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Accurate protein-protein docking remains challenging, especially for artificial
biologics not coevolved naturally against their protein targets, like antibodies
and other engineered scaffolds. We previously developed ProPOSE, an exhaustive
docker with full atomistic details, which delivers cutting-edge performance by
allowing side-chain rearrangements upon docking. However, extensive protein
backbone flexibility limits its practical applicability as indicated by unbound
docking tests. To explore the usefulness of ProPOSE on systems with limited
backbone flexibility, here we tested the engineered scaffold DARPin, which is
characterized by its relatively rigid protein backbone. A prospective screening
campaign was undertaken, in which sequence-diversified DARPins were docked
and ranked against a directed epitope on the target protein BCL-W. In this proof-
of-concept study, only a relatively small set of 2,213 diverse DARPin interfaces
were selected for docking from the huge theoretical library from mutating
18 amino-acid positions. A computational selection protocol was then applied
for enrichment of binders based on normalized computed binding scores and
frequency of binding modes against the predefined epitope. The top-ranked
18 designed DARPin interfaces were selected for experimental validation. Three
designs exhibited binding affinities to BCL-W in the nanomolar range comparable
to control interfaces adopted from known DARPin binders. This result is
encouraging for future screening and engineering campaigns of DARPins and
possibly other similarly rigid scaffolds against targeted protein epitopes. Method
limitations are discussed and directions for future refinements are proposed.
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1 Introduction

Biologics have witnessed a tremendous growth in the past decades, with antibody-based
therapeutics leading the way and recombinant proteins forming another important market
segment (DeFrancesco, 2019; Lu et al., 2020; Kaplon et al., 2023). Advances in computational
methods have spurred the idea that in the not-so-distant future, novel biologics can be
discovered entirely in silico, complementing current wet-lab methods such as immunization
and display technologies. This emerging field is dubbed de novo discovery of biologics with a
particular emphasis on de novo antibody engineering (Fischman and Ofran, 2018).

Central to this de novo discovery approach is the ability to dock and score large libraries
of biologic variants on the three-dimensional (3D) structure of a target protein (e.g., the
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antigen in the case of antibodies). Artificial intelligence/machine
learning (AI/ML)-based methods like AlphaFold2 (Jumper et al.,
2021), which have recently demonstrated a tremendous success in
predicting protein structures and complexes of biologically co-
evolved proteins, unfortunately are not applicable to docking and
scoring of antibodies and artificially designed proteins (Yin et al.,
2022). This limitation is due to co-evolution data being essential to
AI/ML’s success in protein-protein docking (Evans et al., 2022; Gao
et al., 2022). Compounding the docking and scoring challenge is the
difficulty to predict 3D structures of antibody libraries. While there
has been some recent success in modeling antibodies with AI/ML
methods without co-evolutionary information, there are still
challenges in predicting the conformation of the hypervariable
CHR-H3 loop (Abanades et al., 2022; Cohen et al., 2022; Ruffolo
et al., 2022). Due to technical limitations from the high
dimensionality of the CDR-H3 conformational space, the
applicability of de novo antibody discovery efforts based on
docking modeled antibody libraries to an antigen structure was
met with limited success, as reported with several classical
approaches (Adolf-Bryfogle et al., 2018; Chowdhury et al., 2018;
Warszawski et al., 2019; Wood, 2021). Instead, applications on
biologics displaying limited amounts of flexibility should be
explored for increased likelihood of success (Youn et al., 2017;
Radom et al., 2019).

We previously developed ProPOSE, an exhaustive direct
protein-protein docker with full atomistic details (Hogues et al.,
2018). By allowing side-chain rearrangements upon docking,
ProPOSE delivers the current leading-edge performance in both
general protein-protein docking and the specific case of antibody-
antigen docking, when the backbone conformations of the
interacting partners in the complex are a priori known. More
specifically, ProPOSE maintains a strong performance even when
side-chain flexibility is of concern. However, the docking accuracy
was lower when backbone atoms experienced significant
displacements between the bound and unbound states. We
anticipated that despite its limitations, ProPOSE should be able
to show utility in de novo biologics discovery when there is limited
backbone flexibility upon binding and when reasonable models of
backbone conformations can be inferred for the library of potential
binders.

Hence, in this proof-of-concept study, we turned away from
antibodies and towards the well-known engineered scaffold called
DARPin (Designed Ankyrin Repeat Protein) (Binz et al., 2003). The
DARPin scaffold has been refined over the years and has proven its
value for the discovery of molecules with various medical and
engineering applications, for example, as biotherapeutics,
diagnostic agents, biosensors, molecular probes and
crystallization helpers (Pluckthun, 2015; Rothenberger et al.,
2022; Strittmatter et al., 2022). Compared to antibodies, DARPins
are generally considered to be more rigid due to their smaller size
and more defined structure. The repeating ankyrin unit (a β-turn
followed by two anti-parallel α-helices) confers rigidity and stability
to their structure (Kramer et al., 2010; Schilling et al., 2022). Such a
limited backbone flexibility thus appears suitable for modeling
DARPin substitution variants relatively reliably starting from
available DARPin template structures.

Hence, the exploratory prospective study described here was
centered around applying ProPOSE rigid-backbone docking to the

DARPin scaffold exhibiting relative backbone rigidity. A
computational flow was devised to generate a relatively small
library of diverse DARPin interfaces for directed docking to a
known epitope on the structure of the protein target, BCL-W. A
selection procedure was further devised to establish a score
threshold that captured self-consistent positive controls generated
within the same computational procedure. Prospective
computational designs were then subjected to experimental
testing. Testing of 18 top-ranked hits demonstrated that half of
them had detected binding to the target. Comparative analysis of
computational and experimental data prompted to several
limitations and areas for future improvements of the rigid-
docking based approach for de novo biologics discovery.

2 Materials and methods

2.1 Computational methods

The sequence-based and structure-based computational design
process (Figure 1) consisted of 6 steps which are described in the
following sub-sections.

2.1.1 Defining the DARPin common framework
sequence

Hundreds of DARPin structures with various topologies were
published in the literature and are accessible in the PDB, among
which many have 4 or 5 repeated ankyrin motifs. Two DARPins
evolved through ribosome display to bind BCL-W, and
corresponding to PDB entries 4k5a and 4k5b (Schilling et al.,
2014b), were used as known binders in this study. These known
binders engage the target in a binding mode which is typical for
DARPins, which consists of interactions made by the concave
paratope formed by their 5 repeated ankyrin motifs (Binz et al.,
2003; Kramer et al., 2010; Pluckthun, 2015; Schilling et al., 2022). By
inspecting the sequences and structures of these known binders and
other DARPins with available crystal structures in PDB, a common
framework sequence was defined for further library expansion. The
main features considered during the selection of a DARPin common
framework sequence were: 1) 157 amino acids starting with DLGKK
and ending with LQKAA sequences; 2) conserved regions at these
N- and C-terminal ends; 3) consensus residues deemed essential for
the stability of the overall fold along repeated ankyrin motifs; and 4)
key residues contributing to binding along repeated ankyrin motifs.
These criteria led to a single DARPin common framework sequence,
which corresponded to the DARPin of chain F in the PDB entry 4drx
(the nomenclature 4drx [F] is used) (Pecqueur et al., 2012).

2.1.2 Expanding the framework sequence into a
DARPin library

A set of 18 amino-acid positions within the defined DARPin
common framework sequence were manually selected and allowed
to vary (referred to as variable positions). These positions, which
have high-frequency rates of mutation as observed from sequence
alignments of many DARPins from the literature, are: 45, 46, 48, 56,
57, 78, 79, 81, 89, 90, 111, 112, 114, 122, 123, 144, 145 and 147
(standard DARPin numbering is applied). Amino-acid side chains at
these positions are lining the concave face of the DARPin scaffold by
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being located within the β-turn loops and following short α-helices
of the ankyrin repeats (Figure 2).

Two positive controls having the 18 variable positions
corresponding to known DARPin binders of BCL-W, having
PDB entries 4k5a [B] and 4k5b [B], were also built manually into
the library. It is important to note that these constructed positive
controls share the common framework of the designed library
described above and thus differ at several positions from the
frameworks of the originating known binders (Figure 2).

2.1.3 Selecting a DARPin sub-library of diverse
sequences

An alphabet was created to group amino acids by chemical
properties. The following five groups excluding Gly, Cys and Pro
were defined: positively-charged (Arg, His, Lys); negatively-charged
(Asp, Glu); polar (Asn, Gln, Ser, Thr); non-polar (Ala, Ile, Leu, Met,
Val); and aromatic (Phe, Trp, Tyr). Equal probability was given to
each group to be selected when mutating sequences. Similarly,
amino acids within a group were given equal probability.

The designs were generated using a stochastic procedure in
which variable amino-acid positions were mutated either through
point mutations or through permutations of amino acids. Multiple
starting points in the sequence space were used to generate the
designs. The set of mutated designs (M-set) were generated starting

from the 4drx [F] sequence chosen as common framework. All
variable amino acids were forced to be mutated in this set. To be
included in the library, a design sequence had to be sufficiently
distant to the designs comprised within the same set. A threshold
distance of 10 was fixed which required at least 10 alphabet group
changes. The set of permutated designs (P-set) were generated
starting from the sequences of the two positive controls. No
change in the alphabet group was imposed for this set. A
threshold distance of 13 was set, requiring at least 13 amino-acid
changes.

2.1.4 Grafting DARPin sequences onto template
structures

The designed sub-library sequences were grafted onto four
DARPin template structures followed by side-chain repacking
using SCWRL4 (Krivov et al., 2009). The last two alanine
residues at the C-terminus of the template sequence were
truncated for modeling purposes. Only those side-chains that are
different at a given side-chain were mutated and repacked to
preserve the structural integrity of the original crystal structures
of the DARPin templates. The entire structure was then allowed to
be repacked. The DARPin templates from the following PDB entries
were used in this study: 4drx [F], 4j7w [A], 5lw2 [A] and 5le6 [A]
(Figure 1). The backbone structures of these templates are distinct

FIGURE 1
Flowchart of the overall computational design and experimental testing. The first three steps of the computational design are in the sequence space,
while the last three steps are in the 3D-structure space and inherit structural knowledge from the Protein Data Bank (Berman et al., 2000). Themain steps
of the computational design are numbered outside the boxes and described in the text.
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from those of the two known DARPin binders of BCL-W, 4k5a [B]
and 4k5b [B], which were purposely excluded as structural templates
to avoid the cognate-docking bias. The selected DARPin template
structures underwent the following preparation procedure: 1)
addition of missing side chain atoms (no repacking); 2) addition
of missing hydrogen atoms and assignment of standard protonation
states at pH 7; 3) optimization of the hydrogen-bond network the
minH program (Hogues et al., 2014); and 4) AMBER force-field
(Cornell et al., 1995; Hornak et al., 2006) energy minimization of
added hydrogen atoms and any newly added side-chain atoms with
harmonic restraints on all the other heavy atoms of 1,000 kcal/mol/
�A

2
followed by energy minimization of the entire structure with

harmonic restraints of 10 kcal/mol/�A
2
on backbone heavy atoms,

1 kcal/mol/�A
2
on side-chain heavy atoms, and no restraints on

hydrogen atoms.

2.1.5 DARPin docking protocols
The BCL-W docking-based screening of the DARPin library was

performed using the exhaustive docking engine ProPOSE version
1.03 (Hogues et al., 2018). ProPOSE was run with default parameters
using the HITSET flag to force binding towards the set of residues
involved in binding BCL-W. Initially, no binding location (or
epitope) was defined on the target protein BCL-W and
exhaustive docking was performed all around the BCL-W
structure. Two BCL-W structures were employed for docking,
with PDB entries 4k5a [A] and 4k5b [C] (Figure 1), which
correspond to the BCL-W complexed with the two known
DARPin binders. For each DARPin library sequence, the four
DARPin structural templates carrying the grafted designed
sequence were docked against the two BCL-W target structure,
resulting in 8 docking experiments. In this study, only the top-1
scored pose generated by ProPOSE was considered for a given
complex given its accuracy in pose recovery as top-1 when the
protein backbone conformation is known, without the need for

rescoring (Hogues et al., 2018). On average, a single docking run
took 30 min to execute when parallelized on an Intel Xeon Gold
5,218 using 6 cores.

Epitope restriction on the BCL-W target was introduced after all
docking calculations were completed. In this proof-of-concept
study, we elected to target the same BCL-W epitope and the
DARPin binding mode observed for the two known BCL-W
DARPin binders (PDB entries 4k5a and 4k5b) (Schilling et al.,
2014b). The similarity of predicted docked poses of designed
sequences relative to these known structures was based on
CAPRI classification (Lensink et al., 2017). Predictions were
compared on the basis of: 1) the backbone RMSD of the ligand
upon target superposition; 2) the backbone RMSD of the interface
upon superposition of interface atoms; and 3) the fraction of
preserved contacts (fcon). The ligand and target were DARPin
and BCL-W, respectively. Noteworthy, fcon was used rather than
the standard fnat from CAPRI that is derived from the comparison to
a native structure. Moreover, fcon is a position-dependent (amino
acid-independent) measure allowing designs with different
sequences to be compared. Two predictions were declared as
having high, medium or acceptable quality, or as incorrect
otherwise, with thresholds defined by the CAPRI classification
(Lensink et al., 2017).

2.1.6 Ranking docked DARPin structures
The number of top-1 scored poses, Npose, docked at the targeted

epitope from the 8 docking runs was used to retain only those
designs that have at least 2 poses docked at the target epitope. To this
end, the predicted poses for a given DARPin were grouped using a
greedy clustering algorithm with a tolerance of at least medium
quality between cluster representatives. In geometric terms, for
poses to be considered bound at the targeted epitope occupied by
one of the known binders, they were required to have acceptable
quality criteria, i.e., 1) fcon of at least 30% with a ligand backbone

FIGURE 2
Variable positions on the DARPin scaffold docked onto BCL-W target epitope. (A) Sequence alignment between the common framework sequence
(4drx [F]), known binders (4k5a [B] and 4k5b [B]), and the positive controls (PC1 and PC2) grafting the interface of the known binders onto the common
template sequence, at the 18 variable positions (marked by green Xs). The conventional DARPin sequence numbering scheme is used, h denotes α-helix,
IR1 to IR3 delineate internal ankyrin repeats 1-3, and N-Cap and C-Cap are the terminal ankyrin repeats. (B) Location of the 18 variable positions
(spheres) on the 4 DARPin template structures (Cα-traces with different shades of green). (C) Location of the docking site on the BCL-W target protein
indicated by the crystal structure (4k5b) of a known DARPin binder (red cartoon) complexed with the BCL-W target (molecular surface).
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RMSD >5.0Å and interface backbone RMSD >2.0 Å; or
alternatively, 2) fcon between 10% and 30% while having a ligand
backbone RMSD <10.0 Å or an interface backbone RMSD <4.0 Å.
For poses to be part of the same cluster, they were required to have
medium quality criteria, i.e., 1) fcon of at least 50% with ligand
backbone RMSD >1.0 Å and interface backbone RMSD >1.0 Å; or
alternatively, 2) fcon between 30% and 50% while having ligand
backbone RMSD <5.0 Å or an interface backbone RMSD <2.0 Å. No
cut-off in score was applied for the clustering.

For each design with Npose > 1, a consensus score was derived as
the arithmetic average over the docking scores of the poses binding
to the targeted epitope. Consensus scores over the designs with
Npose > 1 were also normalized into Z-scores to better inform the
selection of a top-ranked population based on a minimum number
of standard deviations away from the mean calculated from the
distribution of all DARPins combining the P-set designs, M-set
designs and the positive controls.

2.1.7 Other software and data availability
Structure visualization was performed in PyMOL (The PyMOL

Molecular Graphics System, Version 2.0, Schrödinger, LLC).
Statistical analyzes were run in R (R Development Core Team,
2011). ClustalW2 was used to run the multiple sequence alignments
(Larkin et al., 2007).

The sequence datasets generated for this study have been made
available as a MongoDB with example scripts that can be found at
the GitHub repository https://github.com/gaudreaultfnrc/Darpins.

2.2 Experimental methods

2.2.1 Protein expression and purification
Each DARPin design included a N-terminus tag

(MRGSHHHHHHGS) and two alanines at their C-terminus as
described in (Schilling et al., 2014a). The protein sequences were
optimized for Escherichia coli expression using a multifactor
algorithm (https://www.genscript.com/tools/gensmart-codon-
optimization), then synthesized by GenScript. After inserting
each gene in pET24a (+) via NdeI and NotI restriction enzyme
sites, the final plasmids were transformed into NRC E. coli BL21-T7
strain (rhaB lacZ::Ptac-T7 RNAP). For each clone, a 2.8-L Fernbach
baffled flask containing 500 mL Animal-Product Free (APF) LB
Miller (Athena Enzyme Systems Cat. 0133) plus 50 μg/mL
kanamycin was inoculated with an overnight preculture to get an
initial OD600nm of 0.1. The flasks were incubated at 37°C,
200–250 rpm until an OD600nm between 0.8 and 1.0 were
reached. To induce protein expression 1 mM isopropyl β-d-1-
thiogalactopyranoside (IPTG) was added and the culture
incubated for another 4 h at 37°C, 200–250 rpm. The cultures
were harvested, and the cell pellets stored at −80°C.

Before purification, a cell pellet was resuspended in Lysis buffer
50 mM NaPO4, 300 mM NaCl, 10 mM imidazole, pH 7.4 with
cOmplete protease inhibitors EDTA-free (Millipore Sigma Cat.
11836170001) and lysed by two passages on a French Pressure
Cell Disruptor. Finally, the cell lysate was clarified by centrifugation
at 10,000 x g, 4°C, for 15 min and filtration on 0.45 µm filter. A
fraction of the clarified lysate (15 mL) was applied on a 3 mL HisPur
Cobalt Spin Column (Thermo Fisher Cat. 89969) and the column

was washed with 20 mM NaPO4, pH 7.5, 500 mM NaCl, 0.3 mM
TCEP, 15 mM imidazole. Elution was done with 20 mM NaPO4,
pH 7.5, 500 mM NaCl, 0.3 mM TCEP, 100 mM imidazole and
pooled after visualization on SDS-PAGE. For some of the
proteins, the purification was repeated to increase purity. Buffer
exchange for DPBS (Thermo Fisher Cat. 14190144) was done with
PD-10 desalting columns (Cytiva Cat. 17085101) and final
concentration measured by Qubit Protein Assay (Thermo Fisher
Cat. Q33211).

The design of BCL-W was based on (Schilling et al., 2014a) with
an N-terminal Avi-tag followed by a bacteriophage lambda protein
D fusion tag to improve protein solubility (Forrer and Jaussi, 1998)
(see Supplementary Data). A 6xHis tag was added to the C-terminus
of BCL-W for purification. Gene optimization, synthesis and cloning
in pET24a (+) vector was done as described above for the DARPins.
To allow in vitro biotinylation, the NRC E. coli BL21-T7 strain (rhaB
lacZ::Ptac-T7 RNAP) was first transformed with pBirAcm (Avidity),
a plasmid expressing biotin ligase under tac promoter (IPTG
inducible). After growing a chloramphenicol resistant colony in
APF LP Miller medium containing 10 μg/mL chloramphenicol,
electrocompetent cells were prepared using standard procedures.
The plasmid pET24a (+)-BCL-Wwas then transformed in BL21-T7/
pBirAcm strain and selected on APF LB Miller agar containing
50 μg/mL kanamycin and 10 μg/mL chloramphenicol.

Expression of BCL-W, cell lysis and clarification were done as
described for the DARPins with some exceptions. Both antibiotics,
kanamycin and chloramphenicol, were used, and biotin was added
to a final concentration of 5 mM during the culture (25 mL). The
cells were lysed in a buffer containing 50 mM NaPO4, 300 mM
NaCl, 10 mM imidazole, pH 8.0 (plus cOmplete EDTA-free protease
inhibitors). The clarified lysate (2.5 mL) was applied on a 0.2 mL
HisPur Cobalt Spin Column (Thermo Fisher Cat. 90090) and the
column was washed with 20 mM NaPO4, pH 7.5, 500 mM NaCl,
0.3 mM TCEP, 20 mM imidazole. Elution was done with 20 mM
NaPO4, pH 7.5, 500 mM NaCl, 0.3 mM TCEP, 300 mM imidazole
and pooled after visualization on SDS-PAGE. Buffer exchange for
DPBS (Thermo Fisher Cat. 14190144) was done with G-25
MiniTrap desalting columns (Cytiva Cat. 28918007) and final
concentration measured by Qubit Protein Assay (Thermo Fisher
Cat. Q33211). Purity levels are given in Supplementary Table S1 and
SDS-PAGE gels are provided as Supplementary Data.

2.2.2 Binding affinity measurements
Surface plasmon resonance was used to screen the top 18 DARPin

designs for binding to the biotinylated BCL-W using a Biacore
T200 instrument (Cytiva Inc., Marlborough MA) at 25°C and with
PBST running buffer (Teknova, Hollister CA) containing 0.05% Tween
20, 3.4 mM EDTA and an additional 350 mM NaCl. The strategy
employed was to capture the biotinylated BCL-W onto the SPR surface
with a CAP sensor chip (Cytiva Inc.) and flow a three-point
concentration series of the DARPin scaffold using a 10-fold dilution
series from 1 μM to cover a wide concentration range. From the
resulting sensorgrams, the affinity constant of binding candidates
can be determined. A CAP immobilization chip was prepared
following the manufacturer’s instructions. Each injection cycle
consisted first of a 120-s injection at 5 μL/min of a 5-fold dilution of
CAP reagent to indirectly immobilize streptavidin over flow-cells 1 and
2. This was followed by a 240-s capture of 5 μg/mL biotinylated BCL-W

Frontiers in Molecular Biosciences frontiersin.org05

Gaudreault et al. 10.3389/fmolb.2023.1253689

https://github.com/gaudreaultfnrc/Darpins
https://www.genscript.com/tools/gensmart-codon-optimization
https://www.genscript.com/tools/gensmart-codon-optimization
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1253689


at 5 μL/min over flow cell 2 only to form the 60–62 RUBCL-W surface,
and finally a three-point concentration injection of the DARPin scaffold
or running buffer only using single-cycle kinetics was performed at
50 μL/min for 90 s with a 300-s dissociation phase. At the end of the
dissociation phase, any BCL-W/DARPin complex was stripped from
the SPR surface using a 60-s injection of 6MGuCl/0.25 MNaOH taken
from the CAP sensor chip reagent kit. The sensorgrams were double
referenced and analyzed using the Biacore BiaEval software. Affinities of
the DARPin scaffolds for BCL-W were determined using the steady
state model, or the 1:1 binding model when kinetic rate constants could
be evaluated.

2.2.3 Folding stability measurements
Differential scanning calorimetry (DSC)was used to determine the

thermal transition midpoints (Tm) as previously performed (Schrag
et al., 2019). DSC was carried out in a VP-Capillary DSC system
instrument (Malvern Instruments Ltd., Malvern, United Kingdom).
Samples were diluted in DPBS buffer to a final concentration of
0.4 mg/mL. DPBS blank and sample scans were carried out by
increasing the temperature from 20°C to 100°C at a rate of 60°C/h,
with feedback mode/gain set at “low”, filtering period of 8 s, pre-scan
time of 3 min, and under 70 psi of nitrogen pressure. All data
were analyzed with Origin 7.0 software (OriginLab Corporation,
Northampton, MA). Thermograms were corrected by subtraction
of corresponding DPBS blank scans and normalized to the protein
molar concentration. The Tm values were determined using automated
data processing with the rectangular peak finder algorithm for Tm.
Melting temperatures are listed in Supplementary Table S1 and DSC
thermograms are provided as Supplementary Data.

3 Results

3.1 Sequence-based and structure-based
computational design

3.1.1 Overall design process
The flowchart in Figure 1 presents the overall computational

design process devised and implemented for this rigid-docking
based proof-of-concept engineering study based on the DARPin
scaffold. It includes 6 steps: 1) definition of a single DARPin
common framework sequence; 2) expansion of the common
framework sequence into a DARPin sequence library with
variable positions; 3) selection of a small DARPin sub-library
consisting of diverse sequences; 4) grafting of the sequence sub-
library onto DARPin structural templates; 5) docking of DARPin
sub-library to target protein structures, the core component of the
process; and 6) ranking docked DARPin variants for experimental
testing. The first three steps operate in the sequence space, whereas
the last three in the 3D structure space. All the steps are described in
detail in the sub-sections of the Methods section. The following sub-
sections focus more in-depth on results obtained in steps 3), 4), 5)
and 6) of the process.

3.1.2 Selecting diverse DARPin sub-library
sequences

Expanding a common framework sequence by varying
18 positions lining the concave face of the DARPin fold (Figure 2)

resulted in 1023 theoretical library size. Millions of iterations were run
to select a diverse sub-library fulfilling several design criteria (see
Methods sub-Section 2.1.3). The resulting diverse sub-library
comprised a total of 2,213 designs of which 1,429 were produced
by mutations and 784 by permutations (Table 1). The closest designs
in sequence are 9 amino-acid substitutions away from any of the two
positive controls (Supplementary Figure S1), or 6 groups away when
grouping amino acids by homology (see Methods section). The
mutation-based designs have an even proportion of amino-acid
groups at the variable positions (Supplementary Figure S2). In
contrast, permutation-based designs have unevenly distributed
amino-acid groups and lack Ala, His and Ser as inherited from the
starting positive-control sequences (Supplementary Figure S2). In
terms of net charge, mutation-based designs span a wide range
from −16 to +3 with a mean net charge of −6.8, whereas
permutation-based designs inherit the net charges of their
respective parental positive control (Supplementary Figure S3).

In order to generate a sub-library that samples homogeneously
the immense theoretical sequence space, designs were imposed to be
orthogonal to each other. Clustering based on amino-acid properties
indicated that most sequence space regions were covered by both
mutation-based and permutation-based types of sequences, with a
few areas only covered by the mutation-based set (Figure 3). While
proximity in sequence might be perceivable between some of the
designs and the two positive controls (Figure 3A), overall, the
designed sequences were diverse and nearly equidistant from
each other (Figure 3B).

3.1.3 Grafting sequence sub-library onto DARPin
structural templates

Four crystal structures were used as templates in the modeling of
the DARPin ligands (see Methods section). The variance in RMSD
among these templates has a mean of 0.95 Å. The template 4drx [F]
is more distant due in part to an opening of the last repeated motif of
the scaffold. The magnitudes of backbone changes between each of
these templates and any of the 2 known DARPin binders of BCL-W
are larger than between the 2 known binders (0.42 Å). Thus,
backbone RMSDs of 0.91, 0.75, 0.79 and 0.79Å were calculated
to the 4k5a [B] known binder, and of 0.96, 0.75, 0.78 and 0.78Å to
the 4k5b [A] known binder, for the template structures 4drx [F],
4j7w [A], 5le6 [A] and 5lw2 [A], respectively. More backbone
variations could be observed in the unstructured region of the
fourth ankyrin repeat, where the known BCL-W binders had a
distinct conformational topology at the tip of this loop region. These
variations in the templates relative to known binders were critical for
testing the method in real-life application mode in which the bound
backbone structure will be unknown a priori.

3.1.4 Docking DARPin sub-library structures to
target

The entire set of sequence designs in the selected sub-library was
grafted onto four template structures, then cross-docked against two
target (BCL-W) structures, leading to 8 docking runs per DARPin
sequence. The two backbone structures used for the target (4k5a [A]
and 4k5b [C]) were relatively close from each other, with an RMSD
of 0.77 Å. They also engaged their respective known DARPin
binders (4k5a [B] and 4k5b [A]) via a well-preserved binding
interface with backbone atoms deviating by an RMSD of 0.60 Å.
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Hence, in this study, the docked poses for novel DARPins were
required to bind around the same epitope that is targeted by these
two knownDARPin binders of BCL-W. In more technical terms, the
predicted poses of designed DARPins were required to have an
overlap of at least acceptable quality (according to CAPRI
classification (Lensink et al., 2017) to either of these known
binders. This was met by 1,033 designs (47% of the sub-library),
and are referred to as “locus designs”. (Increasing the stringency and
imposing at least a medium quality of pose overlap with the known
binders reduced the number of locus designs to 559.) We found no
bias towards either of the two target BCL-W structures used for
docking, as 811 designs docked to structure 4k5a [A] and
632 designs to structure 4k5b [C]. In terms of the template
DARPin structures used for docking, 5lw2 [A] was the least
successful template structure with 344 docked designs, followed
by 380 designs docked on 5le6 [A], 533 on 4j7w [A] and 579 on 4drx
[F]. The net charge distribution of the 1,033 locus designs is slightly
different relative the entire docked sub-library of 2,213 designs, as it
has sharper peaks at the −6 and −4 net charges (Supplementary
Figure S3).

3.1.5 Ranking DARPin virtual hits
First, locus design DARPins were filtered based on the number

of top-1 scored poses, Npose, that were docked at the targeted epitope
from the 8 docking runs for each DARPin. A total of 293 locus
designs (13% of the sub-library) had at least 2 poses docked at the
target epitope. These were retained for further ranking and were
called “consensus designs”. The net charge distribution among the
consensus designs had even sharper peaks at the net
charges −6 and −4, with the majority of consensus designs at
charge −6 (Supplementary Figure S3).

For each of selected 293 consensus designs, a consensus score was
derived as the arithmetic average over the docking scores of the poses
binding to the targeted epitope. These consensus scores were normally
distributed and ranged from −84.2 to −45.3, from strongest to weakest
binder (Figure 4). The permutation-based designs were preferentially
chosen according to the consensus scores with a median of −65 as
opposed to a median of −61 for the mutation-based ones. In total, 152
(52%) and 71 (24%) designs that docked at the targeted epitope did so
with values in Npose of 2 and 3, respectively (inset in Figure 4). The
lowest consensus score corresponded to a Z-score of −3.5. Consensus
designs with Z-scores below −1.5 were selected for experimental
validation, which formed a set consisting of 18 novel DARPins
(Table 2). An overlay of all consensus poses for the selected designs
is shown in Figure 5A.

The two positive-control interfaces, having the 18 variable
positions imported from the two known DARPin binders of
BCL-W and grafted onto the common framework sequence, were
also docked in the same manner. These positive controls had
consensus scores of −75.8 and −73.5, corresponding to Z-scores
of −2.1 and −1.7, respectively. With the assumption that none of the
designs are true binders, the separation of the positive controls from
the designs had an AUC of 0.971 (Figure 4). The AUC dropped to
0.922 when best scores were used instead of consensus scores for
designs with Npose > 1. While working with rigid scaffolds, this
observation suggested the need for structural ensembles to achieve
better enrichments and thus motivated the use of consensus scores
over best scores in the sections that follow. These positive controls
were ranked within the range of the top-18 novel designs, and they
were also subjected to experimental testing. It is important to note
that to properly compare the scores for the two parental known
binders of BCL-Wwith those of the mutants, we needed to base it on
the modeled structures of the known binders rather than their
crystal structures. Using the crystal structures would be a case of
cognate backbone docking and perfect match in shape
complementarity leading to out-of-range scores (DARPin/BCL-W
docking scores of −144.5 and −123.3 were obtained for 4k5a [B]/
4k5a [A] and 4k5b [B]/4k5b [C], respectively). The overlay of all
locus docked poses for the two grafted positive control interfaces is
shown in Figure 5B to have the same orientation with those of the
selected designs (Figure 5A). These poses are further similarly
oriented with those of the known binders, as exemplified in
Figure 5C. A closer examination reveals that despite an excellent
pose recovery for this cross-docking experiment, there are certain
noticeable differences in the fine atomic details at the interface,
which are likely due mainly to non-cognate backbone coordinates
and to a lesser extent to changes of the framework sequence outside
the 18 variable positions. Overall, cross-docking of positive controls
predicted that they would retain similar binding relative to the
corresponding known binders.

As presented in Table 2, most of these top consensus designs
(13 of 18) were from the permutation set despite its smaller
representation in the initial library. Also, 15 out of the
18 consensus designs had a net charge equal to that of a positive
control (−6 or −4), despite the random sequence generation
procedure employed. On average, the top-18 designs were
15 mutations away from the positive-control interfaces, with the
closest design being 10mutations away. These top consensus designs
had between 2 and 7 top-1 poses bound at the target epitope.
Interestingly, a strong bias towards an increased consensus was

TABLE 1 Library design statistics.

Starting DARPin PDB ID Variable positionsa Setb Nseq
c dseqd dchemseq

e Qnet
f

Common framework 4drx [F] ASLTYIMSLITWDIMKFK M 1,429 9 7 −6.8

Known binder 4k5a [B] KYDMNFMRDNFWKQQKFK P 284 12 7 −4.0

Known binder 4k5b [B] RFWMEDLTMKIVYWEKFK P 500 9 6 −6.0

aPosition IDs, in the same order: 45, 46, 48, 56, 57, 78, 79, 81, 89, 90, 111, 112, 114, 122, 123, 144, 145 and 147.
bM: mutation; P: permutation.
cNumber of sequences.
dClosest distance from a design to a known binder interface at 18 variable positions, expressed as number of substitutions.
eClosest distance from a design to a known binder interface at 18 variable positions, expressed as number of homology group changes.
fMean net charge of designs within the set.
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observed with 14 out of the 18 novel designs (78%) with at least
3 representative poses bound at the targeted epitope. This level has
to be contrasted to only 24% of all consensus designs reaching an
Npose > 2. Hence, not only were the top designs predicted to bind
stronger to the target, they also did so with a higher number of

predicted consensus poses, with an average Npose of 4.2.
Comparably, the two positive controls had Npose values of 4 and
7 (Figure 4).

3.2 Experimental testing of DARPin designs

The 18 top-ranked consensus designs, together with the
2 positive controls and the 2 parental known binder DARPins
were produced in bacteria, purified by IMAC and screened for
binding to BCL-W by SPR. The purity levels of the DARPins ranged
from 45% to 99% with an average of 82% (Supplementary Table S1).
While some of these levels could be considered as suboptimal for
SPR experiments and might lead to non-specific binding, they were
deemed sufficient for a first-pass screening. Tested DARPins were
flowed at a fixed concentration over biotinylated target protein
immobilized on the sensorchip. An overview of the SPR binding
screen is given in Figure 6. Overall, binding in the nM range was
detected for 3 designs, the 2 positive controls and the 2 known
binders (Table 2). Additionally, 6 designs had weak binding in
the μM range, with a caveat that some of the binding events detected
in these cases could be non-specific. Among the top 10 designs, only
3 had no detected binding, while the 3 stronger binders and 4 of the
weak binders were present in this group. All 7 binders in the top-10
group belonged to the permutation (P) set. In the group consisting of
the 8 remaining tested designs, ranks 11–18, there were only 2 weak
binders while the rest of designs had no detected binding. These
2 weak binders were both from the mutation (M) set. Overall, data in
Table 2 indicate a certain level of enrichment in binding that follows
the predicted docking scores within the set of 18 tested variants, with
the caveat that SPR data is insufficient to confirm the predicted
binding modes. We also measured the thermal stabilities of the

FIGURE 3
Diversity of the DARPin sequence sub-library. Unrooted
phylogenetic tree from hierarchical clustering of sequences by the
chemical properties of amino acids using defined amino-acid
homology groups (see Methods section). Sequences marked in
black are from the mutation-based set and in blue from the
permutation-based set. The two positive-control sequences are
shown in red. Only a 5% random sample of the sub-library consisting
of 134 sequences is plotted. The top-18 consensus designs and
positive controls were annotated. (A) For visual clarity, the terminal
branches were equally trimmed down to a cladogram giving the
illusion of sequence proximity (Yu, 2020). (B) The non-trimmed tree
that preserves the ordering in (A) is shown to illustrate the true
divergence in sequence between designs. For reference, the
evolutionary distance is shown.

FIGURE 4
Distribution of scores from docking-based screening.
Distribution of scores obtained from the docking experiments using
ProPOSE on the entire set of designs in the library. The scores were
obtained from a consensus of multiple predictions binding at the
same locus while imposing an acceptable or better quality among the
representatives of the cluster. The scores follow a normal distribution
with the median marked as dashed lines. The underlying area-under-
the-curve of the receiver operating characteristic (AUC-ROC) curve
obtained from the separation of the two positive controls from the
combined mutation and permutation design sets has a value 0.971.
The inset shows the distribution in number of representatives used to
calculate the consensus ProPOSE score. The two positive controls
have 4 and 7 representatives.
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designed DARPins and obtained very high thermostabilities, with
melting temperature (Tm) values typically in the 80–100°C range
(Supplementary Table S1), comparable with those measured here for
the positive controls and known binders, as well as previously for
other DARPins (Schilling et al., 2014a). This stability data provides
some level of confidence that the sequence perturbations introduced
in the designed variants were able to maintain the folded structure of
the archetypical DARPin scaffold.

For the two known DARPin binders of BCL-W, 4k5a [B] and 4k5b
[B], we obtained dissociation constants, KD, of 26 nM and 3.5 nM,
respectively, which are in line with their previously published KD data of
10 nM and 0.64 nM (Schilling et al., 2014a). The two corresponding
positive control DARPins, which import only the 18 variable positions of
the common framework scaffold from these known binders, bound with
KD values of 245 nM and 0.9 nM. These values represent comparable
affinities to their respective parental known binders, although it seems
that the framework change from the known binders to the common
framework sequence impacted detrimentally the 4k5a [B] interface and
beneficially the 4k5b [B] interface.

For the 3 novel DARPin designs exhibiting good binding, we
obtained dissociation constants, KD, in the 40–150 nM range,
which are well within the range bracketed by the two positive
controls (0.9–245 nM). These were ranked 4, 6 and 7 among the
top-18 consensus designs (Table 2), with the 4th ranked design
exhibiting the better KD of 44 nM, which is similar to the affinity of
one of the known binders (26 nM). Low binding, with KD above
1 μM, could also be detected for designs with ranks 1, 3, 9, 10,
11 and 14. Further details about the binders on their amino-acid
substitutions, net charges, sets and substitutions are listed in
Table 2.

A retrospective analysis of ranking by best scores instead of
consensus scores versus experiment indicated that this approach
could also be suitable (Supplementary Table S2). By this ranking of
the 18 tested designs, the top 4 gave binding signals and among
them the 2nd and 4th ranked are the best designs with KD values of
44 nM and 111 nM. Also, best scoring was able to correctly rank
the two positive controls among themselves, i.e., the stronger
binder has a more negative score. However, best scoring always

TABLE 2 Top-ranked consensus designs.

Rank Variable positionsa Setb Nsub
c Npose

d Qnet
e Scoref Z-Scoreg KD (nM)h

1 RMTKEKFFWEILWYDMVK P 14 7 −6 −84.2 −3.5 weak

2 RQIVHRHWFDVIKYWRHL M 18 (17) 3 −1 −77.8 −2.4 n.d.b

3 KFWFETMDKMKRYEWVIL P 14 7 −6 −77.2 −2.3 weak

4 KFWMEMLTDWIYEVRKKF P 10 3 −6 −75.9 −2.1 44

5 KFMREEFWWLIKKTDYMV P 15 6 −6 −75.3 −2.0 n.d.b

6 KFWYNDFQMDFQMRNKKK P 13 4 −4 −75.2 −2.0 150

7 VWWEEDFKIKMMKFYTLR P 14 3 −6 −75.1 −2.0 111

8 KYRKNKFWFNDQFKDQMM P 14 3 −4 −74.8 −1.9 n.d.b

9 RKMDQKFKMNDYWNFQFK P 15 2 −4 −74.7 −1.9 weak

10 KIMWFKWDYKELMVETFR P 15 3 −6 −74.7 −1.9 weak

11 RAVNRTVFVYWAYNFRVV M 18 (16) 2 −4 −74.6 −1.9 weak

12 KFWMQRFMQYKDFKDKNN P 15 2 −4 −74.6 −1.9 n.d.b

13 KLMEYDFMVWITKFERWK P 14 7 −6 −74.6 −1.7 n.d.b

14 KYWYRTTWYHAIWNFYKQ M 18 (16) 5 −3 −73.5 −1.7 weak

15 KYFEWVQRVMFKVVLMNR M 18 (14) 2 −4 −73.3 −1.7 n.d.b

16 FKMWEMLFWRVIYEDKKT P 14 5 −6 −72.8 −1.6 n.d.b

17 KFFRNNKMDYWKKMDFQQ P 14 3 −4 −72.8 −1.6 n.d.b

18 KKSQTSYHHQQMLRTHRV M 18 (17) 5 0 −72.7 −1.6 n.d.b

KYDMNFMRDNFWKQQKFK PC1 0 4 −4 −75.8 −2.1 240

RFWMEDLTMKIVYWEKFK PC2 0 7 −6 −73.5 −1.7 0.9

aPosition IDs, in the same order: 45, 46, 48, 56, 57, 78, 79, 81, 89, 90, 111, 112, 114, 122, 123, 144, 145 and 147.
bP: permutation; M: mutation; PC: positive control.
cNumber of substitutions at 18 variable positions from the corresponding known binder for the P-set designs or from the initial sequence of the common framework-based library for the M-set

designs. Number of substitutions from the closest known binder is also shown in parenthesis for the M-set designs.
dNumber of poses predicted to bind at the target epitope.
eNet charge.
fConsensus docking score obtained from an arithmetic average of the docked poses at target epitope.
gCalculated from scores over the set of 293 “consensus designs” (see Results section).
hDetermined by SPR measurements (see Methods section); weak: KD > 1 μM; n.d.b.: no detected binding.
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performed slightly worse than consensus ranking for the
discrimination of binders against non-binders (Supplementary
Figure S4).

While our computational strategy forced the designs to bind at
a specified locus, our geometric criteria were loose enough to allow
for some structural variability around the targeted epitope, that
could lead to substantially different structural determinants
required for binding. Despite the weak statistics due to the
relatively low number of experimentally-validated designs, a
close inspection of important structural determinants revealed
that the non-binders bury more surface area on average than
the validated strong binders (Supplementary Figure S5).
Notably, a larger fraction in non-polar surface area on the BCL-
W interface is predicted to be lost by the non-binders relative to

binders (Supplementary Figure S5). This is an interesting finding
to explore in future screening campaigns as docking algorithms are
normally calibrated to attribute larger scores to burial of larger
interfaces and would indirectly favor or enrich those designs
achieving increased surface burial. For this set of binders,
hydrophobic residues tend to be preferentially enriched only in
the internal DARPin repeat 1 (Supplementary Figure S5).

4 Discussion

In this proof-of-concept study, we aimed at exploring if rigid-
backbone docking can lead to meaningful biologics discovery.
A first objective was to test, in a real-life scenario, the utility of
our exhaustive protein-protein docking tool ProPOSE that
incorporates side-chain flexibility (Hogues et al., 2018).
ProPOSE performed very well in cognate-backbone docking,
but returned a lower performance in unbound-backbone
docking, thus hampering de novo antibody discovery efforts,
mainly due to the hypervariable nature of the CDR-H3
loop. While work addressing the challenging problem of
backbone sampling and scoring is highly relevant and remains
to be pursued, here we explored the practical utility of
ProPOSE in its current state by employing a more rigid
scaffold, DARPin, which has already been used as an
alternative scaffold in biologics discovery (Binz et al., 2003;
Pluckthun, 2015). The overarching assumption is that
ProPOSE can tolerate some minor level of backbone
movements at the binding interface, but the extent of tolerated
backbone movements has not been established yet.

From the technological perspective of rigid docking with
unbound backbone conformation, employing four experimentally
determined backbone conformations, each slightly different from
bound backbone conformations, provided a test of the impact of
backbone flexibility on biologics design. An initial measure of
success was gleaned from so-called positive controls, in which
18 interfacial residues of known DARPin binders to a given
target (BCL-W in this study) were transferred to a common
DARPin framework sequence, assigned unbound backbone
conformations, and cross-docked to the target. The predicted
binding modes of these positive controls were similar to those of
known binders, but docking scores were reduced almost in
half relative to those obtained for the known binders in their
bound backbone conformations. Yet, experimental testing of
these positive controls showed retained binding affinities at
comparable levels relative to the known binders, despite reduced
scores. This established a new range of binding scores at a
reduced magnitude which was adapted for cross-docking but
remained predictive of true-positive binders. Consequently, novel
DARPin designs cross-docked at that same target epitope were top-
ranked and had scores within the re-established score level
suitable for cross-docking. Upon their experimental testing, seven
out of top-10 ranked designs demonstrated at least some level of
binding to the target, with 3 of them exhibiting binding strengths
similar to those of the positive controls as well as the previously
known binders.

Despite this initial relative success, rigid-backbone docking
remains challenging even for scaffolds with fairly rigid protein

FIGURE 5
Non-cognate docking results for the top-ranked poses. (A)
Overview of all poses at the target epitope for the top-18 consensus
designs selected for testing. The novel designs are part of the
permutation-based set (blue) and themutation-based set (black).
(B) Overview of all poses docked at the target epitope for the two
positive controls (red). Comparisons of atomic details between the
best-scored docked pose of a positive control and the crystal
structure of the corresponding known binder sharing the same
residues at the 18 variable positions are shown in panel (C) for the
positive control PC1 and the known binder (4k5a [A]; in purple), and in
panel (D) for the positive control PC2 and the known binder (4k5b [C];
in purple). All structure orientations are kept as in Figure 2C.
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backbone like DARPins. Several limitations of this approach and
directions for possible improvements are noted below.

First, most novel binders belonged to the random permutation
(P) set, which confines the library space with respect to certain
global properties, for example, the net charge. These results thus
point to the benefits of landing into the “right” regions of the
library space after randomization at variable positions. While it
was certainly harder for members from the random mutation (M)
set to reach the top of the hit list, the finding of two weak binders
belonging the M-set is extremely encouraging. In principle, real-
life applications utilize mainly M-libraries. One way in this
direction could be to enlarge the size of the docked diversified
sub-library (only ~2,000 in this study). This could be feasible with
access to large computing resources given the not overly
prohibitive computational task involved in running ProPOSE.
An alternative approach could be a focused expansion into
P-subsets around initial M-set hits from a relatively sparse sub-
library. This approach could set a preferred range for net charge,
for example, and it would be especially beneficial as the number of
randomized interfacial positions increases. Furthermore, the
efficiency of the M-libraries at finding better hits could most
likely be improved by applying structure-guided filters to search
in more relevant regions of the sequence space. For instance,
designs could be filtered based on their complementarity in
charge or by their exposure of polar or non-polar surfaces at
variable positions based on structural information of the selected
binding epitope being targeted.

Secondly, while initial hits are often weak binders which are
difficult to characterize, they should not be immediately discarded
but rather treated as seeds for further optimization by affinity
maturation, which can be done either experimentally (e.g., display
methods) or computationally (e.g., ADAPT platform). This aspect
has significant practical importance, given that by random
sampling of the immense library space it is highly unlikely to
obtain a very strong binder.

Thirdly, the unbound backbone conformations selected for
cross-docking were from experimentally determined crystal
structures. This is similar to the multiple protein structure
approach used in small-molecule docking and virtual screening
(Sheridan et al., 2008). Because the DARPin scaffold is not
completely rigid and scoring functions used in docking are
sensitive to atomic positions, including more than one backbone
as templates in the cross-docking approach was felt to be beneficial.
Carefully derived simulated structures obtained, for example, via
backrub motions, molecular dynamics or Monte-Carlo simulations
can be used as alternatives sources to experimentally-determined
backbone conformations. The multiple template approach used here
for docking was also extended to the stage of hit ranking, via
consensus scoring. This seemed to provide a reasonable
enrichment, although retrospectively we also found that the best-
score approach might provide a similarly good, if not better ranking,
among the small set of hits ranked by consensus scoring.

Despite some approximations in the underlying methodology
adopted here, it is encouraging that cross-docking could identify
binding sequences that differ substantially from known binders
out of thousands of potential candidates. This relative success
may be attributed to the foundational work underlying the
methods used here to address the two intimately-related
challenges of docking and scoring in computational drug
discovery (Schneider et al., 2022). On one hand, for binding
mode prediction, ProPOSE was used given its high accuracy in
rigid-backbone docking when the bound-backbone conformation
is provided. On the other hand, for ranking among different
docked variants, ProPOSE employed a scoring function drawn
from the solvated interaction energy (SIE) exhibiting high
transferability from small-molecule to protein ligands (Purisima
et al., 2023).

The data presented here support the notion that de novo biologics
discovery via computational methods is a tractable problem that could
complement the more traditional and matured wet-lab methods of

FIGURE 6
Surface plasmon resonance screening. SPR binding sensorgrams are shown for the 18 top-ranked designs, the positive controls and the known
binders. Ranking of designs is based on the consensus score (see also Table 2). Sensorgrams are labeled according to 3 levels of binding affinity as shown
in the legend.
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library display screening and animal immunization. One main added
benefit of the structure-based approach is directing the binding
response towards desired target locations, e.g., functionally
relevant, in a controlled manner. Further advances in several areas
such as backbone sampling and depth of theoretical library screening,
will be required for maturing de novo biologics discovery for routine
applications in the not-so-distant future.
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