the adaptive thresholds also
enable the proposed HRS to effectively handle the dynamic
behaviors with satisfactory convergence. Moreover, according
to the rank sum test results, HRS* presents equivalent per-
formance as compared to HRS in six cases, and the former
even outperforms the latter on DF3, which is a promising
finding that motivates us to explore other adaptive threshold
setting manners and, by doing so, the subjectivity in deter-
mining response modes can be effectively eliminated so as to
establish a highly generalized model that can adapt to diverse
changing situations by connecting the change severity with the
responses.
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Fig. 3: Influences of different LT and HT on IGD values (τt = 10, nt = 10).
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TABLE IX: Fixed thresholds vs. adaptive thresholds in terms
of MIGD where (nt, τt, τ) = (10, 10, 200)

Problems HRS(fixed thresholds) HRS*(adaptive thresholds)
DF1 0.0778±4.95e-02 0.0889±4.85e-02(=)
DF2 0.0562±1.85e-02 0.0586±2.80e-02(=)
DF3 0.5146±1.88e-01 0.2561±7.48e-02(-)
DF4 0.3584±8.47e-02 0.6212±2.35e-01(+)
DF5 0.0417±8.90e-03 0.0438±2.09e-02(=)
DF6 1.3116±7.17e-01 2.2021±1.63e+00(=)
DF7 0.4297±5.99e-02 0.5761±2.01e-01(+)
DF8 0.1268±6.17e-02 0.1423±1.14e-01(=)
DF9 0.2216±4.22e-02 0.2687±5.79e-02(+)

DF10 0.2659±5.77e-02 0.3966±8.04e-02(+)
DF11 0.1586±1.44e-02 0.5913±4.04e-02(+)
DF12 0.3370±1.22e-01 0.2974±4.21e-03(=)
DF13 0.2506±2.24e-02 0.2905±1.55e-02(+)
DF14 0.1043±9.09e-03 0.2141±4.88e-03(+)

+ / - / = \ 7 / 1 / 6

F. Investigation on Single TL-based Response Mode

Recently, developing the TL-based DMOAs has become
the novel frontier of solving DMOPs [51], which can realize
the seamless combination of the memory- and prediction-
based response strategy. In this regard, the proposed HRS
further integrates the merits of diversity enhancement when
making responses. To validate whether such designing is
useful, an algorithm variant with single response namely SR-
DMOA is investigated, where only the TL-based response is
adopted regardless of the change degree of environment. The
comparison results in terms of both the MIGD indicator and
the average runtime are reported in Table X, where dynamic
parameters are set to τt = 10, nt = 10.

TABLE X: Performance comparison against single TL-based
response in terms of MIGD and average runtime

(τt = 10, nt = 10)

Problems
MIGD Average runtime (seconds)

HRS-DMOA SR-DMOA HRS-DMOA SR-DMOA
DF1 0.1336 0.1653 2.4201 4.2164
DF2 0.0597 0.1148 1.2067 3.025
DF3 0.1871 0.1888 1.5432 2.4524
DF4 0.6758 0.9439 2.192 1.9164
DF5 0.3324 0.2464 2.4921 3.3526
DF6 1.6638 0.9891 3.352 3.482
DF7 31.4148 28.246 2.4963 2.728
DF8 0.8603 1.3746 3.9365 3.6527
DF9 1.521 1.0455 2.708 3.064

DF10 0.2062 0.2168 6.2245 5.4015
DF11 0.1722 0.2034 6.0723 5.6432
DF12 0.8925 0.9125 2.4647 2.7542
DF13 0.2813 0.2832 7.5568 5.7128
DF14 0.1367 0.1613 7.2126 5.7605

According to Table X, SR-DMOA only achieves 4 best
MIGD results out of 14 problems, and in none of the cases that
SR-DMOA can outperform the original HRS-DMOA in terms
of both MIGD and runtime. It is noticeable that on problems

DF1, DF2, DF3 and DF12, the proposed HRS-DMOA spends
less time and achieves better performance than the variant SR-
DMOA, whose reason lies in that if the environment only has
slight changes, taking TL-based response will increase the
computational burden with little performance enhancement.
On the contrary, if the TL method is used in case of dramatic
changes, the negative transfer phenomenon may occur that can
lead to poor convergence. Consequently, it can be concluded
that the designed HRS can enable flexible responses to the
varying environments, which effectively combines the merits
of different mainstream strategies to pursue comprehensive
performance improvement.

G. Ablation Study on HRS

In this subsection, extensive ablation studies are carried
out to validate the effectiveness of the proposed HRS. In
particular, five bi- (DF1-DF5) and tri-objective (DF10-DF14)
problems are selected for performance evaluation in this group
of experiments, where the dynamic parameters are set as
(nt, τt) = (5, 10), and each algorithm is run 20 times to report
the MIGD results in average level.

1) Influences of the Quantification-based Hierarchy:
Firstly, in the proposed HRS, selection criterion of the different
response modes is based on the quantification of environ-
mental changes. To validate whether the quantification-based
response-making is effective, another variant of the proposed
algorithm is designed, which is named RRS-DMOA that takes
the same three response modes with random probability.

TABLE XI: Effectiveness of the quantification-based
hierarchical response modes in terms of MIGD

Problems
Algorithms

HRS-DMOA RRS-DMOA
DF1 0.0657±8.28e-03 0.8467±4.68e-01
DF2 0.0474±1.55e-02 0.5827±1.72e-01
DF3 0.2795±1.32e-01 0.6866±2.29e-01
DF4 0.6621±3.52e-02 1.2031±1.48e-01
DF5 0.0639±1.78e-02 1.8872±4.68e-01

DF10 0.1820±9.42e-03 0.2170±2.25e-02
DF11 0.1486±2.84e-03 0.1899±1.10e-02
DF12 0.4715±1.15e-01 0.5050±3.26e-02
DF13 0.2710±1.16e-02 2.0003±3.20e-01
DF14 0.1342±3.63e-03 1.2288±2.74e-01

According to the results displayed in Table XI, it is found
that the proposed HRS-DMOA outperforms the variant RRS-
DMOA on all of the adopted test problems with overwhelming
advantages. In particular, only on the four problems of DF3
and DF10-DF12 can random response modes obtain similar
results as the hierarchical ones. In other cases, the proposed
HRS presents significant convergence improvement, which
may due to that although the RRS can also exploit merits of
different response strategies, the randomness-based response-
making lacks analysis on the specific environment. Hence,
it can lead to the inappropriate responses, like to transfer
previous knowledge in the extremely fluctuating situations.
Particularly, on problem DF5, an improvement on MIGD by
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TABLE XII: Ablation study on different response modes in terms of MIGD

Algorithms
HRS HRS v1 HRS v2 HRS v3

Response
modes

Refinement ! % ! !

TL ! ! % !

Re-initialization ! ! ! %

Problems

DF1 0.0657±8.28e-03 0.0844±2.34e-02 0.2940±6.52e-02 0.0872±1.78e-02
DF2 0.0474±1.55e-02 0.0577±1.57e-02 0.2801±1.29e-01 0.0553±1.83e-02
DF3 0.2795±1.32e-01 0.1732±1.78e-02 0.8096±1.45e-01 0.2659±1.27e-01
DF4 0.6621±3.52e-02 0.7027±4.44e-02 0.6396±1.91e-01 0.7253±9.31e-02
DF5 0.0639±1.78e-02 0.0897±3.92e-02 2.1753±8.03e-02 0.0732±2.88e-02
DF10 0.1820±9.42e-03 0.1939±8.98e-03 0.2442±2.83e-02 0.2355±1.32e-01
DF11 0.1486±2.84e-03 0.1508±2.34e-03 0.1817±9.70e-03 0.1507±3.41e-03
DF12 0.4715±1.15e-01 0.4171±4.10e-03 0.5271±2.42e-02 0.5421±1.35e-01
DF13 0.2710±1.16e-02 0.2876±1.64e-02 4.1604±1.79e-01 0.2806±9.69e-03
DF14 0.1342±3.63e-03 0.1372±4.26e-03 1.6557±4.68e-02 0.1360±4.02e-03

28.53% is achieved by the quantification-based hierarchical
responses, which indicates that it is necessary to analyze the
environment so as to make flexible and efficient responses.
In addition, from the scatter plot illustrated in Fig. 4, it can
be observed that the proposed HRS-DMOA can track the
time-varying PF better than RRS-DMOA, which demonstrates
the superiority of the quantification-based response-making
manner.
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Fig. 4: Scatter plots on DF1 of the two algorithms
(HRS-DMOA vs. RRS-DMOA) at the 21- and 37-th

environments.

2) Effectiveness of the Response Modes: Secondly, in the
proposed HRS, three response modes are adopted, and to
verify the effectiveness of them, three variants of the proposed
algorithm are designed by removing each mode from the
HRS respectively, which are termed as HRS v1 (without
refinement), HRS v2 (without TL), and HRS v3 (without
re-initialization). The comparison results are reported in Ta-
ble XII, where “!” and “%” denote whether a certain
response mode is contained in corresponding algorithm or not.
Moreover, the box plots regarding to MIGD of problems DF1-

DF4 are illustrated in Fig. 5, and the PF obtained by the four
algorithms is visualized in Fig. 6.

(a) DF1 (b) DF2

(c) DF3 (d) DF4

Fig. 5: Box plots on four benchmark problems of the four
algorithms, where the red circles refer to some outliers, the
red solid and blue dashed lines represent the median and

average value, respectively.

According to the above presented results, we have following
findings:

1) On most benchmark problems, the original HRS yields
the best convergence performance, which validates that the
proposed HRS can flexibly handle different dynamic behav-
iors, and some variances in 10−3 level also present a stable
performance.

2) When the TL-based response is removed, the HRS v2
presents the most severe performance declination in many
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Fig. 6: Scatter plots on DF1 of the four hierarchical response
systems at the 21-th environment.

cases such as on problem DF1, where the MIGD is as nearly
five times as that obtained by HRS, which indicates the
importance of the TL-based response mode.

3) On tri-objective problems DF10 and DF11, the four
algorithms obtain similar results, while slight convergence
improvement can be achieved by the original HRS, which
implies that the complementary performance is realized in the
proposed algorithm.

4) The response made by the proposed HRS may not
always be the best choice, as can be seen that on DF3 and
DF4, the variants HRS v1 and HRS v2 obtain the best result,
respectively. The reason may be that the thresholds of HRS
are manually set.

5) Without the re-initialization mode, none of the best
MIGD is obtained by the HRS v3, while in some cases like
DF2 and DF14, the HRS v3 can slightly outperform the
HRS v1 and HRS v2. Hence, it can be concluded that the
diversity-based response can still be helpful.

6) From the results on DF4, it can be inferred that the
TL-based response may even cause adverse effects due to the
negative transfer phenomenon, which simultaneously implies
the superiority of the rational integration of diverse strategies
as none of the single response can always be the best.

Based on above discussions, it can be concluded that the
proposed HRS does realize the systematical integration of
different mainstream response strategies, which is effective in
handling various dynamic behaviors in DMOPs. Moreover,
the quantification of environmental changes is also proven
necessary to some extents, which motivates us to develop
other novel schemes to comprehensively quantify the dynamic
behaviors in our future work.

H. Outlook for Future Work

In addition to above satisfactory results, it is worth pointing
out that there are still spaces for improvements on the proposed
HRS-DMOA, where the most important issue is that some
state-of-the-art novel strategies are not well considered in the
proposed HRS.

In future, we aim to 1) propose other advanced response
strategies to the environmental changes; 2) seek potential
integration of some state-of-the-art DMOAs for further per-
formance enhancement; 3) develop a learnable DMOP op-
timizer that can realize adaptive parameter configuration; 4)
employ other advanced population-based heuristic algorithms
as the static optimizer [29], [47], [63], which can improve
the efficiency of obtaining the Pareto solutions; 5) investigate
more comprehensive quantification manners of environmental
changes so as to provide in-depth and thorough insights on
dynamic behaviors, which is also beneficial to the research on
other dynamic systems [19], [65]; 6) improve and apply our al-
gorithm to some real-world optimization problems such as the
complex system modeling [30] and the influence maximization
of complex networks [41] so as to validate and enhance the
engineering practicality of the proposed HRS-DMOA.

V. CONCLUSIONS

In this paper, a novel DMOA has been proposed based on
a hierarchical response system, whose main idea is to realize
rational and efficient integration of the mainstream methods so
as to enhance comprehensive performance. The environmental
changes have been quantified as three levels and, by doing
so, different response modes can be adopted accordingly to
flexibly handle various dynamic behaviors in DMOPs.

Benchmark evaluations have been carried out on 14
DMOPs, and the results show that the proposed HRS-DMOA
outperforms other four popular baseline DMOAs in terms
of both convergence and diversity. In addition, extensive
ablation studies have been carried out to validate the su-
periority of the proposed HRS. On one hand, as compared
with randomly taking different responses, the quantification-
based hierarchical response-making has shown overwhelming
advantages, which proves the necessity of in-depth analysis
on the dynamic behaviors in DMOPs. On the other hand,
performance declination to different extents has been observed
when some certain response mode is removed from the HRS,
which demonstrates the effectiveness of integrating different
mainstream methods.

Although some satisfactory results have been obtained,
several important issues of the proposed HRS-DMOA deserve
further attention, which mainly include (1) insufficient con-
cerns on integrating novel state-of-the-art response strategies;
(2) manual intervention on the threshold parameters of HRS.

In future, we tend to propose some novel response methods
with other advanced techniques, and to develop a learnable
optimizer that can avoid the manual parameterization is also a
feasible and innovative direction. Then, how to comprehen-
sively quantify the dynamic behaviors from the aspects of
both changing severity and frequency can provide us with a
more thorough understanding on the essence of the DMOPs.
In addition, we are prone to integrate the proposed HRS
to other swarm-intelligence-based static optimizer, and it is
also promising to apply the HRS-DMOA to more real-world
optimization scenes to validate its practicality.
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