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Microplastics (MPs) and nanoplastics (NPs) are emergent pollutants, which have
sparked widespread concern. They can infiltrate the body via ingestion, inhalation,
and cutaneous contact. As such, there is a general worry that MPs/NPs may have
an impact on human health in addition to the environmental issues they engender.
The threat ofMPs/NPs to the liver, gastrointestinal system, and inflammatory levels
have been thoroughly documented in the previous research. With the detection of
MPs/NPs in fetal compartment and the prevalence of infertility, an increasing
number of studies have put an emphasis on their reproductive toxicity in female.
Moreover, MPs/NPs have the potential to interact with other contaminants, thus
enhancing or diminishing the combined toxicity. This review summarizes the
deleterious effects of MPs/NPs and co-exposure with other pollutants on female
throughout the reproduction period of various species, spanning from
reproductive failure to cross-generational developmental disorders in
progenies. Although these impacts may not be directly extrapolated to
humans, they do provide a framework for evaluating the potential mechanisms
underlying the reproductive toxicity of MPs/NPs.
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1 Introduction

With the intensification of industrialization, the world has now embraced an era of
plastics. Polyethylene (PE), polypropylene, polyvinyl chloride, polystyrene (PS),
polyurethane, and polyethylene terephthalate have hit 80% of plastic demand (Europe,
2015). The application of plastics has brought great convenience, but has also resulted in the
discharge of a large quantity of plastic refuse into the environment, causing the accumulation
of plastic in ecosystems (Figure 1) (Andrady and Neal, 2009). They can be found in a wide
range of environments across the globe, including inland rivers, soil, air, and even polar
regions (Ivar do Sul and Costa, 2014; Nor and Obbard, 2014; Anderson et al., 2016; Bessa
et al., 2019). After entering the environment, bulk plastic materials will be broken down into
small fragments by heat, photochemical reactions, oxidation, and other processes, thus
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forming microplastics that may persist for an extremely long period
(Canniff and Hoang, 2018). In addition to environmental sources,
plastics are produced in the form of microparticles and even
incorporated into personal care items such as lotions,
moisturizers, cleansers, and toothpaste to meet industrial
requirements (Rist et al., 2018; Cox et al., 2019). When the size
of plastic particles approaches the micron range, the interaction and
absorption with organisms may become significant (Wright et al.,
2013b). MPs are plastic particulates with diameters less than 5 mm,
whereas NPs range in dimension from 1μm to 100 nm (Rochman
et al., 2016). Recently, there has been growing concern regarding the
fate and impact of MPs and NPs in the environment. MPs/NPs can
be ingested and transmitted by animals, which may lead to toxicity
in humans (Chae et al., 2018; Prokić et al., 2019; Strungaru et al.,
2019). Previous research has demonstrated that MPs/NPs
accumulate in a variety of organisms and have a wide range of
negative consequences, including liver inflammation and intestinal
flora disturbance (Jin et al., 2018; Yang et al., 2019). According to
recent investigations, MPs/NPs have been detected in human hands
and facial skin, hair, saliva, as well as placenta and feces (Schwabl
et al., 2019; Abbasi and Turner, 2021; Ragusa et al., 2021; Xu et al.,
2022). Additionally, numerous studies have revealed that MPs/NPs
induce reproductive damage in different species and have extensive
impacts on the developmental and metabolic abnormalities of
offspring (Rist et al., 2017; Luo et al., 2019a; Liu et al., 2019b;
Luo et al., 2019b; Jaikumar et al., 2019; Trifuoggi et al., 2019; Amereh

et al., 2020; Park et al., 2020). Female reproductive disorder is a
global health issue, which may be closely related to the
environmental deterioration (Feichtinger, 1991; Mahalingaiah
et al., 2016; Zhou et al., 2020). Moreover, given that pregnancy is
a crucial period time for neonatal organ development, prenatal
exposure to these toxins is of particular concern for the health
and development of unborn child (Gómez-Roig et al., 2021; Yi et al.,
2022). However, it remains unclear of the mechanisms that MPs/
NPs entangle with female reproductivity. Therefore, this review
summarizes the connections between MPs/NPs and female fertility,
pregnancy as well as offspring, in order to give some inspiration for
investigating the reasons of the high incidence of female infertility
and enhancing the protection of female fertility and offspring health.

2 Endocrine interference of MPs/NPs

Some research has suggested that MPs/NPs may act as
endocrine disruptors (Sussarellu et al., 2016; Wang et al., 2019).
It has been demonstrated that exposure to MPs/NPs will affect the
levels of sex hormone in serum of aquatic organisms and rodents
(Wang et al., 2019; Feng et al., 2022; Wei et al., 2022). According to a
study conducted on female marine medaka, MPs have a detrimental
regulatory effect on the hypothalamic pituitary gonadal (HPG) axis,
which is accompanied by a decline in gonadotropic hormones and
suppression of steroidogenesis (Wang et al., 2019). In an experiment

FIGURE 1
The sources, transfer, and reproductive toxicity of microplastics (MPs) and nanoplastics (NPs). (A) According to the different sources, MPs/NPs can
be separated into primary and secondary type. Primary MPs/NPs have been generated and added to a range of daily necessities in order to meet business
purposes. Plastic debris released into the environment will further degrade as secondary MPs/NPs. MPs/NPs can be transferred to human body through
inhalation, ingestion, and skin contact, which pose a great threat to female reproduction and offspring health. (B) Exposure to MPs/NPs will interfere
with reproductive endocrine in female, which will inhibit gonadotropic hormones and steroidogenesis. It will also cause a decline of energy allocated to
reproduction and induce oxidative stress in female reproductive system. In addition, MPs/NPsmay also affect female reproduction through DNA damage
and epigenetic regulation.
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with swine granulosa cells, it was also confirmed that NPs exposure
influenced steroidogenesis, especially the synthesis of estrogen and
progesterone (Basini et al., 2021). However, there is a strong
heterogeneity in the dynamic changes of female reproductive
endocrine related hormones caused by MPs/NPs. In an
experiment using aged polystyrene microplastics (PSMPs), it was
found that PSMPs could stimulate the production and release of
estradiol (E2) and increase the expression of estrogen receptor (Yang
et al., 2022b). This is controversial in light of the results obtained
with primary MPs, which may be due to the modifications in the
properties of plastic particles (Wang et al., 2019). Through
transcriptome analysis, Sussarellu et al. also verified the
differential expression of hormone receptors or transcripts
involved in different hormone pathways in oysters subjected to
MPs (Sussarellu et al., 2016). In spite of this, they found that MPs
contained endocrine disrupting compounds, indicating that
additives in MPs might interfere with the experiment (Sussarellu
et al., 2016).

According to the current research, we may not be able to draw a
definite conclusion on how MPs/NPs affect the endocrine axis.
Existing results continue to suggest that MPs/NPs may have
endocrine-disrupting properties, yet further experiments are
required to rule out the influence of plastic properties and additives.

3 Reproductive toxicity of MPs/NPs

3.1 Bioenergy utilization

Energy is essential for the growth of organisms, while ingestion
of MPs/NPs may lead to digestive tract obstruction, reducing food
intake and energy intake (Zhang W. et al., 2020). Different types of
MPs/NPs exposure have been reported to limit female reproductive
capacity in a variety of species, which were attributed to the
restrictions on energy consumption (Au et al., 2015; Cole et al.,
2015; Sussarellu et al., 2016; Cong et al., 2019; Kim et al., 2019; Mao
et al., 2022). In the marine worm Arenicola marina, researchers have
observed extended intestine residence time, inflammation, and
depletion of energy reserves following the exposure to MPs,
which may be related to reproductive issues (Wright et al.,
2013a). Through transcriptome analysis, Sussarellu and colleagues
also confirmed that the PS-MPs intake altered the energy flow and
metabolism of oysters, resulting in a loss of energy allocated to the
reproductive function (Sussarellu et al., 2016). Despite the fact that
animals tend to increase their appetite in response to external stress,
studies have demonstrated that exposure to MPs still has an
influence on the metabolism of glucose and protein in female
Drosophila melanogaster with an increased food consumption
(Zhong et al., 2022). However, the reproductive influence of
MPs/NPs on energy reserve differ among species. For
zooplankton like Daphnia magna, green algae, which can
colonize and flourish on the surface of plastic objects, is the
primary food source (Gross et al., 2016). As a result, the
presence of plastic materials can either impede or assist
organisms by occupying intestinal space during plastic ingestion,
such as supporting the growth of algae in the environment (Canniff
and Hoang, 2018). Several studies have found that zooplankton
exposed to high concentrations of plastic particles tended to produce

more offspring (Ogonowski et al., 2016; Rist et al., 2017; Liu et al.,
2019b; Eltemsah and Bøhn, 2019). Canniff et al. found that
polyethylene MPs had no influence on the reproduction of
Daphnia Magna, despite the digestive system being stuffed with
microplastic beads (Canniff and Hoang, 2018). Whereas some
studies have discovered a reduction in the number of newborns
in the reproduction test employing MPs and NPs (Besseling et al.,
2013; Zimmermann et al., 2020).

Currently, the controversy about the impact of MPs/NPs on
energy metabolism by impairing or obstructing the digestive tract is
primarily centered on zooplankton and other species, which may
depend on the characteristics of the food, as mentioned above
(Canniff and Hoang, 2018). The hypothesis that MPs/NPs induce
reproductive toxicity by altering energy distribution seems credible
for the majority of the investigated organisms. It is worth noting that
the studied species are quite tiny, which is a significant factor for the
impact of MPs/NPs on their digestive systems. However,
extrapolating these findings to humans may be challenging.
Although there is evidence that the digestion of microplastics
may weaken intestinal barriers (Hirt and Body-Malapel, 2020),
additional research is necessary to establish a connection between
energy exhaustion and reproductive disorders.

3.2 Oxidative stress

MPs/NPs have been proved to exhibit pro-oxidant properties
(Jeong et al., 2017; Trifuoggi et al., 2019; Dubey et al., 2022; Ferrante
et al., 2022). The toxicity of MPs/NPs in organisms mainly comes
from oxidative stress through the generation of reactive oxygen
species (ROS). The accumulating ROS then triggers a sequence of
biological responses, such as oxidative stress-induced signaling
cascades, apoptosis and inflammation (Jeong et al., 2017).
Numerous studies have demonstrated that the activation of
oxidative stress in vivo may be connected to the detrimental
effects of MPs/NPs on the reproduction of various species (Jeong
et al., 2016; Kim et al., 2019; Qiang and Cheng, 2021).

When Paracyclopina nana was exposed to MPs, researchers
observed an increase of ROS levels which was related to impaired
reproductive function with the decrease of newborn nauplii (Jeong
et al., 2017). They also demonstrated an activation of mitogen-
activated protein kinase/nuclear factor erythroid 2-related factor 2
(MAPK/Nrf2) signaling pathway, promoting the activity of
antioxidant enzymes in response to the oxidative stress (Jeong
et al., 2017). Additionally, they showed that the toxicity was
inversely proportional to the size of MPs (Jeong et al., 2017).
Some other investigations supported the association between
MPs/NPs-induced oxidative stress and reduced fertility (Liu
et al., 2019b; Trifuoggi et al., 2019; Qiang and Cheng, 2021; Xue
et al., 2021). They have also shown an enhanced expression of genes
encoding antioxidant enzymes to withstand environmental stress
(Liu et al., 2019b). However, Liu et al. further found that the high
concentration of NPs was likely to disrupt the antioxidant system in
Daphnia pulex, manifesting as a reduction in the expression of the
genes for antioxidant enzymes (Liu et al., 2019b).

In addition, the toxic effects of MPs/NPs have been validated in
rodents. Research has revealed that MPs can induce oxidative stress
and impair the antioxidant capacity in the ovary (Wei et al., 2022).
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As a consequence of PSMPs exposure, MPs were found to deposit in
the ovary, which further resulted in decreased ovarian reserve, lower
ovarian volume, and disruption of the estrous cycle (An et al., 2021;
Hou et al., 2021; Feng et al., 2022; Haddadi et al., 2022; Liu et al.,
2022; Wei et al., 2022). Wei et al. reported that PS-MPs reached the
mouse ovary after oral administration of 5 μm fluorescent PSMPs
for 2 days (Hou et al., 2021). In ovarian tissue, ROS and
malondialdehyde (MDA) levels increased markedly whereas
glutathione (GSH) levels decreased considerably (Hou et al.,
2021; Wei et al., 2022). Hou et al. found that MP-induced
oxidative stress further activated NOD-like receptor thermal
protein domain associated protein 3 (NLRP3)/Caspase-
1 signaling pathway, which led to pyroptosis and apoptosis of
granulosa cells (An et al., 2021; Hou et al., 2021). Moreover,
research by An et al. suggested that the activation of oxidative
stress caused by PSMPs might also play a role in the ovarian fibrosis
through the Wnt/β-catenin signaling pathway, as it could be the
blocked by N-Acetyl-l-cysteine (NAC) treatment (An et al., 2021).
Additionally, exposure to PSMPs altered the expression of
cytoskeleton protein in rat ovary which was also considered as
the target of ROS (Haddadi et al., 2022).

Apart from ovary, PSMPs were also observed to accumulate in
the uterus, causing pathological alterations such as thinner
endometrium, a reduction in uterine glands, endometrial
adhesion and so on (Haddadi et al., 2022; Liu et al., 2022). Wu
et al. claimed that via the Toll-like receptor 4/NADPH oxidase 2
(TLR4/NOX2) signaling axis PSMPs induced oxidative stress, which
thereby activated Notch and transforming growth factor-β (TGF-β)
signaling pathways, ultimately resulting in uterine fibrosis in rats.
Inhibition of TLR4/NOX2 signaling transduction can play an anti-
fibrotic effect by lowering the generation of ROS (Wu et al., 2022).

4 Genotoxicity of MPs/NPs

4.1 Deoxyribonucleic acid (DNA) damage

Currently, it has been documented that MPs/NPs may induce
genotoxicity through DNA damage in various tissues and organs of
several species (Zheng et al., 2019; Domenech et al., 2021; Sangkham
et al., 2022; Guimarães et al., 2023). Two separate studies revealed
that the reproductive toxicity induced by PSMPs may be associated
with the activation of cell apoptosis through DNA damage in
Caenorhabditis elegans (Chen et al., 2022; Hua et al., 2023). Wu
and colleagues observed an increase in DNA damage markers in
ovarian granulosa cells following exposure to PSMPs (Wu et al.,
2023). Hua et al. also confirmed that suppressing DNA damage
checkpoints could improve germline apoptosis and subfertility (Hua
et al., 2023). An in vitro testing by Chatterjee et al. confirmed the
toxicity of polystyrene nanoplastics (PSNPs) to zebrafish oocytes,
accompanying an alteration in the expression of genes associated to
DNA damage (Chatterjee et al., 2022).

4.2 Epigenetic response

Epigenetic regulation refers to the chemical modifications of
DNA and histones that can influence gene expression without

altering the DNA sequence (Skvortsova et al., 2018; Chen et al.,
2020). Existing data on NPs and epigenetics suggest that NPs indeed
have the potential to modulate the epigenome, while current
research in this area remains limited. Wang et al. noticed that
exposure to PSNPs led to a decrease in the expression of a
methyltransferase, homoserine O-acetyltransferase (MET-2),
which played a critical role in the germline cells in defending
against the toxicity of PSNPs in Caenorhabditis elegans (Wang
et al., 2021). Yang et al. also demonstrated that germline
microRNA38 in C. elegans mediated epigenetic regulation in
response to exposure to PSNPs (Yang et al., 2020). Additionally,
MPs/NPs may cause cross-generational epigenetic effects since
epigenetics is heritable, as will be discussed in the following section.

5 Cross-generational toxicity of
MPs/NPs

MPs/NPs have the potential to translocate to oocytes, placenta,
and offspring, thereby posing a greater threat to human and animal
health (Figure 2). The cross-generational transfer effect of NPs has
been illustrated in some aquatic and soil organisms (Manabe et al.,
2011; Cui et al., 2017; Zhao et al., 2017; Pitt et al., 2018b; Teng et al.,
2022). After exposing zebrafish to PSNPs, Pitt et al. found that
PSNPs initially appeared in the yolk sacs of embryos that were
maternally or co-parentally exposed rather than paternally exposed,
and subsequently spread throughout the digestive system, pancreas,
and liver in the larvae (Pitt et al., 2018b). Although it is unclear how
maternal transfer of PSNPs is mediated, previous research has
indicated that PSNPs interacted with vitellogenin, which may
promote PSNPs transfer to the oocyte and eventually the
embryonic yolk sac (Pitt et al., 2018b). Two independent
research groups respectively demonstrated that PSNPs could
penetrate the chorion of zebrafish and distribute to various
organs after being absorbed via the yolk sac (Pitt et al., 2018a;
Lee et al., 2019). Lee and colleagues described the morphology of
chorion exposed to NPs with uneven surface as well as narrow
chorionic pore canals under scanning electron microscope (Lee
et al., 2019). NPs with sizes of 50 nm and 200 nm were dispersed
throughout the pores, whereas NPs with a diameter of 500 nm were
partially blocked, suggesting that the size of NPs was positively
correlated with the capacity to penetrate (Lee et al., 2019). However,
some experts still hold the view that chorion acts as an effective
barrier against PSNPs. Their studies showed that PSNPs gathered on
the chorion instead of infiltrating it (van Pomeren et al., 2017; Duan
et al., 2020). Kashiwada et al. also verified that chorion could prevent
embryos from PSNPs invasion at the early developmental stage of
Japanese medaka. Nonetheless, with the extension of exposure time,
it was found that NPs were internalized and transmitted to the
gallbladder (Kashiwada, 2006). Researchers speculated that particles
will not be transported across the chorion until the chorion reaches
its maximal adsorption value (van Pomeren et al., 2017). Given the
extent of chorionic pore canal in fish, most investigations supported
that MPs will be blocked by embryonic chorion (LeMoine et al.,
2018; Duan et al., 2020; Li et al., 2020; Cheng et al., 2021; De Marco
et al., 2022). Additionally, exposure to NPs has also been shown to
result in translocation frommatrix to the placenta and fetal tissues in
rodents (Huang et al., 2015; Fournier et al., 2020; Nie et al., 2021;
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Yang et al., 2022a). However, according to a single exposure
experiment, carboxylated PSNPs only showed a high density in
the placenta without reaching the embryonic tissue, and were
eliminated within 4 days after exposure (Kenesei et al., 2016).
Variations in exposure time and surface modifications of plastic
particles may account for the discrepancies between different
research. This work reminds us that the scavenging effect of
MPs/NPs should be taken into consideration during exploration
of their toxicity, which may have been overlooked in prior studies.

Unlike animal experiments, MPs have been detected in human
meconium and placenta, including fetal side, maternal side, and
chorionic amniotic membrane (Ragusa et al., 2021; Wei et al., 2022).
Placental transfer of PSNPs frommaternal to fetal compartment has
been proven using the ex vivo human placental perfusion model
(Wick et al., 2010; Grafmueller et al., 2015a). The findings of
Grafmueller et al. suggested that an active, energy-dependent
transport pathway rather than passive diffusion may be the
underlying mechanism of PSNPs translocation across the
placenta, in which syncytiotrophoblast played a crucial
contributor (Grafmueller et al., 2015a). Although there are
certain limitations in the methodology of human placental
perfusion (Grafmueller et al., 2015b), these data are essential for
comprehending the onset of developmental toxicity of MPs/NPs.

Another in vitro study using human placental choriocarcinoma cells
also verified the intercellular transport of PSNPs from the maternal
to the fetal compartment, with an inverse relationship between
particle size and transport rate (Cartwright et al., 2012).

Of note, a study pointed out that maternally administrated
PSNPs were mainly transmitted to offspring through breast milk
after delivery, while the quantity of PSNPs that crossed the placental
barrier during pregnancy could not be enough to reach embryonic
organs (Jeong et al., 2022).

There has been increased concern on the threat that MPs/NPs
may pose to fetal development. Numerous studies have
demonstrated that maternal exposure to MPs/NPs has profound
influence on offspring at various levels, ranging from weight loss,
developmental malformations to immune disturbance, metabolic
disorders, circulatory abnormalities, neurological deficits, and
reproductive failure (Luo et al., 2019a; Luo et al., 2019b; Bringer
et al., 2020; Hu et al., 2021).

5.1 Immune microenvironment

Despite variations in exposure patterns, several investigations
have elucidated that MPs/NPs induce embryo resorption (Fournier

FIGURE 2
Cross-generational toxicity of microplastics (MPs) and nanoplastics (NPs). MPs/NPs have the potential to infiltrate the embryonic chorion. MPs/NPs
will disrupt the delicate immune balance at the maternal-fetal surface while also altering the distribution and profile of immune cells in offspring.
Additionally, MPs/NPs will impact fetal circulatory function and angiogenesis during pregnancy, inducing cardiovascular damage and hypercoagulable
state. MPs/NPs will also cause neurological dysfunction, which can extend far beyond the gestational period. Moreover, metabolic disorders may
emerge in progenies due to maternal exposure to MPs/NPs. Other detrimental influences of MPs/NPs manifest as developmental abnormalities and
subfertility in progenies, leading to a multitude of health challenges throughout lifetimes.
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et al., 2020; Hu et al., 2021; Nie et al., 2021). After intraperitoneal
exposure to PS-MPs, Hu et al. observed a reduction in uterine blood
supply and the proportion of decidual natural killer (dNK) cells
while an increase of placental T helper cells, a polarization of
M2 macrophage, and an immune suppressive state of cytokines
(Hu et al., 2021). Due to the intricacy of gestation, this result may not
entirely align with our general conception (Yi et al., 2019).
Therefore, further research is necessary to uncover the
mechanism underlying the MPs/NPs induced embryonic loss.
Additionally, a study reported that PE-MPs altered the
composition of lymphocyte subsets in spleen of offspring which
might be secondary to maternal and/or paternal toxicity (Park et al.,
2020). Exposure of zebrafish embryos to MPs/NPs indicated that
could trigger an immune response, which was also evidenced by the
recruitment of neutrophils and macrophages around the PS particles
(Veneman et al., 2017; Brun et al., 2018).

5.2 Circulatory dynamic

Although several of the studies previously cited lend credence to the
notion that the embryonic chorion can effectively prevent external
contaminants, it does not mean getting rid of the influence caused by
MPs/NPs. The adsorption of MPs/NPs on the outer surface of chorion
has been shown to alter the permeability of chorionic channel and the
mechanical properties of embryonic chorion, which might result in the
hypoxic microenvironment in the embryo (Duan et al., 2020; Cheng
et al., 2021). Through the methodology of metabonomics, Duan et al.
concluded that the variations in heart rates and blood flow rates were
connected to the changes in the antioxidant system of the embryo
(Duan et al., 2020). Furthermore, Park et al., reported that MPs/NPs
caused pathological angiogenesis and peripheral microcirculatory
disruption, thus leading to prematurity and growth restriction
during the zebrafish embryonic development (Park and Kim, 2022).
Sun and colleagues also provided evidence for NPs inducing
cardiovascular damage in zebrafish embryos (Sun et al., 2021). They
found that NPs can inhibited blood flow velocity of zebrafish embryos,
resulting in hypercoagulable state of circulation (Sun et al., 2021).
Simultaneously, NPs probably caused vascular cell dysfunction in vivo
by inducing systemic inflammatory response and oxidative stress,
which would eventually promote thrombosis in zebrafish embryos
(Sun et al., 2021). The formation of atrioventricular heart valves was
substantially impacted after human induced pluripotent stem cells were
exposed to NPs, according to another in vitro investigation utilizing
gene set enrichment analysis (Bojic et al., 2020).

5.3 Neurological development

According to multiple studies, prenatal or perinatal exposure to
NPs may accumulate in fetal brain and result in brain dysfunction
(Yang et al., 2022a; Jeong et al., 2022). A study injecting of PSNPs
into zebrafish embryos also illuminated that NPs accumulated in the
brain and induced oxidative DNA damage (Sökmen et al., 2020).
Yang et al. illuminated that NPs induced excessive production of
ROS, which led to apoptosis of fetal thalamic neurons and inhibition
of γ-aminobutyric acid (GABA) synthesis, thus ultimately causing
anxiety-like behavior in progenies (Yang et al., 2022a). Jeong et al.

reported that PSNPs altered the composition of neural cells in the
brain of postnatal offspring, featured as an increase in the number of
astrocytes (Jeong et al., 2022). Furthermore, reductions of estrogen
signal induced by PSNPs could lead to cognitive impairment in
female offspring (Jeong et al., 2022). After embryo injection
exposure, Zhang et al. described that there was a downregulation
of genes involved in neurological function, including synapse
formation, neuronal differentiation, and cytoskeleton modulation,
which suggested an influence on the development of central nervous
system (Zhang et al., 2020a). It was also confirmed by Nie et al. that
exposure to NPs during the gastrula stage of chicken embryos caused
neural tube defects (Nie et al., 2021). According to an investigation
of Chen et al., embryo exposure to NPs lowered acetylcholinesterase
(AChE) activity and substantially upregulated neurotoxicity
biomarkers, which in turn affected the locomotion of juvenile
fish (Chen et al., 2017).

5.4 Glucolipid metabolism

A team has revealed that maternal exposure during pregnancy to
MPs would have cross-generational consequences, causing lipid and
amino acid metabolic abnormalities in offspring, which might
provide concealed risks for long-term metabolic diseases (Luo
et al., 2019a; Luo et al., 2019b). This may be associated with gut
microbiota dysbiosis and gut barrier dysfunction in matrix,
according to their findings (Luo et al., 2019a). Another study
found that prenatal and postpartum administration with PSNPs
not only perturbed glucose metabolism but also triggered oxidative
stress and inflammation in the liver of male offspring, thus resulting
in a weight loss at birth and postnatally (Huang et al., 2022).
Similarly, modifications in intestinal microbiota and glucolipid
metabolism were noted after zebrafish embryos were exposed to
MPs/NPs (Veneman et al., 2017; Wan et al., 2019).

5.5 Reproductive barrier in offspring

Diverse species have exhibited decreased fecundity in their
progeny after parental exposed to MPs/NPs, and one study even
discovered that Daphnia Magna required at least three generations
to gradually recover from the effects of impaired fertility (Zhao et al.,
2017; Martins and Guilhermino, 2018; Sobhani et al., 2021). Huang
et al. revealed that exposure to PSNPs during pregnancy and
lactation also prevented spermatogenesis in male offspring by
causing testicular developmental disorders and oxidative injury
(Huang et al., 2022). Additionally, Lu et al. reported that
exposure to PSMPs altered the reproductive endocrine level of
zebrafish embryos, exhibiting a considerable increase in
testosterone, estrogen, vitellogenin, and T3 levels (Lu et al.,
2022). Several studies also implied that the cross-generational
reproductive toxicity was also associated with DNA methylation
and histone modifications although one study found no significant
differences in global DNA methylation among four generations in
Daphnia magna (Yu et al., 2021; Song et al., 2022; Lee et al., 2023).
These data offer fresh insight into the negative reproductive
consequences of MPs/NPs on progeny which also require further
investigations in the exact mechanisms.
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5.6 Developmental malformations

A number of investigators have documented the aberrant
development of progenies after parental exposure to MPs/NPs,
even if some others have found no appreciable difference in the
malformation rate of offspring (Chen et al., 2017; Pitt et al., 2018a).
Body length reduction, weight loss, locomotion diminution, and
changes in activity behavior are among the most typical
developmental issues (Pacheco et al., 2018; Oliviero et al., 2019;
Sun et al., 2019; Bringer et al., 2020; Bringer et al., 2022; Teng et al.,
2022). Recently, a novel study evaluated the presence of MPs in fresh
human placenta and the association with the development of
neonatal infants, heightening concerns about the potential impact
of a lifestyle involving continuous plastic exposure on birth
outcomes (Amereh et al., 2022). Their research revealed a
negative correlation between MPs burden and anthropometric
measurements of neonates in intrauterine growth restriction
(IUGR) pregnancies (Amereh et al., 2022). Additionally, MPs/
NPs will induce pericardial edema and harm the integrity of the
visual structure since they can reach heart, eyes, and other significant
organs (Zhang et al., 2020b; Bojic et al., 2020; Sun et al., 2021; De
Marco et al., 2022). Some studies also pointed out that MPs/NPs
induced osteotoxicity which was inherited by offspring (De Marco
et al., 2022; Tarasco et al., 2022).

6 Combined effects of MPs/NPs with
other pollutants in reproductivity

MPs/NPs rarely play a solitary function in inducing biological
toxicity in the natural environment, as evidenced by an abundance
of recent literature (Xu et al., 2020; Sheng et al., 2021; Zhang et al.,
2022). On the one hand, various types of additives are applied in the
production of plastics to impart specific properties (Cole et al., 2011;
Bouwmeester et al., 2015). In turn, these toxic additives will also
leach out fromMPs/NPs and cause deleterious effects (Bouwmeester
et al., 2015; Sheng et al., 2021). Despite the fact that multiple studies
have demonstrated that additives in plastics such as bisphenol A and
phthalates can impair female reproductive function, research on the
combined effects of MPs/NPs with these chemicals remains limited
(Hunt et al., 2003; Lai et al., 2017; Li et al., 2018; Ma et al., 2019; Park
et al., 2019; Ullah et al., 2022). On the other hand, due to their
minuscule diameters and large specific surface area, MPs/NPs tend
to absorb or desorb other environmental contaminants thus altering
their bioaccumulation and toxicity (Law and Thompson, 2014; Yu
et al., 2019). Several studies have raised concerns about the potential
for MPs and NPs to serve as carriers for other environmental
contaminants, triggering reproductive disorders such as
endocrine disruption and infertility in females (Wu et al., 2023).

6.1 MPs/NPs and organic pollutants

Research on the interaction between MPs/NPs and organic
pollutants implies that MPs/NPs have multiple effects on the
bioaccumulation and toxicity of diverse compounds. A majority
of studies have supported that the combined exposure of organic
pollutants with MPs/NPs has an additive or synergistic toxicity on

female reproduction and embryonic development. Endocrine
disrupting chemicals (EDCs) are prevalent organic contaminants
in the environment, which are likely to interplay with MPs/NPs (Liu
et al., 2019a; Coffin et al., 2019; Hu et al., 2020; He et al., 2021; Lu
et al., 2021). The co-occurrence of MPs/NPs and several EDCs has
been reported to exerted an additive or synergistic endocrine-
disrupting toxicity in reproductivity, impairing the ovarian
function and inhibiting the secretion of sex hormones (He et al.,
2021; Han et al., 2022; Mao et al., 2022; Lin et al., 2023a; Lin et al.,
2023b). Furthermore, research indicated that PSMPs could enhance
the desorption of di-(2-ethylhexyl) phthalic acid, thereby generating
DNA oxidative damage, granulosa cell cycle arrest, and necroptosis
in the ovary (Coffin et al., 2019; Wu et al., 2023).

Likewise, the comprehensive toxicity of MPs/NPs not only cause
parental reproductive dysfunction, but also onset more notable
cross-generational consequences in progenies. Compared to
individual exposures, it has been confirmed that the combined
exposure of MPs/NPs with multiple types of organic pollutants
poses a more severe threat to offspring development, especially in
cases of pericardial cyst, skeletal abnormalities, and growth
retardation (Lu et al., 2022; Tarasco et al., 2022; Lin et al., 2023b;
Gao et al., 2023; Zhang et al., 2023). On the basis of the combination
index, Lu et al. also observed an antagonistic effect betweenMPs and
sulfamethoxazol, while it only caused a slight reduction in the
combined toxicity (Lu et al., 2022).

Even though most current studies suggest that MPs exacerbate
the toxicity of organic pollutants, there is still controversy
surrounding this issue. A study has indicated that there is no
interaction between PSNPs and BPA in marine water medium,
accompanying no alterations in the embryonic developmental
toxicity on a phenotypic level (Ferrari et al., 2022). Some other
studies pointed out that MPs/NPs could mitigate the toxicity of
several compounds including B[α]P, phenanthrene, and butyl
methoxydibenzoylmethane, lessening the adverse effects on
embryonic development (Li et al., 2020; Liu et al., 2021; de Mello
Souza et al., 2023). When zebrafish embryos were exposed to NPs
and a mixture of complex polycyclic aromatic hydrocarbons
(PAHs), PAHs were shown to adsorb onto the surface of NPs,
thereby reducing developmental abnormalities and vascular injury
(Trevisan et al., 2019). Additionally, a study found that NPs and
phenmedipham (PHE) exhibited results of no interaction,
synergistic effect, and antagonistic effect at different
concentrations and endpoints (Santos et al., 2022). Despite that,
dual exposure still increased the possibility of PHE transfer to
embryos, disrupting oxidative balance and neural
neurotransmitter activity (Zhang et al., 2023).

It is worth mentioning that most studies only focus on a specific
type of pollutant, whereas the natural environment contains a vast
array of compounds. Their coexistence may pose greater ecological
or health hazards than their individual effects, necessitating
additional investigation into these cumulative effects.

6.2 MPs/NPs and inorganic pollutants

Currently, investigations on the combined toxicity of MPs/NPs
with inorganic substances predominantly focus on heavy metals
(HMs) (Yan et al., 2020; Cheng et al., 2021; Santos et al., 2021; Feng
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et al., 2022). Yan et al. has found that the combined exposure to HMs
and MPs led to the formation of empty follicles in marine medaka
fish, showing additive and synergistic effects on reproductive
toxicity (Yan et al., 2020). In addition, a study on co-exposure
suggested that the presence of PSMPs increased the bioaccumulation
of lead in mice, potentially exacerbating the ovarian toxicity through
oxidative and endoplasmic reticulum stress in female mice (Feng
et al., 2022). Santos et al. also found that MPs regulated
neurotoxicity induced by copper in the early developmental stage
of zebrafish, with higher AChE inhibition observed in the mixture
groups (Santos et al., 2021). However, according to the research of
Cheng et al., MPs could assimiliate HMs like cadmium present in the
exposed environment, thereby reducing the bioaccumulation of
HMs in embryos and performing a detoxifying function under
co-exposure with MPs (Cheng et al., 2021). Besides, a study
found that the combined effect of HMs and MPs can also
influenced by the concentration of the mixture (Martins et al., 2022).

7 Discussion

Collectively, MPs/NPs tend to elicit multiple reproductive
consequences in a variety of organisms, leading to the decline of
female fertility and the developmental anomalies of offspring.
However, it is still premature to make firm judgements regarding
the toxicity on humans. On the one hand, several studies have
demonstrated that the susceptibility of various species to MPs/
NPs exposure varied with body size, showing a more severe
toxicity with the decrease of body size (Jaikumar et al., 2019;
Cormier et al., 2021). In comparison to the size of most
experimental animals, MPs/NPs seem negligible to humans.
However, for human beings, we are more likely to be
confronted with MPs/NPs exposure over an extended period
of time, or even throughout the entire life cycle, allowing for the
accumulation of MPs/NPs in the organisms as well as the
detrimental effects locally and systemically. On the other
hand, the outcomes of laboratory research may not accurately
represent the natural environment. The extent to which MPs/NPs
could pose issues for different organisms will be determined by a
variety of factors, such as particle size, the amount and type of
plastic particles, the species-specific toxicity of plastics, the mode
and location of plastics accumulation within organisms. Plastic
debris exists in a diversity of shapes, sizes, and types in natural
environments (Cole et al., 2011; Eerkes-Medrano et al., 2015;
Syberg et al., 2015). Since most research adopted commercially
available round primary MPs/NPs, it would be hard to
completely replicate the exposure situation in nature. In
addition, the concentration of microplastics in the
environment could be less than 1 μg/L (Lenz et al., 2016).
However, to better explore the toxic effects of MPs/NPs, most
research has far exceeded the concentrations observed in the
environment up to this point (Browne et al., 2008; von Moos
et al., 2012; Besseling et al., 2013; Cole et al., 2015; Sussarellu
et al., 2016). As we have seen in most investigations, the modest

concentration of MPs/NPs may do no harm (Zhao et al., 2017;
Eltemsah and Bøhn, 2019; Schöpfer et al., 2020). A study also
demonstrated that cross-generational effects caused by
environmentally relevant concentrations of PSMPs can be
negligible or reversible (Qiang et al., 2020). Furthermore, a
large number of studies have also revealed MPs/NPs can
interact with multiple pollutants on account of their intense
adsorption to other contaminants. As a result, it is still a
highly complex issue how MPs and NPs endanger female
reproduction and offspring development in the actual
environment.

According to the current research, we still in support of MPs/
NPs may play a significant role in female reproduction and have far-
reaching influence beyond reproduction under certain conditions.
We anticipate further mechanical research to shed light on the
potential impacts of MPs/NPs with environment-related
concentrations on female fertility and progeny health throughout
the whole reproductive cycle.
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