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Introduction: With the continuous changes in climate patterns due to global

warming, drought has become an important limiting factor in the development

of terrestrial ecosystems. However, a comprehensive understanding of the

impact of drought on soil microbial activity at a global scale is lacking.

Methods: In this study, we aimed to examine the effects of drought on soil

microbial biomass (carbon [MBC], nitrogen [MBN], and phosphorus [MBP]) and

enzyme activity (b-1, 4-glucosidase [BG]; b-D-cellobiosidase [CBH]; b-1, 4-N-
acetylglucosaminidase [NAG]; L-leucine aminopeptidase [LAP]; and acid

phosphatase [AP]). Additionally, we conducted a meta-analysis to determine

the degree to which these effects are regulated by vegetation type, drought

intensity, drought duration, and mean annual temperature (MAT).

Result and discussion: Our results showed that drought significantly decreased

the MBC, MBN, and MBP and the activity levels of BG and AP by 22.7%, 21.2%,

21.6%, 26.8%, and 16.1%, respectively. In terms of vegetation type, drought mainly

affected the MBC and MBN in croplands and grasslands. Furthermore, the

response ratio of BG, CBH, NAG, and LAP were negatively correlated with

drought intensity, whereas MBN and MBP and the activity levels of BG and

CBH were negatively correlated with drought duration. Additionally, the

response ratio of BG and NAG were negatively correlated with MAT. In

conclusion, drought significantly reduced soil microbial biomass and enzyme

activity on a global scale. Our results highlight the strong impact of drought on

soil microbial biomass and carbon- and phosphorus-acquiring enzyme activity.

KEYWORDS

biogeochemical cycles, climate change, ecosystem function, ecosystem structure, soil
microbial activity, soil microbial community
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1 Introduction

With the intensification of climate warming, global precipitation

patterns have changed considerably, affecting the structure, function,

and biodiversity of terrestrial ecosystems (van der Molen et al., 2011;

Lozano et al., 2021). Data indicate that the occurrence of future

extreme weather events, such as rainfall or drought, will likely exhibit

a trend of long duration and wide impact (Stott, 2016). In particular,

drought will reduce soil moisture, which directly affects plant growth

and photosynthesis, thereby affecting the versatility of soil ecosystems

(Barnes et al., 2018; Li et al., 2022; Wan et al., 2022).

As the most active component of soil organic matter, the

microbial biomass (carbon [MBC], nitrogen [MBN], and

phosphorus [MBP]) is very sensitive to changes in the soil

environment and can accurately reflect changes in soil carbon

and nitrogen content (Wardle, 1998; Bastos et al., 2023). As an

important component of soil biological activity, enzymes determine

the intensity and direction of various biochemical processes in soil

and are an indicator of soil fertility and vitality (Wang et al., 2023a).

Soil microbial biomass content and enzyme activity exhibit a more

rapid response to changes in soil moisture than to changes in other

soil properties. For example, a decrease in soil water availability

directly or indirectly affects the reproduction and activity of

microorganisms (Ren et al., 2018; Chen et al., 2023). Therefore,

exploring the effects of drought on microbial activity will contribute

to our understanding of the structure and function of terrestrial

ecosystems under various global precipitation patterns.

Previous studies have shown that prolonged drought limits

vegetation growth and alters microbial community structure (Mishra

et al., 2021; Peszek et al., 2021; Wang et al., 2023b). For example, Wang

et al. (2021b) demonstrated that drought reduced plant primary

productivity and biomass by 12.6% and 16.7%, respectively

(Figure 1). A reduction in plant biomass directly affects the sources

of energy for microorganisms (Song et al., 2019; Ge et al., 2022; Malik

and Bouskill, 2022). Additionally, drought affects microbial activity by

increasing osmotic stress and resource competition (Canarini et al.,

2021; Xie et al., 2021; He et al., 2023). A decrease in soil

water availability directly leads to the dehydration of some

microorganisms, thereby reducing overall microbial activity,

and even leading to the death and decomposition of some

microorganisms (Zhang et al., 2023). In addition, lack of soil

moisture affects the physiological characteristics of microorganisms

and reduces their ability to acquire and utilise pairs (Sistla and Schimel,

2012), thus limiting their biological activity owing to a lack of energy.

However, Sanaullah et al. (2011) found that drought did not

substantially reduce the soil microbial biomass; however, this result

may be related to the strong drought resistance of crops or local

climatic conditions in this study. Therefore, uncertainties remain

regarding the impacts of drought on microbial activity (Figure 1). A

meta-analysis is urgently needed to determine these effects and to

reveal the response of terrestrial biogeochemical cycles to changes in

global precipitation patterns.

Drought intensity and duration are important factors affecting

microbial activity (Sun et al., 2020). Moderate drought inhibits

plant growth; however, an excessive reduction in soil water

availability may lead to plant death (Hoover et al., 2014; Akram
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et al., 2020; Zang et al., 2020). A recent meta-analysis confirmed this

conclusion (Wang et al., 2021b). Substantial reductions in plant

biomass limit the availability of food sources for microorganisms

(Brown et al., 2021). Furthermore, excessive drought damages soil

properties, such as structure, porosity, and pH (Chen et al., 2020;

Lozano et al., 2021; Peng et al., 2023), thereby creating

environmental conditions that are unfavourable for the growth of

microorganisms. Consequently, microbial metabolism, activity, and

enzyme production are reduced (Manzoni et al., 2014; Fitzpatrick

et al., 2017).

Furthermore, excessive drought damages soil properties, such as

structure, porosity, and pH (Chen et al., 2020; Lozano et al., 2021; Peng

et al., 2023), thereby creating environmental conditions that are

unfavourable for the growth of microorganisms. Consequently,

microbial metabolism, activity, and enzyme production are reduced

(Manzoni et al., 2014; Fitzpatrick et al., 2017). For example, compared

with those in forests, plants in croplands and grasslands typically have

lower biomass and shallower root systems (Jian et al., 2015; Cheng

et al., 2016); therefore, after drought, there are large differences in the

effects on plant growth for each vegetation type, resulting in different

impacts on soil microorganisms. However, owing to the complexity

and heterogeneity of ecosystems (Hu et al., 2021; Wang et al., 2021a),

our understanding of how drought affects soil microbial activity under

different vegetation types is still incomplete. In addition, microbial

activity is also regulated by climatic factors such as mean annual

temperature (MAT) (Malik et al., 2020a). Moderate temperature

increases can promote plant growth and accelerate soil nutrient

turnover (Akram et al., 2022; Joly et al., 2023), but excessively high

temperatures may exacerbate soil moisture loss (Qu et al., 2023),

resulting in strong inhibition of microbial activity. Overall, research

on the global-scale impacts of drought on microbial activity, especially

in terms of drought intensity, drought duration, vegetation type, and

MAT is lacking (Figure 1). This gap in the existing literature has limited

our understanding of the impacts of increasing drought on ecosystem

structure, function, and biodiversity under global climate change.
FIGURE 1

Conceptual framework showing impacts of drought on plant
growth, soil microbial biomass, and enzyme activity. “+” and “-”
indicate positive and negative effects, respectively. “?”, unresolved by
the previous study. Data on the effects of drought on plant biomass
comes from the results of the previous meta-analysis (Wang et al.,
2021b). AGB, above-ground biomass. BGB, below-ground biomass.
TB, total biomass. MBC, soil microbial biomass carbon. MBN,
microbial biomass nitrogen. MBP, microbial biomass phosphorus.
BG, b-1, 4-glucosidase. CBH, b-D-cellobiosidase. NAG, b-1, 4-N-
acetylglucosaminidase. LAP, L-leucine aminopeptidase.
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Based on meta-analysis and published data, this study

investigated the effects of drought on soil microbial activity. The

specific aims of this study were to identify: (1) how drought affects

soil microbial biomass and enzyme activity and (2) whether this

effect is regulated by vegetation type (cropland, grassland, shrub,

and forest), geographical location/continents (Asia, America,

Europe, Oceania, and Africa), drought intensity, drought

duration, and MAT. Our hypotheses were as follows: (1) Drought

inhibits soil microbial activity due to adverse soil environmental

conditions (e.g., reduced availability of energy sources and changes

in physical structure) (Manzoni et al., 2014; Fitzpatrick et al., 2017).

(2) The effect of drought on microbial activity is higher in croplands

and grasslands than in forests owing to different plant growth

characteristics (Clark et al., 2009). (3) Drought intensity and

duration aggravate its negative effects on microbial activity

because severe and prolonged droughts can cause plants to wither

and die, thereby reducing plant biomass (Smith et al., 2009; Brown

et al., 2021). The results of this study contribute to an improved

understanding of the impact of drought on the structure, function,

and biodiversity of terrestrial ecosystems.
2 Materials and methods

2.1 Data collection

We utilized the Web of Science, Google Scholar, and the China

National Knowledge Infrastructure databases to search all relevant

literature published prior to 2023. The search terms are listed in

Supplementary Table 1. After a preliminary screening of titles and

abstracts, the literature was evaluated again based on the following

criteria: (1) A treatment group (drought) and control group (normal

water supply) must be included. (2) The vegetation types, drought

intensity, and drought duration must be identified. (3) At least one

research index must be included (Supplementary Table 2). (4) The

research should not include the interaction of multiple factors, such as

nitrogen addition, warming, or carbon dioxide doubling. (5) If data for

multiple soil layers were reported in the study, only the manifested soil

index data were obtained. (6) The research must clarify the mean,

sample size, and standard deviation (SD) of all variables. If no standard

deviation was reported, it was calculated using the standard error (SE)

as follows: SD = √SE (Fu et al., 2015). The screening steps are shown in

Supplementary Figure 1. In addition, we collected data on longitude,

latitude, MAT, mean annual precipitation (MAP), drought intensity,

and drought duration. MAT, mean annual precipitation (MAP) are

obtained directly from the article or from the WorldClim database

(http://www.worldclim.org/).
2.2 Meta-analysis

The response ratio (RR) was used to measure the influence of

drought on related variables (Hedges et al., 1999), and was

calculated using the following formula:
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RR = ln(
Xt

Xc
) = lnXt − lnXc (1)

v =
S2t

ntX2
t
+

S2c
ncX2

c
(2)

where, Xt and Xc are the mean values of the variables in the

experimental and control groups, respectively; nt and nc are the

sample sizes of the variables in the experimental and control groups,

respectively; and St and Sc are the SD of the variables in the

experimental and control groups, respectively.

The weighted response ratio (RR++ ), 95% bootstrap confidence

interval (CI), standard error S(RR++) , and weighting factor (w)

were calculated using the random-effects model. If the 95%

bootstrap CI was located to the left of the zero-carving line, it

indicated that, compared with the control group, the treatment

group had a negative effect on related research indicators; otherwise,

it had a positive effect. When zero was included, drought had no

significant influence on the corresponding variables. These values

were calculated using the following equations:

RR++ = o
m
i=1oki

j=1WijRRij

om
i=1oki

j=1Wij

(3)

95%CI = RR++ ± 1:96S(RR++) (4)

S(RR++) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

om
i=1oki

j=1Wij

s
(5)

wij =
1

ϑi + s 2 (6)

where, ϑi and s 2 are the variance of the data in the i-th study and

the random variable that exists between the studies, respectively.

To describe the RR of each variable more intuitively and clearly,

we converted the value to a percentage using the following formula:

Effect size ( % ) = ½exp(RR++) − 1� � 100% (7)

In this study, a linear mixed model was used to analyse whether

the RRs of soil microbial biomass and enzyme activity were affected

by vegetation type (cropland, grassland, shrub, and forest) and

continents (Asia, America, Europe, Oceania, and Africa). “Study”

was designated as the random effects component (Bates et al., 2015;

Hao et al., 2022). The influence of the grouping variables on

microbial activity was calculated using the random-effects model,

which indicated heterogeneity in the group cumulative effect sizes

(QM) (Gao et al., 2021; Xu et al., 2022a). Regression analysis was

selected to study the relationships of the RRs of soil microbial

biomass and enzyme activity with drought intensity, drought

duration, and MAT. A funnel plot was used to assess potential

publication bias (Supplementary Figure 2). The above processes

were performed using the R v.4.0.2 metafor package. Both

integrated and regression analysis diagrams were completed using

Origin 9.0.
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3 Results

3.1 Overview of the dataset

In total, 60 studies encompassing 250 data points and 12

variables were included in this study (Appendix Dataset 1,

Supplementary Table 2). The sample sizes of cropland, grassland,

shrub, and forest were 41, 92, 11, and 106, respectively. The

distribution of the sample points is shown in Figure 2.
3.2 Overall effects

Drought significantly affected soil microbial biomass and

enzyme activity, and the effects varied among different variables

(Figure 3). Briefly, drought significantly decreased soil microbial

biomass carbon (MBC), microbial biomass nitrogen (MBN), and

microbial biomass phosphorus (MBP) by 22.7%, 21.2%, and 21.6%,

respectively. Meanwhile, drought considerably decreased the

activities of b-1, 4-glucosidase (BG) and acid phosphatase (AP)

by 26.8% and 16.1%, respectively, but had a lesser effect on b-D-
cellobiosidase (CBH), b-1, 4-N-acetylglucosaminidase (NAG), and

L-leucine aminopeptidase (LAP). Additionally, drought markedly

decreased the soil organic carbon (SOC) and total phosphorus (TP)

by 6.5% and 7.6%, respectively. Overall, drought had a stronger

inhibitory effect on soil microbial biomass and soil carbon- and

phosphorus-acquiring enzyme activity and a weaker effect on soil

nitrogen-acquiring enzyme activity.
3.3 Response of soil microbial biomass
and enzyme activity to vegetation types
and continents

The effects of drought on soil microbial biomass and enzyme

activity are regulated by vegetation types (Figure 4; Supplementary

Table 3). Briefly, drought negatively affected MBC and MBN in

croplands (MBC: -30.2%; MBN: -36.1%) and grasslands (MBC:
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-12.1%; MBN: -15.6%), but it had less effect on these factors in

shrubs and forests (Figure 4A). Drought negatively affected BG in

croplands (-49.1%) and AP in croplands (-20.5%) and grasslands

(-12.6%), whereas the effect on CBH and NAG were all neutral in

grasslands and forests (Figure 4B). In addition, drought negatively

affected SOC in croplands (-7.9%), grasslands (-6.3%), and forests

(-6.4%) (Figure 4C).

In contrast, continents played a smaller role in regulating the

effects of drought on soil microbial biomass and enzyme activity

(Figure 5; Supplementary Table 4). Briefly, drought only negatively

affected MBN in Asia (-22.9%), LAP in Europe (-65.2%), and AP in

Asia (-15.4%), whereas the effects on other indices were neutral in

all continents (Figures 5A–C).
3.4 Response of soil microbial biomass
and enzyme activity to drought intensity
and duration

Drought intensity had different effects on soil microbial

biomass and enzyme activity (Figure 6). Briefly, the response

ratio of BG, CBH, NAG, and LAP decreased significantly (p<

0.05) with increasing drought intensity, whereas the response

ratio of soil microbial biomass did not show significant (p > 0.05)

changes with increasing drought intensity (Figures 6A, B).

Meanwhile, drought intensity did not significantly affect the

response ratio of total nitrogen (TN) and TP (p > 0.05), but it

was significantly negatively correlated with the response ratio of

SOC and pH (Figure 6C).

Drought duration also showed different effects on soil microbial

biomass and enzyme activity (Figure 6). Briefly, the response ratio

of MBN, MBP, BG, CBH, NAG, and LAP decreased significantly

(p< 0.05) with increasing drought duration, whereas the response

ratio of MBC did not show significant (p > 0.05) changes with

increasing drought duration (Figures 6D, E). Meanwhile, the
FIGURE 3

Effects of drought on soil microbial biomass, enzyme activity, and soil
chemistry properties. Error bars denote the 95% confidence interval
(CI). The number in parentheses indicates the sample size. * indicates
that the impact of drought is considered as significant (p< 0.05). MBC,
soil microbial biomass carbon. MBN, microbial biomass nitrogen. MBP,
microbial biomass phosphorus. BG, b-1, 4-glucosidase. CBH, b-D-
cellobiosidase. NAG, b-1, 4-N-acetylglucosaminidase. LAP, L-leucine
aminopeptidase. AP, acid phosphatase. SOC, soil organic carbon. TN,
total nitrogen. TP, total phosphorus.
FIGURE 2

Global distribution of study sites used in this meta-analysis.
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response ratio of SOC also decreased significantly with increasing

drought duration (Figure 6F).
3.5 Response of soil microbial biomass and
enzyme activity to MAT

The responses of soil microbial biomass and enzyme activity to

drought were influenced by MAT (Figure 6). Briefly, the response

ratio of MBP, BG, and NAG decreased significantly (p< 0.05) with

MAT, whereas the response ratio of MBC, MBN, CBH, LAP, and

AP did not show significant (p > 0.05) changes with MAT

(Figures 6G, H). Meanwhile, the response ratio of SOC, TN, TP,

and pH also decreased significantly with MAT (Figure 6I).
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4 Discussion

4.1 Effect of drought on soil microbial
biomass and enzyme activity

The frequent occurrence of droughts worldwide has greatly

affected the structure, function, and biodiversity of terrestrial

ecosystems (Williams and de Vries, 2020; Lozano et al., 2021).

However, a comprehensive understanding of the impacts of

drought on microbial activity is lacking, which has limited our

understanding of the multifunctional nature of ecosystems. Thus,

the current study provides direct global evidence that drought has

substantially reduced soil microbial biomass (MBC, 22.7%; MBN,

21.2%; MBP, 21.6%) and enzyme activity (BG, 26.8%; AP, 16.1%)
B

C

A

FIGURE 4

Effects of drought on soil microbial biomass (A), enzyme activity (B), and soil chemistry properties (C) of four ecosystem types: cropland (Crop),
grassland (Grass), shrub, and forest. Error bars denote the 95% confidence interval (CI). The number in parentheses indicates the sample size.
* indicates that the impact of drought is considered as significant (p< 0.05). MBC, soil microbial biomass carbon. MBN, microbial biomass nitrogen.
MBP, microbial biomass phosphorus. BG, b-1, 4-glucosidase. CBH, b-D-cellobiosidase. NAG, b-1, 4-N-acetylglucosaminidase. LAP, L-leucine
aminopeptidase. AP, acid phosphatase. SOC, soil organic carbon. TN, total nitrogen. TP, total phosphorus.
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(Figure 7). This phenomenon can be explained by the following four

aspects: (1) Microorganisms have semi-permeable membranes, and

the availability of soil moisture is essential for maintaining the

survival and activity of microorganisms (Yan et al., 2021; Ge et al.,

2022). In water-poor environments, microbial community

transformation is slow, and lack of moisture may lead to microbial

cracking or death (Schimel, 2018; Zhang et al., 2023). (2) Drought is

generally believed to reduce plant biomass, soil litter content, and

root activity, which in turn reduces the availability of food sources for
Frontiers in Plant Science 06
microorganisms. Drought can also change the quality and amount of

carbon sources available to microorganisms by reducing

photosynthesis and plant growth (Malik et al., 2020b; Yan et al.,

2023). Restriction of substrate concentration and availability and root

exudates may be another important cause of reduced microbial

activity (Ge et al., 2022; Malik and Bouskill, 2022). (3) Drought

directly affects soil aeration, which in turn affects the decomposition

of root exudates and organic matter and affects microbial activity and

enzyme production by affecting soil physicochemical properties, and
frontiersin
B

C

A

FIGURE 5

Effects of different continents of Asia, America, Europe, Oceania, and Africa on soil microbial biomass (A), enzyme activity (B), and soil chemistry
properties (C). Error bars denote the 95% confidence interval (CI). The number in parentheses indicates the sample size. * indicates that the impact
of drought is considered as significant (p< 0.05). MBC, soil microbial biomass carbon. MBN, microbial biomass nitrogen. MBP, microbial biomass
phosphorus. BG, b-1, 4-glucosidase. CBH, b-D-cellobiosidase. NAG, b-1, 4-N-acetylglucosaminidase. LAP, L-leucine aminopeptidase. AP, acid
phosphatase. SOC, soil organic carbon. TN, total nitrogen. TP, total phosphorus.
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the diffusion of organic matter (Condit et al., 2013; Canarini et al.,

2021; Quintana et al., 2023). (4) A decrease in soil moisture also

reduces the ability of microorganisms to acquire and utilise resources

(Sistla and Schimel, 2012), thus reducing their activity. Soil

microorganisms are a key indicator of the ability of soils to

conduct biogeochemical reactions (Battin et al., 2003; Agathokleous

et al., 2020). The results of this study suggests that drought changes

ecosystem structure and reduces the rate of material cycling.
Frontiers in Plant Science 07
4.2 Effect of vegetation types and
continents on soil microbial biomass and
enzyme activity

Owing to the complexity and heterogeneity of ecosystems,

drought substantially reduced soil MBC and MBN as well as BG

and AP activity in farmlands and grasslands. The results indicated

that drought mainly inhibited soil microbial activity in farmlands and
B

C

D

E

F

G

H

I

A

FIGURE 6

Effects of drought intensity (A-C), drought duration (D-F), and annual average temperature (MAT) (G-I) on soil microbial biomass, enzyme activity,
and soil chemistry properties. MBC, soil microbial biomass carbon. MBN, microbial biomass nitrogen. MBP, microbial biomass phosphorus. BG, b-1,
4-glucosidase. CBH, b-D-cellobiosidase. NAG, b-1, 4-N-acetylglucosaminidase. LAP, L-leucine aminopeptidase. AP, acid phosphatase. SOC, soil
organic carbon. TN, total nitrogen. TP, total phosphorus.
FIGURE 7

Conceptual framework showing impacts of drought on C soil microbial biomass, enzyme activity, and soil chemistry properties. “+” and “-” indicate
positive and negative effects, respectively. Red and blue indicate significant and insignificant effects, respectively. Numbers in parentheses indicate
percentage changes after drought. MBC, soil microbial biomass carbon. MBN, microbial biomass nitrogen. MBP, microbial biomass phosphorus. BG,
b-1, 4-glucosidase. CBH, b-D-cellobiosidase. NAG, b-1, 4-N-acetylglucosaminidase. LAP, L-leucine aminopeptidase. AP, acid phosphatase. SOC, soil
organic carbon. TN, total nitrogen. TP, total phosphorus.
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grasslands but did not affect microbial biomass or enzyme activity in

forests to the same degree. This outcome may be related to the

distribution of the sample points. Rainfall distribution varies by

ecosystem, and forests are mainly distributed in areas of heavy

rainfall (the MAP of all forest sample points was 1174 mm),

whereas cropland and grassland are mainly distributed in areas of

low rainfall (the MAP of all cropland and grassland sample points

was 480 mm and 807 mm, respectively) (Supplementary Figure 3).

Previous studies have shown that rainfall is an important factor

affecting microbial activity (Ren et al., 2018; Ochoa-Hueso et al.,

2020). The low MAP of cropland and grassland may have had a

superimposed effect on drought, aggravating the drought stress of the

soil, and thus enhancing the inhibition of plant growth and

microorganism activity. In contrast, the higher MAP in forests may

have alleviated the decrease in soil moisture caused by drought stress

and improved the physical structure of the soil to some degree,

making it more suitable for microbial growth and reproduction, thus

alleviating the negative effect of drought on microbial activity. This

result also indicated that soil microorganisms in croplands were more

sensitive to drought responses than those in forests, as well as more

susceptible to soil moisture reduction. In this study, the samples were

grouped by geographical location (Asia, America, Europe, Oceania,

and Africa) to explore the influence of this factor in regulating the

effects of drought. Notably, we found that the effects of drought on

soil microbial biomass and enzyme activity were generally similar

among different locations. This contradicts the conclusion of a

previous study that geographical location affected microbial

nutrient restriction and thus microbial activity (Xu et al., 2022b).

This discrepancy may be due to the small number of samples in

America, Oceania, and Africa in this study, which reduced the

statistical power of our meta-analysis results.
4.3 Effect of drought intensity and
duration on soil microbial biomass
and enzyme activity

Knowledge on the effects of high-intensity drought stress,

particularly those of drought duration, on soil microbial activity

is lacking. In this analysis, global-scale data on the changes in

microbial activity under different drought intensities and durations

were collected, and it was determined that enzyme activity

decreased with increasing drought intensity, and both microbial

biomass and enzyme activity decreased with increasing drought

duration (Figure 7). We propose the following explanations for

these responses to drought. First, in a water-scarce environment,

microbial community activity is low; however, with the

intensification of drought stress, many microorganisms die, thus

reducing enzyme production (Hoover et al., 2014; Zang et al., 2020).

Second, drought inhibits plant growth. Severe and long-term

drought causes plants to wilt and die, thereby reducing plant

biomass, which lowers the quality of available carbon sources and

nutrient content for microorganisms (Smith et al., 2009; Brown

et al., 2021). Third, the worsening of drought stress may lead to soil
Frontiers in Plant Science 08
cracking, land degradation, and changes in the physical

environment of the soil (air, water, aggregate structure, etc.)

(Fitzpatrick et al., 2017; Wan et al., 2023), making it unsuitable

for the propagation and growth of microorganisms. Additionally,

studies have indicated that soil microorganisms reduce the loss of

nutrients and metabolism under long-term drought stress

(Manzoni et al., 2014; Brown et al., 2021), thereby reducing

microbial biomass and enzyme production capacity. With the

intensification of global warming, the frequency and intensity of

drought events worldwide have increased (Hoover et al., 2014),

which has seriously impacted the structure, function, and

biodiversity of terrestrial ecosystems (Barnes et al., 2018; Qu

et al., 2023). The results of this study contribute to the overall

understanding of ecosystem versatility under conditions of

continuous global climate change.
4.4 Effect of MAT on soil microbial biomass
and enzyme activity

In addition to rainfall, temperature patterns also affect soil

microbial activity under drought stress. In this study, microbial

activity decreased with increasing MAT, and the effect of drought on

microbial activity changed from positive to negative with an increase in

MAT. The analysis indicated that drought had a positive effect on

microbial activity in low-temperature regions, whereas microbial

activity was inhibited in warmer regions. Temperature affects

microbial activity by influencing the soil temperature, soil physical

structure, and plant growth (Billings and Ballantyne, 2013; Abirami

et al., 2021). Moderate temperature increases can promote plant

growth, accelerate litter decomposition, increase soil nutrient

turnover rates (Cusack et al., 2010; Joly et al., 2023), and promote

the growth and reproduction of microorganisms. In contrast, excessive

temperature and drought superimpose these effects and may decrease

the availability of soil water and reduce the turnover rate of soil

nutrients (Xu et al., 2022b; Qu et al., 2023), thereby strongly

inhibiting microbial activity. Soil microorganisms play an important

role in material cycling in terrestrial ecosystems (Agathokleous et al.,

2020). The results of this study highlight the impact of drought on soil

microbial biomass and enzyme activity and the resulting effects on

nutrient cycling processes in terrestrial ecosystems.
5 Conclusions

Our integrated analysis provided direct evidence that drought

has significantly inhibited soil microbial activity globally. In

particular, drought had a stronger inhibitory effect on soil

microbial biomass and soil carbon- and phosphorus-acquiring

enzyme activity and a weaker effect on soil nitrogen-acquiring

enzyme activity. Furthermore, drought had a greater effect on

microbial biomass than on soil enzyme activity. Additionally, our

results revealed a negative correlation between microbial activity

and drought intensity, drought duration, and MAT. Our results
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contribute to the overall understanding of the structure and

function of terrestrial ecosystems under global climate change.
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