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Recently, convolutional neural networks (CNNs) have been widely applied in brain-
computer interface (BCI) based on electroencephalogram (EEG) signals. Due to 
the subject-specific nature of EEG signal patterns and the multi-dimensionality 
of EEG features, it is necessary to employ appropriate feature representation 
methods to enhance the decoding accuracy of EEG. In this study, we proposed a 
method for representing EEG temporal, frequency, and phase features, aiming to 
preserve the multi-domain information of EEG signals. Specifically, we generated 
EEG temporal segments using a sliding window strategy. Then, temporal, 
frequency, and phase features were extracted from different temporal segments 
and stacked into 3D feature maps, namely temporal-frequency-phase features 
(TFPF). Furthermore, we  designed a compact 3D-CNN model to extract these 
multi-domain features efficiently. Considering the inter-individual variability in 
EEG data, we conducted individual testing for each subject. The proposed model 
achieved an average accuracy of 89.86, 78.85, and 63.55% for 2-class, 3-class, 
and 4-class motor imagery (MI) classification tasks, respectively, on the PhysioNet 
dataset. On the GigaDB dataset, the average accuracy for 2-class MI classification 
was 91.91%. For the comparison between MI and real movement (ME) tasks, the 
average accuracy for the 2-class were 87.66 and 80.13% on the PhysioNet and 
GigaDB datasets, respectively. Overall, the method presented in this paper have 
obtained good results in MI/ME tasks and have a good application prospect in the 
development of BCI systems based on MI/ME.
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1. Introduction

Motor imagery (MI) tasks in brain-computer interfaces (BCIs) have gained significant 
attention as a means to decode user intentions from brain signals, allowing individuals to control 
external devices through mental simulations (Pfurtscheller and Neuper, 2001; Aloise et al., 2010; 
Wolpaw, 2013). Electroencephalography (EEG)-based BCIs offer a non-invasive and portable 
approach with high temporal resolution, making them particularly suitable for MI applications 
(Nicolas-Alonso and Gomez-Gil, 2012). However, decoding EEG signals poses challenges due 
to high variability between sessions, subjects, and even within trials (Krauledat et al., 2008; Fazli 
et al., 2009). Additionally, the subject-dependent nature of time intervals, frequency ranges, and 
phase information further complicates the development of robust models applicable to a wide 
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range of subjects. In this context, this paper aims to explore the 
potential of multi-domain dynamic feature extraction methods in 
MI-based BCIs and to enhance the accuracy and reliability of 
EEG-based MI control systems, opening new possibilities for 
improving the quality of life for individuals with disabilities or 
dyskinesia (Prasad et al., 2010; Wang et al., 2015; Zhang et al., 2016; 
Tariq et al., 2017).

In the process of decoding EEG signals in MI-BCI systems, 
effective feature extraction is particularly important. To the best 
of our knowledge, previous research has not adequately focused 
on preserving the temporal, frequency, and phase structures of 
diverse EEG features, which may limit the potential of the 
models. For instance, Park et al. (2014) and Kim et al. (2016) 
introduced the Strong Uncorrelating Transform Complex 
Common Spatial Pattern (SUT-CCSP) algorithm to handle EEG 
time-series data. Similarly, Handiru and Prasad (2016) proposed 
the Iterative Multi-Objective Optimization for Channel Selection 
(IMOCS) to choose the optimal combination of EEG channels. 
These studies only considered temporal information while 
overlooking the original spatial information. Brookes et al. (2016) 
combined connectivity measures with a multilayer network 
framework to capture connectivity features within and between 
frequency bands, but this approach neglected the temporal 
information while focusing on frequency information. Loboda 
et  al. (2014) developed a large-scale synchronization method 
based on Phase-Locking Value (PLV) that leveraged phase 
synchrony between scalp-recorded activity in the sensorimotor 
and supplementary motor areas to compute differences between 
active and relaxed states. Similarly, Gu et al. (2020) calculated 
functional connectivity using PLV for α and β rhythm networks 
to investigate differences between left and right foot motor 
imagery, achieving a maximum accuracy of 75% and revealing 
the network mechanism of left and right foot MI. Leeuwis et al. 
(2021) aimed to study the relationship between EEG connectivity 
and users’ BCI performance using PLV as a measure of functional 
connectivity. With the similar measure of functional connectivity 
is Phase Lag Index (PLI), it can measure the asymmetry of the 
phase difference distribution between two signals and is robust 
to commonly used source signals. Both PLV and PLI are phase-
related index to measure functional connectivity. By exploring 
brain functional connectivity through phase-based methods, 
valuable information flow between brain regions involved in MI 
can be  thoroughly analyzed from the perspective of network 
structural features. However, these studies were limited to phase-
based methods and overlooked the temporal and frequency 
information. Therefore, it is necessary to consider a novel feature 
extraction method that can integrate the diverse features of EEG 
signals, enabling the detection of more valuable and detailed 
motion-related information from EEG signals.

Recently, there has been widespread attention to deep learning 
(DL) methods for improving the classification performance of 
EEG tasks, which have been applied to EEG-based classification 
tasks. Lu et al. (2017) proposed an innovative DL scheme called 
the Frequential Deep Belief Network (FDBN) based on the 
restricted Boltzmann machine (RBM). This scheme utilizes fast 
Fourier transform (FFT) and wavelet packet decomposition 
(WPD) to obtain the frequency domain representation of EEG 

signals and trains three RBMs for motor imagery classification 
tasks. Dose et al. (2018) constructed an end-to-end model using 
convolutional neural networks (CNNs) for EEG signal 
classification and feature learning. Stieger et  al. (2021) 
demonstrated that DL methods significantly improve offline 
performance in online MI-BCI and adapt to continuous control 
tasks compared to traditional methods. Additionally, detecting 
and utilizing neural biomarkers outside the motor cortex in full-
scalp electrode montages can enhance performance (Zhang et al., 
2022). Huang et  al. (2022) proposed a novel model, the Local 
Reparameterization Trick-CNN (LRT-CNN), which combines 
local reparameterization and CNN to process raw EEG signals and 
achieved promising results in a four-classification task. Fan et al. 
(2023) presented a new algorithm that addresses the limitations of 
traditional 1D-CNNs in decoding motor imagery EEG signals by 
incorporating the Filter Band Combination (FBC) module and 
multi-view structure into the CNN. In summary, DL methods 
optimize the input attributes of EEG signals layer by layer and use 
various combinations of feature extraction expressions to obtain 
complex feature representations. This approach enables the 
acquisition of significant and distinctive features, thereby 
enhancing the analysis capability of EEG signals.

In this study, we proposed a method for generating Temporal-
frequency-phase feature (TFPF) representation, which allows us to 
preserve the multivariate information of the EEG signal. To achieve 
this, instead of selecting a single time segment, we chose multiple time 
segments, which we  referred to as a “time segments set.” After 
obtaining the time segments set, we  constructed a multi-domain 
feature matrix (TFPF) for each time segment by applying bandpass 
filtering to the EEG signal. Considering the high variability within 
EEG recordings, in order to derive a robust model that can 
parameterize individual-dependent factors for a wide range of 
participants, we proposed a 3D voxel-shaped Temporal-frequency-
phase dynamic feature representation by stacking multiple TFPF 
maps. Furthermore, recognizing the interdependencies between the 
three dimensions (Tran et  al., 2015), we  designed a compact 3D 
convolutional neural network (3D-CNN) model to learn the 
multivariate features from the 3D voxels.

In the context of deep learning, achieving high classification 
accuracy considering the available data is of utmost importance. 
However, gaining insights into the factors that contribute to individual 
differences in performance can provide a deeper understanding of 
cognitive processes and brain dynamics. Therefore, we captured the 
manifestation of multi-domain features in functional brain 
connectivity, including linear correlations, frequency-specific 
coherence, and phase synchronization. This comprehensive analysis 
enhanced our understanding of brain network dynamics and revealed 
individual differences in cognitive processes and brain activity within 
the EEG signals. Consequently, it improved the interpretability and 
level of understanding of EEG signals.

The main contribution of the proposed framework lies in the 
design of a compact 3D-CNN model, which significantly improves 
the decoding accuracy of MI/ME-based classification by preserving 
the multivariate information through the temporal-frequency-
phase feature representation. Furthermore, the utilization of 
multiple features in brain network analysis overcomes the 
limitations associated with using a single feature type. This allows 
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us to deepen our understanding of individual differences in 
cognitive processes and brain dynamics, as well as explore the 
inherent multi-faceted and complex network structures within 
EEG data.

2. Materials and methods

2.1. Description of dataset

The method proposed in this study has been employed to analyze 
two distinct datasets: the PhysioNet dataset1 (Goldberger et al., 2000) 
and the GigaDB dataset2 (Cho et al., 2017). These datasets are rich 
sources of EEG recordings capturing both motor imagery (MI) and 
real execution (ME) movements.

The PhysioNet dataset comprises EEG recordings from 109 
subjects performing a range of motor tasks. EEG data were collected 
from 64 channels at a sampling rate of 160 samples per second, with 
each trial lasting 4 s. Subsets were created based on MI and ME 
movements of opening and closing left/right hands and both hands/
feet, resulting in 2-class, 3-class, and 4-class classification tasks:

 • 2-class: MI left-hand vs. MI right-hand (L vs. R), MI both-hands 
vs. MI both-feet (B vs. F), MI left-hand vs. ME left-hand (L vs. 
real L), MI right-hand vs. ME right-hand (R vs. real R), MI both-
hands vs. ME both-hands (B vs. real B), MI both-feet vs. ME 
both-feet (F vs. real F).

 • 3-class: MI left-hand vs. MI right-hand vs. MI both-hands (L vs. 
R vs. B).

 • 4-class: MI left-hand vs. MI right-hand vs. MI both-hands vs. MI 
both-feet (L vs. R vs. B vs. F).

The GigaDB dataset comprises EEG recordings obtained from a 
diverse group of 52 subjects (S1-S52) with a comprehensive coverage 
of 64 channels. The dataset offers a detailed examination of brain 
activity during MI and ME tasks for the left and right hand. Each task 
spans a duration of 3 s and the EEG data were sampled at a high 
frequency of 512 Hz.

2.2. Preprocessing of EEG signal

In this study, 20 subjects from PhysioNet dataset and 20 subjects 
from the GigaDB dataset were selected to evaluate and validate the 
proposed method. Preprocessing steps, such as bandpass filtering 
within the range of 8–30 Hz and artifact removal using independent 
component analysis (ICA), were applied to ensure data quality. Due 
to the dynamic nature of the brain’s electrical activity, which can 
exhibit transient changes over time, and the potential challenges 
associated with maintaining sustained attention during the 
experiment, employing the sliding window method to divide the time 
series into smaller segments allows for a more effective capture and 
analysis of these dynamic patterns. This approach takes into account 

1 Publicly available at https://archive.physionet.org/pn4/eegmmidb/.

2 Publicly available at http://gigadb.org/dataset/100295.

the temporal evolution of brain signals during MI and ME tasks, 
facilitating the extraction of crucial features and information necessary 
for accurate classification. Additionally, by focusing on shorter time 
periods, we  can mitigate the potential influence of attention 
fluctuations or cognitive state changes that may occur over longer 
durations. To this end, we have chosen a sliding window step size of 
0.25 s and window width of 2 s, as depicted in Figure 1. The division 
of the time series into multiple segments increases the diversity and 
richness of the training data, thereby enhancing the model’s ability to 
learn and generalize to unseen samples. The comprehensive evaluation 
and discussion of the impact of sliding windows on classification 
performance, encompassing aspects such as accuracy, stability, and 
generalization, will be  thoroughly addressed in Section 3.1.1 of 
the paper.

2.3. Temporal-frequency-phase feature

Pearson’s correlation coefficient (PCC), Coherence (COH), and 
Phase-locking value (PLV) methods were used to extract EEG features 
in this study. PCC measures linear correlation, COH assesses 
frequency-specific correlation, and PLV quantifies phase 
synchronization. By combining these methods, we  can capture 
temporal, frequency and phase dynamics of brain activity. This 
integrated approach provides a more comprehensive understanding 
of brain connectivity and improves the accuracy of EEG analysis.

2.3.1. Pearson correlation coefficient
For the extraction of temporal features, PCC method was 

employed in this study. This approach measures the strength of linear 
relationship between two signals x t( ) and y t( ), revealing their 
temporal connectivity. By calculating the correlation between signals, 
we obtained information regarding the direct connectivity among 
different brain regions. The PCC is defined as Niso et al. (2013):

 
PCC x y= ( ) ( )

=
∑1

1N
t t

t

N

 
(1)

The PCC ranges between −1 and 1. PCC values equal to −1 means 
complete linear inverse correlation between the two signals. PCC 
values equal to 0 means no linear interdependence. PCC values equal 
to 1 means complete linear direct correlation between the two signals.

2.3.2. Coherence
For the extraction of temporal-frequency domain features, COH 

method was utilized in this study. Temporal-frequency coherence 
quantifies the extent of similarity or correlation between the frequency 
components of two signals. It provides a measure of the strength and 
consistency of the linear relationship between x t( ) and y t( ) across 
different frequencies f . It is obtained by squaring the module of the 
coherency function K( ). The coherency function is calculated as the 
ratio between the cross power spectral density, S fxy ( ), of x t( ) and 
y t( ), and their individual power spectral densities, S fxx ( )  and 
S fyy ( ). By comparing the cross power spectral density of the signals 
to their individual power spectral densities, coherence allows us to 
assess the shared frequency content and coherence between the two 
signals. Thus, the coherence is defined as Niso et al. (2013):
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The COH ranges between 0 and 1. COH values equal to 0 means 
no linear dependence between x t( ) and y t( ) at frequency f . PCC 
values equal to 1 means correspondence between x t( ) and y t( ) at 
frequency f .

2.3.3. Phase locking value
For the extraction of phase features, PLV method was employed 

in this study. The PLV method measures the degree of synchronization 
between the phases of signals, reflecting the phase connectivity among 
brain regions. It is well-known that two coupled oscillators can exhibit 
synchronization even when their amplitudes are uncorrelated, which 
is referred to as phase synchronization (PS) (Rosenblum et al., 1996). 
Therefore, the following condition of phase-locking condition holds 
true for any given time t (Niso et al., 2013):

 ∆φ φ φt t tx y( ) = ( ) − ( ) ≤ const (3)

Here, φx t( ) and φy t( ) represent the phases of the signals. However, 
in practical experimental systems, signals often contain noise and 
exhibit random phase slips of 2π. Therefore, it is necessary to address 
the cyclic nature of the relative phase using the following equation:

 ∆ ∆φ φ πrel t t( ) = ( )mod2  (4)

The PLV is a measure of the inter-trial variability of phase 
difference at time t, ranging from 0 to 1. When there is little variability 
in the phase difference across trials (indicating strong phase 
synchronization), the PLV value approaches 1. Conversely, if there is 
significant variability, the PLV value approaches 0. The PLV is defined 
based on Eq. (4) as follows:
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where 
⋅

 denotes time average.

2.4. Classification with 3D-CNN based on 
the TFPF

To capture the intricate temporal, spectral, and phase dynamics of 
EEG signals, we  employed sliding windows of varying lengths to 
collect the PCC, COH, and PLV features described in Section 2.3. This 
methodology allows us to derive comprehensive TFPF, providing a 
comprehensive representation of the EEG signals. The Schematic 
diagram of 3D-CNN based on the TFPF is shown in Figure 2.

2.4.1. Temporal-frequency-phase feature 
generation

During the preprocessing stage, the information from the raw 
EEG signals was extracted through a series of steps. Firstly, bandpass 
filters were applied to the raw EEG signals to extract the EEG signals 
containing the alpha and beta frequency bands. Subsequently, the 
filtered signals were segmented using a sliding window strategy after 
the onset of the cue. Then, PCC, COH, and PLV were employed to 
obtain the temporal, frequency, and phase features of the signals.

Due to the inclusion of temporal, frequency, and phase 
information in the feature representation, it can be  referred to as 
Temporal-Frequency-Phase Features (TFPF). Figure 3 illustrates the 
process of forming the feature representation. The input set (denoted 
as S) is constructed from TFPF representations of multiple EEG time 
segments. Each voxel (represented as V) in S corresponds to a TFPF 
representation generated from a segmented EEG signal. The detailed 
description of the feature representation generation method can 
be found in Algorithm 1. The algorithm sequentially describes the 
method for generating TFPF representations. Specifically, the EEG 
time segments were obtained from the preprocessing stage. Then, the 

FIGURE 1

Trial-based sliding window segmentation: MI and ME tasks with rest intervals. 4-s for the PhysioNet dataset and 3-s for the GigaDB dataset.
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PCC, COH, and PLV features were generated using the EEG time 
segment signals. Finally, the final feature representation was obtained 
by stacking the PCC, COH, and PLV features along the time 
segment axis.

By leveraging the complementary nature of PCC, COH, and PLV 
features, we can delve into various facets of brain connectivity and 
dynamics. This comprehensive approach not only allows for an 
effective characterization of EEG signals but also empowers us to 
extract crucial information pertaining to cognitive processes and 
neural mechanisms.

2.4.2. 3D convolutional neural networks
For the extraction of multi-domain features encompassing the 

temporal, frequency, and phase domains, employing a 3D-CNN is 
a commendable approach. By leveraging three-dimensional 
convolution calculations, the 3D-CNN concurrently captures 
information from the temporal, frequency, and phase domains. This 
approach alleviates the cumbersome task of separate feature 
extraction and mitigates potential accuracy loss that may arise from 
employing distinct feature extraction functions. The integration of 
temporal, frequency, and phase domain information within the 

FIGURE 2

Schematic diagram of 3D-CNN based on the TFPF. (A) After EEG preprocessing, a series of EEG segments were obtained. (B) Given an EEG trial, a TFPF 
containing PCC, COH, and PLV was generated. (C) TFPF extraction using two-layer 3D-CNN. C: EEG channels.
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3D-CNN framework allows for a comprehensive analysis of the 
intricate dynamics present in EEG signals. The synergy between the 
3D-CNN architecture and the TFPF (Temporal-frequency-Phase 
Features) provides a robust and efficient framework for EEG signal 
classification, enabling the model to discern complex patterns and 
relationships among the different domains. In the context of EEG 
signal classification, we have observed that shallow networks tend 
to outperform deeper networks, unlike in image classification tasks. 
Recognizing this pattern, we have strategically crafted a streamlined 
network architecture comprising only two convolutional layers, as 
shown in Figure  2C. We  configured the kernel size of the first 
convolutional layer to be 3 × 3 × 3, with a corresponding feature map 
dimension of 50. In the subsequent convolutional layer, the kernel 
size was determined by (C - 3 + 1) × (C - 3 + 1) × (N - 3 + 1), where 
C represents the input dimensions in one axis and N represents the 

input dimensions in another axis. The feature map dimension for 
this layer was set to 100. These carefully chosen settings ensure an 
effective extraction of features from the input data while increasing 
the network’s capacity to capture intricate patterns and relationships 
within the EEG signals. The 3D-CNN model employed ReLU 
activation functions during training, with each experiment 
consisting of 100 iterations. To optimize the cost function, 
we  utilized the Adam optimizer, using a batch size of 16 and a 
learning rate of 1e-4. To assess the stability, accuracy, and reliability 
of the proposed model, we divided the data into training data (90%) 
and testing data (10%) and conducted experiments using 10-fold 
cross-validation. We adopted a 10-fold cross-validation technique 
to adjust and select different combinations of hyperparameters. 
Subsequently, we averaged the results from the ten experiments, 
ensuring the applicability of the testing data (test set) and 
demonstrating the reliability and robustness of the outcomes.

2.5. Brain network analysis

When it comes to brain network analysis, we  delve into the 
intricate connections and information flow within the brain. By 
studying brain networks, we  uncovered the interactions between 
different brain regions, the pathways of information transmission, and 
the coordination of brain functions, aiding in our understanding of 
the fundamental mechanisms underlying brain function and cognitive 
processes. As shown in Figure 4, After the EEG preprocessing steps, 
we computed the connectivity matrix using clean EEG signal (i.e., the 
data processed by removing artifacts, bandpass filtering, and ICA). 
Subsequently, we employed surrogate data analysis to remove spurious 
connections in the connectivity matrix. The underlying principle of 
surrogate data analysis involves independent and random shuffling of 
the phase of the Fourier coefficients of the time series, resulting in the 
generation of surrogate time series (Li et al., 2016). In this study, for 
each subject and each trial, we performed 200 random shuffles to 
generate surrogate time series for each edge.

FIGURE 4

Schematic diagram of brain network analysis. (A) The clean EEG signal was obtained during EEG preprocessing. (B) PCC, COH, and PLV feature 
representation for connectivity analysis. (C) Surrogate data method to remove spurious connections. (D) Brain connectivity analysis using significant 
connections after using surrogate data method.

FIGURE 3

TFPF representation of input set which is denoted as S. Each voxel V1, 
…, VN, is obtained from EEG segments Seg1, …, SegN.
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3. Experiment and results

In this section, the proposed method was first used to classify the 
TFPF of EEG signals, which included ablative experiment and subject-
independent classification. Then, brain network analysis was 
performed to analyze the brain network topology and its impact on 
the experimental results.

3.1. Temporal-frequency-phase feature 
classification

3.1.1. Ablative experiment
In order to evaluate the performance of the proposed 3D-CNN on 

two datasets (PhysioNet and GigaDB), we conducted the following 
ablative experiments. We  investigated the impact of the sliding 
window strategy on the dynamic aspect of EEG signals and compared 
three different sliding window steps based on the proposed 
3D-CNN. For each subject, considering the subject’s mental 
concentration, the length of the EEG signal in a single trial was fixed 
at 2 s. Smaller time steps in the sliding window strategy indicated 
greater dynamic variability, which means a higher degree of data 
augmentation for EEG. The sliding window steps were measured in 
terms of time steps. Accuracy was used to evaluate the classification 
results in the task. To ensure the reliability of the results, 20 accuracies 
was obtained by each subject and eliminating randomization effects. 
One-way ANOVA analysis was utilized to determine the presence of 
significant differences. As shown in Figure 5, we observed a gradual 
increase in classification accuracy as the time step decreased from 0.5 s 
to 0.125 s. Although the 3D-CNN achieved optimal performance on 
both datasets when the step size was set to 0.125 s (PhysioNet: 
p < 0.001, GigaDB: p < 0.0001), there was no significant statistical 
difference between 0.25 s and 0.125 s on the PhysioNet dataset. 
Moreover, both strategies yielded an average accuracy of over 90% on 
the GigaDB dataset. Taking into consideration computational 
complexity, dynamic variability and the balance between the two 
strategies across the datasets, we selected a sliding window step size of 
0.25 s for subsequent experiments.

3.1.2. Classification with subject-independent
To validate the ability of the proposed model to handle EEG 

individual variability in both MI and ME scenarios, we conducted 
classification experiments on real and imagined movements. Due to 
inter-individual variability in EEG-based applications, we tested the 
accuracy for each subject separately, with each result being tested ten 
times. For the MI scenario, Figure 6 illustrates the classification results 
for 2-class (L, R), 3-class (L, R, B), and 4-class (L, R, B, F) in the 
PhysioNet dataset. On average, the accuracy for the L, R tasks, B, F 
tasks, L, R, B tasks, and L, R, B, F tasks in the PhysioNet dataset were 
90.53, 89.18, 78.85, and 63.55%, respectively. For the MI vs. ME 
scenario, Figure 7 presents the average accuracy for L, real L tasks, R, 
real R tasks, B, real B tasks, and F, real F tasks in the PhysioNet dataset, 
which were 87.87, 87.53, 87.35, and 87.87%, respectively.

To demonstrate that our proposed method also achieves good 
performance on other datasets, we utilized the GigaDB dataset as 
additional data support. Figure 8 presents the average accuracy for the 
L, R tasks, L, real L tasks, and R, real R tasks in the GigaDB dataset, 
which were 91.91, 80.23, and 80.03% respectively, indicating that our 
model can achieve good performance in both the PhysioNet dataset 
and the GigaDB dataset.

3.2. Brain connectivity analysis

Based on the aforementioned experimental results, we  can 
observe the best-performing subject (highest accuracy) and the worst-
performing subject (lowest accuracy). To analyze the underlying 
reasons for these discrepancies, we  can investigate from the 
perspective of brain functional connectivity. By examining the brain 
functional connectivity patterns of individuals, we can gain insights 
into the neural mechanisms associated with the observed variations 
in classification performance. Analyzing connectivity measures such 
as Pearson Correlation Coefficient (PCC), Coherence (COH), Phase 
Locking Value (PLV) can provide valuable information about the 
efficiency and coordination of brain regions involved in motor 
imagery tasks.

We selected subject S14 (obtained the highest accuracy) and S12 
(obtained the lowest accuracy) from the GigaDB dataset for brain network 
analysis. For the subject S14, the corresponding topological networks for 
two imaginary movements are shown in Figure 9. The thickness and color 
of the lines in the figures represent the strength of connectivity between 
different brain regions. These regions exhibit significant changes in 
functional connectivity under the influence of specific tasks. For better 
clarity, please refer to the figure where the red border is highlighted. As 
shown in Figure 9, it can be observed that during the MI left-hand and 
right-hand, there is an enhancement in the connectivity strength between 
brain regions. Specifically, there is an increase in the connectivity strength 
between the pre-motor area in the frontal lobe, the somatosensory 
association area in the parietal lobe, the visual association area in the 
occipital lobe, and the visual cortex. Upon further observation, it is 
exciting to note the presence of “triangular structures” and “circular 
structures” formed between the frontal lobe, parietal lobe, and occipital 
lobe within the highlighted red border. These structures are crucial 
features in complex networks, and a higher number of structural 
characteristics in brain connectivity indicates a more stable 
“communication” between brain regions. The “triangular structures” and 
“circular structures” highlighted in Figures  9A,C,E from the three 

FIGURE 5

The accuracy of different sliding window steps in two datasets. The 
solid circle represents the classification accuracy of each subject. 
***: p  <  0.001. ****: p  <  0.0001.
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networks (PCC, COH, PLV) complement each other in terms of revealing 
structural feature information, enabling a deeper exploration of EEG 
characteristics. As shown in Figure 10, we analyzed the network structural 
features corresponding to motor imagery of the left-hand and right-hand 
using data from subject S12. It was observed that although “triangular 
structures” and “circular structures” were also formed between different 
brain regions, the number of structures and connectivity strength were 
weaker compared to the functional connectivity of subject S14. This 
finding provides an explanation for the lower classification accuracy 
observed in subject S12. Furthermore, it suggests that the weaker network 
structural characteristics in S12’s brain may contribute to the reduced 
performance in classification accuracy.

The experimental results demonstrate the strengths and 
weaknesses of each method. By combining multiple approaches, more 
comprehensive and accurate analysis results can be obtained, taking 
advantage of the complementary nature of the three methods. This is 
also the reason why we combined the feature information generated 
by these three methods to form 3D features and designed a 3D-CNN 
for classification purposes.

4. Discussion

In this study, we have demonstrated the effectiveness of using the 
sliding window strategy to combine PCC, COH, and PLV features 

across different time segments as Temporal-Frequency-Phase Features 
(TFPF) for decoding EEG signals. In the classification and recognition 
process, we utilized a 3D Convolutional Neural Network (3D-CNN) 
model to extract and classify the 3D-TFPF representations. This 
approach improves classification performance and provides insights 
into the multi-domain feature information of EEG signals.

To elucidate these findings, we  conducted classification 
experiments on MI and ME movements using two datasets. It is 
important to note that each experiment involved a single subject to 
assess the generalization capability of the proposed model across 
different individuals. Specifically, we analyzed the preprocessed EEG 
signals for each time segment to extract the PCC, COH, and PLV 
features, which were then stacked together to form a 3D feature 
representation. This method effectively captures the temporal, 
frequency, and phase-related information of the EEG signals while 
reducing their complexity. Furthermore, we  employed a compact 
3D-CNN model with two convolutional layers to classify 2-class, 
3-class, and 4-class tasks based on the TFPF representations. The 
experimental results, as shown in Table  1, demonstrate that our 
proposed method outperforms other research approaches. These 
results highlight the improved performance of the proposed method 
in MI/ME classification and its ability to handle inter-individual 
variability challenges (Subject-Level).

Furthermore, compared to other existing methods, the 
combination of PCC, COH, and PLV offers several advantages. Firstly, 

FIGURE 6

Classification accuracy of different categories in the PhysioNet dataset for MI.
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it captures different aspects of brain connectivity, including linear 
correlations, frequency-specific coherence, and phase synchrony. This 
comprehensive analysis enhances our understanding of brain network 
dynamics. Secondly, the combination of these methods enables a more 
robust and reliable extraction of EEG features by considering both 
temporal, frequency and phase domains. Lastly, the integration of 
multiple methods provides a more holistic perspective on brain 
activity, improving the accuracy and interpretability of EEG analysis. 
Additionally, the utilization of multiple features overcomes the 
limitations associated with using a single feature type, enabling us to 
encapsulate the multifaceted and intricate dynamics inherent in EEG 
data. As shown in Figures 9, 10, identifying the factors that contribute 
to the varying performance levels among subjects can lead to a deeper 
understanding of individual differences in cognitive processes and 
brain dynamics. Moreover, such insights may guide the development 
of personalized approaches and interventions to enhance classification 
accuracy and improve the overall effectiveness of EEG-based 
MI systems.

Our research has certain limitations that should be taken into 
consideration when interpreting the study results. Firstly, the 
study primarily focused on offline analysis, and the proposed 
method has not been evaluated in real-time scenarios. Real-time 
implementation is essential for practical applications, and further 
research is necessary to explore the feasibility and performance of 
the method in real-time settings. Secondly, the performance of the 

proposed method is heavily dependent on the preprocessing 
techniques applied to the EEG signals. The choice of preprocessing 
techniques can have an impact on the results, including filtering, 
artifact removal, and feature extraction. It would be beneficial to 
further investigate and evaluate different preprocessing 
approaches to gain a better understanding of their influence on 
classification accuracy. Additionally, the study was conducted on 
relatively small-scale datasets, and it remains uncertain how the 
proposed method would perform when applied to larger datasets 
with more subjects and complex experimental designs. Assessing 
the scalability and efficiency of the method in handling larger 
datasets is crucial to determine its practical utility in real-
world scenarios.

5. Conclusion

In conclusion, our study demonstrates the effectiveness of 
combining PCC, COH, and PLV features as Temporal-Frequency-
Phase Features (TFPF) for decoding EEG signals. The utilization of a 
3D Convolutional Neural Network (3D-CNN) model improves 
classification performance and provides insights into the multi-
domain feature information of EEG signals. Furthermore, our findings 
contribute to the field of brain network analysis by enhancing our 
understanding of brain connectivity and dynamics.

FIGURE 7

Classification accuracy of MI vs. ME in the PhysioNet dataset.
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Future work should focus on several aspects. Firstly, to ensure 
the practical applicability of the proposed method in real-world 
settings, it is imperative to conduct thorough evaluations of its 
performance and feasibility in real-time scenarios. We anticipate 

that the combination of the MI/ME real-world system with the 
multi-domain dynamic feature extraction method will generate 
considerable interest and attention within the Brain-Computer 
Interface (BCI) community. Another direction involves exploring 

FIGURE 9

Top line: network topology of PCC, COH, and PLV for MI left-hand (L). Bottom line: network topology of PCC, COH, and PLV for MI right-hand (R). 
Please note that the data in this figure comes from S14. From top bold (A–F) are the part labels of the sub-figures.

FIGURE 10

Top line: Network Topology of PCC, COH, and PLV for MI left-hand (L). Bottom line: Network Topology of PCC, COH, and PLV for MI right-hand (R). 
Please note that the data in this figure comes from S12. From top bold (A–F) are the part labels of the sub-figures.

FIGURE 8

Classification accuracy of MI and MI vs. ME in the GigaDB dataset.
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multi-domain features in other EEG-based brain-computer 
interface (BCI) domains, such as emotion recognition and 
simulated driving classification. The proposed Temporal-
Frequency-Phase (TFPF) representations, due to their generation 
scheme, are advantageous in preserving task-related multi-domain 
dynamics and can be readily applied to other BCI fields.
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TABLE 1 Comparison with state-of-the-art methods on the PhysioNet and GigaDB dataset.

Method Subjects Classification Type Level Avg. ACC Dataset

DWT + DNN (Tolic and 

Jovic, 2013)

4 MI 2-class Subject 68.21% PhysioNet

Phase information 

(Loboda et al., 2014)

103 Real 2-class Group 78.95%

MI 2-class Group 71.55%

SUTCCSP (Park et al., 

2014)

56 MI 2-class Group 72.37%

IMOCS (Handiru and 

Prasad, 2016)

85 MI 2-class Group 63%

35 MI 2-class Group 79.90%

MEMD + SUTCCSP (Kim 

et al., 2016)

24 MI 2-class Group 80.05%

CNNs (Dose et al., 2018) 105 MI 2-class Group 87.98%

MI 3-class Group 76.61%

MI 4-class Group 65.73%

G-CRAM (Zhang et al., 

2020)

10 MI 2-class Subject 74.71%

Proposed method 20 MI 2-class Subject 89.86%

MI vs. ME 2-class 87.66%

MI 3-class 78.85%

MI 4-class 63.55%

OPTICAL (Kumar et al., 

2019)

52 MI 2-class Subject 68.19% GigaDB

EEGG (Liu and Wang, 

2022)

26 MI 2-class Subject 78.09%

Proposed method 20 MI 2-class Subject 91.91%

MI vs. ME 2-class 80.13%

Level: Using a group of subjects for testing or individual subjects for testing. Classification Type: Multiple classification types of motor imagery (MI) or real execution (ME). Avg. ACC: average 
classification accuracy based on test data. Note that MI 2-class on the PhysioNet corresponds to L vs. R, B vs. F tasks, L vs. real L, R vs. real R, B vs. real B, F vs. real F. MI 3-class corresponds to 
L vs. R vs. B. MI 4-class corresponds to L vs. R vs. B vs. F. While on the GigaDB, MI 2-class corresponds to L vs. R, L vs. real L, and R vs. real R. The bold text  means the good performance of 
the proposed method under different MI/ME tasks.
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