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Abstract: This paper presents seven parameters of double 
diode model of the photovoltaic module under different 
weather conditions are extracted using differential 
development with an integrated mutation per iteration 
(DEIM) algorithm. The algorithm is produced by 
integrating of two other algorithms namely, 
electromagnetism like (EML) and differential evolution 
(DE) algorithms . DEIM enhances the mutation step of the 
original DE by using the attraction-repulsion principle 
found in the EML algorithm. Meanwhile, a novel strategy 
based on adjusting mutation and crossover rate factors for 
each iteration is adopted in this paper. The implemented 
scheme's success is confirmed by comparing its results 
with those obtained by techniques cited in the literature. 
Along with the results, the DEIM suggests high closeness 
with the experimental I–V characteristic. For the proposed 
algorithm an average Root Mean Square Error (𝑅𝑀𝑆𝐸), 
absolute error (𝐴𝐸), mean bias Error (𝑀𝐵𝐸), and 
execution time values were 0.0608, 0.044, 0.0053 and 
23.333, respectively. The comparisons and evaluations 
results proved that the DEIM is better in terms of precision 
and rapid convergence. Furthermore, fewer control 
parameters are needed in comparison to EML and DE 
algorithms. 

Keywords: DEIM, Double diode model, differential 

evolution, parameter estimation, Electromagnetism-like 

algorithm, solar cell modeling, control parameters, I–V 

curve. 

1. Introduction 

Due to many promising characteristics like 

renewability, reduced pollution, simplicity of 

installation, and noise-free operation, 

photovoltaic power plants that convert solar 

energy into electricity are called photovoltaic 

(PV) power plants, have lately gained increased 

attention [1]. However, because of the high initial 

cost of such a system, it is necessary to guarantee 

that the maximum amount of solar energy is 

captured. As a result, an efficient and accurate 

photovoltaic modeling should be given in order 

to improve the system's performance [2]. The 

term "photovoltaic module modeling" means the 

process of PV module parameters estimating 

based on manufacturing and/or experimental data 

[3]. A model that simulates the behavior of solar 

modules is important. [4]. In the literature, there 

are two of the most often used electrical 

equivalent circuit models of the PV module are 

the single diode (SD) [5] and double diode [6] 

models. The single diode model is the simplest, 

but the double diode model is more accurate, 
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particularly when solar irradiance is low. Several 

techniques for estimating the parameters of solar 

cells have been developed in recent years. There 

are two approaches to these techniques; 

analytical [7, 8] and numerical [9]. Only 

nominated data points for I-V characteristic 

curve are used in the analytical approach. For 

instance, short circuit and open circuit points, 

also the slopes of the strategic segments [ 7]. 

Oftentimes, this technique is fast and simple in 

determining the parameters, however, it is not 

always precise. Moreover, more accurate 

parameter approximation can be provided by 

numerical analysis because it takes into account 

all designated points belonging the to I-V curve 

[10]. In the previous literatures, Numerous 

authors have suggested the numerical methods to 

overcome the analytical method's shortcomings, 

including the Newton-Raphson method (NR) 

[11], Artificial Neural Network (ANN) 

algorithms [12–16] and evolutionary algorithms 

(EA) [17, 18]. Newly, extracting parameters of 

(PV) modules  utilizing evolutionary algorithms, 

such as genetic algorithms (GAs), has become 

widespread [5, 10, 19, 20], particle group 

optimization -P S O- [9, 21], flower pollination 

algorithm (FPA) [22], artificial bee colony 

(ABC) [23], The modified flower algorithm 

(MFA) [24], bee pollinator flower pollination 

algorithm (BPFPA) [25] and differential 

evolution  [26]. DE is well-known for its many 

characteristics, including fast convergence, high 

accuracy, and the need for fewer control 

parameters when compared to other EA 

techniques. Ishaque et al. [2] compared the 

performance of several evolutionary algorithms 

used to obtain the values of photovoltaic model. 

The penalty-based differential evolution (PDE) 

scheme has a faster convergence to optimal 

values than simulated annealing (SA, PSO, and 

GA methods, according to [2]. Gong et al. [27] 

developed an improved adaptive differential 

evolution for parameter extraction of solar PV 

components by means of the crossover rate 

repairing method besides the ranking-based 

mutation (Rcr-IJADE) scheme. The results of 

[27] showed that Rcr-IJADE provides better 

performance as compared to other methods. 

Furthermore, Jiang et al. [28] proposed an 

improved DE algorithm version that was dubbed 

improved adaptive differential evolution (IADE) 

that comprises a novel method to change the 

crossover and mutation phases control 

parameters so as to excerpt the parameters of PV 

module. Based on [28], IADE provides more 

accurate parameter estimation than traditional 

DE, PSO, and GA algorithms.  

A differential evolution with integrated mutation 

per iteration scheme are utilized to obtain the 

seven parameters of the double diode model of 

PV module. The DEIM algorithm's mutation and 

crossover phases control parameters are adjusted 

using a new method to eliminate the difficulty of 

setting fixed values. In a new formula, the best 

fitness points of sigmoid function is exploited for 

the previous and current iterations. 

2. PV Model 

The photovoltaic cell has many mathematical 

models, the most common of which is the double 

diode model, which is made up of five electrical 

components: a two diode, a current source, and 

two resistors as given in Fig. 1. This model is 

created by connecting a current source, two 

diodes, and a resistor 𝑅𝑝 in parallel, with the 

latter being linked in series with another 

resistor 𝑅𝑠. The output current 𝐼 of the cell is 

represented by [29]; 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑜1 [𝑒𝑥𝑝 (
𝑉+𝐼𝑅𝑠

𝑉𝑡1
) − 1] −

        𝐼𝑜2 [𝑒𝑥𝑝 (
𝑉+𝐼𝑅𝑠

𝑉𝑡2
) − 1] −

𝑉+𝐼𝑅𝑠

𝑅𝑝
                         (1) 
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where 𝑉𝐿 denotes the output voltage (V); 𝐼𝑝ℎ 

refers to the solar cell's photocurrent (A);  𝐼𝑜1 and 

𝐼𝑜2 are respectively refer to the reverse saturation 

currents of the two diodes (A); 𝑅𝑠 and 𝑅𝑠ℎ  refer 

to the series and parallel resistances (Ω), 

respectively. 𝑉𝑡1 and 𝑉𝑡2 are thermal voltage of 

the two diodes (V), which can be expressed by 

[29]:  

𝑉𝑡1 =
𝑎1𝐾𝐵𝑇𝑐

𝑞
                                                    (2)    

𝑉𝑡2 =
𝑎2𝐾𝐵𝑇𝑐

𝑞
                                                    (3)    

Where: 

𝑇𝑐 is the solar cell temperature in Kelvin;  

𝐾𝐵 = the Boltzmann constant (1.3806503𝐸 −

 23 𝐽/𝐾); 

𝑎1 and 𝑎2 are the ideality factors of the 1st and 2nd 

diodes;  

𝑞 = the electron charge (1.60217646𝐸 − 19 𝐶).  

An extra relationship for extra Shockley diode is 

included in the current equation of double diode 

model to account the losses due to recombination 

in the space-charge. It has been demonstrated that 

the double-diode application implies more 

truthful representation for solar cell behavior 

compared to the single-diode application, 

particularly when low solar irradiance exists, also 

it requires more computation efforts for 

calculating its seven parameters,  [7].  

 

Figure 1. Double diode circuit model of PV cell. 

 

2.1.  Formulation of Optimized Problem  

The primary goal of the solar cell modeling is to 

determine the optimum values of the seven 

unidentified coefficients 𝐼𝑝ℎ, 𝐼𝑜1, 𝐼𝑜2, 𝑅𝑠, 𝑅𝑝, 𝑎1, 

and 𝑎2 of double diode application by finding the 

minimum objective function. The root mean 

square error [RMSE] characterizes the 

discrepancy between the experimental and 

computed electric currents over (n) measurement 

points by the means of an objective function, 

which to be minimized as possible. Objective 

function is summarized in the following formula 

[29]: 

 ƒ(𝛿) = √1

𝑛
∑ 𝑃(𝑉𝑒 , 𝐼𝑒 , 𝛿)2
𝑛
𝑖=1                           (4) 

where; 

 𝑃(𝑉𝑒, 𝐼𝑒 , 𝛿) = 𝐼𝑒 − 𝐼𝑝ℎ + 𝐼𝑜1 [𝑒𝑥𝑝 (
𝑉𝑒+𝐼𝑝𝑅𝑠

𝑉𝑡1
) −

1] + 𝐼𝑜 [𝑒𝑥𝑝 (
𝑉𝑒+𝐼𝑝𝑅𝑠

𝑉𝑡2
) − 1] +

𝑉𝑒+𝐼𝑝𝑅𝑠

𝑅𝑝
             (5) 

𝑉𝑒 , 𝐼𝑒 indicated to the measurable output voltage 

(V) and current (A) of PV module, respectively; 

𝛿 = [ 𝐼𝑝ℎ, 𝐼𝑜1, , 𝐼𝑜2, 𝑅𝑠, 𝑅𝑝, 𝑎1, 𝑎2]  represent the 

vector of seven parameters, which will be 

applied, and 𝑛 denotes the points’ number of the 

obtainable current and voltage along I-V curve. 

3. Suggested (D.E.I.M) Algorithm  

Which is random search optimization algorithm. 

At D.E.I.M, there four stages, called mutation, 

crossover, initialization and selection. As in the 

further evolutionary algorithms; DEIM based on 

𝑁𝑃 of potential resolutions, which entail 

individuals of population (𝑆𝐺). The population 

includes 𝑁𝑃 of 𝐷-dimensional real-values 

vectors as given in the following equation: 

𝑆𝐺 = [𝑋1
𝐺 , 𝑋2

𝐺 , … . , 𝑋𝑁𝑃
𝐺 ] = [𝑋𝑖

𝐺]                 (6)    

where; 
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𝑋𝑖 = [𝑋1,𝑖, 𝑋2,𝑖, … , 𝑋𝐷,𝑖] = [𝑋𝑗,𝑖]                      (7) 

𝑋𝑖 represents the vector of the target (individual); 

𝑖 represents the population number of individuals 

where 𝑖 = 1, 2, . . , 𝑁𝑃;  

𝐺 equals 1,2, . . , 𝐺𝑚𝑎𝑥 , and represents the 

generation index; 

𝐺𝑚𝑎𝑥 is the maximum number of generations; 

 𝑗  represents the number of decision variables of 

each individual vector (𝑗 = 1,2, . . , 𝐷) .  

In the following subsections discuss deeply the 

four phases of DEIM. 

 Initialization 

Generating an initial set, 𝑆𝐺 = [𝑋𝑖
𝐺] where 𝐺 =

0 is the first step in the optimization process. 

Equation 8 is utilized to randomly generate the  𝐷 

parameters’ initial value, and to uniformly 

distribute these values within the range of 

[𝑋𝐿𝑗 , 𝑋𝐻𝑗], where 𝑋𝐻𝑗 and 𝑋𝐿𝑗 signifies the 

upper and lower limits of the examination region, 

as given below:  

 𝑋𝑗,𝑖
0 = 𝑋𝐿𝑗,𝑖 + 𝑅(𝑋𝐻𝑗,𝑖 − 𝑋𝐿𝑗,𝑖)                     (8) 

where 𝑅 = an arbitrary number between 0 and 1 

interval. 

 Mutation 

For each step iteration, DEIM uses Md and Me 

mutation process together. Switching between 

the two different mutation methods is based on 

the following criteria. 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =

{𝑀𝑒   𝑖𝑓 𝜎𝑙
𝐺 < 휀1𝜎𝑙

0

𝑀𝑑   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                    (9) 

The row vectors 𝜎𝑙
0 and 𝜎𝑙

𝐺  belong to the (S) 

datasets of preliminary and G generations, 

respectively; l denotes an arbitrary random figure 

that was arbitrarily chosen between [1, D], and 휀1 

represents a constant of the control coefficient 

that determines how often Me operations are 

performed over the dataset, 휀1 ∈ [0, 1] [29]. The 

mutation vector 𝑋𝑖
𝐺  of 𝑀𝑑 step is calculated 

using the following formula: 

𝑋𝑖
𝐺 = 𝑋𝛼

𝐺 +𝑀𝐹(𝑋𝛽
𝐺 − 𝑋𝛾

𝐺)                          (10) 

The coefficients 𝑋𝛼
𝐺 , 𝑋𝛽

𝐺  and 𝑋𝛾
𝐺  are arbitrarily 

selected from population;  𝛾, 𝛽  and 𝛼  represent 

the different parameters in period [1, 𝑁𝑃], then 

the mutation factor 𝑀𝐹 is selected to be within 

the range [0.5, 1] [28]. The parameters 

𝛼, 𝛽 and 𝛾 indices will not equal the current 

index, 𝑖, of individual vector. 

In the meantime, 𝑀𝑒 task is utilizing the total 

applied force on  𝑋𝛼
𝐺  by 𝑋𝛽

𝐺 and 𝑋𝛾
𝐺  that is 

calculated from the charges amongst the vectors 

same as in  algorithm of EML as given below: 

𝑞𝛼𝛽
𝐺 =

ƒ(𝑋𝛼
𝐺)−ƒ(𝑋𝛽

𝐺)

ƒ(𝑋𝑤
𝐺)−ƒ(𝑋𝑏

𝐺)
                                    (11) 

𝑞𝛼𝛾
𝐺 =

ƒ(𝑋𝛼
𝐺)−ƒ(𝑋𝛾

𝐺)

ƒ(𝑋𝑤
𝐺)−ƒ(𝑋𝑏

𝐺)
                                    (12) 

The each individual vector 𝑋, the objective 

function is given as ƒ(𝑋); 

though 𝑋𝑏
𝐺  and 𝑋𝑤

𝐺    denote the best and worst 

findings, which define the best and worst results 

of objective function for generation 𝐺𝑡ℎ. Thus, 

the applied forces on 𝑋𝛼
𝐺  , 𝑋𝛽

𝐺  and 𝑋𝛾
𝐺  can be 

given as in the following formulas [3]: 

𝐹𝛼𝛽
𝐺 = (𝑋𝛽

𝐺 − 𝑋𝛼
𝐺)𝑞𝛼𝛽

𝐺                                   (13) 

𝐹𝛼𝛾
𝐺 = (𝑋𝛾

𝐺 − 𝑋𝛼
𝐺)𝑞𝛼𝛾

𝐺                                    (14) 

Then, the applied resultant force on 𝑋𝛼
𝐺  from 

𝑋𝛽
𝐺  and 𝑋𝛾

𝐺  is worked out as in the following 

equation: 

𝐹𝛼
𝐺 = 𝐹𝛼𝛽

𝐺 + 𝐹𝛼𝛾
𝐺                                             (15) 

So on, the mutant vector obtained by 𝑀𝑒 process 

is summarized in the following expression:  

𝑋𝑖
𝐺 = 𝑋𝛼

𝐺 + 𝐹𝛼
𝐺                                              (16) 
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Figure 2. Flow chart of DEIM algorithm. 
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 <      

Apply Eq. (18) 
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(19) 
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 Crossover 

the relevant target vector 𝑋𝑖
𝐺and mutation vector 

𝑋𝑖
𝐺  were exploited to estimate the trial vector 𝑦𝑗,𝑖

𝐺  

using the following functions [3]:  

𝑦𝑗,𝑖
𝐺 = {

𝑋𝑗,𝑖
𝐺           𝑖𝑓 𝑅 ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝐼𝑖              

𝑋𝑗,𝑖
𝐺           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

 (17) 

Where 𝑅 indicated the number selected in a 

random way from the interval (0, 1), 𝐼𝑖 = an index 

number, were arbitrarily selected from [1, 𝐷] and 

the crossover 𝐶𝑅 is the rate parameter in the 

range [0.5, 1]. 

The physical value behavior of the estimated 

parameter must be insured. Therefore, the 

corresponding allowable search space will be 

examined to check whether the trial vector’s 

elements exist within the search space or not. A 

new value parameter of permissible limit will 

replace the surpassed parameter in the search 

space region, as shown below [3]: 

𝑦𝑗,𝑖
𝐺 = 𝑋𝐿𝑗,𝑖 + 𝑅(𝑋𝐻𝑗,𝑖 − 𝑋𝐿𝑗,𝑖)                    (18) 

 Selection 

The selection procedure uses both the target and 

the trial vectors. If the trial vector's objective 

function value is lower than that of the target 

vector, the target vector's objective function 

value is lesser. The target vector is swapped in 

the next generation. Alternatively, the target 

vector is kept in the original population. Thus, 

selection between trial and target vectors can be 

described as follows [3]: 

 

𝑋𝑖
𝐺+1 = {

𝑦𝑖
𝐺     𝑖𝑓 𝑓(𝑦𝑖

𝐺) < 𝑓(𝑋𝑖
𝐺)

𝑋𝑖
𝐺     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

,              (19) 

 

 

 

3.1. The Suggested Method for Adapting the 

Mutation and Crossover Rate Factors 
 

In the traditional DE, the values of crossover rate 

and mutation scaling factors are both fixed values 

to mention that it takes a longer period to perform 

and could fail to meet a comprehensive optimal 

outcome if the control parameters of the DE 

algorithm are incorrectly set. Consequently, a 

trial-and-error technique is repeatedly used to 

adjust the control parameters; nonetheless, this 

method is not either appropriate not yet 

beneficial and often necessitates many laborious 

optimization attempts. Several authors have 

suggested that by various means, the control 

parameters be adjusted throughout the search 

process. a basic structure IADE that permits the 

control parameters to be repeatedly adjusted 

based on fitness values during the optimization 

process was presented by Jiang et al. [28], using 

an exponential function to adjust MF and CR 

ranging between [0.5, 1] period. Likewise, a 

simple and precise technique for adjusting 

control parameters for individual generation at 

ranging within the period [0.5, 1] a 

mathematical-based logistic sigmoid equation is 

suggested in this research as follows: 

 𝑔(𝑥) =
𝐿

1+e(−𝐾(𝜔−𝜔𝑜)) 
                                    (20) 

The maximum value (𝐿) of the curve is taken 1, 

and the gradient of the curve is signified by 𝐾, 

and 𝜔𝑜 is the x-sigmoid midpoint of the 

axis (𝜔𝑜 = 0). As described in Eq. 21, the 

parameter 𝜔 signifies the variance between the 

best values of objective function of previous and 

current generations, multiplied by a random 

number 𝑅. 

 𝜔 = [𝑓(𝑋𝑏𝑒𝑠𝑡
𝐺 ) − 𝑓(𝑋𝑏𝑒𝑠𝑡

𝐺−1)] ∗ 𝑅                   (21) 

Where 𝑋𝑏𝑒𝑠𝑡
𝐺  indicated to the best vector of 𝐺𝑡ℎ  

generation, while 𝑋𝑏𝑒𝑠𝑡
𝐺−1 indicated to the best 

vector for 𝐺 − 1 generation and 𝑅 = a random 

number chosen from [0, 1] interval, which is 
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randomly selected. Then, the 𝑀𝐹 and 𝐶𝑅 

parameters can be expressed as follows: 

 𝑀𝐹, 𝐶𝑅 = 𝑑 (
𝐿

1+e(−𝐾(𝜔−𝜔𝑜))
+ 𝑏)                   (22) 

Where 𝑑 and 𝑏 are constants that selected to keep 

𝑀𝐹 and 𝐶𝑅 within [0.5, 1], where 𝑏 equals to 1 

and 𝑑 set to be 0.5. 

 

3.2.  Appraisement Criteria for the Proposed 

Method 

The proposed model used six distinct statistical 

indicators to measure the various algorithms' 

performance to provide an effective and fair 

comparison are: mean bias error (MBE) 

approach, coefficient of determination (𝑅2) 

approach, absolute error (AE) approach, root 

mean square error (RMSE) approach, standard 

test deviation of RMSE (𝑆𝑇𝐷) approach and 

deviation of  RMSE for each solar irradiance 

level (𝑑𝑖) approach. The definition of each 

criterion will be explained as follows: 

 AE: the absolute error that refers to the 

discrepancy between the estimated and 

measured of a specific voltage in the 

occurrence of definite solar irradiance and 

ambient temperature, and is given as; 

 𝐴𝐸 = |𝐼𝑝 − 𝐼𝑒|                                       (23) 

 Where 𝐼𝑝 and 𝐼𝑒 are the numerically 

computed and experimentally measured 

currents (A), respectively. 

 RMSE: The root mean square error denotes 

the discrepancy between standard deviation 

value of the numerically computed and 

experimentally measured currents (A) over 𝑛 

points of the dataset as expressed in the 

following formula: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐼𝑝 − 𝐼𝑒)

2𝑛
𝑖=1                  (24) 

where 𝑛 indicated to to the number of the 

measured experimental I-V curve points. 

  MBE: the mean bias error that exploited to 

estimate the performance of devised model as 

shown in equation 25: 

 𝑀𝐵𝐸 =
1

𝑛
(∑ (𝐼𝑝 − 𝐼𝑒)

𝑛
𝑖=1 )                    (25) 

 𝑹𝟐: has been employed to find the prediction 

performance model and its accuracy. The 

findings from the simulation and experiments 

are in close agreement when 𝑅2 is close to 1 

that implicates consistency between the both. 

𝑅2 is written as; 

 𝑅2 = 1 −
∑ (𝐼𝑝−𝐼𝑒)

2𝑛
𝑖=1

∑ (𝐼𝑒−𝐼�̅�)2
𝑛
𝑖=1

                             (26) 

Where 𝐼�̅� represent the arithmetic mean of 

experimental (𝐼�̅�=
1

𝑛
∑ 𝐼𝑒
𝑛
𝑖=1 ). 

 𝒅𝒊: The RMSE deviation of 𝑖𝑡ℎ solar 

irradiance level is the discrepancy between 

an 𝑖𝑡ℎ RMSE and the value of mean RMSE 

of all solar irradiance levels.𝑑𝑖 is given by; 

      𝑑𝑖 = 𝑅𝑀𝑆𝐸𝑖 − 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅                             (27) 

Where: 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  signifies the mathematical 

mean of RMSE for all levels of solar 

irradiance (𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑚
∑ 𝑅𝑀𝑆𝐸)𝑚
𝑖=1 , 𝑖 ∶

 signifies a specific level of solar irradiance 

( 𝑖 = 1,2, … ,𝑚), and 𝑚 is the entire levels of 

various solar irradiance. In this study, the 

total number of levels (m) is taken as (7), 

which represents the number of different 

operation status. 

 𝑺𝑻𝑫: The standard deviation of the RMSE is 

utilized to evaluate the efficiency of the 

suggested method. The following formula is 

used to compute 𝑆𝑇𝐷; [30] 

 𝑆𝑇𝐷 = √
1

(𝑛−1)
∑ 𝑑𝑖

2𝑛
𝑖=1                          (28) 

 

3. Outcomes and Discussion 
 

Both computed and experimental results are 

tested under various irradiance levels in order to 

validate the efficiency of the suggested approach. 

Additionally, comparisons with other earlier 
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techniques cited in the literature for estimating 

PV module parameter are also given for the 

simulated data, which is produced utilizing 

double diode photovoltaic cell model. The 

techniques employed for assessment and 

evaluation are PDE algorithm [2], IADE 

algorithm [28], and EML algorithm [31]. Seven  

different levels (G1-G7) of irradiance as well as 

solar cell temperature were used in the 

comparison, which are (118.28, 148, 306, 711, 

780, 840, and 978W/m2) with (318.32, 321.25, 

327.7, 324.21, 329.1, 331.42, and 328.56 K), 

respectively [3].  

To provide a fair comparison of the four 

techniques, identical simulation circumstances, 

such as maximum number of iterations, size of 

population, and parameters search space ranges, 

are maintained for all methods. 

The problem dimension is set to be 7 since there 

are seven PV module parameters: 𝑎1, 𝑎2, 𝑅𝑠, 𝑅𝑝, 

𝐼𝑝ℎ, 𝐼𝑜1 and 𝐼𝑜2. The population size is assumed 

to be 10𝐷 because the typical population size 

values range from 5𝐷 to 10𝐷 [29]. The 

parameter 휀1 is chosen as 0.28 by means of trial 

and error process so as to find the ideal number. 

Because of the change in the values of fitness 

function is obtained insignificant within 500 

generations, the total number of generations is 

taken 500. The search range of the seven 

parameters 𝐼𝑝ℎ, 𝐼𝑜1, 𝐼𝑜2, 𝑎1, 𝑎2, 𝑅𝑠, and 𝑅𝑝 are 

chosen to be within (1, 8) A for 𝐼𝑝ℎ, (1E-12, 1E-

5) A for 𝐼𝑜1and 𝐼𝑜2, (1, 2) for 𝑎1 and 𝑎2, (0.1, 2) 

Ω for 𝑅𝑠, and (100, 5000) Ω for 𝑅𝑝 intervals [2, 

11]. 

For DEIM implementation, the mutation factor 

and the crossover rate are adapted for each 

solution per generation. On the other hand, 𝑀𝐹 

and 𝐶𝑅 in PDE are chosen to be 0.8 and 1, 

respectively [2]. 

Eventually, in IADE, both 𝑀𝐹 and 𝐶𝑅 are 

adaptive for each generation [28]. It is important 

referring that the DE/best/1/bin strategy is 

implemented for IADE, PDE, and also DEIM. 

The term (best) denotes the best vector in the 

current population, the number (1) denotes the 

number of variance vectors, and (bin) refers to 

the binomial crossover method. 

Fig. 3a-b illustrates the I-V and P-V 

characteristics curves, which produced utilizing 

the obtainable parameters by DEIM algorithm 

under numerous operation status. 

Clearly, the I-V and P-V curves produced by the 

proposed method are accurate as well as closely 

match the measured data, particularly under low 

solar irradiance, as shown in Fig. 3. It can be 

noted that most of the present deviations occur in 

the area of the maximum power point (MPP) due 

to the asymmetry of experimental data points. 
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(a) (b)

Figure 3. DEIM's photovoltaic characteristics under seven operating conditions (a) I-V curves (b) P-V curves.

 

A comparison is made between the degrees of 

convergence of objective function values under 

seven atmospheric conditions, as shown in Fig. 

4. The first 50 generations for low solar radiation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

levels are compared to high solar radiation levels 

the proposed DEIM algorithm achieves the best 

and fastest convergence of the optimal parameter 

values. And that is because the number of data 

points increases with increasing levels of solar 

radiation.,  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The comparison of the degree convergence using DEIM algorithm under seven weather 

conditions. 
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To demonstrate DEIM's superior performance, it 

is compared with other models IADE, PDE, and 

EML based on statistical results from various 

performance criteria. The seven extracted 

parameters for the PV module's double diode 

model are shown in Table 1. Table 2 summarizes 

the mean values of the absolute error of the 

different modeling methods of the seven status. 

The DEIM has the lowest absolute error as 

compared to IADE, PDE, and EML, where the 

AE value is 0.044. As in Table 2, AE values were 

increased with the increasing solar irradiance 

because of the aggregated number points of 

dataset for the curve (I-V). Table 3 shows that the 

DEIM outperforms all other methods in terms of 

performance. DEIM has the lowest RMSE values 

across all weather conditions, with an average 

RMSE of 0.0608, followed by PDE in second 

place with an RMSE of 0.0712. After that, IADE 

and EML had the worse average RMSE values, 

0.0716 and 0.0752, correspondingly. DEIM 

provides other advantage in comparison to other 

algorithms by needing fewer consuming time 

around CPU time of 23.333sec. Moreover, DEIM 

offers the lowest MBE and highest coefficient of 

correlation as compared to other methods with 

0.0053 and 0.9922 values, respectively, as 

tabulated in Table 2. Additionally, Table 4 

illustrates the statistical criteria for the 𝑆𝑇𝐷 and 

𝑑𝑖 rates for different techniques where (7) 

operation conditions are taken. DEIM has 

minimum 𝑑𝑖 and 𝑆𝑇𝐷 values, where the 𝑆𝑇𝐷 

value is 0.0436, and 𝑑𝑖 values corresponding for 

(7) operation status are -0.0145, -0.0471, -

0.0350, -0.0328, 0.0333, 0.0262, 0.0699, 

respectively. Lastly, it is perceived that the 

DEIM outperforms other models. The average 

and minimum fitness values are 0.06395 and 

0.06077, respectively, as shown in Table 5. 

Compared to other methods cited in the literature, 

the obtainable results showed that the proposed 

model assesses the (7) parameters of PV module 

with insignificant inaccuracy, lower CPU 

execution time, and fewer control parameters. 

The superiority of the proposed DEIM, due to 

that the mutation process of the conventional DE 

algorithm is boosted by combining the mutation 

strategy of the EML algorithm with it. 

Furthermore, the proposed approach for adapting 

the mutation scaling factor and crossover rate 

assist DEIM to estimate PV’s parameters more 

convergence to the globally optimal values. 

Table 1. Output parameter s of PV module using the proposed DEIM model under various weather conditions. 

p
a

ra
m

et
er

 

   
Weather  conditions 

    

Method G1 G2 G3 G4 G5 G6 G7 Avg. 

 IADE 1.393 1.939 1.985 1.915 1.391 1.371 1.472 1.638 

𝑎1 PDE 1.401 1.949 1.897 1.241 1.415 1.455 1.448 1.544 

 EM  2.000 1.914 1.419 1.683 1.560 2.000 1.226 1.686 

 DEIM 1.000 1.130 1.065 1.156 1.440 1.478 1.450 1.246 

 IADE 1.681 1.375 1.186 1.335 1.592 1.527 1.396 1.441 

𝑎2 PDE 1.796 1.357 1.136 1.809 1.524 1.392 1.450 1.495 

 EM 1.518 1.259 1.704 1.336 1.229 1.340 1.472 1.409 
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 DEIM  1.311 1.305 1.937 1.180 1.478 1.386 1.450 1.435 

 IADE 1.405 0.217 0.669 0.514 0.256 0.185 0.198 0.492 

𝑅𝑠 PDE 1.416 0.325 0.732 0.540 0.245 0.186 0.193 0.519 

 EM 1.226   0.429                   0.476             0.508      0.304          0.217          0.247          0.487 

 DEIM      1.961      0.453      0.733      0.563      0.246      0.181      0.195      0.619 

 IADE 100.863 118.816 1053.62 668.531 102.627 3338.89 110.062  784.773 

𝑅𝑝 PDE 100.779 121.639 378.949 142.451 100.324 100.115 100.090 149.192 

 EM 104.054 123.979 4914.11 722.409 100.00 1593.16 100.00 1093.96 

 DEIM 100.003 114.933 175.068 103.949 100.009 1353.89 100.00 292.55 

 IADE 1.000 1.005 1.943 4.399 5.049 5.172 6.249 3.545 

𝐼𝑝ℎ PDE 1.000 1.004 1.946 4.426 5.043 5.389 6.266 3.582 

 EM  1.000 1.000 1.946 4.381 5.022 5.176 6.241 3.538 

 DEIM 1.000 1.000 1.966 4.446 5.052 5.178 6.263 3.558 

 IADE   2.75E-06 2.13E-06 6.33E-06 8.14E-06 9.10E-06 9.88E-06 8.99E-06 6.76E-06 

𝐼𝑜1 PDE 2.86E-06 1.42E-06 7.17E-07 1.56E-06 9.81E-06 9.89E-06 9.99E-06 5.18E-06 

 EM 1.00E-12 7.67E-08 1.00E-05 6.94E-07 7.97E-06 4.24E-07 1.44E-06 2.94E-06 

 DEIM 1.27E-08 1.00E-07 1.78E-07 1.08E-08 9.98E-06 9.98E-06 1.00E-05 4.32E-06 

 IADE 1.82E-07 3.33E-06 9.49E-07 4.37E-06 9.87E-06 9.31E-06 7.71E-06  5.10E-06 

𝐼𝑜2 PDE 1.78E-06 2.79E-06 4.84E-07 6.74E-07 9.86E-06 9.72E-06 9.99E-06 5.04E-06 

 EM 7.93E-06 1.08E-06 4.43E-06 4.56E-06 1.62E-06 8.99E-06 5.99E-06 4.94E-06 

 DEIM 4.14E-07 9.53E-07 3.63E-07 7.03E-07 1.00E-05 9.76E-06 1.00E-05 4.60E-06 

          

Table 2. The comparison of average AE among different models along seven O.Cs. 

Solar irradiance        𝑰𝑨𝑫𝑬       PDE       EML       DEIM 

G1 0.039 0.039 0.040 0.033 

G2 0.016 0.014 0.017 0.010 

G3  0.026 0.025 0.025 0.017 

G4 0.027 0.026 0.028 0.020 

G5 0.070 0.069 0.071 0.065 

G6 0.080 0.081 0.080 0.063 

G7 0.105 0.106 0.124 0.099 

Mean 0.052 0.051 0.055 0.044 
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Table 3. The comparison among different estimation methods based on various performance criteria under seven operation 

conditions. 

Tool Method       G1      G2      G3       G4      G5      G6      G7 Average 

          

 IADE 0.0538 0.0188 0.0348 0.0380 0.1051 0.1069 0.1438 0.0716 

RMSE PDE 0.0536 0.0181 0.0341 0.0376 0.1048 0.1074 0.1430 0.0712 

 EM  0.0549 0.0213 0.0343 0.0394 0.1057 0.1073 0.1636 0.0752 

 DEIM 0.0463 0.0137 0.0258 0.0280 0.0941 0.0869 0.1307 0.0608 

 IADE 0.0029 0.0004 0.0012 0.0014 0.0110 0.0114 0.0207 0.0070 

MBE PDE 0.0029 0.0003 0.0012 0.0014 0.0110 0.0115 0.0204 0.0070 

 EM 0.0030 0.0005 0.0012 0.0016 0.0112 0.0115 0.0268 0.0080 

 DEIM 0.0021 0.0002 0.0007 0.0008 0.0089 0.0076 0.0171 0.0053 

 IADE 0.9556 0.9954 0.9965 0.9988 0.9932 0.9939 0.9912 0.9556 

𝑅2 PDE 0.9560 0.9957 0.9966 0.9988 0.9932 0.9938 0.9913 0.9560 

 EM  

DEIM  

0.9539 

   0.9676 

0.9941 

     0.9976 

0.9966 

     0.9981 

0.9987 

     0.9994 

0.9931 

     

0.9946 

0.9938 

    0.9957 

0.9886 

    0.9927 

     0.9884 

     0.9922 

 

Exe.ti

me(s) 

IADE 

PDE 

EM  

30.295 

   29.547       

   5924 

     30.670 

     29.937      

     5742.1 

     32.105 

     30.997    

     5914.9 

     33.977 

     32.838        

     6231.1 

    33.805 

    32.308      

    6107.6 

    34.055 

    33.634    

    6248.8 

    34.024 

    33.696        

    6272.9 

    32.705 

    31.851    

    6063.06 

 DEIM 22.266     22.016      22.859     23.813     23.422     23.672     25.281     23.333 

          

Table 4. standard deviation and di values of different methods under seven operation conditions. 

Solar irradiance       IADE           PDE         EM       DEIM 

G1 -0.01882  -0.01904 -0.02510 -0.0145 

G2 -0.05489 -0.05440 -0.05385 -0.0471 

G3  -0.03852 -0.03775 -0.03544 -0.0350 

G4 -0.03553 -0.03493 -0.03469  -0.0328 

G5 0.03317 0.03263 0.03269 0.0333 

G6 0.03845 0.03791 0.03984  0.0262 

G7 0.07613 0.07558 0.07655  0.0699 

STD 0.04914 0.04862 0.04917 0.0436 

 

Table 5. Average, minimum, and maximum values of objective function of various EA. 

fitness-value IADE PDE EM DEIM 

Maximum 0.2944 0.3143 0.20352 0.22136 

Minimum 0.0716 0.0712 0.07523         0.06077 

Average 0.0811 0.0802 0.08063 0.06395 
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4. Conclusion 

In this paper, a new and effective version of the 

D.E algorithm, named DEIM, which proposed by 

combining two algorithms' DE and EML, to 

extract the seven parameters of PV module by 

using a double diode model under various 

environmental conditions. Using the proposed 

approach, the mutation phases of traditional DE 

and EML algorithms are combined providing 

speed up the mutation process. The DEIM 

method also devotes an improved formula based 

on the sigmoid function to modify the mutation 

scaling factor and crossover rate control 

parameters.  

The suggested method's feasibility has been 

verified by using both I-V measured data and 

other previous models are inspired from the 

relevant literature. The results of DEIM 

algorithm show that the last is capable of 

accurately calculating the seven parameters of 

the PV module model. under various 

meteorological data as compared to other 

algorithms. The superiority of DEIM model in 

terms of convergence and accuracy is proven 

using a variety of statistical criteria with realistic 

experimental data.  
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