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Abstract 

Objectives: To investigate the feasibility of automatically identifying normal scans in ultrafast 

breast MRI with artificial intelligence (AI) to increase efficiency and reduce workload. 

Methods: In this retrospective analysis, 837 breast MRI examinations performed in 438 women 

from April 2016 to October 2019 were included. The left and right breasts in each examination 

were labelled normal (without suspicious lesions) or abnormal (with suspicious lesions) based 

on final interpretation. Maximum intensity projection (MIP) images of each breast were then 

used to train a deep learning model. A high sensitivity threshold was calculated based on the 

detection trade-off (DET) curve on the validation set. The performance of the model was 

evaluated by receiver operating characteristic analysis of the independent test set. The 

sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) 

with the high sensitivity threshold were calculated. 

Results: The independent test set consisted of 178 examinations of 149 patients (mean age, 44 

years ± 14 [standard deviation]). The trained model achieved an AUC of 0.81 (95% CI: 0.75-

0.88) on the independent test set. Applying a threshold of 0.25 yielded a sensitivity of 98% 

(95% CI: 90%; 100%), an NPV of 98% (95% CI: 89%; 100%), a workload reduction of 15.7% 

and a scan time reduction of 16.6%. 

Conclusion: This deep learning model has a high potential to help identify normal scans in 

ultrafast breast MRI and thereby reduce radiologists’ workload and scan time. 
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Introduction 

Dynamic contrast-enhanced MRI (DCE-MRI) of the breast has been widely used as a 

supplementary screening tool for breast cancer. Breast MRI can not only detect more breast 

cancer cases than mammography but also detect cancers at an earlier stage [1]. Especially for 

women with extremely dense breasts, screening with supplemental MRI has the potential to 

reduce interval cancers [2]. These advantages have led to a renewed interest in using breast 

MRI to screen a larger population [3]. However, cost-effectiveness is still the most substantial 

obstacle for the wider application of this sensitive modality [4]. 

The most promising approaches to reducing the cost of breast MRI are to improve the 

throughput of the MRI scanner by shortening the acquisition time [5–8] and reducing 

radiologists’ workload by shortening the interpretation time [9]. Current diagnostic breast MRI 

protocols require up to 20 minutes. Several abbreviated protocols have been proposed to replace 

the standard protocol for screening [10, 11]. A recent multicentre multireader study [12] found 

that time-resolved angiography with stochastic trajectories (TWIST) [13] alone can achieve a 

comparable sensitivity (84% vs. 86%) and higher specificity (82% vs. 76%) than the full 

diagnostic protocol when interpreted by radiologists. This TWIST-alone protocol, requiring 

less than 2 minutes of magnet time, can thus minimize the time needed for the scanning process. 

Image interpretation is another bottleneck in breast cancer screening with MRI. The 

average interpretation time in different studies varied from 25 s to 178 s [11]. It is worth noting 

that the cancer rate in a screening study may be only 15.5 per 1000 [14], which suggests that 

radiologists spend most of their time reading normal scans without suspicious lesions. On the 

other hand, reading quality is also related to the total number of examinations and the position 

of the examination in the queue [15]. Short reading batches and risk-based reading queues may 

help further improve radiologists’ performance.  

The combination of artificial intelligence (AI) and ultrafast MRI could help to improve the 

efficiency of breast MRI screening by automatically excluding scans without lesions. 

Identifying suspicious lesions from numerous screening scans and prioritizing a scan according 
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to risk could help reduce the workload and improve efficiency. In addition, an early stop 

strategy could also be applied to scans without suspicious lesions. Since malignant lesions are 

more likely to enhance rapidly at the early stage of DCE-MRI [16, 17], cancellation or 

adjustment of further sequences based on the output of ultrafast MRI could help reduce 

scanning time and thus improve the throughput. Moreover, based on the real-time analysis of 

the ultrafast sequences, additional scanning (e.g., T2, DWI) or even a full diagnostic protocol 

could still be performed if any abnormalities were detected. 

We hypothesized that a deep learning model, with only TWIST sequences as input, might 

be able to identify normal MRI exams without human intervention. Integrating this deep 

learning system in the screening workflow could improve the throughput and reduce the 

radiologist’s workload. Therefore, the aim of this study was to develop and evaluate a deep 

learning model for automated abnormality prediction with only TWIST sequences as input. 

Materials and Methods 

The institutional review board approved the study and waived the requirement to obtain 

informed consent for our retrospective study, which used fully anonymized reports and MRI 

examinations. 

Study population 

The initial population included 1447 breast MRI examinations from 809 consecutive patients 

who underwent breast MRI examinations between April 2016 and October 2019 at our 

institution. Of the 1447 examinations, the following MRI scans were excluded: 287 due to 

inconsistent protocols, 156 due to incomplete data and 159 due to another indication for 

scanning (34 to measure response to chemotherapy, 94 for surgery follow-up and 31 to evaluate 

prosthesis rupture). Furthermore, 8 examinations were excluded due to failed scans. The final 

dataset for deep learning model development and evaluation consisted of 837 examinations 

from 488 patients. Among the 837 examinations, 178 examinations from 149 patients were 

obtained after deep learning model development, and those data were used as an independent 

test set since they were not involved in the model development. The remaining 659 
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examinations from 339 patients were randomly divided into training and validation sets as 

follows: 494 examinations from 214 patients in the training set and 165 examinations from 125 

patients in the validation set. It should be noted that the data were divided on the patient level; 

thus, there was no overlap in patients in the training and test sets. Figure 2.1 summarizes this 

process. 

 

Figure 2.1 Flowchart of the data collection and selection procedure. BI-RADS, Breast Imaging 

Reporting and Data System. 

MRI scanner and imaging technique 

Examinations were performed with a full diagnostic protocol (Figure 2.2) on either a 3.0 T or 

1.5 T scanner (MAGNETOM Skyra or MAGNETOM Avantofit, Siemens Healthineers) in the 

prone position. For 3.0 T and 1.5 T scanners, the full protocol requires 17.95 and 19.61 minutes, 

respectively, while the 15 TWIST acquisitions require 1.3 and 1.46 minutes. The acquisition 

parameters for ultrafast breast MRI are summarized in Table 2.1. 
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Figure 2.2 Schematic timing diagrams of the dynamic contrast-enhanced protocols used in this study. 

The full diagnostic protocol consists of fat-saturated T2-weighted sequence, 2 diffusion weighted 

imaging sequences with b-values 0 and 1000 s/mm2, 5 dynamic fat-saturated gradient echo T1-weighted 

sequences and a time-resolved angiography with stochastic trajectories (TWIST) sequence. 

 

Table 2.1 Acquisition Parameters for Ultrafast MRI 

 

 

 

 

 

TR, repetition time; TE, echo time; FOV, field of view 

Parameter 1.5 T 3.0 T 

TR/TE, ms 2.50/0.90 4.12/2.08 

Flip angle (°) 20 20 

Voxel size (mm3) 0.68´0.68´3.0 0.91´0.91´3.0 

Temporal resolution (s) 5.2 4.3 

FOV (mm) 350 350 

Fat suppression No No 
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Reference standard 

Classification of the MRI examinations was based on the assessments and conclusions in the 

radiology reports, supplemented with pathology reports, biopsy, and ultrasound results. For 

each patient, the left and right breasts were evaluated independently. Breasts with one or more 

visible enhanced lesions were classified as abnormal, while breasts with unenhanced lesions or 

without suspicious lesions were classified as normal. Then, all the labels were further examined 

by a senior radiologist to ensure that they were consistent with the visibility in TWIST. 

Examples MIP images of normal and abnormal breasts are shown in Figure 2.3. 

 

Figure 2.3: Example maximum intensity projection (MIP) of the time-resolved angiography with 

stochastic trajectories (TWIST) sequences of labeled breasts. (a) Abnormal and (b) Normal Samples. 

Development of the MIP-based Deep Learning System 

The proposed deep learning system had three main stages: breast region segmentation, MIP 

generation and abnormality prediction (Figure 2.4). 
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Figure 2.4 Schematic pipeline of the proposed breast DCE-MRI classification system. TWISTPre, Pre-

contrast TWIST sequence; TWISTN, Nth post-contrast sequence; MIP, maximum intensity projection; 

T1-wPre, Pre-contrast T1 weighted sequence. 

    For breast segmentation, a previously reported 3D U-Net [18] was used to generate the mask 

of the breast region. The segmentation was performed on a T1-weighted fat-suppressed 

sequence acquired before contrast agent injection. The obtained masks were then mapped onto 

TWIST sequences by shape resizing and FOV (field of view) alignment, through the location 

information recorded in dicom files. Then, the breast area was divided into left and right 

segments from the middle of the mask. 

 At the stage of MIP generation, only the last four TWIST acquisitions out of the fourteen 

postcontrast phases were used. Previous research shows that the time of arrival of benign lesions 

may be much longer than that of malignant lesions [19][20]; thus, most of the early MIPs 

contained no enhancing lesions. Therefore, to identify as many lesions as possible and reduce 

computational burden, in this study, the generated MIP images were then used to train the deep 

learning model. 

 A ResNet-34 model [21], which was pretrained on the ImageNet dataset, was modified 

and retrained for abnormality prediction. The output of the last fully connected layer of the 

model was changed to 2 to fit the task. The training data were then used for transfer learning, 
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and validation data were used for hyperparameter tuning. The tasks used for training were the 

presence or absence of visible lesions in the MIP image. During the training process, image 

augmentation was applied with random horizontal flipping, random rotation within 10° and 

random scaling within 10%. The batch size was set to 4, and the Adam optimizer was used. The 

final model was obtained by 60 epochs of training with an initial learning rate of 10−4. During 

inference, each of the 4 MIP images from a single breast was input into the deep learning model; 

if any of these images was predicted to be positive, the breast was then categorized as abnormal. 

The breast was only categorized as lesion free when all 4 MIP images were predicted to be 

negative. 

Model Calibration and Evaluation 

To leverage the trained model to identify as many abnormal MRI exams as possible, a 

probability threshold that ensures a lower false negative rate (FNR) is preferable. On the other 

hand, the effect of the false-positive rate (FPR) on the workload in the screening workflow 

should also be considered. To illustrate the relationship between FNR and FPR, the detection 

error trade-off (DET) curve for the validation set was generated. Thresholds that corresponded 

to a sensitivity of 100% or 95% and a negative predictive value (NPV) above 98% on the 

validation set were then selected as high sensitivity thresholds. 

To evaluate the prediction performance of the proposed deep learning system, receiver 

operating characteristic (ROC) curves on the independent test set were generated and the area 

under the receiver operating curve (AUC) was calculated. Sensitivity, specificity, positive 

predictive value (PPV), and NPV were also calculated for the default and high sensitivity 

thresholds, respectively. Furthermore, to help explain the decision-making of the classification 

model, Gradient-weighted Class Activation Mapping (Grad-CAM) was used to produce a 

coarse localization map, highlighting class-discriminative regions in each MIP image. 

Strong background parenchymal enhancement (BPE) has been reported to be associated with 

higher abnormal interpretation rates and lead to higher rates of unnecessary biopsies [22]. The 

percentage of each category of BPE in false positive and false negative predictions was 

examined to illustrate the effect of BPE on the model output.  
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To evaluate the effect of the deep learning system on the clinical workflow, we simulated the 

scenario in which negative results from the TWIST sequences did not require patients to 

undergo further work-up or require radiologists to interpret those examinations. The reduced 

acquisition time and percentage of excluded MRI examinations were calculated based on this 

scenario. 

Statistical Analysis 

Medcalc (version 19.6.1 Medcalc Software Ltd) and scikit-learn (version 0.24.1; https://scikit-

learn.org) were used for statistical analyses. The 95% confidence intervals (CI) for the AUCs 

were computed with DeLong’s method [23], 95% Clopper-Pearson CI for sensitivity and 

specificity, 95% standard logit CI [24] for PPV and NPV were also reported. 

Results 

Patients and Lesions 

The training and validation sets consisted of 339 patients (median age ± standard deviation, 44 

± 11 years; range, 22–80 years) who underwent 659 breast screening MRI examinations. 

Among these, 494 examinations were used for model training, and 165 were used for validation. 

The left and right breasts in each examination were classified separately, which resulted in the 

identification of 118 abnormal breasts (lesion size ± standard deviation, 17.9 ± 17.4 mm; range, 

5.0-110.0 mm) and 1200 normal breasts. Eighty-four of the abnormal breasts contained benign 

lesions (lesion size ± standard deviation, 13.7 ± 12.8 mm; range, 5.0-81.0 mm), while the other 

34 contained malignant lesions (lesion size ± standard deviation, 25.1 ± 19.8 mm; range, 6.0-

110.0 mm). 

  The independent test set consisted of 149 patients (median age ± standard deviation, 44 ± 15 

years; range, 24–76 years) who underwent 178 breast screening MRI examinations. Fifty-five 

breasts were classified as abnormal (lesion size ± standard deviation, 24.0 ± 19.8 mm; range, 

5.0-76.0 mm), and 301 were classified as normal. Twenty-five of the 55 abnormal breasts 

contained benign lesions (lesion size ± standard deviation, 15.0 ± 16.1 mm; range, 5.0-75.0 
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mm), and 30 contained malignant lesions (lesion size ± standard deviation, 31.0 ± 19.4 mm; 

range, 6.0-76.0 mm). Detailed patient and lesion characteristics are provided in Table 2.2 and 

Table 2.3. 

Model Calibration 

The DET curve on the validation set, which illustrates the trade-off between FPR and FNR with 

the threshold ranging from 0 to 1, is shown in Figure 2.5. Two cut off thresholds were selected 

based on the DET curve. With a threshold of 0.37, a sensitivity of 97% (30 of 31, 95% CI: 83%; 

100%) and NPV of 98% (123 of 124, 95% CI: 95%; 99%) were achieved. With this threshold, 

one breast with a benign lesion (chronic active inflammation with fat necrosis, 38 mm) was 

misclassified in the validation set, and no malignant lesions were missed. With a threshold of 

0.25, a sensitivity of 100% (31 of 31, 95% CI: 89; 100) and NPV of 100% (74 of 74) was 

achieved with no lesion missed. 
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Table 2.2    Patient and examinations characteristics 
  Characteristic Training & Validation Independent Test 

No. of patients 339  149 

No. of examinations 659 178 

No. of single breasts 1318 356 

Mean age of patients 44±11 44±15 

BI-RADS assessment 
  

   BI-RADS 1 161(24.4) 34(19.1) 

   BI-RADS 2 434(65.9) 105(59.0) 

   BI-RADS 3 27(4.0) 6(3.4) 

   BI-RADS 4 6(1.0) 7(3.9) 

   BI-RADS 5 4(0.6) 2(1.1) 

   BI-RADS 6 27(4.0) 24(13.5) 

Magnetic field strength   

   1.5 T 273(41.4) 59(33.1) 

   3.0 T 386(58.6) 119(66.9) 

Background enhancement   

   Minimal 263(39.9) 66(37.1)  

   Mild 204(31.0) 55(30.9) 

   Moderate 168(25.5) 48(27.0) 

   Marked 24(3.6) 9(5.0) 

Fibroglandular Tissue   

   Almost entirely fat 106 (16.1) 32(18.0) 

   Scattered 244(37.0)  58(32.6) 

   Heterogeneous 240(36.4)  67(37.6) 

   Extreme 69(10.5)  21(11.8) 

Gene mutation   

   Yes 218(64.3) 56(37.6) 

   No 107(31.6) 88(59.0) 

   Possible 14(4.1) 5(3.4) 
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Table 2.3    Description of lesions in the abnormal breasts 

Unless 

otherwise indicated, data in parentheses are percentage.  

* The “Other” category included enhancement around fat necrosis, scar tissue, hyperplasia, 
atheroma cyst, regional background enhancement and other benign-appearing enhancement 
not specified.  

† Data are ± standard deviation; data in parentheses are range of size. 

 

Lesion type Training & Validation Independent Test 

Benign lesions  84(71.2) 25(45.5) 

   Adenosis  21(17.8) 3(5.5) 

   Fibroadenoma 12(10.2) 7(12.7) 

   Other* 51(43.2) 15(27.2) 

Malignant lesions 34(28.8) 30(54.5) 

   Invasive ductal carcinoma 26(22.0) 25(45.5) 

   Invasivelobular carcinoma 3(2.5) 1(01.8) 

   Ductal carcinoma in situ 2(1.7) 2(3.6) 

   Micropapillary carcinoma 1(0.8)  1(1.8) 

   Apocrine carcinoma 1(0.8)  0 

   Mucinous carcinoma 1(0.8) 1(1.8) 

Lesion size (mm) †   

   Overall 17.9±17.4(5.0-110.0) 24.0±19.8(5.0-76.0) 

   Malignant 25.1±19.8(6.0-110.0) 31.1±19.4(6.0-76.0) 

   Benign 13.7±12.8(5.0-81.0) 15.0±16.1(5.0-75.0) 
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Figure 2.5 Detection error tradeoff curve on the validation set.  FPR, false positive rate; FNR, false 

negative rate. 

Independent Test 

On the independent test set, the model achieved an AUC of 0.81 (95% CI: 0.75; 0.88) (Figure 

2.6). With the threshold of 0.37, a sensitivity of 95% (52 of 55, 95% CI: 85%; 99%) and NPV 

of 97% (106 of 109, 95% CI: 92%; 99%) were achieved, while with the threshold of 0.25, a 

sensitivity of 98% (54 of 55, 95% CI: 90%; 100%) and NPV of 98% (55 of 56, 95% CI: 89%; 

100%) were achieved. The classification performance with each threshold is summarized in 

Table 2.4. 
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Figure 2.6 Receiver operating characteristic curves on the validation and independent test 

set. Area under receiver operator characteristic curve on the validation set and independent 

test set is 0.82 (95% confidence interval: 0.74; 0.88) and 0.81 (95% confidence interval: 

0.75; 0.88), respectively. 

Heatmaps generated with Grad-CAM indicate that, for positive predictions, the model made 

the decision mainly based on the enhanced regions in the breast parenchyma, while for negative 

predictions, the model’s focus was outside of the breast parenchyma. Examples are shown in 

Figure 2.7. 

The percentage of each BPE level in the false predictions of the independent test set was 

also investigated. For false negative predictions, 1 had minimal BPE and 2 had moderate BPE, 

meanwhile for false positive predictions, 35.9% were minimal BPE, 30.7 % were mild BPE, 

25.6% were moderate BPE and 5.1% were marked BPE.   
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Figure 2.7 Prediction examples from the independent test set and corresponding heat maps generated 

with Gradient-weighted Class Activation Mapping (Grad-CAM). From top to bottom, true positive, 

true negative, false positive and false negative predictions. The first column displays the maximum 

intensity projection (MIP) image, the second column shows the correspond heat maps for each image, 

the third column shows the overlaped imgae of the MIP and heatmap.  
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Standard Workflow vs. Triage 

When applying a threshold of 0.37 on the independent test set, 3 breast lesions were 

misclassified by the model; one contained a malignant lesion (mucinous carcinoma, 8 mm, BI-

RADS 6), while the other two contained benign lesions (one with fibroadenoma, 9 mm, BI-

RADS 4 and one not biopsied, 6 mm, BI-RADS 2). With the threshold of 0.25, only the one 

with fibroadenoma was misclassified as normal, no breasts with malignant lesions were missed. 

 Despite the possible risk of misclassifying breast lesions, with a threshold of 0.37, 109 

breasts were triaged as normal and 247 as abnormal, resulting in a workload reduction of 30.6% 

(109 of 356) at the breast level or 15.7% (28 of 178) at the examination level. If the threshold 

was further lowered to 0.25, 56 breasts were triaged as normal, while 300 were triaged as 

abnormal, resulting in a workload reduction of 15.7% (56 of 356) at the breast level and 6.2% 

(11 of 178) at the examination level. Furthermore, 30.2% (982.2 of 3253.8 minutes) or 16.6% 

(538.8 of 3253.8 minutes) of scanner time could be saved over 178 examinations under 

different settings if scanning was only continued when an abnormality was detected by ultrafast 

MRI. 

Discussion 

In this study, we combined clinical experience with artificial intelligence for the purpose of 

improving the efficiency and accessibility of breast MRI screening. A deep learning model was 

developed to identify normal ultrafast breast MRI examinations. 

The model achieved an AUC of 0.81 (95% CI: 0.75; 0.88) on an independent test set. High 

sensitivity (95% and 98%) and negative predicted values (97% and 98%) were obtained by 

applying different thresholds (0.37 and 0.25). When integrated into the workflow, the model 

has the potential to reduce radiologists’ workload by excluding normal scans and improving 

throughput by reducing scanning time. Moreover, the heatmap generated with Grad-CAM 

could also support radiologists’ image interpretation by identifying possible lesions in the MIP 

image. 

Although a conservative strategy was adopted, there were still false negative predictions. 

All the missed lesions were smaller than 10 mm, and the relatively small size may be the main 

reason that the deep learning model did not detect them. One malignant lesion (a mucinous 

carcinoma) was missed when using the threshold of 0.37. However, it should be noted that 

there was only one mucinous carcinoma in the training dataset, and the scarcity of this rare 
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cancer might have caused the model to be insufficiently trained to identify it. For false positive 

predictions, the percentage of minimal, mild, moderate, and marked BPE was 35.9%, 30.7%, 

25.6% and 5.1%, respectively. Compared with the BPE distribution in Table 2.1, (37.1% 

minimal, 30.9% mild, 27.0% moderated and 5% marked), it's difficult to make a conclusion 

that BPE had a negative impact on the classification of MIPs in TWIST. Meanwhile, 134 of 

the 195 false positive prediction were BI-RADS 2, and 113 were assessed within heterogeneous 

and extreme FGT. This finding indicates that proper handling of dense and BI-RADS 2 breasts 

may be the key to reducing false-positives in the future. 

  Similar models have been developed or evaluated in other studies on screening [25, 26]. 

Verburg et al. [27] developed a classification model with 4581 MRI examinations of extremely 

dense breasts; the model could help to exclude 39.7% of the MRI examinations without 

lesions and preserve 90.7% with lesions for radiologic review. Rodriguez-Ruiz et al. [28] and 

Yala et al. [9] showed that AI could help reduce mammogram screening workload by 17% or 

19.3% with a sensitivity of 90.6% or 90.1%, respectively. Raya-Povedano et al. [29] also 

reported a 29.7% workload reduction for tomosynthesis screening with a sensitivity of 84.1%. 

Even though the modality is different, the challenge of using AI in triaging is the same: a lower 

threshold is safer but less efficient, and the trade-off between the risk of missing breast cancer 

and the reduction of workload makes the threshold difficult to determine. 

 One of the limitations in our study is that the model was developed with a high-risk 

population dataset collected from a single institution. This may affect the generalizability of 

this study. External validation with diverse populations is necessary before clinical 

implementation. Another limitation of this study is that the cancer rates in the independent test 

set and the training and validation sets were not equal. These two subsets of data were 

downloaded separately from the same picture archiving and communication system via a time-

consuming acquisition process. This ensured independence but may introduced distortion in 

the reported results. In addition, this study was limited in exploring the real effect of the deep 

learning model in the triage workflow. A double-blind, randomized clinical trial may be 

necessary to further evaluate the performance of the model. Moreover, the proposed method 

used the 3D mask derived from T1 weighted fat-suppressed sequences, which may introduce 

systematic error. Developing a TWIST-based segmentation method might help further improve 

its performance. Furthermore, the MIP images used in this study are only generated in the axial 

plane, and potential masking effects may hinder the deep learning model from achieving better 
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performance. Evaluation of multiplanar MIPs may be a potential solution to address MIP 

masking effects. 

In conclusion, the classification of ultrafast breast MRI examinations with a deep learning 

model in the workflow may be a promising method to improve the efficiency and accessibility 

of breast MRI screening. Reduced scanning and interpretation time could result in significantly 

lower breast MRI screening costs, making it possible to provide MRI screening for a wider 

population. 
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