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Sensitivity analysis of point
neuron model simulations
implemented on neuromorphic
hardware

Srijanie Dey* and Alexander G. Dimitrov*

Department of Mathematics, Washington State University, Vancouver, WA, United States

With the ongoing growth in the field of neuro-inspired computing, newly arriving

computational architectures demand extensive validation and testing against

existing benchmarks to establish their competence and value. In our work, we

break down the validation step into two parts—(1) establishing a methodological

and numerical groundwork to establish a comparison between neuromorphic and

conventional platforms and, (2) performing a sensitivity analysis on the obtained

model regime to assess its robustness. We study the neuronal dynamics based on

the Leaky Integrate and Fire (LIF) model, which is built upon data from the mouse

visual cortex spanning a set of anatomical and physiological constraints. Intel

Corp.’s first neuromorphic chip “Loihi” serves as our neuromorphic platform and

results on it are validated against the classical simulations. After setting up a model

that allows a seamlessmapping between the Loihi and the classical simulations, we

find that Loihi replicates classical simulations very e�ciently with high precision.

This model is then subjected to the second phase of validation, through sensitivity

analysis, by assessing the impact on the cost function as values of the significant

model parameters are varied. The work is done in two steps—(1) assessing the

impact while changing one parameter at a time, (2) assessing the impact while

changing two parameters at a time. We observe that the model is quite robust for

majority of the parameters with slight change in the cost function. We also identify

a subset of the model parameters changes which make the model more sensitive

and thus, need to be defined more precisely.
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1. Introduction

Design that is inspired by the structure and characteristics of neurons and the complex

networks formed by them, is called neuromorphic. A neuromorphic system, as the name

suggests—“like the brain” can mimic the brain’s function in a truer sense as their design is

analogous to the brain (Thakur et al., 2018; Roy et al., 2019). The term neuromorphic was

originally conceived by Mead (1989) during the 1980s to define very large scale integration

(VLSI) systems that contained electronic circuits based on the biological design of the

nervous system. At present however, the term “neuromorphic” encompasses broader ideas

such as computing systems that contain digital processors that are capable of simulating

neural models of computations, and also artificial learning algorithms and machine learning

techniques that emulate biologically relevant neural networks and learning mechanisms

(Bhuiyan et al., 2010; Sharp and Furber, 2013; Davies et al., 2018).
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It is worth emphasizing that, although neuromorphic systems

hold the power to revolutionize the modern computing system,

rigorous validation and benchmarking remains to be done to a great

extent in order to be able to fully utilize their capabilities. Building

efficient tools to map algorithms to these architectures, estimating

their performance along with creating a suite of benchmarks for

different domains of applications queue up as some of the initial

challenges in using these neuromorphic systems. Thus, in our work

we aim to establish a framework to be able implement the classical

simulations on Loihi and investigate the feasibility of the execution

using different validation techniques.

Taking advantage of technology combined with scalable

architectures, neuromorphic capabilities allow building models

with millions of neurons and billions of synapses. Thus, based on

this potential we work on developing a principled approach toward

obtaining simulations of biologically relevant neural network

models on a novel neuromorphic hardware platform. The challenge

arises from the difference in hardware and software paradigms in

use for the neuromorphic systems. This manuscript focuses on

establishing a platform to enable these implementations along with

investigating the trade-offs necessitated by these simulations.

For our work, we focus on the Loihi architecture (Davies

et al., 2018), as at present it is one of the most powerful

platforms with specialized digital hardware and significant software

support. While the earlier TrueNorth (DeBole et al., 2019) has

a similar combination of hardware and programming support,

its inter-neuron connectivity capability is relatively limited; Loihi

approaches the human-scale connectivity density of interest to our

research. SpiNNaker has similar capabilities, but is constructed of

standard CPU hardware (Khan et al., 2008). Loihi’s capabilities on

the other hand, are built-in on a chip, thus forcing us to explore

new programming paradigms. And recent and current state of

the art hybrid analog-digital platforms, like Neurogrid (Benjamin

et al., 2014), Braindrop (Neckar et al., 2019), DYNAP-SE2 (Moradi

et al., 2018), and BrainScaleS(2) (Pehle et al., 2022) are beyond the

scope of this manuscript. However, we believe that the simulation

and programming paradigms developed on the Loihi platform can

generalize to these analog platforms as well, and thus decrease the

development time on these unfamiliar architectures.

In Dey and Dimitrov (2022) we presented initial results in

mapping classical neuronal models to the Loihi architecture,

quantifying discrepancies due to the differences between classical

and neuromorphic numeric constraints. Despite all differences,

simulated states were shown to be correlated within 1 − 10−5,

showing that the Loihi architecture can offer good support for

neural simulation projects. The next step in the validation process

is to check how robust the simulations are to variations in the

model parameters. We want to examine how perturbing the

parameters in the allowed range changes the validation results.

Since the implementation in both systems follow different hardware

and programming paradigms, it becomes pertinent to check if

changing the variables impact the simulation results and hence the

validation criteria.

This manuscript lays down the groundwork for parameter

perturbation and sensitivity analysis between the model

implementations in the two platforms. We establish theorems

that assess the error trend related to the parameter variation and

mathematically investigate the contribution of the parameters.

In addition, we resolve model intricacies in order to be able to

implement the perturbation and sensitivity techniques using

simulations in both systems and cross-check the results in relation

to the established theorems to analyze the robustness of the models.

Finally, we summarize our findings and lay the ground for future

work with expected improvements based on the second generation

of the neuromorphic Loihi chip named Loihi 2 (Intel, 2022), which

promises to deliver greater functionality, more programming

flexibility, performance acceleration and smoother integration to

larger systems.

1.1. Why validate?

Neuromorphic systems hold great potential with

respect to new computation systems, focusing on improved

efficiency and processing. They also have the potential

to accelerate research in Neuroscience, as a medium

to learn extensively about the brain. However, in order

to exploit those possibilities, it becomes pertinent that

this technology is systematically tested and validated

against standard benchmarks that exist for today’s

computing systems.

In order to execute this validation, a platform

for comparison between the neuromorphic and the

classical/conventional systems needs to be established. Thus,

the first step in the process is to be able to implement

standard simulations in the neuromorphic systems.

However, this step is significant and non-trivial because the

programming paradigm and the architecture of neuromorphic

systems is significantly different from the conventional

computing systems.

To highlight one of the main differences in computing

architectures, the fundamental computing element of a

neuromorphic system is the spiking neural networks (SNNs),

which is an artificial neural networks inspired by biology.

Specifically, an SNN consists of interconnected neurons with

intrinsic dynamics (stateful neurons). These neurons communicate

with each other using spikes, via local memory elements (synapses),

similar to how a biological neural network operates in the brain. In

principle the neuromorphic units are also analog—however, unlike

digital computers, they use subthreshold dynamics of electronic

elements. This is very different from how present computing

systems process information (Brette et al., 2008). In particular,

current computers use numbers as fundamental computing

elements, either for logic, or to build dynamic simulations

iteratively. The prevalent von Neumann/Harvard architecture also

uses a shared memory model with local computational modules

(CPU/ALU). Those are the main contrast of interest to us with

neuromorphic systems, in which the lowest level of abstraction

is already a dynamical system, with memory local to each

dynamical element. That pits the almost infinite reconfigurability

of classical computational architectures against the specialized,

but very energy- and resource-efficient neuromorphic computing

environments, with yet-unknown scope of computing power.
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Intel’s Loihi, discussed here, can be considered as a transition

technology in that direction. It provides stateful neural models

with intrinsic, configurable dynamics, memory local to a small

group of neurons, and simulates noise sources that are typical

in analog systems. However, Loihi is a digital system which

implements all that in the standard threshold mode of digital

operation, with 0- and 1-s. This technology allows us to develop

methods for configuration and analysis of neuromorphic systems

with persistent architecture and tools, which can then be

transferred more readily to analog neuromorphic systems, with

their more challenging operating models. Thus, after addressing

the differences once we obtain the neuromorphic simulations, we

compare them to the simulations in the classical systems and assess

how well the new simulations fare.

Here, we take the analysis of our implementations a step further

by trying to assess the relationship between the models and their

parameters. As these neural models rely on a combination of

multiple parameters, it becomes necessary to investigate which

model input affects the model output the most. Moreover, since

we work with two very different platforms, comparing the

uncertainty in the model outputs based on the various parameters

gives us an additional point of view to the validity of the

implementations. We do this using a method called perturbation

and sensitivity analysis.

1.2. Summary of prior work

We provide a brief summary of the methods used in Dey

and Dimitrov (2022), for reference in the subsequent work on

sensitivity analysis.

1.2.1. Problem formulation
A typical neuron consists of a soma, dendrites and a single

axon. Neurons send signals along an axon to a dendrite through

junctions called synapses. The classical Leaky Integrate and Fire

(LIF) equation (Gerstner and Kistler, 2002) is a point neuronmodel

which reduces much of the neural geometry and dynamics in order

to achieve computational efficiency. Though these point neuron

models are extensively simple, they can mimic realistic neuron

activity for a variety of cell types (Izhikevich and Edelman, 2008;

Yamauchi et al., 2011). Moreover, these simplified models can be

efficiently evaluated numerically allowing systemic investigation as

compared to the biophysical models, which are harder to analyze in

the extensive parameter space and also incur huge computational

cost. Earlier work in different neuromorphic platforms like

SpiNNaker (Furber and Temple, 2007) and TrueNorth (Cassidy

et al., 2013) have demonstrated successful modeling of large-scale

neurons based on these point-neurons models and thus motivates

our implementations.

The LIF model is one of the simplest and rather efficient

representations of the dynamics of the neuron, while still providing

reasonable approximation of biological neural dynamics (Lazar,

2007) for some classes of neurons (Teeter et al., 2018). It is stated

mathematically as:

V ′(t) =
1

C

[

Ie(t)−
1

R
(V(t)− EL)

]

(1)

V(t)← Vr , if V(t) > 2 (2)

where, V(t), membrane potential (state); C, membrane capacitance

(parameter); R, membrane resistance (parameter); EL, resting

potential (parameter); Ie, trans-membrane current (control and

state); Vr , reset membrane potential; 2, firing threshold.

As Loihi encapsulates the working of an SNN, it implements

its computational model as a variation of the LIF model based on

two internal state variables: the synaptic current and the membrane

potential (Davies et al., 2018).

v′(t) = −
1

τv
v(t)+ u(t) (3)

u(t) =
∑

j

wj(αj ∗ σj)(t)+ b (4)

v(t)← 0, if v(t) > θ (5)

where, v(t), membrane potential; u(t), synaptic current; w,

synaptic weight; α, synaptic response function; b, constant bias

current; τv, time constant; θ , firing threshold.

1.2.2. Classical simulation platforms
Next, we lay down the details of our simulation platforms. We

begin our discussion with the classical platform. For implementing

a simulation on this platform, we use the Brain Modeling Toolkit

(BMTK) (Dai et al., 2020) developed by the AIBS. The data used

for the simulations is based on brain database by AIBS which

consists of a large amount of data based on electrophysiological,

morphological, and transcriptomic measurements of individual

cells from both human and mouse brain as well as a plethora of

models simulating cell activity, thus providing us with a multi-level

validation substrate, ranging from single cells to small ensembles

and finally expanding to whole mouse ViSp-scale networks. Being

open source, these resources enable us to experiment with a varied

range of data and thus support our extensive validation of neuronal

models in the neuromorphic system.

BMTK works with different simulation backends to facilitate

these multiple model resolutions. It consists of a Builder module to

create the models and four respective simulator modules, namely—

BioNet, PointNet, PopNet, and FilterNet to simulate the models.

BioNet works with NEURON as the backend to facilitate detailed

Biophysical Models. PointNet supports the simulation of highly

efficient Point Models with the help of NEST (Linssen et al., 2018).

FilterNet provides an interface to BMTK’s built-in solver of input-

output transformations and finally PopNet allows simulations

based on population-statistical models by interfacing with the

DiPDE tool (Cain et al., 2016), which supports a population

density approach for simulations of coupled networks of neuronal

populations. In this study, we work with the Point Neuron Models

with simulations supported by the BMTK module PointNet via

NEST 2.11+ (Linssen et al., 2018). For analysis and visualization,

we use the HDF5 output format.
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TABLE 1 External spike timestamps that serve as network stimulus.

Source Spike -Times (ms)

0 446

1 355

2 53, 258, 300, 424, 457

3 88, 466

4 100, 212

1.2.3. Mapping to Loihi dynamics
For our neuromorphic platform, Intel’s fifth and most complex

fabricated chip by 2018 “Loihi”1 provides us with the tools to

implement and test out the various neuromorphic features. The

output provided by Loihi simulations is then compared to the

output of classical simulations implemented in BMTK.

To map piecewise-continuous differential equation models like

(1) into the discrete, fixed-point implementation of Loihi, we

rescale both state and time of the LIF model as

v = (V − Vr)/Vs. (6)

The v(t) state evolves on-chip according to the update rule,

v(t + 1) = v(t)

[

1−
δv

212

]

+ b+ u(t) (7)

where δv is the membrane potential decay parameter and b is the

constant bias current listed in Equation (4). We define the Loihi

voltage decay parameter δv in terms of the timestep dt, as,

(212 − δv) 2
−12 = (1−

dt

τv
) (8)

H⇒ δv =
dt

τv
212 =

dt

RC
212 (9)

Table 1 shows the external spike-times used in the simulations,

which are generated by five spike sources using a random Poisson

spike generator with a max firing rate of 5 Hz and then frozen to

stimulate the different models in both BMTK and Loihi.

2. Sensitivity analysis

We deal with our cost function particularly in terms of the

BMTK and Loihi LIF models and examine the rate of change of

the cost function based on the chosen parameters.

2.1. Derivative-based analysis

In this section, we restate our ℓ2-cost function specifically based

on our LIFmathematical model and use derivative based analysis to

1 This work was started when Loihi was first released. At present, Intel Corp.

has released its second generation neuromorphic chip Loihi2 which is not

used for this work. However, it is worth mentioning that the fundamentals of

our analytical approach remain relevant for both chips.

mathematically establish the nature of contribution we expect to see

from each of the parameters in the model.

As stated in Dey and Dimitrov (2022), the cost function Root

Mean Squared Error (RMSE) is written as :

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yiL − yiB
)2

(10)

where, i, index of data point; yL, transformed Loihi voltage trace;

yB, original BMTK voltage trace; n, number of data points.

We aim to investigate the impact of three primary parameters,

namely EL, τv, and Cm from (1). The motivation for choosing the

three parameters arises from the model definition and the results

established in Dey and Dimitrov (2022). As we deal with a fixed-

sized discrete time-step model, our previous analysis was based on

two main control values—Vs and dt, which regulated the spatial

and temporal scales of the simulations. Thus, based on this idea

we choose to examine the contribution of the parameters that fall

under these control values.

2.1.1. Choosing the parameters
For Vs, we choose EL which is the resting potential

and contributes directly toward the membrane potential V(t)

(Equations 6, 1) and for dt, we choose τv and Cm, as τv (Equation

8) is the membrane time constant and controls the evolution of the

membrane dynamics via the decay parameter (and Cm = τv/R).

The sensitivity analysis section gives us a theory based on

the errors calculated for both Vs and dt that contribution by

parameters underVs is higher than those under dt. (To calculate the

normalized errors for each of Vs and dt, we choose the difference of

the lowest and highest errors and normalize it with the help of the

difference in the respective precision scale. For Vs, we find it to be

≈ 3.3333 and for dt, we have≈ 0.00166).

Thus, keeping the notation similar as used in the previous

section, we propose:

Theorem 2.1. Let C(pj) :P → R, P ⊆ R
n, j = 1, 2, 3 be the above

cost function, with p1, p2, p3 denoting the parametersCm, τv, and EL
respectively, with yL and yB composed of parameters pj ∈ P . Then,

given |C(pj)| < 1, the cost function is most impacted by variation

in EL.

Proof. We establish the proof with help of the partial derivative of

C(pj) with respect to the parameters p1, p2, p3 which are Cm, τv, and

EL respectively.

The first step is to establish the RMSE in Equation (10) in terms

of the parameters.

Based on the mapping reported in Dey and Dimitrov (2022),

yB − yL = V ′(t)− v′(t) (11)

= V ′(t)−
[

−
1

τv
v(t)+ u(t)

]

(12)
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where,

v(t) =
V(t)− Vr

Vs
,

u(t) =
1

CVs
Ie(t)+

1

τv

EL − Vr

Vs
,

τv = RC.

Thus,

yB − yL = −
1

τv
V(t)+

Ie(t)

C
+

EL

τv

+
V(t)

τvVs
−
−Vr

τvVs
−

Ie(t)

CVs
−

EL − Vr

τvVs

=
V(t)

τv

(

1

Vs
− 1

)

+
Ie(t)

C

(

1−
1

Vs

)

+
EL

τv

(

1−
1

Vs

)

which makes,

yB − yL =
(

1

Vs − 1

)[

V(t)

τv
−

Ie(t)

C
−

EL

τv

]

.

This gives us,

(yB − yL)
2 =

1

(Vs − 1)2

[

V(t)− EL

τv
−

Ie(t)

C

]2

=
1

(Vs − 1)2

[

(V(t)− EL)
2

τ 2v
+

I2e (t)

C2
−

2(V(t)− EL)Ie(t)

τvC

]

.

Finally, the RMSE stands as:

RMSE =

1
√
n(Vs − 1)

√

√

√

√

n
∑

i=1

[

(V i(t)− EL)2

τ 2v
+

I2e (t)

C2
−

2(V i(t)− EL)Ie(t)

τvC

]

.

(13)

Thus, letting

e =
[

(V i(t)− EL)
2

τ 2v
+

I2e (t)

C2
−

2(V i(t)− EL)Ie(t)

τvC

]

from Equation (13) and finding its partial derivative w.r.t Cm, τv,

and EL we get:

∂(e)

∂C
=

[

−2I2e (t)
C3

+
2(V i(t)− EL)Ie(t)

τvC2

]

(14)

∂(e)

∂τv
=

[

−2(V i(t)− EL)
2

τ 3v
+

2(V i(t)− EL)Ie(t)

τ 2v C

]

(15)

∂(e)

∂EL
=

[

−2(V i(t)− EL)

τv
+

2Ie(t)

τvC

]

. (16)

From Equation (16), we find that the partial derivative of the

RMSEw.r.t EL has a linear formwhereas from Eqs. (14) and (15) we

see the derivatives are non-linear. Since the RMSE values have been

found to be always <1 (Chapter 4) given by |C(pj)| < 1, we can

infer that with a linear rate of change deviation from the minima

will result in stark changes in RMSE as compared to a non-linear

rate of change. Thus, we expect to find that EL impacts the model

more significantly as compared to Cm and τv.

Proposition 1. Let C(pj) :P → R, P ⊆ R
n, j = 1, 2, 3 be the above

cost function, with p1, p2, p3 denoting the parameters Cm, τv, and

EL respectively, with yL and yB composed of parameters pj ∈ P .

Then, given |C(pj)| < 1:

1. EL impacts the model more significantly as compared to

Cm and τv.

In the next section, we perform the perturbation and sensitivity

analysis based on simulations in both BMTK and Loihi. In addition

to enabling the simulations by addressing the modeling differences

in both the platforms, we also verify the important results obtained

in the sections above.

3. Perturbation and sensitivity
simulation results

The goal of this section is to examine the contribution of the

state parameters on the model dynamics via the state variables

membrane potential and current with the help of simulations, i.e.,

we want to examine how changes in the parameters affect the

results of proposed direct mapping between the two platforms (Dey

and Dimitrov, 2022). This serves the purpose of elucidating the

significance of each state parameter in the model, and identifying

parameters for effective formal optimization procedures.

3.1. Implementing sensitivity analysis
methods

For this study, we choose to work with a Local Sensitivity

Analysis method—more specifically the OAT method. As our

models are validated prior to performing the sensitivity analysis,

our foremost aim is to check the credibility of the implementations

based on each parameter variation. We assess the impact relative to

the changes in the cost function value.

For our work we use the OAT method and one of its variations

to perform sensitivity analysis on our models. We implement the

sensitivity analysis for both the BMTK and Loihi simulations and

then analyze them.

3.1.1. One-at-a-time method
In the first method, we use the one-at-a-time (OAT) approach.

As mentioned earlier, OAT involves:

- Analyzing the effect of one parameter on the cost function

while keeping the other parameters intact.

- Returning the parameter to its original value, then repeating

the method for the other parameters.

Since we use the RMSE as the cost function for the analysis,

we monitor the sensitivity of the model response by assessing the

changes in the output in terms of the RMSE.

It is to be noted here that we are working on two models—

the BMTK model and the Loihi model. Thus, to perform the

analysis, we approach the problem from two directions. First, we
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keep the parameters in the Loihi model fixed/original and alter the

parameters in the BMTK model one at a time. The next step is to

analyze how modifying the parameter affects the results in terms of

the RMSE.We work on a range of parameters during each run. The

new RMSE looks as follows:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yiL − yiB∗

)2
(17)

where, i, index of data point; yL, original transformed Loihi values;

yB∗ , parameter-altered BMTK values; n, number of data points.

We repeat the same experiment in the other direction. We keep

the parameters in the BMTK model the same, however we alter the

parameters in the Loihi model one at a time. The current RMSE is

given as:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yiL∗ − yiB

)2
(18)

where, i, index of data point; yL∗ , parameter-altered Loihi values;

yB, original BMTK values; n, number of data points.

3.1.2. Two-at-a-time method
We extend our sensitivity analysis a step further by assessing

the effect of the interaction of two variables on the model output.

Hence, to analyze the simultaneous impact of more than one

variable, we implement a variation of the OAT method. In other

words, we alter two parameters simultaneously rather than one at

a time. We call this the two-at-a-time (TAT) method. This method

helps us assess how the parameters affect the model when paired

together as well as determine which variable is more susceptible to

inducing change.

Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bm} be the two sets

that represent the permitted values for the two parameters. Thus,

implementing TAT involves drawing out an ordered pair (ap, bq)

from the Cartesian product of {A× B}.
Thus, for every (ap, bq) ∈ {A × B}, we run the simulation. As

in the OAT, we run the simulation in both directions. That is—

in the first direction we keep the Loihi values fixed and transform

the values for BMTK. In the second direction, we keep the BMTK

values fixed but alter only the Loihi values.

Thus in the first run, the new RMSE looks as follows:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yiL − yiB∗∗

)2
(19)

where, i, index of data point; yL, original transformed Loihi values;

yB∗∗ , parameter-altered BMTK values; n, number of data points.

We repeat the simulation in the other direction. We keep the

parameters in the BMTK model fixed as the original, however we

alter the parameters in the Loihi model two at a time. The current

RMSE is given as:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yiL∗∗ − yiB

)2
(20)

where, i, index of data point; yL∗∗ , parameter-altered Loihi values;

yB, original BMTK values; n, number of data points.

In the next section, we illustrate the results obtained

by implementing the models on the two platforms and

their subsequent validation based on the methods mentioned

in this chapter.

As done for the mapping validation in the previous chapter,

we run the analysis for both network inputs: External Spikes and

Bias Current. It is worth reiterating here that when we analyse the

BMTK results, we do it against the validated fixed Loihi model

and while performing the analysis on Loihi, we check the results

against the validated fixed BMTKmodels. We do so as this helps us

verify our results against previously validated models which form

the foundation for these findings.

3.2. Perturbation and sensitivity analysis on
BMTK

We explore the sensitivity of stimulation outcomes generated

by two different method of stimulating the studied neural models:

external spikes, and bias currents. We keep the External Spikes

stimulus (Table 1) and the bias current stimulus (200.0 pA) same

as used during the validation of the networks. It is worth noting

here that the RMSE for these networks are calculated only over the

subthreshold trajectories of the voltage trace to ensure the spike

timing does not contribute to the discrepancies in the microstate

cost function. The spike-based cost function currently is beyond

the scope of this work.

3.2.1. One-at-a-time method
We start the analysis with the one-at-a-time (OAT) method for

BMTK. Here, we perturb one parameter at a time while keeping the

other parameters same as their original value.

3.2.1.1. E�ect of membrane capacitance (Cm)

We start the analysis with membrane capacitance. As seen in

Table 1, the original model in the study has a value 170.0 pF. To

analyse the sensitivity of the model, we work with a range of values

for Cm. We run the model for each of the values in the membrane

capacitance range while keeping the other parameter and state

values the same. The range of the parameter is set as [160, 180] (pF)

with a step-size of 1.0. We choose this range as this allows for good

scope for perturbation while being computationally economical.

Figure 1A (blue) illustrates the RMSE values versus the range of

values in Cm for external spikes.

We once again perturb the parameters Cm for this network

with bias input. The range for perturbation used here is smaller

to highlight the effect of bias current as compared to the external

spikes. As we vary the membrane capacitance for the bias-

current run network, we observe very distinct characteristics of the

Figure 1A (red), and find that it is slightly different from the spike-

based network. The range considered here is [169, 171.5] with a

step-size of 0.2. We find that the minimum for RMSE (4.208 ×
10−5 mV/ms) exists at the original value of 170.0 pF (Table 1).

It can be inferred that Cm affects the model to some extent, i.e.,
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FIGURE 1

Plot showing the RMSE values based on OAT perturbations of di�erent parameters. Blue curves show results for external spike inputs; red curves

show results for simulations with bias current. (A) Various membrane capacitance Cm values; (B) various membrane time constant τv values; and (C)

various resting potential EL values.

with proposed change in the values of Cm, the RMSE changes a

fair amount.

The lowest RMSE is the same for both stimuli as seen during the

validation with a value of 1.1474 × 10−4 mV/ms found at 170.21

pF, while the maximum value goes to 3.5 ×10−4 mV/ms found

around 171.25 pF. Local range perturbations also help in keeping

the simulations computationally inexpensive.

3.2.1.2. E�ect of membrane time constant (τv)

Next, we perform the same analysis based on membrane time

constant (τv), i.e., we alter the values of τv for each run of the model

while keeping the other parameters the same. The original value for

τv based on Table 1 is 22.2 ms. We set the range for the analysis as

[21.0, 23.6] (ms) for external spikes and [24.0, 26.2] for bias current

with a step-size of 0.2 for both.

Figure 1B illustrates the RMSE values versus the range of τv

values. It can be seen that minimum is at 22.2 ms, the same as found

for the validated models. However, the rise in the RMSE values on

either side of the minimum is relatively gradual, and the maximal

values on the boundary are comparable to those of Cm. Thus, it can

be inferred here that the impact of τv and Cm on the model are

relatively close.

Similar to membrane capacitance Cm, we find that τv for

bias current behaves somewhat differently from its spike-run

counterpart. Figure 1B illustrates the variation of the RMSE as

vary the parameter. The sharp local minimum is found as for the

validated networks. On either side of the minimum, the curves rises

steeply, similar to the behavior seen in Cm, however the change in

RMSE is relatively lesser (1.0× 10−4 for τv and 3.5× 10−4 for Cm).

3.2.1.3. E�ect of resting potential (EL)

The default value for the resting potential (EL) in the model is

set at −70.0 mV. For the sensitivity analysis, the value for EL is

varied in the range of [−71.0, −69.0] mV with a step-size of 0.1.

This range allows a good visual of the effect of (EL) on the RMSE of

the model. The effect is seen to be very stark, i.e., even for a slight

variation from−70.0 mV which is the original value for the model,

we see a huge change in the RMSE value (which is 0.002 mV/ms) as

compared to for Cm and τv (at 0.8× 10−5 mV/ms).

Figure 1C illustrates the variation of the RMSE values for a

range of the EL values. The minimum is found at −70.0 mV, the

original value for the model and we see that a slight variation

on either side of the default value causes a steep difference in

the RMSE, the maximum RMSE being as high as 0.002 mV/ms.

This observation indicates that EL is a highly sensitive parameter

and affects the model greatly. A larger range of values yields the

same results.

For bias input, we vary the values for EL in the same range as

we do for the spike-run network. Figure 1C illustrates the variation

of RMSE as we vary EL. We use the range for EL as [−71.0,−69.0.]
with a step-size of 0.1. We find that the behavior of the curve looks

similar to the spike-run network, with the minimum found with a

steep drop in the curve at−70.04 mV. The change in RMSE here is

significant (at 0.0016 mV/ms) as compared to the ones seen for Cm

and τv implying EL is the most impactful parameter for the model.

3.2.2. Two-at-a-time method, spike input
Next, we perform the two-at-a-time (TAT) analysis. Here, we

perturb two parameters together, and keep the rest of the parameter
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FIGURE 2

Plot showing the RMSE values based on the combination of. (A) Cm and τv values; (B) Cm and EL values; and (C) τv and EL values.

values unchanged. We work with the following combinations: (1)

{Cm, τv }, (2) {Cm, EL}, and (3) {EL, τv}.

3.2.2.1. E�ect of membrane capacitance and membrane

time constant {Cm, τv}

In the model, the original values for membrane capacitance

(Cm) and membrane time constant (τv) are 170.0 pF and 22.2 ms,

respectively. For the analysis, we work on a range of [160, 180] for

Cm with a step-size of 1.0 and [21.0, 23.6] for τv with a step-size of

0.2, almost the same range as done for the OAT method.

Based on themethod described above, we consider a point from

the range of Cm and τv each, and implement a run for each of the

combination of values i.e., (ai, bj) ∈ {A × B}. Here, A is the set of

Cm values and B is the set of τv values.

Figure 2A illustrates the variation of RMSE as we vary the

Cm and τv values simultaneously. We find surface in which the

curvature is slightly more significant on the Cm axis with a high

RMSE found near the extremities of Cm values, with a dip near {Cm,

τv} values of 170.0 pF and 22.2 ms respectively.

It can be inferred that even during the interaction between the

two parameters, the results from the OAT method hold.

3.2.2.2. E�ect of membrane capacitance and resting

potential {Cm, EL}

For this section, we work with membrane capacitance Cm and

resting potential EL. The original values for these two parameters is

170.0 pF and −70.0 mV, respectively. We vary Cm as before in the

range of [160, 180] with a step-size of 1.0 and for EL, we vary it in the

range of [−71.0, −69.0] with a step-size of 0.1. The choice for the

ranges is kept similar to the OATmethod, andwe find that variation

over this range provides us with good evidence of the sensitivity of

the parameters.

In Figure 2B, we observe that the slope is very steep on the EL
axis, whereas for Cm the gradient is barely visible and it is seen

close to 170.0 pF.We can attribute this characteristic of the curve to

the impact that EL has on the RMSE as compared to Cm. As found

numerically, the highest and lowest RMSE for EL are 0.002 mV/ms

and 4.208× 10−5 mV/ms respectively, whereas for Cm, the highest

and lowest values are much smaller i.e., 5.0 × 10−5 mV/ms and

4.208× 10−5 mV/ms respectively.

Thus, the LIF models is far more sensitive to changes in EL than

to changes in Cm and for the interaction of these two parameters,

the lowest RMSE is achieved for the values of EL as −70.0 mV and

for Cm as 170.0 pF. Accordingly, an initial optimization along the

EL variable is more likely to produce high quality results for fixed

Cm.

3.2.2.3. E�ect of membrane time constant and resting

potential {τv , EL}

In this section, we examine the interaction of membrane time

constant (τv) and resting potential (EL) values. As mentioned

earlier, the original values used in the model are 22.2 ms and 170.0

pF, respectively. We vary the ranges similar to the previous two

simulations.

Figure 2C illustrates the interaction between τv and EL. We

observe that the plot is very similar to Figure 2B. The reason being,

EL once again impacts the model far more than τv. Numerically, the

highest and lowest RMSE for EL are 0.002 and 4.208×10−5 mV/ms

respectively, whereas for τv, the highest and lowest values are much

smaller i.e., 5.0× 10−5 and 4.208× 10−5 respectively.

Thus, from the above simulation it can be concluded that EL
affects the model to the greatest extent whereas Cm and τv have a

much smaller effect on the model. Thus, effect on the parameters

on the model can ranked as EL >> Cm ≈ τv.

3.2.3. Two-at-a-time method, bias input
In this section, we perform the two-at-a-time (TAT) analysis. As

done earlier, we perturb two parameters together, and keep the rest

of the parameter values unchanged. We work with the following

combinations : (1) {Cm, τv }, (2) {Cm, EL}, and (3) {EL, τv}.

3.2.3.1. E�ect of membrane capacitance and membrane

time constant {Cm, τv}

We vary the membrane capacitance Cm over the range of [169,

171.5] with a step-size of 0.2 and membrane time constant τv in the

range of [24.0, 26.2], again with a step-size of 0.2 The plot nature

closely follows the features displayed by the Cm and τv OAT figures.

Figure 3A illustrates the surface obtained by varying the two

parameters simultaneously. Similar to the OAT plots for Cm and

τv, the new graph encompasses the behavior of the two parameters,

with the RMSE minimum found at the same locations as 170.21 pF

and 25.1 ms. As the error values are very small, graph interpretation

is slightly challenging and thus, we verify the value of the minimum

numerically which matches the original minimum of 1.1474×10−4
mV/ms found for the validation networks.
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FIGURE 3

Plot showing the RMSE values based on the combination of (A) Cm and τv values; (B) Cm and EL values; and (C) τv and EL values.

3.2.3.2. E�ect of membrane capacitance and resting

potential {Cm, EL}

Next, we run the analysis for a bias-induced network while

varying membrane capacitance Cm and resting potential EL
together.

Figure 3B illustrates the variation of RMSE as we perturb the

parameters. It can be observed that this plot captures the curves and

the lowest point as found in the Cm and EL plots. The minimum is

found at 170.21 pF and around−70.04 mV.

3.2.3.3. E�ect of membrane time constant and resting

potential {τv , EL}

As seen in the earlier figures, the TAT plots follow the OAT

curves closely. We can see a similar attribute while varying

membrane time constant and resting potential simultaneously.

Figure 3C illustrates the RMSE values while perturbing these

two parameters. As can be seen from the figure, the lowest RMSE is

found close to the original value at 25.1 ms and−70.0 mV.

3.2.4. Conclusion: BMTK simulations validate
Proposition 1 and Proposition 2
• Proposition 1: Based on our analysis of our ℓ2-cost function,

we had proposed that the RMSE values obtained during the

validation process serve as the global minimum. Additionally,

larger perturbation leads to a significant deviation from this

minimum.

From the simulation results we find that the RMSE values

obtained during validation serve as our global minimum, with

no other minima found for the different values.

Also, we see a sharp increase in the y-axis values as

the perturbation steps increase. For EL, we see an almost

exponential rate of change. For Cm and τv though the rate is

slower, a larger increase is still seen as we move away from the

minimum found.

• Proposition 2: We used derivative-analysis to establish that

perturbing EL impacts the cost function most significantly.

It can be observed from the sensitivity analysis results

for BMTK that EL affects the cost function RMSE the most,

followed by τv and Cm, which is the result we found using the

derivative-analysis. Thus, EL has the maximum impact on the

RMSE with the lowest perturbation step-size leading to almost

42% increase in the error while for τv and Cm it is as low

as 0.2%. Thus, τv and Cm are seen to have a smaller impact

for both spike induced and bias-current induced networks as

compared to themore sensitive EL, with the results holding for

simultaneous variations where τv and Cm interact with EL.

3.3. Perturbation and sensitivity analysis on
Loihi

As done in BMTK, we start the analysis with the one-at-a-

time (OAT) method for Loihi. It is to be noted here that the

state parameters and state variables in Loihi work differently as

compared to BMTK, i.e., the state parameters Cm, τv, and EL do

not contribute to the model directly but as a combination of several

other values which ultimately form the different state variables for

the network. Moreover, those values are stored as integers, which

can restrict their precision. It is worth mentioning here that the

plots below are slightly “unsmooth” as compared to BMTK. This

effect can be attributed to discretization error when those values

are stored in Loihi with integer rounding, thus storing the values

slightly differently.

In Loihi, we use the same External Spikes stimulus (Table 1)

used during the validation of the networks, translated to Loihi

timebase. We also repeat the same analysis as above with the

network stimulated with bias current, i.e., Ie 6= 0. Based on our

BMTK values, we use Ie = 200.0pA, same as used during the

validation of the networks. We once again perturb our same set of

parameters.

3.3.1. One-at-a-time method
We start with the OAT method as done for BMTK, by varying

one parameter at a time and keep the rest of the parameters the

same. As discussed earlier in Chapter 3, the equations given below

are the governing equations for our analysis on Loihi:

v(t + 1) = v(t)

[

1−
δv

212

]

+ b+ u(t), (21)

u(t) =
1

CVs
Ie(t)+

1

τv

EL − Vr

Vs
(22)
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FIGURE 4

Plot showing the RMSE values based on OAT perturbations of Loihi parameters. Blue curves show results for external spike inputs; red curves show

results for simulations with bias current. (A) Various membrane capacitance Cm values; (B) various membrane time constant τv values; and (C) various

resting potential EL values.

where C denotes the membrane capacitance Cm as seen in BMTK,

b is the constant bias current and δv is the voltage decay parameter

used as δv = dt
τv

212 in the model.

3.3.1.1. E�ect of membrane capacitance (Cm)

Webegin with examining the effect ofCm on themodel. As seen

from Eqs. (21) and (22),Cm as a parameter contributes to themodel

dynamics directly in terms of the state variable u(t), the synaptic

current/bias current depending on how the network is established,

and indirectly through v(t) as δv = dt
τv

212 = dt
RC 212.

As we run the network with external spikes, Ie(t) = 0.0 based

on the LIF parameters, thus u(t) = 0. But we observe the effect

of Cm on the RMSE with the help of Equation (21). We set R as a

constant with the help R = τv/Cm = 22.2/170.0, which are the

original values used for τv and Cm in the model.

For the analysis we vary the value of Cm over the same range as

we did for BMTK—[160, 180] (pF) with a step-size of 1.0. As seen in

Figure 4A (blue), we notice that the RMSE behaves very similar to

the variation of Cm in BMTK [Figure 1A (blue)], with a minimum

obtained at 170.0 pF.

We asses the impact of the parameter for a bias-current induced

network, i.e., where Ie 6= 0. We start with the OAT method as done

for BMTK, by varying one parameter at a time. Figure 4A (red)

illustrates the variation of RMSE as we perturb Cm. The minimum

here is found to be the same as used for the validation network

at 170.21 pF. Also, it can be seen that the minimum is clearly

designated with the RMSE on either side of it increasing to a fair

extent. Thus, Cm has a reasonable impact on the RMSE.

3.3.1.2. E�ect of membrane time constant (τv)

To analyse the effect of τv on the model, we refer back to

Equation (21) and the definition of δv which denotes that τv

contributes to the Loihi voltage decay parameters inversely by a

scale of dt ∗ 212. As seen in the case of Cm, regardless of u(t) being

absent here, we see a variation for τv as it is directly related to the

evolution of the membrane potential v(t).

The original values for τv is 22.2 ms and for the analysis we vary

it over a range of - [19.0, 23.6] (ms) with a step-size of 0.2.

Figure 4B (blue) illustrates the RMSE values as we vary the

τv values for external spikes. The minimum is achieved for τv =
22.0 which is exactly the same as the BMTK minimum [Figure 1B

(blue)]. Thus, τv behaves similarly for BMTK and Loihi.

For bias inputs, we vary the membrane time constant τv over

the range of [23.2, 26.0] (ms) with a step-size of 0.2. Once again, we

focus on a shorter range to highlight the effect of τv on RMSE in

spite of a small variation. Figure 4B (red) illustrates the variation of

RMSE for different values of τv for bias current. The minimum is

found at 22.2, which is same as the value found for the validation

networks. Also, the minimum found for τv is quite sharp with steep

increase in the RMSE on either side of it, however compared to Cm,

the change in the RMSE values is smaller. This implies τv has an

effect on the RMSE which is slightly more than Cm.

3.3.1.3. E�ect of resting potential (EL)

Similar to Cm, EL also features in the equation of u(t). As

Ie = 0.0, the new equation for u(t) looks as follows :

u(t) =
1

τv

EL − Vr

Vs
(23)
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and since we vary EL, EL − Vr 6= 0 except at one point. Thus, u(t)

still features in themodel equation and contributes to the dynamics,

unlike the case for Cm.

Here, we consider the same range of [−71.0, −69.0] with a

step-size of 0.1 for EL, as done for BMTK. Figure 4C illustrates the

variation of RMSE as we vary EL. We find the behavior to be the

same as seen in BMTKwith a sharpminimum observed at the point

−70.0 mV, which is the value obtained for the validated networks.

As can be seen from the figures above, similar to BMTK, EL affects

the cost function the most, with relatively smaller contribution by

Cm and τv.

We repeat our analysis for resting potential EL for bias inputs,

over the range of [−71.0,−69.0] with a step-size of 1.0.We find that

the behavior resembles that of the BMTK analysis. Figure 4C (red)

represents the different values of RMSE as we change the values of

EL for bias current. The lowest RMSE is found at the original value

of −70.04 mV. However, it is worth noting here that for a slight

variation in EL, the RMSE increases significantly which is much

higher as compared to Cm and τv.

3.3.2. Two-at-a-time method, spike input
Next, we perform the two-at-a-time (TAT) analysis. Here, we

perturb two parameters together, and keep the rest of the parameter

values unchanged. We work with the combinations as previously

done for BMTK : (1) {Cm, τv }, (2) {Cm, EL}, and (3) {EL, τv}.

3.3.2.1. E�ect of membrane capacitance and membrane

time constant {Cm, τv}

We varyCm and τv on the ranges [160, 180] (pF) with a step-size

of 1.0 and [19.0, 23.6] (ms) with a step-size of 0.2 respectively. As

seen in BMTK, the TAT simulations closely follow the simulations

based on OAT.

It is worth noting here that for the analysis of Cm in the OAT

method, we fixed our R to a value obtained by the original values

of Cm andτv, and for the OAT analysis of τv, the variation of τv was

done directly with the help of δv, the voltage decay parameter. In

the TAT case however, we work a little differently as τv and Cm are

updated simultaneously, thus impacting the values of R, τv, and Cm

for each iteration.

Figure 5A illustrates the variation in the cost function as we

vary the two parameters. As can be seen from the figure, effects of

the changes in the values of Cm and τv produces similar effects on

the RMSE. This implies thatCm and τv contribute closely to changes

in RMSE. The lowest RMSE is found for Cm = 170.0 and τv = 22.0,

which again reiterates the OAT result.

3.3.2.2. E�ect of membrane capacitance and resting

potential {Cm, EL}

We vary Cm and EL over the same ranges as before—[160,

180](pF) with a step-size of 1.0 and [−71.0, −69.0] with a step-

size of 0.2, respectively. As seen for the OAT results, we expect the

RMSE to vary more significant on the EL-axis than the Cm-axis.

Figure 5B illustrates the RMSE values for this combined

perturbation. Very little variation if found with respect to Cm as

the error values contributed by Cm (change of 1.5 × 10−5 mV/ms)

are relatively smaller compared to EL (change of∼0.0025 mV/ms).

The minimum is found at Cm =170.0 pF. and EL = −70.0 mV.

3.3.2.3. E�ect of membrane time constant and resting

potential {τv , EL}

We vary τv and EL over the ranges of [19.0, 23.6] (ms) with

a step-size of 0.2 and [−71.0, −69.0] with a step-size of 0.1

respectively, as done earlier.

Figure 5C illustrates the variation of RMSE. As seen in

Figure 5A—for the combination of Cm and τv, the variation is

seen more prominently only on the EL axis as compared to τv

remains constant. The minimum is found for EL = −70.0 mV

and τv = 22.0 ms.

This completes our evaluation of sensitivity of the model to the

state parameters based on spike-run networks. Thus, effect on the

parameters on the model can ranked similar to our observation in

BMTK, i.e., EL >> Cm ≈ τv.

3.3.3. Two-at-a-time method, bias input
Finally, we perform the two-at-a-time (TAT) analysis which

forms the last section of our sensitivity analysis of these three state

parameters. Here, we perturb two parameters together, and keep

the rest of the parameter values unchanged. We work with the

combinations as previously done for BMTK : (1) {Cm, τv }, (2) {Cm,

EL}, and (3) {EL, τv}.

3.3.3.1. E�ect of membrane capacitance and membrane

time constant {Cm, τv}

We vary Cm and τv over the same range as done for OAT. Since

the TAT simulations are closely governed by the OAT ones, we find

that in this case too the simulations follow the OAT results.

Figure 6A illustrates the result of varying Cm and τv

simultaneously. It closely follows the BMTK result with aminimum

found at 170.21 pF for Cm and 25.1 ms for τv. As the plot

representation doesn’t pinpoint the exact position, the values have

been numerically verified.

3.3.3.2. E�ect of membrane capacitance and resting

potential {Cm, EL}

Next, we vary Cm and EL over the range of [169.0, 171.0]

(pF) with a step-size of 0.2 and [−71.0, −69.0](mV) with a

step-size of 0.1.

Figure 6B illustrates the variation of RMSE based on varying EL
and Cm. The plot closely resembles that of BMTK, the minimum is

reached at the same points : −70.04 mV for EL and close to 170.21

pF for Cm. The results closely follow the minimum found for the

OAT results.

3.3.3.3. E�ect of membrane time constant and resting

potential {τv , EL}

Finally, we vary τv and EL simultaneously over the range of

[24.0, 26.2] (ms) with a step-size of 0.2 and [−71.0, −69.0] with
a step-size of 0.1, respectively.

Figure 6C illustrates the effect of varying τv and EL
simultaneously. As seen from the plot and from numerical

verification, the lowest RMSE is obtained for τv close to 25.1 ms

and EL close to −70.04 mV, which is comparable to what we

observe for the validation networks.

Thus, based on the last six findings, we deduce that EL
contributes most significantly to the RMSE output with sharp

increase in its values with a slight variation of EL. It is closely
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FIGURE 5

Plot showing the RMSE values during bias current simulations based on the combination of (A) Cm and τv values; (B) Cm and EL values; and (C) τv and

EL values.

FIGURE 6

Plot showing the RMSE values during bias current simulations based on the combination of (A) Cm and τv values; (B) Cm and EL values; and (C) τv and

EL values.

followed by Cm and then by τv which contributes to the least

amount of changes in the RMSE values.

This brings us to the end of analyzing the sensitivity of the

cost function to the variations of the state parameters for both

BMTK and Loihi. We find that BMTK and Loihi results closely

match each other, with lowest RMSE found at similar positions

for both. We reiterate here that we focus on focused local ranges

for the parameter variations to assess the change in cost function

with small perturbation and also to avoid high computational

expenses. Moreover, global sensitivity analysis would require

further investigation which at present is beyond the scope of

this work.

3.3.4. Conclusion: Loihi simulations validate
Proposition 1 and Proposition 2

As done for BMTK, we verify Propositions 1 and 2 for Loihi.

• Proposition 1: RMSE values obtained during the

validation process serve as the global minimum. Secondly,

larger perturbation leads to a significant deviation from

this minimum.

Since Loihi follows the BMTK results closely, we find that

statements in Proposition 1 are satisfied in a similar fashion

as in BMTK, i.e., from the simulation results we find that the

RMSE values obtained during validation serve as our global

minimum. Moreover, these values are the same as seen for

BMTK.

• Proposition 2: Using derivative-analysis, we find that

perturbing EL impacts the cost function most significantly.

As dictated by the results in BMTK, for Loihi too we find

the most impact contributed by EL, for both external spikes

and bias current stimuli. AlthoughCm and τv seem to affect the

results relativelymore for bias current induced stimuli, they do

not supersede the impact of EL.

For external-spikes induced network, EL has the

maximum impact on the RMSE with the lowest perturbation

step-size leading to almost 42% increase in the error while for

τv and Cm it is as low as 0.2%. However, for bias-current based

network, second perturbation leads to similar increase in the

RMSE values for both EL and τv (impact of Cm is much lower),

however, as the perturbation steps increase the maximum

impact is seen to be contributed by EL. Thus, τv and Cm

are seen to have a smaller impact for both spike induced

and bias-current induced networks as compared to the

more sensitive EL, with the results holding for simultaneous

variations where τv and Cm interact with EL.

3.4. Perturbation and sensitivity analysis on
Loihi based on parameter precision levels

In the following sections, we investigate two values that are

combinations of the parameters we dealt with above. As these

variables allow us control over the different parameters, our goal is
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TABLE 2 E�ect of precision on Ibias.

a = Ibias/2
i Bias exponent (i) Reconstructed

Ibias = a ∗ 2i

1,175 0 1,175

587 1 1,174

293 2 1,172

146 3 1,168

73 4 1,168

36 5 1,152

18 6 1,152

9 7 1,152

Values in the first and third column are calculated as integers, the data-type used by Loihi for

Ibias .

to examine how changes in their precision affect the cost function

RMSE.

3.4.1. E�ect of bias current (Ibias)
Since Cm and EL contribute to the formation of the state

variable u(t) in Loihi which is the state current/bias current

represented as Ibias, we wanted to check how varying Ibias directly

affects the RMSE values for the model. Does it show equivalence to

the results found in by the variations in Cm and EL?

Ibias is expressed as a combination Ibias mantissa and Ibias
exponent values. This allows for a large range of values to be

included in the simulations. The bias mantissa is allowed a range

between [−212, 212] and the bias exponent a range between [0, 7].

Thus, for our simulation we vary the bias exponent over the entire

allowed range of [0,7] while simultaneously adjusting (dividing) the

bias mantissa by a factor of 2i, where i ∈ [0, 7].

The Loihi value of Ibias obtained by applying the transformation

(Equation 6) on the BMTK Ie(t) value of 200.0pA is 1175.0. We

take it as the base value and then vary the precision allowed by

the bias exponent in Table 2 to investigate how it contributes to the

variation in the value of Ibias and thus, ultimately to RMSE. It is

worth noting that Ibias can only be use as an integer-value in Loihi.

Figure 7A shows the effect of varying the Ibias over both the

exponent and mantissa components. For the analysis here, we

calculate the RMSE variation only for the subthreshold variation

of the trajectory (bypassing the spiking effect of the bias current),

as done for the sensitivity analysis on networks run by bias current.

It can be seen that the finer precisions yield low errors. This can be

justified by Table 2 below as we can see that as we increase the value

of i, the value of Ibias changes with significant loss in recovering the

original value.

3.4.2. E�ect of voltage decay (δv)
As seen in the previous section, we vary Ibias directly to analyze

its impact on the RMSE as compared to varying Cm and EL. We do

a similar investigation in terms of τv by altering the values for δv

directly as

δv =
dt

τv
212. (24)

Thus, we vary δv over the allowed range of ±30. Figure 7B
shows the RMSE curve achieved by this variation. In the figure, the

values for vdecay are obtained by adding±30 to 184 which is the base
δv value, found after converting the original BMTKmembrane time

constant value of 22.2 ms.

As can be seen from Figure 7B, the lowest RMSE is obtained

at 193.0, and after reversing the transformation in above Equation

(24), it yields 21.2 which is relatively close to the original BMTK

value of 22.2. This small discrepancy can be attributed to the value

being processed as an integer in Loihi which leads to a certain loss

of precision. We run this analysis only for dt = 1.

4. Conclusions and discussion

Inspired by the brain, neuromorphic computing holds great

potential in tackling tasks with extremely low power and high

efficiency. Many large-scale efforts including the TrueNorth,

SpiNNaker, and BrainScaleS have been demonstrated as a tool

for neural simulations, each replete with its own strengths and

constraints. Fabricated with Intel’s 14 nm technology, Loihi

is a forward-looking and continuously evolving state-of-the-art

architecture for modeling spiking neural networks in silicon.

As opposed to its predecessors, Loihi encompasses a wide

range of novel features such as hierarchical connectivity, dendritic

compartments, synaptic delays, and programming synaptic

learning rule. These features, together with solid SDK support by

Intel, and a growing research community, make Loihi an effective

platform to explore a wealth of neuromorphic features in more

detail than before.

In this study, we analyzed the sensitivity of the model cost

function (based on the ℓ2-norm) to the different parameters of the

neural model. In other words, we investigate how changing the

state parameters of the LIF model affects the validation outcomes

obtained previously and establish results that characterize the error

trend obtained by the parameter variations.

4.1. Mapping and validation

In prior work (Dey and Dimitrov, 2022), we demonstrate that

Loihi is capable of replicating the continuous dynamics of point

neuronal models with high degree of precision and does so with

much greater efficiency in terms of time and energy. The work

comes with its challenges as simulations built on the conventional

chips cannot be trivially mapped to the neuromorphic platform as

its architecture differs remarkably from the conventional hardware.

Classical simulations implemented on the Brain Modeling Toolkit

(BMTK) serve as the foundation of our neuromorphic validation.

To implement the mapping from one platform to the other,

we introduce a re-scaling parameter Vs that transforms standard

physical units used in BMTK to Loihi units and helps the mapping

of the real-value representation of model states into Loihi’s size-

constrained integer-valued state representation, based on the

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1198282
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dey and Dimitrov 10.3389/fnins.2023.1198282

FIGURE 7

Plot showing sensitivity of Loihi simulations due to integer nature of parameters stored in Loihi. (A) The RMSE values based on the variation of bias

exponent and (B) RMSE values based on the variation of δv .

available precision. In addition, we control the temporal state of

the simulations through the voltage and current decay parameters

which rely on the time-step dt. Thus, we build a function driven by

two main arguments—membrane potential scale Vs and time-step

dt that sets up the mapping protocol between the two platforms.

For validating the new simulations obtained by the above-

mentioned mapping, we use both qualitative and quantitative

measures. It can be seen that Loihi replicates BMTK very closely

in terms of both membrane potential and current, the two state

variables on which the Loihi LIF model evolves. The RMSE is

found to be as low as 4.208 ×10−5 mV/ms with a correlation of

∼ 0.9999 between the simulations. Furthermore, simulation results

indicate Loihi is highly efficient in terms of speed and scalability

as compared to BMTK, gaining acceleration up to a factor of 102

(∼ 103 for larger networks).

Thus, this work demonstrates that classical simulations based

on GLIF point neuronal models can be successfully replicated

on Loihi with a reasonable degree of precision. Additionally, the

high efficiency and low-power consumption of the neuromorphic

platform with increasing network size paves the way for a complete

replication of the mouse visual cortex dynamics, comprising

hundreds of thousands of neurons and millions of synapses.

4.2. Perturbation and sensitivity analysis

Under this section, we examine how different state parameters

of the LIF model impact the evolution of the state variables and

ultimately affect our cost function. The goal here is to determine

parameters that the model is more sensitive to and thus warrant a

careful consideration as we map these values from one platform to

the other.

This area deals with two central ideas—perturbation and

sensitivity. Perturbation denotes the deviation of the parameters

over a prescribed range of values from their initial point. On the

other hand sensitivity highlights the effect of this perturbation on

the model. We begin our work by establishing perturbation results

that specifically target the underlying character of our cost function

i.e., the ℓ2-norm. This analysis provides us a hint of the nature of

the error curves as we perturb the parameters. Next, we perform

a derivative-based analysis to establish the sensitivity of the model

to the different parameter changes, i.e., higher the rate of change,

the more its implication. From these mathematical analyses,

we establish that the perturbation trend on our cost function

would yield a global minimum, with the cost function increasing

almost exponentially as we move away from the minimum.

Moreover, the derivative-based analysis of our neural model helps

establish the parameter that has the most significant impact on

our model.

We verify our findings by enabling the simulations on both

BMTK and Loihi. The groundwork established in the previous

section sets a preamble for the execution of these implementations.

However, we find that addressing the model differences becomes

significant in establishing a comparable set of results. Thus, our

sensitivity results offer a second set of validation for our previous

validation results as the global minimum found here matches the

RMSE value obtained earlier. Moreover, findings obtained from

the mathematical analyses are supported by the simulations with

the error curve following the predicted trend. Also, of the three

parameters we choose to examine—membrane time constant (τv),

membrane capacitance (Cm) (based on “dt”) and resting potential

(EL) (based on “Vs”), EL impacts the model most significantly with

an almost 42% increase in error in the first perturbation step as

compared to 0.2% for the other two as was determined by the

derivative based-analysis.

Thus, these results echo the importance of the model dynamics

and the chosen norm function, and consequently our work sets

a premise for further investigation on this topic based on more

complex network and model dynamics.
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FIGURE 8

(A) Performance comparison between BMTK and Loihi for network sizes ranging from 1 to 20,000 for the simulation of 500 ms of dynamics. The

values for each curve are scaled by the respective smallest runtime. The Loihi runtime units are in “milliseconds” and BMTK runtime is in “seconds.”

(B) Loihi runtime for a network of up to 250K neurons for the simulation of 500 ms of dynamics.

4.3. Setting the foundation for future work

Our future work is motivated by runtime performance

comparisons for larger networks between the two platforms. As

Loihi and BMTK are based on very different hardware systems

that follow distinct dynamics and network-setup regimes, we use

the runtime of the simulations to compare the performance of

these implementations. As has been mentioned in the introduction,

performance of Loihi far exceeds that of BMTK. Figure 8 compares

the runtime of Loihi and BMTK, for running a network of

randomly connected neurons with the same parameters. The

network consists of excitatory and inhibitory neurons in a 1:1 ratio

driven by bias current, with connection probability set at 0.1.

As can be seen from Figure 8A and Table 3, Loihi easily scales

up to larger network sizes with a minuscule rise in runtime whereas

for BMTK the increase is quite rapid. While both seem to exhibit a

power-law scaling (string line on this graph), Loihi’s scaling power

is much smaller. It is also worth noting here that for Loihi the unit

for the runtime are in “milliseconds” whereas for BMTK they are in

“seconds.” Here we stop at 20,000 neurons as it can be inferred from

the graph that increasing the network size would increase the time

cost for BMTK substantially.

Furthermore, following the above outcome, we extend our

network size in Loihi only to 250K neurons in order to investigate

what potential Loihi holds to execute the final goal of simulating

about ∼250,000 neurons with ∼500 M synapses in the future, a

simulation scale comprising much of the experimentally observed

dynamics in the mouse visual cortex available to the AIBS. We

record our observations for a randomly connected network of

neurons as well as an independent set of unconnected neurons.

From Figure 8B and Table 4, we can infer that the runtime remains

consistent with the above result, with the independent set of

neurons completing the simulation marginally faster. It is worth

mentioning here that unconnected neurons will prove to be very

useful during optimization (Schuman et al., 2020).

This shows that Loihi performs well for connected networks,

setting the stage for our main aim for neural simulations.

Additionally, it also works well for independent set of neurons

which contribute to solutions of problems that require on-chip

TABLE 3 Simulation runtime in Loihi and BMTK.

Network size Loihi time (ms) BMTK time (s)

20 2.52 0.12

100 3.03 0.3

500 5.21 1.13

1,000 7.56 2.72

5,000 9.57 26.47

10,000 9.73 80.45

TABLE 4 Simulation runtime for a connected network and independent

neurons in Loihi.

Network size Connected
network (ms)

Independent
neurons (ms)

20 2.52 2.09

100 3.03 2.31

500 5.21 3.94

1,000 7.56 6.22

5,000 9.57 7.35

10,000 9.73 7.53

50,000 10.84 7.98

100,000 11.49 8.00

250,000 11.98 9.16

parameter and meta-parameter searches, e.g., for Evolutionary

Programming (Schuman et al., 2020).

We do not asses the state-based cost for these networks as

their large sizes require multi-chip simulations which we expect to

be better supported on Loihi 2 (Intel, 2022). Furthermore, other

research groups have firmly established that we cannot expect

exact replication of subthreshold network states between simulators

except for few very simple small networks (van Albada et al., 2018;

Crook et al., 2020). Thus, on the network level we need to develop
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cost functions that capture appropriate network activity details on

different scales (e.g., average spike rates and correlations on the

coarsest levels, as in van Albada et al., 2018).

Thus, in closing for this section, we want to highlight that

with the advent of Loihi 2 (Intel, 2022), we aim to address the

limitations of the larger networks and carry out the next steps of our

work in this new hardware. We are planning to investigate the full

GLIF dynamics as we would have better support for more complex

network topology and spiking dynamics. In addition, we hope to

implement a connected network of 250K neurons with specific

synaptic variables as available in the AIBS dataset. We also plan

to investigate the control and performance of temporal precision

choices. Till date, our limited conclusion for these cases is that

∼ 1 ms timestep is sufficient. This need not generalize to networks

in which other precision may be needed, with corresponding

tradeoffs to changes in the parameters. We intend to explore this

question further.

In terms of sensitivity analysis, investigation in the future would

entail employing global sensitivity analysis methods to assess the

impact of the parameters on a larger range. It would also be

interesting to examine the impact of our results for more complex

neural models, thus help bring in more insight about the intricacies

of the model. Sensitivity analysis for different spike-based cost

functions would be another avenue for exploration.

Thus, to sum up, we establish that Loihi is fully capable

of reproducing biologically relevant neural networks and does

it very efficiently. In spite of major architectural and model

differences, Loihi is able to emulate the features presented

by the conventional hardware simulations. This numerical

validation, combined with the mathematical and computing

knowledge of this new brain-like paradigm promises reliability

for the ongoing expansion in the field of brain studies and

neuroscience. The foundational work presented here equipped

with the exploration of a novel neuromorphic regime furthers

our exploration of true brain-scale networks and the various

information processing principles of this very rich and complex

organ—the brain.
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