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Introduction: While many everyday choices are between multi-attribute options, 
how attribute values are integrated to allow such choices remains unclear. Recent 
findings suggest a distinction between elemental (attribute-by-attribute) and 
configural (holistic) evaluation of multi-attribute options, with different neural 
substrates. Here, we  asked if there are behavioral or gaze pattern differences 
between these putatively distinct modes of multi-attribute decision-making.

Methods: Thirty-nine healthy men and women learned the monetary values 
of novel multi-attribute pseudo-objects (fribbles) and then made choices 
between pairs of these objects while eye movements were tracked. Value was 
associated with individual attributes in the elemental condition, and with unique 
combinations of attributes in the configural condition. Choice, reaction time, 
gaze fixation time on options and individual attributes, and within- and between-
option gaze transitions were recorded.

Results: There were systematic behavioral differences between elemental and 
configural conditions. Elemental trials had longer reaction times and more 
between-option transitions, while configural trials had more within-option 
transitions. The effect of last fixation on choice was more pronounced in the 
configural condition.

Discussion: We observed differences in gaze patterns and the influence of last 
fixation location on choice in multi-attribute value-based choices depending on 
how value is associated with those attributes. This adds support for the claim 
that multi-attribute option values may emerge either elementally or holistically, 
reminiscent of similar distinctions in multi-attribute object recognition. This 
may be important to consider in neuroeconomics research that involve visually-
presented complex objects.
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1. Introduction

Whether choosing your major in college or what to eat for breakfast, decisions are often 
between complex options with multiple value-predictive attributes. At breakfast, for example, 
options might be evaluated on their healthiness, taste, and visual appeal. How are these multiple 
attributes considered during decision-making? In principle, multi-attribute options might 
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be evaluated “elementally” by aggregating the subjective motivational 
value of individual attributes, or “configurally” by assigning a value to 
the whole option based on its unique combination of attributes.

Research on multi-attribute decision-making has generally 
studied elemental evaluation strategies, often using process tracing 
methods (Ford et al., 1989). Attributes are typically explicitly presented 
in tables (a.k.a. information boards), usually as text, and the pattern 
of information acquisition as participants view each piece of 
information is used to shed light on the underlying evaluation 
processes (Payne, 1976; Payne et al., 1992; Bettman et al., 1998). Other 
research on value-based decision making has used visually presented 
multi-attribute objects such as foods, trinkets, or artwork either 
without addressing how overall values emerge from these attributes 
(Busemeyer et al., 2019), or by assuming that individual elements are 
valued and then combined to estimate the overall value or influence 
choice (Lim et al., 2013; Suzuki et al., 2017; Vaidya et al., 2018).

An alternative perspective on multi-attribute evaluation is offered 
by neuroscience research on complex object recognition. This work 
has established that there are distinct neural substrates for 
representations of lower-level visual features and for multi-feature 
configurations that allow whole object recognition (Riesenhuber and 
Poggio, 1999; McTighe et al., 2010). For example, perirhinal cortex 
damage impairs object recognition based on unique configurations of 
features while sparing ‘elemental’ recognition based on individual 
features (Bussey et al., 2005). There are also behavioral differences 
suggesting that information is acquired differently in these two forms 
of object recognition: for example, gaze patterns differ during 
configural compared to elemental recognition of faces (Bombari et al., 
2009, 2013; Boutet et al., 2017).

Similar elemental and configural distinctions recently have been 
proposed for the evaluation of multi-attribute objects. Damage to 
ventromedial frontal lobe (VMF), a region implicated in tracking 
option value, was associated with impaired choices between novel 
multi-attribute pseudo-objects (fribbles) only when value was related 
to attribute configuration; choices based on summing the individual 
values of attributes remained intact (Pelletier and Fellows, 2019). A 
follow-up eye-tracking and fMRI experiment that asked healthy 
people to estimate the value of fribbles presented one at a time found 
that gaze patterns, as well as activity in VMF and perirhinal cortex, 
differed in configural and elemental value conditions (Pelletier 
et al., 2021).

The decision neuroscience literature has argued that gaze, as a 
proxy of attention, can provide additional insights into choice 
processes beyond what may be inferred from reaction time and choice 
behavior (Krajbich et  al., 2010). Binary value-based choice 
experiments have shown that longer fixation of an option increases 
the likelihood of choosing that option, that the option that is fixated 
last has a higher probability of being chosen, and that the option 
fixated more over the course of a trial is more likely to be chosen 
(Krajbich, 2019), in line with models proposing sequential sampling 
of information to reach a decision. Of note, such tasks have typically 
involved visual images of complex multi-attribute objects such as 
snack foods or trinkets.

Here, we asked if these behavioral and eye-tracking outcomes 
differ across configural and elemental multi-attribute evaluation 
conditions in healthy young men and women. Participants made 
binary value-based choices between fribble stimuli in two conditions, 
with value either associated with individual attributes or the configural 

relationship between attributes. Because fribble attributes are spatially 
distinct, eye-tracking could be used to infer information acquisition 
strategies at both the attribute and the whole option level. 
We hypothesized that gaze transition patterns would systematically 
differ across conditions, with the elemental condition prompting an 
attribute-based strategy with more between-object transitions and the 
configural condition promoting option-based information acquisition 
with more within-object transitions. We  also tested whether the 
relationships between gaze patterns and choice considered to 
be hallmarks of sequential sampling differed across conditions.

2. Materials and methods

Forty-one adults were recruited from the local community 
through online advertising. Participants had normal uncorrected 
vision, no history of neurological or psychiatric conditions, and had 
no prior experience with the fribble stimuli. In addition to 
compensation of 15$ per hour, participants received a monetary 
bonus based on task performance. Two participants did not complete 
the full experiment due to time constraints. The final sample of 39 
participants had a mean age of 22y, SD 2.7, mean education 16y, SD 
2.1, and was comprised of 25 women and 14 men. Participants gave 
written informed consent in accordance with the Declaration of 
Helsinki. The study was approved by the McGill University Health 
Centre Research Ethics Board.

All participants were tested in-lab on a desktop computer 
equipped with a 19-inch monitor. Experiments were programmed in 
Matlab (version 2019b, The Mathworks, Inc.), using the Psychtoolbox 
extension (Brainard, 1997). Eye movements were recorded from the 
left eye with a desk-mounted eye tracker (EyeLink 1,000 Plus, SR 
Research) with a sampling frequency of 1,000 Hz. Fixation information 
was extracted from the EyeLink algorithm (position, duration). To 
separate attributes of fribbles into distinct regions of interest (ROI), 
we partitioned the fribbles in two using a Voronoi tessellation. A 
fixation within an ROI of a fribble followed by a fixation in the other 
ROI of the same fribble was coded as a within-object transition, and 
a fixation within an ROI of a fribble followed by a fixation in an ROI 
of the other fribble was coded as a between-object transition.

The experimental paradigm was adapted from Pelletier and 
Fellows (2019). Stimuli were renderings of three-dimensional pseudo-
objects called fribbles, originally developed for object processing 
research (Williams and Simons, 2000; Barry et al., 2014). Fribbles are 
composed of one main ‘body’ and several appendages, which we refer 
to as attributes. Each set of fribbles had three possible forms for the 
upper attribute (A, B or C) and the lower attribute (x, y or z). 
Participants were told that these fribbles were collectors’ items, and 
that they would learn their market values by observing online 
‘auctions’. In the learning phase of the task, they were trained on the 
approximate monetary values of each fribble by watching such 
auctions until they reached a learning criterion. This was followed by 
a choice phase, where participants chose between pairs of fribbles 
while eye-tracking data were acquired. Chosen fribbles were added to 
the participant’s own inventory. Participants were told they would sell 
their inventory back to the experimenter at the end of the experiment, 
and receive a monetary amount proportional to the proceeds of the 
sale as part of their compensation for participation, thus incentivizing 
them to choose the highest value fribbles throughout the choice phase.
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The task had two conditions: in the configural condition, the value 
of each fribble was predicted by the object as a whole through the 
configural relationship of two attributes (i.e., unique attribute 
combinations, denoted here Ax, By, Cz, Cx, Bz, Ay). This meant that 
an individual attribute did not predict a unique value; instead, its value 
could only be inferred in the presence of the second attribute, i.e., the 
value was related to the whole object. In the elemental condition, each 
individual attribute (denoted here A, B, C and x, y, z) was associated 
with a unique value, i.e., the value of one attribute did not depend on 
the other attributes that made up the fribble. Thus, the overall fribble 
value could be derived by summing individual attribute-values (see 
Figure  1). Different sets of fribbles were used for each condition, 
counterbalanced across participants. In the elemental condition, all 
possible combination of attributes were shown, resulting in 9 fribbles. 
Six unique fribbles were used in the configural condition.

The structure of the experiment is depicted in Figure 2A. In the 
elemental condition, participants were trained on the value associated 
with individual attributes. To simplify the training, in each learning 
set only 4 out of the 6 possible attributes were used (e.g., A, B, x, y). 
On each training trial, one fribble was shown, and the selling price 
then appeared in the upper right corner of the screen (Figure 2B). 
Monetary values were drawn at random from a distribution around 
the following mean values: A = 7$, B = 28$, C = 42$%; x = 14$, y = 21$, 
z = 35$. Learning trials were self-paced. Participants were instructed 
that the selling price was related to a single attribute of the fribble. This 
instruction was further emphasized by highlighting the informative 
attribute, i.e., by masking the body and irrelevant attributes of the 
fribble with a semitransparent mask. Each fribble was shown 8 times, 
for a total of 32 learning trials in a block, followed by a learning probe. 
The learning probe trials showed two fribbles on the screen, varying 

on the same 4 attributes as during training, with the relevant attribute 
highlighted as during training, and participants were instructed to 
select the fribble whose “highlighted” attribute had the higher value, 
using left and right arrow keys (Figure 2C). In the learning probe, the 
6 possible pairs were shown 8 times, for a total of 48 learning probe 
trials. The learning probe was stopped if the participant made the 
same mistake (chose the lower-value attribute) more than once. In this 
case, the learning block was repeated. The next learning set used 
another subset of 4 attributes out of the possible 6 (ex: B, C, y and z), 
as did the third learning set (ex: C, A, z and x), following the 
same training.

After completing the three learning sets, participants then moved 
to the final probe, involving all 6 attributes presented in all possible 
pairs (9 fribbles). Each of the 36 possible choice combinations were 
presented 5 times for a total of 180 choice trials. On these trials, 
participants were told to consider the values of both attributes of each 
fribble when making their choice. No mask was used on these trials, 
so all attributes were equally visually salient. These trials were self-
paced. Participants’ gaze was tracked during these final probe trials.

Training in the configural condition followed the same format as 
the elemental condition except that no mask was used during learning 
and there were only 6 fribbles. Participants were instructed that selling 
price was related to the unique combination of attributes that made 
up the fribble as a whole, and were trained on a subset of 4 fribbles at 
time until they met the learning criterion. The selling values were 
drawn at random from a distribution around the following mean 
values: Ax = 7$, By = 14$, Cz = 21$, Cx = 28, Bz = 35, Ay = 42. This was 
followed by a final probe in which each of the 15 possible combinations 
of attributes was shown 6 times for a total of 90 trials.

The primary analysis included all 90 configural trials and a subset 
(N = 77) of the elemental trials that were matched to the configural 
trials for decision difficulty in terms of relative value and the 
requirement to consider both attributes of each fribble. This meant 
that choices in which the value difference between fribble pairs was 
greater than the range of value differences in the configural set 
(maximum difference $35), or where fribbles only differed by a single 
attribute, or where a single attribute was of such high value that on its 
own it was greater than the sum of the values of the attributes of the 
other fribble, were excluded.

Linear mixed effect (LME) and generalized linear mixed effect 
(GLME) models were implemented in R (lme4 package, Bates et al., 
2015). LME models were used when the dependent variable was 
continuous. GLME models were used when the dependent variable 
was either a count or a binomial, and were fitted with either a Poisson 
or a binomial distribution, respectively. All models included subject 
as a random factor, and other predictors are specified for each model 
in the Results section. Model outputs of LMEs are estimates and are 
interpretable directly. GLME models for count data provide incidence 
rate ratios (IRR). Here, these are interpretable as the occurrence ratio 
of the dependent variable in the configural condition compared to the 
elemental condition. Since the elemental condition was the reference 
condition, an IRR > 1 indicates a higher rate of occurrence in the 
configural condition, and an IRR < 1 indicates a higher rate of 
occurrence in the elemental condition. GLME models for binomial 
data output odds ratios. These ratios indicate, as a proportion, the 
relative occurrence of the dependent variable for the configural 
condition compared to the elemental condition. The elemental 
condition was the reference condition, so an odds ratio > 1 indicates a 

FIGURE 1

Stimuli. Example of pairs from two families of fribbles, used for each 
condition. In the elemental condition, each attribute has a value, and 
a fribble’s value is the sum of its two attributes’ values. In the 
configural condition, no value is assigned to attributes individually, 
rather each attribute combination has a value.
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higher occurrence in the configural condition while an odds ratio < 1 
indicates a lower occurrence in the configural condition. For GLME 
models with 2-way interactions, odds were calculated according to the 
following formula:

 odds EXP E C c F f I c f= + ∗ + ∗ + ∗ ∗( )

where E = intercept estimate, C = condition estimate, c = condition 
code (0 for elemental and 1 for configural), F = other fixed factor 
estimate, f = other fixed factors code (or value if continuous), and 
I = interaction estimate.

Payne Index values were calculated from the eye-tracking data for 
each trial with the following formula:

 
PI

transitions within objects transitions between objects
=

−(     ))
+( )transitions within objects transitions between objects    

The value can range between −1 to +1, with −1 indicating an 
entirely between-object strategy and + 1 indicating an entirely within-
object strategy.

3. Results

3.1. Learning

The number of learning blocks required to meet criterion is shown 
in Table 1. Participants required more training to meet criterion in the 
configural than the elemental condition. In the configural condition, 
67% of learning sets were learned after one training block and 21% 

required two training blocks, compared to the elemental condition 
where 91% of sets were learned after one training block and 8.6% 
required two blocks. A chi-square test of independence showed that 
there was a significant association between condition and learning (X2 
(3, N = 234) = 25.31, p < 0.001, φ = 0.33).

3.2. Reaction time and accuracy

We first verified that elemental trials where a single attribute was 
sufficient to make the correct choice (where fribbles only differed on 
a single attribute or where there was a ‘dominant’ attribute that alone 
was of higher value than any combination of attributes) were 
behaviorally distinct from the two-attribute elemental trials of interest. 
The reaction times were indeed much shorter for the elemental trials 
involving fribbles that differed on a single attribute (M 2697 ms, SD 
2101) compared to the elemental trials where both attributes differed 
(M 3817 ms, SD 4497; t (5380) = −11.2, p < 0.001, d = 0.86) and to 
configural trials (M 3155 ms, SD 2975; t(5887) = −6.51, p < 0.001, 
d = 0.37). All remaining analyses focused on the elemental trials that 
required consideration of two attributes for each fribble, as this was 
most comparable to the information processing requirements of the 
configural condition.

An optimal response was defined as the choice of the objectively 
higher value fribble. Although the difficulty of the decisions based on 
the subjective value difference between options was similar across 
conditions, and participants were trained to the same criterion in both 
conditions, choices were slower and more accurate in the elemental 
condition (Table  1). GLME models with condition as a predictor 
confirmed a significant effect of condition on proportion of optimal 
choices, and on and reaction time (Table 2).

FIGURE 2

Experiment paradigm. (A) Structure of the experiment. Participants went through 3  cycles of learning trials and probes with a subset of stimuli to learn 
the values of either attributes (in the elemental condition) or configurations of attributes (in the configural condition). (B) Learning trials. These trials 
included presentation of a fribble (with a mask highlighting a specific attribute in the elemental condition), followed by an associated monetary 
amount. (C) Probe trials. These trials had two fribbles presented and participants were instructed to pick the higher-value fribble using arrows on the 
keyboard in a self-paced fashion. In the elemental learning probes, specific attributes were highlighted like in the elemental learning trials depicted in 
panel B.
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3.3. Eye-tracking indicators of information 
acquisition

Eye-tracking data indicated that all four informative attributes 
were fixated on most trials in both conditions, with a mean of 3.57 
attributes fixated per trial in the elemental condition and 3.48 in the 
configural condition (Table 1). A GLME model analysis with condition 
as a predictor revealed a marginal effect of condition (p = 0.069), with 
participants tending to fixate more attributes in the elemental than in 
the configural condition.

We next compared gaze transition metrics, taking an approach 
inspired by process tracking in decision psychology “information 
board” experiments. Raw counts of gaze transitions within objects and 
between objects were compared across conditions (Table 1). A GLME 
model fitted with a Poisson distribution with condition as a predictor 
revealed no significant effect of condition on the raw count of within-
object transitions (p = 0.351; Table 3). The same model on the raw 
count of between-object transitions yielded a significant effect of 
condition with more between-object transitions in the elemental 
(M = 1.95) than in the configural condition (M = 1.33). The IRR 
indicates that the model predicts more between-object transitions in 
the elemental condition than the configural condition with a ratio of 
1 to 0.68 (p < 0.001; Table  3). This difference in between-object 
transitions persisted even after accounting for the observation that 
trials were longer in the elemental condition, by adding RT at the trial 
level as an offset variable predictor. Accounting for RT also revealed a 
significant effect of condition on within-object transitions (Table 3; 
Figure 3).

To allow comparison with the decision psychology literature, 
we  also calculated the Payne Index for each trial across the two 

conditions to assess the relative occurrence of within-object and 
between- object transitions. The average Payne Index in the configural 
condition was 0.43 and 0.27 in the elemental condition (Figure 3D; 
Table 1). An LME model with condition as a predictor revealed a 
significant effect of condition (Table 3). Thus, while both conditions 
tended towards within-object processing (Payne Index >1), this 
tendency was more evident in the configural condition. Adjusting for 
reaction time was not necessary, as the difference between the two 
types of transitions was divided by the total number of transitions for 
each trial.

3.4. Effect of last fixation location on 
choice

We next examined gaze effects on choice predicted by evidence 
accumulation models. A one-sample t-test revealed that for all 
conditions together, the mean proportion of trials where the last 
fixated option was chosen (72% of trials, SD 0.45) was significantly 
different than 50% (t (6512) = 40.22, p < 0.001, d = 0.45). A GLME 
model with condition as a predictor revealed a significant effect of 
condition (p < 0.001), with more trials where the last fixated option 
was chosen in the configural condition than in the elemental condition 
(Figure 4A; Table 1). The Odds Ratio indicates that in the configural 
condition there were 50% more trials in which the last-fixated option 
was chosen (Table 4).

Given the apparent difference in effects between conditions, 
we  examined the interaction between last fixation location and 
condition. The proportion of choices of the left option as a function of 
whether the left option was fixated last are presented in Figure 4B. In 
the configural condition, the left option was chosen in 26% (SD 0.44) 
of the trials where the last fixation was on the right option compared 
to 78% (SD 0.42) of trials where the last fixation was on the left option. 
In the elemental condition, the left option was chosen in 34% (SD 
0.47) of the trials where the last fixation was on the right option 
compared to 70% (SD 0.46) of trials where the last fixation was on the 
left option. A GLME model fit with a binomial distribution with the 
interaction of condition and last fixation location as a predictor 
revealed a significant interaction of condition and last fixation location 
on choice, suggesting that the effect of last fixation location on choice 
was greater in the configural condition than the elemental condition 
(Table 4). To estimate the effect size of this difference, we calculated 
the expected values of the dependent variable, i.e., the proportion of 
choices, from the regression table output of the model, and 
exponentiated them to get the odds for each fixed factor level (Table 5). 

TABLE 1 Behavioral outcomes by condition: the first row shows 
performance during the training phase; all other outcomes are from the 
final probe phase of the experiment.

Elemental 
condition

Configural 
condition

Mean SD Mean SD

Learning  

(# of blocks per training set)
1.09 0.17 1.48 0.52

Accuracy (% correct) 0.95 0.23 0.89 0.31

Reaction time (ms) 3,817 4,497 3,155 2,975

Number of attributes 

fixated per trial
3.57 0.07 3.48 0.05

Within-object transitions 

per trial (count)
3.85 3.58 3.81 3.58

Between-object transitions 

per trial (count)
1.95 2.23 1.33 2.23

Payne Index

w-b/(w + b)
0.27 0.54 0.43 0.5

Trials where last fixated 

option was chosen (%)
68% 0.47 76% 0.47

Trials where most fixated 

option was chosen (%)
65% 0.48 64% 0.48

Proportion of gaze time 

spent on chosen option (%)
56% 0.15 57% 0.17

TABLE 2 Reaction time and proportion of optimal choices.

Reaction 
time

Estimate CI p-value

Elemental vs 

configural

Intercept 3.820 [3.36, 4.27] <0.001

Condition −0.662 [−0.83, −0.49] <0.001

Optimal 
choices 
made

Odds 
ratio

CI p-value

Elemental vs 

configural

Intercept 21.81 [16.29, 29.21] <0.001

Condition 0.47 [0.39, 0.57] <0.001
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The odds ratio was calculated by dividing the odds of the configural 
condition by the odds of the elemental condition for each level of last 
fixation location. For example, the odds ratio of 1.49 for trials where 
the left option was fixated last indicates that the estimated likelihood 
of choosing the left option was 49% higher in the configural condition 
than in the elemental condition.

3.5. Effect of gaze time on choice

We asked whether spending a larger proportion of time fixating 
one option in a trial led to a higher probability of choosing that 
option. We first assessed whether this effect was present in the data 
overall, and then whether this differed across conditions. A 
one-sample t-test revealed that, collapsed across conditions, the 
mean proportion of trials where the most fixated option was chosen 
(64% of trials, SD 0.48) was significantly different from 50% 
(t(6512) = 23.70, p < 0.001, d = 0.29), suggesting an overall effect of 
gaze time advantage on choice. Comparing conditions, we observed 
that the most fixated object was chosen in 64% of trials in the 
configural condition compared to 65% of trials in the elemental 
condition (Figure 4C; Table 1). A one-way GLME model fit with a 
binomial distribution with condition as a predictor revealed no 
significant difference between the conditions for the effect of gaze 
time on choice (Table 6). Figure 4D depicts the proportion of left 
choices as a function of gaze time on the left option for 
both conditions.

We also considered the average proportion of gaze time spent on 
the chosen object. A one-sample t-test revealed that the overall group 
mean (56% of gaze, SD 0.16) was significantly different from 50% (t 
(6512) = 31.23, p < 0.001, d = 0.39). A one-way LME with condition as 
a predictor model found no significant difference between gaze time 
on the chosen object across conditions (Table 1 for means, Table 6 for 
model output).

4. Discussion

This study sought evidence of behavioral differences between 
configural and elemental multi-attribute option evaluation in a value-
based binary choice task between complex visual objects with spatially 
distinct attributes. There were several behavioral differences identified, 
largely in line with our hypotheses. Configural evaluation was faster, 
less accurate, involved more within-option gaze transitions, and there 
was a greater influence of last fixation on choice. There were also 
interesting commonalities across conditions. Participants fixated 
between 3 and 4 value-informative attributes in both conditions and, 
despite the differences in gaze fixation transitions, the chosen option 
was overall fixated more than the non-chosen option to a similar 
degree across conditions.

Process tracing research has used eye movements as indicators of 
information acquisition during value-based decision-making in 
multi-attribute choice, but in contexts where option attributes 
(elements) are described with text, generally arrayed in a table (Russo 
and Rosen, 1975; Payne, 1976; Raaij, 1977; Payne et al., 1993; Russo 
and Leclerc, 1994; Russo and Dosher, 1983). The complex object 
stimuli used here had spatially distinct attributes, allowing both 
option- and attribute-level fixations to be studied. Our findings show 
that the process-tracing analysis framework can be applied to complex 
visual objects. While option-based information acquisition patterns 
predominated in both conditions (i.e., the Payne Index was on average, 
positive), this option-based pattern was more marked in the configural 
condition. The effects observed are in line with our conceptualization 
of configural evaluation as more option-based, and, elemental 
evaluation relying on attribute-by-attribute comparisons between 
options. The spatial proximity of attributes of the same fribble might 
explain the overall bias towards within-option information acquisition 
(Russo and Rosen, 1975; Ballard et al., 1995); future work could test 
this speculation by adapting the fribble stimuli to more widely space 
the value-informative attributes within-object.

Our findings suggest that the extent to which attributes interact in 
predicting value is an important factor influencing information 
acquisition in the service of choice “strategies” (which, here, may or 
may not be explicit, top-down strategies), revealed by gaze patterns. A 
study from our lab using a similar paradigm also found systematic 
gaze pattern differences between elemental and configural conditions 
when fribbles were evaluated one at a time (Pelletier et al., 2020).

This application of eye-tracking to distinguish configural and 
elemental evaluation complements perceptual studies where this 
method has been applied to compare configural and elemental face 
recognition processes (Bombari et al., 2009, 2013; Boutet et al., 2017). 
Bombari et al. (2009) found more transitions (and therefore, more 
fixations) within face stimuli under configural conditions. The authors 
suggested that different recognition strategies were at play, with the 
configural condition involving a more pronounced analysis of spatial 
relations between attributes.

As reviewed in Pelletier and Fellows (2021), there is evidence that 
value emerges as part of the recognition process rather than through 
a separate evaluation step that follows recognition (Mogami and 
Tanaka, 2006; Serences, 2008; Arsenault et al., 2013; Persichetti et al., 
2015; Kaskan et al., 2017). Multi-attribute value construction may 
be  organized hierarchically in the brain, from evaluation of basic 
features and attributes to the evaluation of complex conjunctions and 
objects, in line with the processing stages underlying object 

TABLE 3 Model output for effects of condition on within-object and 
between-object gaze transitions.

Incidence 
rate ratio

CI p-value

Raw counts

Within-object 

transitions

Intercept 3.59 [3.17, 4.06] <0.001

Condition 0.99 [0.96, 1.01] 0.351

Between-

object 

transitions

Intercept 1.83 [1.64, 2.05] <0.001

Condition 0.68 [0.66, 0.71] <0.001

Adjusted for RT

Within-object 

transitions

Intercept 1.01 [0.95, 1.08] 0.701

Condition 1.19 [1.16, 1.22] <0.001

Between-

object 

transitions

Intercept 0.53 [0.48, 0.58] <0.001

Condition 0.80 [0.77, 0.84] <0.001

Payne 
index

Estimate CI p-value

Intercept 0.26 [0.20, 0.32] <0.001

Condition 0.17 [0.14, 0.19] <0.001
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perception. Lesion and neuroimaging studies from our lab using a 
similar paradigm show differences in the brain regions engaged by, 
and critical for, configural and elemental evaluation (Pelletier and 
Fellows, 2019; Pelletier et al., 2021).

We speculate that the familiar complex objects (e.g., snack food 
packages) used in many binary choice studies in decision neuroscience 
are likely to promote configural evaluation. We  wondered if key 
behavioral effects that have been taken as support for sequential 
sampling evidence accumulation models might be unique to, or at 
least especially prominent in, configural evaluation. Such models 
typically do not address what information is being sampled during 
evaluation, although, as with the earlier process-tracking literature, 
there is often an assumption that value-predictive attributes are being 
sampled (Lim et al., 2011, 2013; Krajbich et al., 2012). Most recent 
extensions of sequential sampling models applied to value-based 
decision-making predict that the last-fixated option is most likely to 
be chosen (Krajbich et al., 2010; Krajbich and Rangel, 2011; Morii and 
Sakagami, 2015; Smith and Krajbich, 2019; Liu et  al., 2020). Our 
finding that the effect of last fixation on choice was more striking in 
the configural condition suggests that sequential-sampling models 
may be more applicable when option value is assessed holistically. The 
corollary of this observation is that different models may be needed 
for decisions where individual elements predict value. Recent efforts 
to extend attentional drift diffusion models to multi-attribute contexts 
where attribute values are explicitly considered (Yang and Krajbich, 

2022) are promising, as they offer a way to account for potentially 
distinct mechanisms of multi-attribute evaluation. Further research in 
this direction is needed, to develop models that allow for either 
configural or elemental evaluation, and to acquire experimental data 
to test the predictions of such models.

Evidence accumulation models also predict that longer time spent 
gazing at an option allows more evidence to be accumulated (Armel 
et al., 2008; Orquin and Loose, 2013), bringing that option closer to 
the decision threshold and therefore more likely to be chosen. Here, 
we replicated this effect. In contrast to the effect of last fixation on 
choice, overall gaze time advantage for the chosen option was of 
similar magnitude across conditions, despite the differences in how 
value was related to the stimuli.

This work has limitations. Although we aimed to match the two 
conditions for difficulty by training to a common criterion across 
conditions and matching trials on option value difference, differences 
in learning and accuracy were observed, with the higher value 
fribble chosen less often and more learning blocks required to learn 
the values in the configural trials. The range of absolute values for 
fribbles also differed between conditions. However, the relative value 
of fribbles within choices, the most important factor in binary choice 
behavior, Kim and Beck (2020) was similar across conditions. While 
participants were instructed to ‘add up’ the learned values of 
individual attributes in the elemental trials, they could have adopted 
other attribute-based strategies including shortcuts such as a ‘take 

FIGURE 3

Information Acquisition Patterns. (A) Examples of scan paths for both conditions from Subject 216. Lines represent transitions and blue circles 
represent fixations. (B) Estimated rates from the model for within-object transitions across conditions (model output). (C) Estimates rates from the 
model for between-object transitions across conditions (model output). Estimated rates in B and C account for trial duration differences between 
conditions. (D) Average Payne Index for both conditions calculated from raw number of within (w) and between (b) transitions, P  =  (w-b)/(w  +  b). Error 
bars represent 95% confidence intervals.
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the best’ single attribute strategy, which could have yielded high 
accuracy without considering all attribute-values individually in 
some trials. However, elemental trial reaction times were longer, and 
fixation number was similar in both conditions, arguing that 
participants likely gathered all available value information. Finally, 
by design, the salience of individual attributes was emphasized 

during the elemental training phase, through both the value 
association and partial masking of task-irrelevant portions of the 
fribble. While no masking was used in the final probe phase, it is 
possible that the masking during training may have enhanced the 
effect of the attribute-value association alone.

Gaze is known to be an imperfect indicator of attention and thus 
of information acquisition. Studies have found that subjects are 
capable of maintaining fixation on one feature while detecting 
probes in the close periphery (Fluharty et  al., 2016), and that 
attention can be deployed to multiple non-contiguous areas of the 
visual field without changing the gaze fixation location (Kramer, 
1998). A recent study found poor correspondence between 
instructed strategy use (based on computer simulation of optimal 
strategies) and actual information acquisition patterns, but this was 
in a decision task where the best strategy was cognitively very 
demanding (Takemura et al., 2023). Given the size of the ROIs used 
here and their spatial proximity, fixation on one attribute could 
be enough to recognize the whole fribble. However, we observed 
fixations to, on average, 3.5/4 informative attributes in both 
conditions, arguing that gaze was a reasonable proxy for attention, 
and therefore of the underlying choice strategy, in this self-paced, 
low time pressure, relatively simple task.

While we  observed differences between conditions in several 
behavioral metrics, these behavioral phenomena alone are unlikely to 
reliably distinguish elemental and configural evaluation in more 
naturalistic paradigms where other factors might influence gaze and 
where attributes may not be spatially distinct. At the least, careful 
experimental control would be  needed for the various additional 

FIGURE 4

Effects of last fixation and gaze time on choice. (A) Proportion of trials where the option that was fixated last was chosen, for both conditions. Error 
bars represent 95% confidence intervals. (B) Proportion of trials where the option with the higher gaze time was chosen, for both conditions. Error bars 
represent 95% confidence intervals. (C) Proportion of trials where the left option was chosen as a function of location of the last fixation, across 
conditions. (D) Proportion of trials where the left option was chosen as a function of gaze time proportion on the left option, across conditions.

TABLE 4 Model output for effect of last fixation on choice.

Odds 
ratio

CI p-value

Last fixation chosen Intercept 2.22 [1.88, 2.62] <0.001

Proportion of trials Condition 1.50 [1.34, 1.68] <0.001

Estimate Std. Err. p-value

Effect of last 

fixation

Intercept −0.67 0.06 <0.001

Condition −0.39 0.08 <0.001

Last fixation 1.52 0.08 <0.001

Condition * 

Last fixation

0.79 0.11 <0.001

TABLE 5 Odds and odds ratios for effect of last fixation location.

Elemental Configural Odds ratio

Last fixation on right 0.51 0.35 0.68

Last fixation on left 2.34 3.50 1.49
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factors known to influence eye movement patterns, such as spatial 
arrangement of stimuli (Reutskaja et  al., 2011) and social context 
(Peshkovskaya and Myagkov, 2020). Moreover, when values are not 
experimentally assigned, as they were here, the evaluation processes 
and strategies engaged can differ across individuals, as well as within 
individuals as decision difficulty varies (Lee and Cummins, 2004; Day 
et al., 2009).

Nonetheless, the behavioral effects we observed may be useful 
in distinguishing between these evaluation modes in future work. 
Without expressly considering the elemental-configural distinction 
we studied here, process-tracing experiments often assume some 
form of elemental attribute integration. Sequential sampling models 
are generally agnostic as to how the value-predictive attributes of 
complex objects are combined during choice. We found that some 
of the behavioral predictions of such models are more strongly 
supported under configural evaluation conditions. Different models 
may be more appropriate for decisions where individual elements 
predict value.

This study adds to a growing literature that aims to more tightly 
define the processes involved in assessing the value of complex 
decision options, with the intent to relate these to their underlying 
neural substrates. A better understanding of the behavioral and brain 
mechanisms that underlie how humans make complex choices also 
may help us present multi-attribute information in ways that the 
human brain is best prepared to consider.
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