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ABSTRACT

This work considers which higher-order effects in modelling the cosmic shear angular power spectra must be taken into account for Euclid. We
identify which terms are of concern, and quantify their individual and cumulative impact on cosmological parameter inference from Euclid. We
compute the values of these higher-order effects using analytic expressions, and calculate the impact on cosmological parameter estimation using
the Fisher matrix formalism. We review 24 effects and find the following potentially need to be accounted for: the reduced shear approximation,
magnification bias, source-lens clustering, source obscuration, local Universe effects, and the flat Universe assumption. Upon computing these
explicitly, and calculating their cosmological parameter biases, using a maximum multipole of ` = 5000, we find that the magnification bias,
source-lens clustering, source obscuration, and local Universe terms individually produce significant (> 0.25σ) cosmological biases in one or
more parameters, and accordingly must be accounted for. In total, over all effects, we find biases in Ωm, Ωb, h, and σ8 of 0.73σ, 0.28σ, 0.25σ,
and −0.79σ, respectively, for flat ΛCDM. For the w0waCDM case, we find biases in Ωm, Ωb, h, ns, σ8, and wa of 1.49σ, 0.35σ, −1.36σ, 1.31σ,
−0.84σ, and −0.35σ, respectively; which are increased relative to the ΛCDM due to additional degeneracies as a function of redshift and scale.

Key words. Cosmology: observations – Gravitational lensing: weak – Methods: analytical
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1. Introduction

Our current best-in-class framework for parameterising the Uni-
verse, the Lambda cold dark matter (ΛCDM) model, leaves sev-
eral open questions. A key component, yet to be fully explained,
is the acceleration of the expansion of the Universe and its pro-
posed driver: dark energy. A powerful tool for studying this is
cosmic shear – the distortion of the ellipticities we observe for
distant galaxies, by weak gravitational lensing from the large-
scale structure of the Universe (LSS; see for example Albrecht
et al. 2006).

To-date, the most recent generation of cosmic shear surveys
(Hikage et al. 2019; Asgari et al. 2021; Abbott et al. 2022) has
been able to achieve precision cosmology competitive with cos-
mic microwave background experiments, for a combination of
σ8 and Ωm (Planck Collaboration et al. 2018). Now, upcoming
Stage IV surveys (Albrecht et al. 2006) will probe a greater area
and depth than previously possible. For example, telescopes such
as Euclid1 (Laureijs et al. 2011), Nancy Grace Roman2 (Akeson
et al. 2019), and the Vera C. Rubin Observatory3 (LSST Sci-
ence Collaboration et al. 2009) will achieve more than an order-
of-magnitude increase in precision over existing surveys (Euclid
Collaboration: Blanchard et al. 2020, heareafter EC20). We must
therefore ensure that any sources of bias in our theoretical for-
malism are properly accounted for.

In this work, we consider the common approximations made,
and effects typically neglected when modelling the cosmic shear
angular power spectrum. This is of importance when deriving
cosmological parameters from a shear-only analysis, but also
in a 3×2pt analyses where modelling the weak lensing power
spectrum sufficiently is also essential. Throughout the literature,
these effects have been studied independently and using vary-
ing specifications. Here, we evaluate them in a consistent frame-
work, and quantify their cumulative impact on cosmology in-
ferred from Euclid’s weak lensing probe. As a first step, we re-
view the literature and pinpoint which terms are potentially sig-
nificant, as well as those for which the impact on the shear power
spectrum has not been evaluated. A comparison of the typical
magnitudes of the studied corrections is given in Table 1. To cre-
ate Table 1 we manually read the published numbers from graphs
in the referenced papers for the auto-correlation cosmic shear
power spectrum for a redshift bin closest to z = 1 for a in each
paper. These values are only approximate due to the inherent in-
accuracy of reading value from graphs and varying assumptions
the papers4.

From our survey of the literature we identify the following as
potentially significant systematic effects requiring full analysis:

– Reduced shear approximation: the effect of assuming that
the measured two-point statistics of reduced shear are equal
to those of the shear field (Shapiro 2009; Krause & Hirata
2010). It has been previously shown that this approximation
will require relaxation for Euclid (Deshpande et al. 2020a),

– Magnification bias: the change in the observed number den-
sity of sources, due to galaxies at the flux limit of the sur-
vey having their flux increased or decreased due to magni-

? e-mail: t.kitching@ucl.ac.uk
1 https://www.euclid-ec.org/
2 https://roman.gsfc.nasa.gov/
3 https://www.lsst.org/
4 Every paper made various slightly differing assumptions regarding
survey area, depth and number density, in all cases details can be found
in the references. In the case that only correction function analyses were
available, not power spectrum, we performed a Hankel transform over
the correlation functions of the graphs over the angular range available.

fication by lensing (Turner et al. 1984). This effect has also
shown to significantly bias cosmological information from
Euclid (Deshpande et al. 2020a; Duncan et al. 2022) if not
accounted for. Additionally, magnification bias must also be
accounted for in probes of galaxy clustering. Its impact on
the Euclid galaxy clustering probe is discussed in Euclid
Collaboration: Lepori et al. (2022).

– Source-lens clustering: the intrinsic clustering of source
galaxies correlated with the density field (Bernardeau 1998;
Hamana et al. 2002; Yu et al. 2015). Typically, it is assumed
source galaxies are distributed homogeneously across the
sky.

– Source obscuration: A reduction in the observed galaxy dis-
tribution due to closely-spaced and blended or overlapping
source galaxies (Hartlap et al. 2011).

– Local Universe effects: a possible bias in our measurements
of summary statistics of the LSS due to residing in a region
with a higher-than-average density (Reischke et al. 2019;
Hall 2020).

– Flat Universe assumption: the impact of assuming that non-
flat geometries are sufficiently well represented by modify-
ing the expression for comoving distance, and neglecting the
additional change in the lensing kernels used to calculate the
shear power spectrum (Taylor et al. 2018b).

We made this determination by first excluding the terms
which are fourth-order in the lens potential or higher, as these
have consistently been shown to be sub-dominant (Cooray & Hu
2002; Shapiro & Cooray 2006). Among these are time delay-
lens coupling, and deflection-deflection coupling (Bernardeau
et al. 2010), which result from foregoing the small-angle and
thin lens approximations and solving the Sachs equation explic-
itly. Similarly, fourth-order correction terms resulting from re-
laxing the Born approximation and accounting for line-of-sight
coupling of two foreground lenses are negligible (Shapiro &
Cooray 2006). Additionally, fourth-order reduced shear correc-
tions (Krause & Hirata 2010) were also neglected. Re-enforcing
the sub-dominance of these terms is the fact that the standard
reduced shear correction matches forward models and N-body
simulations sufficiently well (Dodelson et al. 2006; Deshpande
et al. 2020a). We further excluded fourth-order and higher terms
resulting from the contribution of dark energy pressure to the
lensing potential (Simpson et al. 2010).

Furthermore, we neglected finite beam corrections (Fleury
et al. 2017; Fleury et al. 2019), that manifest as a fractional cor-
rection to the lensing power spectra on very small scales which
is approximately −(1/3)(`θ)2, where ` is the angular multipole
of the power spectrum and θ the mean angular size of galaxies
(this was verified by Breton & Fleury 2021, using ray-tracing
simulations); for Euclid this results in a fractional correction of
−(`/1.2 × 106)2 to the power spectrum. We also neglect the ef-
fects of spatially-varying survey depth (Heydenreich et al. 2020),
which can be accounted for directly in the covariance matrix
through forward-modelling (Loureiro et al. 2021).

Of the remaining effects, we then neglected those signifi-
cantly smaller than the reduced shear correction. This proves a
good comparison because this correction has been consistently
demonstrated to produce biases close to the significance thresh-
old (Shapiro 2009; Deshpande et al. 2020a). Accordingly, we
neglected the impact of the Doppler-shift of galaxies on their
two-point statistics. Due to the inhomogeneity of the Universe,
galaxies have peculiar velocities which affect the measurement
of their redshifts. If this is taken into account, it results in an
additional contribution to the reduced shear (Bernardeau et al.
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2010). As can be seen in Table 1, this effect can be safely ne-
glected as it is two or three orders of magnitude below the re-
duced shear correction. Additionally, the cosmological parame-
ter biases resulting from it are two orders of magnitude below
the level of concern (Deshpande & Kitching 2021).

Likewise, the effect of unequal-time correlators was ne-
glected, as the resulting correction to the angular power spec-
trum is more than four orders of magnitude smaller than that for
the reduced shear (Kitching & Heavens 2017); as illustrated in
Table 1. This correction is a consequence of relaxing the equal-
time approximation, which approximates the cross-correlation
matter power spectrum evaluated at different times as either the
power spectrum at a fixed time, or by a geometric mean.

We also did not need to explicitly evaluate the effects of re-
laxing the Limber, and flat-sky approximations, as the combined
corrections for these are an order-of-magnitude smaller than the
reduced shear correction over the majority of the range of scales
observed by Euclid (Kitching et al. 2017). This is again demon-
strated in Table 1. The Limber approximation considers only cor-
relations in the plane of the sky as contributing to the lensing
signal, and projects others onto the plane of the sky by replacing
spherical Bessel functions with Delta functions (Limber 1953;
Kaiser 1998; LoVerde & Afshordi 2008).

Additionally, the Limber approximation is also employed
when computing higher-order corrections to the angular power
spectrum, such as the reduced shear correction. In this work, we
also did not relax the use of the Limber approximation here, as
the cosmological parameter biases from this are safely negligible
(Deshpande & Kitching 2020).

Another series of corrections that we deemed safely negli-
gible stem from corrections to the theoretical expressions de-
scribing light propagation (Cuesta-Lazaro et al. 2018). Among
these is the effect of second-order corrections to the effective
speed of light. This relaxes the assumption that, as lensing po-
tentials are small, the lensing effect can be studied in an effective
Minkowskian spacetime and, accordingly, the effective speed of
light need only be computed to the first-order. Similarly, a sec-
ond correction to the effective speed of light presents itself from
the energy-momentum tensor. Typically, this quantity is calcu-
lated under the assumption that lenses are moving slowly, so that
the kinetic contribution to gravity can be ignored. Addressing
this creates another correction to the angular power spectrum.

A further effect is that the observed ellipticity is non-linearly
related to the shear, but that a linear approximation is often made.
For a discussion of the impact of the non-linear relation on the
observed shear distribution see Viola et al. (2014). The impact of
this effect on the power spectrum (if one assumes a linear rela-
tion instead of the non-linear relation) is investigated in Krause
& Hirata (2010) (Section 3.3) who find that the impact is three
orders of magnitude smaller than the shear power spectrum5.

The temporal-Born approximation is another correction to
the description of light propagation. While the correction for the
standard Born approximation accounts for the spatial discrep-
ancy between the true perturbed path of a photon from source
to observer compared to the mathematically convenient straight
one, this discrepancy also produces a temporal one. The photon
on the perturbed path will at times be ahead of the photon on the

5 In fact there are two definitions of ellipticity: third eccentricity and
third flattening (see e.g. Viola et al. 2014) that relate the observed el-
lipticity to the shear in different ways. Krause & Hirata (2010) find that
for third flattening the correction to the power spectrum is zero (since
the moments of the third flattening are exactly the moments of the re-
duced shear as shown by Seitz & Schneider 1997), but that for third
eccentricity the effect is non-zero.

idealised path, and at other times lag behind. Accordingly, the
two would encounter different evolutionary stages of the LSS at
different times, necessitating a correction in the two-point statis-
tics. The remaining two corrections that fall under this umbrella
are the corrections of the Sachs-Wolfe and integrated Sachs-
Wolfe effects. The former describes the redshift of an emitted
photon due to the source galaxy’s gravitational potential, while
the latter encodes the effect on the photon of interaction with the
evolving gravitational potential along its path. All of these light
propagation corrections are many orders of magnitude below the
reduced shear correction, as can be seen in a representative ex-
ample in Table 1.

Finally, we deemed the flexion corrections to be negligible
without requiring explicit calculation. This additional correction
term arises from the fact that, for larger sources, the image dis-
tortion consists of both shear and a higher-order component la-
belled flexion (Schneider & Er 2008). This term should be neg-
ligible because its effect on the cosmic shear signal will be de-
pendent on third-order or higher-order brightness moments.

Here, we did not consider biases arising from general mod-
elling of unknown shape measurement systematic effects (i.e.
multiplicative and additive biases). Instead, we focused only
on these well defined theoretical assumptions. For more details
on shape measurement effects, see Kitching et al. (2019, 2020,
2021); Kitching & Deshpande (2022). Additionally, we did not
evaluate the additional selection effects of flux cuts and size cuts,
as the former of these can be calibrated from deep fields, and size
cuts are primarily a concern for ground-based telescopes, rather
than space-based ones.

In this work, we also did not examine the impact of neglect-
ing effects that are already well-established as requiring evalua-
tion, i.e. photometric redshift uncertainties, intrinsic alignments
(IA) modelling, baryonic feedback, and modelling of the non-
linear component of the matter power spectrum. Determining the
exact specification for these is outside of the scope of this work,
and each of those effects requires its own through investigation.

This work is structured as follows: In Sect. 2, we detail the
theoretical formalism used. We review the basic, first-order cos-
mic shear angular power spectrum calculation. Then, the expres-
sions for the six correction terms of interest are detailed. We
also describe the Fisher matrix formalism used to predict cosmo-
logical parameter constraints and biases. In Sect. 3, we discuss
the modelling and computational specifics used in this work. Fi-
nally, we discuss our results in Sect. 4. We show the cosmo-
logical parameter biases that result from neglecting the studied
corrections, and discuss their implications for Euclid.

2. Theoretical formalism

Here, we begin by reviewing the standard first-order calculation
of the cosmic shear angular power spectrum. Additional contri-
butions to the lensing signal resulting from IAs and shot-noise
are then described. We then detail the analytical forms of the six
corrections requiring full evaluation: reduced shear, magnifica-
tion bias, source-lens clustering, source obscuration, local Uni-
verse effects, and the flat Universe assumption. Finally, we re-
view the Fisher matrix formalism used to predict cosmological
parameter constraints and biases.

2.1. The first-order cosmic shear calculation

As a consequence of weak gravitational lensing by the LSS, the
observed ellipticity of distant galaxies is distorted. This change
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Table 1. List of higher-order correction terms to the shear angular power spectrum resulting from relaxing approximations. To illustrate their
typical sizes and facilitate comparison, the values of these correction terms at redshift z ∼ 1 are also stated here. These are provided for `-modes
10, 100, and 1000, and as a percentage of sample variance i.e. 100δC`/(sample variance). Sample variance here is calculated using the definition
of Kaiser (1992), see equation (61). These values are taken from the available literature for the case of Stage IV cosmic shear experiments.
Unavailable values are represented by ‘N/A’. Corrections which have a functional form that is fourth-order in lensing potential, and therefore
sub-dominant, are denoted by O(φ4). The references provided refer to the values stated where available, or to the work describing the correction
where explicit values are not available. For the case where the absolute value of an effect is more than four orders of magnitude smaller than the
sample variance, it is denoted by < 0.01. The sign denotes whether the effect is to decrease the power (a negative sign) or to increase (no sign).
The rows are ordered in decreasing amplitude for ` = 1000. These numbers were read from graphs published in the referenced papers, due to
the inherent inaccuracy of this approach we quote only one decimal place; in the case that only correlation functions were provide these were
converted to power spectrum results using a Hankel transform over the quoted angular range.

Correction Reference Percentage of Sample Variance
` = 10 ` = 100 ` = 1000

Source-lens clustering Yu et al. (2015) N/A 6.0 57.2
Reduced shear + magnification bias Deshpande et al. (2020a) 0.4 1.8 15.3

Post-Limber reduced shear Deshpande & Kitching (2020) 0.2 0.6 1.9
Non-linear ellipticity-shear relation Krause & Hirata (2010) 0.2 0.6 1.9

Limber + flat-sky Kitching et al. (2017) 9.8 3.0 1.0
Local Universe effects Hall (2020) 7.8 24.2 N/A

Higher-order reduced shear Krause & Hirata (2010) O(φ4) O(φ4) O(φ4)
Time delay-lens coupling Bernardeau et al. (2010) O(φ4) O(φ4) O(φ4)

Deflection-deflection coupling Bernardeau et al. (2010) O(φ4) O(φ4) O(φ4)
Born approximation Cooray & Hu (2002) O(φ4) O(φ4) O(φ4)

Lensing by dark energy pressure Simpson et al. (2010) O(φ4) O(φ4) O(φ4)
Second-order speed-of-light Cuesta-Lazaro et al. (2018) < 0.01 < 0.01 < 0.01

Temporal-Born approximation Cuesta-Lazaro et al. (2018) < 0.01 < 0.01 < 0.01
Finite-beam corrections Fleury et al. (2019) < 0.01 < 0.01 < 0.01

Doppler-shift Deshpande & Kitching (2021) < 0.01 < 0.01 < 0.01
Unequal-time correlators Kitching & Heavens (2017) < 0.01 < 0.01 < 0.01

Sachs-Wolfe effect Cuesta-Lazaro et al. (2018) < 0.01 < 0.01 < 0.01
Integrated Sachs-Wolfe effect Cuesta-Lazaro et al. (2018) < 0.01 < 0.01 < 0.01

Flexion correction Schneider & Er (2008) N/A N/A N/A
Flat-geometry assumption Taylor et al. (2018b) −2.0 −6.0 −19.1

Source obscuration Hartlap et al. (2011) −2.0 −6.0 −19.1
Spatially-varying survey depth Heydenreich et al. (2020) −5.9 −18.1 −57.2

is dependent on the reduced shear, g, according to

gα(θ) =
γα(θ)

1 − κ(θ)
, (1)

where θ is the position of the galaxy on the sky, γ is the spin-
2 shear with index α ∈ {1, 2} which describes the anisotropic
stretching that turns circular distributions of light elliptical, and
κ is the convergence – responsible for the isotropic change in the
size of the image. Since in the weak lensing regime |κ| � 1, it
is standard practice to make the reduced shear approximation,
whereby

gα(θ) ≈ γα(θ) . (2)

Additionally, the convergence is a projection of the density
contrast of the Universe, δ, along the line-of-sight over comov-
ing distance, χ, to the comoving distance to the horizon, χh. For
a particular tomographic redshift bin i, it is mathematically de-
scribed by

κi(θ) =

∫ χh

0
dχ δ[S K(χ)θ, χ] Wi(χ) , (3)

where S K is a function that encodes the effect of the curvature of
the Universe, K, on comoving distances according to

S K(χ) =


|K|−1/2 sin(|K|−1/2χ) K > 0 (closed Universe)
χ K = 0 (flat Universe)
|K|−1/2 sinh(|K|−1/2χ) K < 0 (open Universe) .

(4)

We remind the reader that for the quantity δ[S K(χ)θ, χ] in equa-
tion (3) the second χ means not only that there is an evaluation
at a comoving radius χ, but also at a conformal time η = η0 − χ,
meaning that all the integration over χ in this the paper are per-
formed down the background light cone.

The Wi(χ) in Eq. (3) is the lensing projection kernel for to-
mographic bin i. It takes the form

Wi(χ) =
3
2

Ωm
H2

0

c2

S K(χ)
a(χ)

∫ χh

χ

dχ′ ni(χ′)
S K(χ′ − χ)

S K(χ′)
, (5)

which is dependent on the dimensionless present-day matter
density of the Universe Ωm, the speed of light in a vacuum c,
the Hubble constant H0, the scale factor of the Universe a(χ),
and the probability distribution of galaxies within redshift bin i
ni(χ).

The spin-2 shear is directly related to the convergence in
spherical-harmonic space. For a specified lensing mass distribu-
tion, assuming the flat-sky and prefactor-unity approximations
(Kitching et al. 2017), and under the small-angle limit, this rela-
tionship takes the form

γ̃αi (`) = Tα(`) κ̃i(`) , (6)

where ` is the spherical-harmonic conjugate of θ, with mag-
nitude ` and angular component φ`. The functions Tα are two
trigonometric weighting functions corresponding to each of the
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shear components. These take the form:

T 1(`) = cos(2φ`) , (7)

T 2(`) = sin(2φ`) . (8)

In the case of an arbitrary shear field, for example a field
constructed from data, two linear combinations of the individ-
ual shear components are pertinent. Specifically, these are a
divergence-free B-mode, and a curl-free E-mode:

Ẽi(`) =
∑
α

Tα(`) γ̃αi (`) , (9)

B̃i(`) =
∑
α

∑
β

εαβ Tα(`) γ̃βi (`) . (10)

Here, the summations are over the shear components, and εαβ is
the Levi-Civita symbol in the two-dimensional case; such that:
ε11 = ε22 = 0 and ε12 = −ε21 = 1.

Assuming that higher-order systematic effects in the data
have been accounted for, the B-mode of Eq. (10) vanishes. For
the remaining E-mode, observables of interest are defined in the
form of angular auto and cross-correlation power spectra, Cγγ

`;i j,
such that〈
Ẽi(`)Ẽ j(`′)

〉
= (2π)2 δ(2)

D (` + `′) Cγγ
`;i j , (11)

where the angular brackets on the left-hand-side denote the en-
semble average, which under the assumption of ergodicity be-
comes a spatial average, and δ(2)

D is the Dirac delta for two di-
mensions. Under the extended Limber approximation (LoVerde
& Afshordi 2008), where k = (`+1/2)/S K(χ), the power spectra
themselves are further defined as

Cγγ
`;i j =

∫ χh

0
dχ

Wi(χ)W j(χ)

S 2
K(χ)

Pδδ(k, χ) , (12)

where Pδδ is the three-dimensional matter power spectrum, and
k is the magnitude of the spatial momentum vector k which also
shares the angular component φ`. Detailed reviews of this stan-
dard calculation can be found in Kilbinger (2015); Munshi et al.
(2008); Bartelmann & Schneider (2001).

2.2. Intrinsic alignments and shot noise

When the angular power spectra are actually measured from
surveys of galaxies, they contain non-lensing signals together
with the pertinent cosmic shear power spectra. It is necessary to
model each of these components to ensure accurate cosmolog-
ical inference. A key non-lensing contribution arises from the
fact that galaxies forming close to each other are forming in a
similar tidal environment. Consequently, they have intrinsically
correlated alignments (Joachimi et al. 2015; Kirk et al. 2015;
Kiessling et al. 2015).

The observed ellipticity of an individual source, ε, can then,
to first-order, be written as a combination of its underlying ellip-
ticity in the absence of any cosmic shear or IA, εs, the cosmic
shear, γ = γ1 + iγ2, and the effect of IA, εI according to

ε = εs + γ + εI . (13)

The angular power spectra corresponding to this observed ellip-
ticity, Cεε

`;i j, are then the sum of contributions resulting from its
components,

Cεε
`;i j = Cγγ

`;i j + CγI
`;i j + CIγ

`;i j + CII
`;i j + Nε

`;i j , (14)

in which Cγγ
`;i j are the cosmic shear angular power spectra defined

in Eq. (12); in all cases the notation denotes zi ≤ z j. The CγI
`;i j are

the angular power spectra of correlations between foreground
shear and background IA, which are only non-zero if photomet-
ric redshift estimates result in the scattering of observed redshifts
between bins. On the other hand, the CIγ

`;i j arise from the correla-
tion between background shear and foreground IA, and the CII

`;i j
represent the auto-correlation of the IA; both must be accounted
for. To accomplish this, the non-linear alignment (NLA) model
(Bridle & King 2007) can be employed. Under this model, these
IA spectra take the form

CIγ
`;i j =

∫ χh

0

dχ
S 2

K(χ)
[Wi(χ)n j(χ) + ni(χ)W j(χ)]PδI(k, χ) , (15)

CII
`;i j =

∫ χh

0

dχ
S 2

K(χ)
ni(χ)n j(χ) PII(k, χ) , (16)

which, in a similar manner to the shear power spectra, are pro-
jections of three-dimensional IA power spectra, PδI and PII. Both
of these are related to the matter power spectrum as follows:

PδI(k, χ) =

[
−
AIACIAΩm

D(χ)

]
Pδδ(k, χ) , (17)

PII(k, χ) =

[
−
AIACIAΩm

D(χ)

]2
Pδδ(k, χ) , (18)

where the product of AIA and CIA is a free parameter typically
set by fitting to simulations or data, and D(χ) is the density per-
turbation growth factor. We note that the NLA model is a lim-
ited description of IAs, and accordingly has its own associated
modelling uncertainties. Extensions of this model have been pro-
posed (see e.g. Fortuna et al. 2021, EC20). However, investigat-
ing the modelling of IAs for Euclid in detail is out of the scope
of this work, and necessitates a separate future investigation of
itself.

Of the terms in Eq. (14), Nε
`;i j remains; this shot noise term

arises from the zero-lag autocorrelation of the unlensed, uncorre-
lated source ellipticity εs in Eq. (13) (see e.g. Hu 1999, equation
4). For a survey with equi-populated tomographic redshift bins,
such as Euclid (EC20), this is expressed by

Nε
`;i j =

σ2
ε

n̄g/Nbin
δK

i j , (19)

within which σ2
ε is the variance of the observed ellipticities in

the survey, n̄g is the surface density of galaxies in the survey,
Nbin is the survey’s number of tomographic redshift bins, and
δK

i j is the Kronecker delta – which here indicates that the shot
noise vanishes for cross-correlation spectra, as the ellipticities of
galaxies at differing redshifts should not be correlated.

2.3. The reduced shear approximation

While relaxing the reduced shear approximation completely and
explicitly is intractable, this can be sufficiently well modelled by
applying a second-order Taylor expansion (Dodelson et al. 2006;
Shapiro 2009; Krause & Hirata 2010; Deshpande et al. 2020a)
to Eq. (1), resulting in

gα(θ) = γα(θ) + (γακ)(θ) + O(κ3) . (20)

Article number, page 5 of 20



A&A proofs: manuscript no. aanda

Computing the angular E-mode power spectra using this
expanded expression results in the standard two-point expres-
sion of Eq. (11), plus three-point terms. These additional terms,
δ 〈Ẽi(`)Ẽ j(`′)〉, are given by

δ 〈Ẽi(`)Ẽ j(`′)〉 =
∑
α

∑
β

Tα(`)T β(`′) 〈(̃γακ)i(`) γ̃
β
j (`
′)〉

+ Tα(`′)T β(`) 〈(̃γακ) j(`
′) γ̃βi (`)〉

= (2π)2 δ(2)
D (` + `′) δCRS

`;i j , (21)

where δCRS
`;i j is the corresponding correction to Cγγ

`;i j, and is given
by

δCRS
`;i j =

∫ ∞

0

d2`′

(2π)2 cos(2φ`′ )Bκκκi j (`, `′,−` − `′) , (22)

where we are always free to choose a coordinate system such
that φ` = 0, and accordingly the correction only depends on the
magnitude, `. It depends on the two-redshift convergence bis-
pectrum, Bκκκi j , which is the three-point counterpart of the con-
vergence power spectrum. Higher-order terms in the Taylor ex-
pansion of Eq. (20) would here result in corrections dependent
on the matter trispectrum, as well as Wick contraction terms of
O(P2

δδ). Both types of terms have been shown to be sub-dominant
(Cooray & Hu 2002; Shapiro & Cooray 2006; Dodelson et al.
2006; Krause & Hirata 2010; Deshpande et al. 2020a). The lat-
ter type of term, although of the same perturbative order in the
power spectrum as the bispectrum, is still of O(W(χ)4), and given
that typically χW(χ) � 1, it will still be significantly smaller
than the correction of Eq. (22).

Additionally, just as the convergence power spectrum is the
projection of the matter power spectrum, the convergence bis-
pectrum is analogously the projection of the matter bispectrum,
Bδδδ. Under the Limber approximation, this takes the form

Bκκκi j (`1, `2, `3) = Bκκκii j (`1, `2, `3) + Bκκκi j j (`1, `2, `3)

=

∫ χh

0

dχ
S 4

K(χ)
Wi(χ)W j(χ)[Wi(χ) + W j(χ)]

× Bδδδ(k1, k2, k3, χ) . (23)

For a relaxation of the Limber approximation see Deshpande &
Kitching (2020).

It should also be noted that the use of the reduced shear ap-
proximation can produce a B-mode signal contribution. How-
ever, it has been demonstrated that this is negligible (Schneider
et al. 2002).

2.4. Source-lens clustering

Since, in practice, cosmic shear is only measured where galax-
ies are present, care must be taken to account for biases from
any correlations between background source galaxies and the
foreground lensing field. Given that, in reality, tomographic bins
must be wide enough to include a sufficient number of galax-
ies so that shape-measurement noise is minimised, there will be
overlap between the source and lensing distributions. The situ-
ation is further aggravated by broadening of bins due to photo-
metric redshift uncertainties.

As a consequence of this effect, the observed number density
of galaxies used in a given estimator which determines the shear
angular power spectra from data is correlated with the intrin-
sic source galaxy overdensity, δg

i , such that (Bernardeau 1998;

Hamana et al. 2002; Schmidt et al. 2009)

nobs
i (θ, χ) = ni(χ) [1 + δ

g
i (θ)] . (24)

Accordingly, the shear used in the theoretical formalism for in-
ference, is similarly replaced with an ‘observed’ shear,

γαobs;i(θ) = γαi (θ) + γαi (θ) δg
i (θ) . (25)

This is similar in form to the Taylor expansion of the reduced
shear expressed in Eq. (20), and results in an analogous correc-
tion term, δCSLC

`;i j , to the angular power spectra,

δCSLC
`;i j =

∫ ∞

0

d2`′

(2π)2 cos(2φ`′ )Bκδ
gκ

i j (`, `′,−` − `′) , (26)

where Bκδ
gκ

i j is now the two-redshift convergence-galaxy bispec-
trum. By adopting a linear galaxy bias model (so that δg = b δ)
as used in EC20, and noting that δg is the 2D projection of δg,
the convergence-galaxy bispectrum can also be expressed as a
projection of the matter bispectrum

Bκδ
gκ

i j (`1, `2, `3) = Bκδ
gκ

ii j (`1, `2, `3) + Bκδ
gκ

i j j (`1, `2, `3)

=

∫ χh

0

dχ
S 4

K(χ)
[bi ni(χ) + b j n j(χ)]Wi(χ)W j(χ)

× Bδδδ(k1, k2, k3, χ) , (27)

where bi and b j are the galaxy biases for tomographic bins i
and j, respectively. While more complex models of the galaxy
bias exist, we proceed with the linear bias in this work, in order
to mitigate the already significant computational load of these
three-point terms. We note that modelling the galaxy bias re-
quires more complexity at smaller scales, where the SLC effect
is most relevant. When ultimately computing this term in the Eu-
clid cosmological analysis, the final Euclid galaxy bias model
should be used. The linear galaxy bias for each tomographic bin
is given by

bi =
√

1 + z̄i , (28)

where z̄i is tomographic bin i’s central redshift. For a review of
galaxy bias models, see Desjacques et al. (2018).

In addition to this contribution to the E-mode angular power
spectra, source-lens clustering produces a B-mode signal as well.
This term is comparable to the E-mode correction in magnitude,
and accordingly, its detection in the absence of other B-mode
contributions could allow for direct correction of the E-mode
signal, rather than requiring the computation of Eq. (26). How-
ever, typical B-mode signals are dominated by other contribu-
tions (Schneider et al. 2002; Yu et al. 2015).

2.5. Magnification bias

An additional consequence of gravitational lensing is that the
density of galaxies observed by a particular survey is no longer
representative of the true underlying galaxy density (Turner et al.
1984). In particular, magnification resulting from the conver-
gence modifies the density in two contrasting ways.

One manifestation of the effect is that individual sources are
magnified, and as a consequence of this, their flux increases. Ac-
cordingly, any sources lying just beyond the flux limit of the sur-
vey may have their fluxes increased to the point of then being
within the flux limit; increasing the observed density. As sources
are magnified, the patch of sky around them too is magnified.

Article number, page 6 of 20



A.C. Deshpande et al.: Euclid preparation: XXVIII. Modelling of the weak lensing angular power spectrum

This causes the second, competing manifestation. Within the
magnified patch of sky, the galaxy density is reduced. The total
effect, known as magnification bias, is dependent on the slope of
the unlensed galaxy luminosity function. This assumes that the
magnification µ > 1.

Assuming that, on our scales of interest, fluctuations in the
intrinsic galaxy overdensity are small, and taking into account
that, for weak lensing, |κ| � 1, the observed galaxy overdensity
for a given tomographic bin, δg

obs;i, is given by (Hui et al. 2007;
Schmidt et al. 2009)

δ
g
obs;i(θ) = δ

g
i (θ) + (5si − 2)κi(θ) , (29)

where δg
i is the intrinsic galaxy overdensity in the absence of

magnification or any other systematic effects, and si is the slope
of the luminosity function for redshift bin i. This is given by the
derivative of the cumulative galaxy number counts with respect
to magnitude, m, evaluated at the survey’s limiting magnitude,
mlim such that

si =
∂log10 n(z̄i,m)

∂m

∣∣∣∣∣
mlim

, (30)

in which n(z̄i,m) is the true, underlying distribution of galax-
ies, evaluated at the tomographic bin’s central redshift, z̄i. Here,
we have suppressed an additional dependence on the wavelength
band in which the galaxy is observed. This should be considered
when determining the slope from observational data.

Accordingly, Eq. (25) gains an extra term

γαobs;i = γαi (θ) + γαi (θ) δg
i (θ) + (5si − 2) γαi (θ)κi(θ) . (31)

This additional term is near-identical to the second term in
Eq. (20), but for the prefactor of (5si − 2). Accordingly, it too
spawns a correction to the angular power spectra. This correc-
tion for magnification bias, δCMB

`;i j , takes a similar form to the
reduced shear correction of Eq. (22),

δCMB
`;i j =

∫ ∞

0

d2`′

(2π)2 cos(2φ`′ )[(5si − 2)Bκκκii j (`, `′,−` − `′)

+ (5s j − 2)Bκκκi j j (`, `′,−` − `′)] . (32)

Given the similarity of the magnification bias correction to
the source-lens clustering and reduced shear corrections, it too
would produce a contribution to the B-mode signal. While this
has not been explicitly evaluated, we would expect this term, as
with its reduced shear and source-lens clustering counterparts, to
be sub-dominant.

2.6. Source obscuration

There is another systematic effect which can change the ob-
served galaxy number density. Blending of close galaxy pairs
can lead to multiple galaxies being discarded, or counted as a
lower number than they are (Hartlap et al. 2011). The resulting
change in the observed number density of galaxies, ∆ nSO(z, θ),
can be modelled by

∆ nSO(z, θ)
n(z, θ)

= −π

[
(2ϑ)2 ntot +

A n(z)
2 − ζ

(2ϑ)2−ζ
]
, (33)

where ntot is the total number density of galaxies at all redshifts,
n(z) is the observed density of galaxies at redshift z ignoring
source-lens clustering, we assume a redshift-independent radius
ϑ for all galaxies as in Hartlap et al. (2011), and A and ζ are the

amplitude and power-law index of a power-law model for the
two-point galaxy angular correlation function. This expression
is obtained by considering the probability that the centroid of
another source lies within 2ϑ of a given one by integrating over
the probability that another source centroid lies in an annulus of
dθ around the centroid of another one.

Instead, we assume that the blending strategy for Euclid will
account for blended pairs sufficiently well, such that the only
obscuration of concern is substantial overlap; when the centroid
of a source is behind another source (i.e. within ϑ rather than
2ϑ). In this case, we are only concerned with the probability of
this overlap. We note that in reality this blending has a complex
interaction with shape measurement, but evaluating this is out
of the scope of this work. Then, assuming that sources are ap-
proximately circular, the probability, dp, of a galaxy at redshift
z overlapping with one at redshift z′ is

dp(z, z′, θ) = π ϑ2 n(z′, θ) dz . (34)

Here it is also assumed that the expected number of galaxies
overlapping with a given galaxy is� 1, such that the probability
of at least one galaxy overlapping a given source (resulting in
the removal of that source from the sample) is equal to the prob-
ability of just one overlap, which by Poisson statistics is then the
expected number of overlaps. Accordingly, the total change in
the number of sources at z is then given by

∆ nSO(z, θ) = −π ϑ2 n(z, θ)
∫ ∞

0
dz′n(z′, θ)

= −π ϑ2 n(z, θ) [1 + δg(θ)]
∫ ∞

0
dz′n(z′)

= −π ϑ2 n(z, θ) [1 + δg(θ)] ntot . (35)

We neglect the second term on the right-hand side of Eq. (33)
as it specifically accounts for the correlated overlap of galaxies at
the same redshift within a fixed disk around the source, in addi-
tion to the random one already included. Given that the fractional
change is calculated by integrating over redshift slices, that this
term would only appear for the slice where z′ = z, and that the
source obscuration term itself is small (see Sect. 4), we expect it
to be safely negligible.

Adopting the tomographic redshift binning approach, for a
given source can be obscured by another in the same bin, or by
sources in lower redshift bins than the one the source belongs
in. The fractional change in the number density of galaxies in
redshift bin i then becomes

∆ nSO
i (z, θ)

ni(z, θ)
= −π ϑ2

i∑
q=1

[1 + δ
g
q(θ)] ntot; q

= −π ϑ2
i∑

q=1

[1 + bqδ
g(θ)] ntot; q

= −π ϑ2 ncumul.;i − π ϑ
2 δg fSO;i , (36)

where the ntot; q is the total surface density of galaxies for redshift
bin q (that is the integral over nq(z) for bin q), ncumul.;i is the
cumulative total surface density of galaxies for all redshift bins
up to and including bin i, and

fSO;i =

i∑
ρ=1

bρ ntot; ρ . (37)
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Including the effect of source obscuration in addition to
source-lens clustering and magnification bias, the observed num-
ber density for a given tomographic redshift bin i, becomes

nobs
i (θ, χ) = ni(χ)

[
1 + (5si − 2) κi(θ) + δ

g
i (θ)

]
×

[
1 − π ϑ2ncumul.;i − π ϑ

2δg(θ) fSO;i
]
. (38)

From here, only terms to first-order in the lensing potential are
retained in order to suppress fourth-order or higher terms appear-
ing in the two-point statistic. Then, it can be seen that source ob-
scuration adds prefactors to the base angular shear power spec-
tra, the source-lens clustering correction from Eq. (26), and the
magnification bias correction of Eq. (32). Accordingly, source
obscuration produces three new correction terms:

δCSO
`;i j =

(
π2 ϑ4ncumul.;incumul.;j − π ϑ

2ncumul.;i

− π ϑ2ncumul.;j
)
Cγγ
`;i j , (39)

δCSO−SLC
`;i j =

∫ ∞

0

d2`′

(2π)2 cos(2φ`′ )

×

[(
π2 ϑ4ncumul.;incumul.;j − π ϑ

2ncumul.;ibi

− π ϑ2ncumul.;jbi − π ϑ
2(1 − ncumul.;j)

× fSO;i
)

Bκδ
gκ

ii j (`1, `2, `3) + i↔ j
]
, (40)

δCSO−MB
`;i j =

(
π2 ϑ4ncumul.;incumul.;j − π ϑ

2ncumul.;i

− π ϑ2ncumul.;j
)
δCMB

`;i j , (41)

where i ↔ j indicates a repetition of the preceding bispectrum
term and its pre-factor, with all instances of the i and j bin indices
exchanged.

2.7. Local Universe effects

A further effect to consider is that the observed two-point statis-
tic at our location may be biased due to local over or under-
densities. Accordingly, the angular power spectra must be cal-
culated conditioned on the local density (Hall 2020). The local
density contrast, δ0, can be defined as the matter density contrast
smoothed by a top-hat kernel of comoving radius R according to

δ0(R, χ) ≡
3

4πR3

∫
d3r Θ(R − |r|) δ(r, χ) , (42)

where the matter density contrast is now expressed in terms of
spatial distance, r, rather than angle on the sky, and Θ is the
Heaviside step-function.

Then, the conditional angular power spectra can be obtained
using the Edgeworth expansion for conditional distributions.
This calculation is mathematically intensive, and accordingly is
not reproduced here. The full derivation can be found in Hall
(2020). Under the Limber approximation, and assuming ` � 1
(and note that cosmic shear is only defined for ` ≥ 2), this ex-
pression consists of two terms, the standard power spectra of

Eq. (12) and a correction term, δCLU
`;i j which is defined as

δCLU
`;i j = 2

δ0(R, χ)
σ2(R, χ)

∫ χh

0
dχ

Wi(χ)W j(χ)
χ2

×

{ [
34
21
ξR(χ) −

4
21
ψR(χ)

]
Pδδ(k, χ)

+

[
χ

`
ξ′R(χ) −

`

χ
ΩR(χ)

]
∂Pδδ(k, χ)

∂k
1
χ

−
4
7
ψR(χ)

∂2Pδδ(k, χ)
∂k2

1
χ2

}
, (43)

where σ2 is the variance of the local density contrast, it is as-
sumed the ratio of the local density contrast to its variance is
constant with comoving distance, ξR, ψR, ξ

′
R, and ΩR are corre-

lation functions defined in Hall (2020), and the expression as-
sumes a flat-geometry, which is valid under current constraints
on ΩK , as lenses are much less than curvature distance away. Ad-
ditionally, we note that this expression is derived using only the
tree-level Eulerian perturbation theory expression for the matter
bispectrum.

2.8. The flat Universe assumption

Typically when computing cosmic shear angular power spectra,
spatially non-flat universes are accounted for through modifying
comoving distances based on curvature, as described by Eq. (4).
In practice, however, curvature also modifies the projection ker-
nel (Taylor et al. 2018b).

Under the assumption of a spatially flat Universe, the Pois-
son equation gives the relationship between the comoving New-
tonian gravitational potential, φ, and the matter density contrast,

∇2
χ φ(r, χ) =

3ΩmH2
0

2 c2a(t)
δ(r, χ) , (44)

where ∇2
χ is the Laplacian for a spatially flat Universe. This al-

lows the shear angular power spectra to be expressed in terms of
the matter power spectrum, as in Eq. (12). However, the matter
density contrast has rectilinear coordinates, whereas the lensing
potential is defined in terms of angular coordinates (r, θ, ϕ), from
the observer’s frame of reference. Relating the two as above re-
quires expressing the potential in spherical Bessel space as

φ`m(k) =

√
2
π

∫
d3r φ(r) j`(kr)Y`m(θ, ϕ) , (45)

where j` are spherical Bessel functions, and Y`m are spherical
harmonics. Owing to the fact that these spherical Bessel func-
tions and spherical harmonics are eigenfunctions of the Lapla-
cian, the following relationship is obtained:(
∇2

r + k2
)

j`(kr)Y`m(θ, ϕ) = 0 . (46)

This allows the relation of the lensing potential to the matter den-
sity contrast in spherical harmonic space and, under the Limber
approximation, the eventual calculation of Eq. (12). See Kitch-
ing et al. (2017) for a full derivation.

However, in the case of a spatially non-flat Universe, the
Laplacian in Eqs. (44 – 46) must be replaced by one corre-
sponding to a curved geometry, ∇2

S K
. Accordingly, the projection

kernel must also be modified; by replacing the spherical Bessel

Article number, page 8 of 20



A.C. Deshpande et al.: Euclid preparation: XXVIII. Modelling of the weak lensing angular power spectrum

functions in Eq. (46) with hyper-spherical Bessel functions, Φ
β
`
,

so that(
∇2

S K
+ k2

)
Φ
β
`
(r) Y`m(θ, ϕ) = 0 , (47)

where β =
√

(k2 + K) / |K| (Lesgourgues & Tram 2014). Con-
sequently, the shear angular power spectra for a spatially non-
flat Universe, Cγγ;NF

`;i j , under the Limber approximation,under the
Limber approximation, is given by modifying equation (12) to
be

Cγγ
`;i j =

∫ χh

0
dχWNF

` (χ; K)
Wi(χ)W j(χ)

S 2
K(χ)

Pδδ(k, χ) , (48)

where

WNF
` (χ; K) =

1 − sgn(K)
`2

(` + 1/2)2/S 2
K(χ) + K

−1/2

(49)

where sgn(K) is the sign of the curvature K. Alternatively, for
consistency with the previously discussed corrections, this can
be expressed as a correction term, δCNF

`;i j, to the spatially flat an-
gular power spectra such that

δCNF
`;i j = Cγγ;NF

`;i j −Cγγ
`;i j . (50)

2.9. The Fisher matrix and bias formalism

The constraining power of cosmological surveys, in terms of
uncertainties on inferred cosmological parameters, is often pre-
dicted by using the Fisher matrix formalism. It also allows the
quantification of biases in this inference resulting from neglect-
ing systematic effects within the signal itself. Here, we use this
technique to predict how biased cosmological parameters in-
ferred from Euclid would be when the previously discussed sys-
tematic effects are neglected.

Explicitly, the Fisher matrix is defined as the expected value
of the Hessian of the log likelihood (defined for a Gaussian like-
lihood, and applied to CMB data in Tegmark et al. 2015). For
Stage IV weak lensing cosmology, it has been demonstrated that
the likelihood can safely be assumed to be Gaussian (Lin et al.
2019; Taylor et al. 2019a; Upham et al. 2021; Hall & Taylor
2022). Accordingly, the Fisher matrix for cosmic shear is de-
fined as

Fµν =

`max∑
`′=`min

`max∑
`=`min

∑
i j,mn

∂Cεε
`;i j

∂θµ
Cov−1

[
C εε
`;i j,C

εε
`′;mn

] ∂Cεε
`′;mn

∂θν
, (51)

where the µ and ν indices denote element in the Fisher matrix
associated with cosmological parameters θµ and θν respectively,
`min is the minimum angular wavenumber of the survey, `max is
the maximum angular wavenumber used, the sums are over the
`-blocks of power spectrum bands, and Cov−1

[
C εε
`;i j,C

εε
`′;mn

]
is the

inverse of the covariance of the angular power spectra signal.
In practice, this covariance term is non-Gaussian (Barreira

et al. 2018a; Takada & Hu 2013; Upham et al. 2022), with an
additional contribution arising from the super-sample covari-
ance (SSC; Hu & Kravtsov 2003). This SSC terms encapsulates
the effects on the covariance of density fluctuations with wave-
lengths larger than the extent of the galaxy survey. Such fluctu-
ations result in the background density of the survey ceasing to
be representative of the underlying density of the Universe. The

total covariance is then the sum of the Gaussian, CovG and SSC,
CovSSC, terms:

Cov
[
Cεε
`;i j,C

εε
`′;mn

]
= CovG

[
Cεε
`;i j,C

εε
`′;mn

]
+ CovSSC

[
Cεε
`;i j,C

εε
`′;mn

]
, (52)

where the Gaussian component is given by

CovG

[
Cεε
`;i j,C

εε
`′;mn

]
=

Cεε
`;im Cεε

`′; jn + Cεε
`;in C εε

`′; jm

(2` + 1) fsky∆`
δK
``′ , (53)

where fsky is the fraction of the sky observed by the galaxy sur-
vey, ∆` is the bandwidth of the `-modes sampled, and δK is the
Kronecker delta. Other non-Gaussian terms in the covariance can
be neglected (see e.g. Barreira et al. 2018b). The SSC component
is well-approximated by (Lacasa & Grain 2019)

CovSSC

[
Cεε
`;i j,C

εε
`′;mn

]
≈ R` Cεε

`;i j R`′ Cεε
`′;mn S i jmn , (54)

where S i jmn is the dimensionless volume-averaged covariance of
the background matter density contrast, and R` is the effective
relative response of the observed power spectrum. We assume
that there is no interrelation between local Universe effects and
the SSC, but this is a caveat that should be verified in future.

The diagonal of the inverse of the Fisher matrix is used to
predict the 1σ uncertainties on each of the parameters. Explic-
itly, the uncertainty, σµ, on parameter θµ is given by

σµ =

√
Fµµ

−1 . (55)

By extending this formalism, the biases on inferred parame-
ters resulting from neglecting systematic effects can also be pre-
dicted (Taylor et al. 2007). For a given systematic, δC`;i j, the
bias, bµ, on parameter θµ, is given by

bµ =
∑
ν

(F−1)µν Bν , (56)

where

Bν =

`max∑
`′=`min

`max∑
`=`min

∑
i j,mn

δC`;i j Cov−1
[
C εε
`;i j,C

εε
`′;mn

] ∂C`′;mn

∂θν
. (57)

We note that we assume a Gaussian likelihood function but
with a correlated covariance matrix (that includes non-Gaussian
contributions). The extent to which this assumption is robust
to relaxing the Gaussian likelihood assumption was explored
in Martinelli et al. (2021) who found good agreement between
Fisher matrix (Gaussian likelihood) predictions and full MCMC
predictions, and in Taylor et al. (2019b) who found a similar
result but allowing for the possibility of a fully non-Gaussian
likelihood function.

3. Methodology

In this section, we review the computational and modelling
specifics used within this investigation. We begin by describ-
ing the survey specifications adopted. Then, details are given
about our choice of fiducial cosmology, modelling of back-
ground quantities, and Fisher matrices. Lastly, we describe mod-
elling choices made in the computation of the magnification bias,
source obscuration, and local Universe effects corrections.
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3.1. Survey specifications

For Euclid, forecasting specifications are specified in EC20; we
adopted these here, but we note that our IA model is more simple
(see Section 2.2), and we vary ΩK rather than dark energy criti-
cal density. Specifically, we considered the ‘optimistic’ scenario
described in that work, as this is the case where the cosmic shear
probe is able to meet its precision goals by itself. Under this sce-
nario, the survey is taken to extend up to `-modes of 5000.

Additionally, the intrinsic variance of observed ellipticities
is taken to consist of two components; each with a magnitude of
0.21. Correspondingly, the RMS intrinsic ellipticity variance is
σε =

√
2×0.21 ≈ 0.3 6. Euclid is also expected to have a survey

area such that fsky = 0.36. The survey’s galaxy surface density
is anticipated to be n̄g = 30 arcmin−2.

The cosmic shear probe of Euclid is planned to observe
sources between redshifts of 0 and 2.5, and utilise 10 equi-
populated tomographic redshift bins with the following edges:
{0.001, 0.418, 0.560, 0.678, 0.789, 0.900, 1.019, 1.155, 1.324,
1.576, 2.50}.

Given that Euclid will use photometric redshifts, the model
for the source distributions within these tomographic bins must
account for photometric redshift uncertainties. Accordingly, for
a particular bin, i, the galaxy redshift distribution, ni(z), was de-
scribed by

ni(z) =

∫ z+
i

z−i
dzp n(z)pph(zp|z)∫ zmax

zmin
dz

∫ z+
i

z−i
dzp n(z)pph(zp|z)

, (58)

where zp is measured photometric redshift, z−i and z+
i are the lim-

its of the i-th redshift bin, and zmin and zmax are the redshift limits
of the survey itself. Additionally, n(z) is the underlying distribu-
tion of galaxies which here we modeled according to the formal-
ism established in Laureijs et al. (2011):

n(z) ∝
( z
z0

)2
exp

[
−

( z
z0

)3/2]
, (59)

where z0 = zm/
√

2, and zm = 0.9 is the median redshift of the
survey. The remaining function in Eq. (58), pph(zp|z), encapsu-
lates the probability that a source measured to have a photomet-
ric redshift of zp actually has a redshift of z. This distribution

6 We use the specification in EC20, but note that Euclid Collaboration
et al. (2019) uses a value of 0.26 per component. Since we are looking at
biases caused by the differences in the signal the shot noise component
does not affect the reported biases, however the relative significance
(bias divided by error) will be lower for a larger shot noise term.

Table 2. Values of model parameters used in defining the uncertainty of
photometric redshift estimates through Eq. (60). Chosen according to
EC20.

Parameter Fiducial Value
cb 1.0
zb 0.0
σb 0.05
co 1.0
zo 0.1
σo 0.05
fout 0.1

Table 3. ΛCDM and w0waCDM cosmological parameter fiducial values
used in this investigation. These values correspond to EC20. It should
be noted that

∑
mν , 0 is assumed to be fixed, and uncertainties and

biases are not calculated for it. Additionally, two possible values are
provided for ΩK , because the non-zero value must be used when eval-
uating the non-flat Universe correction. This value is selected using the
upper-bound of the Planck Collaboration et al. (2018) 1σ uncertainty.

Cosmological Parameter Fiducial Value
Ωm 0.32
Ωb 0.05
h 0.67
ns 0.96
σ8 0.816
w0 −1
wa 0∑

mν (eV) 0.06
ΩK {0, 0.05}

takes the form (Kitching et al. 2008)

pph(zp|z) =
1 − fout

√
2πσb(1 + z)

exp
{
−

1
2

[ z − cbzp − zb

σb(1 + z)

]2}
+

fout
√

2πσo(1 + z)
exp

{
−

1
2

[ z − cozp − zo

σo(1 + z)

]2}
. (60)

Here, the distribution is expressed as the sum of two terms – the
first is the uncertainty resulting from multiplicative and additive
bias in redshift determination for the fraction of sources with a
well measured redshift, whilst the second represents the same,
but for a fraction of catastrophic outliers in the sample, fout. The
values used for the individual parameters in this parameterisation
match the selection of EC20, and are stated in Table 2, which are
fixed throughout our analysis.

3.2. Cosmological modelling and Fisher matrices

Throughout this investigation, we considered the ΛCDM cos-
mological model and its extension: the w0waCDM model, which
also allows for varying dark energy pressure and a separately
parameterised dark energy equation of state at early times. The
ΛCDM model uses 7 parameters, which are defined thusly:
the present-day total matter density parameter Ωm, the present-
day baryonic matter density parameter Ωb, the dimensionless
curvature parameter ΩK = −K(c/H0)2, the Hubble parameter
h = H0/100 km s−1 Mpc−1, the spectral index ns, the RMS value
of density fluctuations on 8 h−1 Mpc scales σ8, and massive neu-
trinos with a sum of masses

∑
mν , 0. The w0waCDM model

additionally adds in the present-day value of the dark energy
equation of state w0, and the high-redshift value of the dark en-
ergy equation of state wa. Typically the present-day densities Ωi,
i ∈ {m, b,K}, are denoted with an additional subscript 0; we omit
this here for brevity. Primarily, we are interested the w0waCDM
case when discussing corrections in this investigation, as a key
goal of Stage IV surveys is exploring models of dark energy.
However, when examining the cosmological parameter biases,
we also present the ΛCDM case, for completeness.

The specific values used for each of these parameters are also
chosen for consistency with EC20, and are given in Table 3. As
in EC20, the value of

∑
mν , 0 was treated as fixed, and we

did not calculate uncertainties or biases for it. When computing
biases for all corrections except for the non-flat Universe term,
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we set ΩK to 0. Only when testing the significance of the addi-
tional non-flat Universe correction term was it set to 0.05. In this
case, the value is selected as being the upper-limit of the Planck
Collaboration et al. (2018) 1σ constraint on the parameter.

In the cases when the non-flat Universe correction was
not being evaluated, our Fisher matrices matched those of
the Euclid forecasting specification (EC20), and contained:
Ωm,Ωb, h, ns, σ8 and AIA for the ΛCDM case, and additionally
w0 and wa, for the w0waCDM case. When the correction for spa-
tially curvature needed to be tested, the Fisher matrices also in-
cluded ΩK . It was not necessary to include any further nuisance
parameters within the matrix, as EC20 showed that the inclusion
of various different nuisance parameters (such as those mod-
elling the non-linear part of the matter power spectrum) typically
altered the forecasted uncertainties on cosmological parameters
by less than 10%. The S i jmn were calculated using the publicly
available PySSC7 code (Lacasa & Grain 2019), with an R` of 3.

To calculate the cosmological background quantities re-
quired for the investigation, including the matter power spec-
trum and growth factor, we used the CAMB8 software package
(Lewis et al. 2000). Additionally, we utilised the Halofit (Taka-
hashi et al. 2012) implementation of the non-linear part of the
power spectrum, and included additional corrections identified
by Bird et al. (2012). Where necessary, we additionally em-
ployed Astropy9 (Astropy Collaboration et al. 2013, 2018) to
compute cosmological distances. The NLA model IA parame-
ters were set to AIA = 1.72 and CIA = 0.0134, again in accor-
dance with EC20. The required partial derivatives required were
computed numerically, using the procedure described in EC20.
Throughout this work, all quantities were evaluated for 200 `-
bands. The limits for these were logarithmically spaced, with an
`min of 10, and an `max of 5000.

3.3. Modelling higher-order corrections

To model the matter bispectrum required by the reduced shear,
magnification bias, source-lens clustering, and source obscu-
ration corrections, we used the BiHalofit model and code10

(Takahashi et al. 2020). This represents the matter bispectrum
using one-halo and three-halo terms, which themselves are de-
termined through fitting to N-body simulations.

For the magnification bias correction, we used the slope
of the luminosity function as calculated from the fitting for-
mula given in Appendix C of Euclid Collaboration: Lepori et al.
(2022). This is determined from the Euclid Flagship simula-
tion (Potter et al. 2017) and for the limiting magnitude 24.5 of
the VIS instrument (AB in the Euclid VIS band (Cropper et al.
2012)). Therefore, it provides the most Euclid specific estimate
of this quantity to-date. However, once the Euclid survey is in-
progress, we note that this quantity should be calculated directly
from the observed data. We used a single value for the slope
for each tomographic redshift bin. This value was calculated at
the central redshift of the bin. The slopes for all bins, together
with their central redshifts, can be found in Table 4. We note
that the magnification bias from Euclid Collaboration: Lepori
et al. (2022) was obtained for the n(z) from Euclid Collabora-
tion et al. (2021) but we use the Euclid Collaboration: Blanchard
et al. (2020) n(z), however the effect of the small changes in the

7 https://github.com/fabienlacasa/PySSC
8 https://camb.info/
9 http://www.astropy.org

10 http://cosmo.phys.hirosaki-u.ac.jp/takahasi/codes_
e.htm

Table 4. The values of the slope of the luminosity function used in com-
puting the magnification bias correction. These are calculated at the cen-
tral redshift of each tomographic bin. The limiting magnitude is taken
to be 24.5, and the slopes are calculated with a fitting function (Euclid
Collaboration: Lepori et al. 2022) determined from the Euclid Flagship
simulation.

Bin i Central Redshift Slope si
1 0.2095 0.108
2 0.489 0.180
3 0.619 0.229
4 0.7335 0.279
5 0.8445 0.335
6 0.9595 0.400
7 1.087 0.480
8 1.2395 0.586
9 1.45 0.753

10 2.038 1.335

assumed n(z) should be small, which is consistent with the small
differences in the results between this paper and Deshpande et al.
(2020a).

In order to evaluate the source obscuration terms, we set the
total number of observed galaxies to 2 × 109, so that the total
number of galaxies per redshift bin was 2 × 108. We also took
the mean galaxy radius to be ϑ = 0.32′′ (1.55 × 10−6 rad). This
value is the mean half-light radius of galaxies from the Euclid
Flagship mock (Euclid Collaboration: Bretonnière et al. 2022).

To evaluate the impact of the local Universe correction,
we used a smoothing scale of 120 h−1 Mpc. This is the pri-
mary value used in Hall (2020), as it is just large enough for
the local overdensity to be linear, while still possessing full-
sky spherical coverage within the 2M++ galaxy redshift cat-
alogue (Lavaux & Hudson 2011) used to measure the local
overdensity. Accordingly, δ0

(
R = 120 h−1 Mpc

)
= 0.045 and

δ0

(
R = 120 h−1 Mpc

)
/σ

(
R = 120 h−1 Mpc

)
= 0.85. Different

choices of smoothing scale result in different values of the lo-
cal overdensity δ0, with some choices consistent with zero. As
the LU effect scales linearly with the local overdensity, we do
not rule out the LU bias as being exactly zero. Furthermore, it
might be expected that the LU effect is mostly subsumed within
the SSC uncertainty for any choice of smoothing scale, since it
is mostly affected by modes that are outside of the survey. De-
tailed investigation of these points is beyond the scope of the
paper, and our intention here is merely to assess how much bias
would result from a nominal amplitude for the local overdensity
combined with a fiducial implementation of the SSC covariance.

In this work, we compared the magnitude of the studied cor-
rection terms to the Gaussian sample variance, ∆C`/C`. This was
calculated according to Kaiser (1992), and took the form

∆C`/C` =
√

2
[
fsky(2` + 1)

]−1/2
. (61)

4. Results and discussion

This section presents and discusses the computed values for the
studied corrections. First, we show the magnitudes of the correc-
tion relative to the magnitude of the cosmic shear angular power
spectra, and compare them to the sample variance.

In Fig. 1 the magnitudes of the reduced shear, source-lens
clustering, magnification bias, source obscuration, local Uni-
verse effect, and non-flat Universe corrections, relative to the
angular power spectra are shown. The combined correction is

Article number, page 11 of 20

https://github.com/fabienlacasa/PySSC
https://camb.info/
http://www.astropy.org
http://cosmo.phys.hirosaki-u.ac.jp/takahasi/codes_e.htm
http://cosmo.phys.hirosaki-u.ac.jp/takahasi/codes_e.htm


A&A proofs: manuscript no. aanda

10−8

10−6

10−4

10−2

100

|δC
`;
ii
/C

γ
γ

`;
ii
|

Redshift Bin 0.001 - 0.418 Redshift Bin 0.678 - 0.789

101 102 103

`

10−8

10−6

10−4

10−2

100

|δC
`;
ii
/C

γ
γ

`;
ii
|

Redshift Bin 1.018 - 1.155

101 102 103

`

Redshift Bin 1.576 - 2.50

Sample Variance

Local Universe

Magnification Bias (MB)

Reduced Shear

Source-lens Clustering (SLC)

SO-MB

SO-SLC

Source Obscuration (SO)

Non-flat Universe

Correction Total

Fig. 1. Absolute magnitudes of the reduced shear, source-lens clustering, magnification bias, local Universe, source obscuration, and non-flat
Universe corrections to the shear angular power spectra, relative to those angular power spectra, for Euclid. The corrections to the angular power
spectra for four redshift bin auto-correlations are shown as representative examples, spanning across the redshift range of Euclid. The remaining
auto and cross-correlations exhibit the same patterns. The absolute value of the signed sum of the corrections is also shown. These are all compared
to the sample variance, calculated according to Eq. (61). Notably, while the magnitudes of individual corrections are either higher at lower
redshifts or vice-versa, the magnitude of the sum of the corrections is consistently high. Additionally, the cross-terms between source obscuration,
and magnification bias and source-lens clustering are multiple orders of magnitude below other terms and sample variance, suggesting they are
negligible. The remainder of the terms are typically of similar magnitudes across redshifts, suggesting they must all be accounted for. We note
that these magnitudes are for both the ΛCDM and w0waCDM cases, as the choice of fiducial values for the latter matches the former, and that the
non-flat Universe correction here has been computed for a cosmology with ΩK = 0.05, whilst other corrections are when ΩK = 0. The markers
for the SO-MB, SO-SLC, SO, Non-flat Universe, and total lines are only used to distinguish those from the other terms, and do not have any other
significance. The symbols (points) are only included to allow a reader to distinguish the lines (in particular if printing in gray-scale) and do not
indicate the `-modes where a computation was made; all quantities were evaluated for 200 `-bands, logarithmically spaced, with an `min of 10, and
an `max of 5000.

also shown, and we note that this is the sum of the signed val-
ues of the corrections, rather than the absolute values which
are shown here for comparison. These terms are displayed for
the auto-correlations of four redshift bins across the survey’s
range; specifically, bins 1, 4, 7, and 10. These particular bins
are presented for illustrative purposes, and the remaining bins
and cross-correlations display consistent trends. It can be seen
that all corrections are typically below sample variance both in-
dividually and when combined, with the exception of at small

physical scales at the lowest and highest redshifts. A noteworthy
detail from this figure is that, while individual corrections are
either consistently well below sample variance, or are higher at
low redshifts and reduce significantly at high redshifts or vice-
versa, the total magnitude of the corrections is consistently high.

Furthermore, another immediately noticeable feature is that
the source obscuration cross terms with magnification bias and
source-lens clustering are always multiple orders of magnitude
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Table 5. The uncertainties on, and biases induced from neglecting the various corrections, in the ΛCDM parameters of Table 3 for Euclid. This
table considers the case when ΩK = 0, and accordingly lists the biases resulting from all corrections except the non-flat Universe correction. That
can be found in Table 7. All biases are given as a fraction of the 1σ uncertainty on each parameter. A bias is considered significant if it reaches
or exceeds 0.25σ, as at this point its uncorrected and corrected confidence contours overlap by less than 90%. ‘RS’ denotes the reduced shear
correction, ‘SLC’ is the source-lens clustering term, ‘MB’ is the magnification bias correction, ‘SO’ is the two-point source obscuration correction,
‘SO-MB’ and ‘SO-SLC’ are the source obscuration-magnification bias and source-lens clustering cross terms respectively, and ‘LU’ is the local
Universe correction. The total biases from the sum of all corrections, as well as the total biases from only the individually significant corrections
are also given.

Cosmo. Uncertainty RS SLC MB SO SO-SLC SO-MB LU Total Total
Param. (1σ) Bias/σ Bias/σ Bias/σ Bias/σ Bias/σ Bias/σ Bias/σ All Sig.

Ωm 0.0051 −0.032 1.14 −0.75 0.36 0.0032 0.0047 0.26 0.76 0.73
Ωb 0.021 0.0035 0.28 0.080 −0.044 6.5 × 10−4 −6.6 × 10−4 −0.016 0.26 0.28
h 0.13 0.0084 0.15 0.19 −0.11 2.8 × 10−4 −0.0013 −0.042 0.23 0.25
ns 0.029 0.017 0.0065 −0.23 0.18 2.1 × 10−4 0.0016 0.038 2.6 × 10−4 −0.07
σ8 0.0072 0.076 −1.10 0.78 −0.54 −0.0031 −0.0050 −0.22 −0.78 −0.79

Table 6. The uncertainties on, and biases induced from neglecting the various corrections, in the w0waCDM parameters of Table 3 for Euclid. This
table considers the case when ΩK = 0, and accordingly lists the biases resulting from all corrections except the non-flat Universe correction. That
can be found in Table 7. All biases are given as a fraction of the 1σ uncertainty on each parameter. A bias is considered significant if it reaches
or exceeds 0.25σ, as at this point its uncorrected and corrected confidence contours overlap by less than 90%. ‘RS’ denotes the reduced shear
correction, ‘SLC’ is the source-lens clustering term, ‘MB’ is the magnification bias correction, ‘SO’ is the two-point source obscuration correction,
‘SO-MB’ and ‘SO-SLC’ are the source obscuration-magnification bias and source-lens clustering cross terms respectively, and ‘LU’ is the local
Universe correction. The total biases from the sum of all corrections, as well as the total biases from only the individually significant corrections
are also given.

Cosmo. Uncertainty RS SLC MB SO SO-SLC SO-MB LU Total Total
Param. (1σ) Bias/σ Bias/σ Bias/σ Bias/σ Bias/σ Bias/σ Bias/σ All Sig.

Ωm 0.010 −0.079 1.25 0.12 0.12 0.0025 −0.0022 0.14 1.55 1.49
Ωb 0.021 −0.0013 0.30 0.069 −0.021 7.2 × 10−4 −5.8 × 10−4 −0.0032 0.35 0.35
h 0.13 0.0057 0.11 0.11 −0.053 3.2 × 10−4 −6.3 × 10−4 −0.015 0.16 0.17
ns 0.031 0.051 −0.19 −0.19 0.026 −3.0 × 10−4 0.0015 −0.045 −0.35 −0.35
σ8 0.012 0.081 −1.19 0.017 −0.19 −0.0024 0.0011 −0.093 −1.38 −1.36
w0 0.13 −0.076 0.81 0.55 −0.039 0.0011 −0.0051 0.032 1.28 1.31
wa 0.36 0.022 −0.51 −0.60 0.27 −3.3 × 10−4 0.0053 0.097 −0.72 −0.84

Table 7. The uncertainties for the fiducial ΛCDM and w0waCDM cosmologies of Table 3 when ΩK = 0.05, and biases induced from neglecting
the non-flat Universe correction for the Euclid cosmic shear probe. The biases are given as a fraction of the 1σ uncertainty on each parameter. A
bias is considered significant if it reaches or exceeds 0.25σ, as at this point its uncorrected and corrected confidence contours overlap by less than
90%. The predicted biases from this correction are well below significance for all parameters.

Cosmo. ΛCDM Uncertainty ΛCDM Non-flat Universe w0waCDM Uncertainty w0waCDM Non-flat Universe
Param. (1σ) Bias/σ (1σ) Bias/σ

Ωm 0.0050 0.043 0.014 −0.062
Ωb 0.021 −0.0070 0.021 8.1 × 10−4

ΩK 0.034 0.043 0.062 −0.054
h 0.12 −0.012 0.12 0.012
ns 0.029 −0.010 0.030 0.012
σ8 0.028 0.026 0.042 −0.044
w0 N/A N/A 0.14 −0.090
wa N/A N/A 0.56 0.10

smaller than sample variance, and typically the other terms as
well; suggesting that these cross-terms are negligible.

Despite the fact that these terms are generally below sample
variance, because they make contributions consistently across `-
modes, they can still cause significant biases in inferred cosmo-
logical parameters. The bias in an estimated parameter resulting
from neglecting a systematic effect is typically considered signif-
icant if it exceeds 25% of the 1σ uncertainty on that parameter
(Taylor et al. 2007). This is because, at that point, the biased and
unbiased 1σ confidence contours overlap by less than 90%.

The predicted cosmological parameter biases resulting from
neglecting all corrections except for the non-flat Universe term
are stated in Table 5 and Table 6, for the ΛCDM and w0waCDM
cases, respectively. These are also represented visually in Fig. 2.
The biases from the non-flat Universe correction (which requires
a fiducial cosmology with non-zero curvature) are stated in Ta-
ble 7, for both choices of cosmology. From these tables we see
that the source-lens clustering, magnification bias, source obscu-
ration, and local Universe terms are individually significant in
the ΛCDM case, while instead only the source-lens clustering,
magnification bias, and source obscuration corrections are indi-
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Fig. 2. Stacked bar chart of cosmological parameter biases resulting from the studied higher-order effects, for the flat ΛCDM case (left) of Table 5,
and the flat w0waCDM case (right) of Table 6. The non-flat Universe term is not shown here, due to the different cosmology. Biases are presented
here as a fraction of the 1σ parameter uncertainty. A bias is non-negligble if its absolute value reaches or exceeds 0.25σ. ‘RS’ denotes the reduced
shear correction, ‘SLC’ is the source-lens clustering term, ‘MB’ is the magnification bias correction, ‘SO’ is the two-point source obscuration
correction, ‘SO-MB’ and ‘SO-SLC’ are the source obscuration-magnification bias and source-lens clustering cross terms respectively, and ‘LU’ is
the local Universe correction The segments with the dashed outlines show the total parameter biases from these corrections for each parameter.

vidually of concern in the w0waCDM case. This difference is
likely due to the presence of the variable dark energy parameters
in the wowaCDM scenario reducing sensitivity to scales where
the local Universe term is important. Of these, the source-lens
clustering term is particularly concerning, as for this term all but
two of the parameters have significant biases.

Also shown in these tables are the combined biases when all
of the individually significant corrections are taken into account,
and when all of these corrections are taken into account. The full
total is also shown in Fig. 2. Owing to the fact that some biases
are additive while others are subtractive, the total biases in the
ΛCDM scenario are, in fact, less severe than some of the indi-
vidual ones; in particular, source-lens clustering. However, the
totals are still significant, and because they do not strongly re-
semble any one of the biases uniquely, multiple terms must still
be computed. In the w0waCDM case, the magnification bias no
longer suppresses the source-lens clustering term, instead adding
to it and meaning that the total biases in this case are more se-
vere than the individual ones. This change likely occurs due to
the dark energy terms increasing sensitivity to scales where the
opposite component of the magnification bias (e.g. decrease in
galaxy number density due to dilution rather than increase due
to increased flux) is dominant.

At inference time, the computational load can be reduced
by noting that only the individually significant terms (source-
lens clustering, magnification bias, source obscuration, and local
Universe) need to be computed in both cases, because this total
does not significantly differ from the full total. Although, given
that the reduced shear correction is also obtained at no additional
cost when computing the magnification bias correction, we rec-
ommend including this too. The bias in the two-parameter confi-
dence contours resulting from neglecting the combined effect of
the significant biases is shown in Fig. 3 and Fig. 4 for the ΛCDM

and w0waCDM scenarios, respectively. These figures display the
contours in the case where no correction has been made, and
when the corrections are made. As with Table 5 and Table 6, we
see that the cumulative corrections must be accounted for.

We note that many of the modelling specifics used here, for
example the slope of the luminosity function or the smoothing
scale of local overdensity, will need to be determined directly
from the Euclid survey itself for self-consistency when these cor-
rections are computed at inference time. Accordingly, it would
not be meaningful to place constraints on them here, due to the
variable survey specifics.

Additionally, we note that the true value of the local density
contrast, and accordingly the radius of the smoothing kernel used
to calculate it, remain open questions. Accordingly, there is a
large uncertainty in the local Universe correction which cannot
be meaningfully constrained and it is possible that it may even
be zero. Accurate measurements of the local density contrast are
required for this.

Similarly, the source obscuration correction as computed in
this work represents a worst-case scenario where every galaxy in
the foreground of a given redshift slice has an overlap. This rep-
resents an upper limit on the bias from this effect, but, in practice,
the number of sources with overlap will be a smaller fraction.
Accordingly, it is likely that source obscuration will not result in
significant biases for true Euclid observations, particularly if a
robust mitigation strategy is employed.

However, the dominant source of quantifiable modelling un-
certainty comes from the modelling of the matter bispectrum
and, given that the bispectrum is not currently well constrained
by observations, this model is likely to continue to evolve. Ac-
cordingly, it is important to constrain the impact of a change
in bispectrum model on these terms. To-date, three widely-used
matter bispectrum models have been produced (Scoccimarro &
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Fig. 3. Projected 1σ and 2σ 2-parameter uncertainty contours for Euclid under a ΛCDM cosmology, with and without correcting for the source-
lens clustering, magnification bias, source obscuration, and local Universe terms. These are predicted using the Fisher matrix formalism, using the
cosmology specified in Table 3, in the case when ΩK = 0 and is kept fixed. The true location of the constraints is denoted by the blue, dashed
contours, while the biased locations if the corrections are not made are given by the solid, gold contours. Significant biases are predicted for Ωm,
Ωb, h, and σ8, and their values can be found in Table 5

Couchman 2001; Gil-Marín et al. 2012; Takahashi et al. 2020).
As each subsequent model has become more complex and im-
proved upon the accuracy of its predecessor, comparing correc-
tion magnitudes using each of these models would not realisti-
cally constrain the uncertainty from the bispectrum model.

Instead, it is useful to set a threshold around the latest of
these models (Takahashi et al. 2020), within which any change
in the model must be contained, in order to not produce a sig-
nificant change in the correction terms. We do this by determin-

ing the minimum fractional increase or decrease in the matter
bispectrum required across all triangle configurations, for each
correction individually, to cause a significant change in any of
the cosmological parameter biases, in the w0waCDM case. This
corresponds to a change of ±0.25σ in any one of the biases.
Given that we are placing multiplicative limits on the change in
the bispectrum, for each correction the smallest limits are found
when considering the cosmological parameter that already has
the largest bias. The resulting limits are stated in Table 8, along-
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Fig. 4. Projected 1σ and 2σ 2-parameter uncertainty contours for Euclid, with and without correcting for source-lens clustering, magnification
bias, and source obscuration. These are predicted using the Fisher matrix formalism, for the w0waCDM cosmology specified in Table 3, in the
case when ΩK = 0 and is kept fixed. The true location of the constraints is denoted by the blue, dashed contours, while the biased locations if the
corrections are not made are given by the solid, orange contours. Significant biases are predicted for Ωm, Ωb, ns, σ8, w0, and wa, and their values
can be found in Table 6.

side the parameter which would see the corresponding signifi-
cant change in its bias. From this, we see that the corrections
most susceptible to a change in the bispectrum model are the
source-lens clustering and magnification bias terms, as neglect-
ing these already creates the most significant biases individually.
Additionally, the two source obscuration cross terms are the least
sensitive, requiring a change of an order-of-magnitude. This fur-
ther reinforces the fact that these terms are safely negligible. We
stress that these multiplicative limits are not exhaustive cut-offs

on when a bispectrum model would cause a significant change,
because a model with a sufficiently large change for only a select
sub-range of scales or configurations could still cause a signifi-
cant difference in the parameter biases. We recommend explicit
revaluation with any future updated bispectrum models, should
they non-trivially exceed these thresholds frequently.

Another consideration is how the inclusion of the studied ef-
fects would affect the size of the cosmological parameter uncer-
tainty constraints themselves. In this work, we do not explicitly
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Table 8. The increasing and decreasing multiplicative changes required
in the matter bispectrum, across all configurations and all `-modes, to
significantly affect the biases from each relevant correction term. A sig-
nificant change is when any one of the biases on the cosmological pa-
rameters changes by ±0.25σ. These values encapsulate the fractional
change for a fixed cosmology, in this case the w0waCDM cosmology
of Table 3, with ΩK = 0. It should be noted that these values are not
exhaustive thresholds, as sufficiently significant changes to the model at
a particular sub-range of scales may also be problematic.

Correction Min. Change Bispec. Mult. Bispec. Mult.
Param Increase Decrease

RS Ωm −2.16 −4.16
SLC Ωm 1.20 0.80
MB wa 0.58 1.41

SO-SLC Ωm 100.63 −99.67
SO-MB wa 47.00 −47.00

calculate this resulting change. However, it has previously been
shown that for the bispectrum-dependent terms, even corrections
that cause biases of greater than 1σ result in negligible changes
to the uncertainty constraints (Shapiro 2009; Deshpande et al.
2020a).

5. Conclusions

In this investigation, we have examined the higher-order correc-
tions to the cosmic shear angular power spectra that must be
modelled when performing inference with Euclid. By first re-
viewing the literature, we identified 24 correction terms, and
gathered representative values to facilitate comparison. From
these, we identified six corrections which were potentially im-
portant for Euclid, and evaluated them explicitly. These were:
the relaxation of the reduced shear approximation, the source-
lens clustering correction, the magnification bias correction, the
source obscuration correction, the local Universe correction, and
the non-flat Universe correction.

After calculating these corrections, we used the Fisher matrix
formalism to predict the biases in cosmological parameter biases
if each of these terms were to be neglected, in order to identify
which ones are necessary to be modelled for Euclid. This was
done for two scenarios: a ΛCDM cosmology, and a w0waCDM
cosmology. For the first of these scenarios, we found that the
source-lens clustering, magnification bias, source obscuration,
and local Universe terms were significant, while for the second
case we found that the source-lens clustering, magnification bias,
and source obscuration corrections each produced significant bi-
ases in multiple parameters individually. The source-lens clus-
tering term was noted as being of particular concern as multiple
biases approached or exceeded 1σ. However, in the ΛCDM case
we found that when the biases are combined, they frequently
suppressed each other, leading the total bias to be lower than
many of the individual biases. Despite this, the total biases were
still significant, and did not strongly represent the exact biases
from any correction individually. In the w0waCDM case, the to-
tal of the three biases was higher than the individual terms. Ac-
cordingly, we recommend that the source-lens clustering, mag-
nification bias, source obscuration, and local Universe correc-
tions are all taken into account when modelling the shear angu-
lar power spectra for Euclid. Additionally, given that the reduced
shear correction is obtained at no additional cost when comput-
ing the magnification bias correction, we recommend that this
too be included.

To provide some constraints on the predictive ability of this
work, we quantified how much the matter bispectrum would
have to change by in order to illicit a significant change in the
biases predicted in this work. We identified that a ∼ 20 − 40%
increase or decrease in the amplitude of the matter bispectrum at
all scales, and for all triangle configurations would be required
for this.

We note that this work did not investigate the impact of
higher-order corrections on the IA spectra. Typically, even for
effects which, when neglected, produce high biases, i.e. ∼O(1σ),
the corresponding corrections to the IA spectra cause negligible
biases (Deshpande et al. 2020a). Accordingly, an explicit evalu-
ation should not be necessary. Furthermore, we did not consider
the impact of baryonic feedback on the bispectrum, and therefore
on its dependant corrections. The impact of this remains poorly
understood, with inconsistent findings from different simulations
(Semboloni et al. 2013; Barreira et al. 2019). Accordingly this
is out of the scope of this investigation. However, we note that
given the magnitude of change required to the matter bispectrum
in order to cause a significant change in the cosmological param-
eter biases, it is unlikely baryonic feedback would significantly
alter the predictions of this investigation.

Given that we find it is necessary to include these higher-
order terms in the modelling of the shear power spectra, an open
question is the optimal strategy to do so. It has repeatedly been
shown that computing these corrections for just one cosmology
is relatively time consuming (Deshpande et al. 2020a; Duncan
et al. 2022), rendering computation at inference time a serious
challenge. While it may be possible to sufficiently optimise the
required evaluation code, alternate strategies may also prove use-
ful. Scale cutting techniques such as k-cut cosmic shear (Taylor
et al. 2018a) have been shown to mitigate the need to make such
corrections without significantly compromising the constraining
power of Stage IV surveys (Deshpande et al. 2020b). Alterna-
tively, emulation has recently become a popular tool in cosmol-
ogy for reducing computation time at inference by replacing an-
alytical models with emulators (see e.g. recent work emulating
the matter power spectrum within Spurio Mancini et al. 2022).
Emulators could also be developed directly for these correction
terms, or intermediate quantities such as the matter or conver-
gence bispectra.

Furthermore, while our analysis here is limited to the angu-
lar power spectra, significant corrections for this statistic are also
likely to be significant for the two-point correlation function.
In fact, due to the mode-mixing that occurs when transforming
the power spectra to correlation functions, the effect of the dis-
cussed approximations is likely to be more severe. This, com-
bined with the sensitivity of the correlation function to higher `-
modes and the additional approximations required (e.g. the flat
Hankel transform; Kitching et al. 2017), means that if correla-
tion functions were to be used a similar but separate study would
be required to demonstrate modelling of the correlation function
to higher-order corrections.
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