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Analysis and prediction of 
improved SEIR transmission 
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second outbreak of COVID-19 in 
Italy as an example
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This study aimed to predict the transmission trajectory of the 2019 Corona Virus 
Disease (COVID-19) and analyze the impact of preventive measures on the spread 
of the epidemic. Considering that tracking a long-term epidemic trajectory requires 
explanatory modeling with more complexities than short-term predictions, an 
improved Susceptible-Exposed-Infected-Removed (SEIR) transmission dynamic 
model is established. The model depends on defining various parameters that 
describe both the virus and the population under study. However, it is likely that 
several of these parameters will exhibit significant variations among different 
states. Therefore, regression algorithms and heuristic algorithms were developed 
to effectively adapt the population–dependent parameters and ensure accurate 
fitting of the SEIR model to data for any specific state. In this study, we consider 
the second outbreak of COVID-19  in Italy as a case study, which occurred in 
August 2020. We divide the epidemic data from February to September of the 
same year into two distinct stages for analysis. The numerical results demonstrate 
that the improved SEIR model effectively simulates and predicts the transmission 
trajectories of the Italian epidemic during both periods before and after the 
second outbreak. By analyzing the impact of anti-epidemic measures on the 
spread of the disease, our findings emphasize the significance of implementing 
anti-epidemic preventive measures in COVID-19 modeling.
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1. Introduction

The COVID-19 pandemic has emerged as a significant global public health crisis, causing 
severe inflammation of the lungs due to a type of coronavirus. The virus’s high transmission rate, 
severe infection outcomes, and unpredictable epidemic timeline have posed an ongoing threat 
to human health, causing significant damage to the global economy. As stated by WHO Director-
General Dr. Tam Desai, this pandemic is a once-in-a-century health crisis, and its ramifications 
will last for decades. Therefore, understanding the epidemic’s spreading mechanism (1, 2), 
analyzing the impact of anti-epidemic measures on its spread (3–5), and predicting its 
development trend and turning point have become critical issues (6–8).

Since the outbreak of COVID-19, modeling and analyzing the spread of the disease has 
become a significant area of focus. Common infectious disease models can be classified into SI, 
SIS, SIR, SIRS, and SEIR models depending on the specific disease’s characteristics. While some 
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researchers have used the SIR model to analyze the epidemic situation 
in various countries (9–11), it is worth noting that COVID-19 patients 
have an exposed period and are infectious, making the SEIR model a 
more appropriate choice for analysis. Cao (12) developed an enhanced 
SEIR model that incorporated measures such as medical tracking and 
quarantine, based on limited data available in the early stages of the 
COVID-19 outbreak. In Wang’s model (13), infected individuals were 
classified into symptomatic and asymptomatic categories, and a 
network model was established to predict when Wuhan and its 
surrounding areas could resume economic activities. Tang (14) 
incorporated the contact rate and diagnosis rate dynamics into their 
model parameters. Li (15) estimated the proportion of symptomatic 
and asymptomatic infected individuals in China before January 23, as 
well as the ratio of symptomatic to asymptomatic infections. Zhang 
(16) introduced time-lag components and established a multi-stage 
time-delay dynamic model to investigate the impact of transportation 
on COVID-19 transmission. Zhong (17) developed a novel 
coronavirus pneumonia model based on transportation system 
dynamics and concluded that transportation has a positive feedback 
effect on the spread of COVID-19. Bag (18) utilized spatial statistical 
analysis to investigate the temporal and spatial patterns of COVID-19 
transmission in India. Some researchers have employed advanced 
deep learning algorithms to construct artificial intelligence models for 
predicting the epidemic’s development (19–21). However, classical 
SEIR model parameters are fixed and may not accurately reflect the 
current epidemic situation’s evolving trend. As a result, due to changes 
in government anti-epidemic measures, improvements in medical 
care, and advancements in detection capabilities over time, dynamic 
model parameters are essential (22).

Through extensive research and analysis of the current SEIR 
model based on COVID-19, it has been found that while most studies 
are capable of short-term predictions within a specified period (23, 
24), there is a lack of effective and accurate long-term prediction and 
anti-epidemic models. To address this issue, this study takes a 
comprehensive approach by considering various factors such as 
epidemic transmission characteristics (25), intervention measures 
(26), detection capabilities, and others, to enhance the classical SEIR 
model. Specifically, this model incorporates asymptomatic or mildly 
symptomatic infections and considers medical track quarantine, 
quarantine treatment, and other relevant measures in its construction. 
In order to capture the reality and complex dynamics of epidemic 
transmission more effectively, this model also incorporates distributed 
delays to define parameters such as contact rates and testing 
capabilities. Considering that certain parameters of the improved 
SEIR model require dynamic adjustments, regression algorithms and 
heuristic algorithms are utilized to calibrate these parameters, thereby 
enhancing the robustness of the model. The Italian epidemic (27, 28) 
experienced a second outbreak in August 2020. A survey by the Italian 
Business Association found that 21.1 million Italians went on holiday, 
accounting for 40% of the total population, which may have 
contributed to the epidemic’s resurgence (29). Thus, we analyze the 
Italian epidemic in two stages, with August 1st, 2020 as the cut-off 
point. The first stage pertains to the initial wave of the epidemic, while 
the second stage relates to the rebound after the resurgence. In this 
study, official announcement data from February to September 2020 
was utilized. For each stage, a portion of the data was properly 
allocated as a training set to perform model parameter inversion. The 
data not included in the model training process was used to evaluate 

the predictive performance of the model and predicted the endpoint 
of the epidemic under these preventive measures. Additionally, 
sensitivity analysis experiments were conducted on the epidemic-
related parameters in the model to analyze the impact of anti-epidemic 
measures on the spread of the disease.

2. Materials and methods

2.1. Model assumptions

It is essential to consider the divergence between the actual 
situation and the model. Therefore, this study incorporates the 
transmission characteristics of COVID-19 and makes several 
assumptions regarding the model, which are as follows:

 1. Patients in the incubation period are able to infect susceptible 
individuals, while recovered patients are immune to reinfection 
due to the presence of antibodies. Furthermore, asymptomatic 
infections have a low mortality rate, and therefore, are not 
taken into consideration at present. Additionally, it is assumed 
that patients in quarantine areas are not infectious.

 2. We have chosen the scenario of “closing the city” in China’s Hubei 
province as a template for our model. It should be noted that this 
model is structured as a closed node and does not account for 
population inflow/outflow or birth/death rates. While these 
factors may have an impact on the spread of COVID-19, they are 
not considered within the scope of this study.

 3. Firstly, it is assumed that during the early stages of the outbreak, 
all residents complied with the government’s call to stay at home 
and wear masks while outside. Secondly, while most previous 
studies define the contact rate as a constant parameter, this does 
not accurately depict the dynamic implementation of anti-
epidemic measures in different countries. It is recognized that 
not all infected individuals can be  promptly detected. 
Considering that distributed delay plays a crucial role in 
capturing the time lag between infection, symptom onset, and 
subsequent transmission. Incorporating distributed delay in 
SEIR models helps to account for the variability observed in the 
incubation period, the time from infection to the development 
of symptoms, as well as other factors that influence disease 
progression and transmission (30). Therefore, Main novelty of 
this improved SEIR model is its ability to incorporate changes 
in contact rate c, detection capability T, and recovery rate 
through time varying deterministic and stochastic assumptions. 
The specific expressions utilized are outlined below:
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In the equation, ∂  represents the maximum contact rate at the 
initial stage, while b denotes the minimum contact rate. Due to 
successful implementation of prevention and control measures, the 
likelihood of infected individuals coming into contact with 
susceptibles is significantly reduced, thus we assume that b = 0. The 
coefficients d1 and d2, on the other hand, refer to the rate of change in 
detection capability.

During an epidemic, variations in medical treatment and human 
immunity can cause fluctuations in the daily recovery rate. In order to 
account for these fluctuations, we calculate the daily recovery rate 
using the following equation:
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R (t) represents the number of individuals who have recovered on 
a given day, while R (t-1) denotes the number of individuals who had 
recovered the previous day. Additionally, I  (t-1) is the number of 
existing patients on the previous day.

To calculate the relationship between the daily recovery rate and 
time during an epidemic, we utilize Eq. (3) to determine the actual daily 
recovery rate. Next, we establish the following regression equation:

 γ ε ε ε= + × + ×0 1 2
2t t  (4)

The regression coefficients ε0 , ε1 , ε2  are calculated by gradient 
descent method.

2.2. Improvement of SEIR model

In the traditional SEIR model, there are four categories of individuals: 
susceptible (S), exposed (E), infected (I), and recovered (R). However, 
this model has limitations in accurately simulating the actual epidemic 
spread. To address these limitations, we have improved the model by 
dividing the infected (I) category into two subcategories: asymptomatic 
infected (A) and symptomatic infected (I), as well as hospitalized (H) and 
deceased (D). Additionally, given the government’s measures to track the 
contacts of infected individuals, we further divided those in close contact 
with infected individuals into two subcategories: quarantined susceptible 
(Sq) and quarantined exposed (Eq).

In our improved model, we define q as the track quarantine ratio, 
β  as the probability of infection, and c as the contact rate. Close 
contacts are quarantined at a rate of q, and if they become infected, 
they are transferred to the quarantined exposed (Eq) category at a rate 
of βcq . Otherwise, they will be  transferred to the quarantined 
susceptible (Sq) category at a rate of 1−( )β cq . Quarantined exposed 
individuals (Eq) are then transferred to hospital quarantine treatment 
at a rate of δq , while quarantined susceptible individuals (Sq) are 
removed from quarantine and moved into the susceptible (S) category 
at a rate of λ . The population transformation relationships are 
illustrated in Figure 1.

An improved differential equation of SEIR transmission dynamics 
is as follows:
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Parameter settings are shown in Table 1.

2.3. Parameter estimation

Since the improved SEIR model relies on multiple parameter 
specifications provided in Table  1, with some parameters being 
dynamic and exhibiting significant variations across different states, 
the crucial task is to calibrate the relevant parameters within the 
model (31, 32). The primary objective is to ensure that the improved 
SEIR model is suitable for data from any given state. To achieve this 
goal, we utilize both regression algorithms and heuristic algorithms to 
estimate the model parameters based on actual data from February to 
May 2020.

2.3.1. The regression algorithm fits the daily 
recovery rate

The regression algorithm is a widely used supervised learning 
algorithm in machine learning. In our study, we employ the gradient 
descent algorithm to solve for the regression coefficients and identify 
the nonlinear relationship between the number of days and the daily 
recovery rate. Specifically, we assume that the functional relationship 
between time and recovery rate can be  represented by the 
following equation:

 γ ε ε ε= + × + ×0 1 2
2t t  (6)

Within our equation, t represents the number of days, and 0 , 1 , 
and 2  denote the regression coefficients. These coefficients are used to 
estimate the nonlinear relationship between time and the daily 
recovery rate.

In our study, we  utilize the mean square error criterion to 
establish an expression for the loss function. This criterion is 
defined as the average of the squared distances between the 
predicted values and the actual values. By employing this criterion, 
we can accurately measure the deviation between predicted and 
actual values in our model.
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FIGURE 1

Population transformation diagram of the improved SEIR model.

TABLE 1 Improved SEIR transmission dynamics differential equation parameter table.

Parameter Definition Value Source

β infectious rate 0.099 Estimated

q track quarantine ratio 0.5 Estimated

c contact rate Eq. (1) Estimated

∂ initial maximum contact rate 28.3 Estimated

λ quarantined release rate 1/14 References (13)

υ
the regulator of infectious probability in 

exposed
0.692 Estimated

σ conversion rate from exposed to infected 1/7 References (12)

T detection capability Eq. (2) Estimated

θ
the regulator of infectious probability in 

asymptomatic infected
0.88 Estimated

ρ probability of symptomatic infected 0.14 References (15)

δI
quarantined rate of symptomatic 

infected
0.13 References (12)

δq
Conversion rate from quarantine 

exposed to quarantine healer
0.13 References (12)

αI death rate of symptomatic infected 0.1 Estimated

αH
death rate of patients in quarantine 

treatment
0.0065 Estimated

γI recovery rate of symptomatic infected Eq. (10) Estimated

γA recovery rate of asymptomatic infected Eq. (10) Estimated

γH
recovery rate of patients treated in 

hospitalized
Eq. (10) Estimated
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Where J ε( )  is the loss function, Y t( )  is the sample observation 
value, γ t( )  is the prediction value, and k  is the number of data sets.

We derive the partial derivation of the loss function J ε( ) :

 
∇ ( ) = ( ) − ( )( )× ( )=∑J

m
ε γ

1
1i

m Y t t P j
 (8)

The P j( )  is the independent variable corresponding to the j  
coefficient.

Then we  initialize ε  randomly, and then iterate along the 
direction of negative gradient, so that the updated ε  makes J ε( )  
smaller. The equation is as follows:

 
ε ε α γj j= − × ( ) − ( )( )× ( )=∑i

m Y t t P j1  (9)

Where α  is the learning rate. When ε j  drops to a certain point 
or a defined minimum value, it stops descending, and substitutes the 
ε j  into the loss function to get the minimum value. The regression 
coefficient is estimated and the regression equation of γ  is obtained. 
The fitting results are shown in Figure 2.

We calculated that γ  is the overall recovery rate, but the recovery 
rate of the infected (I) and the infected (A) is different in reality. 
Therefore, we give reasonable assumptions based on the fitting effect 
of the model.

Assuming γ γA I= ×1 5. , γ γI H= , according to the ratio of the 
number of infected (I) to infected (A), the results can be calculated:
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2.3.2. Heuristic algorithm to obtain model 
unknown parameters

Heuristic algorithms are applied to numerous real-world problems, 
allowing for the approximation of effective solutions in situations 
where guaranteeing the optimal solution is not feasible. Using 
heuristic-based models has contributed to a better understanding of 
the transmission trajectory of epidemics and increased the reliability 
of simulations (33). In this study, the Genetic Algorithm (GA) was 
utilized to calibrate the relevant parameters within the model. The 
objective of the algorithm is to optimize specific state-dependent 
parameters in order to enhance the agreement between the model and 
data. Each set of parameters for the SEIR model, along with the 
corresponding results, is referred to as an “agent.” Each agent possesses 
a unique input set of state-dependent parameters, which serves as its 
genome. The genome is comprised by a list of the state-dependent 
parameters: initial maximum contact rate ( ∂ ), infection rate ( β ), 
track quarantine ratio ( q ), death rate of symptomatic infection (αI ), 
death rate of patients in quarantine treatment (αH ), the ratio of the 
propagation capacity of exposed to infected (υ ), and the regulator of 
infectious probability in asymptomatic infected (θ ).

In order to optimize the parameters using a genetic algorithm, the 
agents’ performance is evaluated based on their “fitness,” which 
measures how well the agent matches the available data. In this study, 
fitness is determined by comparing the SEIR model’s results with the 
available data on cases, recoveries, and deaths. The fitness value is 
calculated using Eq. (11).

FIGURE 2

Fitting effect graph based on Italian daily recovery rate data.
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Z1  is the official daily number of cumulative infected cases, Z2  
is the number of cumulative recovered cases, Z3  is the number of 
cumulative deaths cases.

Specifically, we set value ranges and sampling intervals for the 
unknown parameter set ω = ∂{ }, q, , , , ,Hβ α α υ θI  and utilized a 
genetic algorithm to randomly sample the parameters. The sampled 
values were then brought into the modified SEIR model, generating 
2000 Monte Carlo simulations from the model. Using simulated data 
of the parameters as samples, we obtained the 95% confidence interval 
as the new sampling interval. Following further sampling using the 
genetic algorithm within the revised parameter intervals, the optimal 
value of the parameter set ω  is revealed in Table 2.

3. Model verification and analysis

3.1. Model verification

In this study, we utilized China’s Hubei anti-epidemic methods as 
a reference to analyze and predict the second outbreak of the Italian 
epidemic. Due to the gradual stabilization of the COVID-19 situation 
in Italy in July 2020, this study first simulated and predicted the 
hypothesis that there will be no second outbreak of the COVID-19 in 
Italy. The cases recorded from February to May 2020 were selected as 
the training set to calibrate the parameters of the improved SEIR 
model, while the cases from June to July were used as data not used 
for model fitting to evaluate the predictive performance of the SEIR 
model. The analysis results, as depicted in Figure 3, indicate that in the 
absence of a second outbreak, the epidemic was largely under control 
by late July 2020. Based on our model prediction, the peak number of 
cumulative infected cases would be approximately 250,000 (95%CI: 
218,000-287,000), the peak number of cumulative recovered cases 
would be around 210,000(95%CI: 186,000-239,000), and the peak 
number of cumulative deaths would be approximately 36,000(95%CI: 
31,700-41,600). Furthermore, since February 24, 2020, the actual daily 
cumulative number of reported cases in Italy has been mostly within 

the 95% confidence interval of the model simulation results, 
highlighting the accuracy of our simulation and prediction.

Assuming that August 1st, 2020 marked the beginning of the 
second outbreak, we utilized the above model to conduct simulations 
from that day onwards. Due to intensified government anti-epidemic 
measures and changes in public perception compared to the initial 
phase of the epidemic,we refitted the model parameters using actual 
cases collected in August 2020. The cases collected in September were 
used as data not used for model fitting to evaluate the predictive 
performance of the SEIR model. The corrected parameters were then 
incorporated into the model. As illustrated in Figure 4A, according to 
this simulation model, the Italian epidemic situation would be largely 
under control by late October 2020, with the number of cumulative 
infected cases peaking on November 1st, 2020. Additionally, 
Figures 4B–D demonstrate the absolute error existing between the 
simulated data and actual data.

Based on the simulated and predicted results of the epidemic 
during the two mentioned time periods, the improved SEIR model 
eventually converges to a stable equilibrium state. This implies that as 
time progresses, the population sizes of each group reach a steady 
value, with no significant changes occurring. In this equilibrium state, 
the spread of the infectious disease is balanced with the rate of 
recovery or immunity, resulting in either the cessation of transmission 
or maintaining it at a low level within the population (34). This also 
indicates the existence of global solutions within this model (35).

3.2. The impact of anti-epidemic measures 
on the spread of the epidemic

To analyze the impact of anti-epidemic measures on the trend of 
the epidemic, we employ sensitivity analysis experiments within our 
model. Specifically, we observe the development of the epidemic in 
Italy since August 1st, 2020 through changes in the track quarantine 
ratio q. As illustrated in Figure 5, reductions in the proportion of track 
quarantine to 0.8q and 0.6q resulted in increases in the number of 
cumulative infections. Conversely, when the proportion of track 
quarantine was increased to 1.2q and 1.4q, the number of cumulative 
infections decreased accordingly. These findings demonstrate that 
strict medical track quarantine is an effective means of preventing the 
spread of the epidemic.

TABLE 2 Confidence interval and values of parameters.

Parameter 95%CI Value

initial maximum contact rate ( ∂ ) (27.5–28.7) 28.3

infection rate ( β ) (0.098–0.102) 0.099

track quarantine ratio ( q ) (0.493–0.511) 0.5

death rate of symptomatic infection ( αI ) (0.098–0.139) 0.1

death rate of patients in quarantine treatment ( αH ) (0.0064–0.0074) 0.0065

the ratio of the propagation capacity of exposed to 

infected (υ )

(0.687–0.696) 0.692

the regulator of infectious probability in asymptomatic 

infected (θ)

(0.872–0.885) 0.88
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As government interventions on the epidemic become more 
stringent, residents are encouraged to stay at home, reduce their number 
of trips, and practice personal protection measures. This results in a 
decrease in the dynamic variable for the contact rate of infected 
individuals, as shown in Eq. (1). The minimum contact rate b can 
be expressed as the final steady state of the infected persons’ contact rate 
under anti-epidemic measures. Given that this model is based on China’s 
strict anti-epidemic measures, we assume that the minimum contact rate 
is b = 0. However, it is important to consider the impact of changes in b 
on the epidemic under different anti-epidemic measures, as not all 
countries can implement measures as strict as China’s.

Through simulation, we find that increasing the value of b leads to 
an increase in the number of cumulative infected cases during the 
second stage of the epidemic, as illustrated in Figure 6. When b reaches 
0.6 and 0.8, there is a significant increase in the number of cumulative 
infected cases. However, when b equals 0.3, the increase is less 
noticeable. These findings suggest that reducing the flow of people can 
achieve a similar effect to a completely enclosed quarantine. 
Additionally, Figure 7 demonstrates that the time taken to reach the 
peak number of cumulative infected cases also increases with the rise 
of b. Therefore, by strengthening anti-epidemic measures and reducing 
population movement, it is possible to effectively lower the peak 
number of infections and bring the epidemic under control earlier.

4. Conclusion

This study proposes an improved SEIR epidemiological model to 
retrospectively analyze and predict the transmission trajectory of 

COVID-19 in Italy from February to September 2020. In this model, 
besides considering specific states for different population groups, 
dynamic parameter settings are incorporated by adding time varying 
deterministic and stochastic assumptions. This enables the model to 
better capture the realistic and complex dynamics of the epidemic spread. 
It is worth noting that some parameters of the improved SEIR model 
exhibit significant variations across different states. Therefore, regression 
algorithms and heuristic algorithms are used to calibrate these 
parameters, making the model applicable to data from any given state. 
By simulating and predicting the transmission trajectories during two 
periods, before and after the secondary outbreak in Italy, the numerical 
results demonstrate that the model possesses good long-term predictive 
performance and robustness. The model was then utilized to analyze the 
impact of anti-epidemic measures on the epidemic’s development and 
predict future trends. The results indicate that:

 1. Strict medical track quarantine is effective in restraining the 
epidemic’s development.

 2. Reducing population movement, practicing personal 
protection, and avoiding contact with infected individuals can 
effectively reduce the peak number of infections, leading to 
earlier control of the epidemic.

 3. Lowering the proportion of population movement can achieve 
similar outcomes to complete lockdowns.

To curb the epidemic’s growth, Italy must enhance anti-epidemic 
measures, reduce population movement, and promote public 
awareness of epidemic prevention measures to maintain the minimum 
contact rate of infected individuals within a small range.

FIGURE 3

The simulation results of the epidemic situation in Italy without a second outbreak.
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FIGURE 4 (Continued)

The simulation results of the epidemic situation in the case of a second outbreak in Italy. (A) Simulation and prediction of the second outbreak in Italy. 
(B) Absolute error of cumulative infected cases. (C) Absolute error of cumulative recovered cases. (D) Absolute error of cumulative dead cases.
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FIGURE 6

The impact of changes in the minimum contact rate b  on the number of cumulative infected cases.

FIGURE 5

The impact of track quarantine on the spread of the epidemic.
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As this model was based on a closed space, it did not account 
for the inflow and outflow of populations between Italy and 
other countries. Thus, we plan to conduct further research by 
launching SEIR model simulation studies that take into 
consideration transportation, temporal and spatial distribution, 
population movement, and multiple patches. Through these 
analyses, we aim to develop an epidemic spread prediction and 
precise prevention control system based on temporal and spatial 
big data. This will provide more comprehensive insights into the 
dynamic nature of COVID-19 transmission, allowing authorities 
to formulate more effective measures to prevent and curb 
its spread.
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FIGURE 7

The impact of the change in the minimum contact rate b  on the peak time of the number of cumulative infected cases.
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