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Chapter 3. Some examples of Hamilto-
nian systems

In this chapter, we give some physical examples of systems that can be described
with contact Hamiltonian mechanics and contact Lagrangian mechanics. We con-
sider three classes of systems on (𝑀 = ℝ2𝑛+1, 𝜂 = 𝑑𝑠 − 𝑝𝑖𝑑𝑞𝑖):

• Projectable systems: this class includes systems whose ”Newtonian” differ-
ential equation is of the form

̈𝑥 = 𝑓(𝑥, ̇𝑥),

and the configuration dynamics is independent of the extra variable 𝑠.

• Non-Projectable systems: systems whose dynamical equations are explicitly
dependent on 𝑠. Even if it seems physically counterintuitive, it turns out
that these systems caught attention from a cosmological perspective [41, 40,
46].

• Liénard Systems: non-linear oscillations exhibit some peculiar behaviour,
such as limit-cycles or chaos. It is possible to describe them as contact
Hamiltonian systems [11]. For instance, Liénard equation can be lifted to a
contact Hamiltonian system in (𝑀, 𝜂 = 𝑑𝑠 − 𝑝𝑑𝑞).

• In the last section, we give the explicit form of the Hamiltonian systems on
different contact manifolds: the 3-torus 𝕋3 and the 3-sphere 𝕊3.

For each of these classes, some benchmark systems are then introduced, these
examples will be analysed with numerical and analytical techniques in the following
chapters.

3.1. Projectable systems: Lagrangian description

Let us consider the second order ODE on ℝ:

̈𝑥 + 𝑓(𝑥) ̇𝑥2 + 𝑔(𝑡) ̇𝑥 + ℎ(𝑥) = 0, (3.1)
Clearly, this can be rewritten as a first-order system involving only 𝑥 and ̇𝑥, with-
out the need of additional degrees of freedom. In the following proposition, how-
ever, we show that introducing an external variable 𝑧 equation (3.1) has a natural
description in the contact manifold (𝑀, 𝜂 = 𝑑𝑠 − 𝜕ℒ

𝜕�̇� 𝑑𝑥).
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32 CHAPTER 3. SOME EXAMPLES OF HAMILTONIAN SYSTEMS

Proposition 3.1.1. The differential equation

̈𝑥 + 𝑓(𝑥) ̇𝑥2 + 𝑔(𝑡) ̇𝑥 + ℎ(𝑥) = 0, (3.2)

can be obtained by the contact Lagrangian on ℝ × ℝ3

ℒ(𝑡, 𝑥, ̇𝑥, 𝑠) = 1
2

̇𝑥2 − (2𝑓(𝑥) ̇𝑥 + 𝑔(𝑡))𝑠 − 𝑈(𝑥); (3.3)

where 𝑈(𝑥) solves the differential equation

𝑑𝑈(𝑥)
𝑑𝑥

+ 2𝑓(𝑥)𝑈(𝑥) = ℎ(𝑥). (3.4)

Remark 13. If we consider two solutions of the differential equation (3.4), with
different initial conditions in 𝑥0, we recover the same equation of motion (3.2) but
two different Lagrangians. This difference is inherited only into the dynamics of
the variable 𝑠, while on (𝑥, ̇𝑥) it is irrelevant.

Proof. Equation (3.2), immediately follows from Euler-Lagrange equations (The-
orem 2.4.1) and a direct computation:

𝜕ℒ
𝜕 ̇𝑥

= ̇𝑥 − 2𝑓(𝑥)𝑧,

𝑑
𝑑𝑡

𝜕ℒ
𝜕 ̇𝑥

= ̈𝑥 − 2𝑑𝑓(𝑥)
𝑑𝑥

̇𝑥 − 2𝑓(𝑥)ℒ

= ̈𝑥 − 2𝑑𝑓(𝑥)
𝑑𝑥

̇𝑥𝑧 − 2𝑓(𝑥) (1
2

̇𝑥2 − (2𝑓(𝑥) ̇𝑥 + 𝑔(𝑡))𝑧 − 𝑈(𝑥)) ,

𝜕ℒ
𝜕𝑥

= −2𝑑𝑓(𝑥)
𝑑𝑥

̇𝑥𝑧 − 𝑑𝑈(𝑥)
𝑑𝑥

,

𝜕ℒ
𝜕𝑧

𝜕ℒ
𝜕 ̇𝑥

= − ( ̇𝑥 − 2𝑓(𝑥)𝑧) (2𝑓(𝑥) + 𝑔(𝑡)) .

In fact, the same construction works also for higher-dimensional version of
(3.1). Let us consider:

̈𝑥𝜇 − 𝑓𝜇(𝑥) ̇𝑥𝜈 ̇𝑥𝜈 + 2𝑓𝜈(𝑥) ̇𝑥𝜈 ̇𝑥𝜇 + 𝑔(𝑡) ̇𝑥𝜇 + ℎ𝜇(𝑥) = 0. (3.5)

where 𝑥 ∶ ℝ → ℝ𝑛, 𝑓 ∶ ℝ𝑛 → ℝ𝑛, 𝑔 ∶ ℝ → ℝ, and ℎ ∶ ℝ𝑛 → ℝ𝑛. It is easy to see that
for 𝑛 = 1 equation (3.5) reduces to equation (3.1). Also in this case the motion is
projectable in the following sense.

Proposition 3.1.2. The differential equation (3.5) can be recovered by a contact
Lagrangian system given by the Lagrangian function defined on ℝ × ℝ2𝑛 × ℝ:

ℒ(𝑡, 𝑥, ̇𝑥, 𝑠) = 1
2

̇𝑥𝜈 ̇𝑥𝜈 − (2𝑓𝜈(𝑥) ̇𝑥𝜈 + 𝑔(𝑡)) 𝑠 − 𝑈(𝑥); (3.6)

where ℎ𝜈(𝑥) = 𝜕𝑈(𝑥)
𝜕𝑥𝜈 + 𝑓𝜈𝑈(𝑥), and 𝜕𝑓𝜈

𝜕𝑥𝜇 = 𝜕𝑓𝜇

𝜕𝑥𝜈 .
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Proof. To recover equation (3.5), we directly compute the Euler-Lagrange equa-
tion (2.15):

𝜕ℒ
𝜕 ̇𝑥𝜇 = ̇𝑥𝜇 − 2𝑓𝜇(𝑥)𝑠,

𝑑
𝑑𝑡

𝜕ℒ
𝜕𝑥𝜇 = ̈𝑥𝜇 − 2𝜕𝑓𝜇(𝑥)

𝜕𝑥𝜉 ̇𝑥𝜉𝑠 − 2𝑓𝜇ℒ =

= ̈𝑥𝜇 − 2𝜕𝑓𝜇(𝑥)
𝜕𝑥𝜉 ̇𝑥𝜉𝑠 − 2𝑓𝜇 (1

2
̇𝑥𝜈 ̇𝑥𝜈 − (2𝑓𝜈(𝑥) ̇𝑥𝜈 + 𝑔(𝑡)) 𝑠 − 𝑈(𝑥)) ,

𝜕ℒ
𝜕𝑥𝜇 = −𝜕𝑈(𝑥)

𝜕𝑥𝜇 − 2𝜕𝑓𝜈(𝑥)
𝜕𝑥𝜇 ̇𝑥𝜈𝑠,

𝜕ℒ
𝜕𝑠

= −2𝑓𝜇(𝑥) ̇𝑥𝜇 − 𝑔(𝑡),

𝜕ℒ
𝜕 ̇𝑥𝜇

𝜕ℒ
𝜕𝑠

= − (+2𝑓𝜉(𝑥) ̇𝑥𝜉 + 𝑔(𝑡)) ( ̇𝑥𝜇 − 2𝑓𝜇(𝑥)𝑠) =

= − (2𝑓𝜉(𝑥) ̇𝑥𝜉 ̇𝑥𝜇 + 𝑔(𝑡) ̇𝑥𝜇 − 4𝑓𝜉(𝑥)𝑓𝜇(𝑥) ̇𝑥𝜉𝑠 − 2𝑓𝜇(𝑥)𝑠𝑔(𝑡)) .

Combining the previous terms in order to recover the contact Euler Lagrange
equation we find out that the only term that is dependent on the variable 𝑠 is

2 ̇𝑥𝜈 (𝜕𝑓𝜈(𝑥)
𝜕𝑥𝜇 − 𝜕𝑓𝜇(𝑥)

𝜕𝑥𝜈 ) ;

that is zero if the second condition in the hypothesis is fulfilled.

3.2. Projectable systems: Hamiltonian description

We want to describe the differential equation (3.1) from a contact Hamiltonian
perspective. We compute the Legendre transform of the Lagrangian (3.3) to obtain
the Hamiltonian description on the lift of the contact manifold (ℝ3, 𝜂 = 𝑑𝑧 − 𝑝𝑑𝑥).

Proposition 3.2.1. The Hamiltonian function on (ℝ × ℝ3), 𝜂 = 𝑑𝑧 − 𝑝𝑑𝑥 related
to the differential equation (3.1), is

𝐻 = 1
2

(𝑝 + 2𝑓(𝑥) 𝑧)2 + 𝑔(𝑡)𝑧 + 𝑈(𝑥). (3.7)

Proof. The momentum 𝑝 = 𝑝(𝑥, ̇𝑥, 𝑧) is defined by:

𝑝 = 𝜕ℒ
𝜕 ̇𝑥

= ̇𝑥 − 2𝑓(𝑥)𝑧;

therefore ̇𝑥(𝑥, 𝑝, 𝑧) = 𝑝 + 2𝑓(𝑥)𝑧, and 𝑝 ̇𝑞 = 𝑝2 + 2𝑓(𝑥)𝑝𝑧. The Legendre transform
is

𝐻(𝑡, 𝑥, 𝑝, 𝑧) = 𝑝 ̇𝑥 − ℒ(𝑡, 𝑥, ̇𝑥, 𝑧)

= 𝑝2 + 2𝑓(𝑥)𝑝𝑧 − (𝑝 + 2𝑓(𝑥)𝑧)2

2
+ (2𝑓(𝑥) (𝑝 + 2𝑓(𝑥)𝑧) + 𝑔(𝑡)) 𝑧 + 𝑈(𝑥)

= 1
2

(𝑝 + 2𝑧𝑓(𝑥))2 + 𝑧𝑔(𝑡) + 𝑈(𝑥),
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for which we can compute the contact Hamilton equations:

⎧{
⎨{⎩

̇𝑥 = 𝑝 + 2𝑧𝑓(𝑥)
̇𝑝 = −2𝑧𝑓 ′(𝑥)(2𝑧𝑓(𝑥) + 𝑝) − 𝑈 ′(𝑥)
̇𝑧 = + 𝑝2

2 − 𝑧 (2𝑧𝑓(𝑥)2 + 𝑔(𝑡)) − 𝑈(𝑥)

where ℛ(ℋ) = 2𝑓(𝑥)(2𝑧𝑓(𝑥) + 𝑝) + 𝑔(𝑡). We can recover the equation of motion
(3.1) by computing the time derivative ̈𝑥.

It is interesting to see that even if the Hamiltonian (3.7) corresponds to a
Lagrangian function linear in 𝑧 and with the dynamics in (𝑥, ̇𝑥) independent of 𝑧,
its dependence on 𝑧 far from obvious. The Hamiltonian is quadratic in 𝑧 and the
dynamics in the subspace (𝑥, 𝑝) is not independent of 𝑧.

In analogy with the previous section, we can carry another construction for
ODEs in ℝ2𝑛 × ℝ. The Legendre transform of the Lagrangian (3.6) leads to the
corresponding Hamiltonian system. The momentum associated to the velocity ̇𝑥𝜇

is
𝑝𝜇 = 𝜕ℒ

𝜕 ̇𝑥𝜇 = ̇𝑥𝜇 − 2𝑓𝜇(𝑥)𝑠,

and to the Hamiltonian function is

ℋ = 𝜕ℒ
𝜕 ̇𝑥𝜇 ̇𝑥𝜇 − ℒ =

= (𝑝𝜇 + 2𝑓𝜇(𝑥)𝑠)2

2
+ 𝑔(𝑡)𝑠 + 𝑈(𝑥).

The corresponding equations of motion are

⎧
{
{
⎨
{
{
⎩

̇𝑞𝜇 = 𝑝𝜇 + 2𝑓𝜇(𝑥)𝑠

̇𝑝𝜇 = −𝜕𝑈(𝑥)
𝜕𝑥𝜈 − (𝑝𝜇 + 2𝑓𝜇(𝑥)𝑠) (2𝜕𝑓𝜇

𝜕𝑥𝜈 𝑠 + 2𝑝𝜇𝑓𝜇(𝑥))

̇𝑠 = +𝑝𝜇𝑝𝜇

2
− 𝑧 (2𝑧𝑓(𝑥)2 + 𝑔(𝑡)) − 𝑈(𝑥)

.

As observed in the previous example, also in this case, we find a contact Hamil-
tonian function that is quadratic in the action term but whose dynamics can be
projected to the tangent bundle of the configuration space.

3.3. A dissipative dynamical system

A particular family of projectable systems are the dissipative dynamical systems.
These are described by an equation similar to (3.5) where 𝑓(𝑥) (or 𝑓𝜈(𝑥) if we are
in 𝑛-dimensions) is identically zero, and the potential can be time dependent. The
dynamics is then described by the ODE:

̈𝑥𝜈 + 𝑔(𝑡) ̇𝑥𝜈 + ℎ𝜈(𝑥, 𝑡) = 0; (3.8)

which corresponds to Newton’s equation for a system with time-dependent forcing
and Rayleigh dissipation.
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Proposition 3.3.1. Equation (3.8) corresponds to the flow of the contact Hamil-
tonian

ℋ(𝑡, 𝑞, 𝑝𝑎, 𝑠) =
𝑛

∑
𝑎=1

𝑝2
𝑎
2

+ 𝑉 (𝑞, 𝑡) + 𝑓(𝑡) 𝑠 . (3.9)

Proof. To prove the statement, observe that Hamilton’s equations (2.19) in this
case read

̇𝑞𝑎 = 𝑝𝑎

̇𝑝𝑎 = −𝜕𝑉 (𝑞, 𝑡)
𝜕𝑞𝑎 − 𝑓(𝑡)𝑝𝑎

̇𝑠 =
𝑛

∑
𝑎=1

𝑝2
𝑎
2

− 𝑉 (𝑞, 𝑡) − 𝑓(𝑡) 𝑠 .

The system (3.10)–(3.11), gives exactly (3.8), while equation (3.12) decouples from
the rest.

Using contact geometry, we have immediately obtained a “Hamiltonisation” of
all the dynamical systems of the form (3.8). This fact should not be underesti-
mated: a Hamiltonian structure for all such systems allows us to benefit from the
theory of Hamiltonian systems (extended to the contact case) and its powerful
analytical and numerical tools. For instance, one can apply weak–KAM theorems
and variational methods, as done e.g. in [47, 31, 48, 49].

It is important to also compare the simplicity and generality of the formulation
provided here against previous attempts in the literature. For instance, in [50] an
algorithm for the symplectic Hamiltonisation of systems of the type (3.8) has been
provided. However, the construction suggested there is based on a non–trivial
reparametrisation that requires solving an additional differential equation in order
to obtain the new time variable (which in many cases cannot be done exactly,
cf. [50]). We stress that in our analysis we do not encounter any such complication.

3.3.1. General Rayleigh dissipation
In autonomous symplectic Lagrangian and Hamiltonian mechanics, it is well known
that the dissipation functions cannot be included in the Lagrangian nor in the
Hamiltonian by maintaining the time-independence [8]. In practice, the generalized
d’Alambert principle allows us to consider a modification of the Euler-Lagrange
equation [8]

𝑑
𝑑𝑡

𝜕ℒ
𝜕 ̇𝑞𝜇 − 𝜕ℒ

𝜕 ̇𝑞𝜇 = 𝑄𝜇,

where the right-hand side represents the forces that do not arise from a potential,
and thus cannot be written as gradients of a potential function. These usually
represent friction forces. The Rayleigh dissipation is one example. It is described
by damping terms

𝑄𝜇 = − 𝜕
𝜕 ̇𝑞𝜇 (𝑘𝑖 ̇𝑞𝜇 2

𝑖
2

) .
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For a free particle subject to this kind of dissipation, we obtain Newton’s equations

𝑚 ̈𝑞𝜇 = −𝑘𝑖 ̇𝑞𝜇
𝑖 .

The same equations can be recovered by the contact technique, as we have shown
in the previous section 3.3. In the next section we present some mechanical systems
with Rayleigh dissipation which will come back multiple times in this manuscript.

3.3.2. Linear Damped Particle
The first example is the linear-damped particle: a free particle of mass 𝑚 under a
linear dissipation dependent on the velocity, characterized by a parameter 𝛾. The
equation of motion then is:

𝑚 ̈𝑥 + 𝛾 ̇𝑥 = 0,
the solution and the characterization is well known from every bachelor physics
book. The contact Hamiltonian is provided by exploiting the results of section
3.3.1 or section 3.3, and it reads

ℋ𝐿𝐷𝑂 = 𝑝2

2𝑚
+ 𝛾𝑠;

The corresponding equations of motion are:

⎧
{{
⎨
{{
⎩

̇𝑞 = 𝑝
𝑚

̇𝑝 = −𝛾𝑝

̇𝑠 = 𝑝2

2𝑚
− 𝛾𝑠

.

In this example we can apply the results of section 2.2 and observe that in this
case the function in involution is 𝑝, and thus the ratio between the momenta and
the Hamiltonian is a conserved quantity.

3.3.3. Damped Harmonic Oscillator
A classical example in physics is the harmonic oscillator, the prototypical complete
integrable system [16, 51, 8, 17]. The inclusion of Rayleigh dissipation leads to the
damped harmonic oscillator [52]. The ”Newtonian” equation is:

𝑚 ̈𝑥 + 𝛾 ̇𝑥 + 𝑘𝑥 = 0.

The corresponding contact Hamiltonian is

ℋ𝐿𝐷𝑂 = 𝑝2

2𝑚
+ 𝑘𝑞2

2
+ 𝛾𝑠;

with Hamiltonian equations:

⎧{{
⎨{{⎩

̇𝑞 = 𝑝/𝑚
̇𝑝 = −𝑘𝑞 − 𝛾𝑝

̇𝑠 = 𝑝2

2𝑚
− 𝑘𝑞2

2
− 𝛾𝑠

.
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The exact contact transformation

⎛⎜
⎝

𝑞
𝑝
𝑠
⎞⎟
⎠

𝜙
−→ ⎛⎜

⎝

𝑄
𝑃
𝑆

⎞⎟
⎠

= ⎛⎜
⎝

𝑞
√

𝜔𝑚
𝑝√
𝜔𝑚
𝑠

⎞⎟
⎠

,

where 𝜔 = √ 𝑘
𝑚 , maps the contact Hamiltonian into

𝐻 = 𝜔(𝑄2 + 𝑃 2) + 𝛾𝑆.

We can verify that it consist in an exact contact transformation by computing the
pullback

𝜙∗𝜂′ = 𝜙∗(𝑑𝑆 − 𝑃𝑑𝑄) = 𝜂 = 𝑑𝑠 − 𝑝𝑑𝑞.

The new Hamiltonian generates the push-forward of the old Hamiltonian vector
field. One can also consider the mapping:

⎛⎜
⎝

𝑄
𝑃
𝑆

⎞⎟
⎠

→ ⎛⎜⎜
⎝

�̃�
̃𝑃
̃𝑆

⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

𝑄√
𝜔

𝑃√
𝜔

𝑆
𝜔

⎞⎟⎟
⎠

from which one obtain a new Hamiltonian:

ℋ =
̃𝑃 2

2
+ �̃�2

2
+ 𝛾

𝜔
̃𝑆. (3.13)

However, this is not an exact contactomorphism since the computation of the
pull-back gives rise to a scale factor 𝜔:

𝜙∗𝜂′ = 𝜙∗(𝑑 ̃𝑆 − ̃𝑃𝑑�̃�) = 𝜔𝜂 = 𝜔 (𝑑𝑆 − 𝑃𝑑𝑄) .

In this case we preserve both the Reeb and the contact distributions, but the
new Reeb vector field is the push-forward is scaled by the scale factor. This last
Hamiltonian depends just on a parameter Γ ∶= 𝛾

𝜔 .

Remark 14. The Newtonian equation of the damped harmonic oscillator is re-
lated to circuit theory. A RLC(Resistor - Inductor - Capacitor) circuit without a
generator is described by

̈𝐼 + 2𝛼 ̇𝐼 + 𝜔2
0𝐼 = 0,

where the constants 𝛼 and 𝜔 depend on the shape of the circuit and 𝐼 is the current.

3.3.4. The Lane–Emden equation
The Lane–Emden equation

𝑦″(𝑥) + 2
𝑥

𝑦′(𝑥) + 𝑦𝑛(𝑥) = 0, 𝑦(0) = 1, 𝑦′(0) = 0 (3.14)

is a family of nonlinear singular equations widely used in physics to model isother-
mal gas spheres, such as e.g. stars [53]. In equation (3.14), 𝑦 is a dimensionless
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variable related to the density of the star, and 𝑥 is a dimensionless distance from
the center, and the density is normalised so that the central density is 1. Finally,
the integer 𝑛, called the barotropic index, depends on the nature of the gas.

Clearly, for 𝑛 ≠ 0, 1, the Lane–Emden equation is nonlinear. Besides, due
to the 1/𝑥 term, it is singular in the initial condition. Therefore, the study of
solutions of equation (3.14) is at the same time physically relevant and mathe-
matically challenging. For this reason a large number of numerical schemes have
been proposed in the literature, based on different approaches such as e.g. series
expansions, spectral methods, perturbation techniques, neural network methods,
and so on (see [54, 55] for comprehensive lists of the techniques used so far).

For us the relevance of (3.14) lies in the observation that such equation belongs
to the class (3.9) and therefore it has a natural description in terms of contact
geometry. The contact Hamiltonian for the Lane–Emden equation is

ℋ(𝑥, 𝑦, 𝑝, 𝑠) = 𝑝2

2
+ 𝑦𝑛+1

𝑛 + 1
+ 2

𝑥
𝑠 , (3.15)

which is of the type (3.9).

3.3.5. Perturbed Kepler Problem
After planar reduction, the form of a perturbed Kepler problem is [56]

̈𝑥 + 𝑥
|𝑥|3

= 𝐹(𝑥, ̇𝑥, 𝑡; 𝛼),

where 𝑥 ∈ ℝ2. Here, the perturbation 𝐹(𝑥, ̇𝑥, 𝑡; 𝛼) is usually assumed to be either
of the form 𝐹 = 𝛼𝜕𝑉 (𝑥, 𝑡)/𝜕𝑥, where 𝑉 (𝑥, 𝑡) is a periodic function in 𝑡, or 𝐹 may
include different types of dissipation, the simplest one being a linear drag [57, 58,
59, 60]. In the case of a linear drag, the corresponding equation

̈𝑥 + 𝛼 ̇𝑥 + 𝑥
|𝑥|3

= 0

is obviously of the form (3.9), with

ℋ(𝑥, 𝑝, 𝑠) = |𝑝|2

2
− 1

|𝑥|
+ 𝛼 𝑠 .

We refer to [59] for a detailed analysis of the dynamics in this case. Here, to show
the usefulness of our integrators, we study the slightly more general case of a linear
drag that also depends explicitly on time.

The equation for the modified Kepler problem that we consider is

̈𝑥 + 𝛼 sin(Ω𝑡) ̇𝑥 + 𝛾 𝑥
|𝑥|3

= 0, 𝛼, Ω, 𝛾 ∈ ℝ. (3.16)

Clearly equation (3.16) is of the type (3.9), the corresponding contact Hamiltonian
being

ℋ(𝑥, 𝑝, 𝑠, 𝑡) = |𝑝|2

2
− 𝛾

|𝑥|
+ 𝛼 sin(Ω𝑡) 𝑠 . (3.17)



3.3. A DISSIPATIVE DYNAMICAL SYSTEM 39

3.3.6. The Spin–Orbit model
In this section, we consider the so–called spin–orbit model in the version presented
in [50], trying to use the same notation as in the referenced paper as much as
possible.

This model describes the motion of a small body, e.g. a satellite, that moves
around a larger body on a Keplerian orbit and rotates around its shorter principal
axis with zero obliquity (see also [61]). The corresponding Newton equation is of
the form (3.8) and is given by a second–order time–dependent differential equation
in the angle that describes the relative orientation of the longer principal axis with
respect to a preassigned direction. The time variations in the moment of inertia of
the satellite introduce an angular velocity–dependent term that accounts for the
body’s rotation in addition to the external torques (in Figure 3.1 it is depicted the
situation). More precisely, the equation

Figure 3.1: The figure depicts the spin orbit model: the green dotted line is
the Kepler trajectory, the blue circle the big central body while the ellipsoid the
extended body that orbits around the central one.

𝑑Γ
𝑑𝑡

= 𝑑𝐶
𝑑𝑡

̇𝜃 + 𝐶 ̈𝜃 = 𝑁𝑧(𝜃, 𝑡) (3.18)

describes the rotation of the body around its principal axis, with moment of inertia
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𝐶. In the equation, Γ represents the angular momentum of the body, ̇𝜃 the angular
velocity and 𝑁𝑧 the external torques.

For 𝐶 ≠ 0, equation (3.18) can be rewritten as

̈𝜃 + 𝑑𝐶
𝑑𝑡

̇𝜃
𝐶

− 𝑁𝑧(𝜃, 𝑡)
𝐶

= 0 ,

which is clearly of the type (3.9), with contact Hamiltonian

ℋ(𝑡, 𝜃, 𝑝, 𝑠) = 𝑝2

2
+ 𝑁𝑧(𝜃, 𝑡)

𝐶
+ 𝑑𝐶

𝑑𝑡
1
𝐶

𝑠 . (3.19)

In the examples that follow, as in [50], we will consider a moment of inertia
that varies periodically around an average value 𝐶 with frequency Ω, namely

𝐶(𝑡) = 𝐶 + 𝜆 cos(Ω𝑡),

and we will focus on two particular forms of the torque:

• The gravitational torque for a triaxial rigid body on a Keplerian elliptical
orbit around a point perturber:

𝑁 triaxial
𝑧 (𝜃, 𝑡) = −3𝜈(𝐵 − 𝐴)

2
𝛼
𝑟

3
sin(2𝜃 − 2𝑓)

= −3𝜈(𝐵 − 𝐴)
2

∑
𝑚∈ℤ{0}

𝑊 (𝑚
2

, 𝑒) sin(2𝜃 − 𝑚𝑡)

where 𝐴 < 𝐵 < 𝐶 are the moments of inertia in the body frame, 𝛼 the semi–
major axis, 𝜈 the orbital frequency, 𝑟 the distance between the bodies, 𝑓 the
true anomaly and 𝑊(𝑚/2, 𝑒) are the coefficients of the Fourier expansion
w.r.t. the periodic functions 𝑟 and 𝑡. We refer to [61] for a clear explanation
of the terminology. Note in particular that the coefficients 𝑊(𝑚/2, 𝑒), called
Cayley coefficients, are power series of the eccentricity: some of their values
can be found in [61, Table 2.1] or [62, pp. 271–274]. In the examples we
will truncate the series dropping all the powers of the eccentricity that give
a contribution smaller than the error.

• The torque from a third body perturbation:

𝑁 tidal
𝑧 (𝜃, 𝑡) = 𝜇 + 𝑎 ̇𝜃

where (𝜇, 𝑎) ∈ ℝ+ × ℝ−.

3.4. Non-projectable systems

We have seen at the beginning of this chapter how we can obtain quadratic Hamil-
tonians that are projectable on the tangent bundle of the configuration space. This
is not always true; but even if the dynamics is not projectable, and we lose in a
first instance the physical meaning of the system, the simplicity of the model aids
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us to figure out some global properties of the systems. Recently they obtained
some physical relevance when they appeared in some cosmological models [41, 40]
whose Lagrangians are defined on (ℝ2𝑛+1, 𝜂 = 𝑑𝑠 − 𝑝𝑑𝑞) on the form

ℒ(𝑞𝑖, ̇𝑞𝑖, 𝑠) = ℒ(𝑞𝑖, ̇𝑞𝑖) + 𝑠2.

The simplest example to consider is the traditional free-particle Lagrangian func-
tion ℒ = ∑𝑖 ̇𝑞2

𝑖 /2 or the harmonic oscillator one (ℒ = ∑𝑖 ̇𝑞2
𝑖 /2 + 𝑞2

𝑖 /2)[12, 32].

3.4.1. Free particle quadratic action dependency
An interesting toy example is the free particle, where the Hamiltonian presents a
quadratic term in 𝑠. The Hamiltonian system is described on (𝑀, 𝜂 = 𝑑𝑠 − 𝑝𝑑𝑞)
by the function

ℋ𝑄𝐹𝑃 = 𝑝2

2𝑚
+ 𝛾𝑠2

2
;

whose evolution equations are

⎧{{
⎨{{⎩

̇𝑞 = 𝑝
̇𝑝 = −𝑝𝑠

̇𝑠 = 𝑝2

2𝑚
− 𝛾𝑠2

2

.

The Hamiltonian is cyclic in the 𝑞 variable, so in this case we recover the result
presented in section 2.2: the momentum is in involution, and the ratio

𝑘 ∶= ℋ
𝑝

,

is a conserved quantity.

3.4.2. Harmonic Oscillator with quadratic action depen-
dency

Motivated by the analysis in [63] and [41, 46], in this section we present contact
Hamiltonians of the form

ℋ(𝑝, 𝑞, 𝑠) =
𝑛

∑
𝑎=1

𝑝2
𝑎
2

+ 𝛾𝑠2

2
+ 𝑉 (𝑞).

In particular, we consider the 1-dimensional quadratic contact harmonic oscillator

ℋ𝑄𝐻𝑂 = 𝑝2

2𝑚
+ 𝑘𝑞2

2
+ 𝛾𝑠2

2
− 1 (3.20)

defined on (𝑀 = ℝ3, 𝜂 = 𝑑𝑠 − 𝑝𝑑𝑞). As shown by equation (2.3), the value
of the contact Hamiltonian is not preserved unless its initial value is equal to
zero [7]. This generally defines an (hyper)surface in the contact manifold that
separates two invariant basins for the evolution. In the case at hand, the surface
ℋ = 0 is a sphere with radius

√
2. Furthermore, the quadratic contact oscillator

presents two equilibrium points of different nature on ℋ = 0: the stable north
pole 𝑁 = (0, 0, √2𝐶𝛾−1) and the unstable south pole 𝑆 = (0, 0, −√2𝐶𝛾−1).
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3.5. A contact Hamiltonian formulation of Liénard Sys-
tems

Liénard systems are a family of planar coupled differential equations on ℝ2 of the
form [64]

{
̇𝑥 = 𝑦 − 𝐹(𝑥)
̇𝑦 = −𝑔(𝑥)

, (3.21)

where 𝐹(𝑥) = ∫ 𝑓(𝑥) 𝑑𝑥 for an even function 𝑓(𝑥) and 𝑔(𝑥) is an odd function.
Alternatively, (3.21) is equivalent to the second order scalar equation

̈𝑥 = −𝑓(𝑥) ̇𝑥 − 𝑔(𝑥).

A third equivalent version of (3.21) is given by

{
̇𝑥 = 𝑦,
̇𝑦 = −𝑔(𝑥) − 𝑓(𝑥)𝑦 .

(3.22)

Example 3.5.1 (The van der Pol oscillator). Perhaps the most famous example
of the family of Liénard systems is the van der Pol oscillator, which can be written
using dimensionless variables as follows

̈𝑥 = 𝜖(1 − 𝑥2) ̇𝑥 − 𝑥 , (3.23)

and can be equivalently rewritten in the form (3.22) as

{ ̇𝑥 = 𝑦,
̇𝑦 = −𝑥 + 𝜖(1 − 𝑥2)𝑦 ,

from which we recognise that in this case 𝑓(𝑥) = −𝜖(1 − 𝑥2) and 𝑔(𝑥) = 𝑥.

A crucial property of Liénard systems is encoded in the following theorem,
guaranteeing the existence and uniqueness of a stable limit cycle for a large class
of systems [65].

Theorem 3.5.1 (Liénard’s Theorem). Under the conditions

• 𝐹, 𝑔 ∈ 𝐶1(ℝ),

• 𝑥𝑔(𝑥) > 0 if 𝑥 ≠ 0,

• 𝐹(0) = 0 and 𝑓(0) < 0,

• 𝐹(𝑥) has exactly one positive zero at 𝑥 = 𝑎, is monotone increasing for 𝑥 > 𝑎
and lim

𝑥→+∞
𝐹(𝑥) = +∞;

the dynamical system (3.21) presents a unique, stable limit cycle.
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In particular, the theorem above implies that the van der Pol equation (3.23)
with 𝜖 > 0 has a unique, stable limit cycle. For additional information on the
classical approach to the analysis of Liénard systems we refer to [65].

The Hamiltonian formulation can be recovered by a traditional approach [66].
It is well known that any dynamical system on a 𝑛-dimensional manifold 𝑄 of
the form ̇𝑥𝑖 = 𝑋𝑖(𝑥) can be extended to a Hamiltonian system defined on the
2𝑛-dimensional phase–space 𝑇 ∗𝑄. This can be achieved with the introduction of
fictitious conjugate momenta ̃𝑝𝑖 in order to define the Hamiltonian

𝐻(𝑥, ̃𝑝) = ̃𝑝𝑖𝑋𝑖(𝑥) .

A direct computation shows that when we consider only the dynamics on the orig-
inal 𝑥-variables, then we recover the original 𝑛-dimensional system. For instance,
in the case of Liénard systems (3.22), the Hamiltonian reads

𝐻(𝑥, 𝑦, ̃𝑝1, ̃𝑝2) = ̃𝑝1𝑦 − ̃𝑝2(𝑔(𝑥) + 𝑓(𝑥)𝑦), ( ̃𝑝1, ̃𝑝2) = ( ̃𝑝𝑥, ̃𝑝𝑦) . (3.24)

In [66], such approach has been used to derive a Hamiltonisation of Liénard sys-
tems that proved to be useful for perturbation theory. Moreover, in [67] a similar
extension, but with a suitably defined new Hamiltonian that non-trivially cou-
ples the variables, has been used in order to develop geometric integrators in the
extended phase–space and then used e.g. in the case of the van der Pol oscillator.

In principle, one could use the Hamiltonian (3.24) and perform a splitting in
order to obtain new geometric integrators that are symplectic in the extended
phase–space, we will be back on this in Chapter 5. However, (3.24) is linear in the
momenta and, as such, it is naturally associated with a contact Hamiltonian on
the (2𝑛 − 1)-dimensional projectivised cotangent bundle 𝑃𝑇 ∗𝑄, endowed with the
contact structure inherited from the canonical symplectic structure of 𝑇 ∗𝑄 [17,
19]. The procedure to perform such reduction is quite simple in this case and it is
reviewed e.g. in the recent work [68]. In order to avoid clutter of notation, from
now on we focus on the case 𝑄 = ℝ2, which is the relevant case for our study: we
start with (3.24) and consider a connected component of the open set in which
̃𝑝2 ≠ 0. On such set, we can define the coordinates (𝑞 = 𝑥, 𝑠 = 𝑦, 𝑝 = − �̃�1

�̃�2
),

which serve as Darboux coordinates on 𝑃𝑇 ∗ℝ2. Finally, we define the contact
Hamiltonian

ℋ(𝑞, 𝑝, 𝑠) = − 1
̃𝑝2

𝐻(𝑥, 𝑦, ̃𝑝1, ̃𝑝2) = 𝑝𝑋1(𝑞, 𝑠) − 𝑋2(𝑞, 𝑠) . (3.25)

A direct calculation then shows that the restriction of the resulting contact Hamil-
tonian system to the (𝑞, 𝑠) plane recovers the original system.

By means of the above prescription, we arrive at the following result for Liénard
systems.

Theorem 3.5.2 (Hamiltonisation of Liénard systems). Liénard systems are con-
tact Hamiltonian systems on (ℝ3, 𝜂), with a Hamiltonian of the form

ℋ = 𝑝𝑠 + 𝑓(𝑞)𝑠 + 𝑔(𝑞). (3.26)
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The associated contact Hamiltonian system is

̇𝑞 = 𝑠 (3.27)
̇𝑠 = −𝑓(𝑞)𝑠 − 𝑔(𝑞),
̇𝑝 = −𝑝2 − 𝑓(𝑞)𝑝 − 𝑓 ′(𝑞)𝑠 − 𝑔′(𝑞) . (3.28)

From the first two equations we recover the original Liénard system in the (𝑞, 𝑠)-
space, while the third equation is decoupled.
Example 3.5.2 (The van der Pol oscillator revisited). As we have already seen
in Section 3.5 the van der Pol equation is a particular case of a Liénard system,
which is obtained by choosing 𝑓(𝑥) and 𝑔(𝑥) as

𝑓(𝑥) = −𝜖(1 − 𝑥2), 𝑔(𝑥) = 𝑥 .

Consequently the contact Hamiltonian in this case reads

ℋ = 𝑝𝑠 − 𝜖(1 − 𝑞2)𝑠 + 𝑞 , (3.29)

and the corresponding contact Hamiltonian systems is

⎧{
⎨{⎩

̇𝑞 = 𝑠
̇𝑠 = 𝜖(1 − 𝑞2)𝑠 − 𝑞
̇𝑝 = −1 − 𝑝2 + 𝜖 [(1 − 𝑞2)𝑝 − 2𝑞𝑠] .

(3.30)

As expected, from the first two equations we recover the original van der Pol
equation (3.23).
Remark 15. For 𝑠 ≠ 0 and setting the appropriate initial condition 𝑝0 = −𝑓(𝑞0)−
𝑔(𝑞0)/𝑠0, 𝑝(𝑡) derived from (3.28) turns out to be the slope of the tangent 𝑑𝑠

𝑑𝑞 to
the orbit of the system at each point (𝑞(𝑡), 𝑠(𝑡)) of its evolution. This stems from
the fact that (3.27)-(3.28) are the characteristic equations of the Hamilton-Jacobi
equation for (3.26). Details of this derivation are in preparation by [69].
Remark 16. The reduction procedure that led us to (3.25) is not unique. Indeed,
we could have selected the connected component in which ̃𝑝1 ≠ 0 and set (𝑞 = 𝑦, 𝑠 =
𝑥, 𝑝 = − �̃�2

�̃�1
). The corresponding contact Hamiltonian for Liénard systems is

𝒦(𝑞, 𝑝, 𝑠) = − 1
̃𝑝1

𝐻(𝑥, 𝑦, ̃𝑝1, ̃𝑝2) = 𝑝𝑋2(𝑞, 𝑠) − 𝑋1(𝑞, 𝑠)

= −𝑝(𝑓(𝑠)𝑞 + 𝑔(𝑠)) − 𝑞 .

Beware that in this case 𝑋1(𝑞, 𝑠) = 𝑞 and 𝑋2(𝑞, 𝑠) = −𝑓(𝑠)𝑞 − 𝑔(𝑠), that is, the
roles of 𝑞 and 𝑠 are switched, and the resulting system is

⎧{
⎨{⎩

̇𝑞 = −𝑓(𝑠)𝑞 − 𝑔(𝑠)
̇𝑠 = 𝑞
̇𝑝 = 1 + 𝑝𝑓(𝑠) + 𝑝 (𝑝𝑞𝑓 ′(𝑠) + 𝑔′(𝑠)) ,

which is equivalent to (3.27)-(3.28) for the (𝑞, 𝑠) part, but not so much for 𝑝.
The choice of reduction is in general dictated by convenience: the Hamiltonian

ℋ from (3.25) results in a simpler form of the algorithms that we will discuss later
in this thesis.
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3.6. Thermodynamic Processes

In thermodynamics, the arena is an odd dimensional space in which the variables
are the macroscopic quantities as temperature, pressure and number of the par-
ticles. The contact structure arises when one begins with Gibbs thermodynamic
relation or Gibbs one-form [70], which looks like

𝜂𝑇 𝐷 = 𝑑𝑈 − 𝑇 𝑑𝑆 + 𝑝𝑑𝑉 − 𝜇𝑑𝑁, (3.31)

where 𝑈, 𝑆, 𝑉 and 𝑁 are the extensive variables, respectively, internal energy, en-
tropy, volume and the number of particles, while 𝑇 , 𝑝 and 𝜇 are the intensive
variables, i.e., temperature, pressure and chemical potential. We refer to the con-
tact manifold (𝑀𝑇 𝐷, 𝜂𝑇 𝐷), where the contact form 𝜂𝑇 𝐷 takes the form of the left
side of equation (3.31), as thermodynamic space.

3.7. Hamiltonian systems on specific manifolds

For now, we focused on contact Hamiltonian systems defined on ℝ2𝑛+1, but for
Martinet’s Theorem [1] all 3-manifolds admit a contact structure. We focus on two
specific examples of 3-contact manifolds endowed by what is called their standard
contact structure, these examples are already introduced in section 1.4 are the
3-sphere, and the 3-torus.

3.7.1. The 3-sphere: 𝕊3

On the contact manifold (𝕊3, 𝜂𝑠𝑡𝑑), we can construct in the different coordinate
systems the Hamiltonian dynamics.

Spherical Coordinates

The Hamiltonian vector field in spherical coordinates of an Hamiltonian ℋ(𝜓, 𝜃, 𝜙)
is

𝑋ℋ = ̇𝜓 𝜕
𝜕𝜓

+ ̇𝜃 𝜕
𝜕𝜃

+ ̇𝜙 𝜕
𝜕𝜙

.

where ( ̇𝜓, ̇𝜃, ̇𝑝ℎ𝑖) are obtained from equation (2.2):

⎧
{
{
{
⎨
{
{
{
⎩

̇𝜓 = −1
2

sin(𝜃)𝜕ℋ
𝜕𝜃

(𝜓, 𝜃, 𝜙) − 1
2

cot(𝜓)𝜕ℋ
𝜕𝜙

(𝜓, 𝜃, 𝜙) + cos(𝜃)ℋ(𝜓, 𝜃, 𝜙)

̇𝜃 = 1
2

(sin(𝜃) (𝜕ℋ
𝜕𝜓

(𝜓, 𝜃, 𝜙) − 2 cot(𝜓)ℋ(𝜓, 𝜃, 𝜙)) − csc2(𝜓) cot(𝜃)𝜕ℋ
𝜕𝜙

(𝜓, 𝜃, 𝜙))

̇𝜙 = 1
2

(cot(𝜓)𝜕ℋ
𝜕𝜓

(𝜓, 𝜃, 𝜙) + csc2(𝜓) cot(𝜃)𝜕ℋ
𝜕𝜃

(𝜓, 𝜃, 𝜙) + 2ℋ(𝜓, 𝜃, 𝜙))

.
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Moreover, the Jacobi brackets look like

{𝑓, 𝑔}𝜂 = 𝑓(𝜓, 𝜃, 𝜙) (− 𝜕𝑔
𝜕𝜙

− cos(𝜃) 𝜕𝑔
𝜕𝜓

+ cot(𝜓) sin(𝜃)𝜕𝑔
𝜕𝜃

)

+ 𝑔(𝜓, 𝜃, 𝜙) ( 𝜕𝑓
𝜕𝜙

+ cos(𝜃) 𝜕𝑓
𝜕𝜓

− cot(𝜓) sin(𝜃)𝜕𝑓
𝜕𝜃

)

− 1
2

cot(𝜓) 𝜕𝑓
𝜕𝜓

𝜕𝑔
𝜕𝜙

− 1
2

sin(𝜃) 𝜕𝑓
𝜕𝜓

𝜕𝑔
𝜕𝜃

+

+ 1
2

cot(𝜓) 𝜕𝑓
𝜕𝜙

𝜕𝑔
𝜕𝜓

+ 1
2

sin(𝜃)𝜕𝑓
𝜕𝜃

𝜕𝑔
𝜕𝜓

+

+ 1
2

csc2(𝜓) cot(𝜃) 𝜕𝑓
𝜕𝜙

𝜕𝑔
𝜕𝜃

− 1
2

csc2(𝜓) cot(𝜃)𝜕𝑓
𝜕𝜃

𝜕𝑔
𝜕𝜙

.

Hopf Coordinates

With these new coordinates the Hamiltonian vector field becomes

ℎ(𝜓1, 𝜓2, 𝜃) ⇒ 𝑋ℎ = ̇𝜓1
𝜕

𝜕𝜓1
+ ̇𝜓2

𝜕
𝜕𝜓2

+ ̇𝜙 𝜕
𝜕𝜙

,

where ( ̇𝜓1, ̇𝜓2, ̇𝜙) can be read off Hamiltoni’s equations

⎧
{
{
{
⎨
{
{
{
⎩

̇𝜓1 = −ℎ(𝜓1, 𝜓2, 𝜙) − 1
4

𝜕ℎ
𝜕𝜙

cot 𝜙

̇𝜓2 = −ℎ(𝜓1, 𝜓2, 𝜙) + 1
4

𝜕ℎ
𝜕𝜙

tan 𝜙

̇𝜙 = 1
4

( 𝜕ℎ
𝜕𝜓1

cot 𝜙 − 𝜕ℎ
𝜕𝜓2

tan 𝜙)

From this expression we can infer the shape of the Jacobi brackets, obtaining

{ℎ, 𝑔}(𝜓1,𝜓2,𝜙) =ℎ ( 𝜕𝑔
𝜕𝜓1

+ 𝜕𝑔
𝜕𝜓2

) − 𝑔 ( 𝜕ℎ
𝜕𝜓1

+ 𝜕ℎ
𝜕𝜓2

)

− 1
4

( 𝜕ℎ
𝜕𝜓1

cot 𝜙 − 𝜕ℎ
𝜕𝜓2

tan 𝜙) 𝜕𝑔
𝜕𝜙

+ 1
4

( 𝜕𝑔
𝜕𝜓1

cot 𝜙 − 𝜕𝑔
𝜕𝜓2

tan 𝜙) 𝜕ℎ
𝜕𝜙

3.7.2. The 3-torus: 𝕋3

In section 1.4 we introduced the standard contact structure on a 3 - torus. This
structure is represented by the 1-form:

𝜂𝕋3 = cos(𝜃)𝑑𝜙 + sin(𝜃)𝑑𝜉.

From this, we can recover the expression of the contact Hamiltonian vector field
for a Hamiltonian function ℋ(𝜃, 𝜙, 𝜉):

𝑋ℋ = (−𝜕ℋ
𝜕𝜃

cos(𝜃) − ℋ sin(𝜃)) 𝜕
𝜕𝜉

+ (−ℋ cos(𝜃) + 𝜕ℋ
𝜕𝜃

sin(𝜃)) 𝜕
𝜕𝜙

+

+ (𝜕ℋ
𝜕𝜉

cos(𝜃) − 𝜕ℋ
𝜕𝜙

sin(𝜃)) 𝜕
𝜕𝜃

,
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from which we identify the correspondent contact Hamiltonian equations:

⎧
{{{
⎨
{{{
⎩

̇𝜉 = −𝜕ℋ
𝜕𝜃

cos(𝜃) − ℋ sin(𝜃)

̇𝜙 = −ℋ cos(𝜃) + 𝜕ℋ
𝜕𝜃

sin(𝜃)

̇𝜃 = 𝜕ℋ
𝜕𝜉

cos(𝜃) − 𝜕ℋ
𝜕𝜙

sin(𝜃)

.

The Jacobi brackets then takes the form:

{𝑓, 𝑔}𝜂𝕋3 = (−𝜕𝑔
𝜕𝜃

cos(𝜃) − 𝑔 sin(𝜃)) 𝜕𝑓
𝜕𝜉

+ (−𝑔 cos(𝜃) + 𝜕𝑔
𝜕𝜃

sin(𝜃)) 𝜕𝑓
𝜕𝜙

+

+ (𝜕𝑔
𝜕𝜉

cos(𝜃) − 𝜕𝑔
𝜕𝜙

sin(𝜃)) 𝜕𝑓
𝜕𝜃

+ 𝑓 (sin(𝜃)𝜕𝑔
𝜕𝜉

+ cos(𝜃) 𝜕𝑔
𝜕𝜙

) .
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