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Abstract 

 

Infrared thermography is a valuable non-destructive tool for inspection of materials. It 

measures the surface temperature evolution, from which hidden defects may be detected. 

Yet, thermal cameras typically have a low native spatial resolution resulting in a blurry 

and low-quality thermal image sequence and videos. 

In this study, a novel adversarial deep learning framework, called Dual-IRT-GAN, is 

proposed for performing super-resolution tasks. The proposed Dual-IRT-GAN attempts 

to achieve the objective of improving local texture details, as well as highlighting 

defective regions. The generated high-resolution images are then delivered to the 

discriminator for adversarial training using GAN's framework.  

The proposed Dual-IRT-GAN model, which is trained on an exclusive virtual dataset, is 

demonstrated on experimental thermographic data obtained from fibre reinforced 

polymers having a variety of defect types, sizes, and depths. The obtained results show  

its high performance in maintaining background colour consistency and removing 

undesired noise, and in highlighting defect zones with finer detailed textures in high-

resolution.  

 

KEYWORDS: Deep learning; Super-resolution; GAN; Infrared thermography; 

Composite; Defect detection; Non-destructive testing 

 

 

1.  Introduction 
 

Nowadays, carbon fibre reinforced polymer (CFRP) and glass fibre reinforced polymer 

(GFRP) composites are widely used in a range of applications, with a focus on the 

aerospace and automotive industries. Therefore, Non-Destructive Testing (NDT) has 

become a crucial tool for guaranteeing the structural integrity of composite components.  

Active InfraRed Thermography (IRT) is an attractive non-destructive testing (NDT) 

technique for diagnostic purposes that utilizes an IR camera to monitor the heat response 

promptly and precisely in order to discover and quantify defects [1]. The information of 

high-frequency textures, however, tends to be lost in the received thermal images due to 

the nature of an infrared imaging system having a limited number of pixels and pixel size. 

As a result, the obtained thermal images become blurry and fuzzy. This forms a hot 

research topic termed single image super-resolution (SISR).  
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In recent years, CFRP and GFRP have gained popularity in recent years due to their high 

strength and low weight. Numerous signal post-processing approaches [2-4] have been 

used to determine the presence of defects in CFRP and GFRP specimens. These 

approaches, however, are restricted in resolution and are susceptible to noise, regardless 

of the capability in defect identification.  

In order to overcome the difficulties presented by low resolution (LR), we propose a 

defect-aware deep adversarial learning framework, as a continuation of previous work 

IRT-GAN [5], termed Dual-IRT-GAN, to enhance the SR image quality of real LR 

infrared images by leveraging the defect information.  

 

2.  The Dual-IRT-GAN architecture 
 

 
Figure 1. The overview of the proposed Dual-IRT-GAN framework 

 

The overview of the proposed Dual-IRT-GAN model at the general architecture level is 

displayed in Figure 1. In general, it consists of two generators: SRnet and SEGnet and 

two discriminators DSR and DSEG, with SRnet attempting to generate plausible photo-

realistic HR infrared images 𝐼𝐼𝑅𝑇_𝐻𝑅 with a scaling factor of 4 from LR infrared images 

𝑰𝐼𝑅𝑇_𝐿𝑅, and SEGnet aiming to segment the defects 𝑰𝑆𝐸𝐺_𝐿𝑅 from ground-truth LR infrared 

images 𝑰𝐼𝑅𝑇_𝐿𝑅 in composites. To determine their authenticity, the generated HR infrared 

images from SRnet and segmentation maps from SEGnet are fed into two discriminators, 

DSR and DSEG, respectively. 

To compensate for the domain gap between the infrared images and realistic real-world 

images, a domain adaptation process is incorporated into the Dual-IRT-GAN training 

process to bias the parameters in SRnet and ensure SRnet learning to reconstruct with 

realistic textures and maintain color consistency. The SRnet is additionally trained on 

LR/HR ( 𝑰𝐼𝑅𝑇_𝐿𝑅 / 𝑰𝐼𝑅𝑇_𝐻𝑅_𝐺𝑇  in Figure 1) image pairs from the DIV2K dataset [6], 

containing 1000 real-world 2k resolution images.  

A detailed description of the generator and discriminator network architectures is 

described in the Figure 2 and Figure 3. 

The proposed Generator, inspired by ESRGAN [7], unifies two subnets SRnet and 

SEGnet to jointly learn both tasks of SR image generation and defect segmentation, 
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respectively, in an end-to-end training framework via the trade-off between 

reconstruction loss and segmentation loss. 

 

 
Figure 2. The network architecture of the generators (SRnet and SEGnet) 

 

 
Figure 3. The proposed defect cross-attention module (DefectCAM) for the Dual-IRT-GAN 

To customize our SR task, modifications are designated in an effort to generate more 

photorealistic HR images with finer textures, as shown in Figure 2. As an auxiliary 

network, SEGnet attempts to investigate all potential defects in the IRT dataset of 

composites, thereby guiding and assisting SRnet in concentrating on defect areas via a 

proposed DefectCAM block, see Figure 3, inspired by Convolutional Block Attention 

Module(CBAM) [8].  

Inspired by real-ESRGAN [9], the discriminators DSR and DSEG in this study employ 

the identical Unet architecture with spectral normalization to determine the authenticity 

or falsity of generated HR images (𝑰𝐼𝑅𝑇_𝐻𝑅 and 𝑰𝐷𝐼𝑉2𝐾_𝐻𝑅) and segmentation maps 

(𝑰𝑆𝐸𝐺_𝐻𝑅), respectively. Rather than focusing exclusively on local textures originating 

from PatchGAN [10], a modification to the discriminator in real-ESRGAN by paying 

extra attention to a global structure is formulated to the original PatchGAN output. The 

framework of the discriminators DSR and DSEG is displayed in Figure 4.  
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Figure 4. The architecture of DSR and DSEG 

 

3.  Training 

 
3.1 Loss function 

 

In this work, three types of loss functions are used concurrently to achieve the desired 

result:  Content loss 𝑳𝟏, Perceptual loss 𝑳𝑽𝑮𝑮 and Adversarial loss 𝑳𝑨𝑫𝑽. The total loss 

𝑳𝒕𝒐𝒕, therefore, can be therefore concluded as 

𝐿𝑡𝑜𝑡 = 𝛼 𝐿𝑉𝐺𝐺 + 𝛽 𝐿1  + 𝛾 𝐿𝐴𝐷𝑉        (1) 

Where 𝜶, 𝜷 and 𝜸 are the loss weights. For more details, the readers are referred to [11]. 

 

3.2 Implementation details 

 
The proposed Dual-IRT-GAN model is trained entirely in the absence of experimental 

data using a virtual dataset implemented in the Fortran90 environment, see [11] for more 

details. Prior to training the Dual-IRT-GAN, the pre-processing of virtual numerical IRT 

dataset in source-domain training and DIV2K dataset in domain-adaptation training is 

conducted to obtain the original training HR image set 𝑰𝐼𝑅𝑇_𝐻𝑅_𝐺𝑇  and 𝑰𝐷𝐼𝑉2𝐾_𝐻𝑅_𝐺𝑇by 

randomly cropping with a size of 256×256 and the corresponding training LR image set 

𝑰𝐼𝑅𝑇_𝐿𝑅and 𝑰𝐷𝐼𝑉2𝐾_𝐿𝑅 with a size of 64×64 are obtained following a second-degradation 

process [8].  The Dual-IRT-GAN is implemented using the PyTorch framework in Python 

(Python 3.7.10 and CUDA v11.0.221) using an NVIDIA Quadro RTX 6000 GPU card 

with 24GB of RAM. The IRT-GAN model employs the Adam optimizer with an initial 

learning rate lr = 2×10-4, and momentum parameters 𝛽1=0.9, 𝛽2=0.999. The batch size 

for training is 8. The training epoch is set to be 1500, empirically shown to yield a good 

performance. 

 

4. Validation on experimental IRT dataset 

 
A schematic diagram of the thermographic setup is displayed in Figure 5(a). The optical 

energy input is supplied by a Hensel linear flash lamp with 6 kJ energy and 5 ms flash 

duration, and a FLIR A6750sc infrared camera is used to capture the sample’s surface 

temperature.  
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Figure 5: (a) Schematic of the experimental setup for flash thermography, (b) photograph and 

defect parameters of CFRPFBH 

 

The testing sample, referred to as CFRPFBH, is a 5.5 mm thick compression-moulded 

CFRP plate with a quasi-isotropic stacking sequence of [(+45/0/-45/90)3]s. From the 

backside of the sample, 12 circular FBHs with diameters ranging from 7 to 25 mm and a 

remaining thickness of up to 4 mm were milled.  

 
Table.1 The inference outcomes for CFRPFBH dataset utilizing the Bicubic interpolation, Nearest 

interpolation, SRGAN, ESRGAN, and Dual-IRT-GAN models 

Sample Up-sampling (×4) 

  
 

From Table.1, we observe that the proposed model is capable of producing relatively 

cleaner and sharper edges and accurately preserving finer textures, resulting in HR images 

that are perceptually plausible to humans. In order to evaluate the quality of HR images 

that were generated, a widely-used metric known as peak signal-to-noise ratio (PSNR) 

[12] was employed. However, due to the absence of a ground-truth reference, a cubic 

image was used as a reference instead. This poses a challenge because the resulting PSNR 

values, expressed as blue values in Table.1, may not accurately reflect the true quality of 

the generated images. For instance, from Table.1, the highest PSNR value can be 

observed for Nearest up-sampling image. 

 

5. Conclusions 

 
Dual-IRT-GAN, a novel deep learning model, is presented. It consists of a generator with 

two subnets, SRnet and SEGnet, to jointly perform super-resolution and defect 

segmentation tasks for infrared images, and two discriminators, DSR and DSEG, to 

determine the veracity (or falsity) of the generated high-resolution images and 

segmentation maps, respectively. The Dual-IRT-GAN model can be directed toward 

learning plausible realistic high-resolution solutions, improving the visibility of defected 
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regions and in-depth textures. This is made possible by the implementation of the 

DefectCAM Module, which extracts and fuses the attention maps into the feature maps. 

On the basis of thermographic data obtained from a CFRP sample with FBH defects, the 

performance of the Dual-IRT-GAN is assessed.  

 

Acknowledgements 

The authors express their gratitude towards Honda R&D Co. Japan and Sabca Limburg 

for supplying material for this research. This research has received funding from UGent 

Bijzonder OnderzoeksFonds BOF 01N01719. 

 

References 

[1] Ibarra-Castanedo C, Genest M, Piau JM, Guibert S, Bendada A, Maldague XP. 

Active infrared thermography techniques for the nondestructive testing of materials. 

InUltrasonic and advanced methods for nondestructive testing and material 

characterization 2007 (pp. 325-348). 

[2] Poelman G, Hedayatrasa S, Segers J, Van Paepegem W, Kersemans M. Adaptive 

spectral band integration in flash thermography: Enhanced defect detectability and 

quantification in composites. Composites Part B: Engineering. 2020 Dec 

1;202:108305. 

[3] Rajic N. Principal component thermography for flaw contrast enhancement and flaw 

depth characterisation in composite structures. Composite structures. 2002 Dec 

1;58(4):521-8. 

[4] Maldague X, Marinetti S. Pulse phase infrared thermography. Journal of applied 

physics. 1996 Mar 1;79(5):2694-8. 

[5] Cheng L, Tong Z, Xie S, Kersemans M. IRT-GAN: A generative adversarial 

network with a multi-headed fusion strategy for automated defect detection in 

composites using infrared thermography. Composite Structures. 2022 Jun 

15;290:115543. 

[6] Agustsson E, Timofte R. Ntire 2017 challenge on single image super-resolution: 

Dataset and study. InProceedings of the IEEE conference on computer vision and 

pattern recognition workshops 2017 (pp. 126-135). 

[7] Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, Qiao Y, Change Loy C. Esrgan: 

Enhanced super-resolution generative adversarial networks. InProceedings of the 

European conference on computer vision (ECCV) workshops 2018 (pp. 0-0). 

[8] Woo S, Park J, Lee JY, Kweon IS. Cbam: Convolutional block attention module. 

InProceedings of the European conference on computer vision (ECCV) 2018 (pp. 3-

19). 

[9] Wang X, Xie L, Dong C, Shan Y. Real-esrgan: Training real-world blind super-

resolution with pure synthetic data. InProceedings of the IEEE/CVF International 

Conference on Computer Vision 2021 (pp. 1905-1914). 

[10] Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional 

adversarial networks. InProceedings of the IEEE conference on computer vision and 

pattern recognition 2017 (pp. 1125-1134). 

[11] Cheng L, Kersemans M. Dual-IRT-GAN: A defect-aware deep adversarial network 

to perform super-resolution tasks in infrared thermographic inspection[J]. 

Composites Part B: Engineering, 2022, 247: 110309. 

[12] Poobathy D, Chezian RM. Edge detection operators: Peak signal to noise ratio based 

comparison. IJ Image, Graphics and Signal Processing. 2014 Sep 1;10:55-61. 


