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Encephalitis is a disease typically caused by viral infections or autoimmunity. 
The most common type of autoimmune encephalitis is anti-N-methyl-D-
aspartate receptor (NMDAR) antibody-mediated, known as anti-NMDA receptor 
encephalitis, which is a rare disease. Specific EEG patterns, including “extreme 
delta brush” (EDB), have been reported in patients with anti-NMDA receptor 
encephalitis. The aim of this study was to develop an intelligent diagnostic model 
for encephalitis based on EEG signals. A total of 131 Participants were selected 
based on reasonable inclusion criteria and divided into three groups: health 
control (35 participants), viral encephalitis (58 participants), and anti NMDAR 
receptor encephalitis (55 participants). Due to the low prevalence of anti-NMDAR 
receptor encephalitis, it took several years to collect participants’ EEG signals while 
they were in an awake state. EEG signals were collected and analyzed following 
the international 10–20 system layout. We proposed a model called Temporal 
Transformer-Spatial Graph Convolutional Network (TT-SGCN), which consists of 
a Preprocess Module, a Temporal Transformer Module (TTM), and a Spatial Graph 
Convolutional Module (SGCM). The raw EEG signal was preprocessed according 
to traditional procedures, including filtering, averaging, and Independent 
Component Analysis (ICA) method. The EEG signal was then segmented and 
transformed using short-time Fourier transform (STFT) to produce concatenated 
power density (CPD) maps, which served as inputs for the proposed model. TTM 
extracted the time-frequency features of each channel, and SGCM fused these 
features using graph convolutional methods based on the location of electrodes. 
The model was evaluated in two experiments: classification of the three groups 
and pairwise classification among the three groups. The model was trained using 
two stages and achieved the performance, with an accuracy of 82.23%, recall of 
80.75%, precision of 82.51%, and F1 score of 81.23% in the classification of the 
three groups. The proposed model has the potential to become an intelligent 
auxiliary diagnostic tool for encephalitis.
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1. Introduction

Encephalitis is typically caused by viral infections or autoimmunity. 
The most frequent cause of autoimmune encephalitis is the presence of 
anti-N-methyl-D-aspartate receptor (NMDAR) antibodies, which is 
commonly referred to as anti NMDA receptor encephalitis (Nosadini 
et al., 2021). N-methyl-D-aspartate receptors (NMDARs) are a specific 
type of ionotropic glutamate receptors that are widely distributed in the 
central nervous system. These receptors play a crucial role in synaptic 
plasticity and a wide range of cognitive functions (Adell, 2020). 
However, the presence of anti NMDAR antibodies can interfere with 
their function by cross-linking and internalizing them into neurons, 
leading to a functional deficiency of NMDARs (Hughes et al., 2010). 
Anti NMDA receptor encephalitis is a rare condition, classified as 
ORPHA:217253, and its clinical diagnosis is based on the presence of 
characteristic symptoms and the detection of autoantibodies in the 
cerebrospinal fluid and serum (Graus et al., 2010).

Electroencephalogram (EEG) is widely used in the examination 
of patients with anti NMDA receptor encephalitis, and the abnormal 
rate is beyond 80%. Various EEG patterns have been reported, 
including diffuse or focal slow wave intermittent or continuous 
discharges, epileptiform discharges, and others (Gillinder et al., 2019). 
EEG features have been identified to be  useful in diagnosis and 
prognosis in anti NMDA receptor encephalitis (Freund and Ritzl, 
2019). Adequate analysis was conducted on EEG data from 62 patients 
in China who had anti NMDA receptor encephalitis, revealing 
characteristic electroencephalogram abnormalities. The majority of 
these patients showed abnormal EEG signals, including the common 
diffuse slowing presentation (Zhang et al., 2017). Encephalitis can 
have various causes, making it crucial to identify infectious etiologies. 
In a previous study, the comparison between anti NMDA receptor 
encephalitis and viral encephalitis was examined. The monitoring of 
EEG signals in patients with anti NMDA receptor encephalitis 
demonstrated a universal diffuse slowing feature and less focal 
epileptic activity when compared to viral encephalitis. Moreover, 
abnormal EEG signals in the temporal lobe may indicate a viral 
etiology (Gable et al., 2009). Additionally, a highly specific pattern 
called “extreme delta brush” (EDB), characterized by rhythmic bursts 
of slow-wave and superimposed fast-wave activity across the delta, has 
been found in up to one-third of patients (Schmitt et  al., 2012). 
Another study comparing pediatric and adult patients with anti 
NMDA receptor encephalitis noted that 50% of adults and 33% of 
children exhibited EDB (Huang et al., 2016). EEG data from pediatric 
patients during the acute stage of the disease have revealed diffuse 
alpha-theta rhythms of high amplitude, mainly in the anterior region, 
with reduced normal slow wave activity during sleep, which is similar 
to the EEG pattern recorded in the awake state (Gitiaux et al., 2013). 
Based on these related studies, it is suggested that EEG features could 
potentially function as a biomarker for the detection of encephalitis. 
With advances in computational analysis techniques and machine 
learning techniques (ML), the clinical application of EEG signatures 
may be significantly improved.

The transformer block is a structure based on the attention 
mechanism, which has been widely used in image processing and has 
demonstrated excellent performance in image processing tasks 
(Dosovitskiy et  al., 2010). Song et  al. (2022) introduced the 
convolutional transformer model, which utilizes convolutional 
modules to learn local temporal and spatial features and self-attention 
modules to learn global temporal features. The model extracted key 
information from EEG data on a global level and achieved good 
performance on three public datasets. Previous studies have used 
transformer blocks in spatial and temporal ways. In the spatial-wise 
approach, the transformer block computes the correlations among 
individual EEG channels, whereas in the temporal-wise approach, it 
calculates the correlation between different time points (Xie et al., 
2022). Li et  al. (2022) proposed a hybrid network that combined 
Convolutional Neural Networks (CNN) and transformer to extract 
local and global information from STFT-transformed images. This 
structure compensated for the weaknesses of CNN and transformer by 
using short-time Fourier transform (STFT) to extract time–frequency 
features from EEG signals. To address the issue of EEG emotion 
recognition, Liu et al. (2022) built the EEG emotion transformer (EeT) 
framework using several variants of self-attention blocks, including 
spatial (S) attention, temporal (T) attention, sequential spatial–
temporal (S-T) attention, and simultaneous spatial–temporal (S + T) 
attention. The results showed that the simultaneous spatial–temporal 
attention achieved the best performance among four structures.

Graph neural network (GNN) uses graph theory to process data on 
the graph level (Scarselli et  al., 2008). In order to construct a 
convolutional neural network (CNN) specifically tailored for graph-
structured data, an approach employed a semi-supervised learning 
method. This method utilized a convolutional structure that operated 
by employing a localized first-order approximation of spectral graph 
convolutions (Kipf and Welling, 2016). EEG data is typically recorded 
from multiple electrodes, which can be treated as graph-structured data. 
Graph convolutions were introduced to process EEG data based on the 
topological structure of the electrodes, where edges between nodes in 
the graph were defined and weighted according to the geodesic distance. 
The resulting EEG- Graph Convolutional Neural Network (GCNN) 
showed a marked improvement in diagnosing neurological diseases 
(Wagh and Varatharajah, 2020). Li et al. (2021) proposed a patient-
specific EEG seizure prediction model based on the Spatial–Temporal-
Spectral Hierarchical Graph Convolutional Network Architecture 
(STS-HGCN-AL) framework. Two variant graph convolutions were 
produced to better capture the preictal EEG transitions in the 
hierarchical spatial–temporal-spectral level. The competitive results 
showed that the model could predict seizures efficiently.

As a rare disease, there are no public databases available for 
studying anti NMDA receptor encephalitis. Furthermore, there is a 
paucity of research that utilizes machine learning methods to classify 
EEG data for this condition. In this study, we collected EEG data from 
multiple patients with encephalitis as well as healthy controls. Based 
on this data, we proposed a model called TT-SGCN to classify EEG 
signals from different types of encephalitis and healthy controls.
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2. Materials and methods

2.1. Participants

The study recruited participants from inpatient and outpatient 
children at the Department of Pediatrics, Second Hospital of 
Sichuan University between January 1, 2012, and October 31, 2021. 
Three groups of participants were included: anti NMDA receptor 
encephalitis group, viral encephalitis group, and health control 
group. The group with anti NMDA receptor encephalitis fulfilled 
the diagnostic criteria for this condition as outlined in the “Clinical 
Diagnostic Criteria for Autoimmune Encephalitis” published in the 
Lancet Neurology journal in 2016. On the other hand, the viral 
encephalitis group was diagnosed with a definitive etiology. The 
health control group in this study was not specifically recruited. 
Instead, they were selected among children who visited the hospital 
for neurological indications (e.g., suspected seizures), and their 
EEG data were recorded. A professional clinician reviewed the EEG 
recordings and found no evidence of abnormality. Table 1 shows the 
inclusion criteria for each group and the relevant characteristics of 
involved participants are presented in Table  2. The study was 
approved by the Ethics Committee of the West China Second 
University Hospital.

2.2. EEG recording

This retrospective study spanned multiple years. The EEG 
equipment used in this study included two types: NIHON 
KOHDEN EEG-9200 K from Japan and Meren Andy AE-2010 from 
China. The electrodes were placed according to the international 
10–20 system layout, with 18 typical electrodes (Fp1, Fp2, F3, F4, 
C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, A1, A2) used for 
acquisitions. Different durations of EEG data in awake resting state 
were collected for multiple participants. A clinical specialist was 
responsible for the electrode layout and data acquisition to ensure 
the validity of the signal. In the current study, EEG data was 
acquired at awake resting state and the collection time for 
participants varied due to its retrospective nature; however, a 
minimum of 2 h of data collection was ensured. Considering that 
the subjects involved in the study were children, it was noticed that 
they tended to move around during the collection process. This 
movement often caused electrode detachment, which in turn led to 
excessive interference and motion artifacts in EEG signals. To 
mitigate this issue, a professional doctor thoroughly reviewed all the 
collected EEG data. The doctor utilized their expertise to identify 
and remove the signals that exhibited excessive interference, 
ultimately retaining only the relatively effective EEG data.

2.3. Proposed model

We constructed a model called Temporal Transformer-Spatial 
Graph Convolutional Network (TT-SGCN), as shown in Figure 1 to 
explore the classification of EEG signal. The model consists of 
Preprocess Module, Temporal Transformer Module (TTM) and 
Spatial Graph Convolutional Module (SGCM).

2.4. Preprocess Module

EEGLAB (Delorme and Makeig, 2004) is a MATLAB-based 
toolkit for EEG data pre-processing. The EEG data collected during 

TABLE 1 Inclusion criteria for participants in three groups of anti NMDA 
receptor encephalitis, viral encephalitis, and health control.

Group of subjects Inclusion criteria

Anti NMDA receptor 

encephalitis

 • The diagnostic criteria for anti NMDAR 

receptor encephalitis in the “Clinical Diagnostic 

Criteria for Autoimmune Encephalitis”(Graus 

et al., 2016) were met: six main clinical 

symptoms: (1) behavioral abnormalities 

(abnormal psychiatric behavior) and/or 

cognitive dysfunction; (2) language dysfunction 

manifested by reduced speech, silence, or 

incessant speech; (3) seizures; (4) movement 

disorders; (5) reduced level of consciousness; 

and (6) impaired autonomic function or central 

hyperventilation. Presence of one or more of the 

six major clinical symptoms with positive 

cerebrospinal fluid and/or serum anti-GluN1 

antibody test, while excluding other diseases.

 • Age under 18.

 • At least 1 raw EEG data in the acute phase is 

obtained.

Viral encephalitis

 • There are clinical signs of brain parenchymal 

damage, and antibody IgM to a definitive virus, 

or viral nucleic acid, is detected in cerebrospinal 

fluid and/or serum.

 • Cerebrospinal fluid results of laboratory tests 

meet international diagnostic criteria for viral 

encephalitis (Costa and Sato, 2020).

 • Age under 18.

 • At least 1 raw EEG data in the acute phase is 

obtained.

Health control

 • Children without severe neurological chronic 

diseases or acute illnesses examined in our 

EEG room.

 • Age under 18.

 • At least 1 raw EEG data in the acute phase is 

obtained.

TABLE 2 Characteristics of involved participants.

Characteristic Anti NMDAR 
receptor 

encephalitis

Viral 
encephalitis

Health 
control

No. of participants 55 58 35

No. of males 22 36 18

Age (year) 8.1 ± 3.6 4.9 ± 3.8 5.6 ± 3.3

NIHON means No. of participants collected by NIHON KOHDEN and ANDY means No. of 
participants collected by Meren Andy.
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the awake resting state was combined for each participant, using the 
labeled awake marker assigned during EEG data recording. 
Subsequently, the data underwent processing through two filters, the 
first of which had a low frequency filtering of 0.1 Hz and a high 
frequency filtering of 70 Hz, while the second filter eliminated 50 Hz 
industrial frequency interference. The filtered data was subjected to 
Independent Component Analysis (ICA) to produce 21 components. 
These components were carefully examined by an experienced doctor 
to remove noise interference components. The reference signal for 16 
electrodes (A1 and A2 excluded) was calculated by taking the average 
value of all electrodes as the baseline. Z-score normalization was then 
applied, as shown in the following formula:

 
X X∗ =

− µ
δ  

(1)

X represents the processed reference signal, where ∝ denotes its 
mean value and δ  denotes its standard deviation. The EEG data for 
each participant was then divided into multiple segments, each 
containing 60 s of EEG data, which were further divided into twenty 
3-s EEG data pieces. Short-time Fourier transform (STFT) was 
performed on each 3-s EEG data piece to produce a power density 
map. The twenty power density maps for each segment were 
concatenated in the time direction to form a concatenated power 
density (CPD) map. The CPD map for each EEG segment was used as 
input for the proposed model.

2.5. Temporal Transformer Module

To address the small-size dataset, we introduced a transformer-
based module (Lee et al., 2021) to process the CPD maps generated 
from the EEG data. TTM introduced blocks of Shifted Patch 
Tokenization (SPT) and Locality Self-Attention (LSA) to enhance 

spatial information and increase locality inductive bias. Using the SPT 
technique, the input image was shifted in various directions and 
subsequently concatenated. The concatenated image was then divided 
into patches, following a similar approach to the standard Vision 
Transformer (ViT) methodology (Dosovitskiy et al., 2020). The basic 
block in transformer is Scaled Dot-Product Attention, which uses 
three different weight matrices to produce the queries vector (Q), key 
vector (K), and values vector (V), respectively. The calculation of 
Scaled Dot-Product Attention is shown in the following equation:

 
Attention Q K V softmax QK

d
V

T

k
, ,( ) =











 
(2)

which computed the dot product of Q and K, then divided by dk . 
dk is the dimension of K. Then a softmax function was used to get the 
weights to multiply by V. The Multi-Head Attention consisted of multiple 
Scaled Dot-Product Attention layers. LSA firstly set -∞  on diagonal 
components of matrix, which was produced by dot product operation of 
Query and Key. As a result, the transformer block would prioritize 
attention other tokens other than its own, leading to a broader scope of 
attention. Secondly, LSA introduced learnable temperature scaling, 
which computes the softmax temperature during the learning process. 
This sharpens the distribution of attention scores. As a result, LSA also 
increases the locality inductive bias in general. The structure of LSA is 
shown in Figure 2.

2.6. Spatial Graph Convolutional Module

We applied a graph network to introduce the topological structure 
of EEG electrodes. The graph was represented as G V E= { }, , where   
indicated the nodes of graph corresponding to the EEG electrodes,   
indicated the edges connecting the nodes. The data of each node for 

FIGURE 1

Architecture of proposed model: Temporal Transformer-Spatial Graph Convolutional Network (TT-SGCN). The original EEG signal underwent pre-
processing steps such as filtering, z normalization, data segmentation, and STFT in the Preprocessed Module. Next, the Temporal Transformer Module 
utilized a transformer-based block to extract time-frequency information for each EEG channel. The features of all channels were then merged using 
graph convolutional methods in the Spatial Graph Convolutional Module, and the final classification results were obtained from this module.
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the graph was represented by  ∈ ×d 1, where d  indicated the 
dimension per node. The edges linking the nodes were identified and 
represented using an adjacency matrix A∈ ×n n, where n indicated 
the number of nodes. The element Aij  in the adjacency matrix was

 
A

for x x
for x xij

i j

i j
=

⊕





1

0

,

,   
(3)

where i and j were the indexes of nodes, ⊕ indicated that the 
connecting edge existed and  indicated that the connecting edge did 
not exist. Different researchers have used different possible connection 
modes between electrodes. Considering the distance between different 
nodes, we  have defined the connection of nodes referring the 
conception on connecting nodes by previous study (Song et al., 2018; 
Zeng et al., 2020), as shown in Figure 3. The spectral graph convolution 
propagation rule was used based on the defined graph structure (Kipf 
and Welling, 2016). We built L number of graph convolutional layers 
and each layer produced its output feature according to the 
equation below:

 

H D AD H Wl l l+( ) − ( ) ( )=

















1

1

2

1

2σ   

 

(4)

where A A IN = +  is the adjacency matrix with added self-
connections represented by the identity matrix. Dii  indicated the 
degree matrix of A  with D Aii

j
ij


=∑ . W l( ) was a trainable weight 

matrix corresponding to a specific layer. ( )σ ⋅  was an activation 
function. H 0( ) = .

2.7. Training procedure

The training process consisted of two stages, as shown in Figure 4. 
In the stage 1, the TTM was applied to extract the dominant features 
from the time-frequency characteristics of each EEG channel based 
on the CPD map. The TTM was trained with epoch = 150, learning 
rate = 1e-4. In Stage 2, the GCM was employed to incorporate spatial 
characteristics of the EEG data by utilizing data collected from EEG 
electrodes. The GCM was trained with epoch = 80, learning rate = 1e-4. 
In both stages, ADAM optimizer (Zhang, 2018) was applied and used 
the cross entropy loss function (Zhang and Sabuncu, 2018).

The proposed model were evaluated using a 10-fold cross-
validation strategy (Anguita et al., 2012). The dataset was divided 
into ten folds, with each fold used as the test set in turn and the 
remaining data used as the training set. The proposed model was 
trained on the training set and evaluated on the test set. The results 
were averaged over the ten test sets. The dataset consisted of a total 
of 1,599 samples, including 488 samples from the health control 
group, 434 samples from the anti NMDAR receptor encephalitis 
group, and 677 samples from the viral encephalitis group. Samples 
from the same subject were placed in the same training set or test 
set, so the performance of classification in this study was 
cross-subjects.

Firstly we conducted the classification of all three groups, followed 
by the three pairwise classifications among the three groups. In order 
to compare the performance of our proposed model with other 
popular methods for image processing, we  have introduced the 
ResNet (He et al., 2016) and ViT (Dosovitskiy et al., 2020) networks. 
The performance of the classification was evaluated by four indicators 
(Chicco and Jurman, 2020; Powers, 2020): accuracy, recall, precision, 
and F1 score based on True-Positive (TP), True-Negative (TN), 

FIGURE 2

Structure of Locality Self-Attention (LSA) in Temporal Transformer 
Module (TTM).

FIGURE 3

Schematic diagram of the connection methods of nodes in Spatial 
Graph Convolutional Module (SGCM).
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False-Positive (FP), and False-Negative (FN). The corresponding 
formulation are as follows:

 
Accuracy TP TN

TP N FP FN
=

+
+ + +T  

(5)

 
Recall =

+
TP

TP FN  
(6)

 
Precision =

+
TP

TP FP  
(7)

 
F1 2 Precision Recall

Precision Recall
⋅

= ⋅
+  

(8)

3. Results

3.1. Classification of all three groups

The proposed TT-SGCN model was trained to classify EEG data 
from three groups: health control, anti NMDAR receptor encephalitis, 
and viral encephalitis. After the training stage 1, the TTM have 
achieved an accuracy of 67.03 to 77.08%, as shown in Table 3, in 
classifying each channel’s CPD map, indicating good performance. 
After the training stage 2, the confusion matrix in Figure 5 showed 
that our model could better identify EEG signals of health control and 
viral encephalitis, with accuracies of 87.29 and 89.07%, respectively. 
However, the identification of anti NMDAR receptor encephalitis was 
lower, with 22.81% of samples misclassified as viral encephalitis. The 

overall performance of the model in classifying the three groups was 
shown in Table 4. Compared to Resnet and ViT, our model achieved 
the best results with an accuracy of 82.23%, recall of 80.75%, precision 
of 82.51%, and F1 score of 81.23%. Additionally, the model’s 
classification results were visualized using the ROC curves in Figure 6, 
which showed good outcomes with the values of AUC.

3.2. Pairwise classification among the three 
groups

Three pairwise classifications were performed, including health 
control-anti NMDAR receptor encephalitis, health control-viral 
encephalitis, and anti NMDAR receptor encephalitis-viral 
encephalitis. The results of classification after the second training stage 
were presented in Table 5. Confusion matrices were calculated for 
pairwise classification of health control and anti NMDAR receptor 
encephalitis in Figure  7, health control and viral encephalitis in 
Figure 8, and anti NMDAR receptor encephalitis and viral encephalitis 
in Figure 9. Overall, the proposed TT-SGCN model achieved good 
performance to distinguish between the health control group and 
encephalitis control group. Additionally, TT-SGCN achieved the 
highest level of performance in distinguishing between the healthy 
control group and viral encephalitis control group, with an accuracy 
of 92.18%, recall of 92.01%, precision of 89.62%, and F1 score of 
90.79%. The pairwise classification performance of anti NMDAR 
receptor encephalitis-viral encephalitis among the three groups was 
the lowest; however, our model still showed the best results.

4. Discussion

The power density map of EEG data provides important time 
and frequency domain information, which is a crucial feature for 

FIGURE 4

Schematic diagram of training procedure with two stages. The blue block indicates the corresponding module is under training. The green block 
indicated the corresponding module is already well trained and the parameters is fixed.
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distinguishing different types of EEG signals. Previous researchers 
have identified the EEG representation of specific encephalitis 
subtypes (Gable et al., 2009; Schmitt et al., 2012; Gitiaux et al., 2013; 
Huang et al., 2016; Zhang et al., 2017; Gillinder et al., 2019). In our 
analysis we compared two encephalitis subtypes (viral and anti-
NMDAR encephalitis) with healthy controls, using a two stage 
approach. In the first stage we used TTM to extract time-frequency 
information using a transformer-based block and this showed 
reasonable classification accuracies for each channel separately, as 
shown in Table 3. Moreover, the EEG signals from C3, C4, P3, P4, 
and T6 showed the highest accuracies, indicating significant 
differences in EEG characteristics in the corresponding brain 

regions of the parietal lobe, central lobe, and right temporal lobe. 
This suggests that clinicians may be  able to efficiently identify 
different encephalitis with EEG representation from specific 
EEG channels.

The proposed model, employing the SGCM, demonstrated 
enhanced classification performance for all three groups using features 
from 16 recording channels generated by TTM. The EEG curves for 
healthy participants and participants with encephalitis exhibited 
significant differences, resulting in better classification of the EEG data 
for the health control and encephalitis groups. Although distinguishing 
between the EEG curves of anti NMDAR receptor encephalitis and 
viral encephalitis proved challenging, a clinical specialist reviewed the 
recordings and observed normal posterior head rhythm, focal slow 
waves, extreme β activity, and focal slow waves in the frontal and 
frontal lobe regions in the anti NMDAR receptor encephalitis group 
and diffuse slow waves and abnormal interictal discharges in the viral 
encephalitis group. It is not known which of these observed differences 
may have contributed most to the classification performance of the 
models. Future work is needed to make the performance of such 
models more clinically interpretable.

According to observations by a clinical specialist, normal 
posterior head rhythm, focal slow waves, extreme β activity, and focal 
slow waves in the frontal and frontal lobe regions are commonly 
observed in anti NMDAR receptor encephalitis. Conversely, diffuse 
slow waves and abnormal interictal discharges are frequently found in 
viral encephalitis. These characteristics may contribute to identifying 
anti NMDAR receptor encephalitis.

We conducted two types of experiments using our proposed 
model, TT-SGCN: classification of all three groups and pairwise 
classification. In both experiments, our model outperformed Resnet 
and ViT, with better results in terms of accuracy, recall, precision, and 
F1 score. In comparison to classification modeling with large natural 
image datasets, the data utilized in this experiment is of small size. By 
employing the transformer-based structure specifically designed for 
small-scale image datasets (Lee et  al., 2021), TTM demonstrated 
remarkable feature extraction capability, leading to the attainment of 
competent classification accuracy based on the CPD map of each 
channel. Taking into account the location of EEG recording nodes, the 
utilization of SGCM effectively enhanced accuracy and yielded 
improved values compared to the single stage (TTM) approach for 
recall, precision, and F1 score in classifying the EEG signal of all three 
groups. This was accomplished by merging the features of each EEG 
electrode using the graph convolutional method (Kipf and Welling, 
2016). Since a well-trained model to classify fewer categories may 
be more efficient in extracting key features, specific encephalitis was 
easier to identify with higher metrics in the pairwise classification 
experiment. However, a well-trained model capable of classifying all 
three groups is more practical for developing an intelligent diagnostic 
auxiliary tool for encephalitis.

TABLE 3 Accuracies of stage 1 for each channel using TTM in 
classification of all three groups.

Name of channel Accuracy

Fp1 73.35%

Fp2 74.33%

F3 75.47%

F4 74.40%

C3 75.69%

C4 76.93%

P3 76.43%

P4 76.97%

O1 71.43%

O2 74.08%

F7 72.67%

F8 74.87%

T3 72.16%

T4 75.42%

T5 67.03%

T6 77.08%

FIGURE 5

Confusion matrix of TT-SGCN after two stages of training in 
classification of all three groups.

TABLE 4 Performance of TT-SGCN after two stages of training in 
classification of all three groups.

Network Accuracy Recall Precision F1 
score

Resnet 75.79% 74.38% 74.53% 74.37%

ViT 68.79% 66.03% 66.34% 65.72%

TT-

SGCN(ours)

82.23% 80.75% 82.51% 81.23%
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5. Conclusion

We were pioneers in using machine learning methods to 
intelligently classify EEG data for encephalitis. Our proposed model, 
TT-SGCN, leverages the specific EEG representation of anti NMDAR 
receptor encephalitis to accurately classify the EEG signal of 
encephalitis. By using a transformer-based block and graph network 

method, our model achieved good performance in the classification 
of three groups, with an accuracy of 82.23%, recall of 80.75%, precision 
of 82.51%, and F1 score of 81.23%. This study offers novel insights for 
future research endeavors. By enlarging the sample size, it becomes 
feasible to construct expansive open datasets that can be utilized by 
other researchers. This facilitates greater collaboration and promotes 
further investigations in the field.

TABLE 5 Performance of TT-SGCN after two stages of training in pairwise 
classification among three groups.

Network Accuracy Recall Precision F1 
score

Health control—anti NMDA receptor encephalitis

Resnet 81.34% 84.22% 81.22% 82.69%

ViT 80.47% 85.45% 79.27% 82.24%

TT-

SGCN(ours)

85.46% 88.72% 84.57% 86.60%

Health control—viral encephalitis control

Resnet 87.98% 83.60% 87.17% 85.35%

ViT 88.75% 85.24% 87.57% 86.39%

TT-

SGCN(ours)

92.18% 92.01% 89.62% 90.79%

Anti NMDA receptor encephalitis—viral encephalitis control

Resnet 79.92% 65.66% 79.38% 71.87%

ViT 78.21% 76.95% 70.16% 73.40%

TT-

SGCN(ours)

82.35% 76.03% 78.19% 77.10%
FIGURE 7

Confusion matrix of TT-SGCN after two stages of training in pairwise 
classification of health control and anti NMDA receptor encephalitis.

FIGURE 6

ROC curves of TT-SGCN after two stages of training in classification of all three groups. Class 0 indicates health control, class 1 indicates anti NMDAR 
receptor and class 2 indicates viral encephalitis.

https://doi.org/10.3389/fnins.2023.1223077
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dang et al. 10.3389/fnins.2023.1223077

Frontiers in Neuroscience 09 frontiersin.org

6. Limitations

In this study, despite extensive collection of clinical EEG data over 
an extended period, the constructed dataset remains limited in size. The 
effectiveness of neural network models is often dependent on the 
utilization of large-scale datasets, resulting in improved outcomes. To 
address this limitation, firstly, future initiatives could involve collaborative 
efforts with multiple sites to collect diverse EEG data pertaining to 
various encephalitis diseases. Subsequently, a large and specialized 
database can be established, facilitating accessibility for other researchers. 
Secondly, it is worth noting that the study employed two distinct types 
of EEG collection devices, potentially introducing heterogeneity in the 
collected signals. To enhance the comprehensiveness of the dataset, 

further exploration can be conducted, entailing a detailed analysis of 
EEG signals derived from different devices. In addition, a pre-set 
connection method was applied to employ the graph convolution 
method for electrode signals. Subsequent research endeavors should 
consider exploring the influence of node connection methods in diverse 
graph networks and investigating the correlations between hemispheres. 
Relevant research has barely been found concerning the quantitative 
classification results of EEG signals associated with encephalitis. 
Consequently, this study has focused solely on a comparison of various 
classic neural network models using the collected EEG data for 
classification purposes. It is recommended that future researchers refer 
to this article’s results or seek out the latest findings from other scholars 
for comparative analysis and further advancements in this field.
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