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Abstract: The purpose of this study is to investigate the 
direct effect of using a blowing agent of siloxane (1, 1, 3, 
3-tetramethydisiloxane) on the thermo-physical 
properties of the foamed epoxy. These properties are: 
density, glass-transition temperature, thermal 
conductivity and thermal expansion. The work has been 
conducted experimentally by manufacturing several 
specimens with different siloxane contents as: 0, 5, 10, 15 
and 20 wt%. The properties of the specimens have tested 
under suitable conditions using different reliable 
instruments: differential scanning calorimetry, Lee-discs 
apparatus, and push rod dilatometer. Scanning electron 
microscope was used as well to analysis the morphological 
characteristics of the epoxy with respect to the pores 
generated by the blowing agent. In general, the foamed 
epoxy has shown different sizes of pores and extra 
crosslinking which leads to increase the glass-transition 
temperature of the material. Results show that the 
addition of 20% siloxane to the neat epoxy (as maximum) 
leads to: decreasing by 50% in bulk density, increasing by 
20% in glass-transition temperature, decreasing by 30% in 
thermal conductivity, and decreasing by 75% in thermal 
expansion.                                               

Keywords: Thermal properties, foamed epoxy, blowing agent, 

siloxane, insulation material.  

1. Introduction 

A wide range of important industrial applications 

uses epoxy resins, which have been 

Commercially accessible for decades and offer a 

long list of benefits that make up for their higher 

price tag. The interesting chemistry of these 

resins has drawn the attention of a number of 

accomplished scientists. Epoxy resins' technical 

uses are quite demanding, and new 

improvements are introduced on a yearly basis. 

Epoxy is a solid thermoset polymer has a strong 

structure due to the crosslinking bonds that gives 

the material many preferable physical properties, 

such good thermal, mechanical and chemical 

resistance [1-2]. The thermo-physical 

characteristics of pure epoxy are listed in Table 

1.  

Table 1. The thermo-physical characteristics of pure 

epoxy [1-5] 

Property Value 

Density 1.2-1.4 g/cm3 

Glass-transition temperature 350-380 K 

Thermal conductivity coefficient 0.2-0.3 W/m.K 

Thermal expansion coefficient 10-20 x10-5 1/K 

 

Light weight epoxy (LWE) is extensively 

utilized in a broad range of industries because of 

its inexpensive cost as well as adequate physical 

and mechanical qualities, as well as high 
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resistance to moisture, heat, and solvents. 

Consequently, the necessity to explore and 

anticipate the behavior of light weight epoxy 

based materials under specified situations and to 

increase their properties for many applications is 

on the rise. 

Light weight epoxy can be obtained from 

different methods due to different processability, 

such as high speed blending to generate air 

bubbles, pumping air or any gas into the resin, 

using suitable blowing agents, mixing with micro 

or nano particles within the resin to generate the 

vacancies, such as using aerogels and hollow 

spheres [6-8]. The mode of these materials is 

influenced either by the morphology of the epoxy 

matrix, additives and manufacturing used. 

Interest of developing light weight epoxy 

extended to generate bubbles or cavities in the 

resin in what so-called “foamed epoxy” which 

has increased in recent years since it is an 

effective way to decrease the weight of the 

material thus reduce its cost as well as to enhance 

its properties for example the thermal insulation 

which plays a key role in the energy saving. 

Recently, there has been a significant 

advancement in syntactic epoxy by considering 

nano-gel particulate composites, in which hollow 

spherical bubbles are inserted into the resin 

before curing to form controlled porosity. 

Epoxies are appealing for composite structural 

applications because of their ability to attach 

efficiently to a wide range of substrates, exhibit 

strong mechanical qualities, thermal insulation, 

and are chemically durable. Another advantage 

of incorporating foam into an epoxy construction 

is that it reduces the overall density of the 

structure [9-10]. 

Many investigations have studied the thermo-

physical properties of light weight epoxy for 

certain cases. Most of these studies are mainly 

looking for improving physical, mechanical and 

chemical properties by reinforcement methods. 

These methods include mixing the neat epoxy 

with different materials such as: particles, fillers, 

fibers or solutions, as mentioned by the 

references [11-14]. Some researchers have 

studied LWE obtained by involving nano-

materials in the composite, as mentioned by the 

references [15-26], or LWE due to the use of 

hollow glass spheres, as mentioned by the 

references [27-30] or by foaming the epoxy using 

blowing agents, as mentioned by the references 

[31-39]. The last references have served many 

blowing agents such as: siloxane, CO2 and 

pentane. Usually the percentage added to the 

epoxy was not exceeding 10%. Most of these 

studies have studied the mechanism of mixing 

these materials to reduce the weight of the epoxy 

as well as the corresponding changes in some 

mechanical or physical properties. However, the 

current work investigates the direct effect of 

adding a blowing agent on the thermo-physical 

properties of the resultant foamed epoxy. The 

main characteristics under study are: density, 

glass-transition temperature, thermal 

conductivity and thermal expansion. The work 

tends to relate these properties to the percentage 

of siloxane added to the epoxy.  

2. Materials and Methods 

The study proposes preparing several specimens 

of epoxies incorporated with different contents of 

blowing agent, and evaluating the thermal 

characteristics of the produced foamed epoxy as 

a light weight composite. The epoxy used in this 

study was SIKADUR-52 which is produced by 

Swiss company (Sika). The product is a 2-

component: resin and hardener, moisture-

tolerant, low-viscosity and high strength 

adhesive. The blowing agent used was 1,1,3,3-

tetramethydisiloxane which is produced by 

Chinese company (Jinan). The specifications of 

the materials used are shown in Table 2. 
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Table 2. Specifications of the materials used in this 

study* 

Material Properties 

Epoxy resin 

(SIKADUR-52) 

Two-component liquid, 

viscocity:500 mpa.s at 20 
oC, compressive strength: 

53 MPa after 10 days, 

Modulus:1000 MPa 

Blowing agent 

(1,1,3,3-

tetramethydisiloxane) 

Clear colorless liquid, CAS: 

3277-26-7, MW:134.32, 

Boiling at 70 oC, Flash at -

10 oC. 

* Supplied by the product data sheets. 

The experimental works have done in the 

Department of Materials, Mustansiriyah 

University to prepare specimens of different 

siloxane contents as: 0, 5, 10, 15 and 20 wt%. 

Samples of bulk epoxy have been prepared by 

mixing a suitable amount of the resin and the 

hardener using a precise weight scale in order to 

get the desired quantity. The epoxy resin has 

mixed with the amine hardener by 2/1 ratio 

(epoxy/hardener) and left for 2 hours. Then 

blowing agent (1,1,3,3-tetramethydisiloxane) has 

been added with continuous mixing. The solution 

was then poured into the mold and allowed for 24 

hours at room temperature before being post-

cured at 70 oC for 4 hours [34]. Due to the lengthy 

gel time of the epoxy resin at room temperature, 

and to prevent the early reactivity of the blowing 

agent with the epoxy, the siloxane was added to 

the mixture after 2 hours of pre-curing interval, 

while the viscosity was still low [34]. It should 

be noted that skipping the final operation exposes 

the resin to rapid thermal curing. This causes a 

sudden fall in viscosity and results in coalescence 

and escape of the majority of the bubbles created 

[34]. Differential scanning calorimetry (DSC) 

brand NETZSCH-214 has been used to 

determine the glass-transition temperature of the 

samples during exothermic process. The 

measurements were carried out at the Laboratory 

of Materials in the University of Tehran 

according to ASTM D3418, where the solid 

polymer should be grinded into small particles, 

so that the average size of the particle was not 

exceeded 2.36 mm in diameter or Mesh 8. In 

order to measure the thermal conductivity, 

several specimens have circular shapes of 4 cm 

diameter and 0.5 cm height, as shown in Figure 

1, according to ASTM C518. 

 

Figure 1. Specimens manufactured in this study for 

thermal conductivity tests 

The measurements were done at the Test Lab, 

University of Technology, where the thermal 

conductivity of the selected specimens have 

tested under suitable conditions using the Lees 

discs apparatus shown in Figure 2. 

 
Figure 2. Lee discus apparatus used to measure thermal 

conductivity 

Some other specimens have cylindrical shapes of 

1 cm diameter and 2 cm height, as shown in 

Figure 3, are manufactured for the measurement 

of thermal expansion according to ASTM E228. 
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Figure 3. Specimens manufactured in this study for 

thermal expansion tests 

The measurements were done at the Test Lab, 

University of Technology, where the thermal 

expansion of the selected specimens have tested 

under suitable conditions using the push rod 

dilatometer shown in Figure 4. 

 

Figure 4. Push rod dilatometer used to measure thermal 

expansion 

Furthermore, images of scanning electron 

microscope (SEM) for internal partitions of the 

samples have been captured, by VEGA-II 

TESCAN device, to analyze the structure 

morphology of the epoxy before and after the 

addition of siloxane. 

3.  Results and Discussion 

Many variables impact the foaming response in 

epoxy such as type and concentration of blowing 

agent, type and concentration of amine curing 

agent, temperature and heat transfer of the mixed 

resin, water absorption, as well as the viscosity of 

the resin [40-44]. Curing is an important stage for 

a correct foaming process, and the curing kinetics 

may shift the gel formation process rapidly, 

offering a significant processing challenge. Also, 

due to the low viscosity of the resin, an early 

foaming gas release will cause coalescence and 

escape of the bubbles; a delayed release will 

result in inadequate or inhomogeneous foaming 

[44, 45]. Figure 5 shows the bulk density of 

foamed epoxy produced samples as a function of 

siloxane concentration, which ranges from 5 to 

20 wt%. As predicted, the bulk density of the 

sample synthesized with the addition of blowing 

agent has decreased significantly, from 1.25 

g/cm3 for the neat epoxy to 0.64 g/cm3 (or 50%) 

for the sample synthesized with the addition of 

20% blowing agent (as maximum).  

 

Figure 5. Density of the epoxy as a function of Siloxane 

content 

Figure 6 shows SEM images for two selected 

samples, 0% as a neat epoxy and 15% as a 

foamed epoxy. In the first image (neat epoxy), 

there are many packed continuous clusters and 

amorphous groups. By looking to the second 

image (foamed epoxy), the structure was less 

uniform and showed the presence of many pores 

with different sizes and distributed randomly. 

The difference in the structure between the two 

images is most apparent in the side-by-side 

comparisons. It is clearly recognized how the 

pores are mainly closed, fairly spherical with an 

average pore size in the order of the tens of 

micrometers. 
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Figure 6. SEM images for (a) 0% and (b) 15 % specimens 

 

The average diameters and distribution of pores 

in 1 mm3 volume for the selected samples 

according to the amount of siloxane added has 

been calculated from the SEM images as 

presented in Table 3. The calculation depends on 

the scale of the image (250x250 μm2) 

multiplying by the diameter of the largest pore 

(50 μm) which is approximated. In general, 

increasing the blowing agent content has 

increased the number and size of pores. This is 

due to coalescence events, which are aided by 

increased blowing agent concentration. As a 

result, the perceived density is reduced.  

Table 3. Average diameters and distribution of pores in 1 

mm3 volume 

Sample Distribution 
Diameter of pore (μm) 

<10 10-25 25-50 >50 

0% Quantity  - - - - 

Percentage - - - - 

5% Quantity  12500 4500 700 200 

Percentage 70% 25% 4% 1% 

10% Quantity  15000 6000 1800 500 

Percentage 64% 26% 8% 2% 

15% Quantity  16000 8000 3000 1000 

Percentage 57% 28% 11% 4% 

20% Quantity  17000 9500 4000 1500 

Percentage 53% 30% 12.5% 4.5% 

The thermo-grams of DSC for the selected 

samples of the foamed epoxy with siloxane 

content from 0% to 20 % show two or three 

transitions in the glassy state at a certain interval. 

This is because the transition temperature is 

extremely structure-sensitive due to steric effects 

and also due to intra- and inter-molecular 

interactions. However, it should select the one 

which has highest gradient in the heat value [46]. 

Figure 7 represents the variation of glass-

transition temperature with the siloxane content 

for the selected specimen. The results show that 

transition temperature of the epoxy has increased 

from 375 K (102 oC) for the neat specimen until 

reached to 396 K (123 oC) for the specimen of 

20% siloxane content, thus the overall increment 

is 20%. This means that the foamed epoxy has a 

tendency to be a glassy material more than the 

neat one. This is because the increasing in 

foaming agent means an increase in the 

crosslinking, which decreases the molecular 

mobility and hence rises the polymer's glass-

transition temperature [47]. 
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The current results have similar behavior to that 

obtained by the studies [33, 38, 39, 48]. 

However, the transition temperature for the 

samples introduced in the mentioned studies has 

increased by 4-12 K. Figure 8 represents the 

variation of thermal conductivity with the 

siloxane content for the selected specimen. The 

results show that the relationship between the 

coefficient of thermal conductivity and the 

addition of siloxane is reciprocating, where the 

thermal conductivity of the epoxy has decreased 

from 0.2 W/m.K for the neat specimen to 0.14 

W/m.K for the specimen of 20% siloxane 

content, thus the overall reduction is 30%. This is 

due to the air presented in the foamed samples, 

where the thermal conductivity of air is less than 

that of polymer, thus the overall conduction of 

the composite tends to decrease [49]. This means 

that the foamed epoxy has a tendency for thermal 

insulation more than the neat one. The current 

results have similar behavior to that obtained by 

the studies [18, 19, 21, 26, 34, 50]. However, 

thermal conductivity for the samples introduced 

in the mentioned studies has less value by 30-

50%. Figure 9 represents the variation of thermal 

expansion with the siloxane content for the 

selected specimen. The results show that the 

relationship between the coefficient of thermal 

expansion and the addition of siloxane is 

reciprocating, where the thermal expansion of the 

epoxy has decreased from 16x10-5 1/K for the 

neat specimen to 3.6x10-5 1/K for the specimen 

of 20% siloxane content, thus the overall 

reduction is 75%. In other words, thermal 

expansion coefficient of the composite has 

decreased due to the combined effect of pores 

and corresponding crosslinking happened, which 

leads to increase the glass-transition temperature 

of the material. Thus, the material exhibit higher 

stiffness [51, 52]. This means that the foamed 

epoxy is more rigid material and can resist at high 

temperatures more than the neat one. Table 4 

shows a comparison between the current results and 

those obtained from other resources. 

 

Figure 7. Results of glass-transition temperature  

 

Figure 8. Results of thermal conductivity 

 

Figure 9. Results of thermal expansion 
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Table 4. Comparison between current results and those 

obtained from other resources for convergent conditions 

Property of the 

epoxy 

Current 

results 

Other 

results 

Density Decreased by 

50% 

Decreased by 

60% [53, 54] 

Glass-transition 

Temp. 

Increased by 

20% 

Increased by 

10% [39, 48] 

Thermal conductivity Decreased by 

30% 

Decreased by 

40% [34] 

Thermal expansion Decreased by 

75% 
- 

 

4. Conclusions 

The current study investigated the thermo-

physical properties of foamed epoxy, as LWE 

using a blowing agent of siloxane (1,1,3,3-

tetramethydisiloxane). The results show that the 

foaming the neat epoxy resin using siloxane 

blowing agent has a direct influence on the 

thermo-physical characteristics due to the 

presence of pores, their sizes and distribution. 

These factors have direct influences on the 

resultant bulk density thus the corresponding 

thermo-physical properties. It is noticed that as 

the blowing agent added by 20% to the epoxy 

(am maximum), the density has decreased by 

50%, the glass-transition temperature has 

increased by 20%, the thermal conductivity has 

decreased by 30% and the thermal expansion has 

decreased by 75%. 
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