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This chapter provides a general overview of the terms and concepts in

machine learning and is written for neurology clinicians who are new in this

area. We use the classification of fruit and vegetables as an illustrative exam-

ple but also explain concepts in the context of movement disorders. Our aim
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is to give a basic understanding of machine learning. You will learn to

understand technical terms and how to evaluate machine learning results.

Hopefully, at the end of this chapter, machine learning will feel less like

voodoo magic and more like a cool and useful toolbox from which we

can benefit.

We will start by introducing the basic vocabulary of machine learning

and the workflow of the learning process. Next, we introduce different

machine learning methods. Additionally, the section explainable artificial

intelligence addresses the importance of transparency of the systems.Wewill

conclude by summarizing the learning points and where to get more

in-depth knowledge about the discussed topics.

This section is to a large extent inspired by the lecture notes “The Shallow

and the Deep” (Biehl, 2022), and “Deep Learning” by I. Goodfellow et al.

(Goodfellow, Bengio, & Courville, 2016). These two sources cover most

topics of this chapter, but we refrain from citing them explicitly unless we

point to a specific section. The chapter does not aspire to completeness, rather

the focus is on providing a clear and understandable overview of what the

authors consider to be an important selection of machine learning vocabulary

and fundamentals.

1. Basic vocabulary

Let us start by introducing the basic vocabulary. By the end of this first

section, we will understand the meaning and relation between machine

learning, statistical modeling, artificial intelligence, neural networks, and

deep learning. Besides that, we will be familiar with learning types and tasks

in machine learning. In Fig. 1, you can find an overview of the relation

between the terms and topics that are covered in this chapter.

1.1 Machine learning, statistical modeling, and artificial
intelligence

Machine learning (ML) is closely related to statistical modeling: both aim to

extract information from data and identify patterns to explain phenomena

in a larger group. Differences can be found in the main motivations: statis-

tical modeling focuses on describing, understanding, and interpreting the

data, while machine learning emphasizes on generalizing patterns to new

data and making predictions. However, there is no clear cut between

the two disciplines: frequently, statistical models can be used to make

predictions and there are also machine learning techniques that aim at
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obtaining insights into properties of the data. Moreover, statistical models

and machine learning can certainly be applied complementarily.

The terms artificial intelligence (AI) and machine learning are often used

synonymously. However, machine learning should be considered a subfield

of artificial intelligence, comprising algorithms that can learn from data.

A definition for learning in this context is provided by Tom M. Mitchell

(Mitchell, 1997): “[a] computer program is said to learn from experience

E with respect to some class of tasks T and performance measure P if its

performance at tasks in T, as measured by P, improves with experience E.”

Other terms that are commonly confused with artificial intelligence

or machine learning are neural networks (NN) and deep learning (DL).

In brief, classical machine learning models are typically relatively simple

in terms of their structure and their way of processing the data. Neural

networks are a type of machine learning systems that have a potentially more

complex structure containing layers of trainable elements that combine

Fig. 1 Overview of terms and topics covered in this chapter. Machine learning is a
subdiscipline of artificial intelligence. Supervised and unsupervised learning are two
important learning types that can solve learning tasks, such as classification and regres-
sion (supervised learning), or clustering and dimensionality reduction (unsupervised
learning).
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many simple transformations to generate a prediction. In the simplest terms,

neural networks that have many of such layers are termed deep neural

networks and are said to perform deep learning.

1.2 Example
Throughout this chapter, all terms, concepts, and methods will be explained

in terms of an imaginary data set representing apples, pears, zucchini, and

tomatoes, see Fig. 2. We will refer to this data set as the food example.

Additionally, we will consider an imaginary data set of movement

disorder phenotypes, such as essential tremor, myoclonus, and dystonia.

The data set consists of different data types, such as clinical information,

PET images, electromyography (emg) data and accelerometry (acc) data.

We will refer to this data set as the clinical example.

1.3 Features
The input values for machine learning are called features. These are most

frequently numerical values that describe the data. In images, for instance,

the features could be pixel grayscale or RGB color values. In the food exam-

ple, we chose to not only use numerical but also descriptive features to make

Fig. 2 The data set of the food example.
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it more illustrative: the color, shape, height, and width of the food.

In practice, such attributes can often also be described mathematically and

represented by numerical values. Table 1 shows the food data set with

example feature values in columns B through E. In the following, the term

sample refers to a single data point, represented by one row of the table.

In the clinical example possible features could be the signs and symptoms of

the patient, such as age at onset, whether the movement disorders respond to

medication, the walking pattern, the affected body parts, the consistency of

symptoms during tasks, but also features from additional tests such as clinical

neurophysiology.

1.4 Learning types and tasks
Quite generally, the process of finding patterns or structures in the presented

data set is called learning. We can distinguish two main learning types:

supervised and unsupervised learning.

1.4.1 Supervised learning
In supervised learning, each sample is assigned to a target value, called label.

The labels can be seen as to represent the ground truth which defines the

goal of the learning process. Possible labels for the food data set are the type

of food, its culinary classification, or the weight. The labels are shown in

columns L1 through L3 of Table 1. Possible labels in the clinical example could

be the phenotype of the movement disorder (i.e., essential tremor, myoclo-

nus, and dystonia), or its severity score.

In the next section, we will look at two important tasks in supervised

learning, which are classification and regression.

1.4.1.1 Classification
In classification, the goal is grouping the samples into predefined classes.

Each sample is associated with one of these classes by its label. The task

of the algorithm is finding patterns within each class that describe its typical

characteristics and its dissimilarities with the other groups. Based on the

learned patterns, the classifier predicts the class of a newly presented sample.

When in our food example, the labels are defined as apple, pear,

zucchini, and tomato (column L1), the system is trained to classify the

samples by food type as shown in Fig. 3. When the labels are fruit and

vegetable (column L2), the result would be completely different since the

labels define a different target (Fig. 4).
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Table 1 Example features (B–E) and labels (L1!L3) of the food example.
A B C D E L1 L2 L3

Sample-ID Image Color Shape Height [mm] Width [mm] Type Culinary classification Weight [g]

S1 Red Round 43 44 Tomato Vegetable 56

S2 Red Round 72 78 Apple Fruit 123

S3 Orange Pear-shape 89 53 Pear Fruit 89

S4 Green Elongated 277 38 Zucchini Vegetable 352

••• ••• ••• ••• ••• ••• ••• ••• •••

S15 Red Round 62 67 Apple Fruit 89



In the clinical example, the classification goal could be phenotyping move-

ment disorders. In this case, the classes and labels could be the phenotypes,

e.g., tremor, myoclonus, and dystonia. A classifier is then trained to learn the

patterns based on features such as tremor frequency, location of the move-

ment disorder, age of onset or comorbidities. After that, the fully trained

classifier may be used to assign a newly presented patient to one of the classes

based on the previously learned patterns.

Fig. 3 Classification of the food by its type.

Fig. 4 Classification of the food by its culinary classification.
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In classification, the labels specify a goal and the set of classes into which

to classify the data. This comes with the limitation that any new data that is

presented to the classifier will be forced on the trained space: when a

classifier is not aware of the existence of cauliflowers, it is not capable of

classifying them. Instead, the classifier will try to assign a cauliflower to

one of the predefined classes, apple, pear, zucchini, or tomato. In practice,

methods have been suggested to circumvent this difficulty, see e.g., (Fischer,

Hammer, & Wersing, 2016).

A characteristic aspect of supervised learning is that the labels provide the

possibility to measure the performance of the machine learning system.

Assuming that the labels are a faithful representation of a ground truth, also

a right and wrong exists. When labeled data points are presented to the machine

learning system, the prediction can be compared to the target label, allowing

to quantify the performance of the system. Further details and examples of the

validation and testing process and strategies are provided in Section 2.

1.4.1.2 Machine learning regression
Another common supervised learning task is called regression. Its main

difference from classification is its output type. Instead of assigning the

samples to one class of a set of predefined classes, it outputs a numerical

value. A possible goal in the food example could be estimating the weight

of the food based on the shape, height, and width. The corresponding label

would then be the weight of the food (column L3 in Table 1). In the clinical

example, a possible regression goal could be the severity assessment of the

movement disorders on a continues scale. As with classification, model

performance can also be quantified in regression by comparing the predicted

value with the target value (see Section 2).

1.4.1.3 Other supervised learning tasks
Besides classification and regression, other supervised learning tasks exist that

can only partially be assigned to these two types. In ordinal regression, for

example, the task could be the severity estimation of a movement disorder

with a fixed scale from one to five. The numbers could be interpreted as

predefined classes, but, at the same time, the target values are numerical

and ordered, making the problem similar to a regression task.

1.4.2 Unsupervised learning
In unsupervised learning, the samples are not labeled. Instead, the algorithm

is asked to learn properties of the data set and find patterns without guidance
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toward a specific, predefined goal. This is useful for understanding, explor-

ing, or preprocessing data sets. Common forms of unsupervised learning are

clustering and dimensionality reduction.

1.4.2.1 Clustering
A possible application of unsupervised learning is clustering. In a sense, it is

similar to classification, regarding the goal of grouping the samples.

However, the difference is that the groups (i.e., classes) are not predefined.

Instead, the algorithm seeks similarities and dissimilarities within the data and

groups the samples accordingly.

In unsupervised learning, there is no ground truth, no right or wrong and

thus also no straightforward performance measure. Getting back to our

example, the food could be clustered by the color and shape and thus, groups

of apples, pears, and zucchini would form, while the tomatoes arrange close

to the apples and pears as shown in Fig. 5. However, if the food is clustered

only by color, the result would be completely different: the green apples,

pears, zucchini, and tomatoes, the red apples and tomatoes, and the yellow

food would group up (Fig. 6). As there is no predefined goal and hence no

direct feedback, both results are neither correct nor incorrect.

Clustering can be a helpful approach to explore and analyze a dataset. In the

clinical example, groups of patients who share similar characteristics might be

present. This could potentially result in groups of different types of movement

disorders without explicitly training the system to distinguish those.

1.4.2.2 Other unsupervised learning tasks
Other unsupervised learning tasks exist, such as dimensionality reduction

that reduces the number of variables of the dataset while keeping as much

information as possible. A prominent example of dimensionality reduction

is principal component analysis (PCA). Projecting data on lower dimen-

sional space, e.g., two dimensions, enables data visualization and thereby

allows visual inspection and interpretation of high dimensional data sets

(Bunte, Biehl, & Hammer, 2012).

1.4.3 Other learning types
Supervised and unsupervised learning are the two main learning types in

machine learning. However, more learning types and variants of these

two types exist. Semi-supervised learning (Chapelle, Sch€olkopf, & Zien,

2006) for instance, can handle partially labeled data. This can be helpful
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Fig. 5 Clustering by color and shape.

Fig. 6 Clustering by color only.
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in the medical field, e.g., when part of the data is missing a label because the

patients do not have a clear diagnosis (yet).

In this first section, we learned that machine learning aims to learn

from training data and make predictions on novel data. We distinguished

several learning types; the two main types being supervised and

unsupervised learning. Applications of supervised learning are classifica-

tion and regression, while typical applications of unsupervised learning

are dimensionality reduction, visualization, preprocessing, or clustering.

Given the scope of this book, the remainder of this chapter focuses on

supervised classification problems.

2. Generalization in supervised learning

Machine learning aims to extract information from data and identify

patterns (learning). In the subsequent generalization step, the identified

patterns are applied to novel data in order to make predictions. This section

addresses the workflow of the learning process and generalization in super-

vised learning. Additionally, it briefly introduces validation strategies to

estimate the performance of the system.

The process usually undergoes at least three phases: training, working,

and validation phase. In the training phase, the system extracts information

from the data and learns rules to solve a task. In the working phase, the rules

are applied to novel data in order to make predictions. Frequently, a valida-

tion phase is inserted, in which the expected working phase performance is

estimated. Potentially, an additional testing phase is added to this workflow.

For the sake of clarity, the following explanation is presented in terms

of classification only. Analogous concepts can be applied in the context of

regression.

2.1 Phases in supervised learning
Let us walk through the four phases with the food example. For simplicity,

we will only consider a part of the data comprising pears and zucchini.

Of course, in a real setting, the data set would have to comprise more

samples in order to generalize properly on novel observations.

First, the data set is usually divided into a training set and a validation set,

as shown in Fig. 7. More details about methods that are suitable for splitting

the data can be found in Section 2.2.
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2.1.1 Training
During the training phase, the training set is presented to the system to

approximate a target rule, function, or model that solves the desired task.

To find a suitable approximation, the system adapts its parameters according

to the presented example data. More detailed information about possible

learning methods is provided in Section 3.

Let us illustrate this on a very simplified level in our food example and clas-

sify pears and zucchini (column L1 in Table 1). The conceptual idea of the

training process is visualized in Fig. 8. During the training, the features of the

training set and the corresponding labels are presented to the model to

approximate a target rule. In our example, the system learns that all pears

are yellowish, and all zucchini are green. It thus assumes that the food

can be distinguished based on the feature “color.”

In the clinical example, the goal could be to distinguish phenotypes of

movement disorders. In this scenario, the training set is presented to the sys-

tem and patterns that are typical for the phenotypes are learned. The classifier

could for example learn, that essential tremor patients are shaking with a very

consistent tremor frequency in postural and dynamic tasks, but the tremor

disappears in rest with full relaxation. This so-called activation pattern is dif-

ferent in patients with Parkinson’s disease, in whom tremor is most severe

at rest.

Fig. 7 Dividing the data into a training set and a validation set.
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2.1.2 Validation
The goal of the validation phase is estimating the model’s generalization

ability. This is usually done by comparing the predicted values to the real

values (labels) of the validation set at follows.

Previously, we learned that the data set is usually divided into a training

and a validation set and while the training set is used to fit the model, the

validation set is left out. Therefore, it was not used to fit the model and

can provide an estimate of the expected performance on novel data.

In the validation phase, the model is applied to the validation set and

predicts the class membership for each sample. In supervised learning, we

do know the correct classes of the samples as each sample comes with a

(hopefully faithful) label. Therefore, we have the possibility to compare

the predicted class of a sample to its label and verify whether a sample

was classified correctly. If we do this for many samples, we can estimate

the generalization ability of the model by calculating, for example, the

overall accuracy as:accurracy ¼ correct classifications
all classifications :

In a two-class problem, where there is a positive (+1) and a negative (!1)

class, we speak about a true positivewhen both, the predicted class and the real

label of a sample are positive (1). Accordingly, a false positive is a sample that is

predicted as belonging to the positive class (1), but its real label is negative

(!1). The corresponding rates can be calculated as the true positive rate

Fig. 8 Conceptual idea of the training process.
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tpr ¼ true positives
false negatives + true positives

! "
, which in medicine is also called the sensitivity,

or the false positive rate fpr ¼ false positives
false positives + true negatives

! "
, which corresponds to

(1-specificity). The same holds for true negatives and false negatives.

In multiclass problems, a confusion matrix can help to identify the

class-specific performance (Table 2). In an n-class problem, the confusion

matrix is an (n#n) matrix, where the row indices represent the true class

labels and the column indices the predicted classes. Accordingly, the diag-

onal elements capture the correctly classified samples, while the off-diagonal

elements show misclassifications.

The conceptual idea of the validation process in shown in Fig. 9. The

food classifier applies the learned rule “all pears are yellow-ish and all

zucchini are green” to the validation set. Since our example classifier has

Table 2 Confusion matrix of an imaginary 4-class problem classifying apples, pears,
zucchini, and tomatoes.

Apple Pear Zucchini Tomato

Apple 17 8 0 2

Pear 6 23 0 1

Zucchini 0 0 11 0

Tomato 3 0 0 6Tr
ue

 c
la

ss

Predicted class

The diagonal elements show the correctly classified samples while the off-diagonal elements capture
misclassifications.

Fig. 9 Conceptual idea of the validation process.
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learned to distinguish food by its color, it would classify both samples as

“pear” because their color is yellow. The predicted labels are then compared

with the real labels “pear,” and “zucchini,” showing that one of the two

validation samples was classified correctly. Evaluating multiple samples pro-

vides the possibility to measure the performance of the system on a desired

task. The training and validation phases can be repeated, and the model

parameters adjusted accordingly until a suitable approximation of the target

rule is found.

In the clinical example, the validation process operates in a similar

fashion: the rule learned from the training set is employed on the validation

set, which was previously not used for training, and the individuals are

assigned to the appropriate classes. Afterwards, the predicted labels are

compared to the actual labels in order to evaluate the system’s overall

performance.

2.1.3 Testing
Testing is closely related to validation, in terms of its goal of estimating the

model performance on novel data. The difference can be found in the data

that is used for testing. The so-called test set must be independent from the

training and validation set and the samples from the test set must not be used

for parameter adaption of the model. Its purpose is to test if the model indeed

can be generalized to novel data and does not just perform well on the data

that had been used to build and validate the model.

2.1.4 Working phase
In the working phase, the fully trained classifier is applied to novel data and

predicts target values (labels) accordingly.

2.2 Validation strategies
In real world scenarios, the number of available samples is limited, and espe-

cially in medical applications frequently quite small. Splitting the available

data into a training set and a validation set only once would not result in

a reliable performance estimate. Therefore, this process is often repeated

several times with different training and validation sets. Two example tech-

niques that allow repeated training and validation with a limited number of

samples are k-fold cross validation and, as an extreme case, leave-one-out.
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2.2.1 K-fold cross validation
K-fold cross validation is a technique of creating several training and

validation sets from a limited number of samples. The data set is divided into

k groups of approximately equal size. Then, k-1 of the groups form the

training set and the left out group the validation set. This procedure is

repeated k times until each group had been used as validation set once.

The generalization ability of the model can be estimated by analyzing the

k validation runs.

In a clinical example, we could think of a data set that comprises

50 patients. In 10-fold cross validation, this data set is divided into 10 groups

of 5 patients each. Then, the system is trained on 9 groups (45 patients) and

validated on the left-out group (5 patients). This can be repeated until each

group has been left out once for validation.

2.2.2 Leave-one-out
Leave-one-out is the extreme case of k-fold cross validation where the

number of k equals the size of the data set. Hence, each group contains

exactly one sample and at each run, the performance is validated based on

this single sample. A variation of the leave-one-out is to leave one sample

out from each class to keep the classes balanced.

3. Classification methods

In the previous section, we got familiar with the learning and gener-

alization process of supervised learning and introduced a selection of valida-

tion strategies to estimate a model’s performance. In this section, we will

have a closer look on the model itself. We start by introducing the general

idea of linear classifiers and methods that can identify suitable decision

boundaries between classes. Next, we will learn about neural networks

and understand what makes them so powerful before moving on to the very

intuitive frameworks of distance-based classifiers and tree-based classifiers.

3.1 Linear classifiers
Linear classifiers identify linear decision boundaries between classes of data

points in an n-dimensional space. Let us illustrate the meaning of this

sentence in a simple scenario: The task is to solve a two-class problem,

e.g., classifying food in the two classes apples and zucchini. The input space

is two-dimensional (n ¼2), meaning, that for each sample, two features are

presented, e.g., the height and the width of the food.
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Projecting the datapoints into the two-dimensional space suggests a

grouping of apples and zucchini according to the ratio between width

and height of the food (Fig. 10). The two groups can easily be separated

by a simple linear function of the form w1 $width+w2 $height!θ¼0.

Inserting the values of the samples into the left side of the equation, the

result will be zero if it is exactly on the separating line, positive if it is

above it, and negative if it is below it. Classifying a new datapoint works

accordingly: computing the expression on the left side and assign it to

the positive (zucchini) or negative (apple) class accordingly.

Linear classifiers can also seek decision boundaries in higher dimen-

sional spaces, and thus larger feature sets. In a three-dimensional case,

the decision boundary would be a plane, and in higher dimensions

a hyperplane. Mathematically, the classification can be expressed as

s¼ sign (w1x1+w2x2+…+wnxn!θ) where the weights w5 (w1,w2,

…, wn) and the threshold θ define the decision boundary, and s¼ %1

indicates the response of the classifier. During the training phase, linear

classifiers learn which weights are appropriate to define a suitable decision

boundary for the classification problem. One possibility of learning

suitable weights is applying the perceptron algorithm (Kubat, 2017;

Rosenblatt, 1958).

Fig. 10 Projection of apples and zucchini in a two-dimensional feature space with a
decision boundary separating the two types.
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3.1.1 Perceptron
The perceptron is an algorithm that learns the weights of a suitable decision

boundary from the training data. Each sample is presented separately one

after the other and classified based on the current decision boundary.

Then, the predicted class and the true class (label) are compared. If the

sample is not classified correctly, the weights of the current decision bound-

ary are adapted accordingly. These steps are repeated for all samples in the

training set. When the whole training set had been presented to the system,

the first epoch is finished. Usually, several epochs are performed until all

samples are classified correctly. If the data is linearly separable, the per-

ceptron will find the solution in a finite number of epochs. Proofs for this

fundamental result can be found in Minsky and Papert (2017).

3.1.2 Support vector machines (SVM)
Fig. 10 shows one solution of a decision boundary that separates the two

groups. In fact, there can be many solutions for a linear decision boundary

that differ in their margins. The margin is the distance between the decision

boundary and the closest input vectors. However, the decision boundary

with the largest margin, and thus the greatest distance to the input vectors

is most likely to perform well on future data (Kubat, 2017).

The input vectors that are the closest to the decision boundary have the

strongest direct influence on its properties. One important aspect of the

training process of support vector machines is determining these so-called

support vectors. Appropriate training algorithms exist that yield the optimum

margin and identify these support vectors.

A major advantage of the support vector machine approach is the capa-

bility of solving classification problems that are not linearly separable in terms

of the original features. This can be achieved by applying the elegant kernel

trick. The so-called kernel function implicitly projects the data to a higher

dimensional space in a non-linear fashion. Then the optimal hyperplane

is identified that separates the data in the higher dimensional space with opti-

mal margin. In practice, the selection of a suitable kernel function for

error-free classification or the extension of the formalism to tolerating errors

is essential (Schoelkopf & Smola, 2002).

3.2 Neural networks (NN)
Neural networks are motivated by the idea of solving more complex tasks by

combining many computing elements in a network. These elements are

called nodes, units, or neurons, as they are loosely inspired by neurons in
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the brain. This is because they work as neurons in the way that they receive

input from other units, apply some arithmetic operation to determine its

activation, e.g., as a function of the weighted sum of inputs, and return

an output signal (Fig. 11).

Besides that, the units are interconnected, similar to the way neurons are

connected in the brain. Frequently, the connections are organized in a lay-

ered architecture as shown in Fig. 12: an input layer receives input data from

the outside world and passes it through to one or more hidden layers. The neu-

rons in the hidden layer perform some transformation to their individual

inputs, before passing it on to an output layer that represents the network

output, i.e., the response of the system to a specific input.

In feedforward networks, the neurons receive input only from units in

the previous layer. The connections between the layers can be organized

according to several patterns. For example, in fully connected layers, every

neuron of a layer is connected to every unit in the previous layer, as it is the

case in Fig. 12.

Fig. 11 Single artificial neuron.

Fig. 12 Layered architecture of a neural network.
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All connections are characterized by weights, i.e., real numbers which

determine the strength of the connection. In the learning or training process,

these weights are adjusted in a similar way to the previously discussed

perceptron. In fact, the perceptron can even be seen as a very simple neural

network with just one layer (and no hidden layer) as shown in Fig. 13:

The features represent the input layer that is connected to the output layer.

The weights of the connections represent the weights of the decision

boundary, and the arithmetic operation (activation function) of the output

layer is the sign function that transforms all inputs (w, x, θ) to the binary

output (label) %1.

Combining several perceptrons into a more complex network can make

the classifier more powerful. In such a network, the neurons are represented

by perceptrons and the output of the network results from a weighted com-

bination of the perceptrons. In practice, however, the neurons usually

implement continuous, differentiable activation functions rather than simple

thresholds units.

The architecture of neural networks can be very complex by combin-

ing many units with relatively simple individual activations, allowing it to

identify and learn non-trivial patterns in the data. Neural networks with

many hidden layers are, on a very simplified level, called deep neural net-

works. Accordingly, deep learning can be considered a variant of neural

networks that have many layers. In Deep Learning, Goodfellow et al. state

that “[there is no] consensus about how much depth a model requires to

qualify as “deep.” However, deep learning can safely be regarded as the

study of models that either involve a greater amount of composition of

learned functions or learned concepts than traditional machine learning

does. […] Deep learning is a particular kind of machine learning that

achieves great power and flexibility by learning to represent a world as a

nested hierarchy of concepts, with each concept defined in relation to

simpler concepts, and more abstract representations computed in terms

of less abstract ones.”

Fig. 13 Single layer perceptron.
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3.3 Distance-based classifiers
In the particularly transparent and intuitive framework of distance-based

classification, novel observations are directly compared with previously

stored data. To this end, a suitable measure of similarity or distance has to

be identified and employed. Frequently, the comparison is based on a

few typical representatives of previously observed data, so-called exemplars,

or prototypes (Biehl, Hammer, & Villmann, 2016).

3.3.1 K-nearest neighbors
K-nearest neighbors can be used for both classification and regression tasks.

This method does not require any actual training. Instead, it simply stores the

training samples and corresponding labels. In the working phase, the k

nearest training samples (neighbors) are determined to generate the output

for a newly presented data point. This could be the average value of the

corresponding neighbors in a regression task, or the majority class in a clas-

sification problem. Fig. 14 shows an illustrative example of a k-nearest

neighbor classifier with three classes. The gray dots represent novel data

points that are classified to one of the three classes according to their five

nearest neighbors (k¼5).

3.3.2 Learning vector quantization (LVQ)
Learning vector quantization (LVQ) is a family of prototype and distance-

based classifiers that is introduced by Kohonen (Kohonen, 1990). Instead of

Fig. 14 Illustration of a k-nearest neighbor classifier. The yellow, blue, and red dots
represent the trainings samples that belong to three classes according to their color.
The gray dots represent novel data points that are classified according to their five
nearest neighbors (k¼5).
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using all individual datapoints as in k-nearest neighbors, a few representatives

of the classes are determined. These so-called prototypes are learned

during the training phase. After initializing prototypes (e.g., randomly), a

datapoint is presented to the system and the distance (e.g., Euclidean

distance) to each prototype is calculated. In many LVQ variants, the closest

prototype with the same label is then moved closer to the presented data

point, while the closest prototype with a different label is pushed further

away. This process continues until the prototypes are considered suitable

representatives for the classes. In the working phase, a new datapoint is pres-

ented to the classifier and assigned to the class of the closest prototype, called

nearest prototype classification (NPC). The distance can be seen as similarity

measure between the presented subject and the prototype. An illustrative

example of a prototype-based classifier is shown in Fig. 15.

While several variants of LVQ exist, one important group of extensions

incorporates weighting coefficients into the distance measure that quantify

the contribution of both single features and combinations of features. The

adaption and optimization of these weights are an integral part of the training

process. As the weights additionally provide us with information about the

significance of the features in the classification process, they help to under-

stand which features are important for the distinction and might help to

detect biases. An example for a variant of LVQ that includes such an adaptive

distance measure is Generalized Matrix Learning Vector Quantization

Fig. 15 Illustration of a prototype-based classifier. The yellow, blue, and red dots rep-
resent the training set consisting of three classes. The stars are the prototypes that rep-
resent the classes, and the gray dots are novel samples, that are classified according to
their distance to the prototypes.
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(GMLVQ), introduced and extended in (Biehl et al., 2016; Bunte et al.,

2012; Schneider, Biehl, & Hammer, 2009; Schneider et al., 2010). For

examples of applications in the medical domain, we recommend (van

Veen, 2022) and (Biehl, 2017).

3.4 Tree-based classifiers
3.4.1 Decision trees
Decision trees are a simple and easy to interpret method for regression and

classification tasks. They consist of a set of splitting rules that can be summa-

rized in a tree-like structure as shown in Fig. 16: The nodes represent the

input values (features), the edges are associated with defined splitting rules

and end nodes (leaves) are assigned to a class label. Classifying a new sample,

starts at the root of the tree, which is the topmost node. Based on the input

value of the node, the edges lead the example along a certain path based on

its input values until it reaches a leaf node that assigns it to the corresponding

label. A strong advantage of decision trees is their interpretability. It allows

tracing the splitting rules and provides precise explanation for the decision

making (Kubat, 2017).

3.4.2 Random forests
However, the best supervised learning approaches typically outperform sin-

gle decision trees in terms of prediction accuracy. A great improvement in

prediction accuracy can be achieved by combining large numbers of trees

and combine the results from all trees to conclude the final prediction as

in random forests. The individual trees are trained on different subsets of

Fig. 16 Illustrative example of a decision tree.
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the data to ensure that the random forest is composed of different trees

( James, Witten, Hastie, & Tibshirani, 2013).

Moreover, random forests can also reduce the risk of overfitting.

We speak about overfitting, when a model becomes too specific to the train-

ing data and might not generalize well on novel data. The risk of overfitting

is reduced in random forests due to the randomness of the subsets and

features that the trees are trained on.

A drawback is that the interpretability of random forest is more difficult

compared to single decision trees. However, random forests provide

importance measures of the significance of the features that nevertheless

allow interpretation of the model.

4. Explainable artificial intelligence (XAI)

In the previous section, we got familiar with different types of classi-

fiers including linear classifiers, neural networks, distance based and tree

based classifiers, and learned about a selection of classification methods

(SVM, KNN, LVQ, RF). This next section focuses on explainable artificial

intelligence (XAI) which is a subdiscipline of machine learning. XAI is

motivated by the idea that machine learning systems are more likely to be

trusted if it is possible to understand and interpret its decisions (at least to

a certain degree). We will start by understanding the importance of inter-

pretability in machine learning before giving examples for methods that

allow some transparency and interpretation possibilities.

In the medical field, where our decisions can have a major impact on a

person’s life, we usually critically examine whether we can trust the tools at

our disposal. However, machine learning systems can certainly have draw-

backs. For instance, they are very good artifact detectors and decisions can be

based on subtle or hidden biases in the data.

We could think of the background of the photo in our food example that

could be blurred for all tomatoes or that all apples are alighted from the right

side. The classifier might then perfectly work on the dataset it is trained on,

even though it has not learned any pattern of the food itself.

For biases in the medical field, one can think of the age or gender dis-

tribution among the classes. Moreover, the classification can be based on

batch effects resulting from various pre-processing pipelines, from the use

of different machines, or from the collection of the data at different institutes.

Especially in medical applications, clinicians are not only interested in the

final classification result, but also in the reasons that lead to the decision or
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the degree to which the system is certain about it. A lack of interpretability of

so-called black-box systems and, particularly in deep learning, high model

complexity can negatively impact acceptance. The subdiscipline of machine

learning that is called explainable artificial intelligence addresses these needs

by expanding the focus on performance perfection (Arrieta et al., 2020;

Ghosh, 2021).

A variety of so-called white-box methods are more transparent and

interpretable for humans. Example methods are, among others, random

forest, or GMLVQ. Those methods belong to the subdiscipline of relevance

learning, since they provide information about the significance of the fea-

tures and thus indicate the extent to which the features contribute to the

decision making. As relevance learning allows the inspection of the features’

importance, it can help to uncover possible biases in the data.

When applying relevance learning to train a classifier that distinguishes

food types, it offers the opportunity to inspect the relevance profile of the fea-

tures. If the classifier would classify the tomatoes based on the background, the

relevance profile would indicate that the feature “background color” is the

most important marker. But if it classifies the tomatoes based on the shape,

and color, and the feature relevances seem comprehensible, it will increase

our trust in the system.

Moreover, prototype-based classifiers learn representatives of the classes

that are defined in the same dataspace as the datapoints themselves, meaning

that if the input data are e.g., images, the prototypes are images as well.

Inspecting the prototypes can give insights into properties of the classes

and structure of the dataset.

In the clinical example, one could train a prototype-based classifier on

PET scan images to distinguish movement disorders. The prototypes will

then represent phenotypical PET images of the brain and can serve as a

reference to gain insights into the properties of classes, detect biases, and

facilitate discussion.

5. Summary and conclusion

The purpose of this chapter was introducing movement disorder

specialists to machine learning and creating a fundamental understanding

of important terms and methods. By its end, we are familiar with the

basic vocabulary and know that machine learning is a part of artificial

intelligence where the system learns from sample data, and that the

input to machine learning are usually numerical values, called features.
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Furthermore, we now know that we can distinguish two main learning

types which are supervised and unsupervised learning. In supervised

learning, the samples are paired with labels that provide a target value, defin-

ing the goal and ground truth of the task. Such a task could, besides others,

be regression (estimating a numerical value such as the weight of an apple) or

classification (estimating the affiliation of the sample to one of a set of

predefined classes).

Besides the basic vocabulary, we now have an idea about the phases in

supervised machine learning: training, working, validation, and testing

phase. In the training phase, an approximation of the target rule is learned

and in the working phase the learned rule is applied to novel data. To eval-

uate how well the model can solve the desired task, we usually add a vali-

dation and testing phase where the values predicted by the system are

compared to the correct values. The main difference between validation

and testing lies in the data that we are using: The validation set is formed

by splitting the data set into a training and validation set, such that a different

part of the data set is held out for validation on each run. There are suitable

techniques that can be applied to efficiently split the data set. The test set on

the other hand, consists of data that had never been used to train the model.

This way, we test the model’s generalization ability on completely novel,

previously unseen data.

Besides that, we were introduced to a number of classification methods:

starting with linear classifiers that identify linear decision boundaries

between data points, before getting to neural networks that combine many

computing elements and therefore can solve more complex tasks which

unfortunately is on the expend of transparency. However, there are very

powerful methods that are more transparent and that do offer interpretation

possibilities. Example methods are distance-based classifiers like GMLVQ

and tree-based classifiers like random forest. The discipline that focuses

on interpretability and transparency in machine learning is called explainable

artificial intelligence (XAI) and is particularly in the medical domain impor-

tant to uncover biases, increase the trust into the system and facilitate discus-

sions with domain experts.

Readers who are interested in more detailed and in-depth introductions

to machine learning are advised to consider the texts “The Shallow and

the Deep” (Biehl, 2022), and “Deep Learning” by I. Goodfellow et al.

(Goodfellow et al., 2016) or other textbooks and reviews like “The elements

of statistical learning” by Hastie et al. (Hastie, Tibshirani, & Friedman, 2009),

or “Pattern recognition and machine learning” of Bishop (Bishop, 2006).
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