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Genomic predictions to
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Max Haupt1, Axel Himmelbach1, Nils Stein1,3, Ahmed Amri2

and Jochen C. Reif1*

1Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany,
2International Center for Agricultural Research in Dry Areas (ICARDA), Rabat, Morocco, 3Center for
Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
Genome-wide prediction is a powerful tool in breeding. Initial results suggest

that genome-wide approaches are also promising for enhancing the use of the

genebank material: predicting the performance of plant genetic resources can

unlock their hidden potential and fill the information gap in genebanks across the

world and, hence, underpin prebreeding programs. As a proof of concept, we

evaluated the power of across-genebank prediction for extensive germplasm

collections relying on historical data on flowering/heading date, plant height, and

thousand kernel weight of 9,344 barley (Hordeum vulgare L.) plant genetic

resources from the German Federal Ex situ Genebank for Agricultural and

Horticultural Crops (IPK) and of 1,089 accessions from the International Center

for Agriculture Research in the Dry Areas (ICARDA) genebank. Based on

prediction abilities for each trait, three scenarios for predictive characterization

were compared: 1) a benchmark scenario, where test and training sets only

contain ICARDA accessions, 2) across-genebank predictions using IPK as training

and ICARDA as test set, and 3) integrated genebank predictions that include IPK

with 30% of ICARDA accessions as a training set to predict the rest of ICARDA

accessions. Within the population of ICARDA accessions, prediction abilities

were low to moderate, which was presumably caused by a limited number of

accessions used to train the model. Interestingly, ICARDA prediction abilities

were boosted up to ninefold by using training sets composed of IPK plus 30% of

ICARDA accessions. Pervasive genotype × environment interactions (GEIs) can

become a potential obstacle to train robust genome-wide prediction models

across genebanks. This suggests that the potential adverse effect of GEI on

prediction ability was counterbalanced by the augmented training set with

certain connectivity to the test set. Therefore, across-genebank predictions

hold the promise to improve the curation of the world’s genebank collections

and contribute significantly to the long-term development of traditional

genebanks toward biodigital resource centers.
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Introduction

Collections of plant genetic resources (PGRs) are a valuable

source of diversity that provides the basis for developing disease-

resistant, nutrient-dense, and climate-resilient crop varieties

(Hoisington et al., 1999). However, given the vastness of

genebank holdings, selecting the most suitable accessions with

specific desirable traits for breeding is challenging. The limited

passport information and basic phenotypic characterization for

important agronomic traits and the lack of robust and cost-

efficient phenotyping capacities are currently chief among the

bottlenecks restricting the full exploitation of plant genetic

resources (Furbank and Tester, 2011; McCouch et al., 2013;

Anglin et al., 2018). Because the characterization of entire

collections in genebanks is resource-intensive and time-

consuming, high-throughput genomic tools have been proposed

to leverage the potential of genebank collections. Tremendous

advances in genotyping technology sharply reduced the cost of

genotyping, facilitating the generation of large-scale sequencing and

genotyping datasets for entire genebank collections (Kilian and

Graner, 2012). Pioneering international projects have thus

genomically characterized comprehensive collections of genetic

resources and are making this information available in biodigital

resource centers. For instance, the Federal Ex situ Genebank hosted

at the Leibniz Institute of Plant Genetics and Crop Plant Research

(IPK) in Gatersleben, Germany, has genotyped its barley collection

(22,626 accessions) using a genotyping by sequencing (GBS)

platform (Milner et al., 2019). This information and the plant

material can be accessed and visualized through the BRIDGE web

portal (https://bridge.ipk-gatersleben.de/). The Seeds of Discovery

initiative, which aims to promote the effective use of PGR, has

characterized 37% and 66% of International Maize and Wheat

Improvement Center (CIMMYT) and International Center for

Agriculture Research in the Dry Areas (ICARDA) wheat

genebank accessions, respectively, using sequencing-based

diversity array technology (DArTseq; Sansaloni et al., 2020).

Systematic valorization of the produced genomic data has made

rapid advances in subsequent genomic studies and breeding

purposes. In combination with the genomic profile, genebank’s

comprehensive historical phenotypic data, accumulated over the

years, provided useful information about genetic gaps in collections

(Volk et al., 2021). Different genomic approaches were widely

implemented to close the gap between genebank management

and prebreeding. For instance, genome-wide prediction has been

proposed to effectively impute phenotypic information for entire

genebank collections based on representative subsamples of entire

collections for which genotypes and phenotypes have been

recorded. These panels can be used as training populations for

genotyped accessions lacking phenotypic records (Yu et al., 2016).

Several studies have demonstrated the potential of using genome-

wide prediction for genebank collections (Crossa et al., 2016; Kehel

et al., 2020; Jiang et al., 2021; Schulthess et al., 2022). Alternatively,

genome-wide prediction based on training datasets generated in
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other genebanks has the potential to increase the attractiveness of

collections around the world by providing information to users for a

wide range of traits. This approach has been used in a study to

predict yield breeding values for winter wheat accessions

maintained at INRAE (L’institut national de recherche pour

l’agriculture, l’alimentation et l’environnement) using IPK-PGRs

as training data, but the validation of the predictions was not

implemented (Schulthess et al., 2022).

To fill this gap, we integrated our study data across the two

important barley collections maintained at ICARDA and IPK. Prior

to applying genomic prediction, a strategic pipeline to curate the

non-orthogonal historical data was implemented for the IPK

collection (González et al., 2018b). The same rigorous quality

assessment including plausibility checks, outlier corrections, and

bias estimation due to the historical seed regeneration patterns was

applied independently for each of the winter, spring, and facultative

ICARDA barley populations. Therefore, our study makes use of

comprehensive historical phenotypic and genomic data of 9,344

and 1,089 barley accessions from IPK and ICARDA genebanks,

respectively. The main goal was to evaluate the potential and

limitations of genome-wide predictions across genebanks using

IPK and ICARDA historical phenotypic data. In particular, our

objectives were to 1) assess the quality of ICARDA historical data

for heading date (HD), plant height (PH), and thousand kernel

weight (TKW); 2) study the population structure of both IPK and

ICARDA collections; 3) examine the prediction ability of the same

given traits within ICARDA population defined by growth habit

and row type; 4) assess the benefits of across-genebank prediction in

imputing phenotypes of ICARDA accessions relying only on the

IPK genebank (one-sided approach) or 5) on a combined IPK-plus-

ICARDA training set (integrated approach).
Materials and methods

Phenotypic data records

Field experiments for 16,554 ICARDA barley accessions were

performed from 1983 to 2012 in Tel Hadya, Syria (latitude 36.01°40′
N, longitude 36.56°20′E, 284 m.a.s.l) and from 2016 to 2019 in

Merchouch, Morocco (latitude 33°36′N, longitude 6°43′W,

394 m.a.s.l.) (Supplementary Table 1). Across traits, 48,882 data

points were recorded for HD, PH, and TKW, mostly in unreplicated

field trials. Heading date was recorded as the number of days when

50% of the plants in each observation plot have emerged to 75%

from the flag leaf sheath (Z57 stage according to Zadoks et al., 1974)

starting from the date of sowing. PH was measured from the ground

level to the top of the spike, including awns, at the end of the

flowering period. TKW was determined in grams by weighing a

representative sample of grains harvested at ∼12.5% moisture basis,

counting grains, and extrapolating the weight to 1,000 grains.

Approximately 50% of the accessions were phenotyped for HD

and PH for 2 years, while TKW had the lowest percentage (18.4%)
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of accessions with 2 years of observations. ICARDA collection

included 7,576 spring, 881 winter, and 4,164 facultative barley

accessions. In addition, approximately 14% of the accessions

(2,369) have ambiguous growth habit records, and 9% (1,566)

have no available information. The majority (72%) of the

accessions were six-rowed type, while two-rowed barley

represented 24% of the total collection. The classification of

winter, spring, and facultative ICARDA accessions was not

derived from a premeditated experimental design. Rather, the

barley accessions were sown toward the end of November or the

beginning of December, without deliberate consideration of

vernalization treatments to induce the winter type. The

accessions’ responses to prevailing environmental conditions were

closely monitored and meticulously recorded. Under favorable

circumstances, the presence of winter types became evident, as all

spring accessions demonstrated successful progression to the

heading and maturity stages. Nevertheless, in several instances,

the natural ambient temperatures failed to provide sufficient

vernalization, leading to the classification of certain accessions as

winter or facultative types due to their inability to reach the heading

stage, with only a limited number of plants in the plots achieving

successful maturity. However, an interesting aspect emerged

concerning facultative accessions being able to integrate cues

from both winter and spring conditions, resulting in a

marginally prolonged period to reach the heading stage. This

growth type exhibits cold tolerance and can set seeds without the

need for vernalization, indicating their adaptability to varying

environmental cues.

Phenotypic data from IPK included information on 6,957

spring and 2,387 winter barley accessions collected from the IPK

campus (Gatersleben, Germany; latitude 51°49′22.5″N, longitude
11°16′40.6″E, 110.5 m.a.s.l.). Spring barley subpopulation included

4,425 six-rowed and 2,532 two-rowed accessions. Winter

subpopulations included 1,901 and 486 accessions of six-rowed

and two-rowed accessions, respectively (Supplementary Table 2).

The accessions were phenotyped for flowering time (FT), PH, and

TKW (referred also to as thousand grain weight) during their

regeneration in the past seven decades, and the associated

phenotypic information was previously described in detail by

González et al. (González et al., 2018a; González et al., 2018b). FT

was recorded as the number of days when 50% of the plants in each

observation plot reached the flowering counting from January 1 of

each year for winter types and from the sowing date onward in the

case of spring types. The flowering stage for both winter and spring

corresponds to stage Z65 (Zadoks et al., 1974). High correlations

have been reported between flowering time and heading date as a

result of their closeness during crop phenology (Gol et al., 2021;

Celestina et al., 2023). Therefore, we considered FT from IPK

accessions as a proxy trait for HD of ICARDA material in across-

genebank prediction. PH and TKW of IPK accessions were assessed

as previously described for the ICARDA genebank. Each of the

three traits was analyzed using a linear mixed model for quality

assessment routines and performance estimation (González et al.,

2018a; González et al., 2018b). Outlier removal led to high

heritability estimates exceeding 0.8, and the resulting best linear
Frontiers in Plant Science 03
unbiased estimations (BLUEs) for each of the traits were used in

this study.
Phenotypic data quality assessment
and performance estimates for
ICARDA material

Phenotypic data analyses for the ICARDA collection were

performed following the methods specified for the IPK genebank

(González et al., 2018a; González et al., 2018b). Analyses were

conducted for winter, spring, and facultative accessions separately,

and the accessions with non-unique records of growth class were

excluded. The following linear mixed model was applied:

y = 1mm + Z1g + Z2t + Z3i + e,   (1)

where y is the m-dimensional vector of phenotypic records, m is

the common intercept term, g is the n-dimensional vector of

genotypic effects, Z1 is an m� n design matrix allocating each

record to the corresponding accession, t is the l-dimensional vector

of year effects, Z2 is anm� l design matrix allocating each record to

the corresponding year, i is the s-dimensional vector of genotype-

by-year interaction effects, Z3 is the corresponding m� s design

matrix, and e is the residual term. In Equation 1, we assumed that m
is a fixed parameter, while the remaining components are random

in the way g ∼ N(0, Is 2
g ), t ∼ N(0, Is 2

t ), i ∼ N(0, Is 2
i ), and e ∼

N(0, Is 2
e ). The broad-sense heritability was estimated as h2 =

ŝ 2
g

ŝ 2
g+

ŝ 2
i
q +

ŝ 2
e
p

, where ŝ 2
g , ŝ 2

t , ŝ 2
i , and ŝ 2

e are the estimates of the

corresponding variance components, q is the harmonic mean of

the number of evaluated years per genotype, and p is the harmonic

mean of the number of replicates per genotype (Holland

et al., 2003).

Model 1 was also used for the outlier test with slightly different

assumptions, that is, treating g as a vector of fixed effects instead of

random. The residuals were first standardized by the rescaled

median absolute deviation from the median, and then a

Bonferroni–Holm test was applied to flag the outliers (Bernal-

Vasquez et al., 2016). A data point was declared as an outlier by

the implemented test according to a predefined significance

threshold of p-value < 0.05. After removing the outliers from the

initial dataset, model 1 was fitted again to recompute variance

components and broad-sense heritabilities as well as to calculate the

genotypic BLUEs. For BLUE computation, the same assumptions in

model 1 as specified for outlier correction were considered. All

mixed models for phenotypic analyses were fitted using the ASReml

R package version 4 (Butler et al., 2017).
Genomic data

A total of 22,626 accessions from the IPK were previously

fingerprinted using GBS technology (Milner et al., 2019). In this

study, 1,803 ICARDA accessions were characterized based on the
frontiersin.org
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same method: briefly, DNA was digested with PstI and MspI (New

England Biolabs) restriction enzymes, and sequencing was

performed with Illumina HiSeq 2500. Read mapping and variant

calling were performed essentially as described by Milner et al.

(2019). After adapter trimming with cutadapt (Martin, 2011), reads

were aligned to the MorexV3 reference genome sequence assembly

with BWA-MEM (Li, 2013). Alignment records were converted to

Binary Alignment/Map format with samtools and sorted with

Novosort (http://www.novocraft.com/products/novosort/).

Variant calling was performed with bcftools (Li, 2011). Variant

matrices were filtered and formatted with a custom script

(ipk_dg_public, 2018) prior to input into R via the SNPRelate

package (Zheng et al., 2012). Only bi-allelic single-nucleotide

polymorphisms (SNPs) with less than 10% heterozygous calls

were retained. After this filtering, GBS profiles were integrated

with the BLUEs (after outlier correction) of 9,344 IPK and 1,116

ICARDA accessions with known row-type information

(Supplementary Tables 1, 2). In this integrated dataset, a final

total of 27,610 SNPs was retained after applying quality control

criteria (call rate >0.95 and minor allele frequency (MAF) >0.05).
Population structure and
genome-wide predictions

Genetic relationships among 1,116 ICARDA and 9,344 IPK

accessions were investigated using a principal coordinate analysis

(PCoA) based on the Euclidean distances computed from markers.

PCoA was performed using the “ecodist” R package (version 2.0.9).

For genomic predictions, 27 ICARDA accessions having

phenotypic information but belonging to the 2RF row-type group

were excluded because this row type did not exist among IPK

accessions. Row-type 2RF comprises barley accessions in which

each spikelet contains two rows of seeds, the two outer rows of seeds

being larger and more prominent, forming ridges along the length

of the spikelet. The inner seeds may be smaller or less developed.

The distinction between the two-rowed and 2RF classifications is

based on the level of detail provided about the seed arrangement

within the spikelet on the barley head. Among the genotyped

ICARDA accessions, 1,071, 1,057, and 1,081 accessions were

phenotyped for HD, PH, and TKW, respectively. For IPK, 9,341,

9,298, and 7,575 genotyped accessions had BLUEs for FT, PH, and

TKW, respectively. Three different genome-wide prediction models

were applied: 1) genomic best linear unbiased prediction (GBLUP;

VanRaden, 2008), 2) extended genomic best linear unbiased

prediction (EGBLUP; Jiang and Reif, 2015), and 3) reproducing

kernel Hilbert space regression (RKHS; Gianola and van

Kaam, 2008).

The GBLUP model exploits the additive effects of all markers

and has the following form:

y = Xb + gA + e (2)

where y is the n-dimensional vector of BLUEs obtained from

the phenotypic data analyses, b is the k-dimensional vector of fixed
Frontiers in Plant Science
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effects including covariates (if any) and the intercept, X is the

corresponding design matrix (if there are no covariates in the

model, then b = m the common intercept and X = 1n a column

vector of ones), gA ∼ N(0,GAs 2
g ) is the n-dimensional random

vector of (additive) genetic values, and e ∼ N(0, Is 2
e ) is the residual.

GA = ZZ} is the VanRaden G-matrix, where Z = M=
ffiffi

c
p

, M is the

n� s matrix of marker profiles coded as 2 − 2p, 1 − 2p, and − 2p(p

is the allele frequency), c =os
i=12pi(1 − pi), and s is the number

of markers.

The EGBLUP model is an extension of the GBLUP model by

considering additive-by-additive epistatic effects between all pairs of

markers:

y = Xb + gA + gAA + e (3)

where gAA ∼ N(0,GAAs 2
g ) is the n-dimensional random vector

of additive-by-additive genetic values, while all other notations are

the same as in the GBLUP model. The epistatic covariance matrix

was calculated as follows (Jiang and Reif, 2020):

GAA =
1
2
(GA ∘GA − (Z ∘Z)(Z ∘Z)}) (4)

where ∘ denotes the Hadamard product of matrices.

The RKHS model originated from a semi-parametric approach,

but its form is similar to the GBLUP model with a different

covariance matrix (de Los Campos et al., 2010). The RKHS model

exploits additive and epistatic effects among markers up to any

order, but the weights for different orders of epistasis were implicitly

fixed (Jiang and Reif, 2015). In our implementation, we followed the

“kernel averaging” approach (de Los Campos et al., 2010); i.e., we

considered the following:

y = Xb + g1 + g2 + g3 + e (5)

where gi ∼ N(0,Kis 2
gi ) and other notations are the same as

specified in GBLUP. The element in the jth row and kth column of

Ki is calculated as exp ( − hi
om

l=1(xjl − xkl)
2

m ), where xjl is the lth

marker profile of the jth individual, and (h1, h2, h3) = (0:1, 0:5, 1).

All genomic prediction models were implemented using the R

package BGLR (Pérez and de Los Campos, 2014).
Establishing genebank genomic prediction
scenarios for ICARDA accessions

We evaluated the prediction ability of the GBLUP, EGBLUP, and

RKHS models using the following scenarios for ICARDA accessions.

Within-genebank prediction
Fivefold cross-validation was applied separately within each

growth class among ICARDA accessions. For each growth class,

accessions were randomly divided into five subsets, each with

balanced proportions of accessions sampled from both row types,

of which four subsets served as the training set with the remaining

as the test set. The sampling was repeated 20 times.
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One-sided across-genebank prediction
Here, only information from the IPK barley collection was

used to predict ICARDA accessions. Five sub-scenarios, 2a–e,

with different combinations of training and test sets were

considered to assess prediction ability in the case of merging

the different row types and within each row-type subpopulation

(Supplementary Table 3):
Fron
Scenario 2a: Using winter IPK accessions as the training set to

predict winter ICARDA accessions.

Scenario 2b: Using spring IPK accessions as the training set to

predict spring ICARDA accessions.
Since the number of IPK facultative types was small as

compared with the rest of the two other growth classes (spring

and winter), we decided not to treat them as a separate group to

predict the facultative ICARDA accessions, but instead, we opted

for the following scenarios:
Scenario 2c: Using winter IPK accessions to predict ICARDA

facultative accessions.

Scenario 2d: Using spring IPK accessions to predict ICARDA

facultative accessions.

Scenario 2e: Pooling together winter and spring IPK accessions

to predict ICARDA facultative accessions.
Integrated across-genebank prediction
In this approach, the same sub-scenarios described in scenario 2

were implemented with a slight adjustment of the training sets. The

phenotypic records of 30% of ICARDA accessions were integrated

with the respective phenotypic records of the IPK dataset to predict

the rest of ICARDA accessions. Twenty random samplings were

considered and performed separately.
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For each scenario, each of the three genomic prediction models

was implemented twice, one ignoring the row-type subgroup

information and the other modeling the row type as a fixed

covariate. The influence of the row type on the prediction ability

was investigated by comparing the prediction abilities that resulted

from these two cases. For all three scenarios, the prediction ability

was estimated as the correlation between the observed and

predicted values of all accessions in the test set. In addition, the

prediction ability for each row-type subgroup was also calculated

separately. The standard error was estimated using a bootstrap

approach with 1,000 samplings.
Results

Broad genetic variation observed for the
assessed traits

Linear mixed models combined with rigorous quality

assessment were implemented for historical IPK data and

described in detail in recent works (González et al., 2018a;

González et al., 2018b). Briefly, based on a two-step quality

control that considers plausibility checks of trait values and

outlier corrections, high heritability estimates (above 0.8) were

obtained for the traits under consideration (Supplementary

Table 4). Moreover, heritability increased by 17% by removing a

maximum of 2.5% outliers for the IPK collection. The same strategy

was applied in the analysis of historical phenotypic data from

ICARDA. The outlier correction resulted in the exclusion of up to

1.74% of the total accessions and increased the heritability by up to

41%, depending on the trait and growth class (Table 1).

Heritabilities observed for the ICARDA barley accessions were

lower than those for IPK (Table 1; Supplementary Table 4). This

discrepancy in heritabilities can be attributed to several factors,

including disparities in phenotyping conditions and prevailing

environmental stresses. It is noteworthy that ICARDA accessions
TABLE 1 The number of outliers for each trait in each growth class and the influence of removing outliers on the estimated broad-sense heritability
for ICARDA collection.

Trait Growth class Ndata Noutlier Ngeno Ngeno_out ĥ 2 ĥ 2
out Dĥ 2(%)

HD Winter 3,736 45 (1.20%) 2,366 18 (0.76%) 0.38 0.42 11.0

Facultative 6,742 144 (2.14%) 4,158 51 (1.23%) 0.23 0.32 41.0

Spring 12,407 354 (2.85%) 7,572 112 (1.48%) 0.35 0.46 31.6

PH Winter 3,727 86 (2.31%) 2,360 41 (1.74%) 0.40 0.50 23.6

Facultative 6,730 107 (1.59%) 4,158 35 (0.84%) 0.29 0.35 19.5

Spring 12,324 271 (2.20%) 7,563 84 (1.11%) 0.36 0.46 26.0

TKW Winter 3,095 11 (0.36%) 2,252 5 (0.22%) 0.70 0.75 8.0

Facultative 4,655 19 (0.41%) 4,032 9 (0.22%) 0.55 0.72 31.4

Spring 8,794 25 (0.28%) 7,538 3 (0.04%) 0.59 0.65 10.6
fron
Ndata , the number of phenotypic records; Noutlier , the number of outliers; Ngeno , the number of accessions; Ngeno _ out , the number of accessions that were identified as outliers; ĥ 2 , the estimated

heritability; ĥ 2
out , the re-estimated heritability after removing all outliers; Dĥ 2, the difference between the estimated heritability after and before removing all outliers (in percentage); HD, heading

date (days); PH, plant height (cm); TKW, thousand kernel weight (g).
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were grown in a harsh environment characterized by frequent

drought and heat stress. Such challenging conditions can

significantly impact the phenotypic expression of traits, resulting

in lower heritability estimates. The stress-induced variability can

mask the genetic component, leading to decreased heritability

values. In contrast, the German environment provided an

optimum growing condition for the IPK accessions and, hence,

led to higher heritabilities by reducing the environmental noise,

which could otherwise affect the genetic expression of the traits.

TKW was the most heritable trait in each growth class with

heritability estimates exceeding 0.65 (Table 1). In contrast, HD

and PH had moderate heritabilities with values ranging from 0.32 to

0.50. Of the total number of accessions (two- and six-rowed row

types) with both phenotypic and genotypic data (1,264),

1,089 accessions were retained after outlier correction

(Supplementary Table 5). These accessions were used for genomic

prediction analyses.

Regarding BLUEs, wide phenotypic variation was observed in

each growth class for both genebank collections (Figure 1). For

ICARDA accessions in general, HD was between 92.27 days and

165.92 days, PH between 33.19 cm and 136.05 cm, and TKW

between 12.43 g and 71.7 g (Figure 1A). For IPK accessions, FT

varied between 128.31 days and 178.15 days, PH between 50.44 cm

and 176.51 cm, and TKW between 15.64 g and 68.44 g (Figure 1B).

Except for FT across growth habits of IPK accessions, no significant

average differences (p-value ≥ 0.05) were observed between either

growth habits or row types within IPK and ICARDA genebanks

indicating that the genotyped fractions of both collections cover a

similar space of phenotypic diversity, at least for the assessed

historic traits. However, the significantly earlier average in FT of

IPK spring compared to winter accessions (D = 69.9 days, p-value<

2.2e−16) is most likely due to the different reference day, i.e.,
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January 1 (winter types) vs. sowing date (spring types), used to

express this trait. Moreover, no significant average differences were

observed between IPK and ICARDA genebanks regarding PH and

TKW (p-value ≥ 0.05).
The global diversity of the ICARDA
collection was fully covered by the
IPK collection

The genetic structure of ICARDA and IPK collections was

investigated through a PCoA based on the Euclidean distance

matrix estimated using 27,610 SNPs. At first glance, the

accessions derived from the ICARDA genebank seem to occupy a

relatively small area of IPK diversity space. However, this result

should be interpreted carefully since only 1,116 genotyped ICARDA

accessions were used in this analysis (Figure 2A). Extensive

genotyping of the ICARDA collection is necessary to highlight

the specifics of that collection. The facultative accessions of the

ICARDA collection did not form a clearly delineated group from

the rest of the accessions (Figure 2A). In the spring and winter

barley subpopulations, the six-rowed and two-rowed accessions

were clearly separated with some exceptions pointing to admixture

(Figures 2B, C).
Within-genebank genomic prediction of
ICARDA accessions

The fivefold cross-validated prediction abilities within the

population of ICARDA accessions varied widely among traits and

populations defined by growth habits and row types (Figure 3).
A B

FIGURE 1

Box–whisker plots showing the distribution of best linear unbiased estimations of heading date (HD; days), flowering time (FT; days), plant height
(PH; cm), and thousand kernel weight (TKW; g) of up to (A) 1,089 ICARDA and (B) 9,344 IPK accessions for two-rowed (white boxes) and six-rowed
subgroups (gray boxes). Distribution is shown separately for winter, spring, and facultative barley.
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According to regression analysis, the heritability (Table 1) and size

(Supplementary Table 5) of populations defined by growth habits

explained 47% and 41% of the variation in the average prediction

abilities, respectively. Overall, the prediction abilities depended only

slightly on the choice of the prediction model: on average, GBLUP

outperformed EGBLUP and RKHS by 2.79% and 5.39%,

respectively (Supplementary Table 6). Therefore, GBLUP was

chosen as the base model for the benchmark scenario. When row

types were merged in a combined training set, average GBLUP

prediction abilities improved 32.64% for two-rowed types, but

only 0.27% for six-rowed accessions (Figure 3). The six-

rowed populations were 3.9-fold larger than the two-rowed

subpopulations, which can explain why the two-rowed benefited

more from a combined training set (Supplementary Table 5). In

most cases, modeling the row type as a covariate in genome-wide

predictions either did not change or even decreased average

prediction abilities, with TKW and HD predictions for two-rowed

accessions being the most notable exceptions (Figure 4). From these

optimization results, it was decided to omit the row-type covariate

from all prediction scenarios.
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Accurate prediction of ICARDA
accessions relying on training sets
exclusively composed of IPK material
is trait-dependent

With some marginal trait-specific differences, the average

prediction ability for ICARDA accessions of the one-sided across-

genebank prediction approach was for EGBLUP 9.67% and 0.77%

higher compared with GBLUP and RKHS, respectively

(Supplementary Table 7). Therefore, we focused the following on

the results for EGBLUP (Figure 5). Because of the small number of

facultative types in the IPK collection, we first studied whether

spring, winter, or a combined population is best suited to predict the

performance of the facultative ICARDA accessions. Interestingly, a

combined spring/winter IPK training population yielded the

highest prediction ability of the facultative ICARDA accessions,

with minor deviations observed for TKW, as compared to the

spring-to-facultative scenario.

Because TKW showed the highest heritability among ICARDA

accessions, considerable predictive ability was shown for the given trait
A B

C

FIGURE 2

Principal coordinate analyses (PCoAs) based on the Euclidean distances were estimated using 27,610 single-nucleotide polymorphisms (SNPs), 1,116
ICARDA, and 9,344 IPK accessions (A). Spring (B) and winter (C) populations were plotted separately for ICARDA and IPK accessions. (A) Principal
coordinate analyses (PCoAs) for both ICARDA and IPK accessions. (B) Principal coordinate analyses (PCoAs) for spring ICARDA and IPK accessions.
(C) Principal coordinate analyses (PCoAs) for winter ICARDA and IPK accessions.
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with small deviations from the within-genebank prediction scenario

(Supplementary Table 4; Supplementary Figure 1). For PH, the one-

sided across-genebank predictions of ICARDA spring and facultative

accessions were in most cases lower than within the genebank but vice

versa for the winter-to-winter scenario. In contrast, the prediction of

HD, with the exception of the two-rowed spring type, was much less

accurate across than within the genebank: the difference in prediction

ability was rather large ranging from −97.37% to −28.38%

(Supplementary Figure 1). Consequently, predictions across

genebanks using the one-sided approach were not always fully

resilient, which may be resolved via prediction using an integrated

training population across genebanks.
Enhanced prediction ability by using an
integrated approach across IPK and
ICARDA genebanks

Using a training population combining IPK and ICARDA

accessions to predict the performance of an ICARDA test

population revealed that the average prediction abilities based on

GBLUP proved to be the least accurate model. RKHS achieved
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6.10% higher average prediction abilities than GBLUP and

improved by 1.87% compared to EGBLUP (Supplementary

Table 8). Nevertheless, the difference in prediction ability between

traits differed only marginally. Hence, we focused on the prediction

abilities of the RKHS model (Figure 6). For predicting the

facultative ICARDA accessions, the average prediction abilities of

the combined spring and winter IPK populations (WS-F) exceeded

those of the winter (W-F) and spring (S-F) scenarios.

To evaluate the usefulness of the across-genebank predictions,

we compared the prediction abilities of the most accurate

performing model found in the integrated across-genebank

prediction scenario (RKHS) with those within ICARDA genebank

prediction used as a benchmark scenario (GBLUP). With few

exceptions (e.g., the spring-to-spring scenario of PH), prediction

abilities were higher using the integrated across-genebank training

dataset than within the ICARDA genebank (Table 2). Interestingly,

two-rowed populations showed in general a greater increase in

prediction abilities (131% on average) than the six-rowed

populations (9.73%) by shifting from the within-genebank

prediction scenario to the integrated across-genebank prediction

scenario, with the most notorious case for PH of winter accessions

(almost eightfold improvement).
FIGURE 3

Fivefold cross-validated prediction abilities of genomic best linear unbiased prediction (GBLUP) for heading date (HD; days), plant height (PH; cm),
and thousand kernel weight (TKW; g) obtained within ICARDA genebank modeling the row type as covariate (RT).
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Discussion

Genebanks are considered a reservoir of untapped genetic

diversity for potential climate-relevant traits and improved

adaptation to various biotic and abiotic stresses (Anglin et al., 2018;

Guerra et al., 2022; Leigh et al., 2022). Phenotypic characterizations

and documentation of genebankmaterial are essential to promote the

effective use of plant genetic resources because without them,

searching for valuable accessions with desirable agronomic traits is

like searching blindfolded for the proverbial needle in a haystack

(Mascher et al., 2019). However, the genetic landscape that genebank

managers must navigate to access information of their accessions is

labor- and resource-intensive. As an interesting alternative, we

explored the potential of genome-wide predictions to overcome the

phenotyping bottleneck and hence unlock the genetic merits of plant
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genetic resources in two genebanks. Comprehensive historical data

from IPK and ICARDA on flowering/heading date, plant height, and

thousand kernel weight collected during seed regeneration cycles

were used to demonstrate the combined powers of across-genebank

predictions to support genebanks with trait information

on accessions.
Genome-wide prediction is a powerful tool
to fill gaps in genebank information

Genome-wide predictions for ICARDA accessions were

conducted at two levels: predictions within and across genebanks.

Within the ICARDA genebank (Figure 3), which was set as a

benchmark scenario, the prediction ability of heading date, plant
FIGURE 4

Percentage change (%) in average prediction abilities from modeling the row type as a covariate within the population of ICARDA accessions using
genomic best linear unbiased prediction (GBLUP) over omitting the row-type covariate for heading date (HD; days), plant height (PH; cm), and
thousand kernel weight (TKW; g) according to different growth habits. Positive (negative) changes correspond to improvements (declines) in
prediction ability.
FIGURE 5

Prediction abilities of extended genomic best linear unbiased prediction (EGBLUP) method for heading date (HD; days), plant height (PH; cm), and
thousand kernel weight (TKW; g) of ICARDA accessions obtained by applying a one-sided across-genebank prediction approach. W_W, winter to
winter (scenario 2a); S_S, spring to spring (scenario 2b); W_F, winter to facultative (scenario 2c); S_F, spring to facultative (scenario 2d); WS_F, winter
and spring to facultative (scenario 2e).
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height, and thousand kernel weight is positively associated with their

heritability (Table 1). This relationship between prediction ability

and heritability has been reported previously (de Oliveira et al., 2018;

Arojju et al., 2020). Moreover, despite the statistical model applied,

prediction abilities differed only marginally with GBLUP showing a

slight advantage over other models (Supplementary Table 6).

Therefore, we can propose the use of GBLUP as the default

genomic prediction model to impute phenotypic values within a

genebank. For the one-sided across-genebank predictions, despite

the large differences in prediction ability between traits, the

difference in prediction abilities was less pronounced between

models (Supplementary Table 7). However, the best-performing

model (EGBLUP), accounting for additive-by-additive epistasis,

did not show sufficient prediction performance within the

ICARDA genebank (Supplementary Figure 1). Interestingly, the

integrated approach clearly underlined the contribution of the

borrowed information from the ICARDA genebank to enhance

the prediction ability (Table 2), hence making it more promising

for predictions across two contrasting genebanks. Therefore,

genome-wide prediction can be an excellent alternative to populate
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genebanks with phenotypic estimates in a cost- and time-effective

way. This will help to bridge gaps between genebanks, enrich

genebank information, and help in capturing the genetic diversity

and allelic richness present across genebank collections. In the same

context, we have demonstrated the profit of genome-wide prediction

to predict the facultative type across genebanks using the pooled

spring and winter populations and, hence, unlock the valuable

diversity of this unique growth habit that provides the flexibility to

be sown either in the fall as winter or even as a spring crop.

Considering the relatively limited number of facultative types in

the IPK collection, a promising approach would be to predict the

growth habit of accessions with missing information, effectively

extending the population size and, hence, bolstering predictive

abilities. Furthermore, an intriguing alternative to genome-wide

prediction would be the utilization of functional markers for

classification. However, the current use of GBS data poses

limitations, preventing a detailed functional marker-based

classification, particularly for the haplotypes at VRN-H2 and

VRN-H1. Nonetheless, we are optimistic that this limitation can

be addressed with an increased density of genomic information. By
FIGURE 6

Prediction abilities to reproduce kernel Hilbert space regression (RKHS) for heading date (HD; days), plant height (PH; cm), and thousand kernel
weight (TKW; g) of ICARDA accessions in the integrated across-genebank prediction scenario. W_W, winter to winter (scenario 2a); S_S, spring to
spring (scenario 2b); WS_F, winter and spring to facultative (scenario 2e).
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leveraging genotypic data that incorporates information from

functional markers with genome-wide prediction abilities, we

could develop a compelling strategy that holds great potential for

precise growth habit predictions. With these innovative methods on

the horizon, we anticipate gaining a deeper and more nuanced

understanding of growth habits in genebank accessions. The

continuous advancement of genomic technologies and functional

marker applications will undoubtedly pave the way for a new era of

precision in predicting growth habits, fostering significant progress

in barley breeding and crop management strategies.
Pervasive interaction between genotypes
and target environments impacts across-
genebank prediction

On a large scale, we observed that the IPK genebank covers

most of the neutral molecular diversity existent among the portion

genotyped of the ICARDA collection (Figure 2). In addition, for

most evaluated traits across the different growth habits, modeling a

population-structure-related covariable like row type did not

improve predictabilities for ICARDA accessions (Figure 4). This

suggests that other factors beyond population structure are

influencing predictions for the ICARDA genebank and limit the

prediction ability for situations where phenotypic data are

exclusively available in one genebank. To gain more knowledge

about this and minimize any confounding effect of population

structure, we further explored the phenotypes of ICARDA-like

IPK accessions and their close relatives from the ICARDA

genebank (Euclidean distance< 0.01; Supplementary Figure 2). In

the best case, the imperfect correlations between relative pairs were

0.63, 0.41, and 0.68 for HD, PH, and TKW, respectively. In fact,

ICARDA accessions were phenotyped in the Central West Asia

North Africa (CWANA) region, where the environmental

conditions differ significantly from the European weather
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conditions due to frequent drought and terminal heat stress. We

thus conclude that phenotypic plasticity as a result of the interaction

between genotypes and the environment could be one of the main

factors reducing the connectivity between training and test sets in

across-genebank prediction scenarios.
Trait heritability and environment
connectivity: two essential factors
to improve prediction ability
across genebanks

Genetic resources are vital for future food security. The

deployment of advanced technologies would provide an

unprecedented opportunity to profit from the immense natural

diversity stored in genebanks. Following the successful proof-of-

concept implementation of genome-wide predictions within

genebank accessions (Crossa et al., 2016; Yu et al., 2016; Kehel et al.,

2020; Jiang et al., 2021; Schulthess et al., 2022), we expanded this

integrative strategy to a broader context for the enrichment of

genebank phenotypic information across genebanks. The integrated

across-genebank prediction was successfully applied to estimate the

breeding value across two contrasting genebanks using a larger

population size and larger marker density. However, the results were

conditioned by two main factors: trait heritability and connectivity of

the training population to the test set. To capture the variance resulting

from the genotype × environment interaction (GEI), methods have

been developed and applied to fit detailed variables in the models and

deal with genetic/environmental heterogeneity within datasets (Crossa

et al., 2022; Rogers and Holland, 2022). From our observations, we

assume that a proportion of accessions from the ICARDA genebank

with similar environmental features was informative enough to

improve the prediction abilities. Particularly for historical multi-

locations data, it would be also worthwhile to deploy models that

take into consideration the time-series/spatial structure of different
TABLE 2 Percentage change (%) in the prediction abilities of the best-performing models in the integrated across-genebank predictions over and
within ICARDA genebank predictions for heading date (HD; days), plant height (PH; cm), and thousand kernel weight (TKW; g) across the different
growth habits.

Trait
scenario 3 (RKHS)

vs
scenario 1 (GBLUP)

r-all 2-rowed 6-rowed

HD

W_W vs winter ↑ 8.87 ↑ 38.60 ↑ 2.50

S_S vs spring ↑ 11.56 ↑ 41.13 ↑ 13.55

WS_F vs facultative ↑ 0.25 ↓ -6.90 ↑ 2.51

PH

W_W vs winter ↑ 50.11 ↑ 888.42 ↑ 31.15

S_S vs spring ↓ -20.10 ↓ -0.09 ↓ -18.26

WS_F vs facultative ↑ 34.00 ↑ 149.57 ↑ 27.25

TKW

W_W vs winter ↑ 3.73 ↑ 32.30 ↑ 12.64

S_S vs spring ↑ 7.19 ↑ 40.26 ↑ 7.49

WS_F vs facultative ↑ 7.23 ↓ -3.92 ↑ 8.70
The results were expressed in terms of the percent of increase or decrease for each respective growth-type and row-type subpopulations across the traits.
RKHS, reproducing kernel Hilbert space regression; GBLUP, genomic best linear unbiased prediction; W_W, winter to winter; S_S, spring to spring; WS_F, winter and spring to facultative.
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environmental conditions. Alternatively, due to the large effect of

weather variables on the genotypic response of accessions held

globally in genebanks, grouping the accessions into a small number

of clusters with similar features (e.g., climate patterns and trial

management) might be a feasible approach to identify mega-

environments driving their separation. The identification of these

mega-environments could provide useful information for optimized

training populations and thus improve the prediction accuracy

across genebanks.
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Pérez, P., and de Los Campos, G. (2014). Genome-wide regression and prediction
with the BGLR statistical package. Genetics 198, 483–495. doi: 10.1534/
GENETICS.114.164442/-/DC1

Rogers, A., and Holland, J. (2022). Environment-specific genomic prediction ability
in maize using environmental covariates depends on environmental similarity to
training data. G3. Genes|Genomes|Genetics 12. doi: 10.1093/G3JOURNAL/JKAB440

Sansaloni, C., Franco, J., Santos, B., Percival-Alwyn, L., Singh, S., Petroli, C., et al.
(2020). Diversity analysis of 80,000 wheat accessions reveals consequences and
opportunities of selection footprints. Nat. Commun. 11, 4572. doi: 10.1038/S41467-
020-18404-W

Schulthess, A. W., Kale, S. M., Liu, F., Zhao, Y., Philipp, N., Rembe, M., et al. (2022).
Genomics-informed prebreeding unlocks the diversity in genebanks for wheat
improvement. Nat. Genet. 54, 1544–1552. doi: 10.1038/s41588-022-01189-7

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. J. Dairy
Sci. 91, 4414–4423. doi: 10.3168/JDS.2007-0980

Volk, G. M., Byrne, P. F., Coyne, C. J., Flint-Garcia, S., Reeves, P. A., and Richards, C.
(2021). Integrating genomic and phenomic approaches to support plant genetic
resources conservation and use. Plants 10, 2260. doi: 10.3390/plants10112260

Yu, X., Li, X., Guo, T., Zhu, C., Wu, Y., Mitchell, S. E., et al. (2016). Genomic
prediction contributing to a promising global strategy to turbocharge gene banks. Nat.
Plants 2, 16150. doi: 10.1038/nplants.2016.150

Zadoks, J. C., Chang, T. T., and Konzak, C. F. (1974). A decimal code for the growth
stages of cereals. Weed Res. 14, 415–421. doi: 10.1111/J.1365-3180.1974.TB01084.X

Zheng, X., Levine, D., Shen, J., Gogarten, S., Laurie, C., and Weir, B. (2012). A high-
performance computing toolset for relatedness and principal component analysis of
SNP data. Bioinformatics 28, 3326–3328. doi: 10.1093/BIOINFORMATICS/BTS606
frontiersin.org

https://doi.org/10.1007/S00122-021-03985-X/FIGURES/10
https://doi.org/10.1007/S00122-021-03985-X/FIGURES/10
https://doi.org/10.1073/pnas.96.11.5937
https://doi.org/10.1002/9780470650202.ch2
https://bitbucket.org/ipk_dg_public/vcf_filtering/
https://bitbucket.org/ipk_dg_public/vcf_filtering/
https://doi.org/10.1534/GENETICS.115.177907
https://doi.org/10.1534/GENETICS.120.303459
https://doi.org/10.3389/FPLS.2020.604781/BIBTEX
https://doi.org/10.3389/FPLS.2020.604781/BIBTEX
https://doi.org/10.3389/FEVO.2020.00032/BIBTEX
https://doi.org/10.3389/FEVO.2020.00032/BIBTEX
https://doi.org/10.1093/bfgp/elr046
https://doi.org/10.1038/s41437-022-00527-z
https://doi.org/10.1093/bioinformatics/btr509
https://arxiv.org/abs/1303.3997
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1038/s41588-019-0443-6
https://doi.org/10.1038/499023a
https://doi.org/10.1038/s41588-018-0266-x
https://doi.org/10.1534/GENETICS.114.164442/-/DC1
https://doi.org/10.1534/GENETICS.114.164442/-/DC1
https://doi.org/10.1093/G3JOURNAL/JKAB440
https://doi.org/10.1038/S41467-020-18404-W
https://doi.org/10.1038/S41467-020-18404-W
https://doi.org/10.1038/s41588-022-01189-7
https://doi.org/10.3168/JDS.2007-0980
https://doi.org/10.3390/plants10112260
https://doi.org/10.1038/nplants.2016.150
https://doi.org/10.1111/J.1365-3180.1974.TB01084.X
https://doi.org/10.1093/BIOINFORMATICS/BTS606
https://doi.org/10.3389/fpls.2023.1227656
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Genomic predictions to leverage phenotypic data across genebanks
	Introduction
	Materials and methods
	Phenotypic data records
	Phenotypic data quality assessment and performance estimates for ICARDA material
	Genomic data
	Population structure and genome-wide predictions
	Establishing genebank genomic prediction scenarios for ICARDA accessions
	Within-genebank prediction
	One-sided across-genebank prediction
	Integrated across-genebank prediction


	Results
	Broad genetic variation observed for the assessed traits
	The global diversity of the ICARDA collection was fully covered by the IPK collection
	Within-genebank genomic prediction of ICARDA accessions
	Accurate prediction of ICARDA accessions relying on training sets exclusively composed of IPK material is trait-dependent
	Enhanced prediction ability by using an integrated approach across IPK and ICARDA genebanks

	Discussion
	Genome-wide prediction is a powerful tool to fill gaps in genebank information
	Pervasive interaction between genotypes and target environments impacts across-genebank prediction
	Trait heritability and environment connectivity: two essential factors to improve prediction ability across genebanks

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


